
 

 
 

 

I n t e r n a t i o n a l  T e l e c o m m u n i c a t i o n  U n i o n  

  

ITU-T  J.149
TELECOMMUNICATION 
STANDARDIZATION  SECTOR 
OF  ITU 

(03/2004)  

 

SERIES J: CABLE NETWORKS AND TRANSMISSION 
OF TELEVISION, SOUND PROGRAMME AND OTHER 
MULTIMEDIA SIGNALS 
Measurement of the quality of service 
 

 Method for specifying accuracy and 
cross-calibration of Video Quality Metrics (VQM)

 

Recommendation  ITU-T  J.149 

 

 



 

  



 

  Rec. ITU-T J.149 (03/2004) i 

Recommendation ITU-T J.149 

Method for specifying accuracy and cross-calibration of Video 
Quality Metrics (VQM) 

 

 

 

Summary 
Video quality metrics are intended to provide calculated values that are strongly correlated with 
viewer subjective assessments. This Recommendation provides methods for curve fitting VQM 
objective values to subjective data in order to facilitate the accuracy calculation, an algorithm to 
quantify the accuracy of a given VQM, a simplified root mean square error calculation to quantify 
the accuracy of a VQM when the subjective data has roughly equal variance across the VQM scale, 
and a method to plot classification errors to determine the relative frequencies of "false tie", "false 
differentiation", "false ranking", and "correct decision" for a given VQM. 

 

 

Source 
Recommendation ITU-T J.149 was approved on 15 March 2004 by ITU-T Study Group 9 
(2001-2004) under Recommendation ITU-T A.8 procedure. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication 
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, 
operating and tariff questions and issuing Recommendations on them with a view to standardizing 
telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on 
these topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
prepared on a collaborative basis with ISO and IEC. 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 
telecommunication administration and a recognized operating agency. 

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain 
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the 
Recommendation is achieved when all of these mandatory provisions are met.  The words "shall" or some 
other obligatory language such as "must" and the negative equivalents are used to express requirements. The 
use of such words does not suggest that compliance with the Recommendation is required of any party. 

 

 

 

 

INTELLECTUAL PROPERTY RIGHTS 

ITU draws attention to the possibility that the practice or implementation of this Recommendation may 
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, 
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others 
outside of the Recommendation development process. 

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, 
protected by patents, which may be required to implement this Recommendation. However, implementers 
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the 
TSB patent database at http://www.itu.int/ITU-T/ipr/. 

 

 

 

©  ITU  2009 

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the 
prior written permission of ITU. 

http://www.itu.int/ITU-T/ipr/


 

  Rec. ITU-T J.149 (03/2004) iii 

CONTENTS 

 Page 
1 Scope ............................................................................................................................  1 

2 Informative references ..................................................................................................  1 

3 Abbreviations................................................................................................................  2 

4 Accuracy of a VQM......................................................................................................  2 
4.1 Nomenclature and coordinate scales ..............................................................  2 
4.2 Fitting VQM values to subjective data...........................................................  3 
4.3 Metric 1: VQM accuracy based on statistical significance ............................  5 
4.4 Metric 2: VQM RMSE calculation.................................................................  7 
4.5 Classification plots .........................................................................................  7 

5 Cross-calibrating two VQMs........................................................................................  10 

Appendix I – Application of this Recommendation in the evaluation and validation of 
proposed VQMs............................................................................................................  11 
I.1  Elements of a full VQM disclosure ................................................................  11 
I.2  Scope/limitations of a VQM...........................................................................  11 

Appendix II – MATLAB Source Code....................................................................................  14 

Appendix III – Data-fitting to a common scale of VQM.........................................................  20 
III.1 Polynomial of order M ...................................................................................  20 
III.2 Logistic function I ..........................................................................................  20 
III.3 Logistic function II .........................................................................................  20 

Bibliography.............................................................................................................................  22 

 

 

 

 

 





 

  Rec. ITU-T J.149 (03/2004) 1 

Recommendation ITU-T J.149 

Method for specifying accuracy and cross-calibration of Video 
Quality Metrics (VQM) 

1 Scope 
Video quality metrics are intended to provide calculated values that are strongly correlated with 
viewer subjective assessments. This Recommendation provides: 
a) methods for curve fitting VQM objective values to subjective data in order to facilitate the 

accuracy calculation and to produce a normalized objective value scale that can be used for 
cross-correlation between different VQMs; 

b) an algorithm (based on statistical analysis relative to subjective data) to quantify the 
accuracy of a given VQM;  

c) a simplified root mean square error calculation to quantify the accuracy of a VQM when the 
subjective data has roughly equal variance across the VQM scale; 

d) a method to plot classification errors to determine the relative frequencies of "false tie", 
"false differentiation", "false ranking", and "correct decision" for a given VQM. 

The methods specified in this Recommendation are based on objective and subjective evaluation of 
component video such as defined by ITU-R Rec. BT.601 using methods such as described in ITU-R 
Rec. BT.500-11. A data set for a VQM will consist of objective values and mean subjective scores 
for a variety of motion video sources (SRC) processed by a variety of hypothetical reference 
circuits (HRC). An example of such a data set is given in the ITU-T Tutorial (see Appendix I). 

The methods specified in this Recommendation are directly applicable to a defined data set as 
described above. For measurements not specifically part of the data set, the methods specified in 
this Recommendation provide a reasonable estimate of accuracy and cross-calibration for 
applications that can be considered to be similar to and within the scope of the defined data set. 

The methods specified in this Recommendation are appropriate for use in combination with other 
statistical calculations in order to evaluate the usefulness of a VQM. Informative information 
regarding the use of the methods is presented in Appendix I. A complete verification process by 
suitable independent laboratories is required for a VQM to be considered for inclusion as a 
normative part of an ITU-R Recommendation. 
NOTE – The structure and content of this Recommendation have been organized for ease of use by those 
familiar with the original source material; as such, the usual style of ITU-T recommendations has not been 
applied. 

2 Informative references 
– ANSI T1.801.01-1995∗, Digital Transport of Video Teleconferencing/Video Telephony 

Signals – Video Test Scenes for Subjective and Objective Performance Assessment. 

– ANSI T1.801.02-1996, Digital Transport of Video Teleconferencing/Video Telephony 
Signals – Performance Terms, Definitions and Examples. 

– ANSI T1.801.03-2003, Digital Transport of One-Way Digital Signals – Parameters for 
Objective Performance Assessment. 

– IEEE Standard No. 205-2001, Measurement of Luminance Signal Levels. 

____________________ 
∗  T1 standards are maintained since November 2003 by ATIS. 
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– ITU-T Tutorial (2004), Objective perceptual assessment of video quality: Full reference 
television (www.itu.int/ITU-T/studygroups/com09/docs/tutorial_opavc.pdf) 

– ITU-R Recommendation BT.500-11 (2002), Methodology for the subjective assessment of 
the quality of television pictures. 

– U.S. Standards Committee T1 Technical Report T1.TR.73-2001, Video Normalization 
Methods Applicable to Objective Video Quality Metrics Utilizing a Full Reference 
Technique. 

