

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T J.203
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/2006)

SERIES J: CABLE NETWORKS AND TRANSMISSION
OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS
Application for Interactive Digital Television

 Common core for digital video recorder platform

ITU-T Recommendation J.203

 ITU-T Rec. J.203 (11/2006) i

ITU-T Recommendation J.203

Common core for digital video recorder platform

Summary
This Recommendation defines the APIs, semantic guarantees and system aspects of a harmonized
digital video recorder platform.

Source
ITU-T Recommendation J.203 was approved on 29 November 2006 by ITU-T Study Group 9
(2005-2008) under the ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. J.203 (11/2006)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 ITU-T Rec. J.203 (11/2006) iii

CONTENTS

 Page
1 Scope .. 1

2 References... 1
2.1 Normatives references .. 1
2.2 Informative references.. 1

3 Definitions .. 3

4 Abbreviations.. 3

5 Conventions .. 4

6 General considerations.. 4
6.1 Purpose ... 4
6.2 Full conformance with this Recommendation.. 4

7 Recording and playback process .. 4
7.1 Managing scheduled recordings ... 4
7.2 The recording process... 5
7.3 Managing completed recordings .. 6
7.4 Playback of scheduled recordings .. 6
7.5 Timeshift... 7

8 Recording and playback APIs .. 8
8.1 Recording and recording management ... 8
8.2 Playback ... 10
8.3 Other APIs .. 11
8.4 Permissions... 12

9 Application signalling... 12
9.1 Applications recording description... 12

10 Applications model... 13
10.1 Application lifecycle and trick-mode playback.. 13

11 Security ... 14
11.1 Introduction (informative) .. 14
11.2 Permission request file ... 14

12 Minimum receiver requirements... 14

Annex A – Application recording description ... 15

Annex B – Responsibilities of GEM recording specifications .. 17
B.1 Required ... 17
B.2 Optional .. 18

Annex C – External references; errata, clarifications and exemptions 20
C.1 Java media framework.. 20

iv ITU-T Rec. J.203 (11/2006)

 Page
Annex D – API packages for digital video recorder platform common core 21

D.1 Shared digital video recorder package ... 21
D.2 Shared digital video recorder navigation package.. 70
D.3 Shared media package .. 84

Bibliography... 98

 ITU-T Rec. J.203 (11/2006) v

Introduction
This Recommendation is intended to harmonize an application environment for the digital video
recorder extension to [ITU-T J.202].

This work was carried out as a joint effort between DVB and CableLabs.

 ITU-T Rec. J.203 (11/2006) 1

ITU-T Recommendation J.203

Common core for digital video recorder platform

1 Scope
This Recommendation defines a modular extension to [ITU-T J.202], and updated as GEM
[ETSI TS 102 819], which defines how the recording and playback of digital video (and audio)
content is integrated with the GEM [ETSI TS 102 819] platform. This Recommendation is firstly
intended to be used by entities writing terminal specifications and/or standards that extend a GEM
[ETSI TS 102 819] terminal specification with digital video (and audio) recording and playback.
Secondly, it is intended for developers of GEM [ETSI TS 102 819] applications that wish to use
digital video (and audio) recording and playback. Implementers should consult the publisher of
specifications which reference GEM [ETSI TS 102 819] regarding conformance.
NOTE – This Recommendation defines the interfaces visible to applications. Application developers should
not assume that any related interface is available unless it is specifically listed. Terminal standards or
implementations may have other interfaces present. One of the primary goals of this Recommendation is to
maximize the common aspects concerning the integration of digital video/audio recording between
MHP [ETSI ES 201 812] and the various GEM [ETSI TS 102 819] terminal specifications.

2 References

2.1 Normatives references
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T J.202] ITU-T Recommendation J.202 (2005), Harmonization of procedural content
formats for interactive TV applications.

[ETSI ES 201 812] ETSI ES 201 812 V1.1.1, Digital Video Broadcasting (DVB); Multimedia
Home Platform (MHP) Specification 1.0.3.

[ETSI TS 102 812] ETSI TS 102 812 V1.3.1, Digital Video Broadcasting (DVB); Multimedia
Home Platform (MHP) Specification 1.1.2.

[ETSI TS 102 819] ETSI TS 102 819, Digital Video Broadcasting (DVB); Globally Executable
MHP (GEM).

2.2 Informative references
The following references are provided as informative in order not to restrict the application of this
Recommendation to TVAnytime services, but users are encouraged to use the standards below
where possible for the sake of harmonization.

– ETSI TS 102 822-1 V1.3.1 (2006-01), Broadcast and On-line Services: Search, select, and
rightful use of content on personal storage systems ("TV-Anytime"); Part 1: Benchmark
Features.

– ETSI TS 102 822-2 V1.3.1 (2006-01), Broadcast and On-line Services: Search, select, and
rightful use of content on personal storage systems ("TV-Anytime"); Part 2: System
description.

2 ITU-T Rec. J.203 (11/2006)

– ETSI TS 102 822-3-1 V1.3.1 (2006-01), Broadcast and On-line Services: Search, select,
and rightful use of content on personal storage systems ("TV-Anytime"); Part 3: Metadata;
Sub-part 1: Phase 1 – Metadata schemas.

– ETSI TS 102 822-3-2 V1.3.1 (2006-01), Broadcast and On-line Services: Search, select,
and rightful use of content on personal storage systems ("TV-Anytime"); Part 3: Metadata;
Sub-part 2: System aspects in a uni-directional environment.

– ETSI TS 102 822-3-3 V1.1.1 (2006-01), Broadcast and On-line Services: Search, select,
and rightful use of content on personal storage systems ("TV-Anytime"); Part 3: Metadata;
Sub-part 3: Phase 2 – Extended Metadata Schema.

– ETSI TS 102 822-3-4 V1.1.1 (2006-01), Broadcast and On-line Services: Search, select,
and rightful use of content on personal storage systems ("TV-Anytime"); Part 3: Metadata;
Sub-part 4: Phase 2 – Interstitial metadata.

– ETSI TS 102 822-4 V1.2.1 (2006-01), Broadcast and On-line Services: Search, select, and
rightful use of content on personal storage systems ("TV-Anytime"); Part 4: Content
referencing.

– ETSI TS 102 822-5 V1.1.1 (2005-03), Broadcast and On-line Services: Search, select, and
rightful use of content on personal storage systems ("TV-Anytime Phase 1"); Part 5: Rights
Management and Protection (RMP) Information for Broadcast Applications.

– ETSI TS 102 822-5-1 V1.2.1 (2006-01), Broadcast and On-line Services: Search, select,
and rightful use of content on personal storage systems ("TV-Anytime"); Part 5: Rights
Management and Protection (RMP) Sub-part 1: Information for Broadcast Applications.

– ETSI TS 102 822-5-2 V1.2.1 (2006-01), Broadcast and On-line Services: Search, select,
and rightful use of content on personal storage systems ("TV-Anytime"); Part 5: Rights
Management and Protection (RMP) Sub-part 2: RMPI binding.

– ETSI TS 102 822-6-1 V1.3.1 (2006-01), Broadcast and On-line Services: Search, select,
and rightful use of content on personal storage systems ("TV-Anytime"); Part 6: Delivery
of metadata over a bi-directional network; Sub-part 1: Service and transport.

– ETSI TS 102 822-6-2 V1.3.1 (2006-01), Broadcast and On-line Services: Search, select,
and rightful use of content on personal storage systems ("TV-Anytime"); Part 6: Delivery
of metadata over a bi-directional network; Sub-part 2: Phase 1 – Service discovery.

– ETSI TS 102 822-6-3 V1.1.1 (2006-01), Broadcast and On-line Services: Search, select,
and rightful use of content on personal storage systems ("TV-Anytime"); Part 6: Delivery
of metadata over a bi-directional network; Sub-part 3: Phase 2 – Exchange of Personal
Profile.

– ETSI TS 102 822-7 V1.1.1 (2003-10), Broadcast and On-line Services: Search, select, and
rightful use of content on personal storage systems ("TV-Anytime Phase 1"); Part 7:
Bi-directional metadata delivery protection.

– ETSI TS 102 822-8 V1.1.1 (2006-01), Broadcast and On-line Services: Search, select, and
rightful use of content on personal storage systems ("TV-Anytime"); Part 8: Phase 2 –
Interchange Data Format.

– ETSI TS 102 822-9 V1.1.1 (2006-01), Broadcast and On-line Services: Search, select, and
rightful use of content on personal storage systems ("TV-Anytime"); Part 9: Phase 2 –
Remote Programming.

 ITU-T Rec. J.203 (11/2006) 3

3 Definitions
This Recommendation defines the following terms:

3.1 GEM recording specification: A complete specification that extends this
Recommendation to create complete specification of how to integrate digital video (and audio)
recording and playback with GEM terminal specifications.

3.2 GEM recording terminal: Terminal or other device that conforms to a GEM recording
specification.

3.3 normal play: Play of video and/or audio content in the forward direction at a rate of 1.0.
This includes live content, live content which has been time-shifted and content which is the result
of a scheduled recording.

3.4 recordable streams: The streaming data within a piece of content which is to be recorded
and played back. For GEM terminal specifications, these include streams identified corresponding
to clauses 7.2.1 ("Audio") and 7.2.2 ("Video") of GEM [ETSI TS 102 819]. GEM recording
specifications may define other types of streams to be recordable streams, for example subtitles or
closed-captions.

3.5 recording: A generic term that refers to a layman's concept of a scheduled or recorded
event, and does not refer to an actual Java object. The term covers recordings which have been
requested but not yet started, recordings which are in progress, recordings which have completed
(successfully or not) and recordings which failed with no data ever being recorded.

3.6 scheduled recordings: Recordings where the target of the recording is specified either by
time, duration and channel or by an identifier that is resolved to time, duration and channel.

3.7 synthesized timeline: A timeline for a piece of content which was synthesized by the GEM
recording terminal (as opposed to being included as part of the piece of content when it was
transmitted).

3.8 timeline: The conceptual progress of time inherent in an item of content, which may be
referred to by applications and delivered by a transmitted timeline.

3.9 timeshift recordings: Recordings where the target of the recording is currently received
video and audio content.

3.10 transmitted timeline: A timeline included as part of a piece of content when that content is
transmitted (e.g., DSMCC Normal Play Time).

3.11 trick mode or trick modes: A generic term for the playback of video and/or audio at
speeds other than 1.0 or directions other than forwards. This includes fast and slow speed playback,
both forwards and backwards, as well as pause.

3.12 trick-mode aware application: An application signalled as being aware of trick-mode
playback, i.e., with the trick_mode_aware_flag set to '1'.

4 Abbreviations
This Recommendation uses the following abbreviations:

AIT Application Information Table (as defined in clause 11.4 of [ETSI ES 201 812] and
[ETSI TS 102 812]).

DVR Digital Video Recorder

PDR Personal Digital Recorder

4 ITU-T Rec. J.203 (11/2006)

5 Conventions
The term "application" is used to cover both GEM applications and applications which are not
themselves GEM applications but which are compliant with the GEM terminal specification
implemented by a particular GEM recording terminal.

This Recommendation uses the terminology that something "shall not be recorded" or "should not
be recorded". This is a convention for the sake of brevity and in all cases, implementations are
allowed to record items that shall or should "not be recorded" and discard them during playback.
The term "shall not be recorded" is simply shorter than "shall not be recorded, or if recorded, shall
be discarded during playback" and the latter is what is meant.

6 General considerations

6.1 Purpose
This Recommendation is not intended, and should not be used, as a complete specification of how
to integrate digital video (and audio) recording and playback with GEM terminal specifications. It is
a framework upon which such a complete specification (known as a GEM recording specification)
can be created.

6.2 Full conformance with this Recommendation

Table 6-1 – MHP and GEM terminal specifications

[ETSI ES 201 812] MHP 1.0
[ETSI TS 102 812] MHP 1.1
[ETSI TS 102 819] GEM

Table 6-2 – MHP and GEM recording specifications

[b-ETSI TS 102 816] PVR/PDR Extension to the
Multimedia Home Platform

OpenCable Application Platform Specification
[b-OC-SP-OCAP-DVR-I02-050524]

OCAP Digital Video Recorder

For avoidance of doubt, equipment which is fully conformant with this entire Recommendation
apart from the above clause is not fully conformant with this Recommendation.

7 Recording and playback process
Implementations of this Recommendation shall perform the following as part of their process for
recording and playback.

7.1 Managing scheduled recordings

The process for managing scheduled recordings shall include the following activities:
1) Maintaining a list of recording requests which remain in the pending state until at least the

end of the validity period of the recording request;
2) Maintaining a list of recording requests that have been successfully completed, ones where

recording started but failed to be successfully completed, and ones where recording was
scheduled but failed to start;

 ITU-T Rec. J.203 (11/2006) 5

3) Initiating the recording process for a pending recording request at the appropriate time,
including awakening from a standby or similar power management state should this be
necessary;

4) Maintaining references to recording requests that failed in the list of recording requests for
at least the validity period of the recording request.

NOTE – Mechanisms for resolving conflicts between recording requests (e.g., use of the tuner) are outside
the scope of this Recommendation and should be specified by GEM recording specifications.

7.2 The recording process
The recording process shall include the following activities:
1) Identifying which recordable streams should be recorded. If specific streams were specified

when the recording request was originally scheduled, then those are the ones which should
be recorded. If no specific streams were specified when the recording request was
originally scheduled, then the default streams in the piece of content should be recorded.

 NOTE 1 – The definition of the default streams to be recorded is outside the scope of this
Recommendation and should be specified by GEM recording specifications.

2) Recording the identified streams, up to the limits in the recording capability of the GEM
recording terminal. Where more streams of any one type should be recorded than the GEM
recording terminal can record, streams shall be prioritized according to clause 11.4 of
[ETSI TS 102 819] (which in turn is according to clause 11.4.2.3 of [ETSI ES 201 812] and
[ETSI TS 102 812]).

 NOTE 2 – Minimum capabilities for the number of streams of each type that GEM recording
terminals must be able to record are outside the scope of this Recommendation and should be
specified by GEM recording specifications.

3) Identifying recordable applications and recording them and sufficient data to reconstruct
their AIT entries.

 Applications with an Application recording description where the
scheduled_recording_flag is set to '0' shall not be considered as recordable.

 NOTE 3 – A more complete definition of which applications are recordable (and which are not) is
outside the scope of this Recommendation and should be specified by GEM recording
specifications.

 NOTE 4 – The requirements on a GEM recording terminal to monitor for dynamic data and
behaviour of applications during a recording are outside the scope of this Recommendation and
should be specified by GEM recording specifications.

4) Recording sufficient information about all transmitted timelines which form part of the
recording in order to enable them to be accurately reconstructed during playback.

5) Generating a media time which increments linearly at a rate of 1.0 from the beginning to
the end of the recording.

6) Handling the following cases relating to the interruption of power to a GEM recording
terminal during a scheduled recording – the recording is in progress and power is
removed – the recording starts while power is not available but power is returned before the
end of the scheduled recording – the recording is in progress and power is removed and
returned once or more than once – the recording starts while power is not available but
power is returned and then removed once or more than once. In all these cases, as much of
the content as is available while the GEM recording terminal has power shall be recorded.

6 ITU-T Rec. J.203 (11/2006)

7.3 Managing completed recordings
The process for managing completed recordings shall include the following activities:
1) Maintaining with all completed recordings the following information as long as the content

is retained;
• whether the recording is known to be complete or incomplete or whether this is

unknown;
• the time and channel where the recording was made;
• the application specific data associated with the recording.

2) Deleting the recording if required (including the entry in the list of recordings, the recorded
data and any other associated information) once the expiration period is past for the leaf
recording request corresponding to this recording.

 NOTE – This Recommendation is silent about the precision with which the expiration period must
be respected. GEM recording specifications should specify how accurately it should be enforced by
implementations.

7.4 Playback of scheduled recordings

7.4.1 Process for playback
The process for playing back scheduled recordings shall include the following activities:
1) Starting the playback of recordable streams unless the initiating_replay_flag in the

Application recording description is set to '1'.
2) Starting the playback of recorded applications where these form part of the recorded piece

of content and their application_control_code is AUTOSTART.
 NOTE – Requirements on reconstructing the dynamic behaviour of recorded applications during

playback are outside the scope of this Recommendation and should be specified by GEM recording
specifications.

3) When playing content which is currently being recorded, if the end of the content to be
recorded is reached and recording stops, the playback must continue without interruption
(but not necessarily perfectly seamlessly), regardless of any (implementation-dependent)
process to copy the newly recorded content from any temporary buffer to a more permanent
location on the storage device.

4) A time shall be synthesised which increases linearly from the start of the recorded content
to the end. This shall be used as the basis of the "time base time" and "media time" as
defined by JMF. No relationship is required between this time and any time that forms part
of the recorded content such as MPEG PCR, STC or DSMCC NPT.

5) For all transmitted time lines which form part of the original recording, reconstruct each
time line when the current media time is in the range for which that time line is valid.

7.4.2 Events during playback
During the playback of content recorded as the result of a scheduled recording, the following
behaviour shall be supported:

 ITU-T Rec. J.203 (11/2006) 7

Table 7-1 – Events during normal playback and resulting behaviour

Event Behaviour Result on screen

Fast forward to end of stream End of media event generated to any
registered applications

Last frame frozen

Rewind to beginning of stream Switch to pause mode First frame frozen
Play to end of stream End of media generated to any registered

applications
Last frame frozen

7.5 Timeshift

7.5.1 The recording process
The process for timeshift recording shall include the following activities:
1) Identifying which recordable streams are to be recorded and recording them.
 NOTE 1 – The definitions of which streams are to be recorded in timeshift recording is outside the

scope of this Recommendation and should be specified by GEM recording specifications.
2) Identifying recordable applications signalled with the content being recorded at the start of

the recording and recording at least those applications and sufficient data to reconstruct
their AIT entries.

