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Objective perceptual video quality measurement techniques for digital cable television  
in the presence of a full reference 

 

 

 

Summary 
This Recommendation provides guidelines on the selection of appropriate objective perceptual video 
quality measurement equipment designed for use in digital cable television applications when the 
full reference video signal is available. 

 

 

Source 
ITU-T Recommendation J.144 was prepared by ITU-T Study Group 9 (2001-2004) and approved 
under the WTSA Resolution 1 procedure on 9 March 2001. 
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FOREWORD 

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of 
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of 
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations 
on them with a view to standardizing telecommunications on a worldwide basis. 

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, 
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these 
topics. 

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1. 

In some areas of information technology which fall within ITU-T's purview, the necessary standards are 
prepared on a collaborative basis with ISO and IEC. 

 

 

 

 

 

NOTE 

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a 
telecommunication administration and a recognized operating agency. 
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Introduction 
Digital television produces new quality of service considerations, with complex relationships 
between objective parameter measurements and subjective picture quality. While objective 
measurements with good correlation to subjective quality assessment are desirable in order to attain 
optimal quality of service in the operation of cable television systems, it must be realized that 
objective measurements are not a direct replacement for subjective quality assessment. 

Subjective quality assessments are carefully designed procedures intended to determine the average 
opinion of human viewers to a specific set of video sequences for a given application. Results of 
such tests are valuable in basic system design and benchmark evaluations. Subjective quality 
assessments for a different application with different test conditions will still provide meaningful 
results; however, opinion scores for the same set of video sequences are likely to have different 
values. Objective measurements are intended for use in a broad set of applications producing the 
same results with a given set of video sequences. The choice of video sequences to use and the 
interpretation of the resulting objective measurements are some of the factors varied for a specific 
application. 

Therefore objective measurements and subjective quality assessment are complementary rather than 
interchangeable. Where subjective assessment is appropriate for research related purposes, objective 
measurements are required for equipment specifications and day-to-day system performance 
measurement and monitoring. 

The following terminology convention is adopted for the purpose of this Recommendation: 
– The term "subjective assessment" refers to the determination of the quality or impairment of 

programme-like pictures presented to a panel of human assessors in viewing sessions. 
– The term "objective perceptual measurement" refers to the measurement of the performance 

of a programme chain by the use of programme-like pictures and objective (instrumental) 
measurement methods to obtain an indication that approximates the rating that would be 
obtained from a subjective assessment test. 

– The term "signal measurement" refers to the measurement of the performance of a 
programme chain by the use of test signals and objective (instrumental) measurement 
methods. 

In this Recommendation the terms objective measurement and perceptual measurement may be used 
interchangeably to mean objective perceptual measurement. 

There are three basic methods to perform objective measurements: 
• FR – A method applicable when the full reference video signal is available. This is a double-

ended method and is the subject of this Recommendation. 
• RR – A method applicable when only reduced video reference information is available. This 

is also a double-ended method and is the subject of a separate Recommendation [under 
study]. 

• NR – A method applicable when no reference video signal or information is available. This 
is a single-ended method and the subject of a separate Recommendation [under study]. 

The three methods have different applications, and they provide different degrees of measurement 
accuracy, expressed in terms of correlation with subjective assessment results. 
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ITU-T Recommendation J.144 

Objective perceptual video quality measurement techniques for digital cable television  
in the presence of a full reference 

1 Scope 
This Recommendation provides guidelines on the selection of appropriate perceptual video quality 
measurement equipment for use in digital cable television applications when the full reference 
measurement method can be used. 

The full reference measurement method is intended for use when the unimpaired reference video 
signal is readily available at the measurement point, as may be the case of measurements on 
individual equipment or a chain in the laboratory or in a closed environment such as a cable 
television head-end. 

2 References 

2.1 Normative references 
The following ITU-T Recommendations and other references contain provisions which, through 
reference in this text, constitute provisions of this Recommendation. At the time of publication, the 
editions indicated were valid. All Recommendations and other references are subject to revision; 
users of this Recommendation are therefore encouraged to investigate the possibility of applying the 
most recent edition of the Recommendations and other references listed below. A list of the currently 
valid ITU-T Recommendations is regularly published. 

− ITU-R BT.500-9 (1998), Methodology for the subjective assessment of the quality of 
television pictures. 

2.2 Informative references 

− ITU-T J.140 (1998), Subjective picture quality assessment for digital cable television 
systems. 

− ITU-T J.143 (2000), User requirements for objective perceptual video quality measurements 
in digital cable television. 

− ITU-T P.910 (1996), Subjective video quality assessment methods for multimedia 
applications. 

− ITU-T Study Group 9, Contribution COM 9-80 (2000), Final report from the Video Quality 
Experts Group on the validation of objective models of video quality assessment. 

3 Terms, definitions and acronyms 
This Recommendation defines the following terms: 

3.1 subjective assessment: The determination of the quality or impairment of programme-like 
pictures presented to a panel of human assessors in viewing sessions. 
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3.2 objective perceptual measurement: The measurement of the performance of a programme 
chain by the use of programme-like pictures and objective (instrumental) measurement methods to 
obtain an indication that approximates the rating that would be obtained from a subjective 
assessment test. 

3.3 signal measurement: The measurement of the performance of a programme chain by the 
use of test signals and objective (instrumental) measurement methods. 

4 User requirements 
User requirements for perceptual measurement methods of picture quality are given in ITU-T J.143. 

5 Description of the full reference measurement method  
The double-ended measurement method with full reference, for objective measurement of perceptual 
video quality, evaluates the performance of systems by making a comparison between the 
undistorted input, or reference, video signal at the input of the system, and the degraded signal at the 
output of the system (Figure 1). 

Figure 1 shows an example of application of the full reference method to test a codec in the 
laboratory. 
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Figure 1/J.144 −−−− Application of the full reference perceptual quality measurement method  
to test a codec in the laboratory 

The comparison between input and output signals may require a spatial and temporal alignment 
process to compensate for any vertical or horizontal picture shifts or cropping. It also may require 
correction for any offsets or gain differences in both the luminance and the chrominance channels. 
The objective picture quality rating is then calculated, typically by applying a perceptual model of 
human vision. 

As the diagnostic tool is based on a human vision model, rather than on the measurement of specific 
coding artefacts, it is in principle equally valid for analogue systems and for digital systems. It is also 
in principle valid for chains where analogue and digital systems are mixed, or where digital 
compression systems are concatenated. 