– U.S. Standards Committee T1 Technical Report T1.TR.74-2001, Objective Video Quality 
Measurement Using Peak-Signal-to-Noise Ratio Full Reference Technique. 

– U.S. Standards Committee T1 Technical Report T1.TR.75-2001, Objective Perceptual 
Video Quality Measurement Using a JND-Based Full Reference Technique. 

– U.S. Standards Committee T1 Technical Report T1.TR.77-2002, Data and sample program 
code to be used with the method specified in T1.TR.72-2001 for the calculation of resolving 
power of the video quality metrics in T1.TR.74-2001 and T1.TR.75-2001. 

3 Abbreviations 
This Recommendation uses the following abbreviations: 

FR-TV  Full Reference Television 

HRC  Hypothetical Reference Circuit 

RMSE  Root Mean Squared Error 

SRC  Source 

VQEG  Video Quality Experts Group 

VQM  Video Quality Metrics 

4 Accuracy of a VQM 
In order to use an objective video-quality metric (VQM), one must know whether the score 
difference between two processed videos is statistically significant. Hence, a quantification is 
needed of the accuracy (or resolving power) of the VQM. To visualize this resolving power, it helps 
to begin with a scatter plot in which the abscissa of each point is a VQM score from a particular 
video source (SRC) and distortion (hypothetical reference circuit, or HRC), and the ordinate is a 
subjective score from a particular viewing of the SRC/HRC. Each SRC/HRC combination 
(associated with a particular VQM score) contains a distribution of mean subjective scores, S, based 
on a number of viewers, which represents (approximately) the relative probabilities of S for the 
particular SRC/HRC combination. The resolving power of a VQM can be defined as the difference 
between two VQM values for which the corresponding subjective-score distributions have means 
that are statistically different from each other (typically at the 0.95 significance level). 

Given this qualitative picture, two metrics for resolving power will be described in this clause, each 
one being useful in a different context. The metrics are described in clauses 4.3 and 4.4. Also, in 
clause 4.5, a method is described for evaluating the frequencies of different kinds of errors made by 
the VQM. As an example of implementation of all the methods, a computer source code in 
MATLAB (The Mathworks, Inc., Natick, MA) is provided in Appendix II. 

4.1 Nomenclature and coordinate scales 
Let each SRC/HRC combination in a data set be called a "situation", and let N be the number of 
situations in this data set. A subjective score for situation i and viewer l will be denoted as liS , and 

www.itu.int/ITU-T/studygroups/com09/docs/tutorial_opavc.pdf
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an objective score for situation i will be denoted as iO . Averaging over a variable such as viewer 
will be denoted with a dot in that variable location. For instance, the mean opinion score of a 
situation will be denoted as •iS . The subjective-score statistics from each pair (i, j) of these 
situations are to be assessed for significance of VQM difference, and then used to arrive at a 
resolving power for the VQM difference, as a function of the VQM value. 

Prior to any statistical analysis, the original subjective mean opinion scores •iS  are linearly 
transformed to the interval [0, 1], defined as the Common Scale, where 0 represents no-impairment 
and 1 represents most impairment. If best represents the no-impairment value of the original 
subjective score and worst represents the maximum impairment of the original subjective scale, 
then the scaled scores •iŜ  are given by: 

  
bestworst

bestS
S i

i −
−

= •
•

ˆ  

Next, the VQM scores are transformed to this Common Scale as a byproduct of the process of 
fitting the VQM scores to the subjective data, which will be discussed in the following clause. 

4.2 Fitting VQM values to subjective data 
Fitting removes systematic differences between the VQM and the subjective data (e.g., dc shift) that 
do not provide any useful quality discrimination information. In addition, fitting all VQMs to one 
common scale will provide a method for cross-calibration of those VQMs. 

The simplest method of data fitting is linear correlation and regression. For subjective video quality 
scores, this may not be the best method. Experience with other video quality data sets (see ITU-T 
Tutorial) indicates chronically poor fits of VQM to subjective scores at the extremes of the ranges. 
This problem can be ameliorated by allowing the fitting algorithm to use non-linear, but still 
monotonic (order-preserving), methods. If a good non-linear model is used, the objective-to-
subjective errors will be smaller and have a central tendency closer to zero. 

Non-linear methods can be constrained to effectively transform the VQM scale to the [0, 1] 
Common Scale. Besides improving the fit of data with a VQM, a fitting curve also offers an 
additional advantage over the straight-line fit implied by the Native Scale (i.e., the original scale of 
the VQM): the distribution of objective-to-subjective errors around the fitted model curve is less 
dependent on the VQM score. Of course, the non-linear transformation may not remove all the 
score dependency of objective-to-subjective errors. To capture the residual dependence, it would 
ideally have been useful to record objective-to-subjective error as a function of VQM value. 
However, typical data sets are too small to divide among VQM bins in a statistically robust way. 
Therefore, as will be clear in clause 4.3, a sort of average measure over the VQM range is 
computed. 

Figure 1 shows the improved fit of model to data incurred by transforming the objective scores 
using a fitting function. It can be seen that, besides improving the fit of data with VQM, the curve 
also offers an additional advantage over the straight-line fit implied by the Native Scale: the 
distribution of model-to-data errors around the fitted model curve is less dependent on the VQM 
score. 
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Figure 1 – Improved fit of data to VQM by mapping VQM to Common Scale 

We denote the original (Native Scale) objective scores Oi, and the Common Scale objective scores 
as iÔ . A fitting function F (depending on some fitting parameters) connects the two. The function 

used to fit the objective VQM data ( iO ) to the scaled subjective data ( •iŜ ) must have the following 
three attributes: 
a) a specified domain of validity, which should include the range of VQM data for all the 

situations used to define the accuracy metric; 
b) a specified range of validity, defined as the range of Common Scale scores (a sub-range 

of [0, 1]) to which the function maps; and 
c) monotonicity (the property of being either strictly increasing or strictly decreasing) over the 

specified domain of validity. 

Of course, the fitting function would be most useful as a cross-calibration tool if it were monotonic 
over the entire theoretical domain of VQM scores, covered the entire subjective Common Scale 
from 0 to 1, and mapped to zero the VQM score that corresponds to a perfect video sequence (no 
degradations, hence a null distortion). However, this ideal may not be attainable for certain VQMs 
and function families used to perform the fit. 

One possible family of fitting functions is the set of polynomials of order M. Another is a logistic 
function with the form: 

  iÔ  = a + b/{1 + c( iO +d)e}  

where a, b, c, d, and e are fitting parameters (see ITU-T Tutorial). A third possibility is a logistic 
function with the form: 

  iÔ  = a + (b–a)/{1 + exp[–c( iO – d)]} 
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where a, b, c, d are fitting parameters and c > 01. For convenience, we call these logistic forms 
Logistic I and Logistic II, respectively. The MATLAB code in Appendix II instantiates only a 
polynomial fit. Appendix III discusses possible methods of data fitting using the logistic functions. 
The selection of a fitting-function family (including a priori setting of some of the parameters) 
depends on the asymptotic (best and worst) scores of the particular VQM. 