 NOTE 2 – The definition of which applications are recordable in timeshift (and which are not) is
outside the scope of this Recommendation and should be specified by GEM recording
specifications.

 NOTE 3 – The requirements for a GEM recording terminal to monitor for dynamic data and
behaviour of applications during a timeshift recording are outside the scope of this
Recommendation and should be specified by GEM recording specifications.

3) Identifying the transmitted timelines which form part of the content being recorded and
recording sufficient information about them to enable them to be accurately reconstructed
during playback.

4) Managing the timeshift buffer such that when the buffer is full, recording continues with
the oldest remaining content in the buffer being progressively overwritten.

7.5.2 Playback
Playback of content recorded in timeshift mode requires a time-shift buffer to be associated with a
JMF player or service context. The definition of how and when this association is made is outside
the scope of this Recommendation and should be specified by GEM recording specifications.

During the playback of content recorded in timeshift mode, the behaviour shall be as defined in
clause 7.4 with the following modifications:
1) The behaviour defined by Table 7-1: Events during normal playback and resulting

behaviour shall be replaced by the table below.

8 ITU-T Rec. J.203 (11/2006)

Table 7-2 – Events during timeshift playback and resulting behaviour

Event Behaviour

Fast forward to end of timeshift buffer
(i.e., the point where newly recorded
content is being written)

Switch to playback with rate = 1.0 within the
buffered recording or live without destroying the
contents of the timeshift buffer.

Rewind to the beginning of the timeshift
buffer (i.e., the point where recorded
content is being overwritten)

Switch to normal playback with rate = 1.0 within
the buffered recording, from the beginning of the
content in the timeshift buffer.

Play to end of timeshift buffer (i.e., bad
signal reception causes a data underflow in
the timeshift buffer)

Either do nothing (i.e., continue playback with
rate = 1.0 within the buffered recording) or switch
to live without destroying the contents of the
timeshift buffer.

Pause until timeshift buffer is "full" and
the content at the point where pause was
made is about to be overwritten.

Switch to playback with rate = 1.0 from the point at
which pause was made.

 For all transmitted timelines which are valid in the timeshift buffer, reconstruct each time
line when the current media time is in the range for which that time line is valid.

2) The media time for each location in the timeshift buffer shall be the value assigned to that
location at the point it was recorded. There shall be no discontinuities in media time within
the buffered recording including the "head" of the buffer where the content is the same as
the currently received content.

3) Setting the media time to a value corresponding to POSITIVE_INFINITY shall set the
playback location to the current record point, if the recording is still on-going, or, if not, to
the end of the recording.

4) If the playback location is the same as the record point (i.e., the live point is being played
back), the content shall be displayed with a delay of zero relative to the original broadcast
content. Implementations which can display the recorded content with a delay of zero
relative to live may display the recorded content. Other implementations must display the
original broadcast content.

8 Recording and playback APIs

8.1 Recording and recording management

8.1.1 Overview (informative)
The recording APIs enable applications to perform recordings in two different ways:
1) Schedule a recording to be performed at some point in the future;
2) Record broadcast events in real time. This may also include the portion of the broadcast

event that is in a timeshift buffer.

The implementation maintains a database of recordings, represented by the RecordingManager
singleton. Applications create recordings by calling the record() method of the RecordingManager
object. This operation in effect creates an entry in the recording database maintained by the
implementation. These entries are represented by instances of RecordingRequest. Applications may
associate application-specific data with RecordingRequests using the addAppData() method. This
application-specific data could be event descriptions in an application-private format or a key into
some database of information maintained by the application.

When a recording is created, applications specify a set of recording properties. One of these is an
expiration period, measured from when the recording is made. As defined in clause 7.3 above, once

 ITU-T Rec. J.203 (11/2006) 9

this expiration period has passed, the implementation will delete the recording. A second property is
a validity period, measured from when the request to make the recording is made. If the recording
has not been made by the time this period has passed, the recording may be deleted.

Applications may acquire a set of recordings represented by a RecordingList. Applications that wish
to limit the set of recordings in a RecordingList can express this by means of a RecordingListFilter.
This Recommendation defines some filters which are available to applications. GEM recording
specifications may define their own filters. Applications may create their own filters. Filters can be
cascaded so that the output of one filter is used as the input to a subsequent filter.
NOTE – GEM recording specifications may define rules governing the access of recordings to applications.
Where this is done, the listing API will not return recordings which the calling application is not allowed to
access as determined by these rules.

When data starts being recorded for a recording, a RecordedService is created. RecordedService
extends the JavaTV service interface and forms the link between the recording API and the
playback API.

8.1.2 Details
The org.ocap.shared.dvr and the org.ocap.shared.dvr.navigation package shall be supported.

In ServiceContextRecordingSpec, GEM recording specifications may make mandatory the
otherwise optional feature of storing and recording the contents of the timeshift buffer when the
startTime is in the past.

When a scheduled recording starts when the GEM recording terminal device is powered off, but
then the device is powered on while the scheduled recording is still in effect the implementation
shall execute the following steps:
1) Set the state of the LeafRecordingRequest in accordance with available resources.
2) If resources are available, create a RecordedService and commence an associated recording.
3) If the recording completes, set the LeafRecordingRequest state to INCOMPLETE_STATE.
4) Set the Exception to be returned by the LeafRecordingRequest.getFailedException method

to org.ocap.shared.dvr.RecordingFailedException.POWER_INTERRUPTION.

When a scheduled recording is in progress and the power is removed from the GEM recording
terminal, but then the device is powered on and the content to be recorded has not finished, the
implementation shall execute the following steps:
1) Create a LeafRecordingRequest for the remaining recording as soon as the boot process

completes and the implementation detects a scheduled recording should be in progress.
Copy the application-specific data from the original LeafRecordingRequest to the newly
created one. Set the state in accordance with available resources. Set the RecordingSpec to
match the original recording request.

2) If resources are available, create a RecordedService and commence an associated recording.
3) If the recording completes, set the LeafRecordingRequest state to INCOMPLETE_STATE.
4) Set the Exception to be returned by the LeafRecordingRequest.getFailedException method

to org.ocap.shared.dvr.RecordingFailedException.POWER_INTERRUPTION.

If power is removed and re-applied to the GEM recording terminal multiple times during the
duration of a scheduled recording, a LeafRecordingRequest and RecordedService shall be created
for each time the power was re-applied and resources were available to commence recording.
NOTE 1 – GEM recording specifications may add extra requirements to combine pieces of a scheduled
recording interrupted by power loss into a single construct (e.g., a subclass of RecordingRequest) hence
enabling them to be played back and otherwise manipulated as a single entity.

10 ITU-T Rec. J.203 (11/2006)

When a scheduled recording is in progress and the power is removed from the GEM recording
terminal, but then the device is powered on and the content to be recorded has finished, the
implementation shall execute the following steps:
1) Set the LeafRecordingRequest state to INCOMPLETE_STATE.
2) Set the Exception to be returned by the LeafRecordingRequest.getFailedException method

to INSUFFICIENT_RESOURCES.

When a scheduled recording is in progress and the power is removed from the GEM recording
terminal, but then the device is powered on and the content to be recorded has NOT finished, the
implementation shall execute the following steps:
1) Create a LeafRecordingRequest for the remaining recording as soon as the boot process

completes and the implementation detects a scheduled recording should be in progress.
Copy the application-specific data from the original LeafRecordingRequest to the newly
created one. Set the state in accordance with available resources. Set the RecordingSpec to
match the original recording request.

2) If resources are available, create a RecordedService and commence an associated recording.
3) If the recording completes, set the LeafRecordingRequest state to INCOMPLETE_STATE.
4) Set the Exception to be returned by the LeafRecordingRequest.getFailedException method

to org.ocap.shared.dvr.RecordingFailedException.POWER_INTERRUPTION.

If power is removed and re-applied to the GEM recording terminal multiple times during a
scheduled recording, a LeafRecordingRequest and RecordedService shall be created for each time
the power was re-applied and resources were available to commence recording.
NOTE 2 – GEM recording specifications may add extra requirements to combine pieces of a scheduled
recording interrupted by power loss into a single construct (e.g., a subclass of RecordingRequest) hence
enabling them to be played back and otherwise manipulated as a single entity.

8.2 Playback

8.2.1 Overview (informative)
Playback of a recording can be performed in two ways depending on whether or not it is desired to
start any applications which may form part of the recording.
1) Calling the select(Service) method of a ServiceContext passing in the RecordedService to

be played will select all the service components in the service including any autostart
applications which have been recorded;

2) Calling the getMediaLocator() method on a RecordedService and then passing the result to
javax.media.Manager.createPlayer(MediaLocator). Once a Player has been obtained, start()
or syncStart() will start playback. This will only playback the recordable streams within the
recording and not any applications.

Once playback has started, some of the ways of controlling it include the following:
1) Use of the JMF controls returned from Player.getControl(String) or Player.getControls() for

features like audio language selection and video scaling;
2) Use of Player.setRate(float) to control the speed of playback including changing between

normal speed play, fast forward, fast reverse and pause.

8.2.2 Details

The org.ocap.shared.media package shall be supported. JMF players presenting the contents of a
timeshift buffer shall support the TimeshiftControl control from this package.

The following extensions shall apply to the APIs required by [ETSI TS 102 819]:

 ITU-T Rec. J.203 (11/2006) 11

1) The method javax.tv.service.selection.ServiceContext.select(Service) shall accept instances
of RecordedService as being valid inputs. When called with such an instance, the recorded
content of that RecordedService shall be selected in the ServiceContext specified.

2) The method javax.media.Manager.createPlayer(MediaLocator) shall accept the
mediaLocators returned by RecordedService.getMediaLocator as being valid inputs and
return a JMF Player. When such a player enters the started state, the recordable streams of
that RecordedService shall be presented.

3) When a RecordedService is successfully selected in a ServiceContext, the AppsDatabase
shall be populated from the set of applications recorded as part of that RecordedService as
if those applications were transmitted live.

 NOTE 1 – AppsDatabase should be updated to the extent that the GEM recording specification
requires monitoring and reconstructing changes in the application signalling.

4) During playback of recordable streams (both playback of a scheduled recording and
timeshift recording), when the rate of playback changes, a javax.media.RateChangeEvent
shall be sent to all applications with ControllerListeners registered on a JMF player for that
content.

5) Calls to the setRate method of a JMF Player shall control the speed of playback, including
changing between normal speed play, fast forward, fast reverse and pause.

6) Calls to the method Player.setMediaTime shall attempt to start presentation of content as
close as possible to the specified media time except when passed a media time returned by
MediaTimeFactoryControl. SetTimeApproximations when the semantics defined by that
method shall be observed.

7) When a RecordedService is being played back, calls to the method
ServiceDomain.attach(..) with the Locator returned by RecordedService.getLocator shall
work as specified and provide access to the broadcast file system in the recording. This
Recommendation does not define requirements for access to broadcast file systems in a
recording when that recording is not being played back; however, such requirements may
be defined by GEM recording specifications.

When JMF players are presenting the recordable streams of a RecordedService or the contents of a
timeshift buffer, at a minimum the following JMF controls (defined by [ETSI TS 102 819] or this
Recommendation or as explicitly specified) shall be supported:
– org.davic.media.AudioLanguageControl;
– org.davic.media.FreezeControl;
– javax.tv.media.MediaSelectControl;
– org.ocap.shared.media.TimeLineControl;
– org.ocap.shared.media.TimeFactoryControl;
– org.davic.media.MediaTimeEventControl as defined in [b-DAVIC 1.4.1p9].
NOTE 2 – GEM recording specifications may require additional JMF controls to be supported for
RecordedServices or the contents of a timeshift buffer. Different sets of JMF controls may be specified for
these two cases.

8.3 Other APIs

8.3.1 Versioning
The properties listed in the following two tables shall be included in the property set of the
java.lang.System class. Thus these properties can be retrieved using java.lang.System.getProperty().
Since this API returns a string, numeric return values shall be encoded as defined by
java.lang.Integer.toString(int).

12 ITU-T Rec. J.203 (11/2006)

Table 8-1 – System properties for version interrogation

Property Semantics Possible values Example

gem.recording.version.major Major version number of the version
of this Recommendation supported.

Non-negative
integer value

"1"

gem.recording.version.minor Minor version number of the version
of this Recommendation supported.

Non-negative
integer value

"0"

gem.recording.version.micro Micro version number of the version
of this Recommendation supported.

Non-negative
integer value

"0"

8.4 Permissions

8.4.1 Unsigned applications
From RecordingPermission, only RecordingPermission("read", "own") shall be granted to unsigned
applications.

8.4.2 Signed applications
When the permission request file requests the permission to create a recording request and this is
granted, a RecordingPermission("create", "own") is created.

When the permission request file requests the permission to modify a recording request and this is
granted, a RecordingPermission("modify", "own") is created.

When the permission request file requests the permission to delete a recording request and this is
granted, a RecordingPermission("delete", "own") is created.

When the permission request file requests the permission to cancel a recording request and this is
granted, a RecordingPermission("cancel", "own") is created.

GEM recording specifications may define a mechanism for permitting applications to have
RecordingPermission instances whose action string is "*" but this is not required.

9 Application signalling

9.1 Applications recording description

GEM recording specifications shall define an application recording description sufficient to derive
the following:

Table 9-1 – Application recording description

Function Type
scheduled_recording__flag boolean
Trick_mode_aware_flag boolean
Time_shift_flag boolean
initiating_replay_flag boolean
label_count unsigned integer
for(i=0;i<N0;i++){
 label_length 8-bit unsigned integer
 for(j=0;i<N1;i++){
 label_payload 8-bit unsigned integer
 }
 storage_properties 2-bit unsigned integer
}

scheduled_recording_flag: This single-bit flag, when set to '1', indicates that the application is
appropriate to record when the service in which it is signalled is recorded by a scheduled recording.
When set to '0', it indicates that the application is inappropriate to record by a scheduled recording.
Examples of why an application would be inappropriate to record include the application not having

 ITU-T Rec. J.203 (11/2006) 13

been tested in a PDR environment or that the application is closely related to the time of
transmission and would be meaningless to the end-user if played back from a recording (e.g., an
application tied to a live event).

trick_mode_aware_flag: This single-bit flag, if set to '1', indicates that the application is trick-
mode aware. If set to '0', the application is not aware of trick-modes.

time_shift_flag: This single-bit flag, when set to '1', indicates that the application is appropriate to
record when the service in which it is signalled is recorded in time-shift recording mode. When set
to '0', it indicates that the application is inappropriate to record in time-shift recording mode.

initiating_replay_flag: This single-bit flag, if set to '1', indicates that the GEM recording terminal
shall not initiate the playback of the recordable streams in the same recording as the application.
The application is responsible for starting this playback. If set to '0', the implementation shall
initiate this playback in parallel with starting the application as would conventionally be the case.
NOTE 1 – If several applications are recorded with a program or a service and those applications are
signalled as constituting the entry point of the playback program, when the related recordable streams are
played back, the first related auto-start application found in the stored AIT shall be launched.

label_count: This 8-bit field identifies the number of labels that have been used.

label_length: This 8-bit field identifies the number of bytes in the label.

label_char: These 8-bit fields carry an array of bytes that label a part of the application within its
transport protocol.
NOTE 2 – This Recommendation does not define which parts of applications can be labelled or the form of
the label (if any). Labelling can be done at the level of files or groups of files or some lower-level construct
specific to the protocol used to transport the application.

storage_properties: A field indicating the importance of storing the labelled part of the application.
Values for this field are defined as follows:
0 should not be stored
1 critical to store
2 optional to store
3 reserved

GEM recording specifications that include the MHP definition of the GEM "Application
Signalling" functional equivalent shall fulfil this requirement by supporting the application
recording descriptor defined in Annex A.

10 Applications model

10.1 Application lifecycle and trick-mode playback
When playback of recorded content has been initiated by selecting a RecordedService, the
application model and lifecycle shall be modified as follows:
1) Running applications not explicitly signalled as trick-mode aware (the

trick_mode_aware_flag in the Application recording description is set to '1') shall be killed
when playback changes from normal to a trick-mode. Applications explicitly signalled as
trick-mode aware shall continue running.

2) When playback leaves trick-mode and returns to normal, the GEM recording terminal shall
evaluate the application signalling for that point in the content and start or stop applications
as necessary. Applications which are started shall be started as if the end-user had just
changed to a broadcast of the content concerned.

14 ITU-T Rec. J.203 (11/2006)

NOTE – GEM recording specifications may permit delays in re-starting applications after the return to
normal play if this is believed to improve the end-user experience, for example during repeated cycles of
fast-forward/play/fast-forward/play.

Transitioning from live playback to time-shifted playback shall not automatically kill any MHP
applications while the time-shifted content is being played from the end of the timeshift buffer,
(i.e., the point where newly recorded content is being written).

11 Security

11.1 Introduction (informative)
This Recommendation includes two security models governing the ability of applications to operate
on recording requests and completed recordings.
1) One model is based on associating attributes with MHP/OCAP applications. These

attributes are expressed as Java Permission classes. Certain method calls are protected and
throw a SecurityException if applications without specified Permissions call them. This
model is independent of the details of the RecordingRequest concerned.

2) The second model is based on associating security attributes with individual recording
requests. These attributes determine which applications may perform which operations on
that recording request. This Recommendation is silent about the mechanism by which these
attributes are associated with a recording request.

In the normal case, an application's ability to use the features provided by this Recommendation is
governed by the intersection of both sets of attributes. Operations on a RecordingRequest will fail
unless the calling application has the necessary Java Permission for the operation and the attributes
associated with the RecordingRequest being operated upon permit the calling application to perform
that operation. GEM recording specifications may define a mechanism for highly trusted
applications to obtain a Permission which enables them to bypass the second model and have the
right to perform all operations on all RecordingRequests.