Figure 2 shows an example of the application of the full reference method to test a transmission 
chain. 
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Figure 2/J.144 −−−− Application of the full reference perceptual quality measurement method  
to test a transmission chain 

In this case a reference decoder is fed from various points in the transmission chain, e.g. the decoder 
can be located at a point in the network, as in Figure 2, or directly at the output of the encoder as in 
Figure 1. If the digital transmission chain is transparent, the measurement of objective picture quality 
rating at the source is equal to the measurement at any subsequent point in the chain. 

It is generally accepted that the full reference method provides the best accuracy for perceptual 
picture quality measurements. The method has been proven to have the potential for high correlation 
with subjective assessments made in conformity with the DSCQS methods specified in 
ITU-R BT.500. 

6 Findings of the Video Quality Experts Group (VQEG) 
Studies of perceptual video quality measurements are conducted in an informal group, called Video 
Quality Experts Group (VQEG), which reports to ITU-T Study Groups 12 and 9 and ITU-R Study 
Group 6. The first task of VQEG was to assess the performance of proposed double-ended 
perceptual video quality measurement algorithms. 

VQEG issued a comprehensive final draft report on the first phase of its work in March 2000. 

Readers are advised to study that report to gain complete insight on the work performed by VQEG 
until that time. In a nutshell, the report shows the results of tests performed on ten models submitted 
to VQEG by ten different proponents, used in the calculation of objective scores compared with 
subjective evaluation over a broad range of video systems and source sequences. The tests compared 
the performance of the proponent models against subjective assessment tests of the same images, and 
also against the PSNR (peak signal-to-noise ratio) "reference" algorithm. The aim was to check 
proponent models in terms of: 
• prediction accuracy (the model's ability to predict the subjective quality); 
• prediction monotonicity (the degree to which the model's predictions agree with the rank 

ordering of subjective quality ratings); 
• prediction consistency (the degree to which the model maintains prediction accuracy over 

the range of video test sequences and video systems, i.e. that its response is robust with 
respect to a variety of video impairments). 

Over 26 000 subjective opinion scores were generated based on 20 different source sequences 
processed by 16 different video systems and evaluated at eight independent laboratories worldwide. 

The subjective tests were organized into four quadrants: 50 Hz high quality, 50 Hz low quality, 
60 Hz high quality and 60 Hz low quality. High quality in this context refers to production quality 
video and low quality refers to distribution quality. The high quality quadrants included video at bit 
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rates between 3 Mbit/s and 50 Mbit/s. The low quality quadrants included video at bit rates between 
768 kbit/s and 4.5 Mbit/s. 

Strict adherence to ITU-R BT.500-9 procedures for the Double Stimulus Continuous Quality Scale 
(DSCQS) method was followed in the subjective evaluation. The subjective and objective test plans 
included procedures for validation analysis of the subjective scores and four metrics for comparing 
the objective data to the subjective results. 

In addition to analysis based on the total data set, subsets based on the four subjective test quadrants 
and the total data with exclusion of certain video processing systems were analysed to determine 
sensitivity of results to various application-dependent parameters. 

The results obtained from the two algorithms that were not fully tested or were found to have 
implementation problems were discarded. The VQEG test results based on the analysis obtained for 
the four individual subjective test quadrants essentially show the following: 
• No objective measurement system in the test is able to replace subjective testing. 
• No objective model statistically outperforms the others in all reference conditions. 
• No objective model statistically outperforms PSNR in all reference conditions. 
• Based on present evidence, no single method can be recommended to ITU at this time. 
On the positive side, the work performed by VQEG has resulted in a much better understanding of 
the problem of perceptual video quality testing, and of the users' requirements. This will likely lead 
to the development of improved perceptual models, implemented in commercial equipment. 

Studies are planned inside the IEEE Subcommittee G-2.1.6 to provide a pool of test scenes degraded 
in a controlled way. Each scene will have a corresponding perceptual scale associated with it, which 
is calibrated in successive steps of just-noticeable-differences of impairment. These scenes are 
expected to represent a good pool of reference material to test the forthcoming systems. 

7 Conclusions 
Since no one method of measurement can be recommended at this time, this clause will list some 
general advice on the models for video quality assessment utilizing the full reference methodology. 
Current models evaluated by VQEG are detailed in the appendices. It is intended, based on future 
work by VQEG and others, to adopt one or more of these models (or new models that may be 
proposed) as normative. Future VQEG work will also likely consider other test conditions, for 
example, closer viewing distances and additional types and ranges of distortion, that may allow 
better discrimination among the objective models and between each model and PSNR. 

General advice 
When perceptual video quality measurements are performed, using the full reference method 
described in this Recommendation, operators should first analyse how their specific application and 
user requirements translate in terms of measuring equipment characteristics and performance. 

Some aspects to be taken into consideration are listed below: 
• ownership cost of the perceptual measurement equipment; 
• vendor's after-sale support; 
• ease of operation; 
• reliability; 
• size, weight, power requirements; 
• real-time or non-real-time measurement speed; 
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• online (in-service) operation; 
• prediction accuracy, monotonicity and consistency.  
When reporting the results of perceptual video quality measurements, operators should always 
indicate the brand, model and settings of the perceptual measurement equipment and the test pictures 
used. This will allow operators to compare the results of those tests with tests performed by other 
operators. 

This precaution is necessary because the full reference perceptual measuring equipment can be 
expected to provide a degree of correlation with subjective assessment tests that depends, among 
other factors, on the set of selected test pictures, on the degree of compression applied to the video 
bit stream under test, and on a number of implementation choices that the manufacturer may have 
made in its design. 

When in doubt on the choice of full reference perceptual measurement equipment among the models 
available on the market, or before they decide to choose a new model, operators would be well 
advised to perform a set of tests with the new equipment, checking the correlation of its indications 
with those obtained by means of subjective assessment tests on an appropriate set of test pictures or 
sequences.  

Objective video quality models – Pathway to future revisions 
Finally, as help in selecting the perceptual measurement model that best fits their requirements, 
operators may consult Appendix I. Appendix I is based on the final report of VQEG in ITU-T Study 
Group 9 Contribution COM 9-80, June 2000. 

Appendix I will be regularly updated to reflect ongoing work in VQEG and elsewhere, as well as the 
operating experience that participants in the work of ITU-T may gain in the use of perceptual 
measurement equipment. 

As the methods in Appendix I (or others that may be proposed later) improve, are fully disclosed, 
and gain further validity, they may be adopted as normative sections of this Recommendation. For 
any model to become normative, it must be verified by an open independent body (such as VQEG) 
which will do the technical evaluation within the guidelines and performance criteria set out by 
Study Group (SG) 9. The intention of SG 9 is to eventually recommend only one normative full 
reference method for cable television. 

APPENDIX I 

Full reference perceptual video quality measurement models 

I.1 Model descriptions 
Appendices I and IX describe the eight models that were validated by VQEG and documented in the 
VQEG final report dated March 2000. Brief details of these, together with a description of PSNR, 
are included below. 