The number of degrees of freedom used up by the fitting process is denoted by D. For example, if a 
linear fit is used, D = 2 since two free parameters are estimated in the fitting procedure. The fitting 
function that transforms objective VQM to the Common Scale is reported to facilitate industry 
comparison of two VQMs. Whether a 5-, 4-, 3-, or 2-free parameter fit is appropriate depends on 
the particular data set. Care should be taken to avoid overfitting, as this usually leads to unstable 
and meaningless results and can often cause the fitting algorithm to fail to converge. 

Once transformed to the Common Scale, any VQM can be cross-calibrated to any other VQM 
through the Common Scale. Representing the accuracy of a VQM in Common Scale facilitates 
comparisons between VQMs. Also, assuming the resolving power in the Common Scale does not 
vary much with the VQM score at which the resolving power is evaluated, the resolving power can 
be mapped through the inverse of the logistic function to the Native Scale. In the Native Scale, the 
ΔVQM from the Common Scale generates a VQM-score-dependent resolving power. A table or 
equation that provides such resolving powers (one at each VQM score in Native Scale) will have 
immediate meaning for users of the Native Scale.  

4.3 Metric 1: VQM accuracy based on statistical significance 
We define a new quantitative measure of VQM accuracy, called resolving power, defined as the 
ΔVQM value above which the conditional subjective-score distributions have means that are 
statistically different from each other (typically at the 0.95 significance level). Such an "error bar" 
measure is needed in order for video service operators to judge the significance of VQM 
fluctuations. Commercial software to implement the resolving power statistic may not be available. 

Of several possible approaches to assessing a VQM's resolving power, the Student's t-test was 
chosen. This test was applied to the measurements in all pairs i and j of situations. Emerging from 
the test are the ΔVQM (i.e., the difference between the greater and lesser VQM score of i and j) and 
the significance from the t-test. This significance is the probability p that, given i and j, the greater 
VQM score is associated with the situation that has the greater true underlying mean subjective 
score. Thus, p is the probability that the observed difference in sample means of the subjective 
scores from i and j did not come from a single population mean, nor from population means that 
were ordered oppositely to the associated VQM scores. To capture this ordering requirement, the 
t-test must be one-tailed. For simplicity, the t-test was approximated by a z-test. This approximation 
is a close one when the number of viewers is large, as was the case for the VQEG data set (ITU-T 
Tutorial). 

An analysis of variance (ANOVA) test might seem better than the t-test method. However, although 
a single application of ANOVA will determine whether a statistical separation exists among a set of 
categories, further paired comparisons are needed to determine the magnitudes and conditions of the 
statistically significant differences. Also, ANOVA assumes equal category-data variances (which 
may not be true). Finally, although ANOVA resides in many software packages, finding the right 
software package may not be easy (e.g., not all ANOVA routines will accept different quantities of 
data in different categories). 

____________________ 
1  A modified version of this logistic function was used in clauses 6.2.3 and 6.2.4 of the ITU-T Tutorial. The 

modification accounted for differences in variances of the subjective ratings. 
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The algorithm has the following steps: 
Step 1: Start with an input data table with N rows, each row represents a different situation (i.e., a 
different source video and distortion). Each row i consists of the following: the source number, the 
distortion number, the VQM score iO , the number of responses Ni , the mean subjective score •iS , 
and the sample variance of the subjective scores Vi.  

Step 2: Transform the subjective scores •iS  to Common Scale •iŜ  as described in clause 4.1. The 
variance Vi of the subjective scores must also be scaled accordingly as: 

  2)(
ˆ

bestworst
VV i

i −
=  

Note that transforming the subjective scores and their variances is optional. It will not change the z 
statistic defined below, but it may change the VQM fitting process. Next, transform the VQM 
scores iO  to the Common Scale using a fitting function as discussed in clause 4.2, and amplified in 

Appendix III. The result of the fitting process is a set of Common Scale VQM scores iÔ . Display 
the coefficient values used in the fit, and also the VQM domain over which the fit was done 
(domain of validity). 

Step 3: For each pair of distinct situations i and j (i ≠ j), use a one-tailed z-test to assign a 
probability of significance to the difference between the greater and the lesser VQM ( iÔ  and jÔ , 
respectively). The significance is the probability that the greater VQM score comes from the 
situation with the greater true underlying mean subjective score. The z score is:  

  ( ) ( )jjiiji NVNVSSz /ˆ/ˆ/ˆˆ +−= ••  

and the probability of significance of the z score p(z) is just the cumulative distribution function of 
z: 

  p(z) = cdf(z) = (2 π)–0.5 ∫ ∞−

z
exp(–z2/2) dz 

Step 4: Create a scatter plot of p(z) (ordinate) versus ΔVQM score (abscissa). Given N situations, 
record each pair (i, j) with i > j, record the VQM difference iÔ – jÔ  in a vector of length N(N–1)/2 
called ΔVQM (with index k), and record the corresponding z score in a vector called Z with length 
N(N–1)/2 (with the same index k). It is desired to ensure that ΔVQM(k) is always non-negative, 
which can be ensured by definition of the otherwise arbitrary ordering of the endpoints i and j. 
To ensure that this is so, if ΔVQM(k) is negative, then replace Z(k) by –Z(k) and ΔVQM(k) 
by –ΔVQM(k). 

Step 5: Consider 19 bins (indexed by m) of ΔVQM, each one of which spans 1/10 the total range of 
ΔVQM. The bins overlap by 50 per cent. Associate ΔVQMm with the midpoint of each bin and 
associate pm with the mean of p(z) for all z in bin m. 

Step 6: Draw a curve through the points (ΔVQMm, pm), to produce a graph of p versus ΔVQM. 
Note that p can be interpreted as the average probability of significance. 

Step 7: Select a threshold probability p, draw a horizontal line at the ordinate value p, and let its 
intercept with the curve of Step 6 determine the threshold ΔVQM, defined as the accuracy. For an 
average probability of significance of p or greater, the ΔVQM should exceed this threshold. 
Common choices of p are 0.68, 0.75, 0.90, and 0.95. 

Having found a value of ΔVQM for a chosen p, one can use it directly in Common Scale – as would 
be appropriate for cross-calibration in clause 5. Alternatively, for other purposes, one has the option 
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of inverse mapping this ΔVQM value back to the Native Scale to give a Native Scale resolving 
power R as a function of the native objective score O: 

  R(O) = | F–1 [F(O) + ΔVQM] – O| 

where F is the fitting function defined in clause 4.2. For the logistic functions in clause 4.2, the 
inverse of Logistic I is:  

  F–1(x) = [(1/c) (b/[x–a]) – 1]1/e – d 

and the inverse of Logistic II is:  

  F–1(x) = d – (1/c) ln[(b–a)/(x–a) – 1]. 

