

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T J.181
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(06/2004)

SERIES J: CABLE NETWORKS AND TRANSMISSION
OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS
Digital transmission of television signals

 Digital program insertion cueing message for
cable television systems

ITU-T Recommendation J.181

 ITU-T Rec. J.181 (06/2004) i

ITU-T Recommendation J.181

Digital program insertion cueing message for cable television systems

Summary
This Recommendation supports the splicing of MPEG-2 transport streams for the purpose of digital
program insertion, which includes advertisement insertion and insertion of other content types. An
in-stream messaging mechanism is defined to signal splicing and insertion opportunities. A
technique for carrying notification of upcoming Splice Points in the transport stream is specified.

Source
ITU-T Recommendation J.181 was approved on 29 June 2004 by ITU-T Study Group 9 (2001-2004)
under the ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. J.181 (06/2004)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2004

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. J.181 (06/2004) iii

CONTENTS
 Page
1 Scope .. 1

2 References... 1
2.1 Normative references.. 1
2.2 Informative references.. 1

3 Definition of terms.. 2

4 Abbreviations.. 3

5 Introduction .. 4
5.1 Splice points (Informative)... 4
5.2 Program splice points (Informative)... 4
5.3 Splice events (Informative) .. 5
5.4 PID selection .. 5
5.5 Message flow (Informative) ... 6

6 PMT descriptors ... 6
6.1 Registration descriptor.. 6
6.2 Cue identifier descriptor ... 7
6.3 Stream identifier descriptor .. 8

7 Splice information table.. 9
7.1 Overview .. 9
7.2 Splice info section .. 10
7.3 Splice commands.. 13
7.4 Time.. 18
7.5 Constraints.. 19

8 Splice descriptors.. 21
8.1 Overview .. 21
8.2 Splice descriptor ... 21
8.3 Specific splice descriptors .. 22

9 Encryption .. 27
9.1 Overview .. 27
9.2 Fixed key encryption .. 27
9.3 Encryption algorithms .. 27

 ITU-T Rec. J.181 (06/2004) 1

ITU-T Recommendation J.181

Digital program insertion cueing message for cable television systems

1 Scope
This Recommendation supports the splicing of MPEG-2 streams for the purpose of digital program
insertion, which includes advertisement insertion and insertion of other content types. An in-stream
messaging mechanism is defined to signal splicing and insertion opportunities and it is not intended
to ensure seamless splicing. As such, this Recommendation does not specify the splicing method
used or constraints applied to the streams being spliced, nor does it address constraints placed on
splicing devices. This Recommendation also supports accurate signalling of events in the stream.

A fully compliant MPEG-2 transport stream (either Multi-Program Transport Stream or Single
Program Transport Stream) is assumed. No further constraints beyond the inclusion of the defined
cueing messages are placed upon the stream.

This Recommendation specifies a technique for carrying notification of upcoming Splice Points and
other timing information in the transport stream. A splice information table is defined for notifying
downstream devices of splice events, such as a network break or return from a network break. The
splice information table, which pertains to a given program, is carried in one or more PID(s)
referred to by that program's Program Map Table (PMT). In this way, splice event notification can
pass through most transport stream remultiplexers without need for special processing.

2 References

2.1 Normative references
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the
currently valid ITU-T Recommendations is regularly published. The reference to a document within
this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

– ITU-T Recommendation H.222.0 (2000) | ISO/IEC 13818-1:2000, Information technology
– Generic coding of moving pictures and associated audio information: Systems.

– ITU-T Recommendation H.262 (2000) | ISO/IEC 13818-2:2000, Information technology –
Generic coding of moving pictures and associated audio information: Video.

– ISO/IEC 13818-4:1998, Information technology – Generic coding of moving pictures and
associated audio information – Part 4: Conformance testing, plus Corrigendum 2 (1998).

– FIPS PUB 46-3-1999, Data Encryption Standard (DES).
– FIPS PUB 81-1980, DES Modes of Operation.

2.2 Informative references
– SMPTE 312M, SMPTE Standard for Television – Splice Points for MPEG-2 Transport

Streams.

2 ITU-T Rec. J.181 (06/2004)

3 Definition of terms
Throughout this Recommendation, the terms below have specific meanings. Because some of the
terms that are defined in ISO/IEC 13818 have very specific technical meanings, the reader is
referred to the original source for their definition. For terms used in this Recommendation, brief
definitions are given below.

3.1 access unit: A coded representation of a presentation unit (see ITU-T Rec. H.262 |
ISO/IEC 13818-2).

3.2 analog cue tone: In an analog system, a signal that is usually either a sequence of DTMF
tones or a contact closure that denotes to ad insertion equipment that an advertisement avail is about
to begin or end.

3.3 avail: Time space provided to cable operators by cable programming services during a
program for use by the CATV operator; the time is usually sold to local advertisers or used for
channel self promotion.

3.4 break: Avail or an actual insertion in progress.

3.5 component splice mode: A mode of the cueing message whereby the program_splice_flag
is set to "0" and indicates that each PID/component that is intended to be spliced will be listed
separately by the syntax that follows. Components not listed in the message are not be spliced.

3.6 cueing message: See "message".

3.7 event: A splice event or a viewing event.
3.8 in point: A point in the stream, suitable for entry, that lies on an elementary presentation
unit boundary. An In Point is actually between two presentation units rather than being a
presentation unit itself.

3.9 in-stream device: A device that receives the transport stream directly and is able to derive
timing information directly from the transport stream.

3.10 message: In the context of this Recommendation, a message is the contents of any
splice_info_section.

3.11 Multi Program Transport Stream (MPTS): A transport stream with multiple programs.

3.12 out-of-stream device: A device that receives the cue message from an in-stream device
over a separate connection from the transport stream. An out-of-stream device does not receive or
pass the transport stream directly.

3.13 out point: A point in the stream, suitable for exit, that lies on an elementary presentation
unit boundary. An Out Point is actually between two presentation units rather than being a
presentation unit itself.

3.14 payload_unit_start_indicator: A bit in the transport packet header that signals, among
other things, that a section begins in the payload that follows (see ITU-T Rec. H.222.0 |
ISO/IEC 13818-1).

3.15 Packet Identifier (PID): A unique 13-bit value used to identify the type of data stored in
the packet payload (see ITU-T Rec. H.222.0 | ISO/IEC 13818-1).

3.16 PID stream: All the packets with the same PID within a transport stream.

3.17 pointer_field: The first byte of a transport packet payload, required when a section begins
in that packet (see ITU-T Rec. H.222.0 | ISO/IEC 13818-1).

3.18 presentation time: The time that a presentation unit is presented in the system target
decoder (see ITU-T Rec. H.222.0 | ISO/IEC 13818-1).

 ITU-T Rec. J.181 (06/2004) 3

3.19 presentation unit: A decoded Audio Access Unit or a decoded picture (see ITU-T
Rec. H.262 | ISO/IEC 13818-2).

3.20 program: A collection of video, audio, and data PID streams that share a common program
number within an MPTS (see ITU-T Rec. H.222.0 | ISO/IEC 13818-1).

3.21 program in point: A group of PID stream In Points that correspond in presentation time.

3.22 program out point: A group of PID stream Out Points that correspond in presentation
time.

3.23 program splice mode: A mode of the cueing message whereby the program_splice_flag is
set to "1" and indicates that the message refers to a Program Splice Point and that all
PIDs/components of the program are to be spliced.

3.24 program splice point: A Program In Point or a Program Out Point.

3.25 receiving device: A device that receives or interprets sections conforming to this
Recommendation. Examples of these devices include splicers, ad servers, segmenters and satellite
receivers.

3.26 registration descriptor: Carried in the PMT of a program to indicate that, when signalling
splice events, splice_info_sections shall be carried in a PID stream within this program. The
presence of the Registration Descriptor signifies a program's compliance with this
Recommendation.

3.27 reserved: The term "reserved", when used in the clauses defining the coded bit stream,
indicates that the value may be used in the future for extensions to this Recommendation. Unless
otherwise specified in this Recommendation, all reserved bits shall be set to "1" and this field shall
be ignored by receiving equipment.

3.28 Single Program Transport Stream (SPTS): A transport stream containing a single MPEG
program.

3.29 splice event: An opportunity to splice one or more PID streams.

3.30 splice immediate mode: A mode of the cueing message whereby the splicing device shall
choose the nearest opportunity in the stream, relative to the splice_info_table, to splice. When not in
this mode, the message gives a "pts_time" that, when modified by pts_adjustment, gives a
presentation time, for the intended splicing moment.

3.31 splice point: A point in a PID stream that is either an Out Point or an In Point.