I.1.1 PSNR 
The PSNR is defined according to the following formulae: 
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Where d(p,m,n) and o(p,m,n) represent respectively degraded and original pixel value at frame p, 
row m and column n. 
NOTE – PSNR requires a very high degree of normalization to be used with confidence. The normalization 
requires both spatial and temporal alignment as well as corrections for gain and offset. The normalization 
method is the subject of another Recommendation (under study). 

I.1.2 CPqD 
The CPqD's model presented to VQEG tests has temporarily been named CPqD-IES (Image 
Evaluation based on Segmentation) version 2.0. The first version of this objective quality evaluation 
system, CPqD-IES v.1.0, was a system designed to provide quality prediction over a set of 
predefined scenes. 

CPqD-IES v.1.0 implements video quality assessment using objective parameters based on image 
segmentation. Natural scenes are segmented into plane, edge and texture regions, and a set of 
objective parameters is assigned to each of these contexts. A perceptual-based model that predicts 
subjective ratings is defined by computing the relationship between objective measures and results of 
subjective assessment tests, applied to a set of natural scenes processed by video processing systems. 
In this model, the relationship between each objective parameter and the subjective impairment level 
is approximated by a logistic curve, resulting an estimated impairment level for each parameter. The 
final result is achieved through a combination of estimated impairment levels, based on their 
statistical reliabilities. 

A scene classifier was added to the CPqD-IES v.2.0 in order to get a scene independent evaluation 
system. Such classifier uses spatial information (based on DCT analysis) and temporal information 
(based on segmentation changes) of the input sequence to obtain model parameters from a 
twelve-scene (525/60 Hz) database (Appendix II). 

I.1.3 Tektronix/Sarnoff 
The Tektronix/Sarnoff submission is based on a visual discrimination model that simulates the 
responses of human spatio-temporal visual mechanisms and the perceptual magnitudes of differences 
in mechanism outputs between source and processed sequences. From these differences, an overall 
metric of the discriminability of the two sequences is calculated. The model was designed under the 
constraint of high-speed operation in standard image processing hardware and thus represents a 
relatively straightforward, easy-to-compute solution (Appendix III). 

I.1.4 NHK/Mitsubishi Electric Corp. 
The model emulates human-visual characteristics using 3D (spatio-temporal) filters, which are 
applied to differences between source and processed signals. The filter characteristics are varied 
based on the luminance level. The output quality score is calculated as a sum of weighted measures 
from the filters. The hardware version now available, can measure picture quality in real-time and 
will be used in various broadcast environments such as real-time monitoring of broadcast signals 
(Appendix IV). 

I.1.5 KDD 
See Figure I.1. 
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F4  Sequence based filtering (motion vector + object segmentation, etc.)  

Figure I.1/J.144 −−−− Model description 

MSE is calculated by subtracting the Test signal from the Reference signal (Ref). And MSE is 
weighted by Human Visual Filter F1, F2, F3 and F4. 

Submitted model is F1+F2+F4 (Version 2.0, August 1998) (Appendix V). 

I.1.6 EPFL 
The perceptual distortion metric (PDM) submitted by EPFL is based on a spatio-temporal model of 
the human visual system. It consists of four stages, through which both the reference and the 
processed sequences pass. The first converts the input to an opponent-colours space. The second 
stage implements a spatio-temporal perceptual decomposition into separate visual channels of 
different temporal frequency, spatial frequency and orientation. The third stage models effects of 
pattern masking by simulating excitatory and inhibitory mechanisms according to a model of 
contrast gain control. The fourth and final stage of the metric serves as pooling and detection stage 
and computes a distortion measure from the difference between the sensor outputs of the reference 
and the processed sequence (Appendix VI). 

I.1.7 NASA 
The model proposed by NASA is called DVQ (Digital Video Quality) and is version 1.08b. This 
metric is an attempt to incorporate many aspects of human visual sensitivity in a simple image 
processing algorithm. Simplicity is an important goal, since one would like the metric to run in real 
time and require only modest computational resources. One of the most complex and time- 
consuming elements of other proposed metrics are the spatial filtering operations employed to 
implement the multiple, bandpass spatial filters that are characteristic of human vision. We 
accelerate this step by using the Discrete Cosine Transform (DCT) for this decomposition into 
spatial channels. This provides a powerful advantage since efficient hardware and software are 
available for this transformation, and because in many applications the transform may have already 
been done as part of the compression process. 

The input to the metric is a pair of colour image sequences: reference and test. The first step consists 
of various sampling, cropping, and colour transformations that serve to restrict processing to a region 
of interest and to express the sequences in a perceptual colour space. This stage also deals with 
de-interlacing and de-gamma-correcting the input video. The sequences are then subjected to a 
blocking and a Discrete Cosine Transform, and the results are then transformed to local contrast. The 
next steps are temporal and spatial filtering, and a contrast masking operation. Finally the masked 
differences are pooled over spatial temporal and chromatic dimensions to compute a quality measure 
(Appendix VII). 
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I.1.8 KPN/Swisscom CT 
The Perceptual Video Quality Measure (PVQM) as developed by KPN/Swisscom CT uses the same 
approach in measuring video quality as the Perceptual Speech Quality Measure (PSQM [1], ITU-T 
P.861 [2]) in measuring speech quality. The method was designed to cope with spatial, temporal 
distortions, and spatio-temporally localized distortions like those found in error conditions. It uses 
ITU-R BT.601.5 [3] input format video sequences (input and output) and resamples them to 4:4:4, 
Y, Cb, Cr format. A spatio-temporal-luminance alignment is included in the algorithm. Because 
global changes in the brightness and contrast only have a limited impact on the subjectively 
perceived quality, PVQM uses a special brightness/contrast adaptation of the distorted video 
sequence. The spatio-temporal alignment procedure is carried out by a kind of block matching 
procedure. The spatial luminance analysis part is based on edge detection of the Y signal, while the 
temporal part is based on different frames analysis of the Y signal. It is well known that the Human 
Visual System (HVS) is much more sensitive to the sharpness of the luminance component than that 
of the chrominance components. Furthermore, the HVS has a contrast sensitivity function that 
decreases at high spatial frequencies. These basics of the HVS are reflected in the first pass of the 
PVQM algorithm that provides a first order approximation to the contrast sensitivity functions of the 
luminance and chrominance signals. In the second step the edginess of the luminance Y is computed 
as a signal representation that contains the most important aspects of the picture. This edginess is 
computed by calculating the local gradient of the luminance signal (using a Sobel like spatial 
filtering) in each frame and then averaging this edginess over space and time. In the third step, the 
chrominance error is computed as a weighted average over the colour error of both the Cb and Cr 
components with a dominance of the Cr component. In the last step the three different indicators are 
mapped onto a single quality indicator, using a simple multiple linear regression, which correlates 
well the subjectively perceived overall video quality of the sequence (Appendix VIII). 