When |ΔVQM| << 1, R(O) can be approximated as: 

  R(O) = |ΔVQM / F'(O)| 

where F'(O) is the derivative of F with respect to O. This approximation should suffice for most 
purposes. 
NOTE – For the logistic functions in clause 4.2, the derivative of Logistic I is:  

  F'(x) = –bce (x+d)e–1 /{1 + c(x+d)e}2 

and the derivative of Logistic II is:  

  F'(x) = c (b–a) exp[–c(x–d)]/{1 + exp[–c(x–d)]}2 

4.4 Metric 2: VQM RMSE calculation 
If the subjective data have roughly equal variance across the VQM scale, then a pooled estimate of 
variance, or resolving power, may be appropriate. As an example, we choose the root-mean-squared 
error (RMSE). The basic idea behind the VQM RMSE calculation is to quantify the mean squared 
error (MSE) between fitted objective data and corresponding subjective data. The VQM RMSE 
between the fitted objective data iÔ  and the scaled subjective data •iŜ  is computed as: 

  ( )∑
=

•−
−

=
N

i
ii SO

DN
RMSEVQM

1

2ˆˆ1_  

where N is the total number of situations (equal to IJ, where J is the number of scenes and I is the 
number of HRCs), and D is the degrees of freedom used up by the objective-to-subjective curve 
fitting performed in clause 4.2. Commercial software to implement the classification error statistics 
may not be available. 

4.5 Classification plots 
Classification errors are one way to evaluate the effectiveness of a Video Quality Metric (VQM). A 
classification error is made when the subjective test and the VQM lead to different conclusions on a 
pair of data points. This clause discusses the meaning of the classification errors, in terms of the 
plots of subjective z score versus delta-VQM described in the main text. For the following 
description, we use the Common [0, 1] Scale for both the subjective and objective scores. Here, "0" 
represents no impairment and "1" represents maximum impairment. 
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For any subjective test one can set a threshold Δz, that defines when two data points (A, B) are 
statistically equivalent and when they are statistically distinguishable2. Once this has been done, the 
subjective test results allow one to place each pair of data points (A, B) into one of the three 
categories: 
  ΔzAB < –Δz  → A is better than B  → Bs 
 –Δz ≤ ΔzAB ≤ Δz  → A is same as B  → Es 
 Δz < ΔzAB  → A is worse than B  → Ws 

The abbreviations for the three categories (Bs, Es, and Ws) denote subjectively better, subjectively 
equivalent, and subjectively worse, respectively. 

Now consider a similar threshold for VQM values, Δo: 
  VQM(A) – VQM(B) < –Δo  → A is better than B  → Bo 
 –Δo ≤ VQM(A) – VQM(B) ≤ Δo  → A is same as B  → Eo 
 Δo < VQM(A) – VQM(B)   → A is worse than B  → Wo 

The abbreviations for the three categories (Bo, Eo, and Wo) denote objectively better, objectively 
equivalent, and objectively worse, respectively. 

Since each pair of data points undergoes a three-way classification by the subjective test and a 
separate three-way classification by the VQM, there are nine possible outcomes. These nine 
outcome spaces are illustrated in Figure 2 by the broken lines in the two-dimensional space of 
subjective-score difference versus VQM difference: 

 

Figure 2 – Schematic classification diagram 

In the table below, we label each of these nine outcomes with an eye towards answering the 
question "How does the VQM-based 3-way classification compare with the subjective test-base 
3-way classification?" 

____________________ 
2  The data points A and B actually represent sets of observations of two SRC/HRC combinations. As 

discussed in the main text, the quantity ΔzAB is the difference in the means of A and B )ˆˆ( •• − BA SS , 

divided by the inferred standard deviation )/ˆ/ˆ( BBAA NVNV +  , where AV̂  is the variance of scores 

from situation A, and NA is the number of observations from situation A, etc. 
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 Bs Es Ws 

Wo False Ranking False Differentiation Correct Decision 

Eo False Tie Correct Decision False Tie 

Bo Correct Decision False Differentiation False Ranking 

Note that for three of the outcomes, the VQM classification agrees with the subjective test 
classification. These three outcomes are labelled "Correct Decision". The six remaining outcomes 
correspond to three different types of errors that can arise when using a VQM. The False Tie is 
probably the least offensive error. This occurs when the subjective test says two data points are 
different but the VQM says they are the same. A False Differentiation is usually more offensive. 
This occurs when the subjective test says two data points are the same but the VQM says they are 
different. The False Ranking would generally be the most offensive error. In False Ranking, the 
subjective test says A is better than B, but the VQM says B is better than A. 

For any subjective test and any VQM, we can form all possible distinct pairs of data points and 
count the number of pairs that fall into each of the four distinct outcome categories: Correct 
Decision, False Tie, False Differentiation, and False Ranking. We can then normalize by the total 
number of distinct pairs and report relative frequencies for these four outcome categories. In general 
these results will be functions of both Δz and Δo. Example results for a fictitious VQM are given in 
the graph below. Δz was selected to give an estimated 95% confidence in the subjective 
classifications and Δo is the free parameter on the x-axis of the graph. 

 

Figure 3 – Sample plot of frequencies of classification error 

Note that as Δo is increasing, the VQM will declare more and more pairs of data points as 
equivalent. This reduces the occurrences of false differentiations and false rankings, but increases 
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the occurrence of false ties. As Δo goes to 0.05, the false-tie rate tends towards 0.52. At this point, 
the VQM is declaring all pairs to be equivalent, and in doing so the VQM is wrong 52% of the time, 
and correct 48% of the time. This is consistent with the fact that in this test, 48% of the pairs of data 
points were declared equivalent by the subjective test. One might use a graph like this to select an 
appropriate value of Δo. For example, one might select Δo to maximize the probability of making 
correct decisions, or one might select Δo to minimize some weighted sum of the error relative 
frequencies. 

In the code that generated the above figure (part of the MATLAB code in Appendix II), the 
threshold used for the subjective test is subj_th. The threshold used for the ΔVQM, vqm_th, is left 
as a free parameter. The code plots the frequency of occurrence for the three different kinds of 
errors and for no error vs. vqm_th. An optimal value of vqm_th might be one that maximizes the 
frequency of occurrence of no error, or one that minimizes a cost-weighted sum of the errors. In 
general, it is likely that false ties will be the least offensive error, false differentiations will be more 
offensive, and false rankings will be the worst sort of error. 
NOTE – The nine outcomes and the three by three grid in (ΔVQM, subjective Z score) space is the most 
natural way to describe this analysis. This assumes bipolar values for ΔVQM. But the code has already taken 
the absolute value of ΔVQM (and replaced Z with –Z for all points with negative values of ΔVQM). This 
does not change the mathematics, but the more natural description of the situation is now 6 outcomes and a 2 
by 3 grid. Two correct outcomes (A better than B and A worse than B) have been folded on top of each 
other. There are still two false tie outcomes, but only one false differentiation outcome and one false ranking 
outcome. 

5 Cross-calibrating two VQMs 
The need to relate two VQMs is met by the transformation to a Common Scale described in 
clauses 4.1-4.23. Once two VQMs (say, VQM1 and VQM2) are transformed to the Common Scale 
(through an agreed-upon subjective data set), the transformation from VQM1 to VQM2 is simply 
the forward transformation from VQM1 to the Common Scale and then the inverse transformation 
from Common Scale to VQM2. Models to be compared have to be referenced to a common data 
set. In cases for which the domains or ranges of the mapping mismatch, the cross-calibration must 
be declared to be undefined. This Recommendation does not specify a particular common data set. 

____________________ 
3  CAVEAT. One must use caution in making inferences from cross-calibration – e.g., 

cross-calibration of two VQMs does not mean one of the VQMs can be substituted error-free for the 
other. One reason for this limitation is that the present cross-calibration method depends on the particular 
subjective data that define the Common Scale. It might be argued that no subjective data are needed for a 
cross-calibration, and that one could connect two VQMs directly through their outputs given a particular 
set of inputs (trial and reference video pairs). However, no matter what set of VQM inputs are chosen for 
the cross-calibration, the VQMs may respond differently to some other videos. More fundamentally, even 
within the chosen input set, there are likely four inputs (1, 2, 3, 4) such that both VQM scores change in 
the same direction going from 1 to 2, but in opposite directions going from 3 to 4. Such behaviour is what 
makes one VQM better than another, and cannot be captured in any cross-calibration method. 
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Appendix I 
 

Application of this Recommendation in the 
evaluation and validation of proposed VQMs 

(This appendix does not form an integral part of this Recommendation) 

I.1 Elements of a full VQM disclosure 

Each candidate VQM must be independently validated and fully disclosed such that it could be 
readily implemented by someone knowledgeable in the art. The description of newly proposed 
VQMs should include three different data sets: 
a) test vectors to check implementation of the VQM, including video inputs and resulting 

VQM outputs; 
b) validation/accuracy data, including subjective ratings and model outputs (spanning enough 

quality range to be representative of typical transmitted videos); and 
c) data relating to other evaluation methods such as The Pearson linear correlation coefficient 

between objective and subjective scores, Spearman rank of order correlation between 
objective and subjective scores, and Outlier ratio. Finally, there should be descriptions of 
scope and limitations, accuracy, and model cross-calibration as described in subsequent 
clauses of this Recommendation. 

I.2 Scope/limitations of a VQM 
The scope of a VQM can include the following elements (an illustrative list, intended neither to be 
prescriptive nor exhaustive): 
a) the type of scene content ("signal"), e.g., high/low motion, colour versus black-and-white, 

interlaced versus progressive; 
b) the type and severity of artifacts ("noise"), driven by encoding techniques and bit rates 

(e.g., blurring, blockiness); 
c) the viewing conditions (including viewing distance, ambient illumination, and display 

parameters such as gamma, brightness, and phosphor types). 

Each VQM should be qualitatively assessed as to the type of scene content, type and severity of 
artifacts, and viewing conditions under which the VQM can or cannot operate effectively. It is 
important to list known problem areas (such as video distortions that include dropped frames) that 
would otherwise not be obvious, but the scope/limitations clause is not intended to be an exhaustive 
list. 

A set of four tables should be included in the description of the VQM's scope and limitations. The 
first three of these tables should enumerate all the distortions (hypothetical reference circuits, or 
HRCs) of the data set of the Video Quality Experts Group (VQEG), and optionally others, as 
follows: 
a) a table of test factors, coding technologies, and applications for which the VQM has shown 

accuracy; 
b) a table of test factors, coding technologies, and applications for which the VQM has been 

tested but not shown the accuracy specified in clause 4; and 
c) a table of known test factors, coding technologies, and applications for which the VQM has 

not been tested, or where the VQM is not recommended. 
In addition, there should be: 
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d) a table of test sequences used to determine test factors, coding technologies and 
applications for which the VQM has shown the accuracy specified in clause 4. 

Sample tables are shown below for the VQEG phase-1 full reference television (FR-TV) tests. 
Since these three tables exhaust the VQEG phase-1 data set, sample table relating to item c above 
would not contain any entries. The VQEG phase-2 data (ITU-T Tutorial) has not been included 
since copyright restrictions prevent this data set from being generally available for VQM validation 
testing. 

Table I.1 – Test factors, coding technologies and applications for which the candidate VQM 
method has shown the specified accuracy 

Bit rate Resolution Method Comments 
2 Mbit/s ¾ resolution mp@ml This is horizontal resolution 

reduction only 
2 Mbit/s ¾ resolution sp@ml  
4.5 Mbit/s  mp@ml  
3 Mbit/s  mp@ml  
1.5 Mbit/s CIF H.263  
768 kbit/s CIF H.263  
4.5 Mbit/s  mp@ml Composite NTSC and/or PAL 
6 Mbit/s  mp@ml  
8 Mbit/s  mp@ml Composite NTSC and/or PAL 
8 & 4.5 Mbit/s  mp@ml Two codecs concatenated 
19/PAL(NTSC)-19/PAL(NTSC)-12 Mbit/s  422p@ml PAL or NTSC 

3 generations 
50-50-…-50 Mbit/s  422p@ml 7th generation with shift/I frame 
19-19-12 Mbit/s  422p@ml 3rd generation 
n/a  n/a Multi-generation Betacam 

with drop-out 
(4 or 5, composite/component) 

Table I.2 – Test factors, coding technologies and applications for which the 
VQM method has not shown the specified accuracy 

Bit rate Resolution Method Comments 
4.5 Mbit/s  mp@ml with errors 
3 Mbit/s  mp@ml with errors 
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Table I.3 – Test sequences used to determine test factors, coding technologies and applications 
for which the VQM has shown the specified accuracy 

Sequence Characteristics 

Balloon-pops film, saturated colour, movement 
NewYork 2 masking effect, movement 
Mobile&Calendar available in both formats, colour, movement 
Betes_pas_betes colour, synthetic, movement, scene cut 
Le_point colour, transparency, movement in all the directions 
Autumn_leaves colour, landscape, zooming, waterfall movement 
Football colour, movement 
Sailboat almost still 
Susie skin colour 
Tempete colour, movement 
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Appendix II 
 

MATLAB Source Code 

(This appendix does not form an integral part of this Recommendation) 

Below is a MATLAB subroutine called vqm_accuracy.m. This version scales the subjective data to 
[0, 1], applies a polynomial fit of the objective to the scaled subjective data, calculates all the 
metrics, and plots the VQM frequencies of 'False Tie', 'False Differentiation', 'False Ranking', and 
'Correct Decision'. It is sufficient to have Version 5.3.1 of MATLAB (1999) with the Statistics and 
Optimization toolboxes that are available separately. Software can also be developed that does not 
use either toolbox. The present code is intended as an illustrative example, and does not include all 
possible options and fitting functions. 

Usage: At the matlab prompt, for VQM r0 type: 

>load r0.dat 

>vqm_accuracy(r0,-1,0,100,2) 

For VQM r2, type: 

>load r2.dat 

>vqm_accuracy(r2,1,0,100,2) 

Here, r0.dat and r2.dat are text files that contain a subset of the VQEG 525-line data. Each line in 
this file corresponds to a situation, and comprises an SRC number, an HRC number, VQM score, 
number of viewings, mean subjective score, and subjective-score variance. Once the r0 and r2.dat 
files are loaded, either form of vqm_accuracy may be run again. 

In the first calling argument of vqm_accuracy, r0 corresponds to the PSNR model in TR A3, and r2 
corresponds to the PQR model in TR A4. The second argument is 1 if the objective metric indicates 
worse image quality when it is larger, else the argument is –1. The third and fourth arguments are 
the nominal best and worst ratings on the native subjective scale. The final argument is the order of 
the polynomial to which the VQM is fit.  

Source Code: 
function vqm_accuracy (data_in, vqm_sign, best, worst, order) 
% MATLAB function vqm_accuracy (data_in, vqm_sign, best, worst, order) 
% 
% Each row of the input data matrix data_in must be organized as  
% [src_id hrc_id vqm num_view mos variance], where 
% 
%  src_id is the scene number 
%  hrc_id is the hypothetical reference circuit number 
%  vqm is the video quality metric score for this src_id x hrc_id 
%  num_view is the number of viewers that rated this src_id x hrc_id 
%  mos is the mean opinion score of this src_id x hrc_id 
%  variance is the variance of this src_id x hrc_id 
% 
%  The total number of src x hrc combinations is size(data_in,1). 
% 
% vqm_sign = 1 or -1 and gives the direction of vqm with respect to 
%      the common subjective scale. For instance, since "0" is 
%      no impairment and "1" is maximum impairment on the common 
%      scale, vqm_sign would be -1 for PSNR since higher values 
%      of PSNR imply better quality (i.e., this is opposite to 
%      the common subjective scale). 



 

  Rec. ITU-T J.149 (03/2004) 15 

% 
% mos and variance will be linarly scaled such that  
%  best is scaled to zero (i.e., the best subjective rating) 
%  worst is scaled to one (i.e., the worst subjective rating) 
% 
% order is the order of the polynomial fit used to map the objective data  
% to the scaled subjective data (e.g., order = 1 is a linear fit). 
% 
 
% Number of src x hrc combinations 
num_comb = size(data_in,1); 
 
% Pick off the vectors we will use from data_in 
vqm = data_in(:,3); 
num_view = data_in(:,4); 
mos = data_in(:,5); 
variance = data_in(:,6); 
 
% Scale the subjective data for [0,1] 
mos = (mos-best)./(worst-best); 
variance = variance./((worst-best)^2); 
 
% Use long format for more decimal places in printouts 
format('long'); 
 
% Fit the objective data to the scaled subjective data. 
% Following code implements monotonic polynomial fitting using optimization 
% toolbox routine lsqlin. 
% 
% Create x and dx arrays. For the dx slope array (holds the derivatives of 
% mos with respect to vqm), the vqm_sign specifies the direction of the slope 
% that must not change over the vqm range. 
x = ones(num_comb,1); 
dx = zeros(num_comb,1); 
for col = 1:order 
  x = [x vqm.^col]; 
  dx = [dx col*vqm.^(col-1)]; 
end 
% The lsqlin routine uses <= inequalities. Thus, if vqm_sign is -1 (negative 
% slope), we are correct but if vqm_sign is +1 (positive slope), we must  
% multiple each side by -1. 
if (vqm_sign == 1) 
  dx = -1*dx; 
end 
fit = lsqlin(x,mos,dx,zeros(num_comb,1)); 
fit = flipud(fit)' % organize this fit same as what is output by polyfit 
 
% vqm fitted to mos 
vqm_hat = polyval(fit,vqm); 
 
% Perform the vqm RMSE calculation using vqm_hat. 
vqm_rmse = (sum((vqm_hat-mos).^2)/(num_comb-(order+1)))^0.5 
 
% Perform the vqm resolution measurement on both vqm and vqm_hat. 
vqm_pairs = repmat(vqm,1,num_comb)-repmat(vqm',num_comb,1); 
vqm_hat_pairs = repmat(vqm_hat,1,num_comb)-repmat(vqm_hat',num_comb,1); 
mos_pairs = repmat(mos,1,num_comb)-repmat(mos',num_comb,1); 
stand_err_diff = sqrt(repmat(variance./num_view,1,num_comb)+ ... 
  repmat((variance./num_view)',num_comb,1)); 
z_pairs = mos_pairs./stand_err_diff; 
 
% Include everything above the diagonal. 
delta_vqm = []; 
delta_vqm_hat = []; 
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z = []; 
for col = 2:num_comb 
  delta_vqm = [delta_vqm; vqm_pairs(1:col-1,col)]; 
  delta_vqm_hat = [delta_vqm_hat; vqm_hat_pairs(1:col-1,col)]; 
  z = [z; z_pairs(1:col-1,col)]; 
end 
 
% Switch on z and delta_vqm for negative delta_vqm 
z_vqm = z; 
negs_vqm = find(delta_vqm < 0); 
delta_vqm(negs_vqm) = -delta_vqm(negs_vqm); 
z_vqm(negs_vqm) = -z_vqm(negs_vqm); 
 
z_vqm_hat = z; 
negs_vqm_hat = find(delta_vqm_hat <0); 
delta_vqm_hat(negs_vqm_hat) = -delta_vqm_hat(negs_vqm_hat); 
z_vqm_hat(negs_vqm_hat) = -z_vqm_hat(negs_vqm_hat); 
 
% Plot scatter plot of z_vqm versus delta_vqm in figure 1. 
% Plot scatter plot of z_vqm_hat versus delta_vqm_hat in figure 2. 
figure(1) 
plot(delta_vqm,z_vqm,'.','markersize',1) 
set(gca,'LineWidth',1) 
set(gca,'FontName','Ariel') 
set(gca,'fontsize',12) 
xlabel('Delta VQM') 
ylabel('Subjective Z Score') 
grid on 
print -dpng figure1 
 
figure(2) 
plot(delta_vqm_hat,z_vqm_hat,'.','markersize',1) 
set(gca,'LineWidth',1) 
set(gca,'FontName','Ariel') 
set(gca,'fontsize',12) 
xlabel('Delta VQM Hat') 
ylabel('Subjective Z Score') 
grid on 
print -dpng figure2 
 
% Plot average confidence that vqm(2) is worse than vqm(1) in figure 3. 
% Plot average confidence that vqm_hat(2) is worse than vqm_hat(1) in  
% figure 4. These are the resolving power plots. 
% 
% One control parameter for delta_vqm resolution plot; number of vqm bins 
% equally spaced from min(delta_vqm) to max(delta_vqm). 
% Sliding neighbood filter with 50% overlap means that there will actually 
% be vqm_bins*2-1 points on the delta_vqm resolution plot. 
cdf_z_vqm = .5+erf(z_vqm/sqrt(2))/2; 
cdf_z_vqm_hat = .5+erf(z_vqm_hat/sqrt(2))/2; 
 
vqm_bins = 10; % How many bins to divide full vqm range for local averaging 
vqm_low = min(delta_vqm); % lower limit on delta_vqm 
vqm_high = max(delta_vqm); % upper limit on delta_vqm 
vqm_step = (vqm_high-vqm_low)/vqm_bins; % size of delta_vqm bins 
 
vqm_hat_low = min(delta_vqm_hat); 
vqm_hat_high = max(delta_vqm_hat); 
vqm_hat_step = (vqm_hat_high-vqm_hat_low)/vqm_bins; 
 
% lower, upper, and center bin locations 
low_limits = [vqm_low:vqm_step/2:vqm_high-vqm_step]; 
high_limits = [vqm_low+vqm_step:vqm_step/2:vqm_high]; 
centers = [vqm_low+vqm_step/2:vqm_step/2:vqm_high-vqm_step/2]; 
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hat_low_limits = [vqm_hat_low:vqm_hat_step/2:vqm_hat_high-vqm_hat_step]; 
hat_high_limits = [vqm_hat_low+vqm_hat_step:vqm_hat_step/2:vqm_hat_high]; 
hat_centers = [vqm_hat_low+vqm_hat_step/2:vqm_hat_step/2: ... 
    vqm_hat_high-vqm_hat_step/2]; 
 
mean_cdf_z_vqm = zeros(1,2*vqm_bins-1); 
mean_cdf_z_vqm_hat = zeros(1,2*vqm_bins-1); 
for i=1:2*vqm_bins-1 
  in_bin = find(low_limits(i) <= delta_vqm & delta_vqm < high_limits(i)); 
  hat_in_bin = find(hat_low_limits(i) <= delta_vqm_hat & ... 
    delta_vqm_hat < hat_high_limits(i)); 
  mean_cdf_z_vqm(i) = mean(cdf_z_vqm(in_bin)); 
  mean_cdf_z_vqm_hat(i) = mean(cdf_z_vqm_hat(hat_in_bin)); 
end 
 
% The x-axis is vqm(2)-vqm(1). For figure 3 (the vqm plot), if vqm_sign is  
% 1, then the Y-axis is the average confidence that vqm(2) is worse than  
% vqm(1). On the other hand, if vqm_sign is -1, then the Y-axis is the 
% average confidence that vqm(1) is worse than vqm(2). Figure 4 is the plot 
% for vqm_hat, and since it always has the same sign as mos, the Y-axis is 
% always the average confidence that vqm_hat(2) is worse than vqm_hat(1). 
if (vqm_sign == 1) 
  figure(3) 
  % VQM resolving power 
  plot(centers,mean_cdf_z_vqm) 
  grid 
  set(gca,'LineWidth',1) 
  set(gca,'FontName','Ariel') 
  set(gca,'fontsize',11) 
  xlabel('VQM(2)-VQM(1)') 
  ylabel('Average Confidence VQM(2) is worse than VQM(1)') 
  print -dpng figure3 
else 
  figure(3) 
  % VQM resolving power 
  plot(centers,1-mean_cdf_z_vqm) 
  grid 
  set(gca,'LineWidth',1) 
  set(gca,'FontName','Ariel') 
  set(gca,'fontsize',11) 
  xlabel('VQM(2)-VQM(1)') 
  ylabel('Average Confidence VQM(1) is worse than VQM(2)') 
  print -dpng figure3 
end 
 
figure(4) 
% VQM Hat resolving power. 
plot(hat_centers,mean_cdf_z_vqm_hat) 
grid 
set(gca,'LineWidth',1) 
set(gca,'FontName','Ariel') 
set(gca,'fontsize',11) 
xlabel('VQM Hat(2) - VQM Hat(1)') 
ylabel('Average Confidence VQM Hat(2) is worse than VQM Hat(1)') 
print -dpng figure4 
 
% This portion of the code calculates and plots the relative frequencies of  
% three types of classification errors. A classification error is made when 
% the subjective test and the VQM lead to different conclusions on a pair 
% of data points.  
% 
% Background: For any subjective test, one must set a threshold that will  
% determine when two results are statistically equivalent, and when they are 
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% statistically distinguishable. Then for each pair of data points (A,B),  
% the subjective test can yield one of three possible outcomes: (1) A better 
% than B, (2) A same as B, and (3) A worse than B. 
% 
% If we define a similar threshold for VQM values, we have the same  
% situation. For each pair of data points, VQM can yield one of three  
% possible outcomes: (1) A better than B, (2) A same as B, and (3) A worse  
% than B. Since each pair of data points undergoes three-way classification  
% by the subjective test and three-way classification by the VQM, there are  
% nine possible outcomes. For three of these outcomes, the subjective test 
% and the VQM agree. If we take the subjective test to be correct by  
% definition, and the VQM to be under test, then we say that for these three 
% outcomes, the VQM is correct. In two other cases the VQM has committed the 
% "false-tie" error (subjective test says A better than B, or A worse than B, 
% but VQM says A same as B). In two other cases the VQM has committed the  
% "false differentiation" error (subjective test says A same as B, but VQM 
% says A better than B, or A worse than B.) Finally, there are two cases  
% where the VQM has performed a false ranking (subjective test says A better 
% than B, or A worse than B, but VQM says the opposite.) Thus, all nine  
% outcomes are accounted for. Note that a three by three grid in  
% (delta_vqm, subjective Z score) space describing the above could be drawn. 
% 
% In the code below, the threshold used for the subjective test is subj_th.  
% The threshold used for the delta VQM is vqm_th and this is left as a free  
% parameter. The code plots the frequency of occurrence for the three 
% different kinds of errors and for no error vs. vqm_th. An optimal value of 
% vqm_th might be one that maximizes the frequency of occurrence of no error, 
% or one that minimizes a cost-weighted sum of the errors. Note that in  
% general, it is likely that false ties will be the least offensive error,  
% false differentiations will be more offensive, and false rankings will be  
% the worst sort of error.  
% 
% For more details, see S. Voran, "Techniques for Comparing Objective and  
% Subjective Speech Quality Tests," Proceedings of the Speech Quality  
% Assessment Workshop, Bochum, Germany, November 1994. 
% 
% Note: The nine outcomes and the three by three grid in (delta_vqm,  
% subjective Z score) space is the most natural way to describe this  
% analysis. This assumes bipolar values for delta_vqm. But the code has  
% already taken the absolute value of delta_vqm (and replaced Z with -Z for  
% all points with negative values of delta_vqm). This does not change the  
% math, but the more natural description of the situation is now 6 outcomes  
% and a 2 by 3 grid. Two correct outcomes (A better than B and A worse  
% than B) have been folded on top of each other. There are still two false  
% tie outcomes, but only one false differentiation outcome and one false  
% ranking outcome. 
 
% Figure 5 is the plot for vqm and figure 6 is the plot for vqm_hat. 
subj_th = 1.6; % 95 percent confidence 
num_th = 50; % number of delta_vqm thresholds to examine 
vqm_th_list = [vqm_low:(vqm_high-vqm_low)/num_th:vqm_high]; 
vqm_hat_th_list = [vqm_hat_low:(vqm_hat_high-vqm_hat_low)/num_th: ... 
    vqm_hat_high]; 
rel_freqs = zeros(vqm_bins+1,4); 
rel_hat_freqs = zeros(vqm_bins+1,4); 
for i = 1:num_th+1 
  vqm_th = vqm_th_list(i); 
  vqm_hat_th = vqm_hat_th_list(i); 
  % Number of data points in the false tie region 
  rel_freqs(i,1) = length(find((delta_vqm < vqm_th) & ... 
    (subj_th <= abs(z_vqm)))); 
  rel_hat_freqs(i,1) = length(find((delta_vqm_hat < vqm_hat_th) & ... 
    (subj_th <= abs(z_vqm_hat)))); 
  % Number of data points in the false differentiation region 
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  rel_freqs(i,2) = length(find((vqm_th <= delta_vqm) & ... 
    (abs(z_vqm) < subj_th))); 
  rel_hat_freqs(i,2) = length(find((vqm_hat_th <= delta_vqm_hat) & ... 
    (abs(z_vqm_hat) < subj_th))); 
  % Number of data points in the false ranking region 
  if (vqm_sign == 1) 
    rel_freqs(i,3) = length(find((vqm_th <= delta_vqm) & ... 
      (z_vqm <= -subj_th))); 
  else 
    rel_freqs(i,3) = length(find((vqm_th <= delta_vqm) & ... 
      (z_vqm >= subj_th))); 
  end 
  rel_hat_freqs(i,3) = length(find((vqm_hat_th <= delta_vqm_hat) & ... 
    (z_vqm_hat <= -subj_th))); 
end 
% Normalize counts by total number of points to get relative frequencies 
rel_freqs = rel_freqs/length(z_vqm); 
rel_hat_freqs = rel_hat_freqs/length(z_vqm_hat); 
% Calculate relative frequency of correctness 
rel_freqs(:,4) = (1-sum(rel_freqs(:,1:3)'))'; 
rel_hat_freqs(:,4) = (1-sum(rel_hat_freqs(:,1:3)'))'; 
 
% Figure 5 is plot for vqm and figure 6 is plot for vqm_hat. 
figure(5) 
% VQM Subjective Classification Errors 
plot(vqm_th_list,rel_freqs(:,1),'m-.', vqm_th_list,rel_freqs(:,2),'r:', ... 
  vqm_th_list,rel_freqs(:,3),'k-',vqm_th_list,rel_freqs(:,4),'b--'); 
grid 
set(gca,'LineWidth',1) 
set(gca,'FontName','Ariel') 
set(gca,'fontsize',12) 
xlabel('Delta VQM Significance Threshold') 
ylabel('Relative Frequencies') 
legend('False Tie','False Differentiation','False Ranking','Correct Decision') 
print -dpng figure5 
 
figure(6) 
% VQM Hat Subjective Classification Errors 
plot(vqm_hat_th_list,rel_hat_freqs(:,1),'m-.', ... 
  vqm_hat_th_list,rel_hat_freqs(:,2),'r:', ... 
  vqm_hat_th_list,rel_hat_freqs(:,3),'k-', ... 
  vqm_hat_th_list,rel_hat_freqs(:,4),'b--'); 
grid 
set(gca,'LineWidth',1) 
set(gca,'FontName','Ariel') 
set(gca,'fontsize',12) 
xlabel('Delta VQM Hat Significance Threshold') 
ylabel('Relative Frequencies') 
legend('False Tie','False Differentiation','False Ranking','Correct Decision') 
print -dpng figure6 
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Appendix III 
 

Data-fitting to a common scale of VQM 

(This appendix does not form an integral part of this Recommendation) 

As discussed in clause 4.2, the objective VQM data ( iO ) are mapped to a new domain iÔ  = F( iO ). 

This domain is derived by fitting iO  to the scaled subjective data ( •iŜ ) using a family of functions F 
(with fitting parameters) that have the properties of monotonicity and range mapping noted in 
clause 4.2. The following are three alternative choices for the form of F, together with notes on data 
fitting using these functional forms. 

III.1 Polynomial of order M 
A polynomial that is fit to a set of data points is not guaranteed to be monotonic. The MATLAB 
optimization toolbox has a function lsqlin that ensures monotonicity over the extent of the data. 
However, monotonicity over the existing data domain does not ensure monotonicity over the entire 
theoretical domain (for example, 0 to infinity).  

III.2 Logistic function I 

Fitting the objective VQM data ( iO ) to the scaled subjective data ( •iŜ ) can be done using a logistic 
function: 

  iÔ  = F( iO ) = a + b/{1 + c( iO +d)e} 

where a, b, c, d, and e are fitting parameters. The fit function must be derived by non-linear 
least squares4. The part of the function to be used is the monotonic part for O > –d (hence constrain 
d > –min(O)), and the s-curve shape appropriate to the data fit is ensured by constraining e > 1. 

In certain cases, at least asymptotically, the perfect score in the native-scale objective model can be 
made to map to zero (the best score on the subjective scale), and the worst native-scale objective 
score possible can be made to map to the worst subjective score (unity, on the Common Scale). For 
example, consider the following case: Best objective score is zero, worst objective score is infinite. 
Here zero maps to zero and infinity maps to 1, so a = 1 and b = –(1 + cde), hence:  

  F( iO ) =1 – (1 + cde)/{1 + c( iO +d)e} 

Fitting would take place on c, d, e, subject to d, e > 0. 

III.3 Logistic function II 

Fitting the objective VQM data ( iO ) to the scaled subjective data ( •iŜ ) can also be done using a 
logistic function: 

  iÔ  = F( iO  ) = a + (b–a)/{1 + exp[–c( iO – d)]} 

____________________ 
4  Constrained least squares non-linear curve fitting can be performed with the MATLAB function 

lsqcurvefit. 
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where a, b, c, and d are fitting parameters, and c > 0 (ensured by defining c = |C| for real C). As 
with Logistic I, the fit function must be derived by non-linear least squares5. 

One might use this optimization in the case noted in III.2: Best objective score is zero, worst 
objective score is infinite. Here, zero maps to zero and infinity maps to 1, so a = –exp[–cd] and 
b = –a exp[cd]. Hence:  

  F( iO ) =[1 – exp(–c iO )]/[1 + exp {c(d– iO )}] 

Logistic Function II is also useful in the following case (which could arise when iO  is expressed in 
logarithmic coordinates such as decibels): Best objective score is infinite, worst objective score is 
negative-infinite. In that case infinity must map to 0, and negative infinity must map to 1. Hence 
b = 0, a = 1, and:  

  F( iO ) = 1/[1 + exp{c( iO – d)}] 

 

____________________ 
5  On p. 28 of the VQEG phase-1 final report (ITU-T Tutorial), the initial values for the parameters were 

chosen as a = minimum subjective score, b = maximum subjective score, c = 1, and d = mean objective 
score. A modified version of Logistic Function II was also used that accounted for differences in the 
variances of the subjective ratings.  
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