

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T J.162
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(03/2004)

SERIES J: CABLE NETWORKS AND TRANSMISSION
OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS
IPCablecom

 Network call signalling protocol for the delivery
of time-critical services over cable television
networks using cable modems

ITU-T Recommendation J.162

ITU-T J-SERIES RECOMMENDATIONS
CABLE NETWORKS AND TRANSMISSION OF TELEVISION, SOUND PROGRAMME AND OTHER

MULTIMEDIA SIGNALS

General Recommendations J.1–J.9
General specifications for analogue sound-programme transmission J.10–J.19
Performance characteristics of analogue sound-programme circuits J.20–J.29
Equipment and lines used for analogue sound-programme circuits J.30–J.39
Digital encoders for analogue sound-programme signals J.40–J.49
Digital transmission of sound-programme signals J.50–J.59
Circuits for analogue television transmission J.60–J.69
Analogue television transmission over metallic lines and interconnection with radio-relay links J.70–J.79
Digital transmission of television signals J.80–J.89
Ancillary digital services for television transmission J.90–J.99
Operational requirements and methods for television transmission J.100–J.109
Interactive systems for digital television distribution J.110–J.129
Transport of MPEG-2 signals on packetized networks J.130–J.139
Measurement of the quality of service J.140–J.149
Digital television distribution through local subscriber networks J.150–J.159
IPCablecom J.160–J.179
Miscellaneous J.180–J.199
Application for Interactive Digital Television J.200–J.209

For further details, please refer to the list of ITU-T Recommendations.

 ITU-T Rec. J.162 (03/2004) i

ITU-T Recommendation J.162

Network call signalling protocol for the delivery of time-critical services
over cable television networks using cable modems

Summary
Many cable television operators are upgrading their facilities to provide two-way capability and
using this capability to provide high-speed IP data services per ITU-T Recs J.83 and J.112. These
operators now want to expand the capability of this delivery platform to include a variety of
time-critical services. This Recommendation is one of a series of Recommendations required to
achieve this goal. It provides a network-based call signalling protocol necessary to establish
connections.

This revised Recommendation comprises updates of all the relevant developments since the
Recommendation was originally approved (March 2001) and includes modifications made in J.162
Amendment 1 (February 2002).

Source
ITU-T Recommendation J.162 was approved on 15 March 2004 by ITU-T Study Group 9
(2001-2004) under the ITU-T Recommendation A.8 procedure.

ii ITU-T Rec. J.162 (03/2004)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 2004

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

 ITU-T Rec. J.162 (03/2004) iii

CONTENTS
 Page
1 Scope .. 1

2 References... 1
2.1 Normative references.. 1
2.2 Informative references.. 2

3 Terms and definitions ... 2

4 Abbreviations and conventions... 3
4.1 Abbreviations ... 3
4.2 Conventions.. 3

5 Introduction .. 4
5.1 Relation with H.323 standards ... 5
5.2 Relation with IETF standards... 5

6 Media Gateway Controller Interface (MGCI) .. 6
6.1 Model and naming conventions.. 6
6.2 SDP use .. 13
6.3 Gateway control functions.. 13
6.4 States, failover and race conditions .. 37
6.5 Return codes and error codes ... 49
6.6 Reason codes .. 51
6.7 Use of Local Connection Options and Connection Descriptors..................... 51

7 Media Gateway Control Protocol ... 53
7.1 General description... 54
7.2 Command header.. 54
7.3 Response header formats.. 68
7.4 Session description encoding ... 72
7.5 Transmission over UDP ... 79
7.6 Piggybacking .. 81
7.7 Transaction identifiers and three-way handshake .. 81
7.8 Provisional responses ... 82

8 Security ... 84

Annex A – Event packages .. 84

Annex B – Dynamic Quality of Service .. 86

Appendix I – Example event package.. 94

Appendix II – Example command encodings .. 95
II.1 NotificationRequest .. 95
II.2 Notify.. 96
II.3 CreateConnection ... 96
II.4 ModifyConnection.. 98

iv ITU-T Rec. J.162 (03/2004)

 Page
II.5 DeleteConnection (From the Call Agent)... 98
II.6 DeleteConnection (From the Embedded Client) .. 99
II.7 DeleteConnection (Multiple Connections From the Call Agent)................... 99
II.8 AuditEndpoint .. 99
II.9 AuditConnection... 100
II.10 RestartInProgress.. 101

Appendix III – Example call flow.. 102

Appendix IV – Connection mode .. 108

Appendix V – Compatibility information.. 111

Appendix VI – Additional example event packages.. 112

Appendix VII – Event packages .. 121

Appendix VIII – Application of the NCS protocol to a SCN IPAT .. 127
VIII.1 Overview .. 127
VIII.2 IPAT architecture ... 127
VIII.3 Electrical and physical interface requirements... 128
VIII.4 NCS package for V5 SCN protocol messages ... 129
VIII.5 Provisioning configurations.. 137
VIII.6 European Line Package support ... 137
VIII.7 Call flow examples ... 138

Appendix IX – Metering support for IPCablecom NCS.. 148
IX.1 Objectives ... 148
IX.2 Automatic metering package.. 148
IX.3 Use cases – Example call flows.. 151
IX.4 Terms.. 153

Bibliography... 154

 ITU-T Rec. J.162 (03/2004) 1

ITU-T Recommendation J.162

Network call signalling protocol for the delivery of time-critical services
over cable television networks using cable modems

1 Scope
This Recommendation describes a profile of an application programming interface, Media Gateway
Controller Interface (MGCI), and a corresponding protocol, Media Gateway Control Protocol
(MGCP), for controlling voice-over-IP (VoIP) embedded clients from external call control elements.
The MGCP assumes a call control architecture where the call control "intelligence" is outside the
gateways and is handled by external call control elements. The profile, as described in this
Recommendation, will be referred to as the Network-based Call Signalling (NCS) Protocol.

This Recommendation is based on the Media Gateway Control Protocol (MGCP) 1.0 RFC 2705,
which is the result of a merge of the Simple Gateway Control Protocol, and the IP Device Control
(IPDC) family of protocols. This Recommendation is technically compatible with the corresponding
CableLabs PacketCable specification.

2 References
The following ITU-T Recommendations and other references contain provisions which, through
reference in this text, constitute provisions of this Recommendation. At the time of publication, the
editions indicated were valid. All Recommendations and other references are subject to revision;
users of this Recommendation are therefore encouraged to investigate the possibility of applying the
most recent edition of the Recommendations and other references listed below. A list of the currently
valid ITU-T Recommendations is regularly published. The reference to a document within this
Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

2.1 Normative references

− ITU-T Recommendation G.168 (2002), Digital network echo cancellers.

– ITU-T Recommendation J.83 (1997), Digital multi-programme systems for television, sound
and data services for cable distribution.

− ITU-T Recommendation J.112 Annex A, Digital Video Broadcasting: DVB interaction
channel for Cable TV (CATV) distribution systems.

− ITU-T Recommendation J.112 Annex B (2004), Data-over-cable service interface
specifications: Radio-frequency interface specification.

− ITU-T Recommendation J.160 (2002), Architectural framework for the delivery of time-
critical services over cable television networks using cable modems.

− ITU-T Recommendation J.161 (2001), Audio codec requirements for the provision of
bidirectional audio service over cable television networks using cable modems.

− ITU-T Recommendation J.163 (2004), Dynamic quality of service for the provision of real-
time services over cable television networks using cable modems.

– ITU-T Recommendation V.8 (2000), Procedures for starting sessions of data transmission
over the public switched telephone network.

– ITU-T Recommendation V.25 (1996), Automatic answering equipment and general
procedures for automatic calling equipment on the general switched telephone network
including procedures for disabling of echo control devices for both manually and
automatically established calls.

2 ITU-T Rec. J.162 (03/2004)

− IETF RFC 821 (1982), Simple Mail Transfer Protocol.

− IETF RFC 1034 (1987), Domain names – Concepts and facilities.

− IETF RFC 2045 (1996), Multipurpose Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies.

− IETF RFC 2234 (1997), Augmented BNF for Syntax Specifications: ABNF.

− IETF RFC 2327 (1998), SDP: Session Description Protocol.

− IETF RFC 2543 (1999), SIP: Session Initiation Protocol.

− IETF RFC 3550 (2003), RTP: A Transport Protocol for Real-Time Applications.

2.2 Informative references

− CableLabs PKT-SP-EC-MGCP-I08-030728, PacketCable Network-Based Call Signaling
Protocol Specification.

– IETF RFC 3551 (2003), RTP Profile for Audio and Video Conferences with Minimal
Control.

− IETF RFC 2705 (1999), Media Gateway Control Protocol (MGCP) Version 1.0.

– ETSI ETS 300 001 ed. 4 (1997-01), Attachments to the Public Switched Telephone Network
(PSTN); General technical requirements for equipment connected to an analogue subscriber
interface in the PSTN.

– ETSI EN 300 659-1 V1.3.1 (2001-01), Access and Terminals (AT); Analogue access to the
Public Switched Telephone Network (PSTN); Subscriber line protocol over the local loop
for display (and related) services; Part 1: On-hook data transmission.

– ETSI EN 300 659-3 V1.3.1 (2001-01), Access and Terminals (AT); Analogue access to the
Public Switched Telephone Network (PSTN); Subscriber line protocol over the local loop
for display (and related) services; Part 3: Data link message and parameter codings.

– ETSI ETS 300 324-1 ed. 1 (1994-02), V interfaces at the digital Local Exchange (LE); V5.1
interface for the support of Access Network (AN); Part 1: V5.1 interface specification.

– ETSI ETS 300 347-1 ed. 1 (1994-09), V interfaces at the digital Local Exchange (LE); V5.2
interface for the support of Access Network (AN); Part 1: V5.2 interface specification.

– ETSI ETS 300 166 ed. 1 (1993-08), Transmission and Multiplexing (TM); Physical and
electrical characteristics of hierarchical digital interfaces for equipment using the
2048 kbit/s-based plesiochronous or synchronous digital hierarchies.

– ETSI ETS 300 167 ed. 1 (1993-08), Transmission and Multiplexing (TM); Functional
characteristics of 2048 kbit/s interfaces.

– ITU-T Recommendation H.323 (2003), Packet-based multimedia communications systems.

3 Terms and definitions
This Recommendation defines the following terms:

3.1 cable modem: A cable modem is a layer two termination device that terminates the
customer end of the J.112 connection.

3.2 IPCablecom: An ITU-T project that includes an architecture and a series of
Recommendations that enable the delivery of time-critical interactive services over cable television
networks.

 ITU-T Rec. J.162 (03/2004) 3

4 Abbreviations and conventions

4.1 Abbreviations
This Recommendation uses the following abbreviations:

API Application Programming Interface

CPE Customer Premises Equipment

DTMF Dual Tone Multi Frequency

IP Internet Protocol

MGCI Media Gateway Controller Interface

MGCP Media Gateway Control Protocol

MIB Management Information Base

MTA Media Terminal Adaptor

MWD Maximum Waiting Delay

NCS Network Call Signalling

PSTN Public Switched Telephone Network

RTP Real-time Protocol

SDP Session Description Protocol

UDP User Datagram Protocol

4.2 Conventions
Throughout this Recommendation, the words that are used to define the significance of particular
requirements are capitalized. These words are:

"MUST" This word or the adjective "REQUIRED" means that the item is an absolute
requirement of this Recommendation.

"MUST NOT" This phrase means that the item is an absolute prohibition of this
Recommendation.

"SHOULD" This word or the adjective "RECOMMENDED" means that there may exist
valid reasons in particular circumstances to ignore this item, but the full
implications should be understood and the case carefully weighed before
choosing a different course.

"SHOULD NOT" This phrase means that there may exist valid reasons in particular circumstances
when the listed behaviour is acceptable, or event useful, but the full implications
should be understood and the case carefully weighed before implementing any
behaviour described with this label.

"MAY" This word or the adjective "OPTIONAL" means that this item is truly optional.
One vendor may choose to include the item because a particular marketplace
requires it or because it enhances the product, for example; another vendor may
omit the same item.

4 ITU-T Rec. J.162 (03/2004)

5 Introduction
This Recommendation describes the NCS profile of an application programming interface (MGCI)
and a corresponding protocol (MGCP) for controlling embedded clients from external call control
elements. An embedded client is a network element that provides:
• two or more traditional analogue access lines to a voice-over-IP (VoIP) network;
• one or more video lines to a VoIP network (for further study).

Embedded clients may not be confined to residential use only. For example, they may be used in a
business as well. Embedded clients are used for line-side access and, as such, are expected to have
line-side equipment, e.g., analogue access lines for conventional telephones associated with them, as
opposed to trunk gateways.

The MGCP assumes a call control architecture where the call control "intelligence" is outside the
gateways and handled by external call-control elements referred to as Call Agents. The MGCP
assumes that these call-control elements, or Call Agents (CAs), will synchronize with each other to
send coherent commands to the gateways under their control. The MGCP defined in this
Recommendation does not define a mechanism for synchronizing Call Agents, although future
IPCablecom specifications may specify such mechanisms.

The MGCP assumes a connection model where the basic constructs are endpoints and connections.
A gateway contains a collection of endpoints, which are sources, or sinks, of data and could be
physical or virtual.

An example of a physical endpoint is an interface on a gateway that terminates an analogue POTS
connection to a phone, key system, PBX, etc. A gateway that terminates residential POTS lines
(to phones) is called a residential gateway, an embedded client, or an MTA. Embedded clients may
optionally support video as well.

An example of a virtual endpoint is an audio source in an audio-content server. Creation of physical
endpoints requires hardware installation, while creation of virtual endpoints can be accomplished by
software. However, the NCS profile of MGCP only addresses physical endpoints.

Connections are point-to-point. A point-to-point connection is an association between two endpoints
with the purpose of transmitting data between these endpoints. Once this association is established
for both endpoints, data transfer between these endpoints can take place. The association is
established by creating the connection as two halves: one on the origination endpoint, and one on the
terminating endpoint.

Call Agents instruct the gateways to create connections between endpoints and to detect certain
events, e.g., off-hook, and generate certain signals, e.g., ringing. It is strictly up to the Call Agent to
specify how and when connections are made, between which endpoints they are made, as well as
what events and signals are to be detected and generated on the endpoints. The gateway, thereby,
becomes a simple device, without any call state, that receives general instructions from the Call
Agent without any need to know about or even understand the concept of calls, call states, features,
or feature interactions. When new services are introduced, customer profiles changed, etc., the
changes are transparent to the gateway. The Call Agents implement the changes and generate the
appropriate new mix of instructions to the gateways for the changes made. Whenever the gateway
reboots, it will come up in a clean state and simply carry out the Call Agent's instructions as they are
received.

 ITU-T Rec. J.162 (03/2004) 5

5.1 Relation with H.323 standards
The MGCP is designed as an internal protocol within a distributed system that appears to the outside
as a single VoIP gateway. This system is composed of a Call Agent, which may or may not be
distributed over several computer platforms, and a set of gateways. In an H.323 configuration, this
distributed gateway system may interface on one side with one or more POTS lines, and on the other
side with H.323 conformant systems, as illustrated below:

H.225.0
H.245

Call
Agent

Embedded
Client

H.323
Endpoint

RTP

MGCP

Figure 1/J.162 – Relation to H.323 standards

In the MGCP model, the gateways focus on the audio signal translation function, while the Call
Agent handles the signalling and call processing functions. As a consequence, the Call Agent
implements the "signalling" layers of the H.323 standard, and presents itself as an "H.323
Gatekeeper" or as one or more "H.323 Endpoints" to the H.323 systems. The H.225.0 call signalling
and H.245 media signalling is therefore routed to the Call Agent.

5.2 Relation with IETF standards
While ITU-T Rec. H.323 used to be the recognized standard for VoIP terminals, the IETF also has
produced specifications for other types of multimedia applications. These other specifications
include:
• the session description protocol (SDP), RFC 2327;
• the session announcement protocol (SAP), RFC 2974: work in progress;
• the session initiation protocol (SIP), RFC 2543;
• the real-time streaming protocol (RTSP), RFC 2326.

The latter three specifications are, in fact, alternative signalling standards that allow for the
transmission of a session description to an interested party. SAP is used by multicast session
managers to distribute a multicast session description to a large group of recipients. SIP is used to
invite an individual user to take part in a point-to-point or unicast session. RTSP is used to interface
a server that provides real-time data. In all three cases, the session description is described according
to SDP; when audio is transmitted, it is transmitted through the real-time transport protocol
(RTP and RTCP).

6 ITU-T Rec. J.162 (03/2004)

The distributed gateway systems and MGCP will enable PSTN voice communication and embedded
client users to access sessions set up using SAP, SIP, or RTSP. The Call Agent provides for
signalling conversion, as illustrated below:

SIP, SAP, RTSP

Call
Agent

Embedded
Client

IETF
MMUSIC
Endpoint

RTP

MGCP

Figure 2/J.162 – Relation to IETF standards

The SDP standard has a pivotal status in this architecture. We will see in the following description
that we also use it to carry session descriptions in MGCP.

6 Media Gateway Controller Interface (MGCI)
MGCI functions provide for connection control, endpoint control, auditing and status reporting.
They each use the same system model and the same naming conventions.

6.1 Model and naming conventions
The MGCP assumes a connection model where the basic constructs are endpoints and connections.
Connections are grouped in calls. One or more connections can belong to one call. Connections and
calls are set up at the initiative of one or several Call Agents.

6.1.1 Endpoint names
Endpoint names, also known as endpoint identifiers, have two components, both of which are
defined to be case insensitive here:
• the domain name of the gateway managing the endpoint;
• a local endpoint name within that gateway.

Endpoint names will be of the form:

 local-endpoint-name@domain-name

where domain-name is an absolute domain-name as defined in RFC 1034 and includes a host portion;
thus, an example domain-name could be:

 MyEmbeddedClient.cablelabs.com

Also, domain-name may be an IPv4 address in dotted decimal form represented as a text-string and
surrounded by a left and a right square bracket ("[" and "]") as in "[128.96.41.1]" – please consult
RFC 821 for details. However, use of IP addresses is generally discouraged.

Embedded clients may have one or more endpoints (e.g., one for each RJ11 jack for black phones)
associated with them, and each of the endpoints is identified by a separate local endpoint name. Just
like the domain name, the local endpoint name is case insensitive. Associated with the local endpoint
name is an endpoint-type, which defines the type of the endpoint, such as analogue phone or video
phone. The endpoint-type can be derived from the local endpoint name. The local endpoint name is a
hierarchical name, where the least specific component of the name is the leftmost term, and the most

 ITU-T Rec. J.162 (03/2004) 7

specific component is the rightmost term. More formally, the local endpoint name MUST adhere to
the following naming rules:
• The individual terms of the local endpoint name must be separated by a single slash

("/", ASCII 2F hex).
• The individual terms are ASCII character strings composed of letters, digits or other

printable characters, with the exception of characters used as delimiters in endpoint-names
("/", "@"), characters used for wild-carding ("*", "$"), and white space characters.

• Wild-carding is represented either by an asterisk ("*") or a dollar sign ("$") for the terms of
the naming path which are to be wild-carded. Thus, if the full local endpoint name looks
like:

 term1/term2/term3

 and one of the terms of the local endpoint name is wild-carded, then the local endpoint name
looks like this:

 term1/term2/* if term3 is wild-carded.
 term1/*/* if term2 and term3 are wild-carded.
 In each of the examples, a dollar sign could have appeared instead of the asterisk.
• Wild-carding is only allowed from the right; thus, if a term is wild-carded, then all terms to

the right of that term must be wild-carded as well.
• In cases where mixed dollar sign and asterisk wild-cards are used, dollar-signs are only

allowed from the right; thus, if a term had a dollar sign wild-card, all terms to the right of
that term must also contain dollar sign wild-cards.

• A term represented by an asterisk is to be interpreted as: "use all values of this term known
within the scope of the embedded client in question".

• A term represented by a dollar sign is to be interpreted as: "use any one value of this term
known within the scope of the embedded client in question".

• Each endpoint-type may specify additional detail in the naming rules for that endpoint-type;
however, such rules must not be in conflict with the above.

It should be noted that different endpoint-types or even different sub-terms, e.g., "lines", within the
same endpoint-type will result in two different local endpoint names. Consequently, each "line" will
be treated as a separate endpoint.

6.1.1.1 Embedded client endpoint names
Endpoints in embedded clients MUST support the additional naming conventions specified in this
clause.

Embedded clients will support the following two endpoint-types:
• Analogue Telephone – The analogue telephone is represented as an analogue access line

(aaln). This is basically the equivalent of an analogue telephone line as known in the PSTN.
• Video – The details of the video device-type are for further study.
• Basic Access ISDN – The details of the ISDN device-type are for further study.

6.1.1.1.1 Analogue access line endpoints
In addition to the naming conventions specified above, local endpoint names for endpoints of type
"analogue access line" (aaln) for embedded clients MUST adhere to the following:
• Local endpoint names contain at least one and, at most, two terms.

8 ITU-T Rec. J.162 (03/2004)

• term1 MUST be the term "aaln" or a wild-card character. It should be noted that the use of a
wild-card character for term1 can refer to any or all endpoint-types in the embedded client
regardless of their type. Use of this feature is generally expected to be for administrative
purposes, e.g., auditing or restart.

• term2 MUST be a number from one to the number of analogue access lines supported by the
embedded client in question. The number thus identifies a specific analogue access line on
the embedded client.

• If a local endpoint name is composed of only one term, that term will be term1.
• If term1 is not a wild-card character, the wild-card character dollar sign (referring to "any

one") is then assumed for term2, i.e., "aaln" is equivalent to "aaln/$".
• If term1 is a wild-card character, the same wild-card character is then assumed for term2,

i.e., "*" and "$" is equivalent to respectively "*/*" and "$/*".

Example analogue access line local endpoint names could thus be:
− aaln/1 The first analogue access line on the embedded client in question.
− aaln/2 The second analogue access line on the embedded client in question.
− aaln/$ Any analogue access line on the embedded client in question.

− aaln/* All analogue access lines on the embedded client in question.

− * All endpoints (regardless of endpoint-type) on the embedded client in question.

The provisioning/(auto)configuration process is responsible for obtaining and providing information
about how many endpoints an embedded client has, as well as the endpoint-type of each endpoint.
Although they are logically different, it should be noted that the endpoint-type can be derived from
the local portion of the endpoint name.

6.1.1.1.2 Video endpoints
Details on video endpoints will be provided in a future version of this Recommendation.

6.1.1.1.3 Basic access ISDN
Details on basic access ISDN will be provided in a future version of this Recommendation.

6.1.2 Call names
Calls are identified by unique identifiers, independent of the underlying platforms or agents. Call
identifiers are hexadecimal strings, which are created by the Call Agent. Call identifiers with a
maximum length of 32 characters MUST be supported.

At a minimum, call identifiers MUST be unique within the collection of call agents that control the
same gateways. However, the coordination of these call identifiers between Call Agents is outside
the scope of this Recommendation. When a Call Agent builds several connections that pertain to the
same call, either on the same gateway or in different gateways, these connections may all be linked
to the same call through the call identifier. This identifier then can be used by accounting or
management procedures, which are outside the scope of MGCP.

6.1.3 Connection names
Connection identifiers are created by the gateway when it is requested to create a connection. They
identify the connection within the context of an endpoint. Connection identifiers are treated in
MGCP as hexadecimal strings. The gateway MUST ensure that a proper waiting period, at least
three minutes, elapses between the end of a connection that used this identifier and its use in a new
connection for the same endpoint. Connection Names with a maximum length of 32 characters
MUST be supported.

 ITU-T Rec. J.162 (03/2004) 9

6.1.4 Names of Call Agents and other entities

The Media Gateway Control Protocol has been designed for enhanced network reliability to allow
implementation of redundant Call Agents. This means that there is no fixed binding between entities
and hardware platforms or network interfaces.

Call Agent names consist of two parts, similar to endpoint names. The local portion of the name does
not exhibit any internal structure. An example Call Agent name is:

 ca1@ca.whatever.net

Reliability is provided by the following precautions:
• Entities such as embedded clients or Call Agents are identified by their domain name, not

their network addresses. Several addresses can be associated with a domain name. If a
command cannot be forwarded to one of the network addresses, implementations MUST
retry the transmission using another address.

• Entities may move to another platform. The association between a logical name (domain
name) and the actual platform are kept in the Domain Name Service (DNS). Call Agents and
gateways MUST keep track of the record's time-to-live read from the DNS. They MUST
query the DNS to refresh the information if the time-to-live has expired.

In addition to the indirection provided by the use of domain names and the DNS, the concept of
"notified entity" is central to reliability and fail-over in MGCP. The "notified entity" for an endpoint
is the Call Agent currently controlling that endpoint. At any point in time, an endpoint has one, and
only one, "notified entity" associated with it, and when the endpoint needs to send a command to the
Call Agent, it MUST send the command to the current "notified entity" for which endpoint(s) the
command pertains. Upon startup, the "notified entity" MUST be set to a provisioned value. Most
commands sent by the Call Agent include the ability to explicitly name the "notified entity" through
the use of a "NotifiedEntity" parameter. The "notified entity" MUST stay the same until either a new
"NotifiedEntity" parameter is received or the endpoint reboots. If the "notified entity" for an
endpoint is empty or has not been set explicitly1, the "notified entity" will then default to the source
address of the last connection handling command or notification request received for the endpoint.
Auditing will thus not change the "notified entity".

Clause 6.4 contains a more detailed description of reliability and fail-over.

6.1.5 Digit maps
The Call Agent can ask the gateway to collect digits dialled by the user. This facility is intended to
be used for analogue access lines with residential gateways to collect the numbers that a user dials; it
may also be used to collect access codes, credit card numbers, and other numbers requested by call
control services. Endpoints MUST support Digit Maps as defined in this clause.

An alternative procedure involves the gateway notifying the Call Agent of the dialled digits as soon
as they are dialled, a.k.a. overlap sending. However, such a procedure generates a large number of
interactions. It is preferable to accumulate the dialled numbers in a buffer, and then to transmit them
in a single message.

1 This could happen as a result of specifying an empty NotifiedEntity parameter.

10 ITU-T Rec. J.162 (03/2004)

The problem with this accumulation approach, however, is that it is difficult for the gateway to
predict how many numbers it needs to accumulate before transmission. For example, using the
phone on our desk, we can dial the following numbers:

0 Local operator
00 Long distance operator
xxxx Local extension number
8xxxxxxx Local number
#xxxxxxx Shortcut to local number at other corporate sites
*xx Star services
91xxxxxxxxxx Long distance number
9011 + up to 15 digits International number

Figure 3/J.162 – Dialled digits – An example

The solution to this problem is to load the gateway with a digit map that corresponds to the dial plan
for the area in which the gateway resides. Thus the actual digit map used may differ between
regions. This digit map is expressed using a syntax derived from the UNIX system command, egrep.
For example, the dial plan described above results in the following digit map:

(0T| 00T|[1-7]xxx|8xxxxxxx|#xxxxxxx|*xx|91xxxxxxxxxx|9011x.T)

The formal syntax of the digit map is described by the following BNF notation:

Digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
Timer ::= "T" | "t" -- matches the detection of a timer
Letter ::= Digit | Timer | "#" | "*" | "A" | "a" | "B" | "b" | "C" | "c" | "D" | "d"
Range ::= "X" | "x" -- matches any digit
 | "[" Letters "]" -- matches any of the specified letters
Letters ::= Subrange | Subrange Letters
Subrange ::= Letter -- matches the specified letter
 | Digit "-" Digit -- matches any digit between first and last
Position ::= Letter | Range
StringElement ::= Position -- matches an occurrence of the position
 | Position "." -- matches an arbitrary number of occurrences
 -- of the position, including 0
 String ::= StringElement | StringElement String
 StringList ::= String | String "|" StringList
 DigitMap ::= String | "(" StringList ")"

A digit map, according to this syntax, is defined either by a (case insensitive) "string" or by a "list of
strings" over which the gateway will attempt to find a shortest possible match. Regardless of the
above syntax, a timer is currently only allowed if it appears in the last position in a string2. Each
string in the list is an alternate numbering scheme. A gateway that detects digits, letters, or timers
will:
1) add the event parameter code for the digit, letter, or timer, as a token to the end of the

"current dial string" internal state variable;
2) apply the "current dial string" to the digit map table, attempting a match to all expressions in

the Digit Map;
3) if the result is under-qualified (partially matches at least one entry in the digit map and does

not completely match another entry), do nothing further.

2 For instance, "123T" and "123[1-2T5]" satisfy that rule, but "12T3" does not.

 ITU-T Rec. J.162 (03/2004) 11

If the result matches an entry, or is over-qualified (i.e., no further digits could possibly produce a
match), send the current dial string to the Call Agent3 and clear the "current dial string". A match, in
this Recommendation, can be either a "perfect match", exactly matching one of the specified
alternatives, or an "impossible match", which occurs when the dial string does not match any of the
alternatives. Unexpected timers, for example, can cause impossible matches. Both perfect matches
and impossible matches trigger notification of the accumulated digits (which may include other
events).

Timer T is a digit input timer that can be used in two ways:
• When timer T is used with a digit map4, the timer is not started until the first digit is entered,

and the timer is restarted after each new digit is entered until either a digit map match or
mismatch occurs. In this case, timer T functions as an inter-digit timer.

• When timer T is used without a digit map, the timer is started immediately and simply
cancelled (but not restarted) as soon as a digit is entered. In this case, timer T can be used as
an inter-digit timer when overlap sending is used.

When used with a digit map, timer T takes on one of two values, Tpar or Tcrit. When at least one more
digit is required for the digit string to match any of the patterns in the digit map, timer T takes on the
value Tpar, corresponding to partial dial timing. If a timer is all that is required to produce a match,
timer T takes on the value Tcrit corresponding to critical timing. When timer T is used without a digit
map, timer T takes on the value Tcrit. The default value for Tpar is 16 seconds and the default value
for Tcrit is 4 seconds. The provisioning process may alter both of these.

Annex A contains additional detail and an example on use of timer T.

The endpoints MUST support at least 2048 bytes of digit map on all of the telephony interfaces.

Digit maps can be provided to the gateway by the Call Agent, whenever the Call Agent instructs the
gateway to listen for digits. Again, it should be noted that the details of the digit map used will
depend on the area in which the gateway resides and thus the digit map is programmable. Digit
Maps, when provided by the Call Agent, MUST be as defined in this clause.

6.1.6 Events and signals
The concept of events and signals is central to MGCP. A Call Agent may ask to be notified about
certain events occurring in an endpoint, e.g., off-hook events. A Call Agent also may request certain
signals to be applied to an endpoint, e.g., dial-tone.

Events and signals are grouped in packages within which they share the same namespace, which we
will refer to as event names in the following. A package is a collection of events and signals
supported by a particular endpoint-type. For instance, one package may support a certain group of
events and signals for analogue access lines, and another package may support another group of
events and signals for video lines. One or more packages may exist for a given endpoint-type, and
each endpoint-type has a default package with which it is associated.

Event names consist of a package name and an event code and, since each package defines a separate
namespace, the same event codes may be used in different packages. Package names and event codes
are case-insensitive strings of letters, digits, and hyphens, with the restriction that hyphens MUST
NOT be the first or last character in a name. Some event codes may need to be parameterized with
additional data, which is accomplished by adding the parameters between a set of parentheses. The
package name is separated from the event code by a slash ("/"). The package name may be excluded
from the event name, in which case the default package name for the endpoint-type in question is

3 The list of digits may include other events as well – see 6.4.3.1.
4 Technically speaking with the "accumulate according to digit map" action.

12 ITU-T Rec. J.162 (03/2004)

assumed. For example, for an analogue access line with the example line package (package name
"X") being the default package, the following two event names are considered equal:
• X/dl dial-tone in the example line package for an analogue access line;
• dl dial-tone in the example line package (default) for an analogue access line.
This Recommendation defines the packages for embedded client types listed in Table 1.

Table 1/J.162 – Packages for embedded client end-point types

Endpoint-type Package Package name Default package

Analogue Access Line Line B Yes
Video For further study For further study For further study
ISDN BRI For further study For further study For further study

Annex A defines an initial set of packages. Additional package names and event codes may be
defined by and/or registered with IPCablecom. Any change to the packages defined in this
Recommendation MUST result in a change of the package name, or a change in the NCS profile
version number, or possibly both.

Each package MUST have a package definition, which MUST define the name of the package, and
the definition of each event belonging to the package. The event definition MUST include the
precise name of the event, i.e., the event code, a plain-text definition of the event and, when
appropriate, the precise definition of the corresponding signals, for example the exact frequencies of
audio signals such as dial-tone or DTMF tones. Events must further specify if they are persistent
(e.g., off-hook; see 6.3.1) and if they contain auditable event-states (e.g., off-hook; see 6.3.8.1).
Signals MUST also have their type defined (On/Off, Time-Out, or Brief), and Time-Out signals
MUST have a default time-out value defined – see 6.3.1.

In addition to IPCablecom packages, implementers MAY gain experience by defining experimental
packages. The package name of experimental packages MUST begin with the two characters "x-" or
"X-"; IPCablecom MUST NOT register package names that start with these two characters. An
embedded client that receives a command referring to an unsupported package MUST return an error
(error code 518 – unsupported package).

Package names and event codes support one wild-card notation each. The wild-card character "*"
(asterisk) can be used to refer to all packages supported by the endpoint in question, and the event
code "all" to refer to all events in the package in question. For example:
• X/all refers to all events in the example line package for an analogue access line;
• */all for an analogue access line; refers to all packages and all events in those packages

supported by the endpoint in question.

Consequently, the package name "*" MUST NOT be assigned to a package, and the event code "all"
MUST NOT be used in any package.

Events and signals are by default detected and generated on endpoints; however, some events and
signals may be detected and generated on connections in addition to or instead of on an endpoint.
For example, endpoints may be asked to provide a ringback tone on a connection. In order for an
event or signal to be able to be detected or generated on a connection, the definition of the
event/signal MUST explicitly define that the event/signal can be detected or generated on a
connection.

When a signal shall be applied on a connection, the name of the connection is added to the name of
the event, using an "at" sign (@) as a delimiter, as in:

 X/rt@0A3F58

 ITU-T Rec. J.162 (03/2004) 13

The wild-card character "*" (asterisk) can be used to denote "all connections" on the affected
endpoint(s). When this convention is used, the gateway MUST generate or detect the event on all the
connections that are connected to the endpoint(s). An example of this convention is:

 X/rt@*

The wild-card character "$" (dollar sign) can be used to denote "the current connection". This
convention MUST NOT be used unless the event notification request is "encapsulated" within a
CreateConnection or ModifyConnection command. When the convention is used, the gateway
MUST generate or detect the event on the connection that is currently being created or modified. An
example of this convention is:

 X/rt@$

The connection id, or a wild-card replacement, can be used in conjunction with the "all packages"
and "all events" conventions. For example, the notation:

 /all@

can be used to designate all events on all connections for the affected endpoint(s).

6.2 SDP use
The Call Agent uses the MGCP to provide the gateways with the description of connection
parameters such as IP addresses, UDP port, and RTP profiles. Except where otherwise noted or
implied in this Recommendation, SDP descriptions MUST follow the conventions delineated in the
session description protocol (SDP), which is now an IETF-proposed standard RFC 2327. In addition,
all call agents and gateways MUST ignore any SDP parameters, attributes, or fields that are not
understood by the call agent or gateway.

SDP allows for description of multimedia conferences. The NCS profile will only support the setting
of audio and video connections using the media types "audio" and "video". Currently, only "audio"
connections have been specified.

6.3 Gateway control functions
This clause describes the commands of the MGCP in the form of a remote procedure call (RPC) like
API, which we will refer to as the media gateway controller interface (MGCI). An MGCI function is
defined for each MGCP command, where the MGCI function takes and returns the same parameters
as the corresponding MGCP command. The functions shown in this clause provide a high-level
description of the operation of MGCP and describe an example of an RPC-like API that MAY be
used for an implementation of MGCP. Although the MGCI API is merely an example API, the
semantic behaviour defined by MGCI is an integral part of the Recommendation, and all
implementations MUST conform to the semantics specified for MGCI. The actual MGCP messages
exchanged, including the message formats and encodings used, are defined in the protocol clause
(clause 7). Embedded clients MUST implement those exactly as specified.

The MGCI service consists of connection handling and endpoint handling commands. The following
is an overview of the commands:
• The Call Agent can issue a NotificationRequest command to a gateway, instructing the

gateway to watch for specific events such as hook actions or DTMF tones on a specified
endpoint.

• The gateway will then use the Notify command to inform the Call Agent when the requested
events occur on the specified endpoint.

• The Call Agent can use the CreateConnection command to create a connection that
terminates in an endpoint inside the gateway.

14 ITU-T Rec. J.162 (03/2004)

• The Call Agent can use the ModifyConnection command to change the parameters
associated to a previously established connection.

• The Call Agent can use the DeleteConnection command to delete an existing connection. In
some circumstances, the DeleteConnection command also can be used by a gateway to
indicate that a connection can no longer be sustained.

• The Call Agent can use the AuditEndpoint and AuditConnection commands to audit the
status of an "endpoint" and any connections associated with it. Network management
beyond the capabilities provided by these commands are generally desirable,
e.g., information about the status of the embedded client. Such capabilities are expected to
be supported by the use of the Simple Network Management Protocol (SNMP) and
definition of a MIB, which is outside the scope of this Recommendation.

• The gateway can use the RestartInProgress command to notify the Call Agent that the
endpoint, or a group of endpoints managed by the gateway, is being taken out of service or
is being placed back in service.

These services allow a controller (normally the Call Agent) to instruct a gateway on the creation of
connections that terminate in an endpoint attached to the gateway, and to be informed about events
occurring at the endpoint. Currently, an endpoint is limited to a specific analogue access line within
an embedded client.

Connections are grouped into "calls". Several connections, that may or may not belong to the same
call, can terminate in the same endpoint. Flow of media on each connection is controlled by a
"mode" parameter, which can be set to "send only" (sendonly), "receive only" (recvonly),
"send/receive" (sendrecv), "conference" (confrnce), "inactive" (inactive), "replicate" (replcate),
"network loopback" (netwloop) or "network continuity test" (netwtest). The "mode" parameter
determines if media packets can be sent and/or received on the connection. RTCP is independent of
the connection mode; for more details see ITU-T Rec. J.161.

Handling of media received from the endpoint is determined by the mode parameter:
• Media originating from the endpoint will be sent on all the connections for that endpoint

whose mode is either "send only", "send/receive", "conference", or "replicate".

Handling of the media received on these connections is also determined by the mode parameters:
• Media received in data packets through connections in "inactive" "sendonly", or "replicate"

mode is discarded.
• Media received in data packets through connections in "receive only", "conference", or

"send/receive" mode is mixed together and then sent to the endpoint.
• In addition to being sent to the endpoint, media received in data packets through connections

in "conference" mode is replicated to all the other connections for the endpoint whose mode
is "conference". The details of this forwarding, e.g., RTP translator or mixer, etc., are
outside the scope of this Recommendation.

• In addition to the media received from the endpoint media sent to the endpoint is mixed and
transmitted over all the other connections for the endpoint whose mode is "replicate". This
SHOULD include media generated by signals applied to the endpoint.

• Media received in data packets through connections in "network loopback" or "network
continuity test" mode will be sent back on the connection as described below.

If the mode is set to "network loopback", the audio signals received from the connection will be
echoed back on the same connection. The "network loopback" mode SHOULD simply operate as an
RTP packet reflector.

The "network continuity test" mode is used for continuity checking across the IP network. An
endpoint-type specific signal is sent to the endpoints over the IP network, and the endpoint is then

 ITU-T Rec. J.162 (03/2004) 15

supposed to echo the signal over the IP network after passing it through the gateway's internal
equipment to verify proper operation. The signal MUST go through internal decoding and
re-encoding prior to being passed back. For analogue access lines, the signal will be an audio signal,
and the signal MUST NOT be passed on to a telephone connected to the analogue access line,
regardless of the current hook-state of that handset, i.e., on-hook or off-hook.

New and existing connections for the endpoint MUST NOT be affected by connections placed in
"network loopback" or "network continuity test" mode. However, local resource constraints may
limit the number of new connections that can be made.

The "replicate" mode MUST at a minimum support replicating the stream from the endpoint and one
other connection regardless of the encoding method used for that other connection. The "replicate"
connection is however only REQUIRED to support a resulting media stream in G.711 encoding5.
Support of the "conference" mode is optional; all other connection modes must be supported. Please
refer to Appendix IV for illustrations of mode interactions.

6.3.1 NotificationRequest
The NotificationRequest command is used to request the gateway to send a notification upon the
occurrence of specified events in an endpoint. For example, a notification may be requested when
tones associated with fax communication are detected on the endpoint. The entity receiving this
notification, usually the Call Agent, may then decide that a different type of encoding should be used
on the connections bound to this endpoint and instruct the gateway accordingly6.

 ReturnCode
 ← NotificationRequest(EndpointId
 [, NotifiedEntity]
 [, RequestedEvents]
 , RequestIdentifier
 [, DigitMap]
 [, SignalRequests]
 [, QuarantineHandling]
 [, DetectEvents])

EndpointId is the identifier for the endpoint(s) in the gateway where NotificationRequest executes.
The EndpointId MUST follow the rules for endpoint names specified in 6.1.1. The "any of"
wild-card MUST NOT be used. The "all of" wild-card MUST be supported for NotificationRequests
with each of RequestedEvents, SignalRequests, DigitMap, and DetectEvents being either empty or
omitted. For simplicity, some gateways may choose to not support the "all-of" wild-card for
NotificationRequests where one or more of these parameters is neither empty nor omitted. Such
gateways shall respond with error code 503 if they receive an "all-of" wild-carded
NotificationRequest which they are unable to process for this reason.

NotifiedEntity is an optional parameter that specifies a new "notified entity" for the endpoint. When
used, the entire Call Agent name MUST be specified which includes both the local name and domain
name – even if a bracketed IP address7 is used for the domain name. See 6.1.1 and 6.1.4 for more
information. If, however, only the domain name is provided, the MTA SHOULD use the domain
name as the Call Agent ID.

5 The "replicate" connection can, e.g., be used to support "busy line verification" with minimal resource

impact on the embedded client.
6 The new instruction would be a ModifyConnection command.
7 The use of an IP address in the NotifiedEntity is not permitted by the security Recommendation. When

implementing the security Recommendation, an absolute domain name (including the hostname) must be
used.

16 ITU-T Rec. J.162 (03/2004)

RequestIdentifier is used to correlate this request with the notification it may trigger. It will be
repeated in the corresponding Notify command.

SignalRequests is a parameter that contains the set of signals that the gateway is asked to apply.
Unless otherwise specified, signals are applied to the endpoint; however, some signals can be
applied to a connection. The following are examples of signals8:
• Ringing;
• Busy tone;
• Call waiting tone;
• Off-hook warning tone;
• Ringback tones on a connection.

Signals are divided into different types depending upon their behaviour:
• On/off (OO) – Once applied, these signals last until they are turned off. This can only

happen as the result of a new SignalRequests where the signal is turned off (see later).
Signals of type OO are defined to be idempotent, thus multiple requests to turn a given OO
signal on (or off) are perfectly valid and MUST NOT result in any errors. An On/Off signal
could be a visual message waiting indicator (VMWI). Once turned on, an OO signal MUST
NOT be turned off until explicitly instructed to by the Call Agent; OO signals will be off
following restart of the endpoint. A missing or empty SignalRequests parameter or a
SignalRequests parameter that omits a particular signal is not an explicit instruction for an
OO signal; it will not change the MTA state for an OO signal.