I.1.9 NTIA 
This video quality model uses reduced bandwidth features that are extracted from spatial-temporal 
(S-T) regions of processed input and output video scenes. These features characterize spatial detail, 
motion, and colour present in the video sequence. Spatial features characterize the activity of image 
edges, or spatial gradients. Digital video systems can add edges (e.g. edge noise, blocking) or reduce 
edges (e.g. blurring). Temporal features characterize the activity of temporal differences, or temporal 
gradients between successive frames. Digital video systems can add motion (e.g. error blocks) or 
reduce motion (e.g. frame repeats). Chrominance features characterize the activity of colour 
information. Digital video systems can add colour information (e.g. cross colour) or reduce colour 
information (e.g. colour sub-sampling). Gain and loss parameters are computed by comparing two 
parallel streams of feature samples, one from the input and the other from the output. Gain and loss 
parameters are examined separately for each pair of feature streams since they measure 
fundamentally different aspects of quality perception. The feature comparison functions used to 
calculate gain and loss attempt to emulate the perceptibility of impairments by modelling 
perceptibility thresholds, visual masking, and error pooling. A linear combination of the parameters 
is used to estimate the subjective quality rating (Appendix IX). 

I.2 References 
[1] BEERENDS (J.G.), STEMERDINK (J.A.): A perceptual speech quality measure based on a 

psychoacoustic sound representation, J. Audio Eng. Soc. 42, 115-123, 1994. 

[2] ITU-T P.861 (1998), Objective quality measurement of telephone-band (300-3400 Hz) 
speech codecs. 

[3] ITU-R BT.601-5 (1995), Studio encoding parameters of digital television for standard 4:3 
and wide-screen 16:9 aspect ratios. 
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APPENDIX II 

CPqD 
Video quality assessment using objective parameters based on image segmentation 

Abstract 
This appendix presents a methodology for video quality assessment using objective parameters 
based on image segmentation. Natural scenes are segmented into plane, edge and texture regions, 
and a set of objective parameters are assigned to each of these contexts. A perceptual-based model 
that predicts subjective ratings is defined by computing the relationship between objective measures 
and results of subjective assessment tests, applied to a set of natural scenes and MPEG-2 video 
codecs. In this model, the relationship between each objective parameter and the subjective 
impairment level is approximated by a logistic curve, resulting in an estimated impairment level for 
each parameter. The final result is achieved through a linear combination of estimated impairment 
levels, where the weight of each impairment level is proportional to its statistical reliability. The 
results presented in this appendix show that the use of region-based objective measurements 
provides more accurate predictions compared to predictions based on global parameters. 

II.1 Introduction 
Video quality assessment has become a crucial issue with the increasing use of digital video 
compression systems and the subsequent video services, such as primary and secondary distribution 
of digital TV, video-on-demand, videophone, videoconference, etc. Due to the flexibility of video 
coding standards, competing codecs do not provide the same picture quality. Therefore, methods for 
video quality assessment represent important tools to compare the video quality of competing codecs 
and to quantify their performance in a large number of applications. 

The challenge in developing techniques to estimate the quality of video compression systems stems, 
in part, from the fact that compression algorithms introduce video impairments which are strongly 
dependent on the levels of details and motion in the scenes. Moreover, the visual perception of video 
impairments also depends on the details and motion of the scenes. Thus traditional evaluation 
methods, which are based on static test signals, are inadequate to quantify the performance of video 
compression systems. 

This appendix presents a methodology for video quality assessment, when the video is processed by 
unidirectional transmission systems that use digital interfaces and, ideally, digital transport facilities. 
The method has been applied to assess video compression systems according to MPEG standard [1] 
and [2] but it could also be used to evaluate other types of systems, such as video codecs based on 
other analysis techniques (i.e. wavelets and prediction filters) and composite signal 
encoders/decoders. 

Figure II.1 shows the configuration of the objective parameters computation process used for video 
quality estimation. The file format of the input and the output digital video signals is YCbCr4:2:2, as 
determined by ITU-R BT.601-5 [3]. 
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Figure II.1/J.144 −−−− Objective parameters computation 

In Figure II.1, each objective parameter is computed separately within the following contexts of the 
scenes: plane regions, edge regions and texture regions. This is one of the most important aspects of 
this methodology. A blocking distortion, for example, can be measured by an edge detector applied 
to the plane regions of the video scene, wherein the visual perception of this distortion is more 
noticeable. The computational complexity of the method is reduced by using low-complexity 
estimators and by constraining their computation within the correspondent contexts of the scenes. 
These contexts are defined by an image segmentation algorithm that is applied to the original natural 
scenes (i.e. the input test signal). This type of algorithm normally requires high computational 
complexity; however, it is executed only once. Note that the spatial and temporal registration 
between the input and output video signals and the correction of gain and offset are also required to 
compute the objective parameters correctly. The information about registration (or alignment) and 
calibration is addressed in [4]. 

The objective parameters are computed by direct comparison between original and impaired scenes. 
All estimators are applied to fields rather than frames of video in order to ensure the statistical 
reliability of the measures in scenes with a high level of motion. 

A perceptual-based model that predicts subjective ratings is defined by computing the relationship 
between objective measures and results of subjective assessment tests applied to a set of natural 
scenes and MPEG-2 video codecs. These scene-dependent perceptual models are defined in two 
steps as follows: 
1) The relationship between each parameter and the subjective impairment level is 

approximated by a logistic curve, resulting in an estimated impairment level for each 
parameter. 

2) The final result is achieved by linearly combining the estimated impairment levels, where 
the weight of each impairment level is proportional to its statistical reliability. 

The details of the just outlined methodology are presented in the next clauses. Clause II.2 gives a 
short description of the adopted set-up for the subjective evaluation tests. The methods to determine 
the objective parameters and to segment the natural scenes are described in clause II.3. Clause II.4 
introduces the perceptual models for subjective quality estimation and reports the results that were 
obtained in this study. Clause II.4 also points out the advantages of using objective parameters based 
on image segmentation for subjective quality estimation and the dependence of the perceptual 
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models with the assessors category and with the viewing distance from the monitor (4H or 6H). The 
conclusions of this contribution are presented in clause II.5. 