11.2 Permission request file
The DTD of the permission request file defined by the GEM terminal specification shall include at
least the following element and associated attributes:

<!ELEMENT recordingpermission EMPTY>
<!ATTLIST recordingpermission
create (true|false) "false"
modify (true|false) "false"
delete (true|false) "false"
cancel (true|false) "false"
>

12 Minimum receiver requirements

The following requirements shall apply to all GEM recording terminals:
1) At least the following rates of variable speed playback shall be supported:

–16x, –8x, –4x, –2x, –1x, 0, 0.5x, 1x, 2x, 4x, 8x, 16x.
NOTE – For the –1x rate, it is allowed to only display i-frames.

 ITU-T Rec. J.203 (11/2006) 15

Annex A

Application recording description

GEM recording specifications that include the MHP definition of the GEM "Application
Signalling" functional equivalent shall fulfil this requirement by supporting the application
recording descriptor defined as follows.

The application recording descriptor can be signalled in the application descriptor loop of the AIT.
This descriptor contains extra information on application life cycle indicating in particular if an
application is appropriate to use in conditions of trick-mode playback. It indicates whether this
application shall or shall not be recorded, when a program, along with which this application is
signalled, is recorded. It provides a means to specify the locations of data resources that shall be
recorded along with the application, as well as the labels of the object carousel modules of the
application that shall, should or should not be recorded.

Table A.1 – Application recording descriptor syntax

Syntax No. of bits Identifier Comments / Value
application_recording_descriptor (){

descriptor_tag 8 uimsbf 6

descriptor_length 8 uimsbf

scheduled_recording_flag 1 bslbf

trick_mode_aware_flag 1 bslbf

time_shift_flag 1 bslbf

dynamic_flag 1 bslbf

av_synced_flag 1 bslbf

initiating_replay_flag 1 bslbf

reserved 7 bslbf

label_count 8 uimsbf N0

for(i=0;i<N0;i++){

 label_length 8 uimsbf N1

 for(j=0; j<N1; j++) {

 label_char 8 uimsbf

 }

 storage_properties 2 uimsbf

 Reserved 6

}

component_tag_list_length 8 uimsbf N2

for(i=0;i<N2;i++){

 component_tag 8 uimsbf

}

private_length 8 uimsbf N3

for(i=0;i<N3;i++){

 Private 8 uimsbf

}

for(i=0;i<N4;i++){

 reserved_future_use 8 uimsbf

}

}

The semantics of the fields defined in this descriptor shall be as defined in clause 9.1 above unless
otherwise specified in this clause.

16 ITU-T Rec. J.203 (11/2006)

descriptor_tag: This 8-bit integer with value 0x06 identifies this descriptor.

dynamic_flag: This flag indicates whether the application relies on the use of dynamic data during
its execution. When set to '1', it indicates that the application relies on the presence of files (either
code or data) or application signalling (e.g., application control code) which change during the
lifetime of the piece of content.
NOTE 1 – This Recommendation does not define behaviour for GEM recording terminals that is conditional
upon the value of this flag. GEM terminal specifications may use this flag in their determination of whether
or not an application is recordable.

av_synced_flag: This flag indicates whether the application requires use of the trigger events. If set
to '1', this is required.
NOTE 2 – This Recommendation does not define behaviour for GEM recording terminals that is conditional
upon the value of this flag. GEM terminal specifications may use this flag in their determination of whether
or not an application is recordable.

label_char: These 8-bit fields carry an array of bytes that are a module label. This label matches a
label on one or more modules carried by Label descriptors in the userInfo fields of the moduleInfo
structure of DIIs as defined by clause B.2.2.4.1 of [ETSI ES 201 812] and [ETSI TS 102 812].

component_tag_list_length: This integer specifies the length in number of bytes of the list of
component tags.

component_tag: This field identifies a service component that delivers data that is required by the
application at playback time and that shall be recorded along with the application. Components
carrying recordable streams need only be listed if components other than the default should be
recorded. Components that are streams carrying DSMCC object carousels or MHP application
information tables should not be listed and shall be silently ignored if they are listed. Except for
these, components that are streams carrying MPEG-2 private sections should be listed if their
recording is desirable.

private: These bytes may be used for private extensions.

reserved_future_use: These reserved bytes may be used for future DVB extensions.

 ITU-T Rec. J.203 (11/2006) 17

Annex B

Responsibilities of GEM recording specifications

B.1 Required
The following is a list of items identified in this Recommendation as being outside the scope of this
Recommendation and which GEM recording specifications must specify.
1) Which types of stream are to be considered as "recordable streams". Stream types

corresponding to clauses 7.2.1 ("Audio") and 7.2.2 ("Video") of GEM in the GEM terminal
specification on which the GEM recording specification is based must be considered as
"recordable streams";

2) Mechanisms for resolving conflicts between requested recordings (e.g., use of the tuner);
3) Minimum capabilities for the number of streams (or number of streams of each type) that a

GEM recording terminal must be able to record;
4) The definition of which applications are recordable in both scheduled and timeshift

recording (which need not be the same);
5) Requirements on a GEM recording terminal to monitor for dynamic data (in the DSMCC

object carousel or GEM functional equivalent) during scheduled and timeshift recording
(which need not be the same);

6) Requirements on a GEM recording terminal to monitor for GEM triggers or DSMCC
stream events during scheduled and timeshift recording (which need not be the same);

7) Requirements on a GEM recording terminal to monitor for dynamic application signalling
during scheduled and timeshift recording (which need not be the same);

8) Requirements on reconstructing the timing of dynamic data, triggers/stream events and
dynamic application signalling during playback of scheduled and timeshift recordings
(which need not be the same). GEM recording specifications must define requirements for
both normal speed playback and trick mode playback;

9) How accurately the expiration period should be enforced by implementations;
10) The definition of at least one protocol for transmitted time lines;
11) The conditions when a JMF player or service context has a time-shift buffer attached;
12) Requirements on the size of application-specific private data which it must be possible to

associate with a single key without an IllegalArgumentException being thrown;
13) Requirements on the number of entries of application-specific private data which it must be

possible to associate with a single RecordingRequest without a
NoMoreDataEntriesException being thrown;

14) A mechanism to associate security attributes with individual recording requests and a
mapping from that mechanism to the language in each of the methods in the following table
relating to "RecordingRequest specific security attributes".

18 ITU-T Rec. J.203 (11/2006)

Table B.1 – Methods with dependencies on recording request
specific security attributes

Method
RecordingManager.addRecordingChangedListener(RecordingListListener)

RecordingManager.getEntries()

RecordingManager.getEntries(RecordingListFilter)

RecordingRequest.getRecordingProperties(int)

RecordingRequest.add.AppData(int,java.io.Serializable)

RecordingRequest.removeAppData(int)

RecordingRequest.setRecordingProperties(RecordingSpec)

RecordingRequest.delete()

RecordingManager.record()

RecordingRequest.cancel()

RecordingRequest.stop()

LeafRecordingRequest.getService()

RecordedService.setMediaTime()

B.2 Optional
The following is a list of items identified in this Recommendation as being outside the scope of this
Recommendation and which GEM recording specifications may specify.
1) Mechanisms for controlling the extent to which one application can read or modify

scheduled recordings and completed recordings made by another application;
2) Sub-classes of RecordingListFilter to filter the list of recordings in ways not supported by

this Recommendation;
3) Rules governing which recordings an application can access;
4) Additional JMF controls to be supported for RecordedServices or the contents of a timeshift

buffer. Different sets of JMF controls may be specified for these two cases;
5) Delays in re-starting applications after the return to normal play if this is believed to

improve the end-user experience, for example when repeated cycles of
fast-forward/play/fast-forward/play;

6) A mechanism to permit highly trusted applications to obtain instances of
RecordingPermission whose action parameter is "*";

7) that the optional behaviour defined in the class description of
ServiceContextRecordingSpec, where the contents of the time-shift buffer are stored when
the startTime parameter is in the past, becomes mandatory in that particular GEM recording
specification;

8) Requirements on reconstructing the timing of dynamic data, triggers/stream events and
dynamic application signalling during playback of scheduled and timeshift recordings
(which need not be the same). GEM recording specifications must define requirements for
both normal speed playback and trick mode playback;

9) How accurately the expiration period should be enforced by implementations;
10) The definition of at least one protocol for transmitted time lines;
11) The conditions when a JMF player or service context has a time-shift buffer attached;
12) Requirements on the size of application-specific private data which it must be possible to

associate with a single key without an IllegalArgumentException being thrown;

 ITU-T Rec. J.203 (11/2006) 19

13) Requirements on the number of entries of application-specific private data which it must be
possible to associate with a single RecordingRequest without a
NoMoreDataEntriesException being thrown;

14) A mechanism to associate security attributes with individual recording requests and a
mapping from that mechanism to the language in each of the methods in Table B.1 relating
to "RecordingRequest specific security attributes".

20 ITU-T Rec. J.203 (11/2006)

Annex C

External references; errata, clarifications and exemptions

C.1 Java media framework

C.1.1 javax.media.Clock
In this Recommendation, the following text in the specification for this class shall be clarified as
described below.

The transformation that a Clock defines on a TimeBase is defined by three parameters: rate, media
starttime (mst), and time-base start-time (tbst). Given a time-base time (tbt), the media time (mt)
can be calculated using the following transformation:

 mt = mst + (tbt – tbst)*rate

The rate is simply a scale factor that is applied to the TimeBase. For example, a rate of 2.0 indicates
that the Clock will run at twice the rate of its TimeBase. Similarly, a negative rate indicates that the
Clock runs in the opposite direction of its TimeBase.

The time-base start-time and the media start-time define a common point in time at which the Clock
and the TimeBase are synchronized.

Each successful rate change shall be considered to be "a common point in time at which the Clock
and the TimeBase are synchronized" as defined above. The values of the Clock and TimeBase at the
common point shall be the values at the instant of the rate change.

 ITU-T Rec. J.203 (11/2006) 21

Annex D

API packages for digital video recorder platform common core

D.1 Shared digital video recorder package
D.2 Shared digital video recorder navigation package
D.3 Shared media package

D.1 Shared digital video recorder package

org.ocap.shared.dvr
 Package

D.1.1 ServiceRecordingSpec class
D.1.2 AccessDeniedException class
D.1.3 DeletionDetails class
D.1.4 LeafRecordingRequest Interface
D.1.5 LocatorRecordingSpec Class
D.1.6 NoMoreDataEntriesException class
D.1.7 ParentRecordingRequest Interface
D.1.8 RecordedService Interface
D.1.9 RecordedServiceType Class
D.1.10 RecordingChangedEvent Class
D.1.11 RecordingChangedListener Interface
D.1.12 RecordingFailedException class
D.1.13 RecordingManager class
D.1.14 RecordingPermission class
D.1.15 RecordingProperties class
D.1.16 RecordingRequest interface
D.1.17 RecordingSpec class
D.1.18 RecordingTerminatedEvent class
D.1.19 ServiceContextRecordingSpec class

D.1.1 ServiceRecordingSpec class

org.ocap.shared.dvr
 Class ServiceRecordingSpec

java.lang.Object
 +--org.ocap.shared.dvr.RecordingSpec
 +--org.ocap.shared.dvr.ServiceRecordingSpec

public class ServiceRecordingSpec

extends RecordingSpec

Specifies a recording request in terms of a Service.

When instances of this class are passed to RecordingManager.record(..), the following additional
failure mode shall apply – if the end time (computed as the start time + the duration) is in the past
when the record method is called, the record method shall throw an IllegalArgumentException.

22 ITU-T Rec. J.203 (11/2006)

When an instance of this recording spec is passed in as a parameter to the
RecordingRequest.reschedule(..) method, an IllegalArgumentException is thrown if the source is
different from the source specified in the current recording spec for the recording request and if the
recording request is in progress state.

When instances of this class are passed to RecordingManager.record(..), if the start time is in the
past and either:
– none of the content concerned is already recorded;
– some of the content concerned is already recorded but the implementation does not support

including already recorded content in a scheduled recording;

then the current time shall be used as the start time and the duration reduced accordingly. This
Recommendation does not require implementations to include already recorded content in
scheduled recordings however GEM recording specifications may require this.

Constructor Summary
ServiceRecordingSpec(javax.tv.service.Service source, java.util.Date startTime,
long duration, RecordingProperties properties)
 Constructor

Method Summary

long getDuration()
Returns the duration passed as an argument to the constructor.

javax.tv.service.Service getSource()
Returns the source of the recording

java.util.Date getStartTime()
Returns the start time passed as an argument to the constructor.

Methods inherited from class org.ocap.shared.dvr.RecordingSpec
getProperties

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

ServiceRecordingSpec

public ServiceRecordingSpec(javax.tv.service.Service source,
 java.util.Date startTime,
 long duration,
 RecordingProperties properties)
 throws java.lang.IllegalArgumentException

 Constructor.

Parameters:

 source – the service to be recorded

 startTime – Start time of the recording

 duration – Length of time to record in milliseconds.

 properties – The definition of how the recording is to be done.

 ITU-T Rec. J.203 (11/2006) 23

Throws:

 java.lang.IllegalArgumentException – if the source is not a broadcast service or if the
duration is negative

Method Detail

getSource

public javax.tv.service.Service getSource()

 Returns the source of the recording

 Returns:
 the source passed into the constructor

getStartTime

public java.util.Date getStartTime()

 Returns the start time passed as an argument to the constructor.

 Returns:
 the start time passed into the constructor

getDuration

public long getDuration()

 Returns the duration passed as an argument to the constructor.

 Returns:
 the duration passed into the constructor

D.1.2 AccessDeniedException class

org.ocap.shared.dvr
 Class AccessDeniedException

java.lang.Object
 +--java.lang.Throwable
 +--java.lang.Exception
 +--org.ocap.shared.dvr.AccessDeniedException

All Implemented Interfaces:
 java.io.Serializable

public class AccessDeniedException

extends java.lang.Exception

Exception thrown when an application is blocked from operating on a RecordingRequest by
security attributes associated with that RecordingRequest.

See Also:
 Serialized Form

24 ITU-T Rec. J.203 (11/2006)

Constructor Summary
AccessDeniedException()

 Constructs an AccessDeniedException with no detail message

Methods inherited from class java.lang.Throwable
fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace,
printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object
clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

AccessDeniedException

public AccessDeniedException()

 Constructs an AccessDeniedException with no detail message

D.1.3 DeletionDetails class

org.ocap.shared.dvr
 Class DeletionDetails

java.lang.Object
 +--org.ocap.shared.dvr.DeletionDetails

public class DeletionDetails

extends java.lang.Object

This class contains details about the deletion of a recorded service. Instances of this class are
constructed by the implementation and returned to applications from the getDeletionDetails
method.

Field Summary

static int EXPIRED
Reason code: The recorded service was deleted by the implementation because the
recording request has expired.

static int USER_DELETED
Reason code: The recorded service was explicitly deleted by the application.

Constructor Summary

DeletionDetails(int reason, java.util.Date date)
 Constructs a DeletionDetails

 ITU-T Rec. J.203 (11/2006) 25

Method Summary

java.util.Date getDeletionTime()
Gets the date and time when the recorded service was deleted.

int getReason()
Reports the reason for why the recorded service was deleted.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Field Detail

EXPIRED

public static final int EXPIRED

 Reason code: The recorded service was deleted by the implementation because the
recording request has expired.

 See Also:
 Constant Field Values

USER_DELETED

public static final int USER_DELETED

 Reason code: The recorded service was explicitly deleted by the application.

 See Also:
 Constant Field Values

Constructor Detail

DeletionDetails

public DeletionDetails(int reason,
 java.util.Date date)

 Constructs a DeletionDetails

Parameters:

 reason – the reason why the recorded service was deleted

 date – the date and time when the recorded service was deleted

26 ITU-T Rec. J.203 (11/2006)

Method Detail

getReason

public int getReason()

 Reports the reason for why the recorded service was deleted. This is the value as passed in
to the constructor.

 Returns:
 the reason code for which the recorded service was deleted.

getDeletionTime

public java.util.Date getDeletionTime()

 Gets the date and time when the recorded service was deleted. This is the value as passed in
to the constructor.

 Returns:
 the deletion date and time.

D.1.4 LeafRecordingRequest Interface

org.ocap.shared.dvr
 Interface LeafRecordingRequest

All Superinterfaces:
 RecordingRequest

public interface LeafRecordingRequest

extends RecordingRequest

This interface represents information corresponding to a leaf level recording request. The recording
request represented by this interface corresponds to a recording request that has been completely
resolved to a single recording.

A leaf recording request may be pending (i.e., waiting for the start-time to occur), in-progress,
completed, incomplete, or failed.

While in pending state, a recording request may be in conflict for resources with other recordings.
Any such conflicts must be resolved before the scheduled start time of the recording, if not, the
pending recording request is expected to result in a failed recording.

 ITU-T Rec. J.203 (11/2006) 27

Field Summary

static int COMPLETED_STATE

Recording for this recording request has completed successfully.
static int DELETED_STATE

The recorded service corresponding to this recording request has been deleted.
static int FAILED_STATE

The recording request has failed.
static int IN_PROGRESS_INSUFFICIENT_SPACE_STATE

Recording has been initiated for this recording request and is ongoing, but the
implementation has detected that storage space may not be sufficient to complete the
recording.

static int IN_PROGRESS_STATE
Recording has been initiated for this recording request and is ongoing.

static int INCOMPLETE_STATE
Recording for this recording request was initiated but failed in the
IN_PROGRESS_STATE before the COMPLETED_STATE could be reached.

static int PENDING_NO_CONFLICT_STATE
The recording request is Pending. Recording for this request is expected to complete
successfully.

static int PENDING_WITH_CONFLICT_STATE
The recording request may not be initiated due to resource conflicts.