• Time-out (TO) – Once applied, these signals last until they are either cancelled (by the
occurrence of an event or by not being included in a subsequent [possibly empty] list of
signals), or a signal-specific period of time has elapsed. A signal that times out will generate
an "operation complete" event (please see Annex A for further definition of this event). A
TO signal could be "ringback" timing out after 180 seconds. If an event occurs prior to the
180 seconds, the signal will, by default, be stopped9. If the signal is not stopped, the signal
will time out, stop and generate an "operation complete" event, about which the Call Agent
may or may not have requested to be notified. If the Call Agent has asked for the "operation
complete" event to be notified, the "operation complete" event sent to the Call Agent will
include the name(s) of the signal(s) that timed out10. Signal(s) generated on a connection
will include the name of that connection. Time-out signals have a default time-out value
defined for them, which may be altered by the provisioning process. Also, the time-out
period may be provided as a parameter to the signal. A value of zero indicates that the
time-out period is infinite. A TO signal that fails after being started, but before having
generated on "operation complete" event will generate an "operation failure" event, which
will include the name(s) of the signal(s), that time out10.

• Brief (BR) – The duration of these signals is so short that they stop on their own. If a signal
stopping event occurs, or a new SignalRequests is applied, a currently active BR signal will
not stop. However, any pending BR signals not yet applied will be cancelled. A brief tone
could be a DTMF digit. If the DTMF digit "1" is currently being played, and a signal
stopping event occurs, the "1" would finish playing.

Signals are, by default, applied to endpoints. If a signal applied to an endpoint results in the
generation of a media stream (audio, video, etc.), the media stream MUST NOT be forwarded on
any connection associated with that endpoint, regardless of the mode of the connection. For example,

8 Please refer to Appendix VII for a complete list of signals.
9 The "Keep signal(s) active" action may override this behaviour.
10 If parameters were passed to the signal, the parameters will not be reported.

 ITU-T Rec. J.162 (03/2004) 17

if a call-waiting tone is applied to an endpoint involved in an active call, only the party using the
endpoint in question will hear the call-waiting tone. However, individual signals may define a
different behaviour.

When a signal is applied to a connection that has received a RemoteConnectionDescriptor (see 6.3.3), the
media stream generated by that signal MUST be forwarded on the connection regardless of the
current mode of the connection. If a RemoteConnectionDescriptor has not been received, the
gateway MUST return an error (error code 527 – missing RemoteConnectionDescriptor).

When a (possibly empty) list of signal(s) is supplied, this list completely replaces the current list of
active time-out signals. Currently active time-out signals that are not provided in the new list MUST
be stopped and the new signal(s) provided will now become active. Currently active time-out signals
that are provided in the new list of signals MUST remain active without interruption; thus, the timer
for such time-out signals will not be affected. Consequently, there is currently no way to restart the
timer for a currently active time-out signal without turning the signal off first. If the time-out signal
is parameterized, the original set of parameters MUST remain in effect, regardless of what values are
provided subsequently. A given signal MUST NOT appear more than once in a SignalRequests. The
omission of the SignalRequests parameter is interpreted as an empty SignalRequests list.

The currently defined signals can be found in Annex A.

RequestedEvents is a list of events that the gateway is requested to detect on the endpoint. Unless
otherwise specified, events are detected on the endpoint; however, some events can be detected on a
connection. Examples of events are11:
• fax tones;
• modem tones;
• on-hook transition (occurring in classic telephone sets when the user hangs up the handset);
• off-hook transition (occurring in classic telephone sets when the user lifts the handset);
• flash hook (occurring in classic telephone sets when the user briefly presses the hook that

holds the handset);
• DTMF digits (or pulse digits).

The currently defined events can be found in Annex A.

To each event is associated one or more actions that define the action that the gateway MUST take
when the event in question occurs. The possible actions are:
• Notify the event immediately, together with the accumulated list of observed events.
• Accumulate the event.
• Accumulate according to Digit Map.
• Ignore the event.
• Keep Signal(s) active.
• Embedded NotificationRequest.
• Embedded ModifyConnection.

Two sets of requested events will be detected by the endpoint: persistent and non-persistent.

Persistent events are always detected on an endpoint. If a persistent event is not included in the list of
RequestedEvents, and the event occurs, the event will be detected anyway, and processed like all
other events, as if the persistent event had been requested with a Notify action12. Thus, informally,

11 These are merely examples from the example line package in Appendix I.
12 Thus the RequestIdentifier will be the RequestIdentifier of the current NotificationRequest.

18 ITU-T Rec. J.162 (03/2004)

persistent events can be viewed as always being implicitly included in the list of RequestedEvents
with an action to Notify, although no glare detection, etc., will be performed13. Persistent events are
identified as such through their definition – see Annex A.

Non-persistent events are those events that have to be explicitly included in the RequestedEvents list.
The (possibly empty) list of requested events completely replaces the previous list of requested
events. In addition to the persistent events, only the events specified in the requested events list will
be detected by the endpoint. If a persistent event is included in the RequestedEvents list, the action
specified will then replace the default action associated with the event for the life of the
RequestedEvents list, after which the default action is restored. For example, if "Ignore off-hook"
was specified, and a new request without any off-hook instructions were received, the default
"Notify off-hook" operation then would be restored. A given event MUST NOT appear more than
once in a RequestedEvents. The omission of the RequestedEvents parameter is interpreted as an
empty RequestedEvents list.

More than one action can be specified for an event, although a given action cannot appear more than
once for a given event. The following matrix specifies the legal combinations of actions:

Table 2/J.162 – Legal combinations of actions

 Notify Accumu-
late

Accumu-
late

according
to digit

map

Ignore
Keep

Signal(s)
Active

Embedded
Notification

Request

Embedded
Modify

Connection

Notify − − − − √ − √
Accumulate − − − − √ √ √
Accumulate
according to
digit map

− − − − √ − √

Ignore − − − − √ − √
Keep
Signal(s)
active

√ √ √ √ − √ √

Embedded
Notification
Request

− √ − − √ − √

Embedded
Modify
Connection

√ √ √ √ √ √ −

NOTE – The "Embedded Notification Request" action can only be combined with the "Notify" action, if
the gateway is allowed to issue more than one Notify command per Notification request.

If a client receives a request with an invalid action or illegal combination of actions, it MUST return
an error to the Call Agent (error code 523 – unknown or illegal combination of actions).

When multiple actions are specified, e.g., "Keep signal(s) active" and "Notify", the individual
actions are assumed to occur simultaneously.

13 Normally, if a request to look for, e.g., off-hook, is made, the request is only successful if the phone is not

already off-hook.

 ITU-T Rec. J.162 (03/2004) 19

The Call Agent can send a NotificationRequest with an empty RequestedEvents list to the gateway.
The Call Agent can do so, for example, to an embedded client when it does not want to collect any
more DTMF digits. However, persistent events will still be detected and notified.

DigitMap is an optional parameter that allows the Call Agent to provision the endpoint with a digit
map according to which digits will be accumulated when the Call Agent provides a RequestedEvents
parameter with the action "accumulate according to digit map" for that endpoint. The digit map
provided is persistent and, therefore, need not be provided whenever a request to "accumulate
according to digit map" is made, however Call Agents can provide a digit map at any time. A digit
map MUST be provided for the endpoint no later than with the first request to "accumulate
according to digit map". If the gateway is requested to "accumulate according to digit map" and the
gateway currently does not have a digit map for the endpoint in question, the gateway MUST return
an error (error code 519 – endpoint does not have a digit map).

Each endpoint has a variable called the "current dial string" in which digits are collected for
matching with the digit map, as specified in 6.1.5. Whenever a Notify is sent or a
NotificationRequest is to be processed, the "current dial string" is initialized to a null string. The
digits to be processed may now either be detected as input, or they may be retrieved from an event
input holding area known as the "quarantine buffer" – please see 6.4.3.1 for further details.

The signals being applied by the SignalRequests are synchronized with the collection of events
specified or implied in the RequestedEvents parameter, except if overridden by the "Keep signal(s)
active" action. For example, if the NotificationRequest mandated a "ringing" signal and the event
request asked to look for an "off-hook" event, the ringing should, by default, stop as soon as the
gateway detected an off-hook event. If the event request did not ask to look for an "off-hook" event,
the ringing would stop anyway since off-hook is a persistent event and therefore implied in the
RequestedEvents parameter. The formal definition is that the generation of all "Time Out" signals
MUST stop as soon as one of the requested events is detected, unless the "Keep signal(s) active"
action is associated to the specified event. In the case of the action "accumulate according to digit
map", the default behaviour would be to stop all active time-out signals when the first digit14 is
accumulated – it is irrelevant to this synchronization if the accumulated digit results in a match,
mismatch, or partial matching to the digit map.

If it is desired that time-out signal(s) continue when a looked-for event occurs, the "Keep Signal(s)
Active" action can be used. This action has the effect of keeping all currently active time-out
signal(s) active, thereby negating the default stopping of time-out signals upon the event's
occurrence.

If signal(s) are desired to start when a looked-for event occurs, the "Embedded NotificationRequest"
action can be used. The embedded NotificationRequest may include a new list of RequestedEvents,
SignalRequests and a new Digit Map as well. The semantics of the embedded NotificationRequest is
as if a new NotificationRequest was just received with the same NotifiedEntity, RequestIdentifier,
QuarantineHandling and DetectEvents. When the "Embedded NotificationRequest" is activated, the
"current dial string" will be cleared; however, the list of observed events and the quarantine buffer
will be unaffected (if combined with a Notify, the Notify will clear the ObservedEvents list though;
see 6.4.3.1). Note that the Embedded NotificationRequest action does not accumulate the triggering
event; however, it can be combined with the Accumulate action to achieve that. NCS
implementations MUST be able to support at least one level of embedding. An embedded
NotificationRequest that respects this limitation MUST NOT contain another Embedded
NotificationRequest.

The embedded NotificationRequest action allows the Call Agent to set up a "mini-script" to be
processed by the gateway immediately following the detection of the associated event. Any

14 Digit as defined in digit maps, i.e., including asterisk, timer, etc.

20 ITU-T Rec. J.162 (03/2004)

SignalRequests specified in the embedded NotificationRequest will start immediately. Considerable
care must be taken to prevent discrepancies between the Call Agent and the gateway. However,
long-term discrepancies should not occur as new SignalRequests completely replaces the old list of
active time-out signals, and BR-type signals always stop on their own. Limiting the number of
On/Off-type signals is encouraged. It is considered good practice for a Call Agent to occasionally
turn on all On/Off signals that should be on, and turn off all On/Off signals that should be off.

If connection modes are desired to be changed when a looked-for event occurs, the "Embedded
ModifyConnection" action can be used. The embedded ModifyConnection may include a list of
connection mode changes each consisting of the mode change and the affected connection-id. The
wild-card "$" can be used to denote "the current connection"; however, this notation MUST NOT be
used outside a connection handling command – the wild-card refers to the connection in question for
the connection handling command.

The embedded ModifyConnection action allows the Call Agent to instruct the endpoint to change the
connection mode of one or more connections immediately following the detection of the associated
event. Each of connection mode changes work similarly to a corresponding ModifyConnection
command15. When a list of connection mode changes is supplied, the connection mode changes
MUST be applied one at a time in left-to-right order. When all the connection mode changes have
finished, an "operation complete" event parameterized with the name of the completed action will be
generated (see Annex A for details). Should any of the connection mode changes fail, an "operation
failure" event parameterized with the name of the failed action and connection mode change will be
generated (see Annex A for details) – the rest of the connection mode changes MUST NOT be
attempted, and the previous successful connection mode changes in the list MUST NOT remain
effective.

Finally, the Ignore action can be used to ignore an event, e.g., to prevent a persistent event from
being notified. However, the synchronization between the event and an active signal will still occur
by default.

Clause 6.4.3.1 contains additional details on the semantics of event detection and reporting. The
reader is encouraged to study it carefully.
The specific definition of actions that are requested via these SignalRequests (e.g., the duration of
and frequency of a DTMF digit) is outside the scope of the core NCS specification. This definition
may vary from location to location and, hence, from gateway to gateway. Consequently, the
definitions are provided in event packages, which may be provided outside of the core specification.
An initial list of event packages can be found in Annex A.

The RequestedEvents and SignalRequests generally refer to the same events. In one case, the
gateway is asked to detect the occurrence of the event and, in the other case, it is asked to generate it.
There are exceptions to this rule, for example, fax and modem tones, which can be detected but can
not be signalled. However, we necessarily cannot expect all endpoints to detect all events. The
specific events and signals that a given endpoint can detect or perform are determined by the list of
event packages that are supported by that endpoint. Each package specifies a list of events and
signals that can be detected or applied. A gateway that is requested to detect or to apply an event that
is not supported by the specified endpoint MUST return an error (error code 512 or 513 – not
equipped to detect event or generate signal). When the event name is not qualified by a package
name, the default package name for the endpoint is assumed. If the event name is not registered in
this default package, the gateway MUST return an error (error code 522 – no such event or signal).

15 Thus, if, e.g., D-QoS is used on the connection, the default D-QoS action will still be taken when the

embedded ModifyConnection action is carried out.

 ITU-T Rec. J.162 (03/2004) 21

The Call Agent can send a NotificationRequest whose requested signal list is empty. This has the
effect of stopping all active time-out signals. It can do so, for example, when tone generation,
e.g., ringback, should stop.

QuarantineHandling is an optional parameter that specifies the handling options for events in the
quarantine buffer (see 6.4.3.1), i.e., events that have been detected by the gateway before the arrival
of this NotificationRequest command, but have not yet been notified to the Call Agent. The
parameter provides a set of handling options:
• whether the quarantined events should be processed or discarded (the default is to process

them),
• whether the gateway is expected to generate at most one notification (lockstep), or multiple

notifications (loop), in response to this request (the default is at most one).

When the parameter is absent, the quarantined events MUST be processed. Support for the
"lockstep" mode (via default) and "loop" mode is mandatory. An endpoint that receives a
NotificationRequest with an unsupported QuarantineHandling parameter value SHOULD respond
with error code 508 (unsupported QuarantineHandling).

Note that the quarantine-handling parameter also governs the handling of events that were detected
and processed but not yet notified when the command is received.

DetectEvents is an optional parameter that specifies a minimum list of events that the gateway is
requested to detect in the "notification" and "lockstep" state. When this parameter is absent, the
events that MUST be detected in the quarantine period are those listed in the last received
DetectEvents list. In addition, the gateway MUST also detect persistent events and the events
specified in the RequestedEvents list, including those for which the "ignore" action is specified.
Further explanation of this parameter may be found in 6.4.3.1.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and
consists of an integer number (see 6.5) optionally followed by commentary.

6.3.2 Notifications
Notifications are sent via the Notify command by the gateway when an observed event is to be
notified:

 ReturnCode
 ← Notify(EndpointId
 [, NotifiedEntity]
 , RequestIdentifier
 , ObservedEvents)

EndpointId is the name for the endpoint in the gateway, which is issuing the Notify command, as
defined in 6.1.1. The identifier MUST be a fully qualified endpoint name, including the domain
name of the gateway. The local part of the name MUST NOT use the wild-card convention.

NotifiedEntity is an optional parameter that identifies the entity to which the notification is sent.
This parameter is equal to the NotifiedEntity parameter of the NotificationRequest that triggered this
notification. Note that the MTA MAY include only the absolute domain name (including the
hostname) of its NotifiedEntity if only the absolute domain name was received in the triggering
NotificationRequest. The CMS SHOULD accept the value in this case. The parameter is absent if
there was no such parameter in the triggering request. Regardless of the value of the NotifiedEntity
parameter, the notification MUST be sent to the current "notified entity" for the endpoint.

RequestIdentifier is a parameter that repeats the RequestIdentifier parameter of the
NotificationRequest that triggered this notification. It is used to correlate this notification with the
notification request that triggered it. Persistent events will be viewed here as if they had been

22 ITU-T Rec. J.162 (03/2004)

included in the last NotificationRequest. When no NotificationRequest has been received, the
RequestIdentifier used will be zero ("0").

ObservedEvents is a list of events that the gateway detected and accumulated, either by the
"accumulate", "accumulate according to digit map", or "notify" action. A single notification can
report a list of events that will be reported in the order in which they were detected. The list can only
contain persistent events and events that were requested in the RequestedEvents parameter of the
triggering NotificationRequest. Events that were detected on a connection will include the name of
that connection. The list will contain the events that were either accumulated (but not notified) or
accumulated according to digit map (but no match yet), and the final event that triggered the
notification or provided a final match in the digit map. It should be noted that digits are added to the
list of observed events as they are accumulated, irrespective of whether they are accumulated
according to the digit map or not. For example, if a user enters the digits "1234" and some event E is
accumulated between the digits "3" and "4" being entered, the list of observed events would be
"1, 2, 3, E, 4".

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and
consists of an integer number (see 6.5) optionally followed by commentary.

6.3.3 CreateConnection
This command is used to create a connection.

 ReturnCode
 , ConnectionId
 [, SpecificEndPointId]
 , LocalConnectionDescriptor
 [, ResourceID]
 ← CreateConnection(CallId
 , EndpointId
 [, NotifiedEntity]
 , LocalConnectionOptions
 , Mode
 [, RemoteConnectionDescriptor]
 [, RequestedEvents]
 [, RequestIdentifier]
 [, DigitMap]
 [, SignalRequests]
 [, QuarantineHandling]
 [, DetectEvents])

This function is used when setting up a connection between two endpoints. A connection is defined
by its attributes and the endpoints it associates. The input parameters in CreateConnection provide
the data necessary to build one of the two endpoints "view" of a connection.

CallId is a parameter that identifies the call (or session) to which this connection belongs. This
parameter is, at a minimum, unique within the collection of Call Agents that control the same
gateways; connections that belong to the same call share the same call-id. The call-id can be used to
identify calls for reporting and accounting purposes.

EndpointId is the identifier for the endpoint in the gateway where CreateConnection executes. The
EndpointId can be specified fully by assigning a non-wild-carded value to the parameter EndpointId
in the function call or it can be under-specified by using the "anyone" wild-card convention. If the
endpoint is under-specified, the endpoint identifier will be assigned by the gateway and its complete
value returned in the SpecificendPointId parameter of the response. In this case, the endpoint
assigned MUST be in service and MUST NOT already have any connections on it.

NotifiedEntity is an optional parameter that specifies a new "notified entity" for the endpoint.

 ITU-T Rec. J.162 (03/2004) 23

LocalConnectionOptions is a structure that describes the characteristics of the media data
connection from the point of view of the gateway executing CreateConnection. It instructs the
endpoint on send and receive characteristics of the media connection. The basic fields contained in
LocalConnectionOptions are:
• Encoding Method: A list of literal names for the compression algorithm

(encoding/decoding method) used to send and receive media on the connection MUST be
specified with at least one value. The entries in the list are ordered by preference. The
endpoint MUST choose exactly one of the codecs, and the codec SHOULD be chosen
according to the preference indicated. If the endpoint receives any media on the connection
encoded with a different encoding method, it MAY discard it. See 6.7 for details on the
codec selection process.
– The endpoint MUST additionally indicate which of the remaining compression

algorithms it is willing to support as alternatives – see 7.4.1 for details.
– A list of permissible encoding methods is specified in ITU-T Rec. J.161. The literal

names defined in Table 3 MUST be used. Unknown compression algorithms SHOULD
be ignored if they are received.

• Packetization Period: The packetization period in milliseconds, as defined in the SDP
standard (RFC 2327), MAY be specified and with exactly one decimal value. If this
specifier is used, then the same packetization period MUST be used for all codecs allowed
by the LocalConnectionOptions. Note that the MTA MUST NOT choose a codec with a
packetization period that differs from that specified here. If different packetization periods
for different codecs are desired, then this field MUST NOT be used. The value pertains to
both media sent and received. Note that only the valid packetization period in conjunction
with the associated encoding method are to be used by the MTA. A list of permissible
packetization periods is specified in ITU-T Rec. J.161. This specifier MUST NOT be
supplied in the same LCO as the Multiple Packetization Period field. An MTA MUST return
an error (error code 524 – inconsistency in LocalConnectionOptions) when it receives an
LCO with both the Packetization Period and Multiple Packetization Period fields.

• Multiple Packetization Period: A list of packetization periods in milliseconds, as defined
in the SDP standard (RFC 2327) MAY be specified if, and only if, the Encoding Method
field is included. When specified, the multiple packetization period in milliseconds MUST
contain exactly one decimal value or a hyphen for each entry in the encoding method field
included in the LocalConnectionOptions. This applies even if several of the encoding
methods have the same value. The first entry in the list MUST be a decimal number. When a
hyphen is used, the codec in question MUST use the same packetization period as one of the
other entries in the list that actually contains a decimal number, and furthermore the codec
MUST NOT consume any more bandwidth that that other entry. This can for example be
used for non-voice codecs (e.g., telephone-event or comfort noise) that use the same
packetization period as the voice codec with which they are being used. Successive entries
in the list of packetization periods MUST be ordered identically to the corresponding
encoding methods. The values pertain to both media sent and received. Note that the MTA
MUST NOT choose a codec with a packetization period that differs from that specified here.
Note that only the valid packetization period in conjunction with the associated encoding
method are to be used by the MTA. A list of permissible packetization periods is specified in
ITU-T Rec. J.161. This specifier MUST NOT be supplied in the same LCO as the
Packetization Period field. An MTA MUST return an error (error code 524 – inconsistency
in LocalConnectionOptions) under the following conditions:
– when it receives an LCO with both the Packetization Period and Multiple Packetization

Period fields;
– when it receives an LCO where the number of codecs specified in the Encoding Method

field is different from the number of elements in the Multiple Packetization Period field.

24 ITU-T Rec. J.162 (03/2004)

• Echo Cancellation: Whether echo cancellation should be used initially on the line side or
not16. The parameter can have the value "on" (when the echo cancellation is requested) or
"off" (when it is turned off). The parameter is optional. When the parameter is omitted, the
embedded client MUST apply echo cancellation. The embedded client SHOULD
subsequently enable or disable echo cancellation in accordance with ITU-T Recs V.8 and
V.25 when voiceband data is detected. For re-enabling echo cancellation see, e.g., ITU-T
Rec. G.168. Following termination of voiceband data, the handling of echo cancellation
MUST revert to the current value of the echo cancellation parameter.

• Type of Service: Specifies the class of service that will be used for sending media on the
connection by encoding the 8-bit type of service value parameter of the IP header as two
hexadecimal digits. The parameter is optional. When the parameter is omitted, a default
value of 0xA0 (unless provisioned otherwise) applies corresponding to an IP precedence bits
setting of five.

• Silence Suppression: Whether silence suppression should be used or not in the send
direction. The parameter can have the value "on" (when silence is to be suppressed) or "off"
(when silence is not to be suppressed). The parameter is optional. When the parameter is
omitted, the default is not to use silence suppression.

The following LocalConnectionOptions fields are used to support Dynamic Quality of Service
(D-QoS) (please refer to Annex B for further details):
• D-QoS GateID: The GateID for the gate that has been set up at the edge router. The

Gate-ID is a 32-bit identifier encoded as a string of up to 8 hex characters. This parameter is
optional in general, but mandatory when D-QoS resource reservation and/or committal is to
be performed. The presence of this parameter implies that D-QoS is to be performed for this
command, where as absence implies that D-QoS is not to be performed.

• D-QoS Resource Reservation: Allows explicit control over whether D-QoS resource
reservation and/or committal should be performed in the send and/or receive direction or
not. The parameter is optional and can have one or more of the following values:

Reserve values:
• "SendReserve" Resources are reserved in the send direction only.
• "ReceiveReserve" Resources are reserved in the receive direction only.
• "SendReceiveReserve" Resources are reserved in the send and receive directions.

Commit values:
• "SendCommit" Resources are committed in the send direction only.
• "ReceiveCommit" Resources are committed in the receive direction.
• "SendReceiveCommit" Resources are committed in the send and receive directions.

The parameter is optional, and multiple values are separated by commas. When D-QoS is to be
performed, and the parameter is omitted, resource reservation MUST be performed for both the send
and receive directions. The resources reserved are determined by the coding parameters applied to
the connection, i.e., encoding method, packetization period, silence suppression, ciphersuite, etc.
External parameters, such as the use of payload header suppression may affect the amount of
resources reserved as well – please see ITU-T Rec. J.163 for details.

Receive resources can be reserved and committed without having obtained a
RemoteConnectionDescriptor, whereas send resources can be reserved, but not committed, until a
RemoteConnectionDescriptor is supplied. Note that, as long as a RemoteConnectionDescriptor has
not been received, the resources reserved and committed must be based on the codec(s) selected

16 Echo cancellation on the packet side is not supported.

 ITU-T Rec. J.162 (03/2004) 25

locally. Once a RemoteConnectionDescriptor is received, the list of codec(s) that can actually be
used for sending may contain a subset of these. The list of codecs that can be used for receiving is
however unchanged until the endpoint issues a new LocalConnectionDescriptor. When D-QoS
reservation is to be performed, and the parameter is omitted, resources MUST by default be
committed based on the connection mode as specified in Table 3.

Table 3/J.162 – Default Resource Reservation Values

Connection mode D-QoS

"inactive" Do not commit
"send only", "replicate" Commit send
"receive only" Commit receive
"send/receive", "conference", "network loopback", "network continuity test" Commit send and receive

If a different commit operation is desired, the appropriate commit value is supplied and will be used
instead. If a commit operation is to be performed, but no reservation has been made, or an existing
reservation does not fully satisfy the resources to be committed17, a reservation will be made
automatically. If a reserve value is specified, but no commit value is specified, a commit operation
will not be performed.
• ResourceID: An existing ResourceID for resources already reserved at the edge router. The

use of the ResourceID allows separate reservations to reserve the same resource; however,
only one of the reservations can be active at a given point in time. The ResourceID is a
32-bit identifier encoded as a string of up to 8 hex characters. The parameter is optional.
However, this parameter MUST be used for resource reservation by the embedded client if
provided by the Call Agent.

• ReserveDestination: This optional parameter may specify an IPv4 address, optionally
followed by a colon and a UDP port number, that is the destination for the resource
reservation. When a UDP port number is not specified, a default value of 9 applies. The
ReserveDestination is typically used when resource reservation is to be performed, and a
RemoteConnectionDescriptor has not yet been provided for the connection. This enables
reservations and downstream commits to be sent to the edge router when the source of a
media stream is not yet known18. When a RemoteConnectionDescriptor has been provided,
the parameter is ignored.

The following LocalConnectionOptions fields are used to support the IPCablecom security services:
• RTP ciphersuite: A list of allowable ciphersuites for RTP security in order of preference.

The entries in the list are ordered by preference where the first ciphersuite is the preferred
choice. The endpoint MUST choose exactly one of the ciphersuites according to the rules
described in ITU-T Rec. J.170. The endpoint SHOULD additionally indicate which of the
remaining ciphersuites it is willing to support as alternatives (see 7.4.1 for details). Each
ciphersuite is represented as ASCII strings consisting of two substrings separated by a slash
("/"), where the first substring identifies the authentication algorithm, and the second
substring identifies the encryption algorithm. A list of permissible ciphersuites is given in
ITU-T Rec. J.170.

17 This is not possible for the CreateConnection command but is noted here for completeness. It is possible

for the ModifyConnection command, however (see 6.3.4).
18 Note that this will enable certain theft-of-service scenarios. See ITU-T Rec. J.163 for details.

26 ITU-T Rec. J.162 (03/2004)

• RTCP ciphersuite: A list of ciphersuites for RTCP security in order of preference. The
entries in the list are ordered by preference where the first ciphersuite is the preferred choice.
The endpoint MUST choose exactly one of the ciphersuites according to the rules described
in ITU-T Rec. J.170. The endpoint SHOULD additionally indicate which of the remaining
ciphersuites it is willing to support as alternatives. See 7.4.1 for details. Each ciphersuite is
represented as an ASCII string consisting of two substrings separated by a slash ("/"), where
the first substring identifies the authentication algorithm, and the second substring identifies
the encryption algorithm. A list of permissible ciphersuites are to be specified in ITU-T
Rec. J.170.

The embedded client MUST respond with an error (error code 524 – LocalConnectionOptions
inconsistency) if any of the above rules are violated. All of the above-mentioned default values can
be altered by the provisioning process.

RemoteConnectionDescriptor is the connection descriptor for the remote side of a connection, on
the other side of the IP network. It includes the same fields as the LocalConnectionDescriptor (not to
be confused with LocalConnectionOptions), i.e., the fields that describe a session according to the
SDP standard. Clause 7.4 details the supported use of SDP in the NCS profile. This parameter may
have a null value when the information for the remote end is not known. This occurs because the
entity that builds a connection starts by sending a CreateConnection to one of the two gateways
involved. For the first CreateConnection issued, there is no information available about the other
side of the connection. This information may be provided later via a ModifyConnection call.

When codecs are changed during a call, small periods of time may exist where the endpoints use
different codes. As stated above, embedded clients MAY discard any media received that is encoded
with a different codec than what is specified in the LocalConnectionOptions for a connection.

Mode indicates the mode of operation for this side of the connection. The options are "send only,"
"receive only", "send/receive", "conference", "inactive", "replicate", "network loopback" or "network
continuity test". The handling of these modes is specified in the beginning of 6.3. Some endpoints
may not be capable of supporting all modes. If the command specifies a mode that the endpoint does
not support, an error MUST be returned (error code 517 – unsupported mode). Also, if a connection
has not yet received a RemoteConnectionDescriptor, an error MUST be returned if the connection is
attempted to be placed in any of the modes "send only", "send/receive", "replicate", "conference",
"netwloop" or "netwtest" (error code 527 – missing RemoteConnectionDescriptor).

ConnectionId is a parameter returned by the gateway that uniquely identifies the connection within
the context of the endpoint in question.

LocalConnectionDescriptor is a parameter returned by the gateway, which is a session description
that contains information about, e.g., addresses and RTP ports for "IN" connections as defined in
SDP. It is similar to the RemoteConnectionDescriptor, except that it specifies this side of the
connection. Clause 7.4 details the supported use of SDP in the NCS profile.

After receiving a "CreateConnection" command that does not include a
RemoteConnectionDescriptor parameter, a gateway is in an ambiguous situation for the connection
in question. Because it has exported a LocalConnectionDescriptor parameter, it potentially can
receive packets on that connection. Because it has not yet received the other gateway's
RemoteConnectionDescriptor parameter, it does not know whether the packets it receives have been
authorized by the Call Agent. Thus, it must navigate between two risks, i.e., clipping some important
announcements or listening to insane data. The behaviour of the gateway is determined by the value
of the mode parameter (subject to security):
• If the mode was set to "receive only", the gateway MUST accept the voice signals received

on the connection and transmit them through to the endpoint.
• If the mode was set to "inactive", the gateway MUST (as always) discard the voice signals

received on the connection.

 ITU-T Rec. J.162 (03/2004) 27

• Note that when the endpoint does not have a RemoteConnectionDescriptor for the
connection, the connection can by definition not be in any of the modes "send only",
"send/receive", "replicate", "conference", "netwloop" or "netwtest".

The RequestedEvents, RequestIdentifier, DigitMap, SignalRequests, QuarantineHandling, and
DetectEvents parameters are all optional. They can be used by the Call Agent to effectively include
a notification request that is executed simultaneously with the creation of the connection. If one or
more of these parameters is present, the RequestIdentifier MUST be one of them. Thus, the inclusion
of a notification request can be recognized by the presence of a RequestIdentifier. The rest of the
parameters may or may not be present. If one of the parameters is not present, it MUST be treated as
if it was a normal NotificationRequest with the parameter in question being omitted. This may have
the effect of cancelling signals and of stop looking for events. Note that if the RequestedEvents and
SignalRequests parameters are omitted, then the corresponding lists are considered empty only if a
RequestIdentifier parameter is included.

As an example of use, consider a Call Agent that wants to place a call to an embedded client. The
Call Agent should:
• ask the embedded client to create a connection, in order to be sure that the user can start

speaking as soon as the phone goes off-hook;
• ask the embedded client to start ringing;
• ask the embedded client to notify the Call Agent when the phone goes off-hook.

All of the above can be accomplished in a single CreateConnection command by including a
notification request with the RequestedEvents parameters for the off-hook event and the
SignalRequests parameter for the ringing signal.

When these parameters are present, the creation of the connection and the notification request MUST
be synchronized, which means that they are both either accepted or refused. In our example, the
CreateConnection must be refused if the gateway does not have sufficient resources or cannot get
adequate resources from the local network access. The off-hook notification request must be refused
in the glare condition if the user is already off-hook. In this example, the phone must not ring if the
connection cannot be established, and the connection must not be established if the user is already
off-hook. An error would be returned instead (error code 401 – phone off-hook), which informs the
Call Agent of the glare condition.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and
consists of an integer number (see 6.5) optionally followed by commentary.

ResourceID is a D-QoS parameter that may be returned by the gateway. Note that this parameter
MUST be returned by the MTA when D-QoS is to be performed as instructed by the Call Agent.
When a successful D-QoS resource reservation is made, the ResourceID provides a handle for the
resources reserved.

6.3.4 ModifyConnection
This command is used to modify the characteristics of a gateway's "view" of a connection. This
"view" of the call includes both the local connection descriptor, as well as the remote connection
descriptor.

 ReturnCode
 [, LocalConnectionDescriptor]
 [, ResourceID]
 ← ModifyConnection(CallId
 , EndpointId
 , ConnectionId

28 ITU-T Rec. J.162 (03/2004)

 [, NotifiedEntity]
 [, LocalConnectionOptions]
 [, Mode]
 [, RemoteConnectionDescriptor]
 [, RequestedEvents]
 [, RequestIdentifier]
 [, DigitMap]
 [, SignalRequests]
 [, QuarantineHandling]
 [, DetectEvents])

The parameters used are the same as in the CreateConnection command, with the addition of a
ConnectionId that uniquely identifies the connection within the endpoint. This parameter is returned
by the CreateConnection command together with the local connection descriptor. It uniquely
identifies the connection within the context of the endpoint.

The EndpointId MUST be a fully qualified endpoint name. The local name MUST NOT use the
wild-card convention.

The ModifyConnection command can be used to affect connection parameters, subject to the same
rules and constraints as specified for CreateConnection:
• Provide information on the other end of the connection through the

RemoteConnectionDescriptor.
• Activate or deactivate the connection by changing the mode parameter's value. This can

occur at any time during the connection, with arbitrary parameter values. An activation can,
for example, be set to the "receive only" mode.

• Change the parameters of the connection through the LocalConnectionOptions, for
example, by switching to a different coding scheme, changing the packetization period, or
modifying the handling of echo cancellation.

The details of D-QoS operation were specified in the CreateConnection command and generally the
same rules apply here, except as noted below:
• D-QoS GateID: A D-QoS GateID is mandatory when D-QoS operation is required, unless

D-QoS operation has previously been done for the connection in question. In the latter case,
the previously supplied D-QoS GateID will then be used.

• D-QoS Resource Reservation: Allows explicit control over whether D-QoS resource
reservation and/or committal should be performed in the send and/or receive direction or
not. The parameter is optional and multiple values can be specified. When the parameter is
omitted and D-QoS reservation is to be performed, the default is to reserve in both the send
and receive directions, unless a suitable reservation for the connection has already been
made (see Annex B). In that case, a new reservation will not be made. Resources are
committed the same way as for CreateConnection, except when changing to "inactive"
mode. In that case, the committed resources MUST be lowered to zero. An existing resource
reservation is still maintained though.

• ResourceID: The parameter is optional. When supplied, it MUST be used by the embedded
client for resource reservation and replaces the ResourceID kept for the connection.

• ReserveDestination: The parameter is optional. When supplied, it replaces the
ReserveDestination kept by the embedded client for the connection. If a
RemoteConnectionDescriptor has been supplied for the connection, the parameter is
ignored.

The command will only return a LocalConnectionDescriptor if the local connection parameters,
such as, e.g., RTP ports, etc., are modified. Thus, if, e.g., only the mode of the connection is
changed, a LocalConnectionDescriptor will not be returned. If a connection parameter is omitted,
e.g., mode or silence suppression, the old value of that parameter will be retained if possible. If a

 ITU-T Rec. J.162 (03/2004) 29

parameter change necessitates a change in one or more unspecified parameters, the gateway is free to
choose suitable values for the unspecified parameters that must change19.

The RTP address information provided in the RemoteConnectionDescriptor specifies the remote
RTP address of the receiver of media for the connection. This RTP address information may have
been changed by the Call Agent20. When RTP address information is given to an embedded client
for a connection, the embedded client SHOULD only accept media streams (and RTCP) from the IP
address specified as well. Any media streams received from any other addresses SHOULD be
discarded. ITU-T Rec. J.170 should be consulted for additional security requirements.

The RequestedEvents, RequestIdentifier, DigitMap, SignalRequests, QuarantineHandling, and
DetectEvents parameters are optional. The parameters can be used by the Call Agent to include a
notification request that is tied to and executed simultaneously with the connection modification. If
one or more of these parameters is supplied, then RequestIdentifier MUST be one of them. For
example, when a call is accepted, the calling gateway should be instructed to place the connection in
"send/receive" mode and to stop providing ringback tones. This can be accomplished in a single
ModifyConnection command by including a notification request with the RequestedEvents
parameters for the on-hook event, and an empty SignalRequests parameter, to stop the provision of
ringback tones. Note that absence of the RequestedEvents and SignalRequests parameters is
interpreted as an empty list only if a RequestIdentifier parameter is included.

When these parameters are present, the connection modification and the notification request MUST
be synchronized, which means that they are both either accepted or refused.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and
consists of an integer number (see 6.5) optionally followed by commentary.

ResourceID is a D-QoS parameter that MUST be returned by the gateway if it performs a resource
reservation and obtains a new ResourceID from the edge router. When a successful D-QoS resource
reservation is made, the ResourceID provides a handle for the resources reserved.

6.3.5 DeleteConnection (From the Call Agent)
This command is used to terminate a connection. As a side effect, it collects statistics on the
execution of the connection.

 ReturnCode
 , Connection-parameters
 ← DeleteConnection(CallId
 , EndpointId
 , ConnectionId
 [, NotifiedEntity]
 [, RequestedEvents]
 [, RequestIdentifier]
 [, DigitMap]
 [, SignalRequests]
 [, QuarantineHandling]
 [, DetectEvents])

The endpoint identifier, in this form of the DeleteConnection command, MUST be fully qualified.
Wild-card conventions MUST NOT be used.

In the general case where a connection has two ends, this command has to be sent to both gateways
involved in the connection. After the connection has been deleted, packet network media streams
previously supported by the connection are no longer available. Any media packets received for the

19 This can for instance happen if a codec change is specified, and the old codec used silence suppression, but

the new one does not support it.
20 For instance, if media needs to traverse a firewall.

30 ITU-T Rec. J.162 (03/2004)

old connection are simply discarded and no new media packets for the stream are sent. When one or
more D-QoS reservations and/or committals have been made for the connection, the
DeleteConnection command will release the resources reserved.

In response to the DeleteConnection command, the gateway returns a list of parameters that describe
the status of the connection. These parameters are:
• Number of packets sent: The total number of RTP data packets transmitted by the sender

since starting transmission on the connection. The count is not reset if the sender changes its
synchronization source identifier (SSRC, as defined in RTP) – for example, as a result of a
Modify command.

• Number of octets sent: The total number of payload octets (i.e., not including header or
padding) transmitted in RTP data packets by the sender since starting transmission on the
connection. The count is not reset if the sender changes its SSRC identifier – for example, as
a result of a ModifyConnection command.

• Number of packets received: The total number of RTP data packets received by the sender
since starting reception on the connection. The count includes packets received from
different SSRC if the sender used several values. The value is zero if, e.g., the connection
was always set in "send only" mode.

• Number of octets received: The total number of payload octets (i.e., not including header
or padding) transmitted in RTP data packets by the sender since starting transmission on the
connection. The count includes packets received from different SSRC if the sender used
several values. The value is zero if, e.g., the connection was always set in "send only" mode.

• Number of packets lost: The total number of RTP data packets that have been lost since the
beginning of reception. This number is defined to be the number of packets expected less the
number of packets actually received, where the number of packets received includes any
which are late or are duplicates. The count includes packets received from different SSRC if
the sender used several values. Thus, packets that arrive late are not counted as lost, and the
loss may be negative if there are duplicates. The count includes packets received from
different SSRC if the sender used several values. The number of packets expected is defined
to be the extended last sequence number received, less the initial sequence number received.
The count includes packets received from different SSRC, if the sender used several values.
The value is zero if, e.g., the connection was always set in "send only" mode.

• Interarrival jitter: An estimate of the statistical variance of the RTP data packet interarrival
time measured in milliseconds and expressed as an unsigned integer. The interarrival jitter
"J" is defined to be the mean deviation (smoothed absolute value) of the difference "D" in
packet spacing at the receiver compared to the sender for a pair of packets. Detailed
computation algorithms are found in RFC 3550. The count includes packets received from
different SSRC if the sender used several values. The value is zero if, e.g., the connection
was always set in "send only" mode.

• Average transmission delay: An estimate of the network latency, expressed in milliseconds.
This is the average value of the difference between the NTP timestamp indicated by the
senders of the RTCP messages and the NTP timestamp of the receivers, measured when the
messages are received. The average is obtained by summing all the estimates and then
dividing by the number of RTCP messages that have been received. It should be noted that
the correct calculation of this parameter relies on synchronized clocks. Embedded client
devices MAY alternatively estimate the average transmission delay by dividing the
measured roundtrip time by two.

For a more detailed definition of these variables, please refer to RFC 3550.

 ITU-T Rec. J.162 (03/2004) 31

In addition to the parameters above, an endpoint that has received one or more RTCP sender or
receiver reports from its peer MUST return the following parameters:
• Remote Packets Sent: The number of packets that were sent on the connection from the

perspective of the remote endpoint.
• Remote Octets Sent: The number of octets that were sent on the connection from the

perspective of the remote endpoint.
• Remote Packets Lost: The number of packets that were not received on the connection, as

deduced from gaps in the sequence number from the perspective of the remote endpoint.
• Remote Jitter: The average inter-packet arrival jitter, in milliseconds, expressed as an integer

number from the perspective of the remote endpoint.

The NotifiedEntity, RequestedEvents, RequestIdentifier, DigitMap, SignalRequests,
QuarantineHandling, and DetectEvents parameters are optional. They can be used by the Call
Agent to transmit a notification request that is tied to and executed simultaneously with the deletion
of the connection. However, if one or more of these parameters are present, RequestIdentifier MUST
be one of them. For example, when a user hangs up the phone, the gateway might be instructed to
delete the connection and to start looking for an off-hook event. This can be accomplished in a single
DeleteConnection command also by transmitting the RequestedEvents parameter for the off-hook
event and an empty SignalRequests parameter. Note that absence of the RequestedEvents and
SignalRequests parameters is interpreted as an empty list only if a RequestIdentifier parameter is
included.

When these parameters are present, the delete connection and the notification request MUST be
synchronized, which means that they are both either accepted or refused.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and
consists of an integer number (see 6.5) optionally followed by commentary.

6.3.6 DeleteConnection (From the Embedded Client)
In some circumstances, a gateway may have to clear a connection, for example, because it has lost
the resource associated with the connection. The gateway can terminate the connection by using a
variant of the DeleteConnection command:

 ReturnCode
 ← DeleteConnection(CallId,
 EndpointId,
 ConnectionId,
 Reason-code,
 Connection-parameters)

The EndpointId, in this form of the DeleteConnection command, MUST be fully qualified.
Wild-card conventions MUST NOT be used.