II.2 Subjective assessment tests 
The image processing laboratory of the CPqD/TELEBRÁS (Brazilian Research and Development 
Center for Telecommunications) has a special room for subjective evaluation trials, according to 
ITU-R BT.500-7 [5]. This room was used to evaluate the performance of some manufactured and 
simulated MPEG-2 video codecs on a subset of the natural scenes suggested by ITU-R BT.802-1 [6]. 
The manufactured MPEG-2 codecs were provided by TV Globo (a Brazilian TV company). The 
scenes were also processed by the MPEG-2 coding software available at CPqD/TELEBRÁS. 

A short description of the set-up utilized for subjective evaluation of the aforementioned MPEG-2 
video codecs is given as follows. 

II.2.1 Sessions of subjective evaluation 
Table II.1 presents a summary of the conditions used for the subjective assessment tests. 

Table II.1/J.144 −−−− Conditions of the subjective assessment tests 

Conditions for evaluation According to item 2.1 of ITU-R BT.500-7 [5] 
Source of signals D1 VTR 
Monitor 20'' studio monitor with digital interface  
Viewing distances 4H and 6H 
Assessment method DSIS (Double-Stimulus Impairment Scale) method with nine points in the 

interval from 1 to 5 [5] 
Test sequences 5 scenes of conventional definition digital TV (see II.2.2)  
Presentation duration 10 seconds (original signal) + 3 seconds (gray signal) + 10 seconds (signal 

under evaluation) + 5 seconds for vote, as suggested by Figure 3.a of 
ITU-R BT.500-7 [5] 

Assessors 14 experts and 34 non-experts 
Assessors per session 5 
Sessions per assessor  2 
Presentations per session 48 
Assessed items See II.2.3 
Presentation of results Mean and standard deviation of the impairment level regarding to the 

reference signal (original scene)  
Discarding of scores and assessors as suggested by ITU-R BT.500-7 [5] 

II.2.2 Natural scenes 
The subjective evaluation sessions utilized a set of five natural scenes (see Table II.2), which are 
defined as test sequences for conventional TV in ITU-R BT.802-1 [6]: 
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Table II.2/J.144 −−−− Natural scenes used for subjective evaluation 

Sequence name Scene number in ITU-R 802-1 

Flower Garden 15 
Mobile and Calendar 30 

Table Tennis 29 
Diva with Noise 17 
Kiel Harbour-4 26 

II.2.3 Systems under test 
In total, 26 systems were included in the sessions of subjective evaluation. These items are presented 
in Table II.3. 

Table II.3/J.144 −−−− Systems under test 

Group Type Characteristics Assessed 
items 

1 Manufactured MP@ML MPEG-2 codec for 
CBR (constant bit rate) applications  

Bit rates: 5, 10 and 15 Mbit/s 
N = 12 and M = 2 

6 

2 Simulated MP@ML MPEG-2 codec for 
CBR applications 

Bit rates: 2.5, 5, 7.5, 10, 12 and 
15 Mbit/s 
N = 12 and M = 1 and 2 

12 

3 Manufactured 422P@MPL MPEG-2 codec 
for CBR applications 

Bit rate: 18 Mbit/s 
N = 2 and M = 2 

1 

4 Simulated MP@ML MPEG-2 codec for 
VBR (variable bit rate) applications using 
intra-frame coding only 

Fix quantizer scale [2] in 4, 8, 16, 
32 and 62 

5 

5 Composite signal conversion NTSC and PAL-M 2 

II.3 Objective measurements based on context 
This clause describes the video material used for the objective evaluation (i.e. the material used for 
objective parameters computation – See II.3.1), suggests three image segmentation methods that can 
be used to divide the video material into plane, edge and texture regions (see II.3.2), and presents the 
objective parameters that have been adopted in this study (see II.3.3). 

II.3.1 Video material used for objective evaluation 
The video material used for objective evaluation consists of a 17-second long video sequence, 
composed of 10 clips of natural scenes and 2 clips of artificial test signals. 

Five clips of natural scenes, 2 seconds long each, were selected from the natural scenes presented in 
II.2.2. The purpose of using 2-second clips instead of 10-second clips, as in the subjective tests 
described in clause II.2, was to reduce the computational complexity of the objective evaluation 
process. The choice of 2-second clips was based on the following criteria: 
• The clip of 2 seconds of a given scene represents a critical segment of its 10 seconds 

material compared to the mean criticality of the scene. This criticality was defined as the 
number of bits per frame resulting from the coding process of a MP@ML MPEG-2 codec 
(N = 12 and M = 2) with variable bit rate and quantizer scale equals 16. 
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• The clip of 2 seconds of this scene also represents a critical segment from the subjective 
point of view, when the scene is processed by a MP@ML MPEG-2 codec (N = 12 and 
M = 2) at 5 Mbit/s. 

The five other clips, 1 second long each, consist of scenes with low or no motion. These scenes have 
been used in the objective evaluation process, intercalating the previous 2 seconds long clips, in 
order to test the adaptive behaviour of the MPEG-2 video codecs (i.e. the behaviour regarding to rate 
and quality control, performance in regime and scene transition). They are also specified in ITU-R 
BT.802-1 [6]. Although this is not part of the scope of this contribution, it is important to say that the 
determination of the performance variation (dispersion of the signal-noise ratio) after each scene 
transition and in regime (difference of performance over I, P and B frames) has been used to 
characterize the dynamic behaviour of manufactured MPEG-2 video codecs. 

The artificial test signals are (1 second long each): 
• Narrow-band noise [4] – static and trichromatic video signal defined by noise with 

resolution about 1/25 of the Nyquist's limit and with approximately uniform histogram for 
each of components Y, Cb and Cr. 

• Circular zone-plate [4] – static and trichromatic video signal defined by a sinusoidal pattern 
for the components Y, Cb and Cr, with constant horizontal and vertical frequencies along the 
same column and along the same line of a given field of video, respectively, and outward 
crescent frequencies from the centre of the image. 

These artificial signals have been used to determine the following parameters:  
• Displacement of active video. 
• Active video area. 
• Gain and offset. 
• 2D frequency response. 
• Displacement between chrominance and luminance (a vertical displacement between these 

components has been noticed very often in manufactured MP@ML MPEG-2 systems, due to 
the conversions YCbCr4:2:0 ⇔ YCbCr4:2:2, creating a halo of spurious chromaticity on the 
edges of the output signal). 