Method Summary

 void cancel()
Cancels a pending recording request.

 DeletionDetails getDeletionDetails()
Gets detailed information about the deletion of the recorded service
corresponding to this recording request.

 java.lang.Exception getFailedException()
Gets the exception that caused the recording request to enter the
FAILED_STATE, or INCOMPLETE_STATE.

 RecordedService getService()
Returns the RecordedService corresponding to the recording request.

 void stop()
Stops the recording for an in-progress recording request regardless of
how much of the duration has been recorded.

Methods inherited from interface org.ocap.shared.dvr.RecordingRequest

addAppData, delete, getAppData, getAppID, getId, getKeys, getParent,
getRecordingSpec, getRoot, getState, isRoot, removeAppData, reschedule,
setRecordingProperties

28 ITU-T Rec. J.203 (11/2006)

Field Detail

PENDING_NO_CONFLICT_STATE

public static final int PENDING_NO_CONFLICT_STATE

 The recording request is Pending. Recording for this request is expected to complete
successfully.

 See Also:
 Constant Field Values

PENDING_WITH_CONFLICT_STATE

public static final int PENDING_WITH_CONFLICT_STATE

 The recording request may not be initiated due to resource conflicts. The implementation
has detected a resource conflict for the scheduled time of this recording request and the
current resolution of the conflict does not allow this recording request to be initiated
successfully.

 See Also:
 Constant Field Values

IN_PROGRESS_STATE

public static final int IN_PROGRESS_STATE

 Recording has been initiated for this recording request and is ongoing. Recording is
expected to complete successfully.

 See Also:
 Constant Field Values

IN_PROGRESS_INSUFFICIENT_SPACE_STATE

public static final int IN_PROGRESS_INSUFFICIENT_SPACE_STATE

 Recording has been initiated for this recording request and is ongoing, but the
implementation has detected that storage space may not be sufficient to complete the
recording. This situation may arise when the implementation detects that the storage space
may not be sufficient to complete this recording request and other recording requests that
are in progress. The recording request is not expected to complete successfully. A recording
request may enter this state from IN_PROGRESS_STATE or
PENDING_NO_CONFLICT_STATE. Implementation may start a recording request in
IN_PROGRESS_STATE based on initial estimation for space required and later change to
IN_PROGRESS_INSUFFICIENT_SPACE_STATE when the implementation has enough
information to compute a more accurate estimation of space needed. If an implementation
cannot detect insufficient space in advance, the implementation may start the recording
request in IN_PROGRESS_STATE and then transition to FAILED_STATE when space
runs out. It is also possible for a recording request to start in
IN_PROGRESS_INSUFFICIENT_SPACE_STATE and later move to
IN_PROGRESS_STATE or COMPLETED_STATE. This could occur if other recording

 ITU-T Rec. J.203 (11/2006) 29

requests were deleted after the start of recording or if implementation computes a better
estimate of the space needed as the recording progress.

 See Also:
 Constant Field Values

INCOMPLETE_STATE

public static final int INCOMPLETE_STATE

 Recording for this recording request was initiated but failed in the
IN_PROGRESS_STATE before the COMPLETED_STATE could be reached. The
RecordingRequest will contain a RecordedService that can be played for whatever
duration was recorded.

 See Also:
 Constant Field Values

COMPLETED_STATE

public static final int COMPLETED_STATE

 Recording for this recording request has completed successfully.

 See Also:
 Constant Field Values

FAILED_STATE

public static final int FAILED_STATE

 The recording request has failed.

 See Also:
 Constant Field Values

DELETED_STATE

public static final int DELETED_STATE

 The recorded service corresponding to this recording request has been deleted.

 See Also:

 Constant Field Values

30 ITU-T Rec. J.203 (11/2006)

Method Detail

cancel

public void cancel()
 throws java.lang.IllegalStateException,
 AccessDeniedException

 Cancels a pending recording request. The recording request will be deleted from the
database after the successful invocation of this method. Cancelling a recording request may
resolve one or more conflicts. In this case some pending recordings with conflicts would be
changed to pending without conflicts.

 Throws:

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes.

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("cancel",..) or RecordingPermission("*",..)

 java.lang.IllegalStateException – if the state of the recording is not in
PENDING_STATE_NO_CONFLICT_STATE or PENDING_WITH_CONFLICT_STATE.

stop

public void stop()
 throws java.lang.IllegalStateException,
 AccessDeniedException

 Stops the recording for an in-progress recording request regardless of how much of the
duration has been recorded. Moves the recording to the INCOMPLETE_STATE.

 Throws:

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes.

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("cancel",..) or RecordingPermission("*",..)

 java.lang.IllegalStateException – if the recording is not in the
IN_PROGRESS_STATE, or IN_PROGRESS_INSUFFICIENT_SPACE_STATE.

getFailedException

public java.lang.Exception getFailedException()
 throws java.lang.IllegalStateException

 Gets the exception that caused the recording request to enter the FAILED_STATE, or
INCOMPLETE_STATE.

 Returns:

 The exception that caused the failure. The exception returned will be a
RecordingFailedException.

 ITU-T Rec. J.203 (11/2006) 31

 Throws:

 java.lang.IllegalStateException – if the recording request is not in the
FAILED_STATE or INCOMPLETE_STATE.

getService

public RecordedService getService()
 throws java.lang.IllegalStateException,
 AccessDeniedException

 Returns the RecordedService corresponding to the recording request.

 Returns:
 The recorded service associated with the recording request.

 Throws:

 java.lang.IllegalStateException – if the recording request is not in
INCOMPLETE_STATE, IN_PROGRESS_STATE,
IN_PROGRESS_INSUFFICIENT_SPACE_STATE or COMPLETED_STATE.

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes.

getDeletionDetails

public DeletionDetails getDeletionDetails()
 throws java.lang.IllegalStateException

 Gets detailed information about the deletion of the recorded service corresponding to this
recording request.

 Returns:
 The deletion details for this recording request.

 Throws:

 java.lang.IllegalStateException – if the recording request is not in the
DELETED_STATE.

D.1.5 LocatorRecordingSpec Class

org.ocap.shared.dvr
 Class LocatorRecordingSpec

java.lang.Object
 +--org.ocap.shared.dvr.RecordingSpec
 +--org.ocap.shared.dvr.LocatorRecordingSpec

public class LocatorRecordingSpec

extends RecordingSpec

Specifies a recording request in terms of one or more Locators.

If multiple locators are contained within the source, all of them MUST be part of the same service.

32 ITU-T Rec. J.203 (11/2006)

When instances of this class are passed to RecordingManager.record(..), the following additional
failure mode shall apply – if the end time (computed as the start time + the duration) is in the past
when the record method is called, the record method shall throw an IllegalArgumentException.

When an instance of this recording spec is passed in as a parameter to the
RecordingRequest.reschedule(..) method, an IllegalArgumentException is thrown if the source is
different from the source specified in the current recording spec for the recording request and if the
recording request is in progress state.

When instances of this class are passed to RecordingManager.record(..), if the start time is in the
past and either:
– none of the content concerned is already recorded;
– some of the content concerned is already recorded but the implementation does not support

including already recorded content in a scheduled recording;

then the current time shall be used as the start time and the duration reduced accordingly. This
Recommendation does not require implementations to include already recorded content in
scheduled recordings however GEM recording specifications may require this.

Constructor Summary

LocatorRecordingSpec(javax.tv.locator.Locator[] source,
java.util.Date startTime, long duration, RecordingProperties properties)
 Constructor

Method Summary

 long getDuration()
Returns the duration passed as an argument to the constructor.

 javax.tv.locator.Locator[] getSource()
Returns the source of the recording

 java.util.Date getStartTime()
Returns the start time passed as an argument to the constructor.

Methods inherited from class org.ocap.shared.dvr.RecordingSpec

getProperties

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

 ITU-T Rec. J.203 (11/2006) 33

Constructor Detail

LocatorRecordingSpec

public LocatorRecordingSpec(javax.tv.locator.Locator[] source,
 java.util.Date startTime,
 long duration,
 RecordingProperties properties)
 throws
javax.tv.service.selection.InvalidServiceComponentException

 Constructor

Parameters:

 source – Source of streams to be recorded. Implementations shall make a copy of this
array before the constructor returns.

 startTime – Start time of the recording

 duration – Length of time to record in milliseconds

 properties – the definition of how the recording is to be done

Throws:

 javax.tv.service.selection.InvalidServiceComponentException – if all of the
locators in the source parameter are not all in the same service.

 java.lang.IllegalArgumentException – if duration is negative.

Method Detail

getSource

public javax.tv.locator.Locator[] getSource()

 Returns the source of the recording

 Returns:
 the source passed into the constructor

getStartTime

public java.util.Date getStartTime()

 Returns the start time passed as an argument to the constructor.

 Returns:
 the start time passed into the constructor

34 ITU-T Rec. J.203 (11/2006)

getDuration

public long getDuration()

 Returns the duration passed as an argument to the constructor.

 Returns:
 the duration passed into the constructor

D.1.6 NoMoreDataEntriesException class

org.ocap.shared.dvr
 Class NoMoreDataEntriesException

java.lang.Object
 +--java.lang.Throwable
 +--java.lang.Exception
 +--org.ocap.shared.dvr.NoMoreDataEntriesException

All Implemented Interfaces:
 java.io.Serializable

public class NoMoreDataEntriesException

extends java.lang.Exception

No more data entries allowed for this recording request.

See Also:
 Serialized Form

Constructor Summary

NoMoreDataEntriesException()
 Constructs a NoMoreDataEntriesException with no detail message

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace,
printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

NoMoreDataEntriesException

public NoMoreDataEntriesException()

Constructs a NoMoreDataEntriesException with no detail message

 ITU-T Rec. J.203 (11/2006) 35

D.1.7 ParentRecordingRequest Interface

org.ocap.shared.dvr
 Interface ParentRecordingRequest

All Superinterfaces:
 RecordingRequest

public interface ParentRecordingRequest

extends RecordingRequest

This interface represents information corresponding to a parent recording request. The recording
request represented by this interface may have one or more child recording requests.

A parent recording request may be in the unresolved state, partially resolved state, completely
resolved state, or the cancelled state.

A recording request would be in the unresolved state if the implementation does not have enough
information to process this recording request. A recording request in this state may transition to
partially resolved state, completely resolved state, or failed state.

A recording request would be in the partially resolved state if the implementation has enough
information to schedule some, but not all, child recording requests corresponding to this recording
request. This would be the case of a recording request for a series where some episodes for the
series are scheduled. A recording request is in completely resolved state if all its child recordings
are known and scheduled.

Field Summary

static int CANCELLED_STATE
A recording request is in cancelled state, if an application has successfully called the
cancel method for this recording request, but not all child recording requests have
been deleted.

static int COMPLETELY_RESOLVED_STATE
All child recordings corresponding to this recording request have been scheduled.

static int PARTIALLY_RESOLVED_STATE
Some recordings corresponding to this recording request have been scheduled.

static int UNRESOLVED_STATE
The implementation does not have enough information to process this recording
request.

Method Summary

 void cancel()
Cancels the parent recording request.

 RecordingList getKnownChildren()
Gets all the child Recordings corresponding to this parent RecordingRequest.

36 ITU-T Rec. J.203 (11/2006)

Methods inherited from interface org.ocap.shared.dvr.RecordingRequest

addAppData, delete, getAppData, getAppID, getId, getKeys, getParent,
getRecordingSpec, getRoot, getState, isRoot, removeAppData, reschedule,
setRecordingProperties

Field Detail

UNRESOLVED_STATE

public static final int UNRESOLVED_STATE

 The implementation does not have enough information to process this recording request.

 See Also:
 Constant Field Values

COMPLETELY_RESOLVED_STATE

public static final int COMPLETELY_RESOLVED_STATE

 All child recordings corresponding to this recording request have been scheduled. A
recording request is in completely resolved state, if the implementation has enough
information to schedule all recordings corresponding to the recording request. A recording
request in completely resolved state would have one or more child recordings.

 See Also:
 Constant Field Values

PARTIALLY_RESOLVED_STATE

public static final int PARTIALLY_RESOLVED_STATE

 Some recordings corresponding to this recording request have been scheduled. A recording
request is in partially resolved state, if the implementation has enough information to
schedule some, but not all recordings corresponding to the recording request. A recording
request in partially resolved state may have zero, one or more child recordings.

 See Also:

 Constant Field Values

CANCELLED_STATE

public static final int CANCELLED_STATE

 A recording request is in cancelled state, if an application has successfully called the cancel
method for this recording request, but not all child recording requests have been deleted. A
recording request in this state shall be deleted by the implementation once all child
recording requests have been deleted.

 See Also:
 Constant Field Values

 ITU-T Rec. J.203 (11/2006) 37

Method Detail

cancel

public void cancel()
 throws java.lang.IllegalStateException,
 AccessDeniedException

 Cancels the parent recording request. The implementation shall also cancel all the child
recording requests through calling their cancel() method. No more child recordings will be
scheduled for this recording request or for any of its child recordings. The recording request
will be deleted from the database once all child recording requests have been deleted.
Cancelling a parent recording request does not delete any child recordings that cannot be
cancelled (i.e., if a child recording request is not in a pending state). At the successful
completion of this method, the recording request would be deleted from the database or
changed state to CANCELLED_STATE.

 Throws:

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("cancel",..) or RecordingPermission("*",..)

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes.

 java.lang.IllegalStateException – if the state of the recording request is not in
UNRESOLVED_STATE, PARTIALLY_RESOLVED_STATE or
COMPLETELY_RESOLVED_STATE.

getKnownChildren

public RecordingList getKnownChildren()
 throws java.lang.IllegalStateException

 Gets all the child Recordings corresponding to this parent RecordingRequest. For a
recording request in completely resolved state this method returns all children that are still
maintained in the recording manager database (i.e., children removed from the database by
calling the delete() or cancel() method will not be included in the list of child recordings).
For a recording request in partially resolved state this method only returns currently known
children for series.

 Returns:
 The list of child Recordings corresponding to this Recording; null if there are no child

recording requests in the RecordingManager database.

 Throws:

 java.lang.IllegalStateException – if the recording request is not in
PARTIALLY_RESOLVED_STATE or COMPLETELY_RESOLVED_STATE.

D.1.8 RecordedService Interface

org.ocap.shared.dvr
 Interface RecordedService

All Superinterfaces:
 javax.tv.service.Service

38 ITU-T Rec. J.203 (11/2006)

public interface RecordedService

extends javax.tv.service.Service

This interface represents the recorded portion of a service that is being recorded or was recorded for
a period of time. As soon as recording begins, a recorded service will be created. If the recording
request fails for any reason, the recording shall be stopped normally and the recorded service shall
be available containing however much of the service that was recorded.

A RecordedService has a media time attribute that determines where playback begins when the
recorded service is selected on a ServiceContext. This media time is persistent and is applicable for
all future service selections by all applications until the media time is changed with a call to
setMediaTime.

Note the following subinterface-specific behaviour for methods defined by the
javax.tv.service.Service superinterface:
– The hasMultipleInstances() method shall always return false.
– The getServiceType() method shall always return

RecordedServiceType.RECORDED_SERVICE.
– The getLocator() method shall return a locator corresponding to the recorded service that is

different from the locator of the originating service. This locator when passed in to the
SIManager.getService(..) should return this RecordedService.

– The getName() method shall return a human readable string.
– RecordedServices shall not be included in service lists returned by the method

SIManager.filterServices(..).

Method Summary

 void delete()
Deletes the recorded service.

 javax.media.Time getFirstMediaTime()
Gets the JMF media time at the start of the recorded service.

 javax.media.MediaLocator getMediaLocator()
Returns the MediaLocator corresponding to the RecordedService.

 javax.media.Time getMediaTime()
Gets the JMF media time that was set using the method
setMediaTime(..)

 long getRecordedDuration()
Gets the actual duration of the content recorded.

 RecordingRequest getRecordingRequest()
Gets the RecordingRequest corresponding to the RecordedService.

 java.util.Date getRecordingStartTime()
Gets the time when the recording was initiated.

 void setMediaTime(javax.media.Time mediaTime)
Set the JMF media time for the location from where the playback
will begin when this recorded service is selected on a
ServiceContext.

 ITU-T Rec. J.203 (11/2006) 39

Methods inherited from interface javax.tv.service.Service

equals, getLocator, getName, getServiceType, hashCode, hasMultipleInstances,
retrieveDetails

Method Detail

getRecordingRequest

public RecordingRequest getRecordingRequest()

 Gets the RecordingRequest corresponding to the RecordedService.

 Returns:

 The RecordingRequest for the service.

getRecordedDuration

public long getRecordedDuration()

 Gets the actual duration of the content recorded. For recordings in progress, this will return
the duration of the completed part of the recording.

 Returns:
 The duration of the recording in milliseconds.

getMediaLocator

public javax.media.MediaLocator getMediaLocator()

 Returns the MediaLocator corresponding to the RecordedService.

 Returns:
 RecordedService MediaLocator.

setMediaTime

public void setMediaTime(javax.media.Time mediaTime)
 throws AccessDeniedException

 Set the JMF media time for the location from where the playback will begin when this
recorded service is selected on a ServiceContext.

 If an instance of Time corresponding to value of 0 nanosecond, or a negative value is set, or
if this method was not called for this recorded service, the playback will begin at the start of
the recorded content. If the instance of Time set corresponds to positive infinity or a value
more than the duration of the recorded content, the playback will begin at the live point if
recording is in progress for the recorded service. If the recording is not in progress, the
playback will immediately hit the end-of-media. NOTE – The media time set will be
applicable for all future service selections by all applications.

 Parameters:

 mediaTime – the media time corresponding to the location from where the playback will
begin when this service is selected.

40 ITU-T Rec. J.203 (11/2006)

 Throws:

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes corresponding to the
RecordingRequest associated with this recorded service.

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("modify",..) or RecordingPermission("*",..)

getMediaTime

public javax.media.Time getMediaTime()

 Gets the JMF media time that was set using the method setMediaTime(..)

 Returns:
 the value of JMF media time that was set using the method setMediaTime(..), if that

method was called on this RecordedService before. If the method setMediaTime was not
called before, this method should return the JMF media time corresponding to the
beginning of the RecordedService.

getRecordingStartTime

public java.util.Date getRecordingStartTime()

 Gets the time when the recording was initiated.

 Returns:
 the time when the recording was initiated by the implementation.

delete

public void delete()
 throws AccessDeniedException

 Deletes the recorded service. The method removes the recorded service and all recorded
elementary streams (e.g., files and directory entries) associated with the RecordedService.
The corresponding recording request will transition to DELETED_STATE.

 If the recording request is in the IN_PROGRESS state the implementation will stop the
recording before deleting the recorded service. If the RecordedService was being presented
when it was deleted, a PresentationTerminatedEvent will be sent with reason
SERVICE_VANISHED.

 Throws:

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes.

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("delete",..) or RecordingPermission("*",..)

 ITU-T Rec. J.203 (11/2006) 41

getFirstMediaTime

public javax.media.Time getFirstMediaTime()

 Gets the JMF media time at the start of the recorded service.

 Returns:
 a media time

D.1.9 RecordedServiceType Class

org.ocap.shared.dvr
 Class RecordedServiceType

java.lang.Object
 +--javax.tv.service.ServiceType
 +--org.ocap.shared.dvr.RecordedServiceType

public class RecordedServiceType

extends javax.tv.service.ServiceType

This class represents the service type value for a RecordedService.

Field Summary

static javax.tv.service.ServiceType RECORDED_SERVICE_TYPE
ServiceType for a Recorded service.

Fields inherited from class javax.tv.service.ServiceType

ANALOG_RADIO, ANALOG_TV, DATA_APPLICATION, DATA_BROADCAST, DIGITAL_RADIO,
DIGITAL_TV, NVOD_REFERENCE, NVOD_TIME_SHIFTED, UNKNOWN

Constructor Summary

protected RecordedServiceType(java.lang.String name)
Provides an instance of RecordedServiceType.

Methods inherited from class javax.tv.service.ServiceType

toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

42 ITU-T Rec. J.203 (11/2006)

Field Detail

RECORDED_SERVICE_TYPE

public static final javax.tv.service.ServiceType RECORDED_SERVICE_TYPE

 ServiceType for a Recorded service.

Constructor Detail

RecordedServiceType

protected RecordedServiceType(java.lang.String name)

 Provides an instance of RecordedServiceType.

Parameters:

 name – The string name of this type (i.e., "RECORDED_SERVICE").

D.1.10 RecordingChangedEvent Class

org.ocap.shared.dvr
 Class RecordingChangedEvent

java.lang.Object
 +--java.util.EventObject
 +--org.ocap.shared.dvr.RecordingChangedEvent

All Implemented Interfaces:
 java.io.Serializable

public class RecordingChangedEvent

extends java.util.EventObject

Event used to notify listeners of changes in the list of recording requests maintained by the
RecordingManager.

See Also:

 Serialized Form

Field Summary

static int ENTRY_ADDED
A new RecordingRequest was added.

static int ENTRY_DELETED
A RecordingRequest was deleted.

static int ENTRY_STATE_CHANGED
The state of a RecordingRequest changed

Fields inherited from class java.util.EventObject

source

 ITU-T Rec. J.203 (11/2006) 43

Constructor Summary

RecordingChangedEvent(RecordingRequest source, int newState, int oldState)
 Constructs the event.

Method Summary

 int getChange()
Returns the change to the RecordingRequest.

 int getOldState()
Returns the old state for the RecordingRequest.

 RecordingRequest getRecordingRequest()
Returns the RecordingRequest that caused the event.

 int getState()
Returns the new state for the RecordingRequest.

Methods inherited from class java.util.EventObject

getSource, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail

ENTRY_ADDED

public static final int ENTRY_ADDED

 A new RecordingRequest was added.

 See Also:
 Constant Field Values

ENTRY_DELETED

public static final int ENTRY_DELETED

 A RecordingRequest was deleted.

 See Also:

 Constant Field Values

44 ITU-T Rec. J.203 (11/2006)

ENTRY_STATE_CHANGED

public static final int ENTRY_STATE_CHANGED

 The state of a RecordingRequest changed

 See Also:
 Constant Field Values

Constructor Detail

RecordingChangedEvent

public RecordingChangedEvent(RecordingRequest source,
 int newState,
 int oldState)

 Constructs the event.

Parameters:

 source – the RecordingRequest that caused the event.

 newState – the state the RecordingRequest is now in.

 oldState – the state the RecordingRequest was in before the state change.

Method Detail

getRecordingRequest

public RecordingRequest getRecordingRequest()

 Returns the RecordingRequest that caused the event.

 Returns:

 The RecordingRequest that caused the event.

getChange

public int getChange()

 Returns the change to the RecordingRequest.

 Returns:

 whether the entry was added, deleted or modified.

getState

public int getState()

 Returns the new state for the RecordingRequest.

 Returns:
 The new state.

 ITU-T Rec. J.203 (11/2006) 45

getOldState

public int getOldState()

 Returns the old state for the RecordingRequest.

 Returns:
 The old state.

D.1.11 RecordingChangedListener Interface

org.ocap.shared.dvr
 Interface RecordingChangedListener

All Superinterfaces:
 java.util.EventListener

public interface RecordingChangedListener

extends java.util.EventListener

Listener to receive changes in the recording list maintained by the RecordingManager.

Method Summary

 void recordingChanged(RecordingChangedEvent e)
Notifies the RecordingChangedListener of an event generated by the RecordingManager.

Method Detail

recordingChanged

public void recordingChanged(RecordingChangedEvent e)

 Notifies the RecordingChangedListener of an event generated by the RecordingManager.
Events are generated when there are changes in the list of recording requests maintained by
the recording manager.

 Parameters:

 e – The generated event.

D.1.12 RecordingFailedException class

org.ocap.shared.dvr
 Class RecordingFailedException

java.lang.Object
 +--java.lang.Throwable
 +--java.lang.Exception
 +--org.ocap.shared.dvr.RecordingFailedException

All Implemented Interfaces:
java.io.Serializable

46 ITU-T Rec. J.203 (11/2006)

public class RecordingFailedException

extends java.lang.Exception

This exception is returned when applications call the getFailedException() for a failed recording
request or an incomplete recording request.

See Also:
 Serialized Form

Field Summary

static int ACCESS_WITHDRAWN
Reason code: Recording did not complete successfully because access to the service
or some component of it were withdrawn by the system before the scheduled
completion of the recording.

static int CA_REFUSAL
Reason code: Recording failed due to the CA system refusing to permit it.

static int CONTENT_NOT_FOUND
Reason code: Recording failed because the requested content could not be found in
the network.

static int INSUFFICIENT_RESOURCES
Reason code: Recording failed due to a lack of resources required to present this
service.

static int OUT_OF_BANDWIDTH
Reason code: Recording failed due lack of IO bandwidth to record this program.

static int RESOLUTION_ERROR
Reason code: The recording request failed due to errors in request resolution.

static int RESOURCES_REMOVED
Reason code: Recording did not complete successfully because resources needed to
present the service were removed before the scheduled completion of the recording.

static int SERVICE_VANISHED
Reason code: Recording did not complete successfully because the service vanished
from the network before the completion of the recording.

static int SPACE_FULL
Reason code: Recording could not complete due to lack of storage space.

static int TUNED_AWAY
Reason code: Recording did not complete successfully because the application
selected another service on the service context.

static int TUNING_FAILURE
Reason code: Recording failed due to problems with tuning.

static int USER_STOP
Reason code: The application terminated the recording using
LeafRecordingRequest.stop method or by calling the stop on the service context (if
the recording spec is an instance of ServiceContextRecordingSpec).

 ITU-T Rec. J.203 (11/2006) 47

Constructor Summary

RecordingFailedException()
 Constructs a RecordingFailedException with no detail message

Method Summary

 int getReason()
Reports the reason for which the recording request failed to complete successfully.

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace,
printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Field Detail

CA_REFUSAL

public static final int CA_REFUSAL

 Reason code: Recording failed due to the CA system refusing to permit it.

 See Also:
 Constant Field Values

CONTENT_NOT_FOUND

public static final int CONTENT_NOT_FOUND

 Reason code: Recording failed because the requested content could not be found in the
network.

 See Also:
 Constant Field Values

TUNING_FAILURE

public static final int TUNING_FAILURE

 Reason code: Recording failed due to problems with tuning.

 See Also:
 Constant Field Values

48 ITU-T Rec. J.203 (11/2006)

INSUFFICIENT_RESOURCES

public static final int INSUFFICIENT_RESOURCES

 Reason code: Recording failed due to a lack of resources required to present this service.

 See Also:
 Constant Field Values

ACCESS_WITHDRAWN

public static final int ACCESS_WITHDRAWN

 Reason code: Recording did not complete successfully because access to the service or
some component of it were withdrawn by the system before the scheduled completion of
the recording.

 See Also:
 Constant Field Values

RESOURCES_REMOVED

public static final int RESOURCES_REMOVED

 Reason code: Recording did not complete successfully because resources needed to present
the service were removed before the scheduled completion of the recording.

 See Also:
 Constant Field Values

SERVICE_VANISHED

public static final int SERVICE_VANISHED

 Reason code: Recording did not complete successfully because the service vanished from
the network before the completion of the recording.

 See Also:

 Constant Field Values

TUNED_AWAY

public static final int TUNED_AWAY

 Reason code: Recording did not complete successfully because the application selected
another service on the service context. This is applicable only if the recording spec for the
recording request in an instance of ServiceContextRecordingSpec.

 See Also:
 Constant Field Values

 ITU-T Rec. J.203 (11/2006) 49

USER_STOP

public static final int USER_STOP

 Reason code: The application terminated the recording using LeafRecordingRequest.stop
method or by calling the stop on the service context (if the recording spec is an instance of
ServiceContextRecordingSpec).

 See Also:
 Constant Field Values

SPACE_FULL

public static final int SPACE_FULL

 Reason code: Recording could not complete due to lack of storage space.

 See Also:
 Constant Field Values

OUT_OF_BANDWIDTH

public static final int OUT_OF_BANDWIDTH

 Reason code: Recording failed due lack of IO bandwidth to record this program.

 See Also:
 Constant Field Values

RESOLUTION_ERROR

public static final int RESOLUTION_ERROR

 Reason code: The recording request failed due to errors in request resolution.

 See Also:
 Constant Field Values

Constructor Detail

RecordingFailedException

public RecordingFailedException()

 Constructs a RecordingFailedException with no detail message

50 ITU-T Rec. J.203 (11/2006)

Method Detail

getReason

public int getReason()

 Reports the reason for which the recording request failed to complete successfully.

 Returns:
 the reason code for which the recording request failed to complete successfully.

D.1.13 RecordingManager class

org.ocap.shared.dvr
 Class RecordingManager

java.lang.Object
 +--org.ocap.shared.dvr.RecordingManager

public abstract class RecordingManager

extends java.lang.Object

RecordingManager represents the entity that performs recordings.

Constructor Summary

protected RecordingManager()
Constructor for instances of this class.

Method Summary

abstract void addRecordingChangedListener(RecordingChangedListener rcl)
Adds an event listener for changes in status of recording requests.

abstract RecordingList getEntries()
Gets the list of entries maintained by the RecordingManager.

abstract RecordingList getEntries(RecordingListFilter filter)
Gets the list of recording requests matching the specified filter.

static RecordingManager getInstance()
Gets the singleton instance of RecordingManager.

abstract
 RecordingRequest

getRecordingRequest(int id)
Look up a recording request from the identifier.

abstract
 RecordingRequest

record(RecordingSpec source)
Records the stream or streams according to the source parameter.

abstract void removeRecordingChangedListener(RecordingChangedListener rcl)

Removes a registered event listener for changes in status of recording
requests.

 ITU-T Rec. J.203 (11/2006) 51

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

RecordingManager

protected RecordingManager()

 Constructor for instances of this class. This constructor is provided for the use of
implementations and specifications which extend this specification. Applications shall not
define sub-classes of this class. Implementations are not required to behave correctly if any
such application defined sub-classes are used.

Method Detail

getEntries

public abstract RecordingList getEntries()

 Gets the list of entries maintained by the RecordingManager. This list includes both parent
and leaf recording requests. For applications with RecordingPermission("read", "own"),
only RecordingRequests of which the calling application has visibility as defined by any
RecordingRequest specific security attributes will be returned. For applications with
RecordingPermission("read", "*"), all RecordingRequests will be returned.

 Returns:
 an instance of RecordingList

 Throws:

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("read",..) or RecordingPermission("*",..)

52 ITU-T Rec. J.203 (11/2006)

getEntries

public abstract RecordingList getEntries(RecordingListFilter filter)

 Gets the list of recording requests matching the specified filter. For applications with
RecordingPermission("read", "own"), only RecordingRequests of which the calling
application has visibility as defined by any RecordingRequest specific security attributes
will be returned. For applications with RecordingPermission("read", "*"), all
RecordingRequests matching the specified filter will be returned.

 Parameters:

 filter – the filter to use on the total set of recording requests

 Returns:
 an instance of RecordingList

 Throws:

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("read",..) or RecordingPermission("*",..)

addRecordingChangedListener

public abstract void addRecordingChangedListener(RecordingChangedListener rcl)

 Adds an event listener for changes in status of recording requests. For applications with
RecordingPermission("read", "own"), the listener parameter will only be informed of
changes that affect RecordingRequests of which the calling application has visibility as
defined by any RecordingRequest specific security attributes. For applications with
RecordingPermission("read", "*"), the listener parameter will be informed of all changes.

 Parameters:

 rcl – The listener to be registered.

 Throws:

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("read",..) or RecordingPermission("*",..)

removeRecordingChangedListener

public abstract void
removeRecordingChangedListener(RecordingChangedListener rcl)

 Removes a registered event listener for changes in status of recording requests. If the
listener specified is not registered then this method has no effect.

 Parameters:

 rcl – the listener to be removed.

 ITU-T Rec. J.203 (11/2006) 53

record

public abstract RecordingRequest record(RecordingSpec source)
 throws java.lang.IllegalArgumentException,
 AccessDeniedException

 Records the stream or streams according to the source parameter. The concrete sub-class of
RecordingSpec may define additional semantics to be applied when instances of that sub-
class are used.

 Parameters:

 source – specification of stream or streams to be recorded and how they are to be recorded.

 Returns:
 an instance of RecordingRequest that represents the added recording.

 Throws:

 java.lang.IllegalArgumentException – if the source is an application defined class or
as defined in the concrete sub-class of RecordingSpec for instances of that class

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("create",..) or RecordingPermission("*",..)

getInstance

public static RecordingManager getInstance()

 Gets the singleton instance of RecordingManager.

 Returns:
 an instance of RecordingManager

getRecordingRequest

public abstract RecordingRequest getRecordingRequest(int id)
 throws java.lang.IllegalArgumentException

 Look up a recording request from the identifier. Implementations of this method should be
optimized considering the likely very large number of recording requests. For applications
with RecordingPermission("read", "own"), only RecordingRequests of which the calling
application has visibility as defined by any RecordingRequest specific security attributes
will be returned.

 Parameters:

 id – an identifier as returned by RecordingRequest.getId

 Returns:
 the corresponding RecordingRequest

 Throws:

 java.lang.IllegalArgumentException – if there is no recording request corresponding
to this identifier or if the recording request is not visible as defined by RecordingRequest
specific security attributes

54 ITU-T Rec. J.203 (11/2006)

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("read",..) or RecordingPermission("*",..)

 See Also:
 RecordingRequest.getId()

D.1.14 RecordingPermission class

org.ocap.shared.dvr
 Class RecordingPermission

java.lang.Object
 +--java.security.Permission
 +--org.ocap.shared.dvr.RecordingPermission

All Implemented Interfaces:
 java.security.Guard, java.io.Serializable

public final class RecordingPermission

extends java.security.Permission

Controls access to recording features by an application. The name can be one of the values shown in
the following list:
– "create" – schedule a RecordingRequest
– "read" – obtain the list of RecordingRequests
– "modify" – modify properties or application specific data for a RecordingRequest
– "delete" – delete a RecordingRequest including recorded content
– "cancel" – cancel a pending RecordingRequest
– "*" – all of the above

The action can be "own" and "*". The action "own" is intended for use by normal applications. The
action "*" is intended for use only by specially privileged applications and permits the operation
defined by the name to be applied to all RecordingRequests regardless of any per-application
restrictions associated with the RecordingRequest.

Granting of this permission shall include granting access to any storage devices required for the
operations specified in the name parameter. No additional low permissions (e.g., FilePermission)
are subsequently needed.

See Also:
 Serialized Form

Constructor Summary

RecordingPermission(java.lang.String name, java.lang.String action)
 Creates a new RecordingPermission with the specified name and action.

 ITU-T Rec. J.203 (11/2006) 55

Method Summary

 boolean equals(java.lang.Object obj)
Checks two RecordingPermission objects for equality

 java.lang.String getActions()
Returns the actions as passed into the constructor.

 int hashCode()
Returns the hash code value for this object.

 boolean implies(java.security.Permission p)
Checks if this RecordingPermission "implies" the specified Permission.

Methods inherited from class java.security.Permission

checkGuard, getName, newPermissionCollection, toString

Methods inherited from class java.lang.Object

clone, finalize, getClass, notify, notifyAll, wait, wait, wait

Constructor Detail

RecordingPermission

public RecordingPermission(java.lang.String name,
 java.lang.String action)

 Creates a new RecordingPermission with the specified name and action.

Parameters:

 name – "create", "read", "modify", "delete", "cancel" or "*"

 action – "own" or "*"

Method Detail

implies

public boolean implies(java.security.Permission p)

 Checks if this RecordingPermission "implies" the specified Permission.

 Parameters:

 p – the permission to check against

 Returns:
 true if the specified permission is implied by this object, false if not.

56 ITU-T Rec. J.203 (11/2006)

equals

public boolean equals(java.lang.Object obj)

 Checks two RecordingPermission objects for equality

 Parameters:

 obj – the object to test for equality with this object.

 Returns:
 true if obj is a RecordingPermission with the same name and action as this

RecordingPermission object

hashCode

public int hashCode()

 Returns the hash code value for this object.

 Returns:
 a hash code value for this object.

getActions

public java.lang.String getActions()

 Returns the actions as passed into the constructor.

 Returns:
 the actions as a String

D.1.15 RecordingProperties class

org.ocap.shared.dvr
 Class RecordingProperties

java.lang.Object
 +--org.ocap.shared.dvr.RecordingProperties

public abstract class RecordingProperties

extends java.lang.Object

Base class for specifying properties defining how a recording is to be made.

Constructor Summary

RecordingProperties(long expirationPeriod)
 Constructor

Method Summary

 long getExpirationPeriod()
Returns the value of the expiration period.

 ITU-T Rec. J.203 (11/2006) 57

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

RecordingProperties

public RecordingProperties(long expirationPeriod)

 Constructor

Parameters:

 expirationPeriod – The period in seconds after the initiation of recording when leaf
recording requests with this recording property are deemed as expired.

Method Detail

getExpirationPeriod

public long getExpirationPeriod()

 Returns the value of the expiration period.

 Returns:
 The expiration period as passed into the constructor.

D.1.16 RecordingRequest interface

org.ocap.shared.dvr
 Interface RecordingRequest

All Known Subinterfaces:
 LeafRecordingRequest, ParentRecordingRequest

public interface RecordingRequest

This interface represents information corresponding to a recording request. The recording request
represented by this interface may correspond to a single recording request or a series of other
recording requests. Recording requests are hierarchical in nature. Implementations may resolve a
recording request to a single recording request or to a series of other recording requests each of
which may get further resolved into a single recording request or a series of recording requests. For
example, a recording request for "Sex and the City" may resolve to multiple recording requests,
each for a particular season of the show. Each of these recording requests may get further resolved
into multiple recording requests, each for a single episode. The implementation creates a recording
request in response to the RecordingManager.record(RecordingSpec) method. The implementation
also creates recording requests when a recording request is further resolved.

A recording request may either be a parent recording request or a leaf recording request. States for a
recording request are defined in ParentRecordingRequest and LeafRecordingRequest. A
recording request may be in any of the states corresponding to a leaf recording request or a parent
recording request.

58 ITU-T Rec. J.203 (11/2006)

Method Summary

 void addAppData(java.lang.String key,
java.io.Serializable data)
Adds application specific private data.

 void delete()
Deletes the recording request from the database.

 java.io.Serializable getAppData(java.lang.String key)
Gets application data corresponding to specified key.

 org.dvb.application.AppID getAppID()
Gets the application identifier of the application that owns this
recording request.

 int getId()
Returns an identifier for this recording request.

 java.lang.String[] getKeys()
Gets all Application specific data associated with this recording
request.

 RecordingRequest getParent()
Gets the parent recording request corresponding to this recording
request.

 RecordingSpec getRecordingSpec()
Returns the RecordingSpec corresponding to the recording request.

 RecordingRequest getRoot()
Gets the root recording request corresponding to this recording
request.

 int getState()
Returns the state of the recording request.

 boolean isRoot()
Checks whether the recording request was a root recording request
generated when the application called the
RecordingManager.record(..)

 void removeAppData(java.lang.String key)
Removes Application specific private data corresponding to the
specified key.

 void reschedule(RecordingSpec newRecordingSpec)
Modifies the details of a recording request.

 void setRecordingProperties(RecordingProperties properties)

Modifies the RecordingProperties corresponding to the
RecordingSpec for this recording request.

 ITU-T Rec. J.203 (11/2006) 59

Method Detail

getState

public int getState()

 Returns the state of the recording request.

 Returns:
 State of the recording request.

isRoot

public boolean isRoot()

 Checks whether the recording request was a root recording request generated when the
application called the RecordingManager.record(..) method. The implementation should
create a root recording request corresponding to each successful call to the record method.

 Returns:
 True, if the recording request is a root recording request, false if the recording request was

generated during the process of resolving another recording request.

getRoot

public RecordingRequest getRoot()

 Gets the root recording request corresponding to this recording request. A root recording
request is the recording request that was returned when the application called the
RecordingManager.record(..) method.

 If the current recording request is a root recording request, the current recording request is
returned.

 Returns:
 the root recording request for this recording request, null if the application does not have

read access permission for the root recording request.

getParent

public RecordingRequest getParent()

 Gets the parent recording request corresponding to this recording request.

 Returns:
 the parent recording request for this recording request, null if the application does not have

read access permission for the parent recording request or if this recording request is the
root recording request.

60 ITU-T Rec. J.203 (11/2006)

getRecordingSpec

public RecordingSpec getRecordingSpec()

 Returns the RecordingSpec corresponding to the recording request. This will be either the
source as specified in the call to the record(..) method which caused this recording request
to be created or the RecordingSpec generated by the system during the resolution of the
original application specified RecordingSpec. Any modification to the RecordingSpec due
to any later calls to the SetRecordingProperties methods on this instance will be reflected
on the returned RecordingSpec.

 When the implementation generates a recording request while resolving another recording
request, a new instance of the RecordingSpec is created with an identical copy of the
RecordingProperties of the parent recording request.

 Returns:
 a RecordingSpec containing information about this recording request.

setRecordingProperties

public void setRecordingProperties(RecordingProperties properties)
 throws java.lang.IllegalStateException,
 AccessDeniedException

 Modifies the RecordingProperties corresponding to the RecordingSpec for this recording
request. Applications may change any properties associated with a recording request by
calling this method. Changing the properties may result in changes in the states of this
recording request. Changing the properties of a parent recording request will not
automatically change the properties of any of its child recording requests that are already
created. Any child recording requests created after the invocation of this method will inherit
the new values for the properties.

 Parameters:

 properties – the new recording properties to set.

 Throws:

 java.lang.IllegalStateException – if changing one of the parameters that have been
modified in the new recording properties is not legal for the current state of the recording
request.

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes.

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("modify",..) or RecordingPermission("*",..)

delete

public void delete()
 throws AccessDeniedException

 Deletes the recording request from the database. The method removes the recording
request, all its descendant recording requests, as well as the corresponding
RecordedService objects and all recorded elementary streams (e.g., files and directory
entries) associated with the RecordedService. If any application calls any method on stale
references of removed objects the implementation shall throw an IllegalStateException.

 ITU-T Rec. J.203 (11/2006) 61

 If the recording request is in the IN_PROGRESS state the implementation will stop the
recording before deleting the recording request. If a RecordedService was being presented
when it was deleted, a PresentationTerminatedEvent will be sent with reason
SERVICE_VANISHED.

 Throws:

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes.

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("delete",..) or RecordingPermission("*",..)

addAppData

public void addAppData(java.lang.String key,
 java.io.Serializable data)
 throws NoMoreDataEntriesException,
 AccessDeniedException

 Adds application-specific private data. If the key is already in use, the data corresponding
to key is overwritten.

 Parameters:

 key – the ID under which the data is to be added

 data – the data to be added

 Throws:

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("modify",..) or RecordingPermission("*",..)

 java.lang.IllegalArgumentException – if the size of the data is more than the size
supported by the implementation within the constraints of the GEM recording specification

 NoMoreDataEntriesException – if storing this data exceeds the number of entries
supported by the implementation within the constraints of the GEM recording specification

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes.

getAppID

public org.dvb.application.AppID getAppID()

 Gets the application identifier of the application that owns this recording request. The
owner of a root recording request is the application that called the
RecordingManager.record(..) method. The owner of a non-root recording request is the
owner of the root for the recording request.

 Returns:
 Application identifier of the owning application.

getKeys

public java.lang.String[] getKeys()

 Gets all Application-specific data associated with this recording request.

62 ITU-T Rec. J.203 (11/2006)

 Returns:
 All keys corresponding to the RecordingRequest; Null if there is no application data.

getAppData

public java.io.Serializable getAppData(java.lang.String key)

 Gets application data corresponding to specified key.

 Parameters:

 key – the key under which any data is to be returned

 Returns:
 the application data corresponding to the specified key; Null if there is no data

corresponding to the specified key.

removeAppData

public void removeAppData(java.lang.String key)
 throws AccessDeniedException

 Remove Application-specific private data corresponding to the specified key. This method
exits silently if there was no data corresponding to the key.

 Parameters:

 key – the key under which data is to be removed

 Throws:

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes.

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("modify",..) or RecordingPermission("*",..)

reschedule

public void reschedule(RecordingSpec newRecordingSpec)
 throws AccessDeniedException

 Modifies the details of a recording request. The recording request shall be re-evaluated
based on the newly provided RecordingSpec. Rescheduling a root recording request may
result in state transitions for the root recording request or its child recording requests.
Rescheduling a root recording request may also result in the scheduling of one or more new
child recording requests, or the deletion of one or more pending child recording requests.

 NOTE – If the recording request or one of its child recording request is in IN_PROGRESS_STATE
or IN_PROGRESS_INSUFFICIENT_SPACE_STATE, any changes to the start time shall be
ignored. In this case all other valid parameters are applied. If the new value for a parameter is not
valid (e.g., the start-time and the duration is in the past), the implementation shall ignore that
parameter. In-progress recordings shall continue uninterrupted, if the new recording spec does not
request the recording to be stopped.

 Parameters:

 newRecordingSpec – the new recording spec that shall be used to reschedule the root
RecordingRequest.

 ITU-T Rec. J.203 (11/2006) 63

 Throws:

 java.lang.IllegalArgumentException – if the new recording spec and the current
recording spec for the recording request are different sub-classes of RecordingSpec.

 AccessDeniedException – if the calling application is not permitted to perform this
operation by RecordingRequest specific security attributes.

 java.lang.SecurityException – if the calling application does not have
RecordingPermission("modify",..) or RecordingPermission("*",..)*

getId

public int getId()

 Returns an identifier for this recording request. The identifier shall uniquely identify this
recording request among all others in the GEM recording terminal. The identifier shall be
permanently associated with this recording request as long as this recording request remains
in the GEM recording terminal and in particular shall survive power to the GEM recording
terminal being interrupted. This is to enable applications to store these IDs in persistent
storage for later retrieval by another application or another instance of the same application.

 Since identifiers may be held in persistent storage by applications, implementations should
not re-use identifiers of recording requests which are no longer held in the GEM recording
terminal as this would confuse applications which still have references to those recording
requests in their persistent storage.

 Returns:
 an identifier

 See Also:
 RecordingManager.getRecordingRequest(int)

D.1.17 RecordingSpec class

org.ocap.shared.dvr
 Class RecordingSpec

java.lang.Object
 +--org.ocap.shared.dvr.RecordingSpec

Direct Known Subclasses:

 LocatorRecordingSpec, ServiceContextRecordingSpec, ServiceRecordingSpec

public abstract class RecordingSpec

extends java.lang.Object

Base class for specifying what to record and how to record it.

Constructor Summary

RecordingSpec(RecordingProperties properties)
 Constructor.

64 ITU-T Rec. J.203 (11/2006)

Method Summary

 RecordingProperties getProperties()
Returns the description of how the recording is to be done.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

RecordingSpec

public RecordingSpec(RecordingProperties properties)

 Constructor.

Parameters:

 properties – The definition of how the recording is to be done.

Method Detail

getProperties

public RecordingProperties getProperties()

 Returns the description of how the recording is to be done.

 Returns:
 The properties to use for the recording.

D.1.18 RecordingTerminatedEvent class

org.ocap.shared.dvr
 Class RecordingTerminatedEvent

java.lang.Object
 +--java.util.EventObject
 +--javax.tv.service.selection.ServiceContextEvent
 +--org.ocap.shared.dvr.RecordingTerminatedEvent

All Implemented Interfaces:

 java.io.Serializable

public class RecordingTerminatedEvent

extends javax.tv.service.selection.ServiceContextEvent

An Event Notifying that recording has terminated for the ServiceContext. This event is generated
by a ServiceContext that is presenting a time-shifted service or a service that is being recorded.
The presentation is not yet terminated as the playback point is time-delayed. This event is generated
only when the playback point is not the same as the live point. A PresentationTerminatedEvent
will be generated when the playback point catches up with the point of record termination.

 ITU-T Rec. J.203 (11/2006) 65

See Also:
 Serialized Form

Field Summary

static int ACCESS_WITHDRAWN
Reason code: Access to the service or some component of it has been withdrawn
by the system.

static int RESOURCES_REMOVED
Reason code: Resources needed to record the service have been removed.

static int SCHEDULED_STOP
Reason code: The recording was terminated normally as scheduled.

static int SERVICE_VANISHED
Reason code: The service vanished from the network.

static int USER_STOP
Reason code: The user requested that the recording be stopped.

Fields inherited from class java.util.EventObject

source

Constructor Summary

RecordingTerminatedEvent(javax.tv.service.selection.ServiceContext source,
int reason)
 Constructs the event.

Method Summary

 int getReason()
Returns the reason for the record termination.

Methods inherited from class javax.tv.service.selection.ServiceContextEvent

getServiceContext

Methods inherited from class java.util.EventObject

getSource, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

66 ITU-T Rec. J.203 (11/2006)

Field Detail

SERVICE_VANISHED

public static final int SERVICE_VANISHED

 Reason code: The service vanished from the network.

 See Also:
 Constant Field Values

RESOURCES_REMOVED

public static final int RESOURCES_REMOVED

 Reason code: Resources needed to record the service have been removed. Will be generated
if the ServiceContext stop method is called.

 See Also:
 Constant Field Values

ACCESS_WITHDRAWN

public static final int ACCESS_WITHDRAWN

 Reason code: Access to the service or some component of it has been withdrawn by the
system. An example of this is the end of a free preview period for IPPV content.

 See Also:
 Constant Field Values

SCHEDULED_STOP

public static final int SCHEDULED_STOP

 Reason code: The recording was terminated normally as scheduled.

 See Also:
 Constant Field Values

USER_STOP

public static final int USER_STOP

 Reason code: The user requested that the recording be stopped. Also, if the
RecordingRequest stop method is called.

 See Also:
 Constant Field Values

 ITU-T Rec. J.203 (11/2006) 67

Constructor Detail

RecordingTerminatedEvent

public
RecordingTerminatedEvent(javax.tv.service.selection.ServiceContext source,
 int reason)

 Constructs the event.

Parameters:

 source – The ServiceContext that generated the event.

Method Detail

getReason

public int getReason()

 Returns the reason for the record termination.

 Returns:
 Termination reason; see constants in this class.

D.1.19 ServiceContextRecordingSpec class

org.ocap.shared.dvr
 Class ServiceContextRecordingSpec

java.lang.Object
 +--org.ocap.shared.dvr.RecordingSpec
 +--org.ocap.shared.dvr.ServiceContextRecordingSpec

public class ServiceContextRecordingSpec

extends RecordingSpec

Specifies a recording request in terms of what is being presented on a ServiceContext. The streams
that are being presented in the indicated ServiceContext parameter are recorded. If the Service
being recorded from is tuned away, recording SHALL be terminated. If the startTime is in the past
and the source javax.tv.service.selection.ServiceContext is associated with a timeshift buffer, the
contents of the timeshift buffer may be immediately stored to the destination beginning at the
startTime, if possible, up to the live broadcast point. If the timeshift buffer does not contain the
source from the startTime, as much of the source may be recorded as possible. If the startTime is in
the past, but a timeshift buffer cannot be associated with the recording, the recording begins from
the live broadcast point. From there, the contents of the live broadcast are recorded until the
remaining duration is satisfied.

When instances of this class are passed to RecordingManager.record(..), the following additional
failure modes shall apply:
– IllegalArgumentException SHALL be thrown if serviceContext is not presenting a

broadcast service or if the startTime is in the future;
– SecurityException SHALL be thrown if the application does not have permission to access

the service context.

68 ITU-T Rec. J.203 (11/2006)

When an instance of this recording spec is passed in as a parameter to the
RecordingRequest.reschedule(..) method, an IllegalArgumentException is thrown if the service
context parameter is different from the service context specified in the current recording spec for
the recording request.

Constructor Summary

ServiceContextRecordingSpec(javax.tv.service.selection.ServiceContext serviceContext,
java.util.Date startTime, long duration, RecordingProperties properties)
 Constructor

Method Summary

long getDuration()
Returns the duration passed as an argument to
the constructor.

javax.tv.service.selection.ServiceContext getServiceContext()
Returns the ServiceContext to record from

java.util.Date getStartTime()
Returns the start time passed as an argument to
the constructor.

Methods inherited from class org.ocap.shared.dvr.RecordingSpec

getProperties

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

ServiceContextRecordingSpec

public
ServiceContextRecordingSpec(javax.tv.service.selection.ServiceContext serviceCon
text,
 java.util.Date startTime,
 long duration,
 RecordingProperties properties)
 throws java.lang.IllegalArgumentException

 Constructor

Parameters:

 serviceContext – The ServiceContext to record from.

 startTime – Start time of the recording. If the start time is in the future when the
RecordingManager.record(..) method is called with this ServiceContextRecordingSpec as
an argument, the record method will throw an IllegalArgumentException.

 duration – Length of time to record in milliseconds.

 ITU-T Rec. J.203 (11/2006) 69

 properties – the definition of how the recording is to be done

Throws:

 java.lang.IllegalArgumentException – if duration is negative

Method Detail

getServiceContext

public javax.tv.service.selection.ServiceContext getServiceContext()

 Returns the ServiceContext to record from

 Returns:
 the ServiceContext instance passed into the constructor

getStartTime

public java.util.Date getStartTime()

 Returns the start time passed as an argument to the constructor.

 Returns:
 the start time passed into the constructor

getDuration

public long getDuration()

 Returns the duration passed as an argument to the constructor.

 Returns:
 the duration passed into the constructor

70 ITU-T Rec. J.203 (11/2006)

D.2 Shared digital video recorder navigation package

org.ocap.shared.dvr.navigation
 Package

D.2.1 RecordingStateFilter class
D.2.2 AppIDFilter class
D.2.3 OrgIDFilter class
D.2.4 RecordingList interface
D.2.5 RecordingListComparator interface
D.2.6 RecordingListFilter class
D.2.7 RecordingListIterator interface

D.2.1 RecordingStateFilter class

org.ocap.shared.dvr.navigation
 Class RecordingStateFilter

java.lang.Object
 +--org.ocap.shared.dvr.navigation.RecordingListFilter
 +--org.ocap.shared.dvr.navigation.RecordingStateFilter

public class RecordingStateFilter

extends RecordingListFilter

Filter to filter based on values returned by the getState method in RecordingRequest.

Constructor Summary

RecordingStateFilter(int state)
 Constructs the filter based on a particular state type (PENDING, FAILED, etc.).

Method Summary

 boolean accept(RecordingRequest entry)
Tests if the given RecordingRequest passes the filter.

 int getFilterValue()
Reports the value of state used to create this filter.

Methods inherited from class org.ocap.shared.dvr.navigation.RecordingListFilter

setCascadingFilter

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

 ITU-T Rec. J.203 (11/2006) 71

Constructor Detail

RecordingStateFilter

public RecordingStateFilter(int state)

 Constructs the filter based on a particular state type (PENDING, FAILED, etc.).

Parameters:

 state – Value for matching the state of a RecordingRequest instance.

Method Detail

getFilterValue

public int getFilterValue()

 Reports the value of state used to create this filter.

 Returns:
 The value of state used to create this filter.

accept

public boolean accept(RecordingRequest entry)

 Tests if the given RecordingRequest passes the filter.

 Specified by:

 accept in class RecordingListFilter

 Parameters:

 entry – An individual RecordingRequest to be evaluated against the filtering algorithm.

 Returns:

 true if RecordingRequest contained within the RecordingRequest parameter is in the
state indicated by the filter value; false otherwise.

D.2.2 AppIDFilter class

org.ocap.shared.dvr.navigation
 Class AppIDFilter

java.lang.Object
 +--org.ocap.shared.dvr.navigation.RecordingListFilter
 +--org.ocap.shared.dvr.navigation.AppIDFilter

public class AppIDFilter

extends RecordingListFilter

Filter to filter based on AppID.

72 ITU-T Rec. J.203 (11/2006)

Constructor Summary

AppIDFilter(org.dvb.application.AppID appID)
 Constructs the filter based on a particular AppID.

Method Summary

 boolean accept(RecordingRequest entry)
Tests if the given RecordingRequest passes the filter.

 org.dvb.application.AppID getFilterValue()
Reports the value of AppID used to create this filter.

Methods inherited from class org.ocap.shared.dvr.navigation.RecordingListFilter

setCascadingFilter

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

AppIDFilter

public AppIDFilter(org.dvb.application.AppID appID)

 Constructs the filter based on a particular AppID.

Parameters:

 appID – AppID value for matching RecordingRequests.

Method Detail

getFilterValue

public org.dvb.application.AppID getFilterValue()

 Reports the value of AppID used to create this filter.

 Returns:

 The value of AppID used to create this filter.

accept

public boolean accept(RecordingRequest entry)

 Tests if the given RecordingRequest passes the filter.

 Specified by:

 accept in class RecordingListFilter

 ITU-T Rec. J.203 (11/2006) 73

 Parameters:

 entry – An individual RecordingRequest to be evaluated against the filtering algorithm.

 Returns:

 true if RecordingRequest is of the type indicated by the filter value; false otherwise.

D.2.3 OrgIDFilter class

org.ocap.shared.dvr.navigation
 Class OrgIDFilter

java.lang.Object
 +--org.ocap.shared.dvr.navigation.RecordingListFilter
 +--org.ocap.shared.dvr.navigation.OrgIDFilter

public class OrgIDFilter

extends RecordingListFilter

Filter to filter based on OrgID.

Constructor Summary

OrgIDFilter(int orgID)
 Constructs the filter based on a particular organization ID.

Method Summary

 boolean accept(RecordingRequest entry)
Tests if the given RecordingRequest passes the filter.

 int getFilterValue()
Reports the value of the organization ID used to create this filter.

Methods inherited from class org.ocap.shared.dvr.navigation.RecordingListFilter

setCascadingFilter

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

OrgIDFilter

public OrgIDFilter(int orgID)

 Constructs the filter based on a particular organization ID.

Parameters:

 orgID – the Ooganization ID value for matching RecordingRequest instances.

74 ITU-T Rec. J.203 (11/2006)

Method Detail

getFilterValue

public int getFilterValue()

 Reports the value of the organization ID used to create this filter.

 Returns:
 The organization ID used to filter.

accept

public boolean accept(RecordingRequest entry)

 Tests if the given RecordingRequest passes the filter.

 Specified by:

 accept in class RecordingListFilter

 Parameters:

 entry – An individual RecordingRequest to be evaluated against the filtering algorithm.

 Returns:

 true if RecordingRequest is of the type indicated by the filter value; false otherwise.

 ITU-T Rec. J.203 (11/2006) 75

D.2.4 RecordingList interface

org.ocap.shared.dvr.navigation
 Interface RecordingList

public interface RecordingList

RecordingList represents a list of recordings.

Method Summary

 boolean contains(RecordingRequest entry)
Tests if the indicated RecordingRequest object is contained in the list.

 RecordingListIterator createRecordingListIterator()
Generates an iterator on the RecordingRequest elements in this list.

 RecordingList filterRecordingList(RecordingListFilter filter)
Creates a new RecordingList object that is a subset of this list, based
on the conditions specified by a RecordingListFilter object.

 RecordingRequest getRecordingRequest(int index)
Reports the RecordingRequest at the specified index position.

 int indexOf(RecordingRequest entry)
Reports the position of the first occurrence of the indicated
RecordingRequest object in the list.

 int size()
Reports the number of RecordingRequest objects in the list.

 RecordingList sortRecordingList(RecordingListComparator sortCriteria)
Creates a new RecordingList that contains all the elements of this list
sorted according to the criteria specified by a
RecordingListComparator.

Method Detail

filterRecordingList

public RecordingList filterRecordingList(RecordingListFilter filter)

 Creates a new RecordingList object that is a subset of this list, based on the conditions
specified by a RecordingListFilter object. This method may be used to generate
increasingly specialized lists of RecordingRequest objects based on multiple filtering
criteria. If the filter is null, the resulting RecordingList will be a duplicate of this list.

 Note that the accept method of the given RecordingListFilter will be invoked for each
RecordingRequest to be filtered using the same application thread that invokes this
method.

 Parameters:

 filter – A filter constraining the requested recording list, or null.

 Returns:

 A RecordingList object created based on the specified filtering rules.

76 ITU-T Rec. J.203 (11/2006)

createRecordingListIterator

public RecordingListIterator createRecordingListIterator()

 Generates an iterator on the RecordingRequest elements in this list.

 Returns:

 A RecordingListIterator on the RecordingRequests in this list.

contains

public boolean contains(RecordingRequest entry)

 Tests if the indicated RecordingRequest object is contained in the list.

 Parameters:

 entry – The RecordingRequest object for which to search.

 Returns:

 true if the specified RecordingRequest is member of the list; false otherwise.

indexOf

public int indexOf(RecordingRequest entry)

 Reports the position of the first occurrence of the indicated RecordingRequest object in
the list.

 Parameters:

 entry – The RecordingRequest object for which to search.

 Returns:

 The index of the first occurrence of the entry, or -1 if entry is not contained in the list.

size

public int size()

 Reports the number of RecordingRequest objects in the list.

 Returns:

 The number of RecordingRequest objects in the list.

getRecordingRequest

public RecordingRequest getRecordingRequest(int index)

 Reports the RecordingRequest at the specified index position.

 Parameters:

 index – A position in the RecordingList.

 Returns:

 The RecordingRequest at the specified index.

 ITU-T Rec. J.203 (11/2006) 77

 Throws:

 java.lang.IndexOutOfBoundsException – If index < 0 or index > size()-1.

sortRecordingList

public RecordingList sortRecordingList(RecordingListComparator sortCriteria)

 Creates a new RecordingList that contains all the elements of this list sorted according to
the criteria specified by a RecordingListComparator.

 Parameters:

 sortCriteria – the sort criteria to be applied to sort the entries in the recording list.

 Returns:
 A sorted copy of the recording list.

D.2.5 RecordingListComparator interface

org.ocap.shared.dvr.navigation
 Interface RecordingListComparator

public interface RecordingListComparator

This interface represents a sorting criteria to be applied while sorting a RecordingList.

Method Summary

 int compare(RecordingRequest first, RecordingRequest second)
Compares two entries to check whether the first entry should be placed ahead of the second
entry in the iterator list.

Method Detail

compare

public int compare(RecordingRequest first,
 RecordingRequest second)

 Compares two entries to check whether the first entry should be placed ahead of the second
entry in the iterator list.

 Parameters:

 first – the first entry to compare

 second – the second entry to compare

 Returns:
 positive integer if the first argument should be placed ahead of the second argument;

negative integer if the second argument should be placed ahead of the first entry; zero if the
current order should be retained.

78 ITU-T Rec. J.203 (11/2006)

D.2.6 RecordingListFilter class

org.ocap.shared.dvr.navigation
 Class RecordingListFilter

java.lang.Object
 +--org.ocap.shared.dvr.navigation.RecordingListFilter

Direct Known Subclasses:
 AppIDFilter, OrgIDFilter, RecordingStateFilter

public abstract class RecordingListFilter

extends java.lang.Object

Base class for all RecordingListFilters. Subclasses of RecordingListFilter may be used to create
filters to specify restrictions.

Constructor Summary

protected RecordingListFilter()
Constructs the filter.

Method Summary

abstract boolean accept(RecordingRequest entry)
Tests if a particular entry passes this filter.

 void setCascadingFilter(RecordingListFilter filter)
Provides a means to cascade filters.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait,
wait, wait

Constructor Detail

RecordingListFilter

protected RecordingListFilter()

 Constructs the filter.

Method Detail

accept

public abstract boolean accept(RecordingRequest entry)

 Tests if a particular entry passes this filter. Subtypes of RecordingListFilter override
this method to provide the logic for a filtering operation on individual RecordingRequest
objects.

 ITU-T Rec. J.203 (11/2006) 79

 Parameters:

 entry – A RecordingRequest to be evaluated against the filtering algorithm.

 Returns:

 true if entry satisfies the filtering algorithm; false otherwise.

setCascadingFilter

public void setCascadingFilter(RecordingListFilter filter)

 Provides a means to cascade filters. The accept method of this filter is called only for
entries matching the specified filter. Multiple calls to this method will replace the
previously set filter.

 Parameters:

 filter – the filter that will be applied before selecting the entries for which the accept()
method is called. If the current filter is in the cascade chain of the filter passed in as the
argument, this method does nothing.

D.2.7 RecordingListIterator interface

org.ocap.shared.dvr.navigation
 Interface RecordingListIterator

public interface RecordingListIterator

This iterator could be used to traverse entries in a RecordingList.

80 ITU-T Rec. J.203 (11/2006)

Method Summary

 RecordingRequest getEntry(int index)
Gets the RecordingRequest object at the specified position.

 int getPosition()
Gets the current position of the RecordingListIterator.

 int getPosition(RecordingRequest entry)
Gets the position of a specified recording request in the list.

 RecordingList getRecordingList()
Gets the recording list corresponding to this RecordingListIterator.

 boolean hasNext()
Tests if there is a RecordingRequest in the next position in the list.

 boolean hasPrevious()
Tests if there is a RecordingRequest in the previous position in the list.

 RecordingRequest[] nextEntries(int n)
Gets the next 'n' RecordingRequest objects in the list.

 RecordingRequest nextEntry()
Gets the next RecordingRequest object in the list.

 RecordingRequest[] previousEntries(int n)
Gets the previous 'n' RecordingRequest objects in the list.

 RecordingRequest previousEntry()
Gets the previous RecordingRequest object in the list.

 void setPosition(int index)
Sets the current position of the RecordingListIterator.

 void toBeginning()
Resets the iterator to the beginning of the list, such that hasPrevious()
returns false and nextEntry() returns the first RecordingRequest in the
list (if the list is not empty).

 void toEnd()
Sets the iterator to the end of the list, such that hasNext() returns false
and previousEntry() returns the last RecordingRequest in the list (if
the list is not empty).

Method Detail

toBeginning

public void toBeginning()

 Resets the iterator to the beginning of the list, such that hasPrevious() returns false and
nextEntry() returns the first RecordingRequest in the list (if the list is not empty).

toEnd

public void toEnd()

 Sets the iterator to the end of the list, such that hasNext() returns false and
previousEntry() returns the last RecordingRequest in the list (if the list is not empty).

 ITU-T Rec. J.203 (11/2006) 81

nextEntry

public RecordingRequest nextEntry()

 Gets the next RecordingRequest object in the list. This method may be called repeatedly
to iterate through the list.

 Returns:

 The RecordingRequest object at the next position in the list.

 Throws:

 java.util.NoSuchElementException – If the iteration has no next RecordingRequest.

previousEntry

public RecordingRequest previousEntry()

 Gets the previous RecordingRequest object in the list. This method may be called
repeatedly to iterate through the list in reverse order.

 Returns:

 The RecordingRequest object at the previous position in the list.

 Throws:

 java.util.NoSuchElementException – If the iteration has no previous
RecordingRequest.

hasNext

public boolean hasNext()

 Tests if there is a RecordingRequest in the next position in the list.

 Returns:

 true if there is a RecordingRequest in the next position in the list; false otherwise.

hasPrevious

public boolean hasPrevious()

 Tests if there is a RecordingRequest in the previous position in the list.

 Returns:

 true if there is a RecordingRequest in the previous position in the list; false otherwise.

nextEntries

public RecordingRequest[] nextEntries(int n)

 Gets the next 'n' RecordingRequest objects in the list. This method also advances the
current position within the list. If the requested number of entries is not available, the
remaining elements are returned. If the current position is at the end of the iterator, this
method returns an array with length zero.

82 ITU-T Rec. J.203 (11/2006)

 Parameters:

 n – the number of next entries requested.

 Returns:

 an array containing the next 'n' RecordingRequest object from the current position in the
list.

previousEntries

public RecordingRequest[] previousEntries(int n)

 Gets the previous 'n' RecordingRequest objects in the list. This method also changes the
current position within the list. If the requested number of entries is not available, the
remaining elements are returned. If the current position is at the beginning of the iterator,
this method returns an array with length zero.

 Parameters:

 n – the number of previous entries requested.

 Returns:

 an array containing the previous 'n' RecordingRequest object from the current position in
the list.

getEntry

public RecordingRequest getEntry(int index)

 Gets the RecordingRequest object at the specified position. This method does not advance
the current position within the list.

 Parameters:

 index – the position of the RecordingRequest to be retrieved.

 Returns:

 the RecordingRequest at the specified position.

 Throws:

 java.lang.IndexOutOfBoundsException – if the index is greater than the size of the list.

getPosition

public int getPosition(RecordingRequest entry)

 Gets the position of a specified recording request in the list.

 Parameters:

 entry – The recording request for which the position is sought.

 Returns:
 The position of the specified recording; –1 if the entry is not found.

 ITU-T Rec. J.203 (11/2006) 83

getPosition

public int getPosition()

 Gets the current position of the RecordingListIterator. This would be the position from
where the next RecordingRequest will be retrieved when an application calls the nextEntry.

 Returns:
 the current position of the RecordingListIterator.

setPosition

public void setPosition(int index)
 throws java.lang.IndexOutOfBoundsException

 Sets the current position of the RecordingListIterator. This would be the position from
where the next RecordingRequest will be retrieved when an application calls the nextEntry.

 Parameters:

 index – the current position of the RecordingListIterator would be set to this value.

 Throws:

 java.lang.IndexOutOfBoundsException – if the index is greater than the size of the list.

getRecordingList

public RecordingList getRecordingList()

 Gets the recording list corresponding to this RecordingListIterator.

 Returns:
 the RecordingList corresponding to this iterator.

84 ITU-T Rec. J.203 (11/2006)

D.3 Shared media package

org.ocap.shared.media
 Package

D.3.1 TimeShiftControl interface
D.3.2 BeginningOfContentEvent class
D.3.3 EndOfContentEvent class
D.3.4 EnteringLiveModeEvent class
D.3.5 LeavingLiveModeEvent class
D.3.6 MediaTimeFactoryControl interface
D.3.7 TimeLine interface
D.3.8 TimeLineControl interface
D.3.9 TimeLineInvalidException class
D.3.10 TimeOutOfRangeException class

D.3.1 TimeShiftControl interface

org.ocap.shared.media
 Interface TimeShiftControl

All Superinterfaces:
 javax.media.Control

public interface TimeShiftControl

extends javax.media.Control

This interface represents a trick-mode control that can be used for retrieving more information
corresponding to the playback of the time-shift buffer. This control will only be available is the
service being presented on the service context is a broadcast service and if there is a time-shift
buffer associated with the service context.

Method Summary

 javax.media.Time getBeginningOfBuffer()
Gets the media time corresponding to the current beginning of the time-shift
buffer.

 javax.media.Time getDuration()
Gets the duration of content currently in the time-shift buffer.

 javax.media.Time getEndOfBuffer()
Gets the media time corresponding to the end of the time-shift buffer.

 javax.media.Time getMaxDuration()
Gets the estimated value for the maximum duration of content that could be
buffered using this time-shift buffer.

Methods inherited from interface javax.media.Control

getControlComponent

 ITU-T Rec. J.203 (11/2006) 85

Method Detail

getBeginningOfBuffer

public javax.media.Time getBeginningOfBuffer()

 Gets the media time corresponding to the current beginning of the time-shift buffer. This
could be the media time corresponding to start of the buffer, before the buffer wrap around
or the media time corresponding to the beginning of the valid buffer area after the wrap
around.

 Returns:
 media time corresponding to the beginning of the time-shift buffer.

getEndOfBuffer

public javax.media.Time getEndOfBuffer()

 Gets the media time corresponding to the end of the time-shift buffer. This could be the
current system time if the time-shift recording is still ongoing or the media time
corresponding to the end point for the valid area of the time-shift buffer.

 Returns:
 media time corresponding to the end of the time-shift buffer.

getDuration

public javax.media.Time getDuration()

 Gets the duration of content currently in the time-shift buffer. The value returned is the
content's duration when played at a rate of 1.0.

 Returns:
 A Time object representing the duration.

getMaxDuration

public javax.media.Time getMaxDuration()

 Gets the estimated value for the maximum duration of content that could be buffered using
this time-shift buffer. The value returned is the content's duration when played at a rate
of 1.0.

 Returns:
 A Time object representing the maximum value for duration.

86 ITU-T Rec. J.203 (11/2006)

D.3.2 BeginningOfContentEvent class

org.ocap.shared.media
 Class BeginningOfContentEvent

java.lang.Object
 +--java.util.EventObject
 +--javax.media.ControllerEvent
 +--javax.media.RateChangeEvent
 +--org.ocap.shared.media.BeginningOfContentEvent

All Implemented Interfaces:
 javax.media.MediaEvent, java.io.Serializable

public class BeginningOfContentEvent

extends javax.media.RateChangeEvent

BeginningOfContentEvent is a RateChangeEvent that is posted when the rate change is due to a
rewind hitting the beginning of the media, or due to the time-shift buffer reaching maximum depth.

See Also:
 Serialized Form

Field Summary

Fields inherited from class java.util.EventObject

source

Constructor Summary

BeginningOfContentEvent(javax.media.Controller from, float newRate)
 Creates a BeginningOfContentEvent.

Methods inherited from class javax.media.RateChangeEvent

getRate, toString

Methods inherited from class javax.media.ControllerEvent

getSource, getSourceController

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

 ITU-T Rec. J.203 (11/2006) 87

Constructor Detail

BeginningOfContentEvent

public BeginningOfContentEvent(javax.media.Controller from,
 float newRate)

 Creates a BeginningOfContentEvent.

Parameters:

 from – the controller that is generating the event.

D.3.3 EndOfContentEvent class

org.ocap.shared.media
 Class EndOfContentEvent

java.lang.Object
 +--java.util.EventObject
 +--javax.media.ControllerEvent
 +--javax.media.RateChangeEvent
 +--org.ocap.shared.media.EndOfContentEvent

All Implemented Interfaces:
 javax.media.MediaEvent, java.io.Serializable

public class EndOfContentEvent

extends javax.media.RateChangeEvent

EndOfContentEvent is a RateChangeEvent that is posted when the rate change is due to a forward
playback hitting the end of the stored context, or a forward playback catching up with the live
recording point.

See Also:
 Serialized Form

Field Summary

Fields inherited from class java.util.EventObject
source

Constructor Summary

EndOfContentEvent(javax.media.Controller from, float newRate)
 Creates an EndOfContentEvent.

Methods inherited from class javax.media.RateChangeEvent

getRate, toString

88 ITU-T Rec. J.203 (11/2006)

Methods inherited from class javax.media.ControllerEvent

getSource, getSourceController

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

EndOfContentEvent

public EndOfContentEvent(javax.media.Controller from,
 float newRate)

 Creates an EndOfContentEvent.

Parameters:

 from – the controller that is generating the event.

D.3.4 EnteringLiveModeEvent class

org.ocap.shared.media
 Class EnteringLiveModeEvent

java.lang.Object
 +--java.util.EventObject
 +--javax.media.ControllerEvent
 +--org.ocap.shared.media.EnteringLiveModeEvent

All Implemented Interfaces:
 javax.media.MediaEvent, java.io.Serializable

public class EnteringLiveModeEvent

extends javax.media.ControllerEvent

EnteringLiveModeEvent is a ControllerEvent that is posted when the controller has started playing
back a live broadcast stream. This event is sent to a registered ControllerListener in addition to any
RateChangeEvent or MediaTimeSetEvent.

See Also:
 Serialized Form

Field Summary

Fields inherited from class java.util.EventObject

source

 ITU-T Rec. J.203 (11/2006) 89

Constructor Summary

EnteringLiveModeEvent(javax.media.Controller from)
 Creates an EnteringLiveModeEvent.

Methods inherited from class javax.media.ControllerEvent

getSource, getSourceController, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

EnteringLiveModeEvent

public EnteringLiveModeEvent(javax.media.Controller from)

 Creates an EnteringLiveModeEvent.

 Parameters:

 from – the controller that is generating the event.

D.3.5 LeavingLiveModeEvent class

org.ocap.shared.media
 Class LeavingLiveModeEvent

java.lang.Object
 +--java.util.EventObject
 +--javax.media.ControllerEvent
 +--org.ocap.shared.media.LeavingLiveModeEvent

All Implemented Interfaces:

 javax.media.MediaEvent, java.io.Serializable

public class LeavingLiveModeEvent

extends javax.media.ControllerEvent

LeavingLiveModeEvent is a ControllerEvent that is posted when the controller is not playing back a
live broadcast stream anymore. This event is sent to a registered ControllerListener in addition to
any RateChangeEvent or MediaTimeSetEvent.

See Also:
 Serialized Form

90 ITU-T Rec. J.203 (11/2006)

Field Summary

Fields inherited from class java.util.EventObject

source

Constructor Summary

LeavingLiveModeEvent(javax.media.Controller from)
 Creates a LeavingLiveModeEvent.

Methods inherited from class javax.media.ControllerEvent

getSource, getSourceController, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

LeavingLiveModeEvent

public LeavingLiveModeEvent(javax.media.Controller from)

 Creates a LeavingLiveModeEvent.

Parameters:

 from – the controller that is generating the event.

D.3.6 MediaTimeFactoryControl interface

org.ocap.shared.media
 Interface MediaTimeFactoryControl

All Superinterfaces:

 javax.media.Control

public interface MediaTimeFactoryControl

extends javax.media.Control

Provides the ability to obtain media times with various special characteristics when applied to the
content being played by this JMF player. The behaviour of these media times is implementation
dependent if used with any other JMF player.

 ITU-T Rec. J.203 (11/2006) 91

Method Summary

 javax.media.Time getRelativeTime(long offset)
Obtains a media time relative to the current location

 javax.media.Time setTimeApproximations(javax.media.Time original,
boolean beforeOrAfter)
Enables applications to precisely control the position where playback starts
following a call to Player.setMediaTime.

Methods inherited from interface javax.media.Control

getControlComponent

Method Detail

getRelativeTime

public javax.media.Time getRelativeTime(long offset)

 Obtains a media time relative to the current location

 Parameters:

 offset – the offset relative to the current location measured in nanoseconds

 Returns:
 a media time

setTimeApproximations

public javax.media.Time setTimeApproximations(javax.media.Time original,
 boolean beforeOrAfter)

 Enables applications to precisely control the position where playback starts following a call
to Player.setMediaTime. This method takes an original media time as input and returns a
new media time which encapsulates the original media time and an indication of how that
original media time is to be interpreted when used in a call to Player.setMediaTime.

 Parameters:

 original – the original media time

 beforeOrAfter – if true, the media time where playback starts will be on or before the
original one (i.e., content at the original media time is guaranteed to be presented in
playback). If false, the media time where playback starts will be after the original one
(i.e., neither content at the original media time nor any content before that original time will
be presented in playback).

 Returns:
 a new media time

92 ITU-T Rec. J.203 (11/2006)

D.3.7 TimeLine interface

org.ocap.shared.media
 Interface TimeLine

public interface TimeLine

Represents a transmitted time line. Transmitted time lines start at one media time within a piece of
content and finish at a later media time in that content. Transmitted time lines are valid at all media
times between these points. They are either incremented linearly or are paused. The value of a
transmitted time line does not have any discontinuities.

Method Summary

 javax.media.Time getFirstMediaTime()
Returns the first media time at which this time line is valid.

 long getFirstTime()
Returns the first valid time in this time line.

 javax.media.Time getLastMediaTime()
Returns the last time at which this time line is valid.

 long getLastTime()
Returns the last valid time in this time line.

 javax.media.Time getMediaTime(long time)
Translates a time in this time line into the corresponding media time.

 long getTime(javax.media.Time mediatime)
Translates a media time into the corresponding time in this timeline

Method Detail

getFirstMediaTime

public javax.media.Time getFirstMediaTime()
 throws TimeLineInvalidException

 Returns the first media time at which this time line is valid. For a scheduled recording, this
is the first point within the piece of content where the time line is valid. For a timeshift
recording, if the time line starts within the time shift buffer then the media time where it
starts will be returned. If the time line starts before the start of the time shift buffer, the
media time of the start of the time shift buffer will be returned. Note that if the time shift
buffer is full and time shift recording is in progress, the start of the buffer will be moving as
newly written data overwrites the former start of the buffer.

 Returns:
 a media time

 Throws:

 TimeLineInvalidException – if the time line is no longer valid in this piece of content.
E.g., the piece of content is a time shift recording and the end of the time line is no longer
within the buffer

 ITU-T Rec. J.203 (11/2006) 93

getLastMediaTime

public javax.media.Time getLastMediaTime()
 throws TimeLineInvalidException

 Returns the last time at which this time line is valid. For a scheduled recording, this is the
last point within the piece of content where the time line is valid. For a timeshift recording,
if the time line ends within the time shift buffer then the media time where it starts will be
returned. If the time line ends after the end of the time shift buffer, the media time of the
end of the time shift buffer will be returned. Note that if the time shift buffer is full and
time shift recording is in progress, the end of the buffer will be moving as newly written
data overwrites the former start of the buffer.

 Returns:
 a media time

 Throws:

 TimeLineInvalidException – if the time line is no longer valid in this piece of content.
E.g., the piece of content is a time shift recording and the end of the time line is no longer
within the buffer

getFirstTime

public long getFirstTime()
 throws TimeLineInvalidException

 Returns the first valid time in this time line. For a scheduled recording, this is the first point
within the piece of content where the time line is valid. For a timeshift recording, if the time
line starts within the time shift buffer then the time where it starts will be returned. If the
time line starts before the start of the time shift buffer, the time of the start of the time shift
buffer will be returned. Note that if the time shift buffer is full and time shift recording is in
progress, the start of the buffer will be moving as newly written data overwrites the former
start of the buffer.

 Returns:
 a time in this time line

 Throws:

 TimeLineInvalidException – if the time line is no longer valid in this piece of content.
E.g., the piece of content is a time shift recording and the end of the time line is no longer
within the buffer

getLastTime

public long getLastTime()
 throws TimeLineInvalidException

 Returns the last valid time in this time line. For a scheduled recording, this is the last point
within the piece of content where the time line is valid. For a timeshift recording, if the time
line ends within the time shift buffer then the media time where it end will be returned. If
the media time ends after the end of the time shift buffer, the media time of the end of the
time shift buffer will be returned. Note that if the time shift buffer is full and time shift
recording is in progress, the end of the buffer will be moving as newly written data
overwrites the former start of the buffer.

94 ITU-T Rec. J.203 (11/2006)

 Returns:
 a time in this time line

 Throws:

 TimeLineInvalidException – if the time line is no longer valid in this piece of content.
E.g., the piece of content is a time shift recording and the end of the time line is no longer
within the buffer

getMediaTime

public javax.media.Time getMediaTime(long time)
 throws TimeLineInvalidException,
 TimeOutOfRangeException

 Translates a time in this time line into the corresponding media time. If the time is one
where the time line pauses, the returned media time shall be the highest media time
corresponding to the time specified.

 Parameters:

 time – a time in this time line

 Returns:
 the corresponding media time

 Throws:

 TimeLineInvalidException – if the time line is no longer valid in this piece of content.
E.g., the piece of content is a time shift recording and the end of the time line is no longer
within the buffer

 TimeOutOfRangeException – if the time specified is not within this timeline

getTime

public long getTime(javax.media.Time mediatime)
 throws TimeLineInvalidException,
 TimeOutOfRangeException

 Translates a media time into the corresponding time in this timeline

 Parameters:

 mediatime – a media time

 Returns:
 the corresponding time in this timeline

 Throws:

 TimeLineInvalidException – if the time line is no longer valid in this piece of content.
E.g., the piece of content is a time shift recording and the end of the time line is no longer
within the buffer

 TimeOutOfRangeException – if the media time specified is not within this timeline

 ITU-T Rec. J.203 (11/2006) 95

D.3.8 TimeLineControl interface

org.ocap.shared.media
 Interface TimeLineControl

All Superinterfaces:
 javax.media.Control

public interface TimeLineControl

extends javax.media.Control

Provides access to the transmitted timelines in a piece of content

Method Summary

 TimeLine[] getTimeLines()
Returns all the transmitted timelines found in a piece of content.

Methods inherited from interface javax.media.Control

getControlComponent

Method Detail

getTimeLines

public TimeLine[] getTimeLines()

 Returns all the transmitted timelines found in a piece of content. If no transmitted timelines
are present then an array of length 0 is returned.

 Returns:
 an array of timelines

96 ITU-T Rec. J.203 (11/2006)

D.3.9 TimeLineInvalidException class

org.ocap.shared.media
 Class TimeLineInvalidException

java.lang.Object
 +--java.lang.Throwable
 +--java.lang.Exception
 +--org.ocap.shared.media.TimeLineInvalidException

All Implemented Interfaces:
 java.io.Serializable

public class TimeLineInvalidException

extends java.lang.Exception

This exception is returned when a time line is no longer valid in the piece of content for which it
was obtained. For example, the piece of content is a time shift recording and the end of the time line
is no longer within the buffer.

See Also:
 Serialized Form

Constructor Summary

TimeLineInvalidException()
 Constructs a TimeLineInvalidException with no detail message

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace,
printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

TimeLineInvalidException

public TimeLineInvalidException()

 Constructs a TimeLineInvalidException with no detail message

 ITU-T Rec. J.203 (11/2006) 97

D.3.10 TimeOutOfRangeException class

org.ocap.shared.media
 Class TimeOutOfRangeException

java.lang.Object
 +--java.lang.Throwable
 +--java.lang.Exception
 +--org.ocap.shared.media.TimeOutOfRangeException

All Implemented Interfaces:
 java.io.Serializable

public class TimeOutOfRangeException

extends java.lang.Exception

This exception is returned when a time or media time is outside the valid range for a particular time
line.

See Also:
 Serialized Form

Constructor Summary

TimeOutOfRangeException()
 Constructs a TimeOutOfRangeException with no detail message

Methods inherited from class java.lang.Throwable

fillInStackTrace, getLocalizedMessage, getMessage, printStackTrace,
printStackTrace, printStackTrace, toString

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait

Constructor Detail

TimeOutOfRangeException

public TimeOutOfRangeException()

 Constructs a TimeOutOfRangeException with no detail message

98 ITU-T Rec. J.203 (11/2006)

Bibliography

[b-DAVIC 1.4.1p9] DAVIC 1.4.1p9, DAVIC 1.4.1 Specification Part 9 –
Information Representation.

[b-ETSI TS 102 816] ETSI TS 102 816, Digital Video Broadcasting (DVB);
PVR/PDR Extension to the Multimedia Home Platform.

 NOTE – At the time of publication of this Recommendation, the
above reference is only available as DVB Bluebook A088.rev1. It
will become available from ETSI in due course.

[b-OC-SP-OCAP-DVR-I02-050524] OC-SP-OCAP-DVR-I02-050524, OpenCable Application
Platform Specification; OCAP Digital Video Recorder
(DVR).

Printed in Switzerland
Geneva, 2008

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia
signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. J.203 (11/2006) Common core for digital video recorder platform
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	2.1 Normatives references
	2.2 Informative references

	3 Definitions
	4 Abbreviations
	5 Conventions
	6 General considerations
	6.1 Purpose
	6.2 Full conformance with this Recommendation

	7 Recording and playback process
	7.1 Managing scheduled recordings
	7.2 The recording process
	7.3 Managing completed recordings
	7.4 Playback of scheduled recordings
	7.5 Timeshift

	8 Recording and playback APIs
	8.1 Recording and recording management
	8.2 Playback
	8.3 Other APIs
	8.4 Permissions

	9 Application signalling
	9.1 Applications recording description

	10 Applications model
	10.1 Application lifecycle and trick-mode playback

	11 Security
	11.1 Introduction (informative)
	11.2 Permission request file

	12 Minimum receiver requirements
	Annex A – Application recording description
	Annex B – Responsibilities of GEM recording specifications
	B.1 Required
	B.2 Optional
	Annex C – External references; errata, clarifications and exemptions
	C.1 Java media framework
	Annex D – API packages for digital video recorder platform common core
	D.1 Shared digital video recorder package
	D.2 Shared digital video recorder navigation package
	D.3 Shared media package
	Bibliography