The Reason-code is a text string starting with a numeric reason-code and optionally followed by a
descriptive text string. A list of reason-codes can be found in 6.6.

In addition to the CallId, EndpointId, and ConnectionId, the embedded client will also send the
connection's parameters, which would have been returned to the Call Agent in response to a
DeleteConnection command from the Call Agent. The reason code indicates the cause of the
DeleteConnection. When one or more D-QoS reservations and/or committals have been made for the
connection, the embedded client will release the resources reserved.

ReturnCode is a parameter returned by the Call Agent. It indicates the outcome of the command
and consists of an integer number (see 6.5) optionally followed by commentary.

32 ITU-T Rec. J.162 (03/2004)

6.3.7 DeleteConnection (Multiple Connections From the Call Agent)
A variation of the DeleteConnection function can be used by the Call Agent to delete multiple
connections at the same time. The command can be used to delete all connections that relate to a call
for an endpoint:

 ReturnCode
 ← DeleteConnection(CallId,
 EndpointId)

The EndpointId, in this form of the DeleteConnection command, MUST NOT use the "any of"
wild-card. All connections for the endpoint(s) with the CallId specified will be deleted. The
command does not return any individual statistics or call parameters.

DeleteConnection can also be used by the Call Agent to delete all connections that terminate in a
given endpoint:

 ReturnCode
 ← DeleteConnection(EndpointId)

In this form of the DeleteConnection command, Call Agents can take advantage of the hierarchical
naming structure of endpoints to delete all the connections that belong to a group of endpoints. In
this case, part of the "local endpoint name" component of the EndpointId can be specified using the
"all" wild-carding convention, as specified in 6.1.1. The "any of" wild-carding convention MUST
NOT be used. The command does not return any individual statistics or call parameters.

After the connection has been deleted, packet network media streams previously supported by the
connection are no longer available. Any media packets received for the old connection are simply
discarded and no new media packets for the stream are sent. When one or more D-QoS reservations
and/or committals have been made for the connection, the embedded client will release the resources
reserved.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and
consists of an integer number (see 6.5) optionally followed by commentary.

6.3.8 Auditing
The MGCP is based upon a centralized call control architecture where a Call Agent acts as the
remote controller of client devices that provide voice interfaces to users and networks. In order to
achieve the same or higher levels of availability as the current PSTN, some protocols have
implemented mechanisms to periodically "ping" subscribers in order to minimize the time before an
individual outage is detected. In this interest, an MGCP-specific auditing mechanism between the
embedded clients and the Call Agents in an IPCablecom system is provided to allow the Call Agent
to audit endpoint and connection state and to retrieve protocol-specific capabilities of an endpoint.

Two commands for auditing are defined for the embedded clients:
• AuditEndPoint: Used by the Call Agent to determine the status of an endpoint.
• AuditConnection: Used by the Call Agent to obtain information about a connection.

Network management beyond the capabilities provided by these commands is generally desirable,
e.g., information about the status of the embedded client as opposed to individual endpoints. Such
capabilities are expected to be supported by the use of the Simple Network Management Protocol
(SNMP) and by definition of a MIB for the embedded client, both of which are outside the scope of
this Recommendation.

 ITU-T Rec. J.162 (03/2004) 33

6.3.8.1 AuditEndPoint
The AuditEndPoint command can be used by the Call Agent to find out the status of a given
endpoint.

 { ReturnCode
 [, EndPointIdList]
 [, NumEndPoints] } |
 { ReturnCode
 [, RequestedEvents]
 [, DigitMap]
 [, SignalRequests]
 [, RequestIdentifier]
 [, NotifiedEntity]
 [, ConnectionIdentifiers]
 [, DetectEvents]
 [, ObservedEvents]
 [, EventStates]
 [, VersionSupported]
 [, ReasonCode
 [, MaxMGCPDatagram]
 [, Capabilities] }
 ← AuditEndPoint(EndpointId
 [, RequestedInfo] |
 [, SpecificEndPointID]
 [, MaxEndPointIDs] })

The EndpointId identifies the endpoint that is being audited. The "any of" wild-card convention
MUST NOT be used.

The "all of" wild-card convention can be used to audit a group of endpoints. If this convention is
used, the gateway MUST return the list of endpoint identifiers that match the wild-card in the
EndPointIdList parameter, which is simply a list of SpecificEndpointIds – RequestedInfo MUST
NOT be included in this case. MaxEndPointIDs is a numerical value that indicates the maximum
number of EndpointIds to return. If additional endpoints exist, the NumEndPoints return parameter
MUST be present and indicate the total number of endpoints that match the EndpointID specified. In
order to retrieve the next block of EndpointIDs, the SpecificEndPointID is set to the value of the
last endpoint returned in the previous EndPointIDList, and the command is issued.

When the wild-card convention is not used, the (possibly empty) RequestedInfo describes the
information that is requested for the EndpointId specified – the SpecificEndpointID and
MaxEndpointID parameters MUST NOT be used then. The following endpoint-specific information
can then be audited with this command:
 RequestedEvents, DigitMap, SignalRequests, RequestIdentifier, NotifiedEntity,

ConnectionIdentifiers, DetectEvents, ObservedEvents, EventStates, VersionSupported,
ReasonCode, MaxMGCPDatagram, and Capabilities.

If an endpoint is queried about a parameter it does not understand, the endpoint MUST NOT
generate an error; instead the parameter MUST be omitted from the response.

The response will, in turn, include information about each of the items for which auditing
information was requested:
• RequestedEvents – The current value of RequestedEvents the endpoint is using including

the action associated with each event. Persistent events are included in the list.
• DigitMap – The digit map the endpoint is using currently.

34 ITU-T Rec. J.162 (03/2004)

• SignalRequests – A list of the Time-Out signals that are currently active, On/Off signals
that are currently "on" for the endpoint (with or without parameter), and any pending Brief
signals21. Time-Out signals that have timed-out, and currently playing Brief signals are not
included. Parameterized signals are reported with the parameters they were applied with.

• RequestIdentifier – The RequestIdentifier for the last NotificationRequest received by the
endpoint (includes notification request embedded in connection handling primitives). If no
notification request has been received, the value zero will be returned.

• NotifiedEntity – The current "notified entity" for the endpoint. Note that the MTA MAY
include only the absolute domain name (including the hostname) of its NotifiedEntity if only
the absolute domain name (including the hostname) was provided to it via the NotifiedEntity
parameter of an NCS message or acknowledgement. The CMS SHOULD accept the value in
this case.

• ConnectionIdentifiers – A comma-separated list of ConnectionIdentifiers for all
connections that currently exist for the specified endpoint.

• DetectEvents – The current value of DetectEvents the endpoint is using. Persistent events
are included in the list.

• ObservedEvents – The current list of observed events for the endpoint.
• EventStates – For events that have auditable states associated with them, the event

corresponding to the state the endpoint is in, e.g., off-hook in the example line package if the
endpoint is off-hook. The definition of the individual events will state if the event in
question has an auditable state associated with it.

• VersionSupported – A list of protocol versions supported by the endpoint.
• ReasonCode – The value of the Reason-Code parameter in the last RestartInProgress or

DeleteConnection command issued by the gateway for the endpoint, or the special value 000
if the endpoint's state is normal.

• MaxMGCPDatagram – The maximum size of an MGCP datagram in bytes supported by
the endpoint (see 7.5.3). The value excludes any lower layer overhead. Support for this
parameter is optional. The default maximum MGCP datagram size is assumed if a value is
not returned.

• Capabilities – The capabilities for the endpoint similar to the LocalConnectionOptions
parameter and including event packages and connection modes. If any unknown capabilities
are reported, they MUST simply be ignored. If there is a need to specify that some
parameters, such as, e.g., silence suppression, are only compatible with some codecs, then
the gateway will return several capability sets.

• Compression Algorithm – A list of supported codecs. The literal names defined in ITU-T
Rec. J.161 MUST be used. Unknown compression algorithms SHOULD be ignored if they
are received. The rest of the parameters will apply to all codecs specified in this list.
– Packetization Period – A single value or a range may be specified.
– Bandwidth – A single value or a range corresponding to the range for packetization

periods may be specified (assuming no silence suppression).
– Echo Cancellation – Whether echo cancellation is supported or not.
– Silence Suppression – Whether silence suppression is supported or not.
– Type of Service – Whether type of service is supported or not.
– Event Packages – A list of event packages supported. The first event package in the list

will be the default package.

21 Currently, there should be no pending brief signals.

 ITU-T Rec. J.162 (03/2004) 35

– Modes – A list of supported connection modes.
– Dynamic Quality of Service – Whether Dynamic Quality of Service is supported or

not.
– Security – Whether IPCablecom Security services are supported or not. If supported,

the following parameters may be present as well:
• RTP Ciphersuites – A list of authentication and encryption algorithms supported

for RTP.
• RTCP Ciphersuites – A list of authentication and encryption algorithms supported

for RTCP.
The Call Agent may then decide to use the AuditConnection command to obtain further information
about the connections.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and
consists of an integer number (see 6.5) optionally followed by commentary.

If no info was requested and the EndpointId refers to a valid fully-specified EndpointId, the gateway
simply returns a successful response (return code 200 – transaction executed normally).

It should be noted that all of the information returned is merely a snapshot. New commands
received, local activity, etc., may alter most of the above. For example the hook-state may change
before the Call Agent receives the above information.

6.3.8.2 AuditConnection
Auditing of individual connections on an endpoint can be achieved using the AuditConnection
command.

 ReturnCode
 [, CallId]
 [, NotifiedEntity]
 [, LocalConnectionOptions]
 [, Mode]
 [, RemoteConnectionDescriptor]
 [, LocalConnectionDescriptor]
 [, ConnectionParameters]
 ← AuditConnection(EndpointId
 , ConnectionId
 [, RequestedInfo])

The EndpointId identifies the endpoint that is being audited − wild-cards MUST NOT be used. The
(possibly empty) RequestedInfo describes the information that is requested for the ConnectionId
within the EndpointId specified. The following connection info can be audited with this command:

 CallId, NotifiedEntity, LocalConnectionOptions,

 Mode, ConnectionParameters, RemoteConnectionDescriptor,

 LocalConnectionDescriptor.

The response will, in turn, include information about each of the items for which auditing info was
requested:
• CallId – The CallId for the call to which the connection belongs.
• NotifiedEntity – The current "notified entity" for the endpoint.
• LocalConnectionOptions – The LocalConnectionOptions supplied for the connection.
• Mode – The current connection mode.
• ConnectionParameters – Current connection parameters for the connection.

36 ITU-T Rec. J.162 (03/2004)

• LocalConnectionDescriptor – The LocalConnectionDescriptor that the gateway supplied
for the connection.

• RemoteConnectionDescriptor – The RemoteConnectionDescriptor that was supplied to the
gateway for the connection.

ReturnCode is a parameter returned by the gateway. It indicates the outcome of the command and
consists of an integer number (see 6.5) optionally followed by commentary.

If no information was requested, and the EndpointId refers to a valid endpoint, the gateway simply
checks that the connection specified exists and, if so, returns a positive response (return code 200 –
transaction executed).

6.3.9 Restart in Progress
The RestartInProgress command is used by the gateway to signal that an endpoint, or a group of
endpoints, is taken out of service or is being placed back in service.

 ReturnCode
 [, NotifiedEntity]
 [, VersionSupported]
 ← RestartInProgress(EndpointId
 , RestartMethod
 [, RestartDelay]
 [ReasonCode])

The EndpointId identifies the endpoints that are taken in or out of service. The "all of" wild-card
convention can be used to apply the command to a group of endpoints, for example, all endpoints
that are attached to a specified interface, or even all endpoints that are attached to a given gateway.
The "any of" wild-card convention MUST NOT be used.

The RestartMethod parameter specifies the type of restart:
• A "graceful" restart method indicates that the specified endpoint(s) will be taken out of

service after the specified "restart delay". The established connections are not yet affected,
but the Call Agent should refrain from establishing new connections, and should try to
gracefully tear down any existing connections.

• A "forced" restart method indicates that the specified endpoints are taken out of service
abruptly. The established connections, if any, are lost.

• A "cancel-graceful" restart method indicates that a gateway is cancelling a previously issued
"graceful" restart method for the same endpoints. When this command is sent, the gateway
will immediately begin to allow the establishment of new connections on these endpoints.

• A "restart" method indicates that service will be restored on the endpoints after the specified
"restart delay". There are no connections that are currently established on the endpoints.

• A "disconnected" method indicates that the endpoint has become disconnected and is now
trying to establish connectivity. The "restart delay" specifies the number of seconds the
endpoint has been disconnected. Established connections are not affected.

The optional "restart delay" parameter is expressed as a number of seconds. If the number is absent,
the delay value should be considered null. In the case of the "graceful" method, a null delay indicates
that the Call Agent should simply wait for the natural termination of the existing connections,
without establishing new connections. The restart delay is always considered null in the case of the
"forced and "cancel-graceful" methods. A restart delay of null for the "restart" method indicates that
service has already been restored. This typically will occur after gateway startup/reboot. To mitigate
the effects of a client IP address change, the Call Agent MAY wish to resolve the embedded client's
domain name by querying the DNS regardless of the TTL of a current resource record for the
restarted embedded client.

 ITU-T Rec. J.162 (03/2004) 37

Embedded clients SHOULD send a "graceful" or "forced" RestartInProgress message as a courtesy
to the Call Agent when they are taken out of service, e.g., by being shut down, or taken out of
service by a network management system, although the Call Agent cannot rely on always receiving
such messages. Embedded clients MUST send a "restart" RestartInProgress message with a null
delay to their Call Agent when they are back in service according to the restart procedure specified
in 6.4.3.5 – Call Agents can rely on receiving this message. Also, embedded clients MUST send a
"disconnected" RestartInProgress message to their current "notified entity" according to the
"disconnected" procedure specified in 6.4.3.6. The "restart delay" parameter MUST NOT be used
with the "forced" restart method.

The optional ReasonCode parameter may be used to indicate the cause of the restart. The
RestartInProgress message will be sent to the current "notified entity" for the EndpointId in question.
It is expected that a default Call Agent, i.e., "notified entity", has been provisioned for each endpoint
so, after a reboot, the default Call Agent will be the "notified entity" for each endpoint. Embedded
clients MUST take full advantage of wild-carding to minimize the number of RestartInProgress
messages generated when multiple endpoints in a gateway restart and the endpoints are managed by
the same Call Agent.

ReturnCode is a parameter returned by the Call Agent. It indicates the outcome of the command
and consists of an integer number (see 6.5) optionally followed by commentary.

A NotifiedEntity MAY additionally be returned with the response to the RestartInProgress from the
Call Agent – this should normally only be done in response to "restart" or "disconnected" (see also
6.4.3.5 and 6.4.3.6):
• If the response indicated success (return code 200 – transaction executed), the restart in

question completed successfully, and the NotifiedEntity returned is the new "notified entity"
for the endpoint(s).

• If the response from the Call Agent indicated an error, the restart in question is not yet
complete. If the response was 521 (endpoint redirected), then the response MUST include a
NotifiedEntity parameter which specifies the new "notified entity" for the endpoint(s), and
MUST be used when retrying the restart in question (as a new transaction).

In the case of "restart" and "disconnected", the restart in question MUST be retried whenever the
Call Agent returns a transient (4xx) error code, whereas it SHOULD be retried for any other
restartMethod. It is RECOMMENDED that any type of restart is terminated if a permanent (5xx)
error code is returned, except for 521, as specified above.

Finally, a VersionSupported parameter with a list of supported versions may be returned if the
response indicated version incompatibility (error code 528).

6.4 States, failover and race conditions
In order to implement proper call signalling, the Call Agent must keep track of the state of the
endpoint, and the gateway must make sure that events are properly notified to the call agent. Special
conditions may exist when the gateway or the call agent are restarted: the gateway may need to be
redirected to a new call agent during "failover" procedures; Similarly, the call agent may need to take
special action when the gateway is taken offline, or restarted.

6.4.1 Recaps and highlights
As mentioned in 6.1.4, Call Agents are identified by their domain name, and each endpoint has one,
and only one, "notified entity" associated with it at any given point in time. In this clause we recap
and highlight the areas that are of special importance to reliability and fail-over in MGCP:
• A Call Agent is identified by its domain name, not its network addresses, and several

network addresses can be associated with a domain name.

38 ITU-T Rec. J.162 (03/2004)

• An endpoint has one, and only one, Call Agent associated with it at any given point in time.
The Call Agent associated with an endpoint is the current value of the "notified entity".

• The "notified entity" is initially set to a provisioned value. When commands with a
NotifiedEntity parameter is received for the endpoint, including wild-carded
endpoint-names, the "notified entity" is set to the value specified. If the "notified entity" for
an endpoint is empty or has not been set explicitly22, the "notified entity" defaults to the
source address of the last connection handling command or notification request received for
the endpoint. In this case, the Call Agent will thus be identified by its network address,
which SHOULD only be done on exceptional basis.

• Responses to commands are always sent to the source address of the command, regardless of
the current "notified entity". When a Notify message needs to be piggybacked with the
response, the datagram is still sent to the source address of the new command received,
regardless of the NotifiedEntity for any of the commands.

• When the "notified entity" refers to a domain name that resolves to multiple IP-addresses,
endpoints are capable of switching between each of these addresses; however, they cannot
change the "notified entity" to another domain name on their own. A call agent can however
instruct them to switch by providing them with a new "notified entity".

• If a call agent becomes unavailable, the endpoints managed by that call agent will eventually
become "disconnected". The only way for these endpoints to become connected again is
either for the failed Call Agent to become available again, or for another (backup) Call
Agent to contact the affected endpoints with a new "notified entity".

• When another (backup) Call Agent has taken over control of a group of endpoints, it is
assumed that the failed Call Agent will communicate and synchronize with the backup Call
Agent in order to transfer control of the affected endpoints back to the original Call Agent, if
so desired. Alternatively, the failed Call Agent could simply become the backup Call Agent
now.

We should note that handover conflict resolution between separate Call Agents is not provided – we
are relying strictly on the Call Agents knowing what they are doing and communicating with each
other (although AuditEndpoint can be used to learn about the current "notified entity").

6.4.2 Retransmission and detection of lost associations
The MGCP protocol is organized as a set of transactions, each of which is composed of a command
and a response. The MGCP messages, being carried over UDP, may be subject to losses. In the
absence of a timely response (see 7.5), commands are repeated. Gateways MUST keep in memory a
list of the responses that they sent to recent transactions, and a list of the transactions that are
currently being executed. Recent is here defined by the value Tthist that specifies the number of
seconds that responses to old transactions must be kept for. The default value for Tthist is 30 seconds.

The transaction identifiers of incoming commands are first compared to the transaction identifiers of
the recent responses. If a match is found, the gateway does not execute the transaction, but simply
repeats the old response. If a match to a previously responded to transaction is not found, the
transaction identifier of the incoming command is compared to the list of transactions that have not
yet finished executing. If a match is found, the gateway does not execute the transaction; subsequent
handling depends on the command in question. If it is a CreateConnection or ModifyConnection
command, the gateway sends a provisional response. If it is any other command, it is simply ignored.
In either case, a final response will be provided when the execution of the command is complete.

22 This could for instance happen by specifying an empty NotifiedEntity parameter.

 ITU-T Rec. J.162 (03/2004) 39

This repetition mechanism is used to guard against four types of possible errors:
• transmission errors when, e.g., a packet is lost due to noise on a line or congestion in a

queue;
• component failure when, e.g., an interface for a call agent becomes unavailable;
• call agent failure when, e.g., all interfaces for a call agent becomes unavailable;
• failover, when a new call agent is "taking over" transparently.

The elements should be able to derive from the past history an estimate of the packet loss rate. In a
properly configured system, this loss rate should be very low, typically less than 1% on average. If a
call agent or a gateway has to repeat a message more than a few times, it is very legitimate to assume
that something else than a transmission error is occurring. For example, given a uniformly
distributed loss rate of 1%, the probability that 5 consecutive transmission attempts fail is 1 in
100 billion, an event that should occur less than once every 10 days for a call agent that processes
1000 transactions per second. (Indeed, the number of repetitions that is considered excessive should
be a function of the prevailing packet loss rate.) When errors are non-uniformly distributed, the
consecutive failure probability can become somewhat higher. We should note that the "suspicion
threshold", which we will call "Max1", is normally lower than the "disconnection threshold", which
we will call "Max2", and which should be set to a larger value.

A classic retransmission algorithm would simply count the number of successive repetitions, and
conclude that the association is broken after re-transmitting the packet an excessive number of times
(typically between 7 and 11 times). In order to account for the possibility of an undetected or in-
progress "failover", we modify the classic algorithm as follows (a retransmission algorithm including
these modifications is illustrated in Figure 4 below):
• The gateway MUST always check for the presence of a new call agent. It can be noticed by:

− receiving a command where the NotifiedEntity points to a new call agent; or
− receiving a redirection response pointing to a new call agent.

• If a new Call Agent is detected, the gateway MUST direct retransmissions of any
outstanding commands for the endpoint(s) redirected to that new Call Agent. Responses to
new or old commands are still transmitted to the source address of the command.

• Prior to any retransmission, it is checked that the time elapsed since the sending of the initial
datagram is no greater than Tsmax. If more than Tsmax time has elapsed, the endpoint becomes
disconnected.

• If the number of retransmissions to this Call Agent equals "Max1", the gateway MAY
actively query the name server in order to detect the possible change of call agent interfaces,
regardless of the Time To Live (TTL) associated with the DNS record.

• The gateway may have learned several IP addresses for the Call Agent. If the number of
retransmissions for this IP address is greater than or equal to "Max1" and lower than
"Max2", and there are more IP addresses that have not been tried, then the gateway MUST
direct the retransmissions to the remaining alternate addresses in its local list.

• If there are no more interfaces to try, and the number of retransmissions is Max2, then the
gateway SHOULD contact the DNS one more time to see if any other interfaces have
become available. If not, the endpoint(s) managed by this Call Agent are now disconnected.
When an endpoint becomes disconnected, it MUST then initiate the "disconnected"
procedure as specified in 6.4.3.6.

40 ITU-T Rec. J.162 (03/2004)

Figure 4/J.162 – Retransmission algorithm

In order to adapt to network load automatically, MGCP specifies exponentially increasing timers
(see 7.5.2). If the initial time-out is set to 200 milliseconds, the loss of a fifth retransmission will be
detected after about 6 seconds. This is probably an acceptable waiting delay to detect a failover. The
retransmissions should continue after that delay not only in order to perhaps overcome a transient
connectivity problem, but also in order to allow some more time for the execution of a failover –
waiting a total delay of 30 seconds is probably acceptable.

It should be noted, that there is an intimate relationship between Tsmax, Tthist, and the maximum
transit time, Tpmax. Specifically, the following relation MUST be satisfied to prevent retransmitted
commands from being executed more than once:

 Tthist ≥ Tsmax + Tpmax

The default value for Tsmax is 20 seconds. Thus, if the assumed maximum propagation delay is
10 seconds, then responses to old transactions must be kept for a period of at least 30 seconds. The
importance of having the sender and receiver agree on these values cannot be overstated.

The default value for Max1 is 5 retransmissions and the default value for Max2 is 7 retransmissions.
Both of these values may be altered by the provisioning process.

Furthermore, the provisioning process MUST be able to disable one or both of the Max1 and Max2
DNS queries.

 ITU-T Rec. J.162 (03/2004) 41

6.4.3 Race conditions
In this clause we describe how MGCP deals with race conditions.

First of all, MGCP deals with race conditions through the notion of a "quarantine list" that
quarantines events and through explicit detection of desynchronization, e.g., for mismatched
hook-state due to glare for an endpoint.

Secondly, MGCP does not assume that the transport mechanism will maintain the order of
commands and responses. This may cause race conditions that may be obviated through a proper
behaviour of the call agent by a proper ordering of commands.

Finally, in some cases, many gateways may decide to restart operation at the same time. This may
occur, for example, if an area loses power or transmission capability during an earthquake or an ice
storm. When power and transmission capability are re-established, many gateways may decide to
send RestartInProgress commands simultaneously, which could lead to very unstable operation if not
carefully controlled.

6.4.3.1 Quarantine list
MGCP controlled gateways will receive notification requests that ask them to watch for a list of
events. The protocol elements that determine the handling of these events are the "Requested
Events" list, the "Digit Map", the "Quarantine Handling", and the "Detect Events" list.

When the endpoint is initialized, the requested events list only consists of persistent events for the
endpoint, and the digit map is assumed empty. After reception of a NotificationRequest command,
the gateway starts observing the endpoint for occurrences of the events mentioned in the list,
including persistent events.

The events are examined as they occur. The action that follows is determined by the "action"
parameter associated to the event in the list of requested events, and also by the digit map. The
events that are defined as "accumulate" or "accumulate according to digit map" are accumulated in a
list of observed events. The events that are marked as "accumulate according to the digit map" will
additionally be accumulated in the "current dial string". This will go on until one event is
encountered that triggers a Notify command which will be sent to the "notified entity".

The gateway, at this point, will transmit the Notify command and will place the endpoint in a
"notification state". As long as the endpoint is in this "notification state", the events that are detected
on the endpoint are stored in a "quarantine" buffer for later processing. The events are, in a sense,
"quarantined". The events detected are the events specified by the union of the RequestedEvents
parameter and the most recently received DetectEvents parameter or, in case no DetectEvents
parameter has been received, the events that are referred to in the RequestedEvents. Persistent events
are detected as well.

The endpoint exits the "notification state" when the response (whether success or failure) to the
Notify command is received23. The Notify command may be retransmitted in the "notification state",
as specified in 6.4.2. If the endpoint is or becomes disconnected (see 6.4.2) during this, a response to
the Notify command will never be received. The Notify command is then lost and hence no longer
considered pending, yet the endpoint is still in the "notification state". Should that occur, completion
of the disconnected procedure specified in 6.4.3.6 shall then lead the endpoint to exit the
"notification state".

When the endpoint exits the "notification state" it resets the list of observed events and the "current
dial string" of the endpoint to a null value.

Following that point, the behaviour of the gateway depends on the value of the QuarantineHandling
parameter in the triggering NotificationRequest.

23 It should be noted that the Notify action cannot be combined with an Embedded NotificationRequest.

42 ITU-T Rec. J.162 (03/2004)

If the Call Agent had specified that it expected, at most, one notification in response to the
notification request command ("lockstep" mode), then the gateway MUST simply keep on
accumulating events in the quarantine buffer until it receives the next notification request command.
Until this happens, the endpoint is in a "lockstep state", and events that occur and are to be detected
are simply stored in the quarantine buffer. The events to be quarantined are the same as in the
"notification state". Once the new NotificationRequest is received and executed successfully, the
endpoint exits the "lockstep state".

If, however, the gateway is authorized to send multiple successive Notify commands ("loop" mode),
it will proceed as follows. When the gateway exits the "notification state", it resets the list of
observed events and the "current dial string" of the endpoint to a null value and starts processing the
list of quarantined events, using the already received list of requested events and digit map. When
processing these events, the gateway may encounter an event, which triggers a Notify command to
be sent. If that is the case, the gateway can adopt one of the two following behaviours:
• It can immediately transmit a Notify command that will report all events that were

accumulated in the list of observed events until the triggering event, included, leaving the
unprocessed events in the quarantine buffer.

• It can attempt to empty the quarantine buffer and transmit a single Notify command
reporting several sets of events. The "current dial string" MUST then be reset to a null value
after each triggering event. The events that follow the last triggering event MUST be left in
the quarantine buffer.

If the gateway transmits a Notify command, the endpoint will re-enter and remain in the "notification
state" until the acknowledgement is received (as described above). If the gateway does not find a
quarantined event that triggers a Notify command, it places the endpoint in a normal state. Events
are then processed as they come, in exactly the same way as if a Notification Request command had
just been received.

A gateway can receive at any time a new NotificationRequest command for the endpoint, including
the case where the endpoint is disconnected, which will also have the effect of taking the endpoint
out of the "notification state" assuming the NotificationRequest executes successfully. Activating an
embedded NotificationRequest is here viewed as receiving a new NotificationRequest as well,
except that the current list of ObservedEvents remains unmodified rather than being processed again.

When a new NotificationRequest is received in the "notification state", the gateway SHOULD
attempt to deliver the pending Notify (note that a Notify that was lost due to being disconnected, is
no longer considered pending) prior to a successful response to the new NotificationRequest. It does
so by using the "piggybacking" functionality of the protocol and placing the messages (commands
and responses) to be sent in order with the oldest message first. The messages will then be sent in a
single packet to the source of the new NotificationRequest, regardless of the source and "notified
entity" for the old and new command. The steps involved are the following:
1) the gateway builds a message that carries in a single packet a repetition of the old

outstanding Notify command and the response to the new NotificationRequest command;
2) the endpoint is then taken out of the "notification state" without waiting for the response to

the Notify command;
3) a copy of the outstanding Notify command is kept until a response is received. If a time-out

occurs, the Notify will be repeated, in a packet that will also carry a repetition of the
response to the NotificationRequest:
• If the packet carrying the response to the NotificationRequest is lost, the Call Agent will

retransmit the NotificationRequest. The gateway will reply to this repetition by
retransmitting in a single packet the outstanding Notify command and the response to
the NotificationRequest – this datagram will be sent to the source of the
NotificationRequest.

 ITU-T Rec. J.162 (03/2004) 43

• Notify(s) for a given endpoint MUST be delivered in-order. If the gateway has to
transmit a new Notify before a response to the previous Notify is received, it constructs
a packet that piggybacks a repetition of the old Notify, a repetition of the response to the
last NotificationRequest, and the new Notify – this datagram will be sent to the current
"notified entity".

After receiving a NotificationRequest command, the "requested events" list and "digit map" (if a new
one was provided) are replaced by the newly received parameters, and the "current dial string" is
reset to a null value. Furthermore, when the NotificationRequest was received in the "notification
state", the list of observed event is reset to a null value. The subsequent behaviour is then
conditioned by the value of the QuarantineHandling parameter. The parameter may specify that
quarantined events, and observed events (which in this case is an empty list), are to be discarded, in
which case all quarantined and observed events are discarded. If the parameter specifies that the
quarantined and observed events should be processed, the gateway will start processing the list of
quarantined and observed events, using the newly received list of "requested events" and "digit map"
if provided. When processing these events, the gateway may encounter an event, which triggers a
Notify command to be sent. If that is the case, the gateway will immediately transmit a Notify
command that will report all events that were accumulated in the list of "observed events" up until
and including the triggering event, leaving the unprocessed events in the quarantine buffer. The
endpoint then enters the "notification state" again.

A new notification request may be received while the gateway has accumulated events according to
the previous notification requests, but has not yet detected any notification-triggering events. The
handling of not-yet-notified events is determined, as with the quarantined events, by the quarantine
handling parameters:
• If the quarantine-handling parameter specifies that quarantined events shall be ignored, the

observed events list is simply reset.
• If the quarantine-handling parameter specifies that quarantined events shall be processed, the

observed event list is transferred to the quarantined event list. The observed event list is then
reset, and the quarantined event list is processed. The only exception is the activation of an
embedded Notification Request. In this case the observed event list remains unmodified
rather than being processed again.

The above procedure applies to all forms of notification requests, regardless of whether they are part
of a connection handling command or provided as a NotificationRequest command. Connection
handling commands that do not include a notification request are neither affected by nor do they
affect the above procedure.

44 ITU-T Rec. J.162 (03/2004)

Figure 5 illustrates the procedure specified above assuming all transactions execute successfully:

J,162REV.1_F05

Processing events
Need to send NTFY

NoOutstanding NTFY +
RQNT response?

Send NTFY

Yes

Piggyback new
NTFY with old

outstanding datagram

Notification state

Add event to
Quarantine buffer

Event to be quarantined

new RQNT received

NTFY response
received

Apply and piggyback new
RQNT response with

outstanding datagram
new

No (loop mode)
Step mode?

Yes

Yes
Process mode?

Lockstep state
wait for RQNT

No

Add event to
quarantine

buffer

Discard
quarantined

events

Apply and
send RQNT

response

Event to be quarantined RQNT
received

Figure 5/J.162 – Quarantine list procedures

Call Agents SHOULD provide the response to a successful Notify message and the new
NotificationRequest in the same datagram using the piggybacking mechanism24.

6.4.3.2 Explicit detection
A key element of the state of several endpoints is the position of the hook. Although hook-state
changing events are persistent in NCS race conditions and state mismatch may still occur, for
example when the user decides to go off-hook while the Call Agent is in the process of requesting
the gateway to look for off-hook events and perhaps apply a ringing signal (the "glare" condition
well known in voice-based capabilities).

To avoid this race condition, the gateway MUST check the condition of the endpoint before
responding to a NotificationRequest. Specifically, it MUST return an error:
1) If the gateway is requested to notify an "off-hook" transition while the phone is already

off-hook (error code 401 – phone off-hook).
2) If the gateway is requested to notify an "on hook" or "flash hook" condition while the phone

is already on hook (error code 402 – phone on hook).

24 Vendors that choose not to follow this Recommendation should examine Call Agent failure scenarios

carefully.

 ITU-T Rec. J.162 (03/2004) 45

Additionally, individual signal definitions can specify that a signal will only operate under certain
conditions, e.g., ringing may only be possible if the phone is already off-hook. If such prerequisites
exist for a given signal, the gateway MUST return the error specified in the signal definition if the
prerequisite is not met.

It should be noted that the condition check is performed at the time the notification request is
received, where as the actual event that caused the current condition may have either been reported,
or ignored earlier, or it may currently be quarantined.

The other state variables of the gateway, such as the list of requested events or list of requested
signals, are entirely replaced after each successful NotificationRequest, which prevents any long
term discrepancy between the Call Agent and the gateway.

When a NotificationRequest is unsuccessful, whether it is included in a connection-handling
command or not, the gateway will simply continue as if the command had never been received.
although an error is returned. As all other transactions, the NotificationRequest MUST operate as an
atomic transaction; thus, any changes initiated as a result of the command MUST be reverted.

Another race condition can occur when a Notify is issued shortly before the reception by the
gateway of a NotificationRequest. The RequestIdentifier is used to correlate Notify commands with
NotificationRequest commands thereby enabling the Call Agent to determine if the Notify command
was generated before or after the gateway received the new NotificationRequest.

6.4.3.3 Transactional semantics
As the potential transaction completion times increases, e.g., due to external resource reservations, a
careful definition of the transactional semantics becomes increasingly important. In particular the
issue of race conditions, specifically as it relates to hook-state, must be defined carefully.

An important point to consider is that the hook-state may in fact change between the time a
transaction is initiated and the time it completes. More generally, we may say that the successful
completion of a transaction depends on one or more pre-conditions where one or more of the
pre-conditions may change dynamically during the execution of the transaction.

The simplest semantics for this is simply to require that all pre-conditions MUST be met from the
time the transaction is initiated until the transaction completes. Thus, if any of the preconditions
change during the execution of the transaction, the transaction MUST fail. Furthermore, as soon as
the transaction is initiated, all new events are quarantined. When the outcome of the transaction is
known, all quarantined events are then processed.

As an example, consider a transaction that includes a request for the "off-hook" event. When the
transaction is initiated, the phone is "on-hook" and this pre-condition is therefore met. If the
hook-state changes to "off-hook" before the transaction completes, the pre-condition is no longer
met, and the transaction therefore immediately fails. The "off-hook" event will now be stored in the
"quarantine" buffer which then gets processed.

6.4.3.4 Ordering of commands and treatment of disorder
MGCP does not mandate that the underlying transport protocol guarantees the sequencing of
commands sent to a gateway or an endpoint. This property tends to maximize the timeliness of
actions, but it has a few drawbacks. For example:
• Notify commands may be delayed and arrive to the call agent after the transmission of a new

Notification Request command.
• If a new NotificationRequest is transmitted before a response to a previous one is received,

there is no guarantee that the previous one will not be received in second position.

46 ITU-T Rec. J.162 (03/2004)

Call Agents and gateways that want to guarantee consistent operation of the endpoints can use the
rules specified below:
1) When a gateway handles several endpoints, commands pertaining to the different endpoints

can be sent in parallel, for example following a model where each endpoint is controlled by
its own process or its own thread.

2) When several connections are created on the same endpoint, commands pertaining to
different connections can be sent in parallel.

3) On a given connection, there should normally be only one outstanding command (create or
modify). However, a DeleteConnection command can be issued at any time. In consequence,
a gateway may sometimes receive a ModifyConnection command that applies to a
previously deleted connection. Such commands MUST be ignored, and an error returned
(error code 515 – incorrect connection-id).

4) On a given endpoint, there should normally be only one outstanding NotificationRequest
command at any time. The RequestId parameter is used to correlate Notify commands with
the triggering NotificationRequest.

5) In some cases, an implicitly or explicitly wild-carded DeleteConnection command that
applies to a group of endpoints can step in front of a pending CreateConnection command.
The Call Agent should individually delete all connections whose completion was pending at
the time of the global DeleteConnection command. Also, new CreateConnection commands
for endpoints named by the wild-carding should not be sent until a response to the
wild-carded DeleteConnection command is received.

6) When commands are embedded within each other, sequencing requirements for all
commands MUST be adhered to. For example a CreateConnection command with a
notification request in it must adhere to the sequencing requirements for CreateConnection
and NotificationRequest at the same time.

7) AuditEndpoint and AuditConnection are not subject to any sequencing.
8) RestartInProgress must always be the first command sent by an endpoint as defined by the

restart procedure (see 6.4.3.5). Any other command or response must be delivered after this
RestartInProgress command (piggybacking allowed).

9) When multiple messages are piggybacked in a single packet, the messages are always
processed in order.

Those of the above rules that specify gateway behaviour MUST be adhered to by embedded clients;
however, the embedded client MUST NOT make any assumptions as to whether Call Agents follow
the rules or not. Consequently gateways MUST always respond to commands, regardless of whether
they adhere to the above rules or not.

6.4.3.5 Fighting the Restart Avalanche
Let's suppose that a large number of gateways are powered on simultaneously. If they were to all
initiate a RestartInProgress transaction, the Call Agent would very likely be swamped, leading to
message losses and network congestion during the critical period of service restoration. In order to
prevent such avalanches, the following behaviour MUST be followed:
1) When a gateway is powered on, it initiates a restart timer to a random value, uniformly

distributed between 0 and a provisionable maximum waiting delay (MWD),
e.g., 360 seconds (see below). Care MUST be taken to avoid synchronicity of the random
number generation between multiple gateways that would use the same algorithm.

2) The gateway then waits for either the end of this timer, the reception of a command from the
call agent, or the detection of a local user activity, such as for example an off-hook transition
on a residential gateway. A pre-existing off-hook condition results in the generation of an
off-hook event.

 ITU-T Rec. J.162 (03/2004) 47

3) When the restart timer elapses, when a command is received, or when an activity or
pre-existing off-hook condition is detected, the gateway initiates the restart procedure.

The restart procedure simply states that the endpoint MUST send a RestartInProgress command to
the Call Agent informing it about the restart and furthermore guarantee that the first message
(command or response) that the Call Agent sees from this endpoint MUST be this RestartInProgress
command. The endpoint MUST take full advantage of piggybacking in achieving this. For example,
if an off-hook activity occurs prior to the restart timer expiring, a packet containing the
RestartInProgress command, and with a piggybacked Notify command for the off-hook event will be
generated. In the case where the restart timer expires without any other activity, the gateway simply
sends a RestartInProgress message.

Note that if the RestartInProgress is piggybacked with the response (R) to a command received while
restarting, then retransmission of the RestartInProgress does not require piggybacking of the
response R. However, while the endpoint is restarting, a resend of the response R does require the
RestartInProgress to be piggybacked to ensure in-order delivery of the two. The restart procedure is
complete once a success response has been received. If an error response is received, the subsequent
behaviour depends on the error code in question:
• If the error code indicates a transient error (4xx), then the restart procedure MUST be

initiated again (as a new transaction).
• If the error code is 521, then the endpoint is redirected, and the restart procedure MUST be

initiated again (as a new transaction). The 521 response should have included a
NotifiedEntity which then is the "notified entity" towards which the restart is initiated.

• If the error is any other permanent error (5xx), then it is RECOMMENDED that the
endpoint no longer initiates the restart procedure on its own (until rebooted) unless
otherwise specified. If a command is received, the endpoint MUST initiate the restart
procedure again.

Should the gateway enter the "disconnected" state while carrying out the restart procedure, the
disconnected procedure specified in 4.4.3.6 MUST be carried out, except that a "restart" rather than
"disconnected" message is sent during the procedure.

It is expected that each endpoint in a gateway will have a provisionable Call Agent, i.e., "notified
entity", to direct the initial restart message towards. When the collection of endpoints in a gateway is
managed by more than one Call Agent, the above procedure must be performed for each collection
of endpoints managed by a given Call Agent. The gateway MUST take full advantage of
wild-carding to minimize the number of RestartInProgress messages generated when multiple
endpoints in a gateway restart and the endpoints are managed by the same Call Agent.

The value of MWD is a configuration parameter that depends on the type of the gateway. The
following reasoning can be used to determine the value of this delay on residential gateways.

Call agents are typically dimensioned to handle the peak hour traffic load, during which, on average,
10% of the lines will be busy, placing calls whose average duration is typically 3 minutes. The
processing of a call typically involves 5 to 6 transactions between each endpoint and the Call Agent.
This simple calculation shows that the Call Agent is expected to handle 5 to 6 transactions for each
endpoint, every 30 minutes on average, or, to put it otherwise, about one transaction per endpoint
every 5 to 6 minutes on average. This suggests that a reasonable value of MWD for a residential
gateway would be 10 to 12 minutes. In the absence of explicit configuration, embedded clients
MUST use a default value of 600 seconds for MWD.

48 ITU-T Rec. J.162 (03/2004)

6.4.3.6 Disconnected endpoints
In addition to the restart procedure, embedded clients also have a "disconnected" procedure, which is
initiated when an endpoint becomes "disconnected" as described in 6.4.2. It should here be noted that
endpoints can only become disconnected when they attempt to communicate with the Call Agent.
The following steps are followed by an endpoint that becomes "disconnected":
1) A "disconnected" timer is initialized to a random value, uniformly distributed between 0 and

a provisionable "disconnected" initial waiting delay (Tdinit), e.g., 15 seconds. Care MUST be
taken to avoid synchronicity of the random number generation between multiple gateways
and endpoints that would use the same algorithm.

2) The gateway then waits for either the end of this timer, the reception of a command from the
call agent, or the detection of a local user activity for the endpoint, such as for example an
off-hook transition.

3) When the "disconnected" timer elapses, when a command is received, or when a local user
activity is detected, the gateway MUST initiate the "disconnected" procedure with a new
transaction ID for the endpoint. In the case of local user activity, a provisionable
"disconnected" minimum waiting delay (Tdmin) must furthermore have elapsed since the
gateway became disconnected or the last time it ended the "disconnected" procedure in order
to limit the rate at which the procedure is performed.

4) If the "disconnected" procedure still left the endpoint disconnected, a new value for the
"disconnected" timer is selected. The timer value MUST be selected from the range defined
by 1.5 times the last timer value and double the last timer value, and MAY be randomly
generated. In either case, the new timer value is, subject to a provisionable "disconnected"
maximum waiting delay (Tdmax), e.g., 600 seconds, and the gateway proceeds with step 2)
again.

The "disconnected" procedure is similar to the restart procedure in that it now simply states that the
endpoint MUST send a RestartInProgress command to the Call Agent informing it that the endpoint
was disconnected and furthermore guarantee that the first message (command or response) that the
Call Agent now sees from this endpoint MUST be this RestartInProgress command. During each
initiation of "disconnected" procedure, the command MUST observe the normal retransmission and
transaction identifiers requirements (see 6.4.2). The endpoint MUST take full advantage of
piggybacking in achieving this. The Call Agent may then for instance decide to audit the endpoint,
or simply clear all connections for the endpoint.

Note that if a disconnected procedure is already in progress when a command is received, the
existing disconnect procedure MUST be terminated and a new procedure MUST be started. This is
to support a possible call agent redirection.

Also note, that if the RestartInProgress is piggybacked with the response (R) to a command received
while being disconnected, then retransmission of the RestartInProgress does not require
piggybacking of the response R. However, while the endpoint is disconnected, resending the
response R does require the RestartInProgress to be piggybacked as well to ensure the in-order
delivery of the two.

The disconnected procedure is complete once a success response has been received. Error responses
are handled similarly to the restart procedure (see 6.4.3.5). If the "disconnected" procedure is to be
initiated again following an error response, the rate-limiting timer considerations specified above
still apply. A disconnected endpoint may wish to send a command (besides RestartInProgress) while
it is disconnected. Doing so will only succeed once the Call Agent is reachable again, which raises
the question of what to do with such a command meanwhile. At one extreme, the endpoint could
drop the command right away; however, that would not work very well when the Call Agent was in
fact available, but the endpoint had not yet completed the "disconnected" procedure (consider for
example the case where a NotificationRequest was just received which immediately resulted in a

 ITU-T Rec. J.162 (03/2004) 49

Notify being generated). To prevent such scenarios, disconnected endpoints MUST NOT blindly
drop new commands to be sent for a period of Tsmax seconds after they receive a non-audit
command. One way of satisfying this requirement is to employ a temporary buffering of commands
to be sent, however in doing so, the endpoint must ensure, that it:
• does not build up a long queue of commands to be sent;
• does not swamp the Call Agent by rapidly sending too many commands once it is connected

again.

Buffering commands for Tsmax seconds and, once the endpoint is connected again, limiting the rate at
which buffered commands are sent to one outstanding command per endpoint is considered safe. If
the endpoint is not connected within Tsmax seconds, but a "disconnected" procedure is initiated
within Tsmax seconds, the endpoint MAY piggyback the buffered command(s) with that
RestartInProgress. Note, that once a command has been sent, regardless of whether it was buffered
initially, or piggybacked earlier, retransmission of that command MUST cease Tsmax seconds after
the initial send as described in 6.4.2. This Recommendation purposely does not specify any
additional behaviour for a disconnected endpoint. Vendors MAY for instance choose to provide
silence, play reorder tone, or even enable a downloaded wav file to be played on affected endpoints.

The default value for Tdinit is 15 seconds, the default value for Tdmin is 15 seconds, and the default
value for Tdmax is 600 seconds.

6.5 Return codes and error codes
All MGCP commands receive a response. The response carries a return code that indicates the status
of the command. The return code is an integer number, for which five value ranges have been
defined:
• value 000 indicates a response acknowledgement25;
• values between 100 and 199 indicate a provisional response;
• values between 200 and 299 indicate a successful completion;
• values between 400 and 499 indicate a transient error;
• values between 500 and 599 indicate a permanent error.

The values that have been defined are listed in Table 4.

Table 4/J.162 – Return code definitions

Code Meaning

000 Response acknowledgement.
100 The transaction is currently being executed. An actual completion message will follow later.
200 The requested transaction was executed normally.
250 The connection(s) was deleted.
400 The transaction could not be executed, due to a transient error.
401 The phone is already off-hook.
402 The phone is already on hook.
500 The transaction could not be executed because the endpoint is unknown.
501 The transaction could not be executed because the endpoint is not ready.
502 The transaction could not be executed because the endpoint does not have sufficient resources.

25 Response acknowledgement is used for provisional responses (see 7.8).

50 ITU-T Rec. J.162 (03/2004)

Table 4/J.162 – Return code definitions

Code Meaning

503 "All of" wild-card not fully supported. The transaction contained an "all of" wild-card; however,
the gateway does not fully support these. Note that this is currently only permissible for
non-empty NotificationRequests.

505 Unsupported RemoteConnectionDescriptor. This SHOULD be used when one or more mandatory
parameters or values in the RemoteConnectionDescriptor is not supported.

506 Unable to satisfy both LocalConnectionOptions and RemoteConnectionDescriptor. This
SHOULD be used when the LocalConnectionOptions and RemoteConnectionDescriptor contain
one or more mandatory parameters or values that conflict with each other and/or cannot be
supported at the same time (except for codec negotiation failure – see error code 534).

508 Unknown or unsupported quarantine handling.
510 The transaction could not be executed because a protocol error was detected.
511 The transaction could not be executed because the command contained an unrecognized

extension.
512 The transaction could not be executed because the gateway is not equipped to detect one of the

requested events.
513 The transaction could not be executed because the gateway is not equipped to generate one of the

requested signals.
514 The transaction could not be executed because the gateway cannot send the specified

announcement.
515 The transaction refers to an incorrect connection-id (may have been already deleted).
516 The transaction refers to an unknown call-id.
517 Unsupported or invalid mode.
518 Unsupported or unknown package.
519 Endpoint does not have a digit map.
520 The transaction could not be executed because the endpoint is "restarting".
521 Endpoint redirected to another Call Agent.
522 No such event or signal.
523 Unknown action or illegal combination of actions.
524 Internal inconsistency in LocalConnectionOptions.
525 Unknown extension in LocalConnectionOptions.
526 Insufficient bandwidth.
527 Missing RemoteConnectionDescriptor.
528 Incompatible protocol version.
529 Internal hardware failure.
532 Unsupported value(s) in LocalConnectionOptions.
533 Response too big.
534 Codec negotiation failure.

 ITU-T Rec. J.162 (03/2004) 51

6.6 Reason codes
Reason codes are used by the gateway when deleting a connection to inform the Call Agent about
the reason for deleting the connection. They may also be used in a RestartInProgress command, to
inform the Call Agent of the reason for the restart. The reason code is an integer number. Defined
values of the reason code are listed in Table 5.

Table 5/J.162 – Reason code definitions

Code Meaning

000 Endpoint state is normal. (This code is used only in response to audit requests.)
900 Endpoint malfunctioning.
901 Endpoint taken out of service.
902 Loss of lower layer connectivity (e.g., downstream sync).
903 QoS resource reservation was lost.

6.7 Use of Local Connection Options and Connection Descriptors
The normal sequence in setting up a bidirectional connection involves at least three steps:
1) The Call Agent asks the first gateway to "create a connection" on an endpoint. The gateway

allocates resources to that connection, and responds to the command by providing a "session
description" (referred to as its LocalConnectionDescriptor). The session description contains
the information necessary for another party to send packets toward the newly created
connection.

2) The Call Agent then asks the second gateway to "create a connection" on an endpoint. The
command carries the "session description" provided by the first gateway (now referred to as
the RemoteConnectionDescriptor). The gateway allocates resources to that connection, and
responds to the command by providing its own "session description"
(LocalConnectionDescriptor).

3) The Call Agent uses a "modify connection" command to provide this second "session
description" (now referred to as the RemoteConnectionDescriptor) to the first endpoint.
Once this is done, communication can proceed in both directions.

 When the Call Agent issues a Create or Modify Connection command, there are thus three
parameters that determine the media supported by that connection:
• LocalConnectionOptions: Supplied by the Call Agent to control the media parameters

used by the gateway for the connection. When supplied, the gateway must conform to
these media parameters until either the connection is deleted, or a ModifyConnection
command is received.

• RemoteConnectionDescriptor: Supplied by the Call Agent to convey the media
parameters supported by the other side of the connection. When supplied, the gateway
must conform to these media parameters until either the connection is deleted, or a
ModifyConnection command is received.

• LocalConnectionDescriptor: Supplied by the gateway to the Call Agent to convey the
media parameters it supports for the connection. When supplied, the gateway must
honour the media parameters until either the connection is deleted, or the gateway issues
a new LocalConnectionDescriptor.

52 ITU-T Rec. J.162 (03/2004)

Codec and packetization period selection must only be performed, as described in this clause, if
either:
a) the gateway receives a CRCX; or
b) the gateway receives a MDCX and any of the following parameters are present:

– encoding method (a: in LocalConnectionOptions);
– packetization period (p: in LocalConnectionOptions);
– multiple packetization period (mp: in LocalConnectionOptions);
– RemoteConnectionDescriptor.

 Furthermore, this codec and packetization period selection process must only use the
information present in the connection request and not retain any of the values that may have
been received in previous connection requests. For example, if a gateway received a MDCX
with all necessary LCO parameters but was missing a RemoteConnectionDescriptor, it will
negotiate as if no RemoteConnectionDescriptor had ever been received for that connection.
As well, if all of the above parameters are omitted in a MDCX command the existing
negotiated codecs and packetization periods will remain intact.

 In determining which codec(s) and packetization period(s) to provide in the
LocalConnectionDescriptor, there are three lists of codecs and packetization periods that a
gateway needs to consider:
• A list of codecs and packetization periods allowed by the LocalConnectionOptions. A

codec is allowed by the LocalConnectionOptions if it satisfies the constraints specified
by the encoding method, packetization period and multiple packetization periods fields.
If one or more of these fields are omitted, the omitted fields do not impose any
constraints on the allowed codecs.

• A list of codecs and packetization periods in the RemoteConnectionDescriptor.
• An internal list of codecs and packetization periods that the gateway can support for the

connection. A gateway may support one or more codecs and packetization periods for a
given connection.

Codec selection (including all relevant media parameters) can then be described by the following
steps:
1) An approved list of codecs/packetization periods is formed by taking the intersection of the

internal list of codecs/packetization periods and codecs/packetization periods allowed by the
LocalConnectionOptions. If LocalConnectionOptions was not provided, the approved list of
codecs/packetization periods thus contains the internal list. If the LocalConnectionOptions
was provided but the codecs parameter was omitted, the LocalConnectionOptions implicitly
allows all codecs in the internal list, provided they are not incompatible with any
packetization period(s) specified. Similarly, if the LocalConnectionOptions was provided
but the packetization period(s) was omitted, the LocalConnectionOptions implicitly contains
the set of packetization periods supported by the internal list.

2) If the approved list of codecs/packetization periods is empty, a codec negotiation failure has
occurred and an error response is generated (error code 534 – codec negotiation failure – is
recommended).

3) Otherwise, a negotiated list of codecs/packetization periods is formed by taking the
intersection of the approved list of codecs/packetization periods and codecs/packetization
periods allowed by the RemoteConnectionDescriptor. If a RemoteConnectionDescriptor was
not provided, the negotiated list of codecs/packetization periods thus contains the approved
list of codecs/packetization periods. If the RemoteConnectionDescriptor does not contain
any media stream lines, a codec negotiation failure has occurred and an error response is
generated (error code 534 – codec negotiation failure – is recommended). If the

 ITU-T Rec. J.162 (03/2004) 53

RemoteConnectionDescriptor contains multiple media streams, the MTA SHOULD only
accept one of these and reject the others by setting their port to zero in the
LocalConnectionDescriptor. If the RemoteConnectionDescriptor was provided but the
packetization period(s) was omitted, the negotiated list of packetization periods contains the
set of packetization periods from the approved list. The MTA MUST choose reasonable
defaults per RFC 2327 if the packetization period is explicitly omitted from both the
LocalConnectionOptions and the RemoteConnectionDescriptor.

4) If the negotiated list of codecs/packetization periods is empty, a codec negotiation failure
has occurred and an error response is generated (error code 534 – codec negotiation failure –
is recommended).

5) Otherwise, codec negotiation has succeeded, and the negotiated list of codecs/packetization
periods is returned in the LocalConnectionDescriptor.

Note that both LocalConnectionOptions and the RemoteConnectionDescriptor can contain a list of
codecs ordered by preference. When both are supplied, the gateway should adhere to the preferences
provided in the LocalConnectionOptions. It should be noted, that the above procedure negotiates
both encoding methods and packetization periods as opposed to just encoding methods. This is done
to enable consistent local and far-end QoS operation in the segmented QoS model used in
IPCablecom.

In the case that a gateway supports more than one codec per endpoint, there are two options the
gateway can use in deciding how many codecs it wants to support for that connection:
1) Gateway supports multiple codecs and can switch between different codecs in real-time. The

gateway returns all negotiated codecs in the SDP media stream line and reserves the
Least-Upper-Bound (LUB) as per ITU-T Rec. J.163. The LUB is reserved to guarantee that
a switch to any of these codecs will succeed. Multiple codecs in the m= line means the
device must be ready to receive media packets from any of the negotiated codecs. As well,
the gateway may send media packets from any of the negotiated codecs and switch between
them as required.

2) Gateway supports one or more codecs but cannot switch between different codecs in
real-time. The gateway therefore negotiates and returns only one codec in the SDP media
stream line (optionally, gateway also puts additional supported codecs in the SDP
'X-pc-codecs' attribute) and reserves the bandwidth for the single negotiated codec in the
media stream line as per ITU-T Rec. J.163. With this method, a codec change must be
initiated by the CMS in order to change codecs at which time the resulting change in
bandwidth is re-established as per ITU-T Rec. J.163.

7 Media Gateway Control Protocol
The MGCP implements the media gateway control interface as a set of transactions. The transactions
are composed of a command and a mandatory response. There are eight types of commands:
• CreateConnection;
• ModifyConnection;
• DeleteConnection;
• NotificationRequest;
• Notify;
• AuditEndpoint;
• AuditConnection;
• RestartInProgress.

54 ITU-T Rec. J.162 (03/2004)

The first four commands are sent by the Call Agent to a gateway. The Notify command is sent by the
gateway to the Call Agent. The gateway can also send a DeleteConnection as defined in 6.3.6. The
Call Agent can send either of the Audit commands to the gateway and, finally, the gateway can send
a RestartInProgress command to the Call Agent.

7.1 General description
All commands are composed of a Command header which, for some commands, may be followed by
a session description.

All responses are composed of a Response header which, for some commands, may be followed by a
session description.

Headers and session descriptions are encoded as a set of text lines, separated by a carriage return and
line feed character (or, optionally, a single line-feed character). The headers are separated from the
session description by an empty line.

MGCP uses a transaction identifier with a value between 1 and 999999999 to correlate commands
and responses. The transaction identifier is encoded as a component of the command header and is
repeated as a component of the response header.

7.2 Command header
The command header is composed of:
• a command line identifying the requested action or verb, the transaction identifier, the

endpoint toward which the action is requested, and the MGCP protocol version;
• a set of parameter lines composed of a parameter name followed by a parameter value.

Unless otherwise noted or dictated by other referenced standards, each component in the command
header is case insensitive. This goes for verbs as well as parameters and values, and all comparisons
MUST treat upper and lower case as well as combinations of these as being equal.

7.2.1 Command line
The command line is composed of:
• the name of the requested verb;
• the identification of the transaction;
• the name of the endpoint(s) that should execute the command (in notifications or restarts, the

name of the endpoint(s) that is issuing the command);
• the protocol version.

These four items are encoded as strings of printable ASCII characters separated by white spaces,
i.e., the ASCII space (0x20) or tabulation (0x09) characters. Embedded clients SHOULD use exactly
one ASCII space separator; however, they MUST be able to parse messages with additional white
space characters.

 ITU-T Rec. J.162 (03/2004) 55

7.2.1.1 Requested verb coding
Requested verbs are encoded as four-letter upper- and/or lower-case ASCII codes (comparisons
MUST be case insensitive) as defined in Table 6.

Table 6/J.162 – Requested verb codings

Verb Code

CreateConnection CRCX
ModifyConnection MDCX
DeleteConnection DLCX
NotificationRequest RQNT
Notify NTFY
AuditEndpoint AUEP
AuditConnection AUCX
RestartInProgress RSIP

New verbs may be defined in future versions of this Recommendation. It may be necessary, for
experimental purposes, to use new verbs before they are sanctioned in a version of this
Recommendation. Experimental verbs should be identified by a four-letter code starting with the
letter X (e.g., XPER).

An embedded client that receives a command with an experimental verb it does not support MUST
return an error (error code 511 – unrecognized extension).

7.2.1.2 Transaction identifiers
Transaction identifiers are used to correlate commands and responses.

An embedded client supports two separate transaction identifier name spaces:
• a transaction identifier name space for sending transactions; and
• a transaction identifier name space for receiving transactions.

At a minimum, transaction identifiers for commands sent to a given embedded client MUST be
unique for the maximum lifetime of the transactions within the collection of Call Agents that control
that embedded client (see 7.5). Thus, regardless of the sending Call Agent, embedded clients can
always detect duplicate transactions by simply examining the transaction identifier. The coordination
of these transaction identifiers between Call Agents is outside the scope of this Recommendation
though.

Transaction identifiers for all commands sent from a given embedded client MUST be unique for the
maximum lifetime of the transactions (see 7.5) regardless of which Call Agent the command is sent
to. Thus, a Call Agent can always detect a duplicate transaction from an embedded client by the
combination of the domain-name of the endpoint and the transaction identifier. The embedded client
in turn can always detect a duplicate response acknowledgement by looking at the transaction id(s).

The transaction identifier is encoded as a string of up to nine decimal digits. In the command lines, it
immediately follows the coding of the verb.

Transaction identifiers have values between 1 and 999999999. Transaction identifiers should not use
any leading zeroes. Equality is based on numerical value and leading zeroes are ignored. An MGCP
entity MUST NOT reuse a transaction identifier more quickly than three minutes after completion of
the previous command in which the identifier was used.

56 ITU-T Rec. J.162 (03/2004)

7.2.1.3 Endpoint, Call Agent and NotifiedEntity name coding
The endpoint names and Call Agent names are encoded as e-mail addresses, as defined in RFC 821.
In these addresses, the domain name identifies the system where the endpoint is attached, while the
left side identifies a specific endpoint on that system. Both components MUST be case insensitive.

Examples of such names are in Table 7.

Table 7/J.162 – Example name coding

aaln/1@ncs2.whatever.net Analogue access line 1 in the embedded client ncs2 in the "Whatever"
network.

Call-agent@ca.whatever.net Call Agent for the "whatever" network.

The name of notified entities is expressed with the same syntax, with the possible addition of a port
number, as in:

 Call-agent@ca.whatever.net:5234

In case the port number is omitted, the default MGCP Call Agent port (2727, unless provisioned
otherwise) will be used. Additional detail on endpoint names can be found in 6.1.1.

7.2.1.4 Protocol version coding
The protocol version is coded as the keyword "MGCP" followed by a white space and the version
number, which again is followed by the profile name "NCS" and a profile version number. The
version numbers are composed of a major version number, a dot, and a minor version number. The
major and minor version numbers are coded as decimal numbers. The profile version number
defined by this Recommendation is 1.0.

The protocol version for this Recommendation MUST be encoded as:

 MGCP 1.0 NCS 1.0

The "NCS 1.0" portion signals that this is the NCS 1.0 profile of MGCP 1.0.

An entity that receives a command with a protocol version it does not support, MUST respond with
an error (error code 528 – incompatible protocol version).

 ITU-T Rec. J.162 (03/2004) 57

7.2.2 Parameter lines
Parameter lines are composed of a parameter name, which in most cases is composed of a single
upper-case character, followed by a colon, a white space, and the parameter value. Parameter names
and values are still case-insensitive though. The parameters that can be present in commands are
defined in Table 8.

Table 8/J.162 – Parameter definitions

Parameter name Code Parameter value

ResponseAck26 K See description.

CallId C Hexadecimal string; MUST NOT exceed 32 characters. Call
Identifiers are compared as strings rather than numerical values.

ConnectionId I Hexadecimal string; MUST NOT exceed 32 characters. Call
Identifiers are compared as strings rather than numerical values.

NotifiedEntity N An identifier, in RFC 2821 format, composed of an arbitrary string
and of the domain name of the requesting entity, possibly completed
by a port number, as in:
Call-agent@ca.whatever.net:5234 .

RequestIdentifier X Hexadecimal string; length MUST NOT exceed 32 characters.
LocalConnectionOptions L See description.
Connection Mode M See description.
RequestedEvents R See description.
SignalRequests S See description.
DigitMap D A text encoding of a digit map.
ObservedEvents O See description.
ConnectionParameters P See description.
ReasonCode E See description.
SpecificEndPointId Z An identifier, in RFC 2821 format, composed of an arbitrary string,

optionally followed by an "@" followed by the domain name of the
embedded client to which this endpoint is attached.

MaxEndPointIds ZM Decimal string; length MUST NOT exceed 16 characters.
NumEndPoints ZN Decimal string; length MUST NOT exceed 16 characters.
RequestedInfo F See description.
QuarantineHandling Q See description.
DetectEvents T See description.
EventStates ES See description.
ResourceID DQ-RI See description.
RestartMethod RM See description.
RestartDelay RD A number of seconds encoded as a decimal number.
Capabilities A See description.
VersionSupported VS See description.
MaxMGCPDatagram MD See description.

26 The ResponseAsk parameter was not shown in 6.3 as transaction identifiers are not visible in our example

API. Implementers may choose a different approach.

58 ITU-T Rec. J.162 (03/2004)

The parameters are not necessarily present in all commands. Table 9 provides the association
between parameters and commands. The letter M stands for mandatory, O for optional, and F for
forbidden.

Table 9/J.162 – Association of parameters with commands

Parameter name CRCX MDCX DLCX RQNT NTFY AUEP AUCX RSIP

ResponseAck O O O O O O O O
CallId M M O F F F F F
ConnectionId F M O F F F M F
RequestIdentifier O O O M M F F F
LocalConnectionOptions M O F F F F F F
Connection Mode M O F F F F F F
RequestedEvents Oa) Oa) Oa) Oa) F F F F
SignalRequests Oa) Oa) Oa) Oa) F F F F
NotifiedEntity O O O O O F F F
ReasonCode F F O F F F F F
ObservedEvents F F F F M F F F
DigitMap O O O O F F F F
Connection parameters F F O F F F F F
SpecificEndpointId F F F F F O F F
MaxEndPointIds F F F F F O F F
NumEndPoints F F F F F F F F
RequestedInfo F F F F F O O F
QuarantineHandling O O O O F F F F
DetectEvents O O O O F F F F
EventStates F F F F F F F F
ResourceID F F F F F F F F
RestartMethod F F F F F F F M
RestartDelay F F F F F F F O
Capabilities F F F F F F F F
VersionSupported F F F F F F F F
MaxMGCPDatagram F F F F F F F F
RemoteConnectionDescriptor O O F F F F F F
a) The RequestedEvents and SignalRequests parameters are optional in the NotificationRequest. If these parameters

are omitted, the corresponding lists will be considered empty. For the connection handling commands, omission
of these two parameters when the command includes a RequestIdentifier means the corresponding lists will be
considered empty.

Embedded clients and Call Agents SHOULD always provide mandatory parameters before optional
ones; however, embedded clients MUST NOT fail if this recommendation is not followed.

If implementers need to experiment with new parameters, for example when developing a new
MGCP application, they should identify these parameters by names that begin with the string "X–"
or "X+", such as for example:

 X-FlowerOfTheDay: Daisy

 ITU-T Rec. J.162 (03/2004) 59

Parameter names that start with "X+" are mandatory parameter extensions. A gateway that receives a
mandatory parameter extension that it cannot understand MUST respond with an error (error
code 511 – unrecognized extension).

Parameter names that start with "X–" are non-critical parameter extensions. A gateway that receives
a non-critical parameter extension that it cannot understand can safely ignore that parameter.

It should be noted that experimental verbs are of the form XABC, whereas experimental parameters
are of the form X-ABC.

If a parameter line is received with a forbidden parameter, or any other formatting error, the
receiving entity should respond with the most specific error code for the error in question. The least
specific error code is 510 – protocol error. Commentary text can always be provided.

7.2.2.1 Response acknowledgement
The response acknowledgement parameter is used to support the three-way handshake described
in 7.7. It contains a comma-separated list of "confirmed transaction-id ranges".

Each "confirmed transaction-id range" is composed of either one decimal number, when the range
includes exactly one transaction, or two decimal numbers separated by a single hyphen, describing the
lower and higher transaction identifiers included in the range.

An example of a response acknowledgement is:

 K: 6234-6255, 6257, 19030-19044

7.2.2.2 RequestIdentifier
The request identifier correlates a Notify command with the NotificationRequest that triggered it. A
RequestIdentifier is a hexadecimal string; length MUST NOT exceed 32 characters.
RequestIdentifiers are compared as strings rather than numerical values. The string "0" is reserved
for reporting of persistent events in the case where no NotificationRequest has been received yet
(see 6.3.2).

7.2.2.3 Local connection options
The local connection options describe the operational parameters that the Call Agents instructs the
gateway to use for a connection. These parameters are:
• the packetization period in milliseconds, encoded as the keyword "p" followed by a colon

and a decimal number;
• the multiple packetization period in milliseconds for each codec in the encoding method

LCO, encoded as the keyword "mp" followed by a colon and a list of decimal numbers or
hyphens, with one entry for each entry in the Encoding Method field. Each packetization
period value is separated from its successor by a single semicolon. The first entry in the list
MUST be a decimal number. Subsequent entries in the list MUST be either a decimal
number or a hyphen;

• the literal name of the compression algorithm as specified in ITU-T Rec. J.161, encoded as
the keyword "a" followed by a colon and a character string. These literal names MUST be
used and are equivalent to the codec definitions in RTP Parameters (ITU-T Rec. J.161). It is
RECOMMENDED that other well-known variants of the literal codec names be supported
as well;

• the echo-cancellation parameter, encoded as the keyword "e" followed by a colon and the
value "on" or "off";

• the type of service parameter, encoded as the keyword "t" followed by a colon and the value
encoded as two hexadecimal digits;

60 ITU-T Rec. J.162 (03/2004)

• the silence suppression parameter, encoded as the keyword "s" followed by a colon and the
value "on" or "off".

The LocalConnectionOptions parameters used for Dynamic Quality of Service are:
• the D-QoS GateID encoded as the keyword "dq-gi" followed by a colon and a string of up to

8 hex characters corresponding to a 32-bit identifier for the GateID;
• the D-QoS Resource Reservation parameter encoded as the keyword "dq-rr" followed by a

colon and a character string. A list of values may be specified in which case the values will
be separated by a semicolon. The possible values are as in Table 10;

Table 10/J.162 – DQoS Resource Reservation parameter values

Mode Meaning

sendresv Reserve in the send direction only
recvresv Reserve in the receive direction only
snrcresv Reserve in the send and receive directions
sendcomt Commit in the send direction only
recvcomt Commit in the receive direction only
snrccomt Commit in the send and receive directions

• the ResourceID encoded as the keyword "dq-ri" followed by a colon and a string of up to
8 hex characters corresponding to a 32-bit identifier for the ResourceID;

• the ReserveDestination is encoded as the keyword "dq-rd" followed by a colon and an
IP-address encoded similarly to an IP-address for the domain name portion of an endpoint
name. The ReserveDestination may optionally be followed by a colon and up to 5 decimal
characters for a UDP port number to use.

The LocalConnectionOptions parameters used for Security are encoded as follows:
• the RTP ciphersuite is encoded as the keyword "sc-rtp" followed by a colon and an RTP

ciphersuite string as defined below. A list of values may be specified in which case the
values will be separated by a semicolon;

• the RTCP ciphersuite is encoded as the keyword "sc-rtcp" followed by a colon and an RTCP
ciphersuite string as defined below. A list of values may be specified in which case the
values will be separated by a semicolon.

The RTP and RTCP ciphersuite strings follow the grammar:
 ciphersuite = [AuthenticationAlgorithm] "/" [EncryptionAlgorithm]
 AuthenticationAlgorithm = 1*(ALPHA / DIGIT / "-"/ "_")
 EncryptionAlgorithm = 1*(ALPHA / DIGIT | "-" / "_")

where ALPHA and DIGIT are defined in RFC 2234. White spaces are not allowed within a
ciphersuite. The following example illustrates the use of ciphersuite:
 62/51

The actual list of IPCablecom supported ciphersuites is provided in ITU-T Rec. J.170.

When several parameters are present, the values are separated by a comma. It MUST be considered
an error to include a parameter without a value (error code 524 – LocalConnectionOptions
inconsistency).

 ITU-T Rec. J.162 (03/2004) 61

Examples of local connection options are:

 L: p:10, a:PCMU
 L: p:10, a:PCMU, e:off, t:20, s:on
 L: p:30, a:G729, e:on, t:A0, s:off

The type of service hex value "20" implies an IP precedence of 1, and a type of service hex value of
"A0" implies an IP precedence of 5.

This set of attributes may be extended by extension attributes. Extension attributes are composed of
an attribute name, followed by a colon, and a semicolon-separated list of attribute values. The
attribute name MUST start with the two characters "x+", for a mandatory extension, or "x–", for a
non-mandatory extension. If a gateway receives a mandatory extension attribute that it does not
recognize, it MUST reject the command with an error (error code 525 – Unknown extension in
LocalConnectionOptions).

7.2.2.4 Capabilities
Capabilities inform the Call Agent about the endpoint's capabilities when audited. The encoding of
capabilities is based on the Local Connection Options encoding for the parameters that are common
to both. In addition, capabilities can also contain a list of supported packages, and a list of supported
modes.

The parameters used are:
• the packetization period in milliseconds, encoded as the keyword "p" followed by a colon

and a decimal number. A range may be specified as two decimal numbers separated by a
hyphen;

• the literal name of the compression algorithm, encoded as the keyword "a" followed by a
colon and a character string. The literal names defined in ITU-T Rec. J.161 MUST be used.
A list of values may be specified in which case the values will be separated by a semicolon;

• the bandwidth in kilobits per second (1000 bits per second), encoded as the keyword "b"
followed by a colon and a decimal number. A range may be specified as two decimal
numbers separated by a hyphen;

• the echo-cancellation parameter, encoded as the keyword "e" followed by a colon and the
value "on" if echo cancellation is supported; "off" otherwise;

• the type of service parameter, encoded as the keyword "t" followed by a colon and the value
"0" if type of service is not supported; all other values indicate support for type of service;

• the silence suppression parameter, encoded as the keyword "s" followed by a colon and the
value "on" if silence suppression is supported; "off" otherwise;

• the event packages supported by this endpoint encoded as the keyword "v" followed by a
colon and then a semicolon-separated list of package names supported. The first value
specified will be the default package for the endpoint;

• the connection modes supported by this endpoint encoded as the keyword "m" followed by a
colon and a semicolon-separated list of connection modes supported as defined in 7.2.2.7;

• the keyword "dq-gi" if Dynamic Quality of Service is supported;
• the keyword "sc-rtp" followed by a colon and a semicolon-separated list of RTP

ciphersuites, using the same encoding as in the LocalConnectionOptions;
• the keyword "sc-rtcp" followed by a colon and a semicolon-separated list of RTCP

ciphersuites, using the same encoding as in the LocalConnectionOptions.

When several parameters are present, the values are separated by a comma.

62 ITU-T Rec. J.162 (03/2004)

Examples of capabilities are:

 A: a:PCMU, p:10-30, e:on, s:off, v:L;S,
 m:sendonly;recvonly;sendrecv;inactive
 A: a:G729, p:10-20, e:on, s:off, v:L;S,
 m:sendonly;recvonly;sendrecv;inactive
 A: a:G729, p:30-90, e:on, s:on, v:L;S,
 m:sendonly;recvonly;sendrecv;inactive;confrnce,
 dq-gi, sc-rtp: 64/51;0360/51, sc-rtcp: 71/81

Note that the codecs and security algorithms are merely examples – separate IPCablecom
Recommendations detail the actual codecs and algorithms supported, as well as the encoding used.
Note also that each set of capabilities is provided on a single line. The examples above show each set
on multiple lines due only to formatting restraints of this Recommendation.

7.2.2.5 Connection parameters
Connection parameters are encoded as a string of type and value pairs, where the type is one of the
codes given in Table 11, and the value is a decimal integer. Types are separated from values by an
"=" sign. Parameters are separated from each other by a comma.

Table 11/J.162 – Connection parameters

Connection
parameter name Code Connection parameter value

Packets sent PS The number of packets that were sent on the connection
Octets sent OS The number of octets that were sent on the connection
Packets received PR The number of packets that were received on the connection
Octets received OR The number of octets that were received on the connection
Packets lost PL The number of packets that were not received on the connection, as

deduced from gaps in the sequence number
Jitter JI The average inter-packet arrival jitter, in milliseconds, expressed as an

integer number
Latency LA Average latency, in milliseconds, expressed as an integer number
Remote Packets sent PC/RPS The number of packets that were sent on the connection from the

perspective of the remote endpoint
Remote Octets sent PC/ROS The number of octets that were sent on the connection from the

perspective of the remote endpoint
Remote Packets lost PC/RPL The number of packets that were not received on the connection, as

deduced from gaps in the sequence number from the perspective of
the remote endpoint

Remote Jitter PC/RJI The average inter-packet arrival jitter, in milliseconds, expressed as an
integer number from the perspective of the remote endpoint

Extension connection parameter names are composed of the string "X−" followed by a two- or three-
letter extension parameter name. Call Agents that receive unrecognized extensions MUST silently
ignore these extensions. If an endpoint receives RTCP packets with these statistics, it MUST return
the Remote parameters (Rxx above) in the response to the Delete-Connection and Audit-Connection
commands.

An example of a connection parameter encoding is:

 P: PS=1245, OS=62345, PR=0, OR=0, PL=0, JI=0, LA=48, PC/RPS=0, PC/ROS=0,

PC/RPL=0, PC/RJI=0

 ITU-T Rec. J.162 (03/2004) 63

7.2.2.6 Reason codes
Reason codes are three-digit numeric values. The reason code is optionally followed by a white
space and commentary, e.g.:

 E: 900 Endpoint malfunctioning

A list of reason codes can be found in 6.6.

7.2.2.7 Connection mode
The connection mode describes the connection's operation mode. The possible values are shown in
Table 12.

Table 12/J.162 – Connection mode

Mode Meaning

M: sendonly The gateway should only send packets.
M: recvonly The gateway should only receive packets.
M: sendrecv The gateway should send and receive packets.
M: confrnce The gateway should send and receive packets according to conference mode.
M: inactive The gateway should neither send nor receive packets.
M: replcate The gateway should only send packets according to replicate mode.
M: netwloop The gateway should place the endpoint in Network Loopback mode.
M: netwtest The gateway should place the endpoint in Network Continuity Test mode.

7.2.2.8 Event/signal name coding
Event/signal names are composed of an optional package name, separated by a slash (/) from the
name of the actual event. The event name can optionally be followed by an "at" sign (@) and the
identifier of a connection on which the event should be observed. Event names are used in the
RequestedEvents, SignalRequests, DetectEvents, ObservedEvents, and EventStates parameters. Each
event is identified by an event code. These ASCII encodings are not case sensitive. Values such as
"hu", "Hu", "HU" or "hU" should be considered equal.

Table 13 provides examples of event names:

Table 13/J.162 – Event name examples

X/hu On-hook transition, in the example line package
X/0 Digit 0 in the example line package
hf Flash-hook, assuming that the example line package is the default package for the

endpoint
X/rt@0A3F58 Ringback on connection "0A3F58"

In addition, the range and wild-card notation of events can be used, instead of individual names, in
the RequestedEvents and DetectEvents (but not SignalRequests, ObservedEvents, or EventStates).
Table 14 provides examples of valid range and wild-card notation.

64 ITU-T Rec. J.162 (03/2004)

Table 14/J.162 – Event range and wild-card notation

X/[0-9] Digits 0 to 9 in the example line package
X/X Digits 0 to 9 in the example line package
[0-9*#A-D] All digits and letters in the example line package (default for endpoint)
X/all All events in the example line package

Finally, the star sign can be used to denote "all connections", and the dollar sign can be used to
denote the "current" connection. Table 15 provides examples of valid use of the star and dollar sign
notations:

Table 15/J.162 – "All" and "Current" connection notation

X/rt@* Ringback on all connections for the endpoint
X/rt@$ Ringback on the current connection

An initial set of event packages for embedded clients can be found in Annex A.

7.2.2.9 RequestedEvents
The RequestedEvents parameter provides the list of events that have been requested. The currently
defined event codes are described in Annex A.

Each event can be qualified by a requested action, or by a list of actions. Not all actions can be
combined – please refer to 6.3.1 for valid combinations. The actions, when specified, are encoded as
a list of keywords enclosed in parenthesis and separated by commas. The codes for the various
actions are shown in Table 16.

Table 16/J.162 – Requested events actions

Action Code

Notify immediately N
Accumulate A
Accumulate according to digit map D
Ignore I
Keep Signal(s) active K
Embedded NotificationRequest E
Embedded ModifyConnection C

If a digit map is not provided when the "accumulate according to digit map" action is specified, the
endpoint simply uses its current digit map. If the endpoint does not have any digit maps currently, an
error MUST be returned (error code 519 – no digit map).

When no action is specified, the default action is to notify the event. This means that, for example,
"ft" and "ft(N)" are equivalent. Events that are not listed are discarded, except for persistent events.

The digit-map action can only be specified for the digits, letters, and timers.

The requested events list is encoded on a single line, with event/action groups separated by commas.
Examples of RequestedEvents encodings are (using the example line package):

 R: hu(N), hf(N) Notify on-hook, notify hook-flash.
 R: hu(N), [0-9#T](D) Notify on-hook, accumulate digits according to digit

map.

 ITU-T Rec. J.162 (03/2004) 65

The embedded NotificationRequest follows the format:

 E (R(<RequestedEvents>), D(<Digit Map>), S(<SignalRequests>))

with each of R, D, and S being optional and possibly supplied in another order. The following
example illustrates the use of Embedded NotificationRequest with the example line package:

 R: hd(A, E(S(dl), R(oc(N), [0-9#T](D)), D((1xxxxxxxxxx|9011x.T))))

 On off-hook, accumulate the event, provide dial-tone and start accumulating digits
according to the digit map supplied. Stop dial-tone when the first digit is input, or, if no digit
is input before the dial-tone times out, Notify the operation complete. Otherwise, notify the
off-hook and collected digits when a match, mismatch, or inter-digit time-out has occurred.
It should be noted, that since on-hook is a persistent event, it will still be detected and
notified although it has not been specified here.

The embedded ModifyConnection action follows the format:

 C(M(<ConnectionMode1>(<ConnectionID1>)) , … ,

 M(<ConnectionModen>(ConnectionIDn)))

The following example illustrates the use of Embedded ModifyConnection with the example line
package:

 R: hf(A, C(M(inactive(X43DC)), M(sendrecv($)))), oc(N), of(N)

 On hook-flash, change the connection mode of connection "X43DC" to "inactive", and then
change the connection mode of the "current connection" to "send receive". Notify events on
"operation complete" and "operation failure".

7.2.2.10 SignalRequests
The SignalRequests parameter provides the name of the signals that have been requested. The
currently defined signals can be found in Annex A. A given signal can only appear once in the list,
and all signals will, by definition, be applied at the same time. The MTA MUST support, at a
minimum, a single signal on each endpoint and simultaneously support the generation of one signal
on each connection for a given endpoint. Specific packages MAY define requirements beyond these
minimum capabilities. For signal combinations beyond this minimum requirement that the MTA
does not support, it SHOULD return error code 502.

Some signals can be qualified by signal parameters. When a signal is qualified by multiple signal
parameters, the signal parameters are separated by commas. Each signal parameter MUST follow the
format specified below (white spaces allowed):

 signal-parameter = signal-parameter-value | signal-parameter-name

"="signal-parameter-value | signal-parameter-name
"(" signal-parameter-list ")"

 signal-parameter-list = signal-parameter-value 0*("," signal-parameter-
value)

where signal-parameter-value may be either a string or a quoted string, i.e., a string surrounded by
two double quotes. Two consecutive double-quotes in a quoted string will escape a double-quote
within that quoted string. For example, "ab""c" will produce the string ab"c.

Each signal has one of the following signal-types associated with it (see 6.3.1):
• On/Off (OO);
• Time-out (TO);
• Brief (BR).

66 ITU-T Rec. J.162 (03/2004)

On/Off signals can be parameterized with a "+" to turn the signal on, or a "–" to turn the signal off. If
an on/off signal is not parameterized, the signal is turned on. Both of the following will turn the
vmwi signal from the example line package on:
 vmwi(+), vmwi

Time-out signals can be parameterized with the signal parameter "TO" and a time-out value that
overrides the default time-out value. If a time-out signal is not parameterized with a time-out value,
the default time-out value will be used. Both of the following will apply the ringing signal from the
example line package for 6 seconds:
 rg(to=6000)
 rg(to(6000))

Individual signals may define additional signal parameters.

The signal parameters will be enclosed within parenthesis as in (assuming "Line" is the default
package):
S: ci(10/14/17/26, "555 1212", CableLabs).

When several signals are requested, their codes are separated by a comma, as in:
S: rg, rt@FDE234C8.

7.2.2.11 ObservedEvents
The observed events parameters provide the list of events that have been observed. The event codes
are the same as those used in the NotificationRequest. When an event is detected on a connection,
the observed event will identify the connection the event was detected on using the
"@<connection>" syntax. Examples of observed events using the example line package are:

 O: hu
 O: ma@A43B81
 O: 8,2,9,5,5,5,5,T
 O: hf,hf,hu
 O: 8,2,9,5,mt,5,5,5,T

Events that have been accumulated according to digit map are reported as individual events in the
order they were detected. Other events may be mixed in between them. It should be noted that if the
"current dial string" is non-empty with a partial match, and another event occurs that results in a
Notify message being generated, the partially matched "current dial string" will be included in the
list of observed events, and the "current dial string" will then be cleared – please refer to 6.4.3.1 for
details.

7.2.2.12 RequestedInfo
The RequestedInfo parameter contains a comma-separated list of parameter codes, as defined in
7.2.2. Clause 6.3.8 lists the parameters that can be audited. The values listed in Table 17 are
supported as well:

Table 17/J.162 – RequestedInfo parameter values

RequestedInfo parameter Code

LocalConnectionDescriptor LC
RemoteConnectionDescriptor RC

 ITU-T Rec. J.162 (03/2004) 67

For example, if one wants to audit the value of the NotifiedEntity, RequestIdentifier,
RequestedEvents, SignalRequests, DigitMap, DetectEvents, EventStates,
LocalConnectionDescriptor, and RemoteConnectionDescriptor parameters, the value of the
RequestedInfo parameter will be:

 F: N,X,R,S,D,T,ES,LC,RC

The capabilities request, for the AuditEndPoint command, is encoded by the parameter code "A", as
in:

 F: A

7.2.2.13 QuarantineHandling
The quarantine handling parameter contains a list of comma-separated keywords:
• The keyword "process" or "discard" to indicate the treatment of quarantined and observed

events. If neither process nor discard is present, process is assumed.
• The keyword "step" or "loop" to indicate whether at most one notification is expected, or

whether multiple notifications are allowed. If neither "step" nor "loop" is present, "step" is
assumed. Support for these two keywords is mandatory.

The following values are valid examples:

 Q: loop
 Q: process
 Q: discard,loop

7.2.2.14 DetectEvents
The DetectEvents parameter is encoded as a comma-separated list of events, such as for example:

 T: hu,hd,hf,[0-9#*]

It should be noted that no actions can be associated with the events.

7.2.2.15 EventStates
The EventStates parameter is encoded as a comma-separated list of events, such as for example:

 ES: hu

It should be noted that no actions can be associated with the events.

7.2.2.16 ResourceID
The ResourceID parameter is a return parameter used for Dynamic Quality of Service to signal the
resource ID assigned for the gate in question. The ResourceID is encoded as a string of up to 8 hex
characters, such as for example:

 DQ-RI: AB345DC

7.2.2.17 RestartMethod
The RestartMethod parameter is encoded as one of the keywords "graceful", "forced", "restart", or
"disconnected", as for example:

 RM: restart

68 ITU-T Rec. J.162 (03/2004)

7.2.2.18 VersionSupported
The VersionSupported parameter is encoded as a comma-separated list of versions supported such
as, for example:

 VS: MGCP 1.0, MGCP 1.0 NCS 1.0

7.2.2.19 MaxMGCPDatagram
The MaxMGCPDatagram parameter is encoded as a string of up to nine decimal digits – leading
zeroes are not permitted. The following example illustrate the use of this parameter:

 MD: 8100

7.3 Response header formats
The response header is composed of a response line optionally followed by headers that encode the
response parameters.

The response line starts with the response code, which is a three-digit numeric value. The code is
followed by a white space, the transaction identifier, and optional commentary preceded by a white
space, e.g.:

 200 1201 OK

Table 18 below summarizes the response parameters whose presence is mandatory or optional in a
response header, as a function of the command that triggered the response assuming the command
succeeded. The reader should still study the individual command definitions though as this table only
provides summary information. The letter M stands for mandatory, O for optional and F for
forbidden.

Table 18/J.162 – Association of Response Header Parameters and Commands

Parameter name CRCX MDCX DLCX RQNT NTFY AUEP AUCX RSIP

ResponseAck Oa) Oa) Oa) Oa) Oa) Oa) Oa) Oa)
CallId F F F F F F O F
ConnectionId M F F F F O F F
RequestIdentifier F F F F F O F F
LocalConnectionOptions F F F F F O O F
Connection Mode F F F F F F O F
RequestedEvents F F F F F O F F
SignalRequests F F F F F O F F
NotifiedEntity F F F F F O O O
ReasonCode F F F F F O F F
ObservedEvents F F F F F O F F
DigitMap F F F F F O F F
ConnectionParameters F F O F F F O F
SpecificEndpointID O F F F F O F F
MaxEndPointIds F F F F F F F F
NumEndPoints F F F F F O F F
RequestedInfo F F F F F F F F
QuarantineHandling F F F F F F F F
DetectEvents F F F F F O F F

 ITU-T Rec. J.162 (03/2004) 69

Table 18/J.162 – Association of Response Header Parameters and Commands

Parameter name CRCX MDCX DLCX RQNT NTFY AUEP AUCX RSIP

EventStates F F F F F O F F
ResourceID O O F F F F F F
RestartMethod F F F F F F F F
RestartDelay F F F F F F F F
Capabilities F F F F F O F F
VersionSupported F F F F F O F O
MaxMGCPDatagram F F F F F O F F
LocalConnection Descriptor M O F F F F O F
RemoteConnection Descriptor F F F F F F O F
a) The ResponseAck parameter MUST NOT be used with any other responses than a final response issued after a

provisional response for the transaction in question. In that case, the presence of the ResponseAck parameter
MUST trigger a Response Acknowledgement message – any ResponseAck values provided will be ignored.

The response parameters are described for each of the commands in the following.

7.3.1 CreateConnection
In the case of a CreateConnection message, the response line is followed by a Connection-Id
parameter with a successful response (code 200). A LocalConnectionDescriptor is furthermore
transmitted with a positive response. The LocalConnectionDescriptor is encoded as a "session
description", as defined in 7.4. It is separated from the response header by an empty line, e.g.:

 200 1204 OK
 I: FDE234C8

 v=0
 o=- 25678 753849 IN IP4 128.96.41.1
 s=-
 c=IN IP4 128.96.41.1
 t=0 0
 m=audio 3456 RTP/AVP 96 97 0
 a=rtpmap:96 G726-32/8000
 a=rtpmap:97 telephone-event/8000
 a=mptime: 10 - 10

When a provisional response has been issued previously, the final response may furthermore contain
the Response Acknowledgement parameter, and when Dynamic Quality of Service is used, the final
response may also contain a ResourceID, as in:

 200 1204 OK
 K:
 I: FDE234C8
 DQ-RI: 23DB4A43

v=0

 o=- 25678 753849 IN IP4 128.96.41.1
 s=-
 c=IN IP4 128.96.41.1
 t=0 0
 m=audio 3456 RTP/AVP 96 97 0
 a=rtpmap:96 G726-32/8000
 a=rtpmap:97 telephone-event/8000
 a=mptime: 10 - 10

70 ITU-T Rec. J.162 (03/2004)

The final response is acknowledged by a Response Acknowledgement:

 000 1204

7.3.2 ModifyConnection
In the case of a successful ModifyConnection message, the response line is followed by a
LocalConnectionDescriptor, if the modification resulted in a modification of the session parameters
(e.g., changing only the mode of a connection does not alter the session parameters). The
LocalConnectionDescriptor is encoded as a "session description", as defined in 7.4. It is separated
from the response header by an empty line.

 200 1207 OK

 v=0
 o=- 25678 753849 IN IP4 128.96.41.1
 s=-
 c=IN IP4 128.96.41.1
 t=0 0
 m=audio 3456 RTP/AVP 0
 a=mptime: 20

The response may also contain a ResourceID when Dynamic Quality of Service is used as in:

 200 1207 OK
 DQ-RI: 12345

When a provisional response has been issued previously, the final response may furthermore contain
the Response Acknowledgement parameter as in:

 526 1207 No bandwidth
 K:

The final response is acknowledged by a Response Acknowledgement:

 000 1207 OK

7.3.3 DeleteConnection
Depending on the variant of the DeleteConnection message, the response line may be followed by a
Connection Parameters parameter line, as defined in 7.2.2.5.

 250 1210 OK
 P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48,
 PC/RPS=782, PC/ROS=45238, PC/RPL=5, PC/RJI=26

7.3.4 NotificationRequest
A NotificationRequest response does not include any additional response parameters.

7.3.5 Notify
A Notify response does not include any additional response parameters.

 ITU-T Rec. J.162 (03/2004) 71

7.3.6 AuditEndpoint
In the case of an AuditEndPoint, the response line may be followed by information for each of the
parameters requested – each parameter will appear on a separate line. Parameters for which no value
currently exists, e.g., digit map, will still be provided. Each local endpoint name "expanded" by a
wild-card character will appear on a separate line using the "SpecificEndPointId" parameter code,
e.g.:

 200 1200 OK
 Z: aaln/1@rgw.whatever.net
 Z: aaln/2@rgw.whatever.net

An example of a response to an AuditEndPoint message containing a non-wild-carded endpoint
name is shown below. Note that the SpecificEndPointId is not provided in this case. Note also that
each set of capabilities is provided on a single line. The example below shows each set on multiple
lines due only to formatting restraints of this Recommendation.

 200 1200 OK
 A: a:PCMU, p:10, e:on, s:off, t:1, v:X,
 m:sendonly;recvonly;sendrecv;inactive
 A: a:G728, p:20, e:on, s:off, t:1, v:L,
 m:sendonly;recvonly;sendrecv;inactive
 A: a:G729, p:30, e:on, s:on, t:1, v:X,
 m:sendonly;recvonly;sendrecv;inactive;confrnce

7.3.7 AuditConnection
In the case of an AuditConnection, the response may be followed by information for each of the
parameters requested. Parameters for which no value currently exists will still be provided.
Connection descriptors will always appear last and each will be preceded by an empty line, as for
example:

 200 1203 OK
 C: A3C47F21456789F0
 N: CA-1@myhost.whatever.net:2345
 L: mp:20;10, a:PCMU;G728
 M: sendrecv
 P: PS=622, OS=31172, PR=390, OR=22561, PL=5, JI=29, LA=50,
 PC/RPS=391, PC/ROS=22619, PC/RPL=5, PC/RJI=26
 v=0
 o=- 4723891 7428910 IN IP4 128.96.63.25
 s=-
 c=IN IP4 128.96.63.25
 t=0 0
 m=audio 1296 RTP/AVP 96
 a=rtpmap:96 G728/8000
 a=mptime: 10

If both a local and a remote connection descriptor are provided, the local connection descriptor will
be the first of the two. If a connection descriptor is requested, but it does not exist for the connection
audited, that connection descriptor will appear with the SDP protocol version field only.

7.3.8 RestartInProgress
The response to a RestartInProgress may include the name of another Call Agent to contact, for
instance when the Call Agent redirects the endpoint to another Call Agent as in:

 521 1204 Redirect
 N: CA-1@whatever.net

72 ITU-T Rec. J.162 (03/2004)

7.4 Session description encoding
The session description is encoded in conformance with the session description protocol (SDP);
however, embedded clients may make certain simplifying assumptions about the session description
as specified in the following. It should be noted, that session descriptions are case sensitive per
RFC 2327.

SDP usage depends on the type of session, as specified in the "media" parameter:
• If the media is set to "audio", the session description is for an audio service.
• If the media is set to "video", the session description is for a video service.

For an audio service, the gateway will consider the information provided in SDP for the "audio"
media, and for a video service the gateway will consider the information provided in SDP for the
"video" media.

7.4.1 SDP audio service use
In a voice-only gateway, we only have to describe sessions that use exactly one media, audio. The
parameters of SDP that are relevant for the voice-based application are specified below. Embedded
clients MUST support session descriptions that conform to these rules and in the following order:
1) The SDP profile presented below.
2) SDP: Session Description Protocol (RFC 2327).

The SDP profile provided describes the use of the session description protocol in NCS. The general
description and explanation of the individual parameters can be found in RFC 2327; however, below
we detail what values NCS endpoints need to provide for these fields (send) and what NCS
endpoints should do with values supplied or not supplied for these fields (receive).

7.4.1.1 Protocol version (v=)

v= <version>
v= 0

 Send: MUST be provided in accordance with RFC 2327 (i.e., v = 0).

 Receive: MUST be provided in accordance with RFC 2327.

7.4.1.2 Origin (o=)
The origin field consists (o=) of 6 sub-fields in RFC 2327:

o= <username> <session-ID> <version> <network-type> <address-type> <address>
o= – 2987933615 2987933615 IN IP4 126.16.64.4

Username:

 Send: Hyphen MUST be used as username when privacy is requested.

 Hyphen SHOULD be used otherwise27.

 Receive: This field SHOULD be ignored.

Session-ID:

 Send: MUST be in accordance with RFC 2327 for interoperability with
non-IPCablecom clients.

 Receive: This field SHOULD be ignored.

27 Since NCS endpoints do not know when privacy is requested, they SHOULD always use a hyphen.

 ITU-T Rec. J.162 (03/2004) 73

Version:

 Send: In accordance with RFC 2327.

 Receive: This field SHOULD be ignored.

Network Type:

 Send: Type "IN" MUST be used.

 Receive: This field SHOULD be ignored.

Address Type:

 Send: Type "IP4" MUST be used

 Receive: This field SHOULD be ignored.

Address:

 Send: MUST be in accordance with RFC 2327 for interoperability with
non-IPCablecom clients.

 Receive: This field MUST be ignored.

7.4.1.3 Session name (s=)

s= <session-name>
s= -

 Send: Hyphen MUST be used as Session name.

 Receive: This field MUST be ignored.

7.4.1.4 Session and media information (i=)

i= <session-description>

 Send: For NCS, the field MUST NOT be used.

 Receive: This field MUST be ignored.

7.4.1.5 URI (u=)

u= <URI>

 Send: For NCS, the field MUST NOT be used.

 Receive: This field MUST be ignored.

7.4.1.6 E-mail address and phone number (e=, p=)

e= <e-mail-address>
p= <phone-number>

 Send: For NCS, the field MUST NOT be used.

 Receive: This field MUST be ignored.

7.4.1.7 Connection data (c=)
The connection data consists of 3 sub-fields:

c= <network-type> <address-type> <connection-address>
c= IN IP4 10.10.111.11

74 ITU-T Rec. J.162 (03/2004)

Network Type:

 Send: Type "IN" MUST be used.

 Receive: Type "IN" MUST be present.

Address Type:

 Send: Type "IP4" MUST be used

 Receive: Type "IP4" MUST be present.

Connection Address:

 Send: This field MUST be filled with a unicast IP address at which the application
will receive the media stream. Thus, a TTL value MUST NOT be present and a
"number of addresses" value MUST NOT be present. The field MUST NOT be
filled with a fully-qualified domain name instead of an IP address. A non-zero
address specifies both the send and receive address for the media stream(s) it
covers.

 Receive: A unicast IP address or a fully qualified domain name MUST be present. A non-
zero address specifies both the send and receive address for the media stream(s)
it covers.

7.4.1.8 Bandwidth (b=)

b= <modifier> : <bandwidth-value>
b= AS : 64

 Send: Bandwidth information is optional in SDP but it SHOULD always be
included28. When an rtpmap or a non well-known codec29 is used, the
bandwidth information MUST be used.

 Receive: Bandwidth information SHOULD be included. If a bandwidth modifier is not
included, the receiver MUST assume reasonable default bandwidth values for
well-known codecs.

Modifier:

 Send: Type "AS" MUST be used.

 Receive: Type "AS" MUST be present.

Bandwidth Value:

 Send: The field MUST be filled with the Maximum Bandwidth requirement of the
Media stream in kilobits per second.

 Receive: The maximum bandwidth requirement of the media stream in kilobits per
second MUST be present. Refer to ITU-T Rec. J.161, for the details of
calculating the bandwidth value.

28 If this field is not used, the Gate Controller might not authorize the appropriate bandwidth.
29 A non well-known codec is a codec not defined in ITU-T Rec. J.161.

 ITU-T Rec. J.162 (03/2004) 75

7.4.1.9 Time, repeat times and time zones (t=, r=, z=)

t= <start-time> <stop-time>
t= 36124033 0
r= <repeat-interval> <active-duration> <list-of-offsets-from-start-time>
z= <adjustment-time> <offset>

 Send: Time MUST be present; start time MAY be zero, but SHOULD be the current
time, and stop time SHOULD be zero. Repeat Times, and Time Zones
SHOULD NOT be used, if they are used it should be in accordance with
RFC 2327.

 Receive: If any of these fields are present, they SHOULD be ignored.

7.4.1.10 Encryption keys

k= <method>
k= <method> : <encryption-keys>

Security services for IPCablecom are defined by ITU-T Rec. J.170. The security services specified
for RTP and RTCP do not comply with those of RFC 3550, RFC 3551, and RFC 2327. In the
interest of interoperability with non-IPCablecom devices, the "k" parameter will therefore not be
used to convey security parameters.

 Send: MUST NOT be used.

 Receive: This field SHOULD be ignored.

7.4.1.11 Attributes (a=)

a= <attribute> : <value>
a= rtpmap : <payload type> <encoding name>/<clock rate> [/<encoding parameters>]
a= rtpmap : 0 PCMU / 8000
a= fmtp:<format><format specific parameters>
a= X-pc-codecs: <alternative 1> <alternative 2> …
a= X-pc-secret: <method>:<encryption key>[pad]
a= X-pc-csuites-rtp: <alternative 1> <alternative 2> …
a= X-pc-csuites-rtcp: <alternative 1> <alternative 2> …
a= X-pc-nrekey: <value>= <attribute>
a= recvonly
a= sendrecv
a= sendonly
a= ptime

 Send: One or more of the "a" attribute lines specified below MAY be included.

 Receive: One or more of the "a" attribute lines specified below MAY be included and
MUST be acted upon accordingly.

rtpmap:

 Send: When used, the field MUST be used in accordance with RFC 2327. This field
MAY be used for well-known as well as non well-known codecs. The encoding
names used are provided in a separate IPCablecom Recommendation. The
mapping of codec to RTP dynamic payload type given with this attribute
defines the payload type that this sender is prepared to receive on the
connection. It also provides a strong hint to the other party that it should also
use this payload mapping for its receive side, although there may be cases
where this is not possible. On a given connection, once an MTA has mapped a
dynamic payload type to a given encoding method for its receive media stream,
that payload type MUST NOT subsequently be mapped to another encoding
method for its receive media stream.

76 ITU-T Rec. J.162 (03/2004)

 Receive: When used, the field MUST be used in accordance with RFC 2327. This
attribute defines the mapping of codec to RTP payload type that the other side
of the connection is prepared to receive. MTAs MUST, therefore, use this
payload type mapping when transmitting media on this connection. When
received in a CreateConnection command, the MTA SHOULD use this payload
type mapping for its own receive side (i.e., it should return a Local Connection
Descriptor containing the same rtpmap attribute). If an MTA receives a rtpmap
attribute in a ModifyConnection command with a different mapping, the MTA
MUST leave its own receive payload type mapping as is (so that asymmetric
payload types are used).

fmtp:

 Send: This field MAY be used to provide parameters specific to a particular format.
For example, the field could be used to describe telephone events supported for
an RFC 2833 format. When used, the format MUST be one of the formats
specified for the media. The parameters specified are provided in a separate
Recommendation that details the usage of the format.

 Receive: When used, the field MUST be used in accordance with RFC 2327.

X-pc-codecs:

 This attribute is a media-level attribute defined by IPCablecom.

 Send: The field contains a list of alternative codecs that the endpoint is capable of
using for this connection. The list is ordered by decreasing degree of preference,
i.e., the most preferred alternative codec is the first one in the list. A codec is
encoded similarly to "encoding name" in rtpmap.

 Receive: Conveys a list of codecs that the remote endpoint is capable of using for this
connection. The codecs MUST NOT be used until signalled through a media
(m=) line.

mptime:

This attribute is a media-level attribute defined by IPCablecom. The mptime attribute defines a list
of packetization period values the endpoint is capable of using (sending and receiving) for this
connection.

 Send: The mptime attribute MUST be present. There MUST be precisely one entry in
the list for each <format> entry provided in the "m=" line. Entry number j in
this list defines the packetization period for entry number j in the "m=" line. The
first entry in the list MUST be a decimal number whereas subsequent entries in
the list MUST be either a decimal number or a hyphen. For those media formats
where a single packetization rate does not apply (e.g., non-voice codecs such as
telephone-event or comfort noise), a hyphen ("-") MUST be encoded at the
corresponding location in the list of packetization periods.

 Receive: Conveys the list of packetization periods that the remote endpoint is capable of
using for this connection; one for each media format in the "m=" line. For media
formats whose packetization period is specified as a hyphen ("-"), the endpoint
MUST use one of the packetization periods that was actually specified in the
list. If the "mptime" attribute is absent, then the value of the "ptime" attribute, if
present, MUST be taken as indicating the packetization period for all codecs
present in the "m=" line.

 ITU-T Rec. J.162 (03/2004) 77

X-pc-secret:

 This attribute is a media-level attribute defined by IPCablecom.

 Send: The field contains an end-to-end secret and (possibly) the PAD to be used for
RTP and RTCP security. The secret and PAD are encoded similarly to the
encryption key (k=) parameter of RFC 2327 with the following constraints:

 • The encryption key MUST NOT contain a ciphersuite, only a pass-phrase.
 • The <method> specifying the encoding of the pass-phrase MUST be either

"clear" or "base64" as defined in RFC 2045, except for the maximum line
length which is not specified here. The method "clear" MUST NOT be used if
the secret or PAD contains any characters that are prohibited in SDP.

 The requirements for when to transmit PAD are described in ITU-T
Rec. J.170. If present, it MUST be separated by at least one whitespace from
the secret. Pad and secret MUST use the same encoding method.

 Receive: Conveys the end-to-end secret and PAD to be used for RTP and RTCP security.
If present, its use is as described in ITU-T Rec. J.170 and it MUST be separated
by at least one white space from the secret. PAD and secret MUST use the same
encoding method.

X-pc-csuites-rtp:

X-pc-csuites-rtcp:

 These attributes are media-level attributes defined by IPCablecom.
 Send: The field contains a list of ciphersuites that the endpoint is capable of using for

this connection (respectively RTP and RTCP). The first ciphersuite listed is
what the endpoint is currently expecting to use. Any remaining ciphersuites in
the list represent alternatives ordered by decreasing degree of preference,
i.e., the most preferred alternative ciphersuite is the second one in the list. A
ciphersuite is encoded as specified below:

 ciphersuite = [AuthenticationAlgorithm] "/" [EncryptionAlgorithm]

 AuthenticationAlgorithm = 1*(ALPHA / DIGIT / "-" / "_")

 EncryptionAlgorithm = 1*(ALPHA / DIGIT | "-" / "_")

 where ALPHA, and DIGIT are defined in RFC 2234. White spaces are not
allowed within a ciphersuite. The following example illustrates the use of
ciphersuite:

 62/51

 The actual list of ciphersuites is provided in ITU-T Rec. J.170.

 Receive: Conveys a list of ciphersuites that the remote endpoint is capable of using for
this connection. Any other ciphersuite than the first in the list cannot be used
until signalled through a new ciphersuite line with the desired ciphersuite listed
first.

recvonly:

 Send: The field MUST be used in accordance with RFC 2543. Currently, this attribute
should not be supplied by an embedded client.

 Receive: The field MUST be used in accordance with RFC 2543.

78 ITU-T Rec. J.162 (03/2004)

sendrecv:

 Send: The field MUST be used in accordance with RFC 2543.

 Receive: The field MUST be used in accordance with RFC 2543.

sendonly:

 Send: The field MUST be used in accordance with RFC 2543, except that the IP
address and port number MUST NOT be zeroed. Currently, this attribute should
not be supplied by an embedded client.

 Receive: The field MUST be used in accordance with RFC 2543.

ptime:

 Send: The ptime SHOULD be sent if it was received in a Remote Connection
Descriptor or if the CMS used the packetization period ('p:')
LocalConnectionOption.

 Receive: The field MUST be ignored if the SDP contains the "mptime" attribute
(as required in IPCablecom compliant devices). If the "mptime" attribute is not
present, then this field is used to define the packetization interval for all codecs
present in the SDP description and, the MTA MUST use the ptime in the
calculation of QoS reservations.

X-pc-nrekey:

 This attribute is a media-level attribute defined by IPCablecom.

 Send: The field contains a 16-bit, integer, counter for the number of rekey events. This
field may be required when voice security is used. Requirements for its usage
are defined in ITU-T Rec. J.170.

 Receive: Conveys the number of rekey events. The field may be present when RTP
security is used and its use is as defined in ITU-T Rec. J.170.

7.4.1.12 Media Announcements (m=)
Media Announcements (m=) consists of 4 sub-fields:

m= <media> <port> <transport> <fmt list>
m= audio 3456 RTP/AVP 0 97

Media:

 Send: The "audio" media type MUST be used.

 Receive: The type received MUST be "audio".

Port:

 Send: MUST be filled in accordance with RFC 2327. The port specified is the receive
port, regardless of whether the stream is unidirectional or bidirectional. The
sending port may be different.

 Receive: MUST be used in accordance with RFC 2327. The port specified is the receive
port. The sending port may be different.

Transport:

 Send: The transport protocol "RTP/AVP" MUST be used.

 Receive: The transport protocol MUST be "RTP/AVP".

 ITU-T Rec. J.162 (03/2004) 79

Media Formats:

 Send: Appropriate media type as defined in RFC 2327 MUST be used. Specifically,
this field contains a list of one or more RTP payload types that this MTA is
prepared to receive on the connection and that it would prefer to send with.
Each payload type is mapped uniquely to a codec, either statically or
dynamically. The static mapping SHOULD be used if available (e.g., 0 for
PCMU, 8 for PCMA). If a dynamic payload mapping is used, an RTPMAP
attribute MUST also be present and the guidelines in 7.4.1.11 MUST be
followed.

 Receive: In accordance with RFC 2327. Specifically, this indicates the payload type(s)
that the other side of this connection is prepared to receive.

7.4.2 SDP video service use
Details on SDP use for video service are for further study.

7.5 Transmission over UDP

7.5.1 Reliable message delivery
MGCP messages are transmitted over UDP. Commands are sent to one of the IP addresses defined in
the Domain Name System (DNS) for the specified endpoint or Call Agent. The responses are sent
back to the source address of the command. However, it should be noted that the response may, in
fact, come from another IP address than the one to which the command was sent.

When no port is provisioned for the endpoint30, the commands MUST be sent to the default MGCP
port, which is 2427 for commands sent to Gateways and 2727 for commands sent to Call Agent. To
minimize backward compatibility issues it is RECOMMENDED that the Call Agent always
explicitly state the MGCP port to use in NCS messages (and not rely on the default).

MGCP messages, carried over UDP, may be subject to losses. In the absence of a timely response,
commands are repeated. MGCP entities are expected to keep, in memory, a list of the responses sent
to recent transactions, i.e., a list of all the responses sent over the last Tthist seconds, as well as a list
of the transactions that are being executed currently. Transaction identifiers of incoming commands
are compared to transaction identifiers of the recent responses. If a match is found, the MGCP entity
does not execute the transaction, but simply repeats the response. If no match is found, the MGCP
entity examines the list of currently executing transactions. If a match is found, the MGCP entity
will not execute the transaction. If the command is a CreateConnection or ModifyConnection
command, a provisional response is sent; otherwise, the command is simply ignored.

It is the responsibility of the requesting entity to provide suitable time-outs for all outstanding
commands and to retry commands when time-outs have been exceeded. A retransmission strategy is
specified in 7.5.2.

Furthermore, when repeated commands fail to get a response, the destination entity is assumed to be
unavailable. It is the responsibility of the requesting entity to seek redundant services and/or clear
existing or pending connections as specified in 6.4.

30 Each endpoint may be provisioned with a separate Call Agent address and port.

80 ITU-T Rec. J.162 (03/2004)

7.5.2 Retransmission strategy
This Recommendation avoids specifying any static values for the retransmission timers since these
values are typically network-dependent. Normally, the retransmission timers should estimate the
timer by measuring the time spent between sending a command and the return of a response.
Embedded clients MUST implement a retransmission strategy using exponential back-off with
configurable initial and maximum retransmission timer values.

Embedded clients SHOULD use the algorithm implemented in TCP-IP, which uses two variables:
• the average acknowledgement delay (AAD) estimated through an exponentially smoothed

average of the observed delays;
• the average deviation (ADEV) estimated through an exponentially smoothed average of the

absolute value of the difference between the observed delay and the current average.

The retransmission timer (RTO) in TCP, is set to the sum of the average delay plus N times the
average deviation, where N is a constant.

After any retransmission, the MGCP entity should do the following:
• It should double the estimated value of the average delay, AAD.
• It should compute a random value, uniformly distributed between 0.5 AAD and AAD.
• It should set the retransmission timer (RTO) to the minimum of:

− the sum of that random value and N times the average deviation.
• RTOmax, where the default value for RTOmax is 4 seconds.

This procedure has two effects: Because it includes an exponentially increasing component, it will
automatically slow down the stream of messages in case of congestion subject to the needs of
real-time communication. Because it includes a random component, it will break the potential
synchronization between notifications triggered by the same external event.

The initial value used for the retransmission timer is 200 milliseconds by default and the maximum
value for the retransmission timer is 4 seconds by default. These default values may be altered by the
provisioning process.

7.5.3 Maximum datagram size, fragmentation and reassembly
MGCP messages being transmitted over UDP rely on IP for fragmentation and reassembly of large
datagrams. The maximum theoretical size of an IP datagram is 65 535 bytes. With a 20-byte IP
header, and an 8-byte header, this leaves us with a maximum theoretical MGCP message size of
65 507 bytes when using UDP.

However, IP does not require a host to receive IP datagrams larger than 576 bytes (RFC 1122) which
would provide an unacceptably small MGCP message size. Consequently, MGCP mandates that
implementations MUST support MGCP datagrams up to at least 4000 bytes, which requires the
corresponding IP fragmentation and reassembly to be supported. Note that the 4000-byte limit
applies to the MGCP level. Lower layer overhead will require support for IP datagrams that are
larger than this: UDP and IP overhead will be at least 28 bytes, and e.g., IPsec will add more as well.

It should be noted that the above applies to both Call Agents and endpoints. Call Agents can audit
endpoints to determine if they support larger MGCP datagrams than specified above. Endpoints do
currently not have a similar capability to determine if a Call Agent supports larger MGCP datagram
sizes.

 ITU-T Rec. J.162 (03/2004) 81

7.6 Piggybacking
There are cases when a Call Agent will want to send several messages at the same time to one or
more endpoints in a gateway and vice versa. When several messages have to be sent in the same
UDP packets, they are separated by a line of text that contains a single dot, as in for example:

 200 2005 OK

 DLCX 1244 aaln/2@rgw.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 I: FDE234C8

The piggybacked messages MUST be processed as if they had been received one at a time in several
separate datagrams. Each message in the datagram must be processed to completion and in order
starting with the first message, and each command MUST be responded to.

Errors encountered in a message that was piggybacked MUST NOT affect any of the other messages
received in that packet – each message is processed on its own.

Piggybacking can be used to achieve two things:

• guaranteed in-order delivery and processing of messages;

• fate sharing of message delivery.

When piggybacking is used to guarantee in-order delivery of messages, entities MUST ensure that
this in-order delivery property is retained on retransmissions of the individual messages. An example
of this is when multiple Notify(s) are sent using piggybacking (as described in 6.4.3.1).

Fate sharing of message delivery ensures that either all the messages are delivered, or none of them
are delivered. When piggybacking is used to guarantee this fate-sharing, entities MUST also ensure
that this property is retained upon retransmission. For example, upon receiving a Notify from an
endpoint operating in lockstep mode, the Call Agent may wish to send the response and a new
NotificationRequest command in a single datagram to ensure message delivery fate-sharing of the
two.

7.7 Transaction identifiers and three-way handshake
Transaction identifiers are integer numbers in the range from 1 to 999 999 999. Call Agents may
decide to use a specific number space for each of the gateways that they manage, or to use the same
number space for all gateways that belong to some arbitrary group. Call Agents may decide to share
the load of managing a large gateway between several independent processes. These processes will
share the same transaction number space. There are multiple possible implementations of this
sharing, such as having a centralized allocation of transaction identifiers, or pre-allocating
non-overlapping ranges of identifiers to different processes. The implementations MUST guarantee
that unique transaction identifiers are allocated to all transactions that originate from any call agent
sent to a particular gateway within a period of Tthist seconds. Gateways can simply detect duplicate
transactions by looking at the transaction identifier only.

The Response Acknowledgement parameter can be found in any command. It carries a set of
"confirmed transaction-id ranges" for final responses received – provisional responses MUST NOT
be confirmed.

MGCP gateways may choose to delete the copies of the responses to transactions whose id is
included in "confirmed transaction-id ranges" received in a message; however, the fact that the
transaction was executed MUST still be retained for Tthist seconds. Also, when a Response
Acknowledgement message31 is received, the response that is being acknowledged by it can be

31 As opposed to a command with a Response Acknowledgement parameter.

82 ITU-T Rec. J.162 (03/2004)

deleted. Gateways should silently discard further commands from that Call Agent when the
transaction-id falls within these ranges, and the response was issued less than Tthist seconds ago.

Let termnew and termold be the endpoint-name in respectively a new command, cmdnew, and some old
command, cmdold. The transaction-ids to be confirmed in cmdnew SHOULD then be determined as
follows:
1) If termnew does not contain any wild-cards:

a) Unconfirmed responses to old commands where termold equals termnew.
b) Optionally, one or more unconfirmed responses where termold contained the "any-of"

wild-card, and the endpoint-name returned in the response was termnew.
c) Optionally, one or more unconfirmed responses where termold contained the "all"

wild-card, and termnew is covered by the wild-card in termold.
d) Optionally, one or more unconfirmed responses where termold contained the "any-of"

wild-card, no endpoint-name was returned, and termnew is covered by the wild-card in
termold.

2) If termnew contains the "all" wild-card:
a) Optionally, one or more unconfirmed responses where termold contained the "all"

wild-card, and termnew is covered by the wild-card in termold.
3) If termnew contains the "any of" wild-card:

a) Optionally, one or more unconfirmed responses where termold contained the "all"
wild-card, and termnew is covered by the wild-card in termold if the "any of" wild-card in
termnew was replaced with the "all" wild-card.

A given response SHOULD NOT be confirmed in two separate messages.

The following examples illustrate the use of these rules:
• If termnew is "aaln/1" and termold is "aaln/1", then the old response can be confirmed per

rule 1a.
• If termnew is "aaln/1" and termold is "*", then the old response can be confirmed per rule 1c.
• If termnew is "aaln/*" and termold is "*", then the old response can be confirmed per rule 2a.
• If termnew is "aaln/$" and termold is "aaln/*", then the old response can be confirmed per

rule 3a.

The "confirmed transaction-id ranges" values SHOULD NOT be used if more than Tthist seconds
have elapsed since the gateway issued its last response to that call agent, or when a gateway resumes
operation. In this situation, commands should be accepted and processed, without any test on the
transaction-id.

Also, a response SHOULD NOT be confirmed if the response was received more than Tthist seconds
ago.

Messages that confirm responses may be transmitted and received in disorder. The gateway shall
retain the union of the confirmed transaction-ids received in recent commands.

7.8 Provisional responses
In some cases, transaction completion times may be significantly longer than otherwise32. NCS uses
UDP as the transport protocol and reliability is achieved by selective time-out-based retransmissions
where the time-out is based on an estimate of the sum of the network round-trip time and transaction

32 For instance when resources are reserved and committed externally as part of a transaction.

 ITU-T Rec. J.162 (03/2004) 83

completion time. Significant variance in the transaction completion time is therefore problematic
when rapid message loss detection without excessive overhead is desired.

In order to overcome this problem, a provisional response MUST therefore be issued if, the
transaction completion time is expected to exceed a small period of time (200 ms is
RECOMMENDED). The provisional response acknowledges the receipt of the command although
the outcome of the command may not yet be known, e.g., due to a pending resource reservation. As a
guideline, a transaction that requires external communication to complete, e.g., network resource
reservation, should issue a provisional response. Furthermore, if a duplicate CreateConnection or
ModifyConnection command is received, and the transaction has not yet finished executing, a
provisional response MUST then be sent back.

Pure transactional semantics would imply that provisional responses should not return any other
information than the fact that the transaction is currently executing; however, an optimistic approach
allowing some information to be returned enables a reduction in the delay that would otherwise be
incurred in the system.

Provisional responses MUST only be sent in response to a CreateConnection or ModifyConnection
command. In order to reduce the delay in the system, a connection identifier and session description
MUST be included in the provisional response to the CreateConnection command. If a session
description will be returned by the ModifyConnection command, the session description MUST be
included in the provisional response here as well. If the transaction completes successfully, the
information returned in the provisional response MUST be repeated in the final response. It is
considered a protocol error not to repeat this information or to change any of the previously supplied
information in a successful response. If the transaction fails, an error code is returned – the
information returned previously is no longer valid.

A currently executing CreateConnection or ModifyConnection transaction MUST be cancelled if a
DeleteConnection command for the endpoint is received. In that case, a response for the cancelled
transaction SHOULD still be returned automatically, and a response for the cancelled transaction
MUST be returned if a retransmission of the cancelled transaction is detected.

When a provisional response is received, the time-out period for the transaction in question MUST
be set to a significantly higher value for this transaction (Ttlongtran). The purpose of this timer is
primarily to detect endpoint failure. The default value of Ttlongtran is 5 seconds; however, the
provisioning process may alter this.

When the transaction finishes execution, the final response is sent and the by now obsolete
provisional response is deleted. In order to ensure rapid detection of a lost final response, final
responses issued after provisional responses for a transaction MUST be acknowledged. The endpoint
MUST therefore include an empty "ResponseAck" parameter in those, and only those, final
responses. The presence of the "ResponseAck" parameter in the final response will trigger a
"Response Acknowledgement" response to be sent back to the endpoint. Thus, the CMS MUST issue
a "Response Acknowledgement" response whenever it receives a final response containing an empty
"ResponseAck" parameter regardless of the receipt of a provisional response to the transaction since
the provisional response may have been lost The "Response Acknowledgement" response will
include the transaction-id of the response it acknowledges in the response header. Receipt of this
"Response Acknowledgement" response is subject to the same time-out and retransmission strategies
and procedures as responses to commands (see 6.4); i.e., the sender of the final response will
retransmit it if the "Response Acknowledgement" is not received in time. The "Response
Acknowledgment " response is never acknowledged.

84 ITU-T Rec. J.162 (03/2004)

8 Security
If unauthorized entities could use the MGCP, they would be able to set up unauthorized calls or
interfere with authorized calls. Security is not provided as an integral part of MGCP. Instead MGCP
assumes the existence of a lower layer providing the actual security.

Security requirements and solutions for NCS are provided in ITU-T Rec. J.170, which should be
consulted for further information.

Annex A

Event packages

This annex defines an initial set of event packages for the various types of endpoints currently
defined by IPCablecom for embedded clients. The following packages are defined for the embedded
client endpoint-types listed in Table 1.

Each package defines a package name for the package and event codes and definitions for each of
the events in the package. In the tables of events/signals for each package, there are five columns:

 Code The package unique event code used for the event/signal.

 Description A short description of the event/signal.

 Event A check mark appears in this column if the event can be Requested by
the Media Gateway Controller. Alternatively, one or more of the
following symbols may appear:

 "P" indicating that the event is persistent;

 "S" indicating that the event is an event-state that may be audited;

 "C" indicating that the event/signal may be detected/applied on a
connection.

 Signal If nothing appears in this column for an event, then the event cannot be
signalled on command by the Media Gateway Controller. Otherwise,
the following symbols identify the type of event:

 "OO" On/Off signal. The signal is turned on until commanded by the Media
Gateway Controller to turn it off, and vice versa.

 "TO" Time-out signal. The signal lasts for a given duration unless it is
superseded by a new signal. Default time-out values are supplied. A
value of zero indicates that the time-out period is infinite. The
provisioning process may alter these default values.

 "BR" Brief signal. The event has a short, known duration.

 Additional info Provides additional information about the event/signal, e.g., the default
duration of TO signals.

Unless otherwise stated, all of the events/signals are detected/applied on endpoints and audio
generated by them is not forwarded on any connection the endpoint may have. Audio generated by
events/signals that are detected/applied on a connection will however be forwarded on the associated
connection irrespective of the connection mode.

 ITU-T Rec. J.162 (03/2004) 85

Base protocol packages
The following packages are currently defined in the base protocol. These packages apply to all
endpoints:
• Base.

Base package
Package name: B

The following codes are used to identify events and signals for the "base" package for all endpoint
types:

Code Description Event Signal Additional Info

oc Operation complete √ −

of Operation failure √ −

Operation complete (oc): The operation complete event is generated when the gateway was asked
to apply one or several signals of type TO on the endpoint, and one or more of those signals
completed without being stopped by the detection of a requested event such as off-hook transition or
dialled digit. The completion report may carry as a parameter the name of the signal that came to the
end of its live time, as in:

 O: B/oc(mypackage/mysignal)

When the reported signal was applied on a connection, the parameter supplied will include the name
of the connection as well, as in:

 O: B/oc(mypackage/mysignal@0A3F58)

When the operation complete event is requested, it cannot be parameterized with any event
parameters. When the package name is omitted, the default package name is assumed.

The operation complete event may additionally be generated as defined in the base protocol,
e.g., when an embedded ModifyConnection command completes successfully, as in:

 O: B/oc(B/C)

Operation failure (of): In general, the operation failure event may be generated when the endpoint
was asked to apply one or several signals of type TO on the endpoint, and one or more of those
signals failed prior to timing out. The completion report may carry as a parameter the name of the
signal that failed, as in:

 O: B/of(mypackage/mysignal)

When the reported signal was applied on a connection, the parameter supplied will include the name
of the connection as well, as in:

 O: B/of(mypackage/mysignal@0A3F58)

When the operation failure event is requested, event parameters cannot be specified. When the
package name is omitted, the default package name is assumed.

The operation failure event may additionally be generated as specified in the base protocol,
e.g., when an embedded ModifyConnection command fails, as in:

 O: B/of(B/C(M(sendrecv(AB2354))))

Audio
Event packages for audio are for further study.

86 ITU-T Rec. J.162 (03/2004)

Video
Event packages for video are for further study.

ISDN
Event packages for basic access ISDN are for further study.

Annex B

Dynamic Quality of Service

In this annex, we provide additional detail on the usage of Dynamic Quality of Service (D-QoS) in
NCS. We describe the expected MTA behaviour in more detail and include a state machine and
pseudo-code that the MTA MUST follow to support the D-QoS behaviour described. ITU-T
Rec. J.163 should be consulted for further details.

Introduction
MTAs implementing support for Dynamic Quality of Service need to store and maintain D-QoS
state on a per-connection basis. Whenever D-QoS has been used for a connection, the endpoint will
keep the following D-QoS information associated with the connection until it is deleted:
• GateID – The current GateID used for the connection.
• ResourceID – The current ResourceID used for the connection.
• Last reservation – The parameters for the most recent reservation for the connection. This

includes classifiers as well as media parameters in both the send and receive direction.
• Last commit – The parameters for the most recent commit for the connection. This includes

classifiers as well as media parameters in both the send and receive direction.
• Reserve Destination – An IP address and port that may be used to enable resource

reservations where the remote address info is not yet known as explained below.
• Gate Location – The IP address and port where the D-QoS commit message should be sent

to when using RSVP. The MTA learns this address through the RSVP QoS messages.

The GateID is the key to resource reservation. Once a GateID has been provided for a connection, a
D-QoS state machine is created for the connection, and all of the above information will be
maintained for the connection until it is deleted.

 ITU-T Rec. J.162 (03/2004) 87

Resources can be reserved and committed independently in both the send and receive direction by
the MTA. The send destination IP address and port as well as the source IP address are taken from
the RemoteConnectionDescriptor, when a RemoteConnectionDescriptor has been provided. In that
case, the MTA MUST use the following classifiers for the resource reservation and commit:

 MTA-o (J.112/RSVP)

Downstream/receive
 Source IP IP(SDP-t)
 Source Port *
 Destination IP IP(SDP-o)
 Destination Port Port(SDP-o)
Upstream/send
 Source IP IP(SDP-o)
 Source Port Port(o)
 Destination IP IP(SDP-t)
 Destination Port Port(SDP-t)

where:
• IP(SDP-o) refers to the media IP address in MTA-o's LocalConnectionDescriptor;
• IP(SDP-t) refers to the media IP address in MTA-t's RemoteConnectionDescriptor;
• Port(SDP-o) refers to the media port in MTA-o's LocalConnectionDescriptor;

• Port(SDP-t) refers to the media port in MTA-t's LocalConnectionDescriptor;
• Port(o) refers to the source port MTA-o will be using when sending media on this

connection. Note that this may or may not be the same as Port(SDP-o).

When a RemoteConnectionDescriptor has not yet been provided, the actual send destination IP
address and port is unknown and the ReserveDestination address is therefore used instead. For the
receive direction, the source IP address and port is wild-carded. This enables a reservation and a
receive commit of the resource on the access link. The following classifiers MUST be used:

 MTA-o (J.112/RSVP)

Downstream/receive
 Source IP *
 Source Port *
 Destination IP IP(SDP-o)
 Destination Port Port(SDP-o)
Upstream/send
 Source IP IP(SDP-o)
 Source Port Port(o)
 Destination IP IP(RD-o)
 Destination Port Port(RD-o)

88 ITU-T Rec. J.162 (03/2004)

where:
• IP(RD-o) refers to the IP address in the ReserveDestination supplied;
• IP(Port-o) refers to the port number in the ReserveDestination supplied. If no port number

is specified, a default value of 9 applies;
• once the actual send destination and receive source media addresses and port are known, the

reservations are updated with the appropriate classifiers;
• when RSVP is used as the resource reservation protocol, the destination address used for the

RSVP PATH message will be the ReserveDestination IP address supplied until a
RemoteConnectionDescriptor is supplied.

NCS/D-QoS state machine
As explained above, the MTA maintains state for the Dynamic Quality of Service used on a
connection. The state is derived from a state machine which is driven by the following:
• Current state which consists of the pair (SendQoSState, ReceiveQoSState), where each

QoS state may be one of the following:
− N – No resource reservation exists for the direction;
− R – A resource reservation exists for the direction, but no resources are currently

committed;
− C – A resource reservation exists for the direction, some resources are currently

committed;
− Connection mode which is the NCS connection mode. The connection modes

"Conference", "Network Loopback", and "Network Continuity Test" are not shown
explicitly in the state machine, as they are all similar to "SendReceive". The connection
mode "Replicate" is also not shown as it is similar to "SendOnly".

• Resource Change which is one or more of the following:
− RemoteConnectionDescriptor IP address or port changes (classifier needs to be

updated). This includes the case where it arrives for first time;
− Codec changes;
− Ptime changes;
− etc.

• The D-QoS rules provided in 6.3.3.

As explained above, the state machine will be reinitialized when a new GateID is received. If a
ResourceID is supplied as well and it is the same as the old ResourceID, the reservation(s) for the
new state machine MUST be performed before the reservation(s) for the old state machine are
released.

The set of possible states are:
• (N, N) Send resources not reserved, receive resources not reserved;
• (R, R) Send resources reserved, receive resources reserved;
• (C, R) Send resources reserved and committed, receive resources reserved;
• (R, C) Send resources reserved, receive resources reserved and committed;
• (C, C) Send resources reserved and committed, receive resources reserved and committed;
• (R, N) Send resources reserved, receive resources not reserved;
• (C, N) Send resources reserved and committed, receive resources not reserved;

 ITU-T Rec. J.162 (03/2004) 89

• (N, R) Send resources not reserved, receive resources reserved;
• (N, C) Send resources not reserved, receive resources reserved and committed.

Once resources have been reserved and/or committed for a direction, a reservation for that direction
will exist for the lifetime of the connection. The relationship between states and connection mode or
D-QoS reservation parameters is shown in the table below:

 SendState RecvState

No Reserve/Commit parameter supplied – connection mode:
 inactive R R
 sendonly, replcate C R
 recvonly R C
 sendrecv, confrnce, netwloop, netwtest C C
Reserve/Commit parameter supplied:
 sendresv R N, Ra)
 recvresv N, Ra) R
 snrcresv R R
 sendcomt C N, Ra)
 recvcomt N, Ra) C
 snrccomt C C
a) If resources have been reserved or committed previously for the direction, the state will be R, otherwise

the state will be N.

The actual state transition diagram is depicted in Figure B.1:

Figure B.1/J.162 – NCS/D-QoS state diagram (sheet 1 of 3)

90 ITU-T Rec. J.162 (03/2004)

Send/
SendRecv
Commit

supplied ?

SendReserve
= true

SendCommit
= true

SendState =
Commit

?

SendUnCommit
= true

Recv/
SendRecv
Commit

supplied?

RecvState = Null
?

RecvState =
Commit

?

SendState =
Null

?

RecvUnCommit =
true

RecvCommit
= true RCU

RecvReserve
=true

No

Yes

Yes

Yes
No

No

No

Yes

Yes

No No

Yes

Set all Reserve,
Commit, and
Uncommit

variables to false

Send/
SendRecv
Reserve

supplied?

SendReserve
= true

No

No

Yes

Yes

Recv/
SendRecv
Reserve

supplied?

RecvReserve
= true

No

Yes

DDQ SendReserve
= true

RecvReserve
= true

SendState =
Commit

?

SendUnCommit =
true

RecvState =
Commit

?

RCU

ReceiveUnCommit
= true

RecvState =
Commit

?

RecvUnCommit
= true

RCU

SendCommit
= true

RecvCommit
= true

SendState =
Commit

?

SendUnCommit =
true

RCU

SendCommit
= true

RecvCommit
= true

RCU

Yes

No No No

Yes

Yes

No

No

Yes

Yes Yes

No No

Yes

Figure B.1/J.162 – NCS/D-QoS state diagram (sheet 2 of 3)

 ITU-T Rec. J.162 (03/2004) 91

Perform Reserve,
Commit and
UnCommit

actions

Actions
succeeded?

SendState =
UpdateSendState

(SendReserve,
SendCommit,

SendState)

RecvState =
UpdateRecvState

(RecvReserve,
RecvCommit,

RecvState)

Failure

Idle

Idle

Success

RCU

No

Yes

Idle

DeleteConne
ction

Set all Delete
variables to

false

SendStat
e = Null

?

RecvState
= Null

?

Success

Null

Perform
Delete
actions

SendDelete =
true

RecvDelete =
true

No

No

Yes

Yes

DDQ

Figure B.1/J.162 – NCS/D-QoS state diagram (sheet 3 of 3)

When executing the state machine, boolean variables will be set to indicate whether reserve,
unreserve, commit, and uncommit operations are to be performed. The pseudo-code below then
provides details on individual D-QoS procedures that are to be executed as indicated by these
booleans. The following actions specify the D-QoS actions to be taken in each of these procedures:
• SR means a D-QoS Send Reservation will be performed;
• RR means a D-QoS Receive Reservation will be performed;
• SC means a D-QoS Send Commit will be performed;
• RC means a D-QoS Receive Commit will be performed;
• SD means a D-QoS Send Reservation Delete will be performed;
• RD means a D-QoS Receive Reservation Delete will be performed;
• SU means a D-QoS Send Uncommit, i.e., lower committed send resources to zero, will be

performed;

92 ITU-T Rec. J.162 (03/2004)

• RU means a D-QoS Receive Uncommit, i.e., lower committed send resources to zero, will
be performed.

SendReserve()

If <current resources reserved ≠ resources to reserve> then {
 -- skip reservation if existing reservation OK
 If <RemoteConnectionDescriptor provided> then
 SR(RemoteConnectionDescriptor)
 -- Use RemoteConnectionDescriptor classifier
 else if <ReserveDestination provided> then
 SR(ReserveDestination)
 -- Use ReserveDestination classifier, send to
 -- ReserveDestination if RSVP
 else ERROR
}

ReceiveReserve()

If <current resources reserved ≠ resources to reserve> then {
 -- skip reservation if existing reservation OK
 If <RemoteConnectionDescriptor provided> then
 RR(RemoteConnectionDescriptor)
 -- Use RemoteConnectionDescriptor classifier

 else if <(J.112 QoS) or (RSVP and ReserveDestination provided)>
 then RR(*)

 -- Use wild-card classifier, send to
 -- ReserveDestination if RSVP
 else ERROR
}

SendCommit()

If <current resources committed ≠ resources to commit> then {
 -- skip commit if existing OK
 If <RemoteConnectionDescriptor provided> then {
 If not <resources to commit ⊂ resources reserved > then {
 -- old reservation does not satisfy what is about to be
 -- committed, so update reservation
 SR(RemoteConnectionDescriptor)
 }
 if <(J.112 QoS) or (RSVP and ReserveDestination provided)> then {
 SC(RemoteConnectionDescriptor)
 -- send to ReserveDestination if RSVP
 } else ERROR
 } else ERROR. -- Cannot commit send direction without
 -- RemoteConnectionDescriptor
}
ReceiveCommit()

If <current resources committed ≠ resources to commit> then {
 -- skip commit if existing OK
 If not <resources to commit ⊂ resources reserved> then {
 If <RemoteConnectionDescriptor provided> then
 RR(RemoteConnectionDescriptor)
 else if <(J.112 QoS) or (RSVP and ReserveDestination provided)> then
 RR(*) -- Use wild-card classifier, send to
 -- ReserveDestination if RSVP
 else ERROR
 }

 ITU-T Rec. J.162 (03/2004) 93

 If <RemoteConnectionDescriptor provided> then
 RC(RemoteConnectionDescriptor)
 else if <(J.112 QoS) or (RSVP and ReserveDestination provided)> then
 RC(*) -- Use wild-card classifier, send to
 -- ReserveDestination if RSVP
 else ERROR
}
SendReserveDelete()

If <send resources reserved> then
 SD() -- delete the reservation

ReceiveReserveDelete()

If <receive resources reserved> then
 RD() -- delete the reservation

SendUnCommit()

If <send resources committed> then
 SU() -- uncommit committed resources

ReceiveUnCommit()

If <receive resources committed> then
 RU() -- uncommit committed resources

State UpdateState(DoCommit, DoReserve, OldState)

If <DoCommit = true> then
 return Commit
else if <DoReserve = true> then
 return Reserve
else
 return OldState

94 ITU-T Rec. J.162 (03/2004)

Appendix I

Example event package

This appendix provides an example event package for analogue access lines. The package is merely
included here for illustrative purposes and to facilitate the inclusion of informative examples in the
main part of the Recommendation. It does in no way constitute a complete package definition, nor
should the package name shown be considered assigned. As the package is merely an example,
details of individual events and signals are omitted here as well and only provided as high level
descriptions for illustrative purposes.

Example line package
Package name: X

The following codes are used to identify events and signals for the "example line" package for
"analogue access lines":

Code Description Event Signal Additional info

0-9,*,#,A,B,C,D DTMF tones √ BR

bz Busy tone − TO

dl Dial tone − TO

hd Off-hook transition P, S −

hf Flash hook P −

hu On-hook transition P, S −

rg Ringing − TO

rt Ring back tone − C, TO

t Timer √ −

vmwi Visual Message Waiting
Indicator

− OO

X DTMF tones wild-card √ − Matches any of the digits "0-9"

As the above package is merely an example, the definition of the individual events and signals below
is provided as a high-level description only. An actual and implementable package would have to
specify the details of each event and signal. These details may differ between analogue PSTN
service providers:

DTMF tones (0-9,*,#,A, B,C,D): Defines all of the DTMF tones.

Busy tone (bz): The busy tone indicates to the calling party that the called party is already engaged
in a call.

Dial-tone (dl): The dial tone indicates to the calling party that a call can be placed.

Off-hook transition (hd): The off-hook event indicates that the phone associated with the endpoint
went off-hook.

Flash hook (hf): The flash hook event indicates that a flash hook occurred on the phone associated
with the endpoint.

On-hook transition (hu): The on-hook event indicates that the phone associated with the endpoint
went on-hook.

Ringing (rg): The ringing signal indicates that the called party's telephone should be rung.

 ITU-T Rec. J.162 (03/2004) 95

Ring back tone (rt): The ring back signal informs the calling party that the called party is being
alerted.

Timer (t): As described in 6.1.5, timer T is a provisionable timer that can only be cancelled by
DTMF input.

Visual Message Waiting Indicator (vmwi): The visual message waiting indicator signal either
enables or disables a visual indication of a voice-mail message waiting.

DTMF tones wild-card (X): The DTMF tones wild-card matches any DTMF digit between 0 and 9.

Appendix II

Example command encodings

This appendix provides examples of commands and responses shown with the actual encoding used
assuming the example line package is used. Examples are provided for each command. All
commentary shown in the commands and responses is optional.

II.1 NotificationRequest
The first example illustrates a NotificationRequest that will ring a phone and look for an off-hook
event:

 RQNT 1201 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 N: ca@ca1.whatever.net:5678
 X: 0123456789AC
 R: hd(N)
 S: rg

The response indicates that the transaction was successful:

 200 1201 OK

The second example illustrates a NotificationRequest that will look for and accumulate an off-hook
event, and then provide dial-tone and accumulate digits according to the digit map provided. The
"notified entity" is set to "ca@ca1.whatever.net:5678", and since the SignalRequests parameter is
empty33, all currently active TO signals will be stopped. All events in the quarantine buffer will be
processed, and the list of events to detect in the "notification" and "lockstep" state will include fax
tones in addition to the "requested events" and persistent events:

RQNT 1202 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
N: ca@ca1.whatever.net:5678
X: 0123456789AC
R: hd(A, E(S(dl), R(B/oc, hu, [0-9#*T](D))))
D: (0T|00T|#xxxxxxx|*xx|91xxxxxxxxxx|9011x.T)
S:
Q: process
T: ft

The response indicates that the transaction was successful:

 200 1202 OK

33 It could have been omitted as well.

96 ITU-T Rec. J.162 (03/2004)

II.2 Notify
The example below illustrates a Notify message that notifies an off-hook event followed by a
12-digit number beginning with "91". A request identifier correlating the Notify with the
NotificationRequest it results from is included. The command is sent to the current "notified entity",
which typically will be the actual value supplied in the NotifiedEntity parameter, i.e.,
"ca@ca1.whatever.net:5678" – a failover situation could have changed this:

 NTFY 2002 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 N: ca@ca1.whatever.net:5678
 X: 0123456789AC
 O: hd,9,1,2,0,1,8,2,9,4,2,6,6

The Notify response indicates that the transaction was successful:

 200 2002 OK

II.3 CreateConnection
The first example illustrates a CreateConnection command to create a connection on the endpoint
specified. The connection will be part of the specified CallId. The LocalConnectionOptions specify
that G.711 µ-law will be the codec used and the packetization period will be 10 ms. The connection
mode will be "receive only":

 CRCX 1204 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 L: p:10, a:PCMU
 M: recvonly

The response indicates that the transaction was successful, and a connection identifier for the newly
created connection is therefore included. A session description for the new connection is included as
well – note that it is preceded by an empty line.

 200 1204 OK
 I: FDE234C8

 v=0
 o=- 25678 753849 IN IP4 128.96.41.1
 s=-
 c=IN IP4 128.96.41.1
 t=0 0
 m=audio 3456 RTP/AVP 0
 a=mptime:10

The second example illustrates a CreateConnection command containing a notification request and a
RemoteConnectionDescriptor:

 CRCX 1205 aaln/1@rgw-2569.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 L: p:10, a:PCMU
 M: sendrecv
 X: 0123456789AD
 R: hd
 S: rg
 v=0
 o=- 25678 753849 IN IP4 128.96.41.1
 s=-
 c=IN IP4 128.96.41.1
 t=0 0
 m=audio 3456 RTP/AVP 0
 a=mptime:10

 ITU-T Rec. J.162 (03/2004) 97

The response indicates that the transaction failed, because the phone was already off-hook.
Consequently, neither a connection-id nor a session description is returned:

 401 1205 Phone off-hook

Our third example illustrates the use of the provisional response and the three-way handshake. We
create another connection this time using dynamic quality of service and acknowledging the previous
response received:

 CRCX 1206 aaln/1@rgw-2569.whatever.net MGCP 1.0 NCS 1.0
 K: 1205
 C: A3C47F21456789F0
 L: p:10, a:PCMU, dq-gi:A735C2
 M: inactive

 v=0
 o=- 25678 753849 IN IP4 128.96.41.1
 s=-
 c=IN IP4 128.96.41.1
 t=0 0
 m=audio 3456 RTP/AVP 0 18
 a=mptime:10 10

A provisional response is returned initially:

 100 1206 Pending
 I: DFE233D1

v=0

 o=- 4723891 7428910 IN IP4 128.96.63.25
 s=-
 c=IN IP4 128.96.63.25
 t=0 0
 m=audio 3456 RTP/AVP 0
 a=mptime:10

Note that the endpoint elected to support only the PCMU codec, i.e., payload number 0.

A little later, the final response is received:

 200 1206 OK
 K:
 DQ-RI: A12D5F1
 I: DFE233D1

 v=0
 o=- 4723891 7428910 IN IP4 128.96.63.25
 s=-
 c=IN IP4 128.96.63.25
 t=0 0
 m=audio 3456 RTP/AVP 0
 a=mptime:10

The Call Agent acknowledges the final response as requested:

 000 1206

and the transaction is complete.

98 ITU-T Rec. J.162 (03/2004)

II.4 ModifyConnection
The first example shows a ModifyConnection command that simply sets the connection mode of a
connection to "send/receive" – the "notified entity" is set as well:

 MDCX 1209 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 I: FDE234C8
 N: ca@ca1.whatever.net
 M: sendrecv

The response indicates that the transaction was successful:

 200 1209 OK

In the second example, we pass a session description and include a notification request with the
ModifyConnection command. The endpoint will start playing ring-back tones to the user until it
detects audio on the connection specified for the media start event:

 MDCX 1210 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 I: FDE234C8
 M: recvonly
 X: 0123456789AE
 R: hu, ma@FDE234C8
 S: rt

 v=0
 o=- 4723891 7428910 IN IP4 128.96.63.25
 s=-
 c=IN IP4 128.96.63.25
 t=0 0
 m=audio 3456 RTP/AVP 0
 a=mptime:10

The response indicates that the transaction was successful:

 200 1206 OK

II.5 DeleteConnection (From the Call Agent)
In this example, the Call Agent simply instructs the embedded client to delete the connection
FDE234C8 on the endpoint specified:

 DLCX 1210 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 I: FDE234C8

The response indicates success, and that the connection was deleted. Connection parameters for the
connection are therefore included as well:

 250 1210 OK
 P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48,
 PC/RPS=782, PC/ROS=45238, PC/RPL=5, PC/RJI=26

 ITU-T Rec. J.162 (03/2004) 99

II.6 DeleteConnection (From the Embedded Client)
In this example, the embedded client sends a DeleteConnection command to the Call Agent to
instruct it that a connection on the specified endpoint has been deleted. The ReasonCode specifies
the reason for the deletion, and Connection Parameters for the connection are provided as well:

 DLCX 1210 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 I: FDE234C8
 E: 900 – Hardware error
 P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48,
 PC/RPS=782, PC/ROS=45238, PC/RPL=5, PC/RJI=26

The Call Agent sends a success response to the gateway:

 200 1210 OK

II.7 DeleteConnection (Multiple Connections From the Call Agent)
In the first example, the Call Agent instructs the embedded client to delete all connections related to
call "A3C47F21456789F0" on the specified endpoint:

 DLCX 1210 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0

The response indicates success and that the connection(s) were deleted:

 250 1210 OK

In the second example, the Call Agent instructs the embedded client to delete all connections related
to all of the endpoints specified:

 DLCX 1210 aaln/*@rgw-2567.whatever.net MGCP 1.0 NCS 1.0

The response indicates success:

 250 1210 OK

II.8 AuditEndpoint
In the first example, the Call Agent wants to learn what endpoints are present on the embedded client
specified, hence the use of the "all of" wild-card for the local portion of the endpoint-name:

 AUEP 1200 *@rgw-2567.whatever.net MGCP 1.0 NCS 1.0

The embedded client indicates success and includes a list of endpoint names:

 200 1200 OK
 Z: aaln/1@rgw-2567.whatever.net
 Z: aaln/2@rgw-2567.whatever.net

In the second example, the capabilities of one of the endpoints is requested:

 AUEP 1201 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0 F: A

100 ITU-T Rec. J.162 (03/2004)

The response indicates success and the capabilities as well. Two codecs are supported, however,
with different capabilities. Consequently, two separate capability sets are returned. Again, each
capability set is to be returned on a single line. The example below shows multiple lines due to
formatting restraints:

 200 1201 OK

 A: a:PCMU, p:10-100, e:on, s:off, v:X;B, m:sendonly;
 recvonly;sendrecv;inactive;netwloop;netwtest
 A: a:G729, p:30-90, e:on, s:on, v:X;B, m:sendonly;
 recvonly;sendrecv;inactive;confrnce;netwloop

In the third example, the Call Agent audits all possible information for the endpoint:

 AUEP 2002 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 F: R,D,S,X,N,I,T,O,ES,VS,E,MD

The response indicates success:

 200 2002 OK
 R: X/hu,oc(N),[0-9](N)
 D:
 S: vmwi(+)
 X: 0123456789B1
 N: Call-agent@ca.whatever.net
 I: 32F345E2
 T: L/hd,L/hu,L/ft
 O: hd,9,1,2
 ES: hd
 VS: MGCP 1.0, MGCP 1.0 NCS 1.0
 E: 000
 MD: 4000

The list of requested events contains three events. Where no package name is specified, the default
package is assumed. The same goes for actions, so the default action – Notify – must therefore be
assumed for the "X/hu" event. The omission of a value for the "digit map" means the endpoint
currently does not have a digit map. There are currently no active time-out signals: however, the OO
signal "vmvi" is currently on and is consequently included – in this case it was parameterized;
however, the parameter could have been excluded. The current "notified entity" refers to an
IP-address and only a single connection exists for the endpoint. The current value of DetectEvents is
"ft", and the list of ObservedEvents contains the four events specified. Finally, the event-states
audited reveals that the phone was off-hook at the time the transaction was processed.

II.9 AuditConnection
The first example shows an AuditConnection command where we audit the CallId, NotifiedEntity,
LocalConnectionOptions, Connection Mode, LocalConnectionDescriptor, and the Connection
Parameters:

 AUCX 2003 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 I: 32F345E2
 F: C,N,L,M,LC,P

The response indicates success and includes information for the RequestedInfo:

 200 2003 OK
 C: A3C47F21456789F0
 N: ca@ca1.whatever.net
 L: p:10, a:PCMU
 M: sendrecv
 P: PS=395, OS=22850, PR=615, OR=30937, PL=7, JI=26, LA=47,
 PC/RPS=615, PC/ROS=30937, PC/RPL=5, PC/RJI=26

 ITU-T Rec. J.162 (03/2004) 101

 v=0
 o=- 4723891 7428910 IN IP4 128.96.63.25
 s=-
 c=IN IP4 128.96.63.25
 t=0 0
 m=audio 1296 RTP/AVP 0
 a=mptime:10

In the second example, we request to audit RemoteConnectionDescriptor and
LocalConnectionDescriptor:

 AUCX 1203 aaln/2@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 I: FDE234C8
 F: RC,LC

The response indicates success, and includes information for the RequestedInfo. In this case, no
RemoteConnectionDescriptor exists; hence, only the protocol version field is included for the
RemoteConnectionDescriptor:

 200 1203 OK

 v=0
 o=- 4723891 7428910 IN IP4 128.96.63.25
 s=-
 c=IN IP4 128.96.63.25
 t=0 0
 m=audio 1296 RTP/AVP 0
 a=mptime:10

 v=0

II.10 RestartInProgress
The first example illustrates a RestartInProgress message sent by an embedded client to inform the
Call Agent that the specified endpoint will be taken out of service in 300 seconds:

 RSIP 1200 aaln/1@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 RM: graceful
 RD: 300

The Call Agent's response indicates that the transaction was successful:

 200 1200 OK

In the second example, the RestartInProgress message sent by the embedded client informs the Call
Agent, that all of the embedded client's endpoints are being placed in service in 0 seconds, i.e., they
are back in service. The delay could have been omitted as well:

 RSIP 1204 *@rgw-2567.whatever.net MGCP 1.0 NCS 1.0
 RM: restart
 RD: 0

The Call Agent's response indicates success, and furthermore provides the endpoints in question with
a new "notified entity":

 200 1204 OK
 N: CA-1@ca.whatever.net

Alternatively, the command could have failed with a new "notified entity" as in:

 521 1204 OK
 N: CA-1@ca.whatever.net

102 ITU-T Rec. J.162 (03/2004)

In that case, the command would then have to be retried (as a new transaction) in order to satisfy the
"restart procedure" (see 6.4.3.5), this time going to Call Agent "CA-1@whatever.net".

Appendix III

Example call flow

In this appendix we provide an example call flow between two embedded clients, EC-1 and EC-2. It
should be noted that this call flow, although a valid one, is merely an example that may or may not
be used in practice. Also, the call flow uses the example line package.

In the call flow below, CA refers to the Call Agent, CDB refers to a configuration database, and
ACC refers to an accounting database.

Usr-1 EC-1 CA CDB ACC EC-2 Usr-2

 ← Notification Request

 Ack →

Off-hook Notify →

 ← Ack

(Dial-tone) ← Create Connection +
Notification Request

 Ack(SDP1) →

Digits Notify →

 ← Ack

(progress) ← Notification Request

 Ack →

 Query(E.164) →

 ← IP

 Create Connection(SDP1) +
Notification Request

– – – – – – →

 ← – – – – – – P-Ack(SDP2)

 ← – – – – – – Ack(SDP2) (ringing)

 Ack – – – – – – →

(ringback) ← Modify Connection(SDP2)
+ Notification Request

 Ack →

 ← – – – – – – Notify Off-hook

 Ack – – – – – – →

 ← ModifyConnection +
Notification Request

 Ack →

 (cut in) Call start – – – →

 Notification Request – – – – – – →

 ITU-T Rec. J.162 (03/2004) 103

Usr-1 EC-1 CA CDB ACC EC-2 Usr-2

 ← – – – – – – Ack

 (Call Established)
 ← – – – – – – Notify On hook

 Ack – – – – – – →

 ← Delete Connection

 Delete Connection – – – – – – →

 Ack (Perf
Data)

→

 ← – – – – – – Ack(Perf data)

 Call end – – – →

 Notification Request – – – – – – →

 ← – – – – – – Ack

On-hook Notify →

 ← Ack

 ← Notification Request

 Ack →

During these exchanges the NCS profile of MGCP is used by the Call Agent to control both
embedded clients. The exchanges occur on two sides.

The first command is a NotificationRequest, sent by the Call Agent to the ingress embedded client.
The request will consist of the following lines:

 RQNT 1201 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
 N: ca@ca1.whatever.net:5678
 X: 0123456789AB
 R: hd

The embedded client, at that point, is instructed to look for an off-hook event, and to report it. It will
first send a response to the command, repeating in the response the transaction id that the Call Agent
attached to the query and providing a return code indicating success:

 200 1201 OK

When the off-hook event is noticed, the embedded client sends a Notify message to the Call Agent:

 NTFY 2001 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
 N: ca@ca1.whatever.net:5678
 X: 0123456789AB
 O: hd

The Call Agent immediately acknowledges the notification:

 200 2001 OK

104 ITU-T Rec. J.162 (03/2004)

The Call Agent examines the services associated to an off-hook event for this endpoint (it could take
special actions in the case of a direct line, no current subscription, etc.). In most cases, it will send a
combined CreateConnection and NotificationRequest command to create a connection, provide dial-
tone, and collect DTMF digits34:

 CRCX 1202 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 L: p:10, a:PCMU
 M: recvonly
 N: ca@ca1.whatever.net:5678
 X: 0123456789AC
 R: hu, [0-9#*T](D)
 D: (0T | 00T | [2-9]xxxxxx | 1[2-9]xxxxxxxxx | 011xx.T)
 S: dl

The embedded client acknowledges the transaction, sending back the identification of the newly
created connection and the session description used to receive audio data:

 200 1202 OK
 I: FDE234C8

 v=0
 o=- 25678 753849 IN IP4 128.96.41.1
 s=-
 c=IN IP4 128.96.41.1
 t=0 0
 m=audio 3456 RTP/AVP 0
 a=mptime:10

The SDP specification, in our example, specifies the address at which the embedded client is ready
to receive audio data (128.96.41.1), the transport protocol (RTP), the RTP port (3456) and the audio
profile (AVP). The audio profile refers to RFC 3551, which defines that the payload type 0 has been
assigned for G.711 µ-law transmission.

The embedded client will start accumulating digits according to the digit map. When a digit map
match subsequently occurs, the embedded client will notify the observed events to the Call Agent:

 NTFY 2002 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
 N: ca@ca1.whatever.net:5678
 X: 0123456789AC
 O: 1,2,0,1,8,2,9,4,2,6,6

The Call Agent immediately acknowledges that notification.

 200 2002 OK

At this stage, the Call Agent will send a NotificationRequest to stop collecting digits yet continue to
watch for an on-hook transition. The Call Agent furthermore decides to acknowledge receipt of the
responses for transaction 1202:

 RQNT 1203 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
 K: 1202
 X: 0123456789AD
 R: hu

The embedded client immediately acknowledges that command.

 200 1203 OK

34 The actual digit map depends on dialling plan in the local area as well as services subscribed to. The digit

map presented should be considered an example digit map only.

 ITU-T Rec. J.162 (03/2004) 105

The Call Agent must now create a connection on the egress embedded client, EC-2, and ring the
phone attached to the embedded client as well. It does so by sending a combined CreateConnection
and NotificationRequest command to the embedded client:

 CRCX 2001 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 L: p:10, a:PCMU
 M: sendrecv
 X: 0123456789B0
 R: hd
 S: rg

 v=0
 o=- 25678 753849 IN IP4 128.96.41.1
 s=-
 c=IN IP4 128.96.41.1
 t=0 0
 m=audio 3456 RTP/AVP 0
 a=mptime:10

The egress embedded client, at that point, is instructed to ring the phone, and to look for an off-hook
event, and report it. The off-hook event and ringing signal are synchronized, so when the off-hook
event occurs, ringing will stop. The create connection portion of the command has the same
parameters as the command sent to the ingress embedded client, with two differences:
• The endpoint identifier points towards the outgoing circuit.
• The message carries the session description returned by the ingress embedded client.
• Because the session description is present, the "mode" parameter is set to "send/receive".

We observe that the call identifier is identical for the two connections. This is normal since the two
connections belong to the same call.

We assume this command does not finish executing immediately35, and a provisional response is
therefore returned by the egress embedded client acknowledging the command, sending in the
session description its own parameters such as address, ports and RTP profile as well as the
connection identifier for the new connection:

 100 2001 Pending
 I: 32F345E2

 v=0
 o=- 4723891 7428910 IN IP4 128.96.63.25
 s=-
 c=IN IP4 128.96.63.25
 t=0 0
 m=audio 1297 RTP/AVP 0
 a=mptime:10

35 This could, e.g., be due to external resource reservation, although we did not include that in our example.

106 ITU-T Rec. J.162 (03/2004)

Once the transaction finishes execution, the embedded client sends the final response to the Call
Agent, repeating the information it provided in the provisional response:

 200 2001 OK
 K:
 I: 32F345E2

 v=0
 o=- 4723891 7428910 IN IP4 128.96.63.25
 s=-
 c=IN IP4 128.96.63.25
 t=0 0
 m=audio 1297 RTP/AVP 0
 a=mptime:10

When the Call Agent receives the final response, it notices the presence of the empty Response
Acknowledgement attribute and therefore issues a Response Acknowledgement for the transaction:

 000 2001

The Call Agent will relay the information to the ingress embedded client, and instruct it to generate
local ringback tones, using a combined ModifyConnection and NotificationRequest command:

 MDCX 1204 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 I: FDE234C8
 M: recvonly
 X: 0123456789AE
 R: hu
 S: rt

 v=0
 o=- 4723891 7428910 IN IP4 128.96.63.25

s=-
c=IN IP4 128.96.63.25

 t=0 0
 m=audio 1297 RTP/AVP 0
 a=mptime:10

The embedded client immediately acknowledges the modification:

 200 1204 OK

At this stage, the Call Agent has established a half-duplex transmission path. The phone attached to
the ingress embedded client will be able to receive the signals, such as tones or announcements, that
may be generated in case of any errors, as well as the initial speech that most likely will be generated
when the egress user answers the phone.

When the off-hook event is observed, the egress embedded client sends a Notify message to the Call
Agent:

 NTFY 3001 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
 X: 0123456789B0
 O: hd

The Call Agent immediately acknowledges that notification.

 200 3001 OK

 ITU-T Rec. J.162 (03/2004) 107

The Call Agent now sends a combined ModifyConnection and NotificationRequest to the ingress
embedded client, to place the connection in send/receive mode and stop the ringback tones:

 MDCX 1206 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 I: FDE234C8
 M: sendrecv
 X: 0123456789AF
 R: hu

The embedded client immediately responds to the command:

 200 1206 OK

In parallel, the Call Agent asks the egress embedded client to notify the occurrence of an on-hook
event. It does so by sending a NotificationRequest to the embedded client36:

 RQNT 2002 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
 X: 0123456789B1
 R: hu

The embedded client immediately responds to the command:

 200 2002 OK

At this point, the call is fully established.

At some later point in time, the phone attached to the egress embedded client in our scenario goes
on-hook. This event is notified to the Call Agent, according to the policy received in the last
NotificationRequest, by sending a Notify command:

 NTFY 2003 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
 X: 0123456789B1
 O: hu

The Call Agent immediately responds to the command:

 200 2003 OK

The Call Agent now determines that the call is ending, and it therefore sends both embedded clients
a DeleteConnection command:

 DLCX 1207 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 I: FDE234C8

 DLCX 2004 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
 C: A3C47F21456789F0
 I: 32F345E2

The embedded clients will respond with acknowledgements that include the connection parameters
for the connection:

 250 1207 OK
 P: PS=1245, OS=62345, PR=780, OR=45123, PL=10, JI=27, LA=48,
 PC/RPS=790, PC/ROS=45700, PC/RPL=15, PC/RJI=26
 250 2004 OK
 P: PS=790, OS=45700, PR=1230, OR=61875, PL=15, JI=27, LA=48,
 PC/RPS=1245, PC/ROS=62345, PC/RPL=10, PC/RJI=27

36 It should be noted that although on-hook is a persistent event, lockstep mode requires the Call Agent to

send a new NotificationRequest to the embedded client.

108 ITU-T Rec. J.162 (03/2004)

The Call Agent will also issue a new NotificationRequest to the egress embedded client, to be ready
to receive the next off-hook event detected by the embedded client:

 RQNT 2005 aaln/1@ec-2.whatever.net MGCP 1.0 NCS 1.0
 X: 0123456789B2
 R: hd

The embedded client will acknowledge this message:

 200 2005 OK

Finally, the ingress embedded client hangs up the phone thereby generating a Notify message to the
Call Agent:

 NTFY 1208 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
 X: 0123456789AF
 O: hu

The Call Agent immediately responds to the command:

 200 1208 OK

The Call Agent will then issue a new NotificationRequest to the ingress embedded client, to be ready
to receive the next off-hook event detected by the embedded client:

 RQNT 1209 aaln/1@ec-1.whatever.net MGCP 1.0 NCS 1.0
 X: 0123456789B3
 R: hd

The embedded client will acknowledge this message:

 200 1209 OK

Both embedded clients, at this point, are ready for the next call.

Appendix IV

Connection mode

An MGCP connection can establish one or more media streams. These streams are either incoming
or outgoing. The "connection mode" parameter controls the flow of media on the media stream.
When there is only one connection to an endpoint, the mapping of these streams is straightforward.
However, when several connections are established to an endpoint, there can be many incoming and
outgoing streams. Depending on the connection mode used, these streams may interact differently
with each other and the streams going to/from the handset. The table below describes how media
from different connections should be mixed when one or more connections exist. The table assumes
that there are no signals being applied on a connection. The table uses the following conventions:
• Ain is the incoming media stream from Connection A.
• Bin is the incoming media stream from Connection B.
• Hin is the incoming media stream from the Handset Microphone.
• Aout is the outgoing media stream to Connection A.
• Bout is the outgoing media stream to Connection B.
• Hout is the outgoing media stream to the Handset earpiece.
• NA indicates no stream whatsoever.

109 ITU-T Rec. J.162 (03/2004)

Connection A mode

sendonly recvonly sendrecv confrnce inactive netwloop/

netwtest replcate
se

nd
on

ly
 Aout = Hin

Bout = Hin
Hout = NA

Aout = NA
Bout = Hin
Hout = Ain

Aout = Hin
Bout = Hin
Hout = Ain

Aout = Hin
Bout = Hin
Hout = Ain

Aout = NA
Bout = Hin
Hout = NA

Aout = Ain
Bout = Hin
Hout = NA

Aout = Hin
Bout = Hin
Hout = NA

re
cv

on
ly

Aout = NA
Bout = NA
Hout = Ain + Bin

Aout = Hin
Bout = NA
Hout = Ain + Bin

Aout = Hin
Bout = NA
Hout = Ain + Bin

Aout = NA
Bout = NA
Hout = Bin

Aout = Ain
Bout = NA
Hout = Bin

Aout = Hin + Bin
Bout = NA
Hout = Bin

se
nd

re
cv

Aout = Hin
Bout = Hin
Hout = Ain + Bin

Aout = Hin
Bout = Hin
Hout = Ain + Bin

Aout = NA
Bout = Hin
Hout = Bin

Aout = Ain
Bout = Hin
Hout = Bin

Aout = Hin + Bin
Bout = Hin
Hout = Bin

co
nf

rn
ce

Aout = Hin + Bin
Bout = Hin + Ain
Hout = Ain + Bin

Aout = NA
Bout = Hin
Hout = Bin

Aout = Ain
Bout = Hin
Hout = Bin

Aout = Hin + Bin
Bout = Hin
Hout = Bin

in
ac

tiv
e

Aout = NA
Bout = NA
Hout = NA

Aout = Ain
Bout = NA
Hout = NA

Aout = Hin
Bout = NA
Hout = NA

ne
tw

lo
op

/
ne

tw
te

st

Aout = Ain
Bout = Bin
Hout = NA

Aout = Hin
Bout = Bin
Hout = NA

C
on

ne
ct

io
n

B
 m

od
e

re
pl

ca
te

Aout = Hin
Bout = Hin
Hout = NA

110 ITU-T Rec. J.162 (03/2004)

If there are three or more connections, their media will still be mixed as defined in the table above.
If internal resources are not available such that the media cannot be mixed, the gateway should
return error code 502 (insufficient resources).

These connections can be graphically represented as such:

Connection CConnection B

Connection A

For example, if Connection A is Sendrecv, Connection B is confrnce, and Connection C is
recvonly, from the above table the outputs in each mode will be:

J.162REV.1App.IV_F01

A to B Interaction:

A to C Interaction:

B to C Interaction:

Taking the union of all streams in each output we get:

B =Hout in

A =Hout in

B =Hout in

C =NAout

C =NAout

A =Hout in

For clarity, the table described above is repeated below in graphical form:

A =Hout in

B =Hout in

C =NAout

Taking the union of all streams in each output we get:

J.162REV.1App.IV_F01b

A = Hout in

B = Hout in

C = NAout

 ITU-T Rec. J.162 (03/2004) 111

For clarity, the table described above is repeated below in graphical form:

J.162REV.1.App.IV_F02

Connection A mode (top)

sendonly recvonly sendrecv confrnce inactive newloop/
newtest replcate

se
nd

on
ly

re
cv

on
ly

se
nd

re
cv

co
nf

rn
ce

in
ac

tiv
e

ne
w

lo
op

/
ne

w
te

st
re

pl
ca

te

C
on

ne
ct

io
n

B
m

od
e

(le
ft)

Appendix V

Compatibility information

This appendix provides NCS protocol compatibility information.

MGCP compatibility
NCS is a profile of MGCP 1.0; however, NCS has introduced a couple of additions as well. The
following lists NCS additions that are currently not included in MGCP:
• Endpoint Naming Scheme – The rules for wild-carding are more restrictive than in

MGCP.
• Embedded ModifyConnection – A new Embedded ModifyConnection action has been

introduced.

112 ITU-T Rec. J.162 (03/2004)

• Dynamic Quality of Service – IPCablecom Security services are supported in NCS. This
affects the LocalConnectionOptions, Capabilities, and SDP. Also, a new return parameter;
ResourceID, is added for CreateConnection and ModifyConnection.

• Security – IPCablecom Security services are supported in NCS. This affects the
LocalConnectionOptions, Capabilities, and SDP.

• Endpoint Name Retrieval – The AuditEndpoint command has been extended with a
capability to return the number of endpoints that match a wild-card as well as mechanism
for block-wise retrieval of these endpoint names. Besides extending the AuditEndpoint
command, this implies the introduction of two new parameter names: MaxEndPointIds, and
NumEndPoints.

• Supported Versions – The RestartInProgress response and the AuditEndpoint command
have been extended with a VersionSupported parameter to enable Call Agents and
gateways to determine which protocol versions each support.

• Error Codes – Two new error codes have been introduced: 532 and 533.
• Usage of SDP – A new SDP usage profile is included in NCS. Most notably, the profile

and all example use specifically require strict SDP compliance, regardless of the usefulness
of the included fields. Also, IPCablecom specific extensions have been added to SDP.

• Provisional Response – Additional detail and specification of the provisional response
mechanism has been included in NCS. A Response Acknowledgement response (000) has
been introduced, an empty ResponseAck parameter has been permitted in final responses
that follow provisional responses, and a procedure for the mechanism specified.

• Signal Parameters – Signal parameter syntax has been extended to allow for the usage of
balanced parenthesis within signal parameters. All Time-Out signals can have their time-
out value altered by a signal parameter.

• Event Packages – NCS introduces a set of new event packages.
Finally, it should be noted that NCS provides interpretations of and, in some cases, additional
specification or clarification of the base MGCP protocol behaviour that may or may not reflect the
intended MGCP behaviour.

Appendix VI

Additional example event packages

This appendix defines additional example event packages for the various types of endpoints
currently defined for embedded clients.

Analogue Access Lines
The following packages are currently defined for Analogue Access Line endpoints:
• Japanese Line;
• ADSI.

Japanese Line Package
Package name: J

 ITU-T Rec. J.162 (03/2004) 113

The following codes are used to identify events and signals for the "Japanese line" package for
"analogue access lines":
1) Types of subscriber line signalling
 Subscriber line signals (signals) can be classified into signals related to connection control

(Supervisory signal), those related to selection control (selection signals) and audible tone
signals (audible tones).

2) Supervisory signals

Code Signal name Event Signal Additional info

cs Calling signal P, S − Notification of originating call
(=Off-hook transition)

ir Ringing signal − TO Notification of incoming call
Time-out = infinite
See Article 31, Item 2 in the Carriers
Telecommunication Facilities
Regulations.

as1 Answer signal 1 P, S − Notification that called terminal has
answered (Terminal to Network)
(=Off-hook transition)

as2 Answer signal 2 − TO Notification that called terminal has
answered (Network to Terminal)
Time-out = infinite

ds1 Disconnect signal 1 P, S − Notification that communication is
completed (Terminal to Network)
(=On-hook transition)

ds2 Disconnect signal 2 − TO Notification that originating terminal
has terminated communication
(Network to Terminal) Time-out =
infinite

cbs Clear back signal P, S − Notification that called terminal has
terminated communication
(=On-hook transition)

hs Hooking signal P − For "call waiting" and "three-party
service"

sir Extension call signal − TO Outputted by the centralized extension
system (CES)
Time-out = infinite

tir Callforward warning signal − TO For "Voice Warp" service
Time-out = 2-3 s

car Data receiving terminal
activation signal

− TO Notification by MODEM signal
Time-out = infinite

pas Primary answer signal P, S − For Number Display
(=Off-hook transition)

iss Incoming successful signal P, S − For Number Display
(=On-hook transition)

cei1(nu) Callee ID(PB tone) − BR "nu" denotes number
cei2(nu) Callee ID(Modem tone) − BR "nu" denotes number
ci Caller ID − BR "nu" denotes number

114 ITU-T Rec. J.162 (03/2004)

Code Signal name Event Signal Additional info

aw Answer tone −
ft Fax tone −
mt Modem tone −
ma Media start C −
oc Operation complete −
of Operation failure −
t Timer −
l DTMF long duration −
ld Long duration connection C −

3) Selection signal

Code Signal name Event Signal Additional info

ssn Selection Signal (0-9,*,#) BR Partial Dial Time-out = 20-30 s
Interdigit Time-out = 4-6 s

ssw PB tones wild-card − Matches any of the digits "0-9"

4) Audible tones

Code Signal name Event Signal Additional info

dt Dial tone − TO Ready to receive selection signal
Time-out = 20-30 s

sdt Second dial tone − TO For register type services such as "call
forwarding", "automatic telephone
answering service"
Time-out = 20-30 s

rbt Ring back tone − C, TO Time-out = infinite

bt Busy tone − TO Time-out = 60-70 s

cpt Acceptance tone − BR For register type services such as "call
forwarding", "automatic telephone
answering service"

hst Hold service tone − TO Time-out = infinite
iit Incoming identification tone − C, BR For "automatic telephone answering

service"
siit Specific incoming

identification tone
− C, BR In case of double contract with

"automatic telephone answering
service" and "NARIWAKE service"

nft Notification tone − TO Only for "message identification
reception service"
Time-out = 3-4 s

how1 Howler tone 1 − TO Time-out = 10-22 s
how2 Howler tone 2 − TO Time-out = infinite

 ITU-T Rec. J.162 (03/2004) 115

The definition of the individual events and signals are as follows:

Calling signal (cs): Notifies the network of an originating call.

Ringing signal (ir): See Article 31, item 2 in the Carriers Telecommunication Facilities
Regulations. The provisioning process may define the ringing cadence. The ringing signal may be
parameterized with the signal parameter "rep" which specifies the maximum number of ringing
cycles (repetitions) to apply. The following will apply the ringing signal for up to 6 ringing cycles:

 S: ir(rep=6)

It is considered an error to try and ring a phone that is off-hook and an error should consequently be
returned when such attempts are made.
Answer signal (as): Notifies the network that the called terminal has answered (as1). In reverse
direction, the network notifies the original terminal that the called terminal has answered (as2).
Disconnect signal (ds): The originating terminal notifies the network that communication is
completed (ds1). In reverse direction, the network notifies the called terminal that the originating
terminal has terminated communication(ds2).

Clear back signal (cbs): Notifies the network that the called terminal has terminated
communication.

Hooking signal (hs): The terminal notifies the network of an assignment or that a service has been
changed during communication. This signal is used for "call waiting" and "three-party service".

Extension call signal (sir): With a Centralized Extension System (CES) telephone, the network
notifies the terminal that an incoming call is being forwarded. In addition, for "NARIWAKE
service", the network informs the terminal that there is an incoming call from a party that wants to
be identified.

Call forward warning signal (tir): During the start of "Forwarding telephone" service or the
unconditional transfer mode in "Voice warp", the network notifies the terminal that there is an
incoming call to the subscribing customer and forwarding has been activated.

Data receiving terminal activation signal (car): The network notifies a data receiving terminal
that there is a call incoming with information notified by modem signal.

Primary answer signal (pas): The called terminal notifies the network that the telephone set is
hooked-off. This function is used for the number display.

Incoming successful signal (iss): The network notifies the originating terminal that the incoming
signal is successfully received. This function is used for the number display.

Selection signal (ss): The original terminal notifies the network of the type of service and the
number of the other party. Code is assigned for Selection Signal (0-9, *, #) as ssn, PB tones
wild-card as ssw. Frequencies and reception levels of PB (Push Button) dialing signals are shown in
the following tables and figures.

116 ITU-T Rec. J.162 (03/2004)

1) Frequency

High group
frequencies

Low group
frequencies

1209 Hz 1336 Hz 1477 Hz

697 Hz 1 2 3
770 Hz 4 5 6
852 Hz 7 8 9
941 Hz * 0 #

2) Reception standard

Item Standard

Signal frequency deviation Within ±1.5%
Low group frequencies Shown in Figure VI.1
High group frequencies Shown in Figure VI.2

Tolerance range
of signal received
power

Electric power deviation
between two frequencies

Within 5 dB, however the electric power for the low
group frequency should be lower than that for the high
group frequency.

Signal output time 50 ms or more
Minimum pause 30 ms or more
Cycle 120 ms or more
NOTE 1 – The minimum pause is the shortest dead time between adjacent signals.
NOTE 2 – One cycle is the sum of signal send time and minimum pause.

Figure VI.1/J.162 – Tolerance range of signal received power (low group frequency)

 ITU-T Rec. J.162 (03/2004) 117

Figure VI.2/J.162 – Tolerance range of signal received power (high group frequency)

Other conditions are stipulated in Ordinance 13 of the Ministry of Posts and Telecommunications,
1998.

Dial tone (dt): The network notifies the originating terminal that it is ready to receive the selection
signal. In off-net calling from a member network telephone, the network notifies the originating
terminal that it is ready to receive the selection signal. Dial tone is an AC tone with frequency of
400 Hz and Levels between (–22 – L) and −19 dBm where L is the transmission loss in a 400 Hz
subscriber loop.

Second dial tone (sdt): The network notifies the originating terminal that it is ready to receive the
second selection signal. In off-net calling from a member network telephone, the network notifies
the originating terminal that it is ready to receive the selection signal. Second dial tone is an AC
tone with frequency of 400 Hz and Levels between (–22 – L) and −19 dBm where L is the
transmission loss in a 400 Hz subscriber loop. The break-make ratio and make ratio are within
240 IPM and 50%, respectively.

Ringing back tone (rbt): The network notifies the originating terminal that it is calling the
receiving terminal. The tone is terminated when an answer signal is received from the called
terminal. Audible Ringback Tone is a combination of two AC tones with frequencies of 400 and
15-20 Hz and levels between −4 and (–29 – L) dBm where L is the transmission loss in a 400 Hz
subscriber loop. The break-make ratio and make ratio are within 20 IPM ± 20% and 33 ± 10%,
respectively (Modulation ration: within 85 ± 15%).

Busy tone (bt): The network notifies the originating terminal that the receiving terminal is in the
communication status; thus, it cannot execute the service or connection that the originating terminal
requested. Busy tone is an AC tone with frequency of 400 Hz and Levels between (–29 – L) and
−4 dBm where L is the transmission loss in a 400 Hz subscriber loop. The break-make ratio and
make ratio are within 60 IPM ± 20% and 50 ± 10%, respectively.

Acceptance tone (cpt): The network notifies the originating terminal that it has received the service
request. Acceptance tone is an AC tone with frequency of 400 Hz and Levels between (–26 – L)
and −16 dBm where L is the transmission loss in a 400 Hz subscriber loop.

Hold service tone (hst): The network notifies a waiting terminal that the wait state is continuing.
Audible hold service tone is a combination of two AC tones with frequencies of 400 and 16 Hz and
levels between −14 and (–22 – L) dBm where L is the transmission loss in a 400 Hz subscriber loop
(Modulation ration: within 85%).

118 ITU-T Rec. J.162 (03/2004)

Incoming identification tone (iit): The network notifies the relevant called terminal that it has
received an incoming call from a third party during conversation with a second party. Audible
incoming identification tone is a combination of two AC tones with frequencies of 400 and 16 Hz
and levels between −14 and (–25 – L) dBm where L is the transmission loss in a 400 Hz subscriber
loop (Modulation ration: within 85%).

Specific incoming identification tone (siit): The network notifies the relevant called terminal that
it has received an incoming call from a third party that has been identified. Audible specific
incoming identification tone is a combination of two AC tones with frequencies of 400 and 16 Hz
and levels between −14 and (–25 – L) dBm where L is the transmission loss in a 400 Hz subscriber
loop (Modulation ration: within 85%).

Notification tone (nft): The network notifies the terminal of a customer subscribing to "message
identification reception service" that it has received message identification. Notification tone is an
AC tone with frequency of 400 Hz and Levels between (–26 – L) and −16 dBm where L is the
transmission loss in a 400 Hz subscriber loop.

Howler tone (how): The network notifies a terminal that an unused telephone receiver has been
off-hook for a certain time to urge that the handset be placed on-hook. Two Howler tones are
provided. Howler tone1(how1) is an AC tone with frequency of 400 Hz and levels +35 dBm or
under. Howler tone 1 is gradual increase sound for 3-15 seconds and a time-out signal for
10-22 seconds. Howler tone2(how2) is generated by combining three tones at frequencies of
1600 Hz, 1000 Hz and 2000 Hz at a cadence of 0.5 second of 1600 Hz, repeating twice of
0.125 second of 1000 Hz and 2000 Hz. The level of the combined tone is −1 dBm or less. Between
these audible tones the voice guidance such as "The receiver is off-hook" is inserted. It is
considered an error to try and play Howler tone on a phone that is on hook and an error should
consequently be returned when such attempts are made. Howler tone2 has a time-out signal for
infinite.

Callee ID (cei1(nu)): Direct inward dialling requires callee ID for PB signalling system.

Callee ID (cei2(nu)): Direct inward dialling requires callee ID for Modem signalling system.

Caller Id (ci(time, number, name)): Each of the three fields is optional; however, each of the
commas will always be included.
• The time parameter is coded as "MM/DD/HH/MM", where MM is a two-digit value for

Month between 01 and 12, DD is a two-digit value for Day between 1 and 31, and Hour
and Minute are two-digit values coded according to military local time, e.g., 00 is midnight,
01 is 1 a.m., and 13 is 1 p.m.

• The number parameter is coded as an ASCII character string of decimal digits that identify
the calling line number. White spaces are permitted if the string is quoted; however, they
will be ignored.

• The name parameter is coded as a string of ASCII characters that identify the calling line
name. White spaces are permitted if the string is quoted.

A "P" in the number or name field is used to indicate a private number or name, and an "O" is used
to indicate an unavailable number or name. The following example illustrates the use of the
caller-id signal:

 S: ci(02/20/19/47, "5273 4671", JCTEA)

Answer tone (aw): Answer tone is a tone that may be provided by a modem or fax that answers an
incoming call. The tone consists of a sinewave signal at 2100 Hz – see ITU-T Rec. V.8.

Fax tone (ft): The fax tone event is generated whenever a fax call is detected – see e.g., ITU-T
Rec. T.30, or ITU-T Rec. V.21.

 ITU-T Rec. J.162 (03/2004) 119

Media start (ma): The media start event occurs on a connection when the first valid37 RTP media
packet is received on the connection. This event can be used to synchronize a local signal,
e.g., ringback, with the arrival of media from the other party.

The event may be detected on a connection. When no connection is specified, the event applies to
all connections for the endpoint, regardless of when the connections are created.

Modem tones (mt): The modem tone event is generated whenever a modem call is detected – see
e.g., ITU-T Rec. V.8.

Operation complete (oc): The operation complete event is generated when the gateway was asked
to apply one or several signals of type TO on the endpoint, and one or more of those signals
completed without being stopped by the detection of a requested event such as off-hook transition
or dialled digit. The completion report may carry as a parameter the name of the signal that came to
the end of its live time, as in:

 O: L/oc(L/dt)

When the reported signal was applied on a connection, the parameter supplied will include the name
of the connection as well, as in:

 O: L/oc(L/rbt@0A3F58)

When the operation complete event is requested, it cannot be parameterized with any event
parameters. When the package name is omitted, the default package name is assumed.

The operation complete event may additionally be generated as defined in the base protocol,
e.g., when an embedded Modify Connection command completes successfully, as in38:

 O: L/oc(B/C)

Operation failure (of): In general, the operation failure event may be generated when the endpoint
was asked to apply one or several signals of type TO on the endpoint, and one or more of those
signals failed prior to timing out. The completion report may carry as a parameter the name of the
signal that failed, as in:

 O: L/of(L/ir)

When the reported signal was applied on a connection, the parameter supplied will include the name
of the connection as well, as in:

 O: L/of(L/rbt@0A3F58)

When the operation failure event is requested, event parameters cannot be specified. When the
package name is omitted, the default package name is assumed.

The operation failure event may additionally be generated as specified in the base protocol,
e.g., when an embedded Modify Connection command fails, as in38:

 O: L/of(B/C(M(sendrecv(AB2354))))

Timer (t): Timer T is a provisionable timer that can only be cancelled by DTMF input. When timer
T is used with the "accumulate according to digit map" action, the timer is not started until the first
digit is entered, and the timer is restarted after each new digit is entered until either a digit map
match or mismatch occurs. In this case, timer T functions as an inter-digit timer and takes on one of
two values, Tpar or Tcrit. When at least one more digit is required for the digit string to match any of

37 When authentication and integrity security services are used, an RTP packet is not considered valid until it

has passed the security checks.
38 Note the use of "B" here as the prefix for the parameter reported.

120 ITU-T Rec. J.162 (03/2004)

the patterns in the digit map, timer T takes on the value Tpar, corresponding to partial dial timing. If
a timer is all that is required to produce a match, timer T takes on the value Tcrit corresponding to
critical timing. An example use is:

 S: dt

R: [0-9T](D)

When timer T is used without the "accumulate according to digit map" action, timer T takes on the
value Tcrit, and the timer is started immediately and simply cancelled (but not restarted) as soon as a
digit is entered. In this case, timer T can be used as an inter-digit timer when overlap sending is
used, e.g.;

 R: [0-9](N), T(N)

Note that only one of the two forms can be used at a time, since a given event can only be specified
once.

The default value for Tpar is 16 seconds and the default value for Tcrit is 4 seconds. The provisioning
process may alter both of these.

DTMF Long duration (l): The "DTMF Long duration" is observed when a DTMF signal is
produced for a duration longer than 2 seconds. In this case, the gateway will detect two successive
events: first, when the signal has been recognized, the DTMF signal, and then, 2 seconds later, the
long duration signal.

Long duration connection (ld): The "long duration connection" is detected when a connection has
been established for more than a certain period of time. The default value is 1 hour; however, this
may be changed by the provisioning process.

The event may be detected on a connection. When no connection is specified, the event applies to
all connections for the endpoint, regardless of when the connections are created.

PB tones wild-card (x): The PB tones wild-card matches any PB digit between 0 and 9.

ADSI Package
Package name: JS

Code Signal name Event Signal Additional info

adsi(string) ADSI display − BR

ADSI display (adsi(string)): Analogue Display Services Interface (ADSI) is mainly used for
display of the originator's telephone number. See 4.2, Receiving Functions for the Originator's
Telephone Number (Number Display), Technical Reference of Telephone Service Interfaces.

Video
Event packages for video will be provided in a future version of this Recommendation.

 ITU-T Rec. J.162 (03/2004) 121

Appendix VII

Event packages

This clause defines an initial set of event packages for the various types of endpoints currently
defined by IPCablecom for embedded clients. The following packages are defined for the embedded
client endpoint-types listed:

Endpoint-type Package Package name Default package

Analogue Access Line Line L Yes
V5 LE Network Interface European E No
Video For further study For further study For further study
ISDN BRI For further study For further study For further study

Each package defines a package name for the package and event codes and definitions for each of
the events in the package. In the tables of events/signals for each package, there are five columns:

Code: The package unique event code used for the event/signal.

Description: A short description of the event/signal.

Event: A check mark appears in this column if the event can be Requested by the Media
Gateway Controller. Alternatively, one or more of the following symbols may
appear:

 "P" indicating that the event is persistent;
 "S" indicating that the event is an event-state that may be audited;
 "C" indicating that the event/signal may be detected/applied on a connection.

Signal: If nothing appears in this column for an event, then the event cannot be signalled
on command by the Media Gateway Controller. Otherwise, the following symbols
identify the type of event:

"OO": On/Off signal. The signal is turned on until commanded by the Media Gateway
Controller to turn it off, and vice versa.

"TO": Time-out signal. The signal lasts for a given duration unless it is superseded by a
new signal. Default time-out values are supplied. A value of zero indicates that the
time-out period is infinite. The provisioning process may alter these default
values.

"BR": Brief signal. The event has a short, known duration.

Additional info: Provides additional information about the event/signal, e.g., the default duration of
TO signals.

Unless otherwise stated, all of the events/signals are detected/applied on endpoints and audio
generated by them is not forwarded on any connection the endpoint may have. Audio generated by
events/signals that are detected/applied on a connection will however be forwarded on the
associated connection irrespective of the connection mode.

Analog Access Lines
The following package is currently defined for Analog Access Line endpoints. This package applies
to all endpoints:
• Line

122 ITU-T Rec. J.162 (03/2004)

Package name: L.

The following codes are used to identify events and signals for the "line" package for "analog
access lines":

Code Description Event Signal Additional info

0-9,*,#,A,
B,C,D

MFPB (DTMF) tones √ BR

bz Busy tone – TO Time-out = 30 seconds
cf Confirmation tone – BR
ci(ti, nu, na) Caller Id – BR "ti" denotes time, "nu" denotes

number, and "na" denotes name
dl Dial tone – TO Time-out = 16 s
ft Fax tone √ –

hd Off-hook transition P, S –
hf Flash hook P –
hu On-hook transition P, S –
L MFPB (DTMF) long

duration
√ –

ld Long duration connection C –
ma Media start C –
mt Modem tones √ –

mwi Message waiting indicator – TO Time-out = 16 s
oc Operation complete √ –

of Operation failure √ –

ot Off-hook warning tone – TO Time-out = infinite
r0, r1, r2,
r3, r4, r5, r6
or r7

Distinctive ringing (0..7) – TO Time-out = 180 s

rg Ringing – TO Time-out = 180 s
ro Reorder tone – TO Time-out = 30 s
rs Ringsplash – BR
rt Ring back tone – C, TO Time-out = 180 s
sl Stutter dial tone – TO Time-out = 16 s
t Timer √ –

TDD Telecomm Devices for the
Deaf (TDD) tones

√ –

vmwi Visual message waiting
indicator

– OO

wt1, wt2,
wt3, wt4

Call waiting tones – TO Time-out = 12 s

X MFPB (DTMF) tones wild-
card

√ – Matches any of the digits "0-9"

 ITU-T Rec. J.162 (03/2004) 123

The definition of the individual events and signals are as follows:

MFPB (DTMF) tones (0-9,*,#,A,B,C,D): Detection and generation of MFPB (DTMF) signals is
described in ETS 300 001, Chapter 5: Calling Function. It is considered an error to try and play
MFPB (DTMF) tones on a phone that is off line (on hook) and an error should consequently be
returned when such attempts are made (error code 402 – phone on hook).

Busy tone (bz): Station Busy is defined by the local administration, and MAY be re-defined via
provisioning. See EG 201 188 and ETS 300 001, Chapter 1. It is considered an error to try and play
busy tone on a phone that is off line (on hook) and an error should consequently be returned when
such attempts are made (error code 402 – phone off line (on hook)).

Confirmation tone (cf): Confirmation Tone is defined by the local administration, and MAY be
re-defined via provisioning. See EG 201 188 and ETS 300 001, Chapter 1. It is considered an error
to try and play confirmation tone on a phone that is off line (on hook) and an error should
consequently be returned when such attempts are made (error code 402 – phone off line (on hook)).

Caller Id (ci(time, number, name)): See EN 300 659-1 and EN 300 659-3. Each of the three fields
is optional, however each of the commas will always be included.
• The time parameter is coded as "MM/DD/HH/MM", where MM is a two-digit value for

Month between 01 and 12, DD is a two-digit value for Day between 1 and 31, and Hour
and Minute are two-digit values coded according to military local time, e.g., 00 is midnight,
01 is 1 a.m., and 13 is 1 p.m.

• The number parameter is coded as an ASCII character string of decimal digits that identify
the calling line number. White spaces are permitted if the string is quoted, however, they
will be ignored.

• The name parameter is coded as a string of ASCII characters that identify the calling line
name. White spaces are permitted if the string is quoted.

A "P" in the number or name field is used to indicate a private number or name, and an "O" is used
to indicate an unavailable number or name. The following example illustrates the use of the
caller-id signal:

 S: ci(08/14/17/26, "33 4 92 94 42 00", European)

Dial-tone (dl): Dial Tone is defined by the local administration, and MAY be re-defined via
provisioning. See EG 201 188 and ETS 300 001, Chapter 1. It is considered an error to try and play
dial-tone on a phone that is off line (on hook) and an error should consequently be returned when
such attempts are made (error code 402 – phone off line (on hook)).

Fax tone (ft): The fax tone event is generated whenever a fax call is detected by presence of V.21
fax preamble. The fax tone event SHOULD also be generated when the T.30 CNG tone is detected.
See ITU-T Recs T.30 and V.21.

Off-hook transition (hd): See EG 201 188, Section 7: Seize signal.

Flash hook (hf): See EG 201 188, Section 14.2: Register recall.

On-hook transition (hu): See EG 201 188, Section 8: Clear Signal. The timing for the on-hook
signal is for flash response enabled.

MFPB (DTMF) Long duration (L): The "MFPB (DTMF) Long duration" is observed when a
MFPB (DTMF) signal is produced for a duration longer than two seconds. In this case, the gateway
will detect two successive events: first, when the signal has been recognized, the MFPB (DTMF)
signal, and then, 2 seconds later, the long duration signal.

Long duration connection (ld): The "long duration connection" is detected when a connection has
been established for more than a certain period of time. The default value is 1 hour; however, this
may be changed by the provisioning process.

124 ITU-T Rec. J.162 (03/2004)

The event may be detected on a connection. When no connection is specified, the event applies to
all connections for the endpoint, regardless of when the connections are created.

Media start (ma): The media start event occurs on a connection when the first valid39 RTP media
packet is received on the connection. This event can be used to synchronize a local signal, e.g.,
ringback, with the arrival of media from the other party.

The event may be detected on a connection. When no connection is specified, the event applies to
all connections for the endpoint, regardless of when the connections are created.

Modem tones (mt): Modem tone (mt): The modem tone event is generated whenever a data call is
detected by presence of V.25 answer tone (ANS) with or without phase reversal or V.8 modified
answer tone (ANSam) with or without phase reversal. See ITU-T Recs V.25 and V.8.

Message Waiting Indicator (mwi): Message Waiting indicator tone is defined by the local
administration, and MAY be re-defined via provisioning. See EG 201 188 and ETS 300 001,
Chapter 1. It is considered an error to try and play message waiting indicator on a phone that is off
line (on hook) and an error should consequently be returned when such attempts are made
(error code 402 – phone off line (on hook)).

Operation complete (oc): The operation complete event is generated when the gateway was asked
to apply one or several signals of type TO on the endpoint, and one or more of those signals
completed without being stopped by the detection of a requested event such as off-hook transition
or dialled digit. The completion report may carry as a parameter the name of the signal that came to
the end of its live time, as in:

 O: L/oc(L/dl)

When the reported signal was applied on a connection, the parameter supplied will include the name
of the connection as well, as in:

 O: L/oc(L/rt@0A3F58)

When the operation complete event is requested, it cannot be parameterized with any event
parameters. When the package name is omitted, the default package name is assumed.

The operation complete event may additionally be generated as defined in the base protocol, e.g.,
when an embedded ModifyConnection command completes successfully, as in40:

 O: L/oc(B/C)

Operation failure (of): In general, the operation failure event may be generated when the endpoint
was asked to apply one or several signals of type TO on the endpoint, and one or more of those
signals failed prior to timing out. The completion report may carry as a parameter the name of the
signal that failed, as in:

 O: L/of(L/rg)

When the reported signal was applied on a connection, the parameter supplied will include the name
of the connection as well, as in:

 O: L/of(L/rt@0A3F58)

When the operation failure event is requested, event parameters cannot be specified. When the
package name is omitted, the default package name is assumed.

39 When authentication and integrity security services are used, an RTP packet is not considered valid until it

has passed the security checks.
40 Note the use of "B" here as the prefix for the parameter reported.

 ITU-T Rec. J.162 (03/2004) 125

The operation failure event may additionally be generated as specified in the base protocol, e.g.,
when an embedded ModifyConnection command fails, as in:

 O: L/of(B/C(M(sendrecv(AB2354))))

Off-hook warning tone (ot): Receiver Off Hook Tone (ROH Tone) or "howler" tone is defined by
the local administration, and MAY be re-defined via provisioning. See EG 201 188 and
ETS 300 001 Chapter 1. It is considered an error to try and play off-hook warning tone on a phone
that is off line (on hook) and an error should consequently be returned when such attempts are made
(error code 402 – phone off line (on hook)).

Distinctive ringing (r0, r1, r2, r3, r4, r5, r6 or r7): These power ring cadences are defined by the
local administration and MAY be re-defined via provisioning.

See EG 201 188 and ETS 300 001 Chapter 3. It is considered an error to try and ring a phone that is
on line (off hook) and an error should consequently be returned when such attempts are made (error
code 401 – phone on line (off hook)).

Ringing (rg): This power ring signal is defined by the local administration, and MAY be re-defined
via provisioning. See EG 201 188 and ETS 300 001, Chapter 3. The ringing signal may be
parameterized with the signal parameter "rep" which specifies the maximum number of ringing
cycles (repetitions) to apply. The following will apply the ringing signal for up to 6 ringing cycles:

 S: rg(rep=6)

It is considered an error to try and ring a phone that is on line (off hook) and an error should
consequently be returned when such attempts are made (error code 401 – phone on line (off hook)).

Reorder tone (ro): Reorder tone is defined by the local administration, and MAY be re-defined via
provisioning. See EG 201 188 and ETS 300 001, Chapter 1. It is considered an error to try and play
reorder tone on a phone that is off line (on hook) and an error should consequently be returned
when such attempts are made (error code 402 – phone off line (on hook)).

Ringsplash (rs): Ringsplash, also known as "Reminder ring" is a burst of power ringing that may
be applied to the physical forwarding line (when idle) to indicate that a call has been forwarded and
to remind the user that a Call Forwarding subfeature is active. This signal is defined by the local
administration, and MAY be re-defined via provisioning. See EG 201 188 and ETS 300 001,
Chapter 3. It is considered an error to try and ring a phone that is on line (off hook) and an error
should consequently be returned when such attempts are made (error code 401 – phone on line
(off hook)).

Ring back tone (rt): Audible Ring Tone is defined by the local administration, and MAY be
re-defined via provisioning. See EG 201 188 and ETS 300 001, Chapter 1. The ringback signal can
be applied to both an endpoint and a connection.

When the ringback signal is applied to an endpoint, it is considered an error to try and play ring
back tones, if the endpoint is considered off line (on hook) and an error should consequently be
returned when such attempts are made (error code 402 – phone off line (on hook)). When the
ringback signal is applied to a connection, no such check is to be made.

126 ITU-T Rec. J.162 (03/2004)

Stutter Dial tone (sl): Stutter Dial Tone (also called Recall Dial Tone) is defined by the local
administration, and MAY be re-defined via provisioning. See EG 201 188 and ETS 300 001,
Chapter 1. The stutter dial tone signal may be parameterized with the signal parameter "del" which
will specify a delay in milliseconds to apply between the confirmation tone and the dial tone41. The
following will apply stutter dial tone with a delay of 1.5 seconds between the confirmation tone and
the dial tone:

 S: sl(del=1500)

It is considered an error to try and play stutter dial tone on a phone that is off line (on hook) and an
error should consequently be returned when such attempts are made (error code 402 – phone off
line (on hook)).

Timer (t): As described in 6.1.5, timer T is a provisionable timer that can only be cancelled by
MFPB (DTMF) input. When timer T is used with the "accumulate according to digit map" action,
the timer is not started until the first digit is entered, and the timer is restarted after each new digit is
entered until either a digit map match or mismatch occurs. In this case, timer T functions as an
inter-digit timer and takes on one of two values, Tpar or Tcrit. When at least one more digit is
required for the digit string to match any of the patterns in the digit map, timer T takes on the value
Tpar, corresponding to partial dial timing. If a timer is all that is required to produce a match, timer T
takes on the value Tcrit corresponding to critical timing. An example use is:

 S: dl
 R: [0-9T](D)

When timer T is used without the "accumulate according to digit map" action, timer T takes on the
value Tcrit, and the timer is started immediately and simply cancelled (but not restarted) as soon as a
digit is entered. In this case, timer T can be used as an inter-digit timer when overlap sending is
used, e.g.:

 R: [0-9](N), T(N)

Note, that only one of the two forms can be used at a time, since a given event can only be specified
once.

The default value for Tpar is 16 seconds and the default value for Tcrit is 4 seconds. The provisioning
process may alter both of these.

Telecomm Devices for the Deaf tones (TDD): The TDD event is generated whenever a TDD call
is detected – see e.g., ITU-T Rec. V.18.

Visual Message Waiting Indicator (vmwi): The transmission of the VMWI messages will
conform to the requirements in EN 300 659-1, Section 6.2: Data transmission not associated with
ringing and EN 300 659-3, Section 5.2.2: Message Waiting Indicator message. VMWI messages
will only be sent from the embedded client to the attached equipment when the line is idle. If new
messages arrive while the line is busy, the VMWI indicator message will be delayed until the line
goes back to the idle state. The Call Agent should periodically refresh the CPE's visual indicator.

Call Waiting tone1 (wt1, .., wt4): Call Waiting tones are defined by the local administration, and
MAY be re-defined via provisioning. See EG 201 188 and ETS 300 001, Chapter 1. It is considered
an error to try and apply call waiting tones on a phone that is off line (on hook) and an error should
consequently be returned when such attempts are made (error code 402 – phone off line (on hook)).

MFPB (DTMF) tones wild-card (X): The MFPB (DTMF) tones wild-card matches any MFPB
(DTMF) digit between 0 and 9.

41 This feature is needed for, e.g., Speed Dialing.

 ITU-T Rec. J.162 (03/2004) 127

Video
Event packages for video are for further study.

ISDN
Event packages for basic access ISDN are for further study.

Appendix VIII

Application of the NCS protocol to a SCN IPAT

VIII.1 Overview
This appendix specifies an application of the NCS protocol, described in the body of this
Recommendation, to an IPATdevice that is capable of emulating an AccessNetwork to an European
compliant Local Exchange (LE) that forms a part of a SCN. This appendix specifies the mapping
between the NCS protocol and a subset of the V5.2 protocol [see ETS 300 324] applicable for the
support of SCN services to analogue telephones. Note that this appendix has been produced in
response to requests of current European Cable Operators to provide telephony services over their
HFC cable plants while using existing V5 Switch capacity for SCN access, as described by ECCA
EuroPacketCable working group requirements document (EPC-RequDoc-V10-0501 May 2001:
European Requirements for the Delivery of Time-critical Services over Cable Television Networks
using IPCablecom).

This appendix applies to a subset of the V5 signalling protocol that relates to services provided by a
2-wire (a-b terminals), loop start, analogue POTS line.
NOTE 1 – Support for additional line types is for further study. Note that it should be recognized that while
the proposed protocol enables the support of the suite of V5 SCN POTS services that due to evolving market
requirements some of these services may no longer be desired or may have been discontinued within some
administration boundaries. Therefore, it is recommended that product compliance with the protocol in
support of these services be based on manufacturers declaration, similar to practices followed with V5 PICS
declarations and not on "mandated" Services compliance. In cases where a product may not support a
specific service, protocol compliance should be interpreted as being able to accept the protocol interface and
mitigate mismatches in service requests to product capabilities. In this way product complexity and cost can
be optimized per market requirements and administration needs while maintaining protocol inter-operability.
NOTE 2 – The description of the signals defined for automatic metering given by this appendix and that
described for a stand-alone metering package in Appendix IX are the same intentionally, and should remain
aligned. The equivalence of the meter pulse signals as described in this appendix and that described in
Appendix IX is directly mapped; E/ps(lt=em) maps directly to am/em and E/ps(mpb) maps directly to
am/mpb respectively. These signals accept the same parameter usage in both packages.
NOTE 3 – In this Recommendation, G.711 only is assumed; all other codecs must be considered as a future
study.
NOTE 4 – ISDN/BRI lines are for further study.

VIII.2 IPAT architecture
The reference architecture for this appendix is shown in Figure VIII.1. The IPAT provides
interworking between the IPCablecom network and Local Exchange being a part of a SCN. The
interface between the IPAT and the LE uses a subset of ETS 300 324 that is applicable to support of
SCN services to an analogue telephone.

128 ITU-T Rec. J.162 (03/2004)

This mapping specified in this appendix makes no assumptions about the internal structure of the
IPAT; however, it is assumed to provide both signalling and media interworking functions.

J.162REV.1_FVIII.1

Embedded MTA
client

HFC
access

network
CMTS

Managed IP network

EuroDOCSIS

NCS

AN

MTA CM

Embedded MTA
client

MTA CM HFC
access

network

IPAT V5.2
PSTN

LE

Figure VIII.1/J.162 – Reference model for this appendix

VIII.3 Electrical and physical interface requirements
This proposal assumes the ETS 300 324 defined system architecture consisting of a Local Exchange
(LE) and an Internet Protocol Access Terminal (IPAT) connected via a V5 interface.

The V5 interface may have between one and sixteen 2048 kbit/s interface as defined in
ETS 300 347-1, ETS 300 166 and ETS 300 167.

The electrical and physical characteristics of the interface shall conform to ETS 300 166,
2048 kbit/s case.

Two interface presentation alternatives are defined in ETS 300 166: the balanced interface pair
type, and the coaxial type. According to the two alternatives of interface applications shown in
Figure VIII.1, it is left to the network operator to request the interface presentation required.

J.162REV.1_FVIII.2

IPAT LE

Ia Ib

Interface V5

Transparent digital linkIPAT LE

Ia Ib

Figure VIII.2/J.162 – V5 interface presentation alternatives

For this appendix the CMTS is expanded to define an IPCablecom network consisting of an Internet
Protocol Access Terminal (IPAT), a Cable Modem Terminal System (CMTS), a Cable Modem
(CM) and a Media Terminal Adapter (MTA) or an Embedded Media Terminal Adapter (E-MTA).

 ITU-T Rec. J.162 (03/2004) 129

J.162REV.1_FVIII.3

MTA CMTSCM

Ic Ia

HFC
network

IP
network

Access network (AN)

IPAT

Figure VIII.3/J.162 – Access network

NOTE – Ia = interface point at the Access Network side; Ib = interface point at the LE side; Ic = interface
point at the user premises side.

This Access Network is the synonymous to an access network utilizing a Remote Digital Terminal
(RDT) in the traditional Circuit Switch architecture.

The electrical and logical definitions of the IP Network and the HFC Network are the subject of
other standards activities.

This appendix assumes that these networks simply provide the transparent digital link as described
in ETS 300 324. This allows this appendix to focus on the method of providing the signalling
necessary between the V5 LE to the premises interface point as defined in ETS 300 324 in support
of the desired services at the user premises termination point.

For cadence-ringing requests, this appendix defines an expanded range of ring cadences using a
similar syntax as the NCS ringing cadence signals.

For pulsed and steady state signals, the appendix allows an IPCablecom IPAT to translate a V5
protocol message received from the V5 switch to a corresponding signal request from the IPAT to
the E-MTA specifying the desire signal to be applied to the premises termination point (line
treatment; pulse duration, pulse period and number of repetitions, etc). This appendix also includes
a means for the IPAT to support the V5 switch requests for acknowledgements.

VIII.4 NCS package for V5 SCN protocol messages
This clause describes addition of an IPCablecom signal request and an event request to a presumed
European Line Package being developed for NCS in European IPCablecom.

These signal requests and event requests map the corresponding information elements contained in
a V5 SCN protocol Message Type, in a binary format, to the NCS format.
NOTE – Default values given in this appendix are for the purpose of providing equipment vendors with values for
initial product shipment.

Provisions should be provided to allow these values to be overwritten as part of unit configuration
or provisioning with alternate values per local administration requirements.

VIII.4.1 Cadence-ringing request
V5 "Establish" or "Signal" Message Types for "Cadence-ringing" are mapped to the NCS
"SignalRequest":

 S: <request code>

The signal request code for European Cadence-Ringing signal is cr(x).
NOTE – The currently defined IPCablecom Line Package NCS Ringing signal "rx" is defined with x = g, s
or numbers 0-7 (decimal). Some of these cadences are fixed and cannot be provisioned per IPCablecom
guidance.

V5 allows for ring cadences to range from 0 to 127; therefore, the cr(x) signal request code is
defined with x = 0, 127. In V5 systems, the default ring cadence is cr(0) and any of the cadences
can be uniquely provisioned per national norms or administration requirements.

130 ITU-T Rec. J.162 (03/2004)

VIII.4.1.1 Cadence-ringing defaults and ranges
The MTA shall allow the cadence-ringing values (0 through 127) to be provisioned to correspond to
the LE ring cadence map per national norms or local administration requirements.

Ring cadence default values are given in Table VIII.1. All timings are in milliseconds.

Provisioning across the range of 0 to 5000 ms in steps of 50 ms is required:

Table VIII.1/J.162 – Ring cadence default values

cr(x) t1 – ring t2 – idle t3 – ring t4 – idle t5 – ring t6 – idle
0 1000 4000 1000 4000 1000 4000
1 1000 500 1000 3500 1000 3500
2 500 500 500 500 1000 3000
3 500 500 1000 500 500 3000
4 1000 500 500 4000
5
6
7
8
…
127

VIII.4.2 Pulsed signal request
The V5 "Establish" or "Signal" Message Type "Pulsed Signal" request maps a pulsed signal request
to an NCS signal request.

The signal request code for pulsed signal is ps.

The parameters for this signal request are:
• lt denotes the line treatment to be applied (corresponds to the V5 coding of Pulse Type);
• pd denotes the pulse duration (length of a single pulse);
• pr denotes pulse repeat interval for the pulses.

The pd and pr values are optional. If no values are given, the MTA shall apply pre-provisioned
values in the MTA MIB per the line treatment/pulse type (lt) type code.

In addition to these parameters, the signal request may be applied with these signal request
parameters:
• rep denotes the number of pulses (repetitions);
• rpc denotes the number of pulses between meter pulse reports (optional, em signal only).

Most pulsed signal requests are, in effect, time-out (TO) signals, in which the time-out value may
be determined as:

to = pr ×××× rep

The IPAT need not include the time-out parameter in the signal request if the default time-out value
is adequate for the Signal Request being requested. This default must be provisioned in both the
MTA and the IPAT.

 ITU-T Rec. J.162 (03/2004) 131

The IPAT SHOULD include the time-out value if the product of pr × rep is significantly less than
180 seconds, and the IPAT MUST include the time-out value if the product of pr × rep is greater
than 180 seconds.

The "enable metering pulse generation" (em) and "burst metering pulse generation" (mpb) signals
are defined as on/off (OO) and brief (BR) signals, respectively. The number of pulses (rep) is not
applicable to the em signal request. Rather, the em signal only may include the report pulse count
(rpc) parameter. The number of pulses parameter is required for the mpb signal request.

VIII.4.2.1 Line treatment encoding
Table VIII.2 describes encoding for the line treatments that may be applied, along with signal type
and parameter applicability. Parameters may be Optional (O), Mandatory (M) or Forbidden (F).

Table VIII.2/J.162 – Line treatment encoding

lt code Description Signal
type pd pr rep

(Note) rpc

ir Initial Ring TO O O O F
lc Pulsed loop closed TO O O O F
lo Pulsed loop open TO O O O F
em (Enable) metering pulse

generation
OO F O F O

mpb Metering pulse burst generation BR O O O F
nb Pulsed no battery TO O O O F
np Pulsed normal polarity TO O O O F
rb Pulsed reduced battery TO O O O F
rp Pulsed reversed polarity TO O O O F
NOTE – "rep" parameter is MANDATORY if value is provided by the V5 LE interface. The assignment
of OPTIONAL in this field is in recognition of the use of default values (see Table VIII.3) in support of
Call Agent or Softswitch architectures.

VIII.4.2.2 Line treatment defaults and ranges
Table VIII.3 describes defaults and parameter ranges for the line treatments in Table VIII.2. Timing
values are in milliseconds.

Table VIII.3/J.162 – Line treatment defaults and ranges

lt
code Description Frequency

(tolerance)
Amplitude

(min-max, steps)

pd
(min-max,

steps)

pr
(min-max,

steps)

rep
(min-max,

steps)

ir Initial Ring 25 Hz
(±1 Hz)

Full 200
(0-5000, 50)

200
(0-5000, 50)

1
(1-5, 1)

lc Pulsed loop closed Null Null 200
(0-5000, 10)

1000
(0-5000, 10)

1
(1-50, 1)

lo Pulsed loop open Null Null 200
(0-5000, 10)

1000
(0-5000, 10)

1
(1-50, 1)

em (Enable) metering
pulse generation

16 kHz –13.5 dBma)

(–25 to
+15, 2 dB)

150
(0-5000, 10)

1000
(0-5000, 10)

null

132 ITU-T Rec. J.162 (03/2004)

Table VIII.3/J.162 – Line treatment defaults and ranges

lt
code Description Frequency

(tolerance)
Amplitude

(min-max, steps)

pd
(min-max,

steps)

pr
(min-max,

steps)

rep
(min-max,

steps)

mpb Metering pulse
burst generation

16 kHz –13.5 dB ma)

(–25 to
+15, 2 dB)

150
(0-5000, 10)

1000
(0-5000, 10)

1
(1-50, 1)

nb Pulsed no battery Null 0 200
(0-5000, 10)

1000
(0-5000, 10)

1
(1-50, 1)

np Pulsed normal
polarity

Null 1 200
(0-5000, 10)

1000
(0-5000, 10)

1
(1-50, 1)

rb Pulsed reduced
battery

Null 1 200
(0-5000, 10)

1000
(0-5000, 10)

1
(1-50, 1)

rp Pulsed reversed
polarity

Null 0 200
(0-5000, 10)

1000
(0-5000, 10)

1
(1-50, 1)

a) Meter Pulse Amplitude is specified in dBm across a-b terminals terminated in the reference termination
impedance per national norms.

VIII.4.2.3 Requested events
The following events may be requested for pulsed signals, by inclusion in the requested events
(R: parameter list in the notification request:
• oc denotes that operation completion should be notified;
• of denotes that operation failure should be notified;
• pc denotes that pulse completion should be notified.

VIII.4.2.4 Pulse encoding
The IPAT must map V5 enumerated pulse type and duration coding to NCS line treatment types
and durations in milliseconds per provisioning tables as defined by the LE or the local
administration.

VIII.4.2.4.1 Pulse duration encoding
The pulse duration is specified in milliseconds, using the pd parameter. For example,
a 200-millisecond pulse is specified by:

 pd=200

Pulse duration is optional. If not provided by the requesting entity, the MTA SHOULD apply
a provisioned or internally defaulted value, based on the line treatment (lt) parameter
(see Table VIII.3).

VIII.4.2.4.2 Pulse period encoding
The pulse period is specified in milliseconds, using the pr parameter. For example, a 1-second
period is specified by:

 pr=1000

Thus, for example, a 50% duty cycle, 1-second periodic pulse is specified by:

 pd=500, pr=1000

 ITU-T Rec. J.162 (03/2004) 133

Pulse period is optional. If not provided by the requesting entity, the MTA SHOULD apply
a provisioned or internally defaulted value, based on the line treatment (lt) parameter
(see Table VIII.3).

VIII.4.2.5 Pulse completion event coding
The pulse completion event is reported by the MTA when requested in the first Signal Request by
the IPAT and when each requested pulse is completed. This event is notified for each completed
pulse for the duration of the signal request, without requiring additional notification requests from
the IPAT. Detection of this event does not affect continued application of pulses by the MTA.

The event request code for pulse complete is pc, and is included in the signal request, similar to
the operation complete oc event.

VIII.4.2.6 Metering pulse report coding
The metering pulse report event is reported by the MTA when requested in an enable metering
pulse generation signal request with non-zero report pulse count (rpc) parameter. This event is
notified each time the MTA's metering pulse count reaches the report pulse count. Generation of the
event resets the MTA's metering pulse count to zero. The count does not include pulses generated
by any metering pulse burst (mpb) signal requests. Generation of the event does not affect
continued generation of metering pulses and subsequent metering pulse report event notification.
The IPAT does not need to send a new notification request.

The event code for the metering pulse report is mpr. The notification includes the count. Example:

 O: mpr(10)

VIII.4.2.7 V5 suppression indicator
The V5 suppression indicator is used both in the Pulsed-Signal IE and in the Enable-Metering IE. It
allows the LE to indicate to the Access Network whether the ongoing pulsed signal shall be
suppressed.

The suppression indicator shall be used to indicate whether the pulse generation shall be stopped in
a network if the line conditions change, if a new SIGNAL message is received from the LE or if
either occurs. This is especially important for meter pulses in some networks, where metering
pulses are not sent after the call is cleared; this could be used to suppress metering pulses after the
call has been cleared.

In other networks it is essential that the meter pulses are sent out regardless of either a change in
line state due to messages from the LE or changes due to the TE.

The codings of the suppression indicator are:
• 00 No suppression;
• 01 Suppression allowed by pre-defined V5.1 SIGNAL message from LE;
• 10 Suppression allowed by pre-defined line signal from TE;
• 11 Suppression allowed by pre-defined V5.1 SIGNAL message from LE or pre-defined

line signal from TE.

The signal suppression option does not map efficiently to the NCS protocol. For example, to apply
a signal request with "no suppression", the signal must be defined as a "brief" signal; to apply a
signal with "suppression allowed by pre-defined signal from TE" requires that the signal must be
defined as a "time-out" signal. For the purposes of V5-to-NCS interworking, the NCS behaviour is
accepted, and the signals are defined based on assumptions of normal usage.

134 ITU-T Rec. J.162 (03/2004)

To resolve this conflict with NCS, the IPAT must "bridge" the V5 protocol to NCS by accepting the
V5 suppression indication and then executing the appropriate set of NCS messages to achieve the
desired effect.

VIII.4.2.7.1 No suppression
Upon receipt of the V5 "00" code, the IPAT shall generate the associated line treatment NCS
message to the MTA. The MTA shall execute the associated line treatment as defined in this
appendix regardless of changes in the line state or additional signal messages from the LE-IPAT.

VIII.4.2.7.2 Suppression by pre-defined V5 SIGNAL message
For this case the IPAT must be pre-provisioned with the associated V5 SIGNAL message (e.g., far
end "on hook").

Upon receipt of the V5 "01" code, the IPAT shall begin monitoring for the pre-provisioned
V5 SIGNAL message.

The MTA shall execute the associated line treatment as defined in this appendix.

Upon receipt of the pre-provisioned V5 SIGNAL message, the IPAT shall issue the associated
pulsed signal cancellation message (see VIII.4.5) to the MTA.

The MTA shall respond to the associated pulsed signal cancellation message as defined in this
appendix.

VIII.4.2.7.3 Suppression by pre-defined line signal from TE
For this case the IPAT must be pre-provisioned with the associated NCS line treatment signal
message (e.g., "on hook").

Upon receipt of the V5 "10" code, the IPAT shall begin monitoring for the pre-provisioned NCS
line treatment signal message from the MTA.

The MTA shall execute the associated line treatment message as defined by NCS protocols
(e.g., "on hook").

Upon receipt of the pre-provisioned NCS line treatment message, the IPAT shall issue the
associated pulsed signal cancellation message (see VIII.4.5) to the MTA.

The MTA shall respond to the associated pulsed signal cancellation message as defined in this
appendix.

VIII.4.2.7.4 Suppression by pre-defined V5 SIGNAL message from LE or pre-defined line
signal from TE

For this case the IPAT must be pre-provisioned with an associated V5 SIGNAL message AND the
associated NCS line treatment signal message (e.g., far end "on hook" AND TE "on hook").

Upon receipt of the V5 "11" code, the IPAT shall begin monitoring for the pre-provisioned
V5 SIGNAL message and shall begin monitoring for the pre-provisioned NCS line treatment signal
message from the MTA.

If presented to the MTA, the MTA shall execute the associated line treatment message as defined
by NCS protocols (e.g., "off hook").

Upon receipt of the pre-provisioned V5 SIGNAL message OR the NCS line treatment message
from the MTA, the IPAT shall issue the associated pulsed signal cancellation message
(see VIII.4.5) to the MTA.

The MTA shall respond to the associated pulsed signal cancellation message as defined in this
appendix.

 ITU-T Rec. J.162 (03/2004) 135

VIII.4.2.8 Repetition indicator
The repetition indicator is only used in the V5 Enable-Metering IE. It is sent in the direction of LE
to Access Network with a reporting pulse count to instruct the Access Network whether to continue
or cease application of automatic metering pulses when the number specified in reporting pulse
count have been applied.

Coding of repetition indicator:
• 00 Cease to apply pulses after number specified by reporting pulse count have been

applied;
• 11 Continue to apply pulses at same rate until the call is disconnected or receipt of new

instructions from LE;
• 01 Reserved for European use;
• 10 Reserved for European use.

The default behaviour for the em line treatment provides for the signal to be applied as an on/off
signal until discontinued by the IPAT. The IPAT can obtain the behaviour of discontinuing
the pulses once the reporting pulse count has been reached by including an embedded notification
request to turn off the em signal (see VIII.4.5).

VIII.4.3 Pulse repetition encoding
The IPAT maps the V5 interface pulse repetition count directly to the existing NCS repetition (rep)
parameter.

This parameter must be provided in accordance with Table VIII.2. There is no default value for
pulse repetitions.
NOTE – Per V5 guidance, a rep value of "0" is invalid. If the IPAT receives a request from the V5 LE with a
rep value = 0, or missing, the IPAT shall substitute a rep value of "1".

In the V5 Pulsed-Signal IE, the "number of pulses" field is a 5-bit field. The range of permitted
values is 1 through 31. In the V5 Enable-Metering IE, the combination of "repetition indicator = 00"
and "reporting pulse count" fields also allow for the specification of a limited "number of pulses".
Reporting pulse count is a 12-bit field, accounting for a valid range from 1 through 4095. While
the pulse repetition value may only be in the range 1..31 from a V5 interface, pulse repetitions may
be specified over the full range 1..4095.

VIII.4.4 Parameter usage
All of the parameters described for the pulsed signal request apply to all of the described line
treatments.

The IPAT must supply values for the pulse duration, the pulse repetition interval, and the number of
repetitions.

To account for national variation for meter pulse, the frequency and amplitude are provisioned to
the MTA because neither is provided in the message from the V5 interface. The IPAT must
determine the pulse repetition interval from the V5 interface message rate type and provide the
interval time (ms) to the MTA in the signal request.

In V5-2000, the Enable-Metering information element has a rate type field. This is an enumeration
type. The IPAT must translate the different enum values to corresponding millisecond values, based
on its provisioning, depending on the local administration.

The IPAT may use the pulse repetition interval and signal repetition parameter to generate a fixed
number of pulses to the subscriber's line.

136 ITU-T Rec. J.162 (03/2004)

VIII.4.5 Pulsed signal cancellation
Most pulsed signals, being time-out signals, are terminated when any requested event is detected,
except for pulse completion (pc).
In addition, the LE may terminate all active pulsed signals at any time by sending an empty Signal
Request.
Since the LE may apply multiple pulsed signals to a subscriber's line simultaneously, (for example,
meter pulse is being generated and another line treatment is applied), the IPAT may terminate an
on/off line treatment with a treatment specific command syntax. An example to terminate the
applied meter pulse would be:

 S: E/ps(em(-))

VIII.4.6 Pulsed completion event
The pulsed completion event is reported by the MTA to the IPAT when each requested pulse is
completed.

The event request code for pulse complete is pc.

VIII.4.7 Pulsed signal failure event
The pulsed signal failure event is reported by the MTA to the IPAT when any pulsed signal request
fails to complete, if operation failure 'of' has been included in the list of requested events. A pulsed
signal request may fail for any reason that any other signal request might fail.

VIII.4.8 Steady-signal request
The V5 "Establish" Steady-signal request maps a Steady signal request to an NCS signal request.

The signal request code for steady signal is ss.

The parameter for this signal request is:
• lt denotes the line treatment to be applied (Corresponds to the V5 coding of Steady-signal

Type).

This treatment is maintained until the V5 LE directs for a new treatment.

VIII.4.8.1 Line treatment encoding
Line treatments are encoded using the code words in Table VIII.4.

Table VIII.4/J.162 – Steady signal request encoding

lt code Description

fb normal (full) battery
lc loop closed
lo loop open
nb no battery
np normal polarity
rb reduced battery
rp reversed polarity

VIII.4.8.2 Line treatment provisioning
There is no provisioning required in that these are line states without quantitative values (timing,
frequency or amplitude).

 ITU-T Rec. J.162 (03/2004) 137

VIII.4.9 Metering pulse generation
On receiving an "enable metering pulse generation" ps(lt=em(+)) signal request, the MTA shall
apply the first metering pulse to the termination immediately, and then apply subsequent metering
pulses at intervals as specified by the value of the pulse repetition interval parameter pr, if supplied
in the signal request, or the provisioned value.

The MTA shall continue to generate metering pulses until it receives an "disable metering pulse
generation" ps(lt=em(-)) signal request, or an empty signal request list.

A metering pulse burst signal ps(lt=mpb) request may be included in a signal request that also
enables metering pulse generation, for example, to apply an initial charge to a call. When this
occurs, the MTA shall apply the metering pulse burst to the endpoint completely, and then start
generating normal metering pulses.

Because the metering pulse burst signal is a brief signal type, all pulses specified to for the request
(rep=n) are applied, even if the subscriber goes on-hook during the burst.

A metering pulse burst signal request may occur during a call in progress, for example to take
account of a chargeable subscriber action. When this occurs, the MTA shall suspend normal
metering pulse generation, and apply the metering pulse burst signal request. The MTA then shall
resume normal metering pulse generation without requiring a new "enable metering pulse
generation" request from the IPAT. The IPAT must account for any normal metering pulses missed
during the burst by including the missed pulses in the burst count.

The IPAT may optionally include a report pulse count (rpc) parameter with the enabling metering
pulse generation (em) signal request. When this parameter is non-zero (rpc=n, where n=1 to x),
the MTA generates meter pulse reports, in the form of notifications, each time its pulse count
reaches the rpc value. Generation of the event notification resets a rpc counter so that a report will
be generated each time the rpc "n" value is reached. This count does not include any metering
pulses generated by metering pulse burst (mpb) signal requests.

VIII.5 Provisioning configurations

VIII.5.1 MTA
The MTA shall be provisioned with electrical parameters for each of the line treatments. When
appropriate, these parameters include amplitude, frequency, minimum pulse widths and maximum
rep rate (minimum inter-pulse timing). See Tables VIII.1 through VIII.3 for details. These
parameters are to be used unless line treatment specific values are provided by the V5 interface
messages.

VIII.5.2 IPAT
The IPAT shall be provisioned with V5 pulse type and duration coding mapping to NCS pulse type
and pulse duration timing in milliseconds. This provisioning must be consistent with the LE
provisioning and the local administration guidance.

VIII.6 European Line Package support

VIII.6.1 NCS Audit
The NCS Audit Endpoint (AUEP) command allows the MTA to report signals that it supports.

In response to an AUEP, an MTA that supports any of the signalling requests listed in this appendix
must report support of this "European" package (designated with an "E" code).

An example of an audit exchange:

 AUEP 1232 aaln/1@rgw.mso.net
 F: A

138 ITU-T Rec. J.162 (03/2004)

MTA responds:

 200 1232 OK
 A: a:PCMU,
 p:30-90,
 v:L;E,
 m:sendonly;recvonly;sendrecv;inactive,
 DQ-GI,SC-ST, SC-RTP: 00/51;03

The important line for packages is the "v:L;E" which indicates support for the NCS Line
Package (L) and for the European Line Package (E).

VIII.6.2 Unsupported signals – PICS declaration
This is an indication of a device platform limitation (hardware or software) and is not an error
condition.

Product vendors must reflect any unsupported signals listed in this appendix in the product PICS
declaration.

NCS provides a messaging facility where, if the device cannot support the requested signal type, the
device shall return an "unsupported signal" response (513 code).

Example 1:

 CMS->MTA (requesting a metering pulse burst):

 RQNT 9915 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 2255
 S: E/ps(lt=mpb, pd=500, pr=1000, rep=5)
 R: oc, hu, hf

 MTA->CMS (rejecting the request):

 513 9915 Unsupported Signal in Signal Request

Example 2:

 CMS->MTA (requesting metering enable, using provisioned defaults):

 RQNT 9915 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 2255
 S: E/ps(lt=em(+))
 R: E/pc, hu, hf

MTA->CMS (rejecting the request):

 513 9915 Unsupported Signal in Signal Request

VIII.7 Call flow examples

VIII.7.1 Cadence-ringing

VIII.7.1.1 Cadence-ringing call flow for basic ring cadence
This flow illustrates a request for the application of a simple ring cadence.
1) The V5 LE includes a cadence-ringing pulsed signal request in a message to the IPAT.
2) The IPAT converts the binary coded cadence-ring to a decimal value between 0 and 127.
3) Assuming the cadence-ring value is converted to a decimal number "0":

 RQNT 500 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 S: E/cr(0)

 ITU-T Rec. J.162 (03/2004) 139

4) The MTA acknowledges the signal request.

 200 500 OK

5) The MTA looks up in its provisioned ring table for the cr(0) definition of ring frequency
and ring cadence and applies it to the a-b terminals for the aaln/1 line presence on the
MTA.

This cadence continues until the MTA detects Off-Hook at which time it begins the normal
NCS connect sequence or until the IPAT signals a disconnect message.

VIII.7.1.2 Cadence-ringing – Ring splash followed by a ring cadence
This call flow demonstrates the use of a pulsed signal "initial ring" type followed by a ring cadence
to provide a "ring splash" followed by a ring cadence.
1) The V5 LE supplies an "initial ring" pulsed signal type request with a pulse duration type in

a message to the IPAT.
2) The IPAT converts the "initial ring" type to the NCS lt type ir, with the pulse duration value

and requests operation complete notification.

 RQNT 510 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 000691
 S: E/ps (lt=ir, pd=200, rep=1)
 R: oc

3) The MTA acknowledges the signal request.

 200 691 OK

4) The MTA looks up in its provisioned ring table for the ir definition of initial ring frequency
and initial ring duration (pd=200 results in a ring burst of 200 ms) and applies it to the
a-b terminals for the aaln/1 line presence on the MTA.

5) Upon completion of the initial ring the MTA responds with an operation complete message
6) NTFY 1298 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 691
 O: oc(E/ps(ir))

 Note that this assumes a "European Line Package" designated by the name "E".
The package name could be omitted if this package is the default package.

7) The IPAT signals the V5 LE that the pulse is complete
8) The V5 LE includes a cadence-ringing pulsed signal request in a message to the IPAT.
9) The IPAT converts the binary-coded cadence-ring to a decimal value between 0 and 127
10) Assuming the cadence-ring value is converted to a decimal number "0":

 RQNT 520 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 699
 S: E/cr(0)

11) The MTA acknowledges the signal request.

 200 520 OK

12) The MTA looks up in its provisioned ring table for the cr(0) definition of ring frequency
and ring cadence and applies it to the a-b terminals for the aaln/1 line presence on the
MTA.

 This cadence continues until the MTA detects Off-Hook at which time it begins the normal
NCS connect sequence or until the IPAT signals a disconnect message.

140 ITU-T Rec. J.162 (03/2004)

VIII.7.1.3 Cadence-ringing – Ring splash followed by "on-hook" data, then Ring Cadence
This flow illustrates an "on-hook" data transmission associated with ringing (CLID).

A ring burst preceding V5 LE generated FSK signalling tones followed by the application of a ring
cadence.
1) The V5 LE supplies an "initial ring" pulsed signal type request with a pulse duration type in

a message to the IPAT.
2) The IPAT converts the "initial ring" type to the NCS lt type ir, with the pulse duration value

and requests operation complete notification.

 RQNT 530 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 777
 S: E/ps (lt=ir, pd=200, rep=1)
 R: oc

3) The MTA acknowledges the signal request.

 200 530 OK

4) The MTA looks up in its provisioned ring table for the ir definition of initial ring frequency
and initial ring duration (pd=200 results in a ring burst of 200 ms) and applies it to the a-b
terminals for the aaln/1 line presence on the MTA.

5) Upon completion of the initial ring the MTA responds with an operation complete message.

 NTFY 1298 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 777
 O: oc(E/ps(ir))

 Note that this assumes a "European Line Package" designated by the name "E".
The package name could be omitted if this package is the default package.

6) The IPAT signals the V5 LE that the pulse is complete.
7) The V5 LE then generates the FSK tones in band to the aaln/1 termination.
8) The MTA plays through the in-band FSK tones to the aaln/1 analogue POTS line.
9) The V5 LE times from the end of the FSK tone a 200-ms delay (to meet the minimum

requirements of ETSI EN 300 659-1) and then generates a cadence-ringing pulsed signal
request in a message to the IPAT.

10) The IPAT converts the binary coded cadence-ring to a decimal value between 0 and 127.
11) Assuming the cadence-ring value is converted to a decimal number "0":

 RQNT 540 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 778
 S: E/cr(0)

12) The MTA acknowledges the signal request.

 200 540 OK

13) The MTA looks up in its provisioned ring table for the cr(0) definition of ring frequency
and ring cadence and applies it to the a-b terminals for the aaln/1 line presence on the
MTA.

 This cadence continues until the MTA detects Off-Hook at which time it begins the normal
NCS connect sequence or until the IPAT signals a disconnect message.

 ITU-T Rec. J.162 (03/2004) 141

VIII.7.2 Pulsed signal request

VIII.7.2.1 Pulse signal request for one loop open pulse
1) The V5 LE includes a loop open pulsed signal request in a message to the IPAT.
2) The IPAT converts the binary-coded V5 message and determines the line treatment and

pulse duration from parameters supplied by the switch, and generates an appropriate NCS
signal request.

 RQNT 525 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 795
 S: E/ps(lt=lo, pd=200, rep=1)

3) The MTA acknowledges the signal request.

 200 525 OK

4) The MTA applies a 200-millisecond open loop to the subscriber's access line.

VIII.7.2.2 Pulsed signal with start acknowledgement

J.162REV.1_FVIII.4

LEIPDTMTAAccess
line

1: Loop Open

2: RQNT(S:ps(lt=lo, pd=200, rep=1))

3: 200 OK

4: Open loop

Figure VIII.4/J.162 – Pulsed signal request

This call flow illustrates a pulsed signal request with multiple pulses, and in which the switch has
requested acknowledgement when the signal application to the subscriber's access line starts.
1) The V5 LE request an open loop with multiple pulses and start acknowledgement.
2) The IPAT converts the binary-coded V5 message and determines the line treatment, pulse

duration and pulse period from parameters supplied by the switch, and generates
an appropriate NCS signal request, including the number of pulse repetitions supplied by
the V5 LE. The IPAT must "remember" that the switch has requested signal start
acknowledgement.

 RQNT 525 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 919
 S: E/ps(lt=lo, pd=200, pr=1000, rep=3)

3) The MTA acknowledges the signal request.

 200 525 OK

4) The IPAT sends acknowledgement to the V5 LE.
5) The MTA starts applying the open loop pulses to the subscriber's access line.

142 ITU-T Rec. J.162 (03/2004)

J.162REV.1_FVIII.5

LEIPDTMTAAccess
line

3: 200 OK

5: open loop

1: Loop Open, Start Ack

2: RQNT(S:ps(lt=lo, pd=200, pr=1000, rep=3))

4: Ack

Figure VIII.5/J.162 – Pulsed signal with start acknowledgement

VIII.7.2.3 Pulsed signal with completion acknowledgement
This call flow illustrates a pulsed signal request in which the V5 LE has requested
acknowledgement after all pulses have been applied.
1) The V5 LE requests an open loop with multiple pulses and completion acknowledgement.
2) The IPAT converts the binary-coded V5 message and determines the line treatment and

pulse duration from parameters supplied by the switch, and generates an appropriate NCS
signal request, including the number of pulse repetitions supplied by the V5 LE. Because
the V5 LE also requested completion acknowledgement, the IPAT includes the operation
complete parameter in the signal request. For the sake of this example, assume also that
the V5 LE requested start acknowledgement.

 RQNT 525 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 942
 S: E/ps(lt=lo, pd=200, pr=1000, rep=3)
 R: oc

3) The MTA acknowledges the signal request.

 200 525 OK

4) The MTA starts applying the requested pulses to the line.
5) 2nd pulse
6) 3rd pulse
7) With the last pulse completed, the MTA notifies the IPAT that the operation is complete.

 NTFY 1298 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 942
 O: oc(E/ps(lo))

 Note that this assumes a "European Line Package" designated by the name "E".
The package name could be omitted if this package is the default package.

8) The IPAT sends the requested acknowledgement to the V5 LE.
9) The IPAT acknowledges the event notification to the MTA.

 ITU-T Rec. J.162 (03/2004) 143

J.162REV.1_FVIII.6

5: 3 pulses applied

LEIPDTMTAAccess
line

3: 200 OK

1: Loop Open, End Ack

4: open loop

6: open loop

2: RQNT(S:ps(lt=lo, pd=200, pr=1000, rep=3,R: oc)

7: NTFY (O: oc(E/ps(lo)))

9: 200 OK

8: Ack

Figure VIII.6/J.162 – Pulsed signal with completion acknowledgment

VIII.7.2.4 Pulsed signal with pulse acknowledgement
This call flow illustrates a pulsed signal request in which the V5 LE has requested
acknowledgement after each pulse is applied.
1) The V5 LE requests an open loop with multiple pulses and pulse acknowledgement.
2) The IPAT converts the binary-coded V5 message and determines the line treatment and

pulse duration from parameters supplied by the switch, and generates an appropriate NCS
signal request, including the number of pulse repetitions supplied by the V5 LE. Because
the V5 LE also requested pulse acknowledgement, the IPAT includes an embedded signal
request for the pc signal.

 RQNT 525 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 1111
 S: E/ps(lt=lo, pd=200, pr=1000, rep=3)
 R: E/pc

3) The MTA acknowledges the signal request.

 200 525 OK

4) The MTA applies the first pulse to the subscriber's access line.
5) When the pulse completes, the MTA sends an event notification to the IPAT.

 NTFY 3981 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 1111
 O: E/pc(lt)

6) The IPAT sends the pulse acknowledgement to the V5 LE.
7) The IPAT acknowledges the event notification. The IPAT does not need to send a new

notification request for pulse completion. This request remains in effect until metering
pulse generation is completed.

8) The MTA continues to transmit pulses and notify pulse completions.

144 ITU-T Rec. J.162 (03/2004)

J.162REV.1_FVIII.7

LEIPDTMTAAccess
line

3: 200 OK

4: open loop

8: 3 pulses applied

1: Loop Open, Pulse Ack

9: open loop

2: RQNT(S:ps(lt=lo, pd=200, pr=1000, rep=3),R: pc)

10: NTFY(pc)

12: 200 OK
11: Ack

5: NTFY(pc)
6: Ack

7: 200 OK

Figure VIII.7/J.162 – Pulsed signal with pulse acknowledgement

VIII.7.2.5 Pulsed signal – Meter pulse with pulse acknowledgement
This call flow illustrates a pulsed signal request in which the V5 LE has requested application of
meter pulse with acknowledgement after each pulse is applied. The Meter Pulse frequency has been
provisioned to the MTA.
1) The V5 LE requests enable metering pulse generation and pulse acknowledgement.
2) The IPAT converts the binary-coded V5 message and generates an appropriate NCS signal

request. Because the V5 LE also requested pulse acknowledgement, the IPAT includes
the pc parameter with the signal request.

 RQNT 535 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 2345
 S: E/ps(lt=em(+))
 R: E/pc

3) The MTA acknowledges the signal request.

 200 535 OK

4) The MTA refers to its provisioning table to determine the meter pulse frequency, amplitude
and default timings, and applies the first meter pulse to the subscriber's access line.

5) When the pulse completes, the MTA sends an event notification to the IPAT.

 NTFY 3981 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 535
 O: pc(em)

6) The IPAT sends the pulse acknowledgement to the V5 LE.
7) The IPAT acknowledges the event notification.
8) The MTA continues to transmit pulses and notify pulse completions until the V5 LE

discontinues metering pulse generations:

 RQNT 599 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 S: E/ps(lt=em(-))

 ITU-T Rec. J.162 (03/2004) 145

J.162REV.1_FVIII.8

...

LEMTAAccess
line

3: 200 OK

5: NTFY(pc)
6: Ack

7: 200 OK

IPAN

2: RQNT(S:ps(lt=em(+)),R: pc)

4: meter pulse

8: Meter Pulse Stop

9: RQNT(S:ps(lt=em(-)))

10: 200 OK

1: Meter Pulse Start

Figure VIII.8/J.162 – Metering with pulse acknowledgement

VIII.7.2.6 Pulsed signal – Meter pulse with pulse acknowledgement with tariff change
This call flow illustrates a pulsed signal request in which the V5 LE has requested application of
meter pulse with acknowledgement. After several pulses in the first string are applied, a tariff
change is invoked. The meter pulse frequency has been provisioned to the MTA.
1) The V5 LE request application of meter pulse with multiple pulses and pulse

acknowledgement.
2) The IPAT converts the binary coded V5 message and determines the line treatment and

pulse duration from parameters supplied by the switch and generates an appropriate NCS
signal request, including the number of pulse repetitions supplied by the V5 LE. Because
the V5 LE also requested pulse acknowledgement, the IPAT includes an embedded signal
request for the pc signal.

 RQNT 545 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 3579
 S: E/ps(lt=em(+), pd=150, pr=1000)
 R: E/pc

3) The MTA acknowledges the signal request.

 200 545 OK

4) The MTA refers to its provisioning table to determine the meter pulse frequency, amplitude
and default timings (minimum allowed values).

5) The IPAT relays the start acknowledgement to the V5 LE.
 Cannot have both start ack and per-pulse ack.
6) The MTA applies the first meter pulse to the subscriber's access line.
7) When the pulse completes, the MTA sends an event notification to the IPAT.

 NTFY 3981 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 3579
 O: pc(em)

146 ITU-T Rec. J.162 (03/2004)

8) The IPAT sends the pulse acknowledgement to the V5 LE.
9) The IPAT acknowledges the event notification. The IPAT does not need to send a new

notification request for pulse completion. This request remains in effect until metering
pulse generation is completed.

10) The MTA continues to transmit pulses and notify pulse completions.

As the result in a change in the call state (e.g., start up of three-way call) the LE determines that a
new tariff is to be applied. Based on the new tariff, the LE determines a new meter pulse rate.
11) The V5 LE request application of meter pulse with a new multiple pulse count and start

acknowledgement.
12) The IPAT converts the new binary-coded V5 message and determines the line treatment

and pulse duration from parameters supplied by the switch and generates an appropriate
NCS signal request, including the number of pulse repetitions supplied by the V5 LE.
Because the V5 LE also requested pulse acknowledgement, the IPAT includes
an embedded signal request for the pc signal. For the sake of this example, assume also that
the V5 LE requested start acknowledgement.

 RQNT 547 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 3581
 S: E/ps(lt=em(+), pd=150, pr=500)
 R: E/pc

13) The MTA acknowledges the signal request.

 200 547 OK

14) The MTA refers to its provisioning table to determine the meter pulse frequency, amplitude
and default timings (minimum allowed values).

15) The IPAT relays the start acknowledgement to the V5 LE.
16) The MTA applies the first new meter pulse to the subscriber's access line with the new

pulse rate.
17) When the pulse completes, the MTA sends an event notification to the IPAT.

 NTFY 791 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 3581
 O: pc(em)

18) The IPAT sends the pulse acknowledgement to the V5 LE.
19) The IPAT acknowledges the event notification.
20) The MTA continues to transmit pulses and notify pulse completions.

VIII.7.3 Fixed meter pulse application – Completed
This call flow illustrates meter pulse application with operation complete notification.
1) The LE requests application of twenty-five (25) meter pulses to the subscriber's access line,

with pulse duration of 150 milliseconds and repetition interval of 2000 milliseconds.
The meter pulse frequency has been provisioned to the MTA.

2) The IPAT requests application of the meter pulse signal by the MTA.

 RQNT 2367 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 7632
 S: E/ps(lt=mpb, pd=150, pr= 2000, rep=25)
 R: oc, hu, hf

3) The MTA acknowledges the request.
4) The MTA begins applying meter pulses to the subscriber's access line.

 ITU-T Rec. J.162 (03/2004) 147

5) In this example, the LE requested notification on operation completion in the original
request to generate the fixed number of meter pulses. The MTA now notifies the IPAT that
the operation is complete.

 NTFY 12876 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 X: 7632
 O: oc(E/ps(mpb))

6) The IPAT acknowledges the event notification.
7) The IPAT relays the pulsed signal completion acknowledgement to the LE.

J.162REV.1_FVIII.9

...

LEMTAAccess
line

3: 200 OK

IPAN

4: meter pulse

1: Meter Pulse Start

2: RQNT(S:ps(lt=mpb, pd=150, pr=2000, rep=25),R: oc)

5: NTFY(oc(E/ps(mpb)))

6: 200 OK

7: Ack

Figure VIII.9/J.162 – Fixed meter pulse application – Completed

VIII.7.4 Steady Signal line treatment

Steady Signal line treatment – Reverse polarity
This call flow illustrates a Steady Signal request in which the V5 LE has requested reverse polarity
to be applied to the a-b POTS terminals.
1) The V5 LE includes a reverse polarity steady signal request in a message to the IPAT.
2) The IPAT converts the binary-coded V5 message and maps the binary-coded reverse

polarity treatment message to the NCS lt message and sends the line treatment message to
the MTA.

 RQNT 550 aaln/1@rgw.mso.net MGCP 1.0 NCS 1.0
 S: E/ss(lt=rp)

3) The MTA acknowledges the signal request.

 200 550 OK

4) The MTA applies a reverse polarity to the a-b terminals for the aaln/1 line presence on the
MTA.

148 ITU-T Rec. J.162 (03/2004)

Appendix IX

Metering support for IPCablecom NCS

IX.1 Objectives
As described in EPC-RequDoc-V10-0501 (May 2001): "European Requirements for the Delivery of
Time-critical Services over Cable Television Networks using IPCablecom", hardware metering is a
requirement in the support of analogue lines in an IP Cable environment. This appendix describes a
package for the automatic transmission of hardware metering pulses on analogue lines. It also
includes metering-specific call flows.
NOTE – The description of a stand-alone automatic meter package given by this appendix and that described
by Appendix VIII are the same intentionally, and should remain aligned. The equivalence of the meter pulse
signals as described in Appendix VIII and that described in this appendix is directly mapped; E/ps(lt=em)
maps directly to am/em and E/ps(mpb) maps directly to am/mpb respectively. These signals accept the same
parameter usage in both packages.

A consideration in generating this package was the decoupling of the Media Gateway from currency
knowledge. The charge unit varies per market. The Media Gateway should not have to know the
value of a pulse (currency units).

IX.2 Automatic metering package
The automatic metering package is designed to meet the requirements of Media Gateways with
analogue lines configured for general purpose telephony, adding a capability for automatic
transmission of metering pulses.

Pulse characteristics (pulse type, pulse duration, minimum pause duration) are market-dependent
[EN 300 001] and do not change during a call. By not including pulse characteristics in the MGCP
message the package retains the capability to support any type of metering pulse in any market.
This package assumes that pulse characteristics are provisioned (MIB) on the Media Gateway.

This package assumes that accumulation is the task of the CPE device. This package does not
require the Media Gateway to keep track of the number of pulses generated.

This package assumes gateways are reliable with respect to the generation of pulses. It does not
include feedback (events, properties, statistics) on the number of pulses actually generated during a
call.

IX.2.1 Package name
Package name: am

Version: 1

Metering signals and events MUST always be prefixed with the "am" package name.

IX.2.2 Local connection options
None.

IX.2.3 Events and signals
This package introduces two signals.

 ITU-T Rec. J.162 (03/2004) 149

Table IX.1/J.162 – Signals in the metering package

Symbol Definition R Type Duration

em enable metering OO n/a
mpb meter pulse burst BR n/a
R An "x" appears in this column if the event can be requested by the Call Agent. Alternatively,

an "S" may be included if the event-state may be audited. A "C" indicates that the event can
be detected on a connection.

Type If nothing appears in this column for an event, then the event cannot be signalled on
command by the Call Agent. Otherwise, the following symbols identify the type of event:

 OO On/Off signal
 TO Time-out signal
 BR Brief signal.
Duration Specifies the duration of TO signals. If a duration is left unspecified then the default time-out

will be assumed to be infinite.

IX.2.3.1 Meter pulse burst signal
Signal name: am/mpb

Signal type: Brief

The meter pulse signal is used to signal call attempt, call set-up and add-on charges. It requests the
generation of a fixed number of metering pulses on the analogue line. Note that the meter pulse
signal may also be used to request the generation of a single meter pulse.

Additional parameters:
• Pulse count

ParameterID: rep
Type: integer, rep > 0
Default value: 1
This parameter specifies the number of metering pulses to be applied on the line. The MTA
SHALL generate pulses until the pulse count is reached.
The default value of this parameter, which SHALL apply if the parameter is omitted, is 1.

• Pulse repetition interval
ParameterID: pr
Type: integer, pr > 0
Default: 1000
This parameter specifies the interval between repetitions of metering pulses on the line, in
milliseconds. It represents the time that SHOULD elapse between the leading edge of a
pulse and the leading edge of the succeeding pulse.
The default value of this parameter, which SHALL apply if the parameter is omitted, is
1000 ms.

A meter pulse burst signal request may be included in a signal request that enables metering pulse
generation, for example, to apply an initial charge to a call. When this occurs, the MTA SHALL
apply the metering pulse burst to the endpoint completely, and then start generating normal
metering pulses.

Because the metering pulse burst signal is a brief signal type, all pulses specified to for the request
(rep=n) SHALL be applied, even if the subscriber goes on-hook during the burst.

150 ITU-T Rec. J.162 (03/2004)

It is considered an error when a MTA receives a meter pulse burst signal and the set is on-hook.
When such attempts are made an error code 402 (phone on hook) SHALL be returned.

The am/mpb signal SHALL be applied to endpoints, NOT to connections.

IX.2.3.2 Enable metering signal
Signal name: am/em

Signal type: On/Off

This signal starts the automatic generation of metering pulses on the analogue line. It is used to
signal a regular, time-based call charge. The first pulse of a call charge SHALL be pulsed out
immediately after the em signal is received.

Additional parameters:
• Pulse repetition interval

ParameterID: pr
Type: integer, pr > 0
Default: 1000
This parameter specifies the interval between repetitions of metering pulses on the line, in
milliseconds. It represents the time that SHOULD elapse between the leading edge of a
pulse and the leading edge of the succeeding pulse. The MTA SHALL continue to generate
pulses until it receives a new am/em signal or the em signal is explicitly turned off. If a line
goes on-hook, the MTA SHOULD disable meter pulses in anticipation of a new call set-up
(CPE going back off-hook for a new call).
The default value of this parameter, which SHALL apply if the parameter is omitted, is
1000 ms.

Enable metering signals are mutually exclusive; only one enable metering signal SHALL be active
at a time. If a new am/em signal arrives, it SHALL supersede (replace) any previous am/em signal.

A metering pulse burst signal request may occur during a call in progress, for example to take
account of a chargeable subscriber action. When this occurs, the MTA SHALL suspend normal
metering pulse generation, and apply the metering pulse burst signals. The MTA then shall resume
normal metering pulse generation without requiring a new "enable metering" request from the Call
Agent. The Call Agent MUST account for any normal metering pulses missed during the burst by
including the missed pulses in the burst count.

It is considered an error when a MTA receives an enable metering signal and the set is on-hook.
When such attempts are made, an error code 402 (phone on-hook) SHALL be returned.

The syntax to turn the enable metering signal off is am/em(-). When an enable metering off signal is
received in on-hook state, no error SHALL be returned.

The am/em signal SHALL be applied to endpoints, NOT to connections.

IX.2.4 Properties
None.

IX.2.5 Statistics
None.

IX.2.6 Procedures
None.

 ITU-T Rec. J.162 (03/2004) 151

IX.3 Use cases – Example call flows

IX.3.1 Meter pulse while off-hook
The Call Agent instructs the MTA to apply a single pulse. If omitted, the "rep" parameter defaults
to 1. The set is off-hook.

 RQNT 309 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 X: 860
 S: am/mpb

The MTA confirms.

 200 309 OK

IX.3.2 Meter pulse while on-hook
The Call Agent instructs the MTA to apply a single pulse while the set is on-hook.

 RQNT 310 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 X: 870
 S: am/mpb

The MTA rejects the request.

 402 310 phone on-hook

IX.3.3 Regular call charge
The Call Agent instructs the MTA to apply a regular call charge of one pulse every 12 seconds.

 RQNT 311 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 X: 880
 S: am/em(pr=12000)

The MTA confirms.

 200 311 OK

IX.3.4 Call set-up charge
The Call Agent instructs the MTA to apply a pulse burst of 33 pulses.

 RQNT 321 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 X: 881
 S: am/mpb(rep=33)

The MTA confirms.

 200 321 OK

Afterwards, the Call Agent instructs the MTA to apply a regular call charge of one pulse every
5 seconds.

 RQNT 322 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 X: 882
 S: am/em(pr=5000)

The MTA confirms.

 200 322 OK

Note that the Call Agent has the option to apply both signals in one request:

 RQNT 323 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 X: 883

152 ITU-T Rec. J.162 (03/2004)

 S: am/mpb(rep=33), am/em(pr=5000)

The MTA confirms.

 200 323 OK

IX.3.5 Mid-call tariff change
The Call Agent instructs the MTA to apply a regular call charge of one pulse every 8 seconds.

 RQNT 331 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 X: 884
 S: am/em(pr=8000)

The MTA confirms.

 200 331 OK

Later, as the call progresses into a different time of day, the tariff changes. The Call Agent instructs
the MTA to apply a pulse every 12 seconds.

 RQNT 332 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 X: 885
 S: am/em(pr=12000)

The MTA confirms.

 200 332 OK

IX.3.6 Mid-call add-on charge
Say the call is initially routed to an announcement. The Call Agent instructs the MTA to apply a
pulse every 10 seconds.

 RQNT 341 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 X: 886
 S: am/em(pr=10000)

The MTA confirms.

 200 341 OK

Later, as the call is transferred to an operator, an add-on charge is applied. The Call Agent instructs
the MTA to apply a one-time pulse burst of 20 pulses, without affecting the regular call charge.

 RQNT 342 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 X: 887
 S: am/mpb(rep=20)

The MTA confirms.

 200 342 OK

IX.3.7 End of call
At the end of the call, the Call Agent instructs the MTA to delete the connection and turn the
regular call charge off.

 DLCX 351 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 C: abcd
 S: am/em(-)

The MTA confirms.

 250 351 OK

 ITU-T Rec. J.162 (03/2004) 153

IX.3.8 Audit endpoint
Brief signals do not have an auditable state. Per MGCP specification currently playing Brief signals
are not included in the response to a signal request audit.

The state of On/Off signals is an auditable property. If the Audit Endpoint command asks for
RequestedInfo=SignalRequests, the MTA MUST return a list of the On/Off signals that are
currently "On" for the endpoint (with or without parameters).

The Call Agent audits the endpoint.

 AUEP 361 aaln/1@mg23.whatever.net MGCP 1.0 NCS 1.0
 F: S

The response indicates that a regular call charge signal is on.

 200 361 OK
 S: am/em(pr=10000)

IX.4 Terms
IX.4.1 charge: Number of charge units (for the usage of a chargeable event (telecommunication
service)).

IX.4.2 charge unit: Base element for the charging process, expressed as meter-pulse units or as
currency value.

IX.4.3 add-on charge: Single additional charge which does not change the current tariff.

IX.4.4 tariff: Set of parameters used for charging purposes to calculate the numbering charge units
for the telecommunication service or a group of telecommunication services used. A tariff consists
of a tariff sequence.

IX.4.5 tariff sequence: List of up to 4 consecutive subtariffs which has to be applied for the
charging of the communication event. The subtariffs are applied at the start of the communication
event and are applied consecutively according to the list of the subtariffs. The last subtariff may
have an unlimited duration.

IX.4.6 subtariff: Within a tariff sequence, a charge unit per time unit. Each subtariff has an
individual duration and an individual charge unit.

IX.4.7 meter pulse: A periodic, cadenced signal with one on- and one off-period. The three most
common types of metering pulses are: 12-kHz pulse, 16-kHz pulse and reverse polarity pulse.

J.162REV.1_FVIII.10

Pulse Pause

Pulse repetition interval

IX.4.8 MIB: Management Information Base.

IX.4.9 pulse repetition interval: Varies with the charge; the higher the charge, the shorter the
pulse repetition interval.

IX.4.10 on-period (pulse): Of fixed length; its duration depends, however, on national
specifications. See EN 300 001 V1.5.1 (1998-10), section 1.7.8.

154 ITU-T Rec. J.162 (03/2004)

IX.4.11 off-period (pause): Varies with the pulse repetition interval; its minimum duration depends
on national specifications. See EN 300 001 V1.5.1 (1998-10), section 1.7.8.

Bibliography
– ECCA EuroPacketCable working group requirements document EPC-RequDoc-V10-0501,

May 2001: European Requirements for the Delivery of Time-critical Services over Cable
Television Networks.

– ETSI EG 201 188 V1.2.1 (2000-01): Public Switched Telephone Network (PSTN); Network
Termination Point (NTP) analogue interface; Specification of physical and electrical
characteristics at a 2-wire analogue presented NTP for short to medium length loop
applications.

Printed in Switzerland
Geneva, 2004

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series B Means of expression: definitions, symbols, classification

Series C General telecommunication statistics

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia
signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M TMN and network maintenance: international transmission systems, telephone circuits,
telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks and open system communications

Series Y Global information infrastructure, Internet protocol aspects and Next Generation Networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. J.162 (03/2004) Network call signalling protocol for the delivery of time-critical services over cable television networks using cable modems
	Summary
	Source
	FOREWORD
	CONTENTS
	1 Scope
	2 References
	2.1 Normative references
	2.2 Informative references

	3 Terms and definitions
	4 Abbreviations and conventions
	4.1 Abbreviations
	4.2 Conventions

	5 Introduction
	5.1 Relation with H.323 standards
	5.2 Relation with IETF standards

	6 Media Gateway Controller Interface (MGCI)
	6.1 Model and naming conventions
	6.2 SDP use
	6.3 Gateway control functions
	6.4 States, failover and race conditions
	6.5 Return codes and error codes
	6.6 Reason codes
	6.7 Use of Local Connection Options and Connection Descriptors

	7 Media Gateway Control Protocol
	7.1 General description
	7.2 Command header
	7.3 Response header formats
	7.4 Session description encoding
	7.5 Transmission over UDP
	7.6 Piggybacking
	7.7 Transaction identifiers and three-way handshake
	7.8 Provisional responses

	8 Security
	Annex A – Event packages
	Annex B – Dynamic Quality of Service
	Appendix I – Example event package
	Appendix II – Example command encodings
	II.1 NotificationRequest
	II.2 Notify
	II.3 CreateConnection
	II.4 ModifyConnection
	II.5 DeleteConnection (From the Call Agent)
	II.6 DeleteConnection (From the Embedded Client)
	II.7 DeleteConnection (Multiple Connections From the Call Agent)
	II.8 AuditEndpoint
	II.9 AuditConnection
	II.10 RestartInProgress
	Appendix III – Example call flow
	Appendix IV – Connection mode
	Appendix V – Compatibility information
	Appendix VI – Additional example event packages
	Appendix VII – Event packages
	Appendix VIII – Application of the NCS protocol to a SCN IPAT
	VIII.1 Overview
	VIII.2 IPAT architecture
	VIII.3 Electrical and physical interface requirements
	VIII.4 NCS package for V5 SCN protocol messages
	VIII.5 Provisioning configurations
	VIII.6 European Line Package support
	VIII.7 Call flow examples
	Appendix IX – Metering support for IPCablecom NCS
	IX.1 Objectives
	IX.2 Automatic metering package
	IX.3 Use cases - Example call flows
	IX.4 Terms
	Bibliography