The contiguous test material of 17 seconds is described in Table II.4: 

Table II.4/J.144 −−−− Test material for objective evaluation 

Time Code 
(mm:ss:ff) Scene Short name Temporal 

characteristic 
Duration 
(seconds) 

00:00:00 Narrow-Band Noise Noise static 1 
00:01:00 Flower Garden Garden dynamic 2 
00:03:00 Tree Tree static 1 
00:04:00 Mobile and Calendar Mobile dynamic 2 
00:06:00 Clown Clown static 1 
00:07:00 Table Tennis Tennis dynamic 2 
00:09:00 Balls of Wool Balls dynamic 1 
00:10:00 Diva with Noise Diva dynamic 2 
00:12:00 Boy with Toys Boy static 1 
00:13:00 Kiel Harbour-4 Kiel dynamic 2 
00:15:00 Young Couple Couple static 1 
00:16:00 Circular Zone-Plate  Zone Plate static 1 
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II.3.2 Spatial segmentation 
There were developed three algorithms for image segmentation [7]. The first is an image 
segmentation algorithm based on edge detection using recursive filtering (see II.3.2.1), the second is 
a fuzzy image segmentation algorithm based on spatial features (see II.3.2.2) and the third is an 
image segmentation algorithm based on watershed (see II.3.2.3). The results of the objective 
evaluation using these algorithms are discussed in II.4.3. The strategy in these segmentation 
algorithms is to classify the luminance component of each field of video into three mutually 
exclusive contexts: plane regions, edge regions and texture regions. These algorithms are shortly 
described as follows: 

II.3.2.1 Algorithm I: Image segmentation based on edge detection using recursive filtering 
This algorithm initially classifies each pixel, based on the brightness variance computed within a 
neighbourhood of the pixel, as belonging or not belonging to the plane regions of the image. The 
resulting binary image is then smoothed by a median filter [7]. The algorithm also applies to the 
original image an edge detector based on recursive filtering. The edges on the boundary of the plane 
regions are classified as belonging to the edge regions. The texture regions are the remaining regions 
of the image. 

As an example, Figure II.2 shows part of the scene Mobile and Calendar. The result of segmentation 
by Algorithm I of this part can be seen in Figure II.3. Note that the plane regions are represented by 
white pixels, edge regions by gray pixels and texture regions by black pixels. 
 

T0909760-00  T0909770-00  
Figure II.2/J.144 −−−− Part of mobile  

and calendar 
Figure II.3/J.144 −−−− Result of segmentation 

II.3.2.2 Algorithm II: Fuzzy image segmentation based on spatial features 
This algorithm is divided into two steps. In the first step, the algorithm assigns a membership 
function, defined in the interval [0, 1], to each one of the three contexts under classification. In the 
membership function of the plane regions, the membership value of a pixel is defined inversely 
proportional to the brightness variance computed within a neighbourhood of the pixel. The 
morphological gradient [8] applied to this function defines the membership function of the edge 
regions. The complement of the fuzzy union [9] between these two membership functions defines 
the membership function of the texture regions. In the second step, each pixel is classified as 
belonging to the context with highest value of membership among its three membership values 
determined in the previous step. 
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II.3.2.3 Algorithm III: Image segmentation algorithm based on watershed 
This algorithm first simplifies the luminance component by increasing its homogeneous regions 
through the application of an edge-preserving smoothing filter [10]. Secondly, a watershed algorithm 
is applied to the morphological gradient of the simplified image. The watershed detects 
homogeneous regions, denoted catching basins, with specified minimum relative contrast. The plane 
regions are the catching basins with area greater than a threshold. The texture regions are given by 
the erosion of the complement of the plane regions. The edge regions are the remaining regions of 
this process. 

II.3.3 Objective parameters 
The objective parameters are obtained for each context (plane, edge and texture) and from the 
samples of luminance and chrominance of the input (Yref, Cbref and Crref) and output (Ydec, Cbdec 
and Crdec) signals, after spatial and temporal registration and correction of gain and offset, as shown 
in Figure II.1. The measures and the underlying process to compute them are described as follows: 
• MSE (Mean Square Error). 
• PSD (Positive Sobel Difference). 
• NSD (Negative Sobel Difference). 
• ASD (Absolute Sobel Difference). 

Let X(i,j) be the j-th pixel of the i-th line of the input signal, Z(i,j) be the j-th pixel of the i-th line of 
the output signal and the elements Xm(i,j) and Zm(i,j) be the pixels of the input and output signals, 
respectively, after a median filtering.  

The computation of MSE in a context R (plane, edge or texture) is defined by the mean value of: 

  SE(i,j) = [ X(i,j) – Z(i,j) ]2, where (i,j) ∈ R. 

The computation of PSD in a context R (plane, edge or texture) is defined by the mean value of: 

  PS(i,j) = max [ sobel(Xm(i,j)) – sobel(Zm(i,j)) , 0 ], where (i,j) ∈ R. 

The computation of NSD in a context R (plane, edge or texture) is defined by the mean value of: 

  NS(i,j) = – max [ sobel(Zm(i,j)) – sobel(Xm(i,j)) , 0 ], where (i,j) ∈ R. 

The computation of ASD in a context R (plane, edge or texture) is defined by the mean value of: 

  AS(i,j) = | sobel(Xm(i,j)) – sobel(Zm(i,j)) |, where (i,j) ∈ R.  

In other words, ASD = PSD + NSD. 

The objective parameters utilized for subjective quality estimation refer to the mean value of the 
aforementioned measures computed over a set of 2N fields of the final portion (i.e. in regime 
condition) of each one of the five clips indicated in Table II.4 and that belong to the scenes 
submitted to subjective evaluation. The value N is a multiple of the interval between intra-frame 
coded images (type I), that is, it is a multiple of the GOP length [1, 2]. In order to satisfy this 
condition to all systems defined in Table II.3, it is chosen N = 12. 

II.4 Subjective quality estimation 
This clause describes how the subjective quality estimation models are defined for each scene. 
Clause II.4.1 describes a perceptual model to estimate the subjective impairment level based on a 
single parameter. The results of this approximation for each objective parameter are linearly 
combined to estimate the final subjective impairment level. This linear prediction model is presented 
in II.4.2. Clause II.4.3 presents and discusses the results of this study. 
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II.4.1 Subjective quality estimation based on a single parameter: Logistic approximation 
For each scene, the relationship between each objective parameter D and the subjective result U is 
initially defined as follows. 

A normalized impairment level between 0% and 100% is defined by [5] as:  

  ( ) ( ) %100/ minmaxmax ×−−= UUUUd  

The relationship between d and each objective parameter D is approximated by the following logistic 
function [5]:  

  %100
1

1 ×
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where the values DM and G are computed in order to minimize the mean square error: 

  { }[ ]2ddEe −=  

for each scene and each objective parameter separately. The statistical reliability of d  is defined 
as 1/e. 

II.4.2 Subjective quality estimation: Linear prediction in three steps 

The estimation of the normalized impairment level d by a set of estimated impairment levels d  (one 
per parameter as defined in II.4.1) is implemented in three steps of linear prediction as described 
below. 

Step 1 
First consider the following sets of estimated impairment levels selected for the luminance 
component:  

• MSEd  

• PSDd  and NSDd  

• ASDd  

• ,MSEd  PSDd  and NSDd  

• MSEd  and ASDd  

For a given scene and context of this scene (plane, edge or texture), the best set is the one with the 
least prediction error. By using this criterion to choose a set of estimated impairment levels for each 
context, this step linearly combines the impairment levels of each selected set and outputs three 
estimation values (one per context) denoted by: YPd , YEd  and YTd . 

Similarly, the considered sets of estimated impairment levels for the chrominance components of the 
scene are:  

• )(CbMSEd  and )(CrMSEd  

• )(CbASDd  and )(CrASDd   

and the three resulting estimation values (one per context) are denoted by: CPd , CEd  e CTd . 
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Step 2 

The estimation values Pd , Ed  and Td  result from linear prediction based on the vectors 
( YPd , CPd ), ( YEd , CEd ) and ( YTd , CTd ), respectively. 

Step 3 

The estimation values Pd , Ed  and Td  are combined by linear prediction to produce the estimated 
impairment level d . 

In all steps above, the predictors satisfy the following restrictions. 

Let ( 1d , 2d , ..., Pd ) be the input vector of the linear predictor. The output od  is given by: 

  ∑= iio dad  

where the weights {ai} are computed in order to minimize the mean square error: 

  { }[ ]2
oddE − , such that 

  ∑ = 1ia  and 

  ikki eeaa // =  

where the statistical reliability of id  is 1/ei, as defined in II.4.1. 

It has been observed that this type of prediction is more robust than the one obtained by optimum 
predictors, because it is less dependent on the training database. It reaches better results when 
applied to test databases, as exemplified in II.4.3. 

II.4.3 Subjective quality estimation: Presentation and discussion of results 
This clause is divided into three main topics. The results and prediction models obtained by the 
subjective quality estimation based on Algorithm I (the image segmentation algorithm previously 
described in II.3.2.1) are described in II.4.3.1. Clause II.4.3.1 also presents the dependence between 
the perceptual models and the assessors category (experts and non-experts) and between the 
perceptual models and the viewing distance from the monitor (4H and 6H). The variation of the 
estimation accuracy with the image segmentation algorithms is discussed in II.4.3.2. Clause II.4.3.3 
points out the advantages of the proposed subjective estimation method compared to other methods 
that are based on global measurements or optimal prediction. 

II.4.3.1 Results: Perceptual models and performance 
Table II.5 presents the results of the subjective estimation method based on Algorithm I (see II.3.2.1) 
for segmenting the following scenes: Garden, Mobile, Tennis, Diva and Kiel, separately. In 
Table II.5: 
• The weights of the linear prediction described in Step 2 of II.4.2 are equivalent to the 

relative subjective weights of luminance (Y) and chrominance (C) impairments in plane 
regions, edge regions and texture regions. The global mean value computed over all scenes 
is given at the last line of this table. 

• The weights of the linear prediction described in Step 3 of II.4.2 are equivalent to the 
relative subjective weights of the degradation in plane regions (P), edge regions (E) and 
texture regions (T). The global mean value computed over all scenes is given at the last line 
of this table. 
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• The mean square error (MSE) and the mean absolute error (MAE) between the normalized 
impairment level d and the estimated impairment level d , taking into account a 
normalization scale from 0% to 100%, are shown at the two last columns of this table. The 
error between the mean normalized impairment level and the mean estimated impairment 
level, computed over all scenes, is shown at the last line of these columns. 

The results presented in Table II.5 refer to the perceptual models obtained from the subjective scores 
of the 34 non-expert assessors of Table II.1 and from the 26 assessed systems of Table II.3. 

Table II.5/J.144 −−−− Perceptual models and results: Non-expert assessors 

 Step 2: Plane Step 2: Edge Step 2: 
Texture Step 3 Error 

Scene Y(%) C(%) Y(%) C(%) Y(%) C(%) P(%) E(%) T(%) MSE MAE 
Garden 61 39 70 30 37 63 13 37 51 18.1 3.0 
Mobile 74 26 75 25 63 37 83 7 9 24.2 3.6 
Tennis 67 33 65 35 70 30 45 13 42 25.3 3.5 
Diva 49 51 92 8 42 58 27 59 14 5.4 1.5 
Kiel 62 38 66 34 40 60 32 39 29 22.7 3.6 

Global 63 37 73 27 50 50 40 31 29 6.2 1.8 

Tables II.6 and II.7 show the dependence between perceptual models and results for: 
• non-expert and expert assessors; 
• viewing distance (4H and 6H) from the monitor (each case with 50% of the total number of 

assessors). 

Table II.6/J.144 −−−− Perceptual models and results: Non-expert and expert assessors 

Non-expert assessors Expert assessors  

Region Component Error Region Component Error

Scene P(%) E(%) T(%) Y(%) C(%) MSE P(%) E(%) T(%) Y(%) C(%) MSE 
Garden 13 37 51 52 48 18.1 12 53 34 51 49 23.5 
Mobile 83 7 9 73 27 24.2 72 13 15 72 28 73.4 
Tennis 45 13 42 68 32 25.3 47 12 41 70 30 48.1 
Diva 27 59 14 73 27 5.4 22 42 36 55 45 21.2 
Kiel 32 39 29 57 43 22.7 43 36 21 47 53 44.1 

Global 40 31 29 62 38 6.2 39 31 30 58 42 12.1 
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Table II.7/J.144 −−−− Perceptual models and results: 6H and 4H viewing distances 

6H viewing distance 4H viewing distance  

Region Component Error Region Component Error

Scene P(%) E(%) T(%) Y(%) C(%) MSE P(%) E(%) T(%) Y(%) C(%) MSE 
Garden 15 40 45 51 49 20.0 9 35 55 47 53 16.8 
Mobile 83 8 9 77 23 24.7 71 13 16 62 38 59.4 
Tennis 47 15 38 60 40 40.9 42 10 48 74 26 21.4 
Diva 41 36 22 64 36 15.5 21 46 33 54 46 12.5 
Kiel 34 40 26 54 46 18.3 31 46 23 57 43 26.0 

Global 44 28 28 61 39 7.9 35 30 35 59 41 9.6 

The results presented in Tables II.5, II.6 and II.7 are commented below: 
• The subjective quality estimation using objective parameters based on image segmentation, 

computed over the 26 systems described in II.2.3, resulted in a mean absolute error (MAE) 
of less than 4% for each individual scene and a global MAE of 1.8%, considering non-expert 
assessors. 

• Comparing the perceptual models based on the opinion of expert and non-expert assessors, 
the weight of the impairments in chrominance is slightly greater in the models based on 
expert assessors. 