3.32 viewing event: A television programme or a span of compressed material within a service;
as opposed to a splice event, which is a point in time.

4 Abbreviations
This Recommendation uses the following abbreviations:

ATSC Advanced Television Systems Committee

bslbf Bit string, left bit first, where left is the order in which bit strings are written

DVB Digital Video Broadcast

MPTS Multi Program Transport Stream

PMT Program Map Table (see ITU-T Rec. H.222.0 | ISO/IEC 13818-1)

PTS Presentation Time Stamp (see ITU-T Rec. H.222.0 | ISO/IEC 13818-1)

rpchof Remainder polynomial coefficients, highest order first

4 ITU-T Rec. J.181 (06/2004)

SPTS Single Program Transport Stream

STC System Time Clock

uimsbf Unsigned integer, most significant bit first

5 Introduction

5.1 Splice points (Informative)
To enable the splicing of compressed bit streams, this Recommendation defines Splice Points.
Splice Points in an MPEG-2 transport stream provide opportunities to switch elementary streams
from one source to another. They indicate a place to switch or a place in the bit stream where a
switch can be made. Splicing at such splice points may or may not result in good visual and audio
quality. That is determined by the performance of the splicing device.

Transport streams are created by multiplexing PID streams. In this Recommendation, two types of
Splice Points for PID streams are defined: Out Points and In Points. In Points are places in the bit
streams where it is acceptable to enter, from a splicing standpoint. Out Points are places where it is
acceptable to exit the bit stream. The grouping of In Points of individual PID streams into Program
In Points in order to enable the switching of entire programs (video with audio) is defined. Program
Out Points for exiting a program are also defined.

Out Points and In Points are imaginary points in the bit stream located between two elementary
stream presentation units. Out Points and In Points are not necessarily transport packet aligned and
are not necessarily PES packet aligned. An Out Point and an In Point may be co-located; that is, a
single presentation unit boundary may serve as both a safe place to leave a bit stream and a safe
place to enter it.

The output of a simple switching operation will contain access unit data from one stream up until its
Out Point followed by data from another stream starting with the first access unit following an In
Point. More complex splicing operations may exist whereby data prior to an Out Point or data after
an In Point are modified by a splicing device. Splicing devices may also insert data between one
stream's Out Point and the other stream's In Point. The behaviour of splicing devices will not be
specified or constrained in any way by this Recommendation.

5.2 Program splice points (Informative)
Program In Points and Program Out Points are sets of PID stream In Points or Out Points that
correspond in presentation time.

Although Splice Points in a Program Splice Point correspond in presentation time, they do not
usually appear near each other in the transport stream. Because compressed video takes much
longer to decode than audio, the audio Splice Points may lag the video Splice Points by as much as
hundreds of milliseconds and by an amount that can vary during a program.

This Recommendation defines two ways of signalling which splice points within a program are to
be spliced. A program_splice_flag, when true, denotes that the Program Splice Mode is active and
that all PIDs of a program may be spliced (the splice information table PID is an exception; splicing
or passage of these messages is beyond the scope of this Recommendation). A program_splice_flag,
when false, indicates that the Component Splice Mode is active and that the message will specify
unambiguously which PIDs are to be spliced and may give a unique splice time for each. This is
required to direct the splicing device to splice or not to splice various unspecified data types as well
as video and audio.

While this Recommendation allows for a unique splice time to be given for each component of a
program, it is expected that most Component Splice Mode messages will utilize one splice time
(a default splice time) for all components as described in clause 7. The facility for optionally

 ITU-T Rec. J.181 (06/2004) 5

specifying a separate splice time for each component is intended to be used when one or more
components differ significantly in their start or stop time relative to other components within the
same message. An example would be a downloaded applet that must arrive at a set-top box several
seconds prior to an advertisement.

5.3 Splice events (Informative)
This Recommendation provides a method for in-band signalling of splice events using splice
commands to downstream splicing equipment. Signalling a splice event identifies which Splice
Point within a stream to use for a splice. A splicing device may choose to act or not act upon a
signalled event (a signalled event should be interpreted as an opportunity to splice; not a command).
A splice information table carries the notice of splice event opportunities. Each signalled splice
event is analogous to an analog cue tone. The splice information table incorporates the functionality
of cue tones and extends it to enable the scheduling of splice events in advance.

This Recommendation establishes that the splice information table is carried on a per-program basis
in one or more PID stream(s) with a designated stream_type. The program's splice information
PID(s) are designated in the program's program map table (PMT). In this way, the splice
information table is switched with the program as it goes through remultiplexing operations. A
common stream_type identifies all PID streams that carry splice information tables. Remultiplexers
or splicers may use this stream_type field to drop splice information prior to sending the transport
stream to the end-user device.

The cue injection equipment may send messages at intervals that do not indicate a splice point to be
used as heartbeat messages which help insure the proper operation of the system. This could be
performed by periodically issuing splice_null() messages or by sending encrypted splice_insert
messages generated with a key that is not distributed. Since cues are currently sent twice per hour
on a typical network, an average interval of 5 minutes would be a reasonable interval. If a message
was not received in a 10-minute interval, a receiving device could alarm an operator to a possible
system malfunction (such behaviour would be implementer dependent).

5.4 PID selection

5.4.1 PID selection (Normative)
Splice information can be carried in multiple PIDs. The maximum number of PIDs that can carry
splice information shall not exceed 8. These PIDs can be either in the clear (where the transport
scrambling_control bits are set to "00") or scrambled by a CA system. Each cue message PID may
include the cue_identifier_descriptor defined in 6.2 to describe the splice commands included in the
PID. When multiple PIDs are used to carry splice information, the first cue message PID in the
program map table shall only contain the splice command types 0x00 (splice_null), 0x04
(splice_schedule) and 0x05 (splice_insert). In addition, the splice_event_id shall be unique in all
splice information PIDs within the program.

5.4.2 PID selection (Informative)
While the use of multiple cue message PIDs is an allowed practice, it should be noted that not all
equipment may respond in the same manner to a stream that contains multiple cue message PIDs.
Some equipment may limit the number of PIDs that the equipment can pass or receive. If a system
utilizes multiple PIDs through various devices with the intention of reaching the set-top, it is
suggested that thorough end-end testing be performed.

In many systems, the delivery of PIDs that carry splice information beyond the ad insertion
equipment in the head-end is not desired. In these systems, the splicing or multiplexing device will
drop any or all of these messages (PIDs) so they will not be delivered to the set-top. In other
systems it may selectively pass certain PIDs to the set-top to enable set-top functionality. A third
possibility is that the splicing or multiplexing device will aggregate the multiple PIDs that carry

6 ITU-T Rec. J.181 (06/2004)

splice information into a single PID to handle downstream, set-top, issues with multiple PIDs. The
action of ignoring or passing the message is recommended to be a user provisioned item, with a
suitable default behaviour chosen by the implementer.

The default operation, if a splicing or multiplexing device receives a PID based on this
Recommendation with the scrambling bits set in the header, should be to drop that PID and not pass
it through to the output. This ideally should be a user provisioned operation, as in some instances
this PID may be descrambled by a downstream device.

The delivery of messages outside of the receive location to the customer may be based on business
agreements. An example would be that one programmer wants the cue messages passed to set-tops
to enable a targeted advertising method while a different programmer insists that the messages be
dropped to insure that a commercial killer may not utilize the messages.

When multiple splicing PIDs are identified in the PMT, the splicing device should process all of
these PIDs. If the cue_identifier_descriptor is utilized, the splicing or multiplexing device may use
that information to be more selective of the PIDs on which it will act.

Some possible reasons for utilizing multiple PIDs for this message include selective delivery of cue
messages for different tiers of advertising or for separating cue messages from segmentation
messages. While one possible method of handling these issues is to use the encryption methods
built into this Recommendation, many delivery mechanisms can support conditional delivery by
PID in a secure fashion. The delivery equipment (Satellite transmitter/receiver, remultiplexer) may
PID filter the stream to only allow one or a small number of the PIDs to be passed in-stream. This
method may be used to create multiple programs in the feed based on entitlement. The decision to
use one or more PIDs will be based on the security required and the CA hardware available on the
system.

5.5 Message flow (Informative)
The messages described in this Recommendation can originate from multiple sources. They are
designed to be sent in-stream to downstream devices. The downstream devices may act on the
messages or send them to a device that is not in-stream to act upon them. An example would be a
splicer communicating via SCTE 30 protocol to an ad server. The in-stream devices could pass the
messages to the next device in the transmission chain, or they could, optionally, drop the messages.
Implementers are urged to make these decisions user provisioned, rather than arbitrarily hard-coded.

Any device that restamps pcr/pts/dts and that passes these cue messages to a downstream device
should modify the pts_time field or the pts_adjustment field in the message in all PIDs conforming
to this Recommendation. Modifying the pts_adjustment field is preferred because the restamping
device will not have to be knowledgeable of the pts_time field that may occur in multiple
commands (and possibly in future commands).

The bandwidth_reservation() message is intended as a message used on a closed path from a
satellite origination system (encoder) to a receiver. It is also intended that this message will be
dropped (replaced by a NULL packet) by the receiver, but this is not required. Should this message
reach an in-stream device (e.g., a splicer) the message should not be forwarded to an out-of-stream
device (e.g., Ad Server) and can either be ignored or passed by an in-stream device. The action of
ignoring or passing the message is recommended to be a user provisioned item, with a suitable
default behaviour chosen by the implementer.

6 PMT descriptors

6.1 Registration descriptor
The registration descriptor (ITU-T Rec. H.222.0 | ISO/IEC 13818-1, Table 2-45 – Registration
Descriptor, clause 2.6.8) is defined to identify unambiguously the programs that comply with this

 ITU-T Rec. J.181 (06/2004) 7

Recommendation. The registration descriptor shall be carried in the program_info loop of the PMT
for each program that complies with this Recommendation. It must reside in all PMTs of all
complying programs within a multiplex. The presence of the registration descriptor also indicates
that, when signalling splice events, splice_info_sections shall be carried in one or more PID
stream(s) within this program.

Presence of this registration descriptor in the PMT signals the following:
1) The program elements do not include the splice information table defined by

SMPTE 312M.
2) The only descriptors that can be present in the ES_descriptor_loop of the PMT for the

PID(s) that carry the splice_information_table are those that are defined in this
Recommendation or user private descriptors.

Note that this descriptor applies to the indicated program and not to the entire multiplex. The
content of the registration descriptor is specified in Table 6-1 and below:

Table 6-1/J.181 – registration_descriptor()

Syntax Bits Mnemonic
registration_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 SCTE_splice_format_identifier 32 uimsbf
}

6.1.1 Semantic definition of fields in registration descriptor
descriptor_tag: The descriptor_tag is an 8-bit field that identifies each descriptor. For registration
purposes, this field shall be set to 0x05.

descriptor_length: The descriptor_length is an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this registration descriptor,
descriptor_length shall be set to 0x04.

SCTE_splice_format_identifier: SCTE has assigned a value of 0x43554549 (ASCII "CUEI") to
this 4-byte field to identify the program (within a multiplex) in which it is carried as complying
with this Recommendation.

6.2 Cue identifier descriptor
The cue_identifier_descriptor may be used in the PMT to label PIDs that carry splice commands so
that they can be differentiated as to the type or level of splice commands they carry. The
cue_identifier_descriptor, when present, shall be located in the elementary descriptor loop. If the
cue_identifier_descriptor is not utilized, the stream may carry any valid command in this
Recommendation. See Table 6-2.

Table 6-2/J.181 – cue_identifier_descriptor()

Syntax Bits Mnemonic
cue_identifier_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 cue_stream_type 8 uimsbf
}

8 ITU-T Rec. J.181 (06/2004)

6.2.1 Semantic definition of fields in Cue Identifier Descriptor
descriptor_tag: The descriptor_tag is an 8-bit field that identifies each descriptor. For
cue_identifier_descriptor, this field shall be set to 0x8A.

descriptor_length: The descriptor_length is an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this descriptor, descriptor_length
shall be set to 0x01.

cue_stream_type: This 8-bit field is defined in Table 6-3.

Table 6-3/J.181 – cue_stream_type values

cue_stream_type PID usage
0x00 splice_insert, splice_null, splice_schedule
0x01 All Commands
0x02 Segmentation
0x03 Tiered Splicing
0x04 Tiered Segmentation
0x05-0x7F Reserved
0x80-0xFF User Defined

6.2.2 Description of cue_stream_type usage
0x00 – splice_insert, splice_null, splice_schedule: Only these cue messages are allowed in this
PID stream. There shall be a maximum of one PID identified with this cue_stream_type. If this PID
exists, it shall be the first stream complying with this Recommendation in the PMT elementary
stream loop.

0x01 – All Commands: Default if this descriptor is not present. All messages can be used in this
PID.

0x02 – Segmentation: This PID carries the time_signal command and the segmentation descriptor.
It may also carry all other commands if needed for the application, but the primary purpose is to
transmit content segmentation information.

0x03 – Tiered Splicing: Tiered Splicing refers to an insertion system where the operator provides
different inserted program possibilities in a given avail for different customers. The physical and
logical implementation may be done in several different manners, some of them are outside the
scope of this Recommendation.

0x04 – Tiered Segmentation: Tiered Segmentation refers to a system where the operator provides
different program segmentation possibilities for different customers. The physical and logical
implementation may be done in several different manners, some of them are outside the scope of
this Recommendation.

0x05-0x7F: Reserved for future extensions to this Recommendation.

0x80-0xFF: User-defined range.

6.3 Stream identifier descriptor
The stream identifier descriptor may be used in the PMT to label component streams of a service so
that they can be differentiated. The stream identifier descriptor shall be located in the elementary
descriptor loop following the relevant ES_info_length field. The stream identifier descriptor shall
be used if either the program_splice_flag or the program_segmentation_flag is zero. If stream
identifier descriptors are used, a stream identifier descriptor shall be present in each occurrence of

 ITU-T Rec. J.181 (06/2004) 9

the elementary stream loop within the PMT and shall have a unique component tag within the given
program. See Table 6-4.

Table 6-4/J.181 – stream_identifier_descriptor()

Syntax Bits Mnemonic
stream_identifier_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 component_tag 8 uimsbf
}

6.3.1 Semantic definition of fields in stream identifier descriptor
descriptor_tag: The descriptor_tag is an 8-bit field that identifies each descriptor. For
stream_identifier_descriptor, this field shall be set to 0x52.

descriptor_length: The descriptor_length is an 8-bit field specifying the number of bytes of the
descriptor immediately following descriptor_length field. For this descriptor, descriptor_length
shall be set to 0x01.

component_tag: This 8-bit field identifies the component stream for associating it with a
description given in a component descriptor. Within a program map section, each stream identifier
descriptor shall have a different value for this field.

7 Splice information table
7.1 Overview
The splice information table provides command and control information to the splicer. It notifies
the splicer of splice events in advance of those events. It is designed to accommodate ad insertion in
network feeds. In this environment, examples of splice events would include:
1) a splice out of a network feed into an ad; or
2) the splice out of an ad to return to the network feed.

The splice information table may be sent multiple times and splice events may be cancelled. Syntax
for a splice_info_section is defined to convey the splice information table. The splice_info_section
is carried on one or more PID stream(s) with the PID(s) declared in that program's PMT.

A splice event indicates the opportunity to splice one or more elementary streams within a program.
Each splice event is uniquely identified with a splice_event_id. Splice events may be communicated
in three ways: they may be scheduled ahead of time, a pre-roll warning may be given, or a
command may be given to execute the splice event at specified Splice Points. These three types of
messages are sent via the splice_info_section. The splice_command_type field specifies the
message being sent. Depending on the value of this field, different constraints apply to the
remaining syntax.

The following command types are specified: splice_null(), splice_schedule(), splice_insert(),
time_signal() and bandwidth_reservation(). If the Receiving Device does not support a command, it
can ignore the entire splice_info_section.

The splice_null() command is provided for extensibility. It can be used as a means of providing a
heartbeat message to downstream splicing equipment.

The splice_schedule() command is a command that allows a schedule of splice events to be
conveyed in advance.

10 ITU-T Rec. J.181 (06/2004)

The splice_insert() command shall be sent at least once before each splice point. Packets containing
the entirety of the splice_info_table shall always precede the packet that contains the related splice
point (i.e., the first packet that contains the first byte of an access unit whose presentation time most
closely matches the signalled time in the splice_info_section).

In order to give advance warning of the impending splice (a pre-roll function), the splice_insert()
command could be sent multiple times before the splice point. For example, the splice_insert()
command could be sent at 8, 5, 4 and 2 seconds prior to the packet containing the related splice
point. In order to meet other splicing deadlines in the system, any message received with less than 4
seconds of advance notice may not create the desired result. The splice_insert() message shall be
sent at least once a minimum of 4 seconds in advance of the desired splice time for a network Out
Point condition.

The time_signal() command is provided for extensibility while preserving the precise timing
allowed in the splice_insert() command. This is to allow for new features not directly related to
splicing utilizing the timing capabilities of this Recommendation while causing minimal impact to
the splicing devices that conform to this Recommendation. This allows the device that will be
inserting the time into the cue message to have a defined location.

The bandwidth_reservation() command is provided to allow command insertion devices to utilize a
consistent amount of transport stream bandwidth. Descriptors may be used in this command, but
they cannot be expected to be processed and sent downstream to provide signalling information.

There are two methods for changing the parameters of a command once it has been issued. One
method is to cancel the issued command by sending a splice_info_section with the
splice_event_cancel_indicator set and then to send a new splice_info_section with the correct/new
parameters. The other method is to simply send a subsequent message with the new data (without
cancelling the old message via a cue message that has the splice_event_cancel_indicator bit set).

7.1.1 Time base discontinuities
In the case where a system time base discontinuity is present, packets containing a splice_insert() or
time_signal() command with time expressed in the new time base shall not arrive prior to the
occurrence of the time base discontinuity. Packets containing a splice_insert() or time_signal()
command with time expressed in the previous time base shall not arrive after the occurrence of the
time base discontinuity. See ISO/IEC 13818-4.

The complete syntax is presented below, followed by definition of terms, followed by constraints.

7.2 Splice info section
The splice_info_section shall be carried in transport packets whereby only one section or partial
section may be in any transport packet. Splice_info_sections must always start at the beginning of a
transport packet payload. When a section begins in a transport packet, the pointer_field must be
present and equal to 0x00 and the payload_unit_start_indicator bit must be equal to one (per the
requirements of section syntax usage per ITU-T Rec. H.222.0 | ISO/IEC 13818-1). See Table 7-1.

 ITU-T Rec. J.181 (06/2004) 11

Table 7-1/J.181 – splice_info_section()

Syntax Bits Mnemonic Encrypted
splice_info_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 private_indicator 1 bslbf
 reserved 2 bslbf
 section_length 12 uimsbf
 protocol_version 8 uimsbf
 encrypted_packet 1 bslbf
 encryption_algorithm 6 uimsbf
 pts_adjustment 33 uimsbf
 cw_index 8 uimsbf
 reserved 12 bslbf
 splice_command_length 12 uimsbf
 splice_command_type 8 uimsbf E
 if (splice_command_type == 0x00)
 splice_null() E
 if (splice_command_type == 0x04)
 splice_schedule() E
 if (splice_command_type == 0x05)
 splice_insert() E
 if (splice_command_type == 0x06)
 time_signal() E
 if (splice_command_type == 0x07)
 bandwidth_reservation() E
 descriptor_loop_length 16 uimsbf E
 for (i = 0; i < N1; i++)
 splice_descriptor() E
 for (i = 0; i < N2; i++)
 alignment_stuffing 8 bslbf E
 if (encrypted_packet)
 E_CRC_32 32 rpchof E
 CRC_32 32 rpchof
}

7.2.1 Semantic definition of fields in splice_info_section()
table_id: This is an 8-bit field. Its value shall be 0xFC.

section_syntax_indicator: The section_syntax_indicator is a 1-bit field that should always be set to
"0" indicating that MPEG short sections are to be used.

private_indicator: This is a 1-bit flag that shall be set to 0.

section_length: This is a 12-bit field specifying the number of remaining bytes in the
splice_info_section immediately following the section_length field up to the end of the
splice_info_section. The value in this field shall not exceed 4093.

protocol_version: An 8-bit unsigned integer field whose function is to allow, in the future, this
table type to carry parameters that may be structured differently than those defined in the current
protocol. At present, the only valid value for protocol_version is zero. Non-zero values of
protocol_version may be used by a future version of this Recommendation to indicate structurally
different tables.

12 ITU-T Rec. J.181 (06/2004)

encrypted_packet: When this bit is set to "1", it indicates that portions of the splice_info_section,
starting with splice_command_type and ending with and including E_CRC_32, are encrypted.
When this bit is set to "0", no part of this message is encrypted. The potentially encrypted portions
of the splice_info_table are indicated by an E in the Encrypted column of Table 7-1.

encryption_algorithm: This 6-bit unsigned integer specifies which encryption algorithm was used
to encrypt the current message. When the encrypted_packet bit is zero, this field is present but
undefined. Refer to clause 9, and specifically Table 9-1 for details on the use of this field.

pts_adjustment: A 33-bit unsigned integer that appears in the clear and that shall be used by a
splicing device as an offset to be added to the (sometimes) encrypted pts_time field(s) throughout
this message to obtain the intended splice time(s). When this field has a zero value, then the
pts_time field(s) shall be used without an offset. Normally, the creator of a cueing message will
place a zero value into this field. This adjustment value is the means by which an upstream device,
which restamps pcr/pts/dts, may convey to the splicing device the means by which to convert the
pts_time field of the message to a newly imposed time domain.

It is intended that the first device that restamps pcr/pts/dts and that passes the cueing message will
insert a value into the pts_adjustment field, which is the delta time between this device's input time
domain and its output time domain. All subsequent devices, which also restamp pcr/pts/dts, may
further alter the pts_adjustment field by adding their delta time to the field's existing delta time and
placing the result back in the pts_adjustment field. Upon each alteration of the pts_adjustment field,
the altering device must recalculate and update the CRC_32 field.

The pts_adjustment shall, at all times, be the proper value to use for conversion of the pts_time field
to the current time-base. The conversion is done by adding the two fields. In the presence of a wrap
or overflow condition, the carry shall be ignored.

cw_index: An 8-bit unsigned integer that conveys which control word (key) is to be used to decrypt
the message. The splicing device may store up to 256 keys previously provided for this purpose.
When the encrypted_packet bit is zero, this field is present but undefined.

splice_command_length: A 12-bit length of the splice command. If this field = 0xFFF the length is
not defined.

splice_command_type: An 8-bit unsigned integer assigned one of the values shown in Table 7-2.

Table 7-2/J.181 – splice_command_type values

splice_command_type value Command

0x00 splice_null
0x01 Reserved
0x02 Reserved
0x03 Reserved
0x04 splice_schedule
0x05 splice_insert
0x06 time_signal
0x07 bandwidth_reservation
0x08-0xFF Reserved

 ITU-T Rec. J.181 (06/2004) 13

descriptor_loop_length: A 16-bit unsigned integer specifying the number of bytes used in the
splice descriptor loop immediately following.

alignment_stuffing: When encryption is used this field is a function of the particular encryption
algorithm chosen. Since some encryption algorithms require a specific length for the encrypted
data, it is necessary to allow the insertion of stuffing bytes. For example, DES requires a multiple of
8 bytes be present in order to encrypt to the end of the packet. This allows standard DES to be used,
as opposed to requiring a special version of the encryption algorithm.

When encryption is not used, this field shall not be used to carry valid data but may be present.

E_CRC_32: This is a 32-bit field that contains the CRC value that gives a zero output of the
registers in the decoder defined in ITU-T Rec. H.222.0 | ISO/IEC 13818-1 after processing the
entire decrypted portion of the splice_info_section. This field is intended to give an indication that
the decryption was performed successfully. Hence, the zero output is obtained following decryption
and by processing the fields splice_command_type through E_CRC_32.

CRC_32: This is a 32-bit field that contains the CRC value that gives a zero output of the registers
in the decoder defined in ITU-T Rec. H.222.0 | ISO/IEC 13818-1 after processing the entire
splice_info_section, which includes the table_id field through the CRC_32 field. The processing of
CRC_32 shall occur prior to decryption of the encrypted fields and shall utilize the encrypted fields
in their encrypted state.

7.3 Splice commands

7.3.1 splice_null()
The splice_null() command is provided for extensibility of this Recommendation. The splice_null()
command allows a splice_info_table to be sent that can carry descriptors without having to send one
of the other defined commands. This command may also be used as a "heartbeat message" for
monitoring cue injection equipment integrity and link integrity. See Table 7-3.

Table 7-3/J.181 – splice_null()

Syntax Bits Mnemonic

splice_null() {
}

14 ITU-T Rec. J.181 (06/2004)

7.3.2 splice_schedule()
The splice_schedule() command is provided to allow a schedule of splice events to be conveyed in
advance. See Table 7-4.

Table 7-4/J.181 – splice_schedule()

Syntax Bits Mnemonic
splice_schedule() {
 splice_count 8 uimsbf
 for (i = 0; i < splice_count; i++) {
 splice_event_id 32 uimsbf
 splice_event_cancel_indicator 1 bslbf
 reserved 7 bslbf
 if (splice_event_cancel_indicator == '0') {
 out_of_network_indicator 1 bslbf
 program_splice_flag 1 bslbf
 duration_flag 1 bslbf
 reserved 5 bslbf
 if (program_splice_flag == '1')
 utc_splice_time 32 uimsbf
 if (program_splice_flag == '0') {
 component_count 8 uimsbf
 for (j = 0; j < component_count; j++) {
 component_tag 8 uimsbf
 utc_splice_time 32 uimsbf
 }
 }
 if (duration_flag)
 break_duration()
 unique_program_id 16 uimsbf
 avail_num 8 uimsbf
 avails_expected 8 uimsbf
 }
 }
}

7.3.2.1 Semantic definition of fields in splice_schedule()
splice_count: An 8-bit unsigned integer that indicates the number of splice events specified in the
loop that follows.

splice_event_id: A 32-bit unique splice event identifier.

splice_event_cancel_indicator: A 1-bit flag that when set to "1" indicates that a previously sent
splice event, identified by splice_event_id, has been cancelled.

out_of_network_indicator: A 1-bit flag. When set to "1", indicates that the splice event is an
opportunity to exit from the network feed and that the value of utc_splice_time shall refer to an
intended Out Point or Program Out Point. When set to "0", the flag indicates that the splice event is
an opportunity to return to the network feed and that the value of utc_splice_time shall refer to an
intended In Point or Program In Point.

program_splice_flag: A 1-bit flag that, when set to "1", indicates that the message refers to a
Program Splice Point and that the mode is the Program Splice Mode whereby all PIDs/components
of the program are to be spliced. When set to "0", this field indicates that the mode is the
Component Splice Mode whereby each component that is intended to be spliced will be listed
separately by the syntax that follows.

 ITU-T Rec. J.181 (06/2004) 15

duration_flag: A 1-bit flag that indicates the presence of the break_duration() field.

utc_splice_time: A 32-bit unsigned integer quantity representing the time of the signalled splice
event as the number of seconds since 00 hours UTC, 6 January 1980, with the count of intervening
leap seconds included. The utc_splice_time may be converted to UTC without the use of the
GPS_UTC_offset value provided by the System Time table. The utc_splice_time field is used only
in the splice_schedule() command.

component_count: An 8-bit unsigned integer that specifies the number of instances of elementary
PID stream data in the loop that follows. Components are equivalent to elementary PID streams.

component_tag: An 8-bit value that identifies the elementary PID stream containing the Splice
Point specified by the value of splice_time() that follows. The value shall be the same as the value
used in the stream_identification_descriptor() to identify that elementary PID stream.

unique_program_id: This value should provide a unique identification for a viewing event within
the service. Since this Recommendation is intended for any encompassing standard, a value
independent of any standard is required. It provides the same function as the event_id field in ATSC
or DVB standards.

avail_num: (previously "avail") This field provides an identification for a specific avail within one
unique_program_id. This value is expected to increment with each new avail within a viewing
event. This value is expected to reset to one for the first avail in a new viewing event. This field is
expected to increment for each new avail. It may optionally carry a zero value to indicate its
non-usage.

avails_expected: (previously "avail_count") This field provides a count of the expected number of
individual avails within the current viewing event. When this field is zero, it indicates that the
avail_num field has no meaning.

7.3.3 splice_insert()
The splice_insert() command shall be sent at least once for every splice event. Please refer to 5.3 for
the use of this message. See also Table 7-5.

16 ITU-T Rec. J.181 (06/2004)

Table 7-5/J.181 – splice_insert()

Syntax Bits Mnemonic
splice_insert() {
 splice_event_id 32 uimsbf
 splice_event_cancel_indicator 1 bslbf
 reserved 7 bslbf
 if (splice_event_cancel_indicator == "0") {
 out_of_network_indicator 1 bslbf
 program_splice_flag 1 bslbf
 duration_flag 1 bslbf
 splice_immediate_flag 1 bslbf
 reserved 4 bslbf
 If ((program_splice_flag == "1") && (splice_immediate_flag == "0"))
 splice_time()
 if (program_splice_flag == "0") {
 component_count 8 uimsbf
 for (i = 0; i < component_count; i++) {
 component_tag 8 uimsbf
 if (splice_immediate_flag == "0")
 splice_time()
 }
 }
 if (duration_flag == "1")
 break_duration()
 unique_program_id 16 uimsbf
 avail_num 8 uimsbf
 avails_expected 8 uimsbf
 }
}

7.3.3.1 Semantic definition of fields in splice_insert()
splice_event_id: A 32-bit unique splice event identifier.

splice_event_cancel_indicator: A 1-bit flag that when set to "1" indicates that a previously sent
splice event, identified by splice_event_id, has been cancelled.

out_of_network_indicator: A 1-bit flag. When set to "1", indicates that the splice event is an
opportunity to exit from the network feed and that the value of splice_time(), as modified by
pts_adjustment, shall refer to an intended Out Point or Program Out Point. When set to "0", the flag
indicates that the splice event is an opportunity to return to the network feed and that the value of
splice_time(), as modified by pts_adjustment, shall refer to an intended In Point or Program In
Point.

program_splice_flag: A 1-bit flag that, when set to "1", indicates that the message refers to a
Program Splice Point and that the mode is the Program Splice Mode whereby all PIDs/components
of the program are to be spliced. When set to "0", this field indicates that the mode is the
Component Splice Mode whereby each component that is intended to be spliced will be listed
separately by the syntax that follows.

duration_flag: A 1-bit flag that, when set to "1", indicates the presence of the break_duration()
field.

splice_immediate_flag: When this flag is "1", it indicates the absence of the splice_time() field and
that the splice mode shall be the Splice Immediate Mode, whereby the splicing device shall choose
the nearest opportunity in the stream, relative to the splice information packet, to splice. When this

 ITU-T Rec. J.181 (06/2004) 17

flag is "0", it indicates the presence of the splice_time() field in at least one location within the
splice_insert() command.

component_count: An 8-bit unsigned integer that specifies the number of instances of elementary
PID stream data in the loop that follows. Components are equivalent to elementary PID streams.

component_tag: An 8-bit value that identifies the elementary PID stream containing the Splice
Point specified by the value of splice_time() that follows. The value shall be the same as the value
used in the stream_identification_descriptor() to identify that elementary PID stream.

unique_program_id: This value should provide a unique identification for a viewing event within
the service. Since this Recommendation is intended for any encompassing standard, a value
independent of any standard is required. It provides the same function as the event_id field in ATSC
or DVB standards.

avail_num: (previously "avail") This field provides an identification for a specific avail within one
unique_program_id. This value is expected to increment with each new avail within a viewing
event. This value is expected to reset to one for the first avail in a new viewing event. This field is
expected to increment for each new avail. It may optionally carry a zero value to indicate its
non-usage.

avails_expected: (previously "avail_count") This field provides a count of the expected number of
individual avails within the current viewing event. When this field is zero, it indicates that the
avail_num field has no meaning.

7.3.4 time_signal()
The time_signal() provides a time synchronized data delivery mechanism. The syntax of the
time_signal() allows for the synchronization of the information carried in this message with the
System Time Clock (STC). The unique payload of the message is carried in the descriptor;
however, the syntax and transport capabilities afforded to splice_insert() messages are also afforded
to the time_signal(). The carriage however can be in a different PID than that carrying the other cue
messages used for signalling splice points.

If the time_specified_flag is set to 0, indicating no pts_time in the message, then the command shall
be interpreted as an immediate command. It must be understood that using it in this manner will
cause an unspecified amount of accuracy error.

Since the time_signal() command utilizes descriptors for most of the specific information, this
command could exceed one MPEG transport packet in length. It is strongly recommended to keep
this command to one packet if possible. This may not always be possible in situations, for example,
where the unique information is long or where another specification is used for the definition of this
unique information. See Table 7-6.

Table 7-6/J.181 – time_signal()

Syntax Bits Mnemonic
time_signal() {
 splice_time()
}

18 ITU-T Rec. J.181 (06/2004)

7.3.4.1 Semantic definition of time_signal()
This time_signal() provides a uniform method of associating a pts_time sample with an arbitrary
descriptor (or descriptors) as provided by the splice_info_section syntax (see Table 7-1). Please
refer to clause 8 for splice descriptors.

7.3.5 bandwidth_reservation()
The bandwidth_reservation() command is provided for reserving bandwidth in a multiplex. A
typical usage would be in a satellite delivery system that requires packets of a certain PID to always
be present at the intended repetition rate to guarantee a certain bandwidth for that PID. This
message differs from a splice_null() command so that it can easily be handled in a unique way by
receiving equipment (i.e., removed from the multiplex by a satellite receiver). If a descriptor is sent
with this command, it cannot be expected that it will be carried through the entire transmission
chain and it should be a private descriptor that is utilized only by the bandwidth reservation process.
See Table 7-7.

Table 7-7/J.181 – bandwidth_reservation()

Syntax Bits Mnemonic
bandwidth_reservation() {
}

7.4 Time

7.4.1 splice_time()
The splice_time() structure, when modified by pts_adjustment, specifies the time of the splice
event. See Table 7-8.

Table 7-8/J.181 – splice_time()

Syntax Bits Mnemonic
splice_time() {
 time_specified_flag 1 bslbf
 if (time_specified_flag == 1) {
 reserved 6 bslbf
 pts_time 33 uimsbf
 }
 else
 reserved 7 bslbf
}

7.4.1.1 Semantic definition of fields in splice_time()
time_specified_flag: A 1-bit flag that, when set to "1", indicates the presence of the pts_time field
and associated reserved bits.

pts_time: A 33-bit field that indicates time in terms of ticks of the program's 90 kHz clock. This
field, when modified by pts_adjustment, represents the time of the intended splice point.

7.4.2 break_duration()
The break_duration() structure specifies the duration of the commercial break(s). It may be used to
give the splicer an indication of when the break will be over and when the network In Point will
occur. See Table 7-9.

 ITU-T Rec. J.181 (06/2004) 19

Table 7-9/J.181 – break_duration()

Syntax Bits Mnemonic
break_duration() {
 auto_return 1 bslbf
 reserved 6 bslbf
 duration 33 uimsbf
}

7.4.2.1 Semantic definition of fields in break_duration()
auto_return: A 1-bit flag that, when set to "1", denotes that the duration shall be used by the
splicing device to know when the return to the network feed (end of break) is to take place. A
splice_insert() command with out_of_network_indicator set to 0 is not intended to be sent to end
this break. When this flag is "0", the duration field, if present, is not required to end the break
because a new splice_insert() command will be sent to end the break. In this case, the presence of
the break_duration field acts as a safety mechanism in the event that a splice_insert() command is
lost at the end of a break.

duration: A 33-bit field that indicates elapsed time in terms of ticks of the program's 90 kHz clock.

7.5 Constraints

7.5.1 Constraints on splice_info_section()
The splice_info_section shall be carried in one or more PID stream(s) that are specific to a program
and referred to in the PMT. The splice_info_section PID(s) shall be identified in the PMT by
stream_type equal to 0x86.

The splice_info_section carried in one or more PID streams referenced in a program's PMT shall
contain only information about splice events that occur in that program.

A splice event shall be defined by a single value of splice_event_id.

If the Component Splice Mode will be used, then each elementary PID stream shall be identified by
a stream_identifier_descriptor carried in the PMT loop, one for each PID. The
stream_identifier_descriptor shall carry a component_tag, which uniquely corresponds to one PID
stream among those contained within a program and listed in the PMT for that program.

Any splice_event_id that is sent in a splice_info_section using a splice_schedule() command shall
be sent again prior to the event using a splice_insert() command. Hence, there shall be a
correspondence between the splice_event_id values chosen for particular events signalled by the
splice_schedule() command (distant future) and splice_event_id values utilized in the splice_insert()
command (near future) to indicate the same events.

Splice_event_id values do not need to be sent in an incrementing order in subsequent messages nor
must they increment chronologically. Splice_event_id values may be chosen at random. When
utilizing the splice_schedule() command, splice_event_id values shall be unique over the period of
the splice_schedule() command. A splice_event_id value may be reused when its associated splice
time has passed.

When the splice_immediate_flag is set to 1, the time to splice shall be interpreted as the current
time. This is called the "Splice Immediate Mode". When this form is used with the splice_insert()
command, the splice may occur at the nearest (prior or subsequent) opportunity that is detected by
the splicer. The "Splice Immediate Mode" may be used for both splicing entry and exit points, i.e.,
for both states of out_of_network_indicator.

20 ITU-T Rec. J.181 (06/2004)

It shall be allowed that any avail may be ended with a Program Splice Mode message, a Component
Splice Mode message or no message (whereby the break_duration is reached) regardless of the
nature of the message at the beginning of the avail.

7.5.2 Constraints on the interpretation of time

7.5.2.1 Constraints on splice_time() for splice_insert()
For splice_command_type equal to 0x05 (splice_insert()) the following constraints on splice_time()
shall apply:

At least one message for a network Out Point must arrive at least 4 seconds in advance of the
signalled splice time (pts_time as modified by pts_adjustment) if the time is specified. A Splice
Immediate Mode message is allowed for a network Out Point, but the actual splice time is not
defined and it is recommended that Splice Immediate Mode messages only be used for the early
termination of breaks. When non-Splice Immediate Mode cue messages are used for network In
Points, the cue message must arrive at the splicer before the arrival of the signalled In Point picture
at the receiver.

An Out Point lies between two presentation units. The intended Out Point of a signalled splice event
shall be the Out Point that is immediately prior to the presentation unit whose presentation time
most closely matches the signalled pts_time as modified by pts_adjustment.

An In Point lies between two presentation units. The intended In Point of a signalled splice event
shall be the In Point that is immediately prior to the presentation unit whose presentation time most
closely matches the signalled pts_time as modified by pts_adjustment.

When the Component Splice Mode is in effect and the out_of_network_indicator is "1" (the
beginning of a break), each component listed in the splice_insert() component loop shall be
switched from the network component to the splicer supplied component at the time indicated.
Components not listed in the component loop of the message will remain unchanged: if a splicer
output component was the network component then it will remain the network component; if a
splicer output component was the splicer supplied component, then it will remain the splicer
supplied component.

When the Component Splice Mode is in effect and the out_of_network_indicator is "0" (the end of
a break), each component listed in the splice_insert() component loop shall be switched from the
splicer supplied component to the network component at the time indicated. Components not listed
in the component loop of the message will remain unchanged: if a splicer output component was the
network component, then it will remain the network component; if a splicer output component was
the splicer supplied component, then it will remain the splicer supplied component.

When the Component Splice Mode is in effect and the Splice Immediate Mode is not in effect, the
first component listed in the component loop of the splice_insert() command shall have a valid
pts_time in its associated splice_time() and this pts_time is referred to as the default pts_time.
Subsequent components listed in the component loop of the same message, which do not have an
associated pts_time, shall utilize this default pts_time. It shall be allowed that any and all
components following the first listed component of a splice_insert() command may contain a
unique pts_time that is different from the default pts_time.

In the Component Splice Mode, all pts_time values given in the splice_insert component loop shall
be modified by the pts_adjustment field to obtain each intended value for the signalled Out Point or
In Point. The pts_adjustment, provided by any device that generates or modifies a pts_adjustment
field value, shall apply to all pts_time fields in the message.

 ITU-T Rec. J.181 (06/2004) 21

7.5.2.2 Constraints on break_duration() for splice_insert()
For splice_command_type equal to 0x05 (splice_insert), the following constraints on
break_duration() shall apply:

The value given in break_duration() is interpreted as the intended duration of the commercial break.
It is an optional field to be used when the out_of_network_indicator equals 1. It may be used in the
same splice_insert() command that specifies the start time of the break, so that the splicer can
calculate the time when the break will be over.

Breaks may be terminated by issuing a splice_insert() command with out_of_network_indicator set
to 0. A splice_time() may be given or the Splice Immediate Mode may be used. When a
break_duration was given at the start of the break (where the auto_return was set to zero), the
break_duration value may be utilized as a backup mechanism for insuring that a return to the
network actually happens in the event of a lost cueing packet.

Breaks may also be terminated by giving a break duration at the beginning of a break and relying on
the splicing device to return to the network feed at the proper time. The auto_return flag must be 1.
This will be referred to as the Auto Return Mode. Auto Return Mode breaks do not require and do
not disallow cue messages at the end of the break with out_of_network_indicator set to 0. Hence a
receiving device should not expect a cue message at the end of a break in order to function properly.
Auto Return Mode breaks may however be terminated early. To end the break prematurely a second
splice_insert() command may be given, where the out_of_network_indicator equals 0. The new
time of the back to network splice may be given by an updated splice_time(), or the Splice
Immediate Mode message may be used. A cue message with out_of_network_indicator set to 0
shall always override the duration field of a previous cue message (with out_of_network_indicator
set to 1) if that break's signalled duration is still under way.

8 Splice descriptors

8.1 Overview
The splice_descriptor is a prototype for adding new fields to the splice_info_section. All descriptors
included use the same syntax for the first six bytes. In order to allow private information to be
added, we have included the "identifier" code. This removes the need for a registration descriptor in
the descriptor loop.

Any receiving equipment should skip any descriptors with unknown identifiers or unknown
descriptor tags. For descriptors with known identifiers, the receiving equipment should skip
descriptors with an unknown splice_descriptor_tag.

Splice descriptors may exist in the splice_info_section for extensions specific to the various
commands. See Table 8-1.

Table 8-1/J.181 – Splice descriptor tags

Tag Descriptors for identifier"CUEI"
0x00 avail_descriptor
0x01 DTMF_descriptor
0x02 segmentation_descriptor
0x03-0xFF Reserved for future SCTE splice_descriptors

8.2 Splice descriptor
The splice descriptor syntax provided in this clause is to be used as a template for specific
implementations of a descriptor intended for the splice_info_section. It should be noted that splice

22 ITU-T Rec. J.181 (06/2004)

descriptors are only used within a splice_info_section. They are not to be used within MPEG
syntax, such as the PMT, or in the syntax of any other standard. This allows one to draw on the
entire range of descriptor tags when defining new descriptors. See Table 8-2.

Table 8-2/J.181 – splice_descriptor()

Syntax Bits Mnemonic
splice_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 for (i = 0; i < N; i++) {
 private_byte 8 uimsbf
 }
}

8.2.1 Semantic definition of fields in splice_descriptor()
splice_descriptor_tag: This 8-bit number defines the syntax for the private bytes that make up the
body of this descriptor. The descriptor tags are defined by the owner of the descriptor, as registered
using the identifier.

descriptor_length: This 8-bit number gives the length, in bytes, of the descriptor following this
field. Descriptors are limited to 256 bytes, so this value is limited to 254.

identifier: This is a 32-bit field as defined in ITU-T Rec. H.222.0 | ISO/IEC 13818-1, clauses 2.6.8
and 2.6.9, for the registration_descriptor() format_identifier. Only identifier values registered and
recognized by SMPTE Registration Authority, LLC should be used (see
http://www.smpte-ra.org/mpegreg.html). Its use in this descriptor shall scope and identify only the
private information contained within this descriptor. This 32-bit number is used to identify the
owner of the descriptor. The code 0x43554549 (ASCII "CUEI") for descriptors defined in this
Recommendation has been registered with SMPTE.

private_byte: The remainder of the descriptor is dedicated to data fields as required by the
descriptor being defined.

8.3 Specific splice descriptors

8.3.1 avail_descriptor()
The avail_descriptor is an implementation of a splice_descriptor. It provides an optional extension
to the splice_insert() command that allows an authorization identifier to be sent for an avail.
Multiple copies of this descriptor may be included by using the loop mechanism provided. This
identifier is intended to replicate the functionality of the cue tone system used in analog systems for
ad insertion. This descriptor is intended only for use with a splice_insert() command, within a
splice_info_section. See Table 8-3.

Table 8-3/J.181 – avail_descriptor()

Syntax Bits Mnemonic
avail_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 provider_avail_id 32 uimsbf
}

http://www.smpte-ra.org/mpegreg.html

 ITU-T Rec. J.181 (06/2004) 23

8.3.1.1 Semantic definition of fields in avail_descriptor()
splice_descriptor_tag: This 8-bit number defines the syntax for the private bytes that make up the
body of this descriptor. The splice_descriptor_tag shall have a value of 0x00.

descriptor_length: This 8-bit number gives the length, in bytes, of the descriptor following this
field. The descriptor_length field shall have a value of 0x08.

identifier: This 32-bit number is used to identify the owner of the descriptor. The identifier shall
have a value of 0x43554549 (ASCII "CUEI").

provider_avail_id: This 32-bit number provides information that a receiving device may utilize to
alter its behaviour during or outside of an avail. It may be used in a manner similar to analog cue
tones. An example would be a network directing an affiliate or a headend to black out a sporting
event.

8.3.2 DTMF_descriptor()
The DTMF_descriptor() is an implementation of a splice_descriptor. It provides an optional
extension to the splice_insert() command that allows a receiver device to generate a legacy analog
DTMF sequence based on a splice_info_section being received. See Table 8-4.

Table 8-4/J.181 – DTMF_descriptor()

Syntax Bits Mnemonic
DTMF_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 Identifier 32 uimsbf
 Preroll 8 uimsbf
 dtmf_count 3 uimsbf
 reserved 5 bslbf
 for (i = 0; i < dtmf_count; i++) {
 DTMF_char 8 uimsbf
 }
}

8.3.2.1 Semantic definition of fields in DTMF_descriptor()
splice_descriptor_tag: This 8-bit number defines the syntax for the private bytes that make up the
body of this descriptor. The splice_descriptor_tag shall have a value of 0x01.

descriptor_length: This 8-bit number gives the length, in bytes, of the descriptor following this
field.

identifier: This 32-bit number is used to identify the owner of the descriptor. The identifier shall
have a value of 0x43554549 (ASCII "CUEI").

preroll: This 8-bit number is the time the DTMF is presented to the analog output of the device in
tenths of seconds. This gives a preroll range of 0 to 25.5 seconds. The splice_info_section shall be
sent at least two seconds earlier than this value. The minimum suggested preroll is 4 seconds.

dtmf_count: The value of this flag is the number of DTMF characters the device is to generate.

DTMF_char: This is an ASCII value for the numerals "0" to "9", "*", "#". The device shall use
these values to generate a DTMF sequence to be output on an analog output. The sequence shall
complete with the last character sent being the timing mark for the preroll.

24 ITU-T Rec. J.181 (06/2004)

8.3.3 segmentation_descriptor()
The segmentation_descriptor() is an implementation of a splice_descriptor(). It provides an optional
extension to the time_signal() command that allows for program segmentation messages to be sent
in a time/video accurate method. This descriptor may be utilized in commands other than the
time_signal() command.

Devices that do not recognize a value in any field shall ignore the message and take no action. See
Table 8-5.

Table 8-5/J.181 – segmentation_descriptor()

Syntax Bits Mnemonic
segmentation_descriptor() {
 splice_descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 identifier 32 uimsbf
 segmentation_event_id 32 uimsbf
 segmentation_event_cancel_indicator 1 bslbf
 reserved 7 bslbf
 if (segmentation_event_cancel_indicator == "0") {
 program_segmentation_flag 1 bslbf
 segmentation_duration_flag 1 bslbf
 reserved 6 bslbf
 if (program_segmentation_flag == "0") {
 component_count 8 uimsbf
 for (i = 0; i < component_count; i++) {
 component_tag 8 uimsbf
 reserved 7 bslbf
 pts_offset 33 uimsbf
 }
 }
 if (segmentation_duration_flag == "1")
 segmentation_duration()
 segmentation_upid_type 8 uimsbf
 segmentation_upid_length 8 uimsbf
 segmentation_upid uimsbf
 segmentation_type_id 8 uimsbf
 chapter 8 uimsbf
 chapter_count 8 uimsbf
 }
}

8.3.3.1 Semantic definition of fields in segmentation_descriptor()
splice_descriptor_tag: This 8-bit number defines the syntax for the private bytes that make up the
body of this descriptor. The splice_descriptor_tag shall have a value of 0x02.

descriptor_length: This 8-bit number gives the length, in bytes, of the descriptor following this
field.

identifier: This 32-bit number is used to identify the owner of the descriptor. The identifier shall
have a value of 0x43554549 (ASCII "CUEI").

segmentation_event_id: A 32-bit unique segmentation event identifier.

segmentation_event_cancel_indicator: A 1-bit flag that when set to "1" indicates that a previously
sent segmentation event, identified by segmentation_event_id, has been cancelled.

 ITU-T Rec. J.181 (06/2004) 25

program_segmentation_flag: A 1-bit flag that should be set to "1" indicating that the message
refers to a Program Segmentation Point and that the mode is the Program Segmentation Mode
whereby all PIDs/components of the program are to be segmented. When set to "0", this field
indicates that the mode is the Component Segmentation Mode whereby each component that is
intended to be segmented will be listed separately by the syntax that follows. The
program_segmentation_flag can be set to different states during different descriptors messages
within a program.

segmentation_duration_flag: A 1-bit flag that should be set to "1" indicating the presence of
segmentation_duration() field.

component_count: An 8-bit unsigned integer that specifies the number of instances of elementary
PID stream data in the loop that follows. Components are equivalent to elementary PID streams.

component_tag: An 8-bit value that identifies the elementary PID stream containing the
Segmentation Point specified by the value of splice_time() that follows. The value shall be the same
as the value used in the stream_identification_descriptor() to identify that elementary PID stream.
The presence of this field from the component loop denotes the presence of this component of the
asset.

pts_offset: A 33-bit unsigned integer that shall be used by a splicing device as an offset to be added
to the pts_time in the time_signal() message to obtain the intended splice time(s). When this field
has a zero value, then the pts_time field(s) shall be used without an offset. If splice_time()
time_specified_flag = 0 or if the command this descriptor is carried with does not have a
splice_time() field, this field shall be used to offset the derived immediate splice time.

segmentation_duration(): The segmentation_duration() structure specifies the duration of the
program segment. It may be used to give the splicer an indication of when the segment will be over
and when the next segmentation message will occur. Must be 0 for end messages. See Table 8-6.

Table 8-6/J.181 – segmentation_duration()

Syntax Bits Mnemonic
segmentation_duration() {
 reserved 7 bslbf
 duration 33 uimsbf
}

duration: A 33-bit field that indicates elapsed time in terms of ticks of the program's 90 kHz clock.

segmentation_upid_type: A value from the following table. There are multiple types allowed to
ensure that programmers will be able to use an id that their systems support. It is expected that the
consumers of these ids will have an out-of-band method of collecting other data related to these
numbers and therefore they do not need to be of identical types. These ids may be in other
descriptors in the program and where the same identifier is used (V-ISAN for example) it shall
match between programs. When used with splice insert, the segmentation_upid cannot be
mandated or assumed to be a match with the unique_program_id in the splice_insert message.
See Table 8-7.

26 ITU-T Rec. J.181 (06/2004)

Table 8-7/J.181 – segmentation_upid_type

Type Length
bytes Name Description

0x00 0 Not Used The segmentation_upid is not defined and is not present in the
descriptor.

0x01 variable User Defined The segmentation_upid does not follow a standard naming
scheme.

0x02 8 ISCII The segmentation_upid is an 8-character code that is typically
used for advertising content.

0x03 12 Ad-ID Defined by the Advertising Digital Identification, LLC group.
This is basically a 12-character identifier.
http://www.Ad-id.org/

0x04 24 UMID SMPTE 330M
0x05 8 ISAN ISO standard for AV material using 16 Hex digits.

http://www.nlc-bnc.ca/iso/tc46sc9/standard/15706e.htm
0x06 12 V-ISAN Extension of the ISAN standard adding 8 Hex characters for a

version identifier.
0x07 12 TID Tribune Media Systems Program identifier. 12 characters,

2 letters followed by 10 digits.
0x08 8 Origin Turner Origin ID.
0x09-0x1F variable Reserved Reserved for future standardization.

segmentation_upid_length: Length in bytes of segmentation_upid.

segmentation_upid: Length and identification from Table 8-7. This field's contents and length are
determined by the segmentation_upid_type and segmentation_upid_length fields. An example
would be a type of 0x06 for V-ISAN and a length of 12 bytes. This field would then contain the
V-ISAN identifier for the content that this descriptor refers to.

segmentation_type_id: The 8-bit value shall contain one of the values in Table 8-8 to designate
type of segmentation. All unused values are reserved.

Table 8-8/J.181 – segmentation_type_id

Segmentation message Segmentation_type_id

Program Start 0x10
Program End 0x11
Program Early Termination 0x12
Program Breakaway 0x13
Program Resumption 0x14
Program Runover Planned 0x15
Program Runover Unplanned 0x16
Chapter Start 0x20
Chapter End 0x21
National Advertisement Start 0x30
National Advertisement End 0x31

http://www.ad-id.org/
http://www.nlc-bnc.ca/iso/tc46sc9/standard/15706e.htm

 ITU-T Rec. J.181 (06/2004) 27

Table 8-8/J.181 – segmentation_type_id

Segmentation message Segmentation_type_id

Local Advertisement Start 0x32
Local Advertisement End 0x33
Unscheduled_event_start 0x40
Unscheduled_event_end 0x41

chapter: This field provides identification for a specific chapter within a
segmentation_unique_program_id. This value is expected to increment for each new chapter within
a segmentation event. This value is expected to reset to one for the first chapter in a new viewing
event. This field is expected to increment for each new chapter.

chapter_count: This field provides a count of the expected number of individual chapters within
the current segmentation event.

9 Encryption

9.1 Overview
The splice_info_section supports the encryption of a portion of the section in order that one may
prevent access to an avail to all except those receivers that are authorized for that avail. This clause
describes the various encryption algorithms that may be used. The encryption of the section is
optional, as is the implementation of encryption by either the creator of the message, or any receive
devices. The use of encryption is deemed optional to allow a manufacturer to ship "in-the-clear"
systems without worrying about the export of encryption technology. If encryption is included in
the system, any receive device shall implement all of the algorithms listed in this Recommendation,
which allows the creator of a splice info table to use any of the algorithms in a transmission. The
use of private encryption technology is optional, and out of the scope of this Recommendation.

9.2 Fixed key encryption
The encryption used with this Recommendation assumes a fixed key is to be used. The same key is
provided to both the transmitter and the receiver. The method of delivering the key to all parties is
unspecified. This Recommendation allows for up to 256 different keys to be available for
decryption. The cw_index field is used to determine which key should be used when decrypting a
section. The length of the fixed key is dependent on the type of algorithm being used. It is assumed
that fixed key delivered to all parties will be the correct length for the algorithm that is intended to
be used.

9.3 Encryption algorithms
The encryption_algorithm field of the splice_info_section is a six-bit value, which may contain one
of the values shown in Table 9-1. All Data Encryption Standard variants use a 64-bit key (actually
56 bits plus a checksum) to encrypt or decrypt a block of 8 bytes. In the case of triple DES, there
will need to be three 64-bit keys, one for each of the three passes of the DES algorithm. The
"standard" triple DES actually uses two keys, where the first and third keys are identical. See FIPS
PUB 46-3 and FIPS PUB 81.

28 ITU-T Rec. J.181 (06/2004)

Table 9-1/J.181 – Encryption algorithm

Value Encryption algorithm

0 No encryption
1 DES – ECB mode
2 DES – CBC mode
3 Triple DES EDE3 – ECB mode

4-31 Reserved
32-63 User private

9.3.1 DES – ECB mode
This algorithm uses the "Data Encryption Standard" (see FIPS PUB 81) in the electronic codebook
mode.

In order to use this type of encryption, the encrypted data must contain a multiple of 8 bytes of data,
from splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used
to pad any extra bytes that may be required.

9.3.2 DES – CBC mode
This algorithm uses the "Data Encryption Standard" (see FIPS PUB 81) in the cipher block chaining
mode. The basic algorithm is identical to DES ECB. Each 64-bit plaintext block is bitwise
exclusive-ORed with the previous ciphertext block before being encrypted with the DES key. The
first block is exclusive-ORed with an initial vector. For the purposes of this Recommendation, the
initial vector shall have a fixed value of zero.

In order to use this type of encryption, the encrypted data must contain a multiple of 8 bytes of data,
from splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used
to pad any extra bytes that may be required.

9.3.3 Triple DES EDE3 – ECB mode
This algorithm uses three 64-bit keys, each key being used on one pass of the DES – ECB
algorithm. See FIPS PUB 46-3. Every block of data at the transmit device is first encrypted with the
first key, decrypted with the second key, and finally encrypted with the third key. Every block at the
receive site is first decrypted with the third key, encrypted with the second key, and finally
decrypted with the first key.

In order to use this type of encryption, the encrypted data must contain a multiple of 8 bytes of data,
from splice_command_type through to E_CRC_32 fields. The alignment_stuffing loop may be used
to pad any extra bytes that may be required.

9.3.4 User private algorithms
This Recommendation allows for the use of private encryption algorithms. It is not specified how
the transmit and receive devices agree on the algorithm to use for any user private code. It is also
not specified as to how coordination of private values for the encryption_algorithm field should be
registered or administered.

Printed in Switzerland
Geneva, 2004

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia
signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure, Internet protocol aspects and Next Generation Networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. J.181 (06/2004) Digital program insertion cueing message for cable television systems
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Definition of terms
	4 Abbreviations
	5 Introduction
	5.1 Splice points (Informative)
	5.2 Program splice points (Informative)
	5.3 Splice events (Informative)
	5.4 PID selection
	5.5 Message flow (Informative)

	6 PMT descriptors
	6.1 Registration descriptor
	6.2 Cue identifier descriptor
	6.3 Stream identifier descriptor

	7 Splice information table
	7.1 Overview
	7.2 Splice info section
	7.3 Splice commands
	7.4 Time
	7.5 Constraints

	8 Splice descriptors
	8.1 Overview
	8.2 Splice descriptor
	8.3 Specific splice descriptors

	9 Encryption
	9.1 Overview
	9.2 Fixed key encryption
	9.3 Encryption algorithms