• Comparing the perceptual models based on 4H and 6H viewing distances, the weight of the 
impairments in edge and texture regions is significantly greater in the models based on 4H 
viewing distance, as expected. 

II.4.3.2 The variation of the estimation accuracy with the image segmentation algorithm 
The results of the subjective quality estimation, based on Algorithms II and III (briefly described in 
II.3.2) and obtained from the scores of the 34 non-expert assessors, are shown in Table II.8. 
Comparing the results of this table with the results previously presented on the left side of Table II.6 
(for Algorithm I), the estimation accuracy presented small variations for a given scene depending on 
the image segmentation algorithm. On the other hand, there was no relevant variation in the global 
estimation accuracy considering the three image segmentation algorithms. This suggests that even 
simpler image segmentation algorithms may provide satisfactory results. 

Table II.8/J.144 −−−− Perceptual models and results: Algorithms II and III 

Algorithm II Algorithm III  

Region Component Error Region Component Error

Scene P(%) E(%) T(%) Y(%) C(%) MSE P(%) E(%) T(%) Y(%) C(%) MSE 
Garden 9 32 59 53 47 18.0 10 44 46 53 47 15.8 
Mobile 65 26 9 59 41 20.7 82 11 6 60 40 18.7 
Tennis 54 27 19 70 30 28.5 68 21 11 72 28 31.3 
Diva 25 50 24 75 25 7.1 50 31 19 60 40 7.4 
Kiel 23 31 46 64 36 25.9 28 33 38 59 41 22.4 

Global 35 33 31 66 34 7.4 48 28 24 63 37 6.5 
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II.4.3.3 The advantages of the adopted subjective quality estimation method 
The example illustrated in Table II.9 focuses on two very important properties of any method for 
subjective quality estimation based on objective parameters: accuracy and robustness [11] to [14]. 
This example compares the adopted subjective quality estimation method, which relies on context-
based objective measurements and the linear prediction method described in II.4.2, with the 
following methods:  
• a method that relies on the same context-based objective measurements, but uses optimal 

prediction; 
• a method that uses the linear prediction described in II.4.2, but adopts global measurements. 
The example used the systems of Group 2 and the NTSC system of Group 5 as training database, and 
the systems of Group 1 and the PAL-M system of Group 5 as test database (see Table II.3). The 
objective parameters used in this example were the ones based on MSE and described in II.3.3. The 
results were obtained from the scores of the non-expert assessors. The input values of the table are 
mean square prediction errors. The last line of the table shows the mean value of this parameter 
computed over the set of scenes. 

Table II.9/J.144 −−−− Comparison: Robustness and accuracy 

 Adopted method Optimum predictor Global measurements 

Scene Training Test Training Test Training Test 
Garden 3.9 87.6 2.8 71.8 3.9 62.3 
Mobile 30.1 48.6 10.5 82.1 179.1 162.5 
Tennis 10.8 91.3 7.7 335.0 108.9 221.2 
Diva 1.4 8.9 0.8 17.7 1.8 34.3 
Kiel 22.4 9.3 20.5 13.4 30.6 27.7 

Mean 13.7 49.1 8.5 104.0 64.9 101.6 

The advantage of computing objective parameters based on context becomes clear when the 
procedure described in II.4.1 and II.4.2 is also applied to global measurements. Note that the use of 
context-based measurements can significantly improve the estimation results in all scenes (with the 
exception of Flower Garden). Possibly, this indicates that the image segmentation process for Flower 
Garden needs to be refined. 

The example also shows that the prediction process described in II.4.2 is more robust (i.e. it is less 
dependent on the training database) when it is compared to the optimum predictor, improving the 
prediction results on the test database. 

II.5 Conclusions 
This appendix presents a methodology for subjective quality estimation using objective parameters 
based on image segmentation. The objective parameters are computed within plane regions, edge 
regions and texture regions resulting from the image segmentation process.  
The results presented in this appendix show that the use of context-based objective parameters 
compared to global parameters leads to more accurate predictions. This aspect is reinforced by the 
use of the perceptual model based on the linear prediction method described in II.4.2. This method 
has led to more robust prediction results when it is compared to the optimal prediction. 
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These results can be further improved if: 
• the temporal information is included in the image segmentation process (e.g. edge regions 

could be further classified into edge regions with low motion and edge regions with high 
motion); 

• the plane, edge and texture regions of chrominance are also considered in the image 
segmentation process, since Algorithms I, II and III were used to segment the luminance 
component only. 

Therefore, we suggest the inclusion of the linear prediction method presented in this appendix and of 
context-based objective measurements in new ITU Recommendations, which are related to objective 
evaluation of video quality. 

II.6 References 
[1] ISO/IEC 11172-1:1993, Information technology – Coding of moving pictures and associated 

audio for digital storage media up to about 1.5 Mbit/s – Part 1: Systems. 

[2] ITU-T H.262 (2000), Information technology − Generic coding of moving pictures and 
associated audio information: Video. 

[3] ITU-R BT.601-5 (1995), Studio encoding parameters of digital television for standard 4:3 
and wide-screen 16:9 aspect ratios. 

[4] ANSI T1.801.03 (1996), Digital transport of one-way video signals – Parameters for 
objective performance assessment. 

[5] ITU-R BT.500-7 (1995), Methodology for the subjective assessment of the quality of 
television pictures. 

[6] ITU-R BT.802-1 (1994), Test pictures and sequences for subjective assessments of digital 
codecs conveying signals produced according to ITU-R Recommendation BT.601. 

[7] GONZALEZ, WINTZ (P.), Digital Image Processing, Addison Wesley, 1987. 

[8] DOUGHERTY: An Introduction to Morphological Image Processing, SPIE Optical 
Engineering Press, Bellingham, WA, Vol. TT9, 1992. 

[9] KAUFMANN (A.): Introduction to The Theory of Fuzzy Subsets, Academic Press, New 
York, NY, Vol. 1, 1975. 

[10] BARRERA (J.), BANON (J.F.), LOTUFO (R.A.): Mathematical Morphology Toolbox for 
the Khoros System, Conference on Image Algebra and Morphological Image Processing, V 
International Symposium on Optics, Imaging, and Instrumentation, SPIE's Annual Meeting, 
San Diego, USA, 24-29 July 1994. 

[11] ITU-T Contribution COM 12-66, Selections from the draft American National Standard – 
Digital transport of one-way signals – Parameters for objective performance assessment, 
USA, January 1996. 

[12] ITU-T Study Group 12 Delayed Contribution D021, Objective and subjective measures of 
MPEG video quality: summary of experimental results, USA, April 1997. 

[13] ITU-T Study Group 12 Delayed Contribution D101, A Two-Stage Objective Model for Video 
Quality Evaluation, Bellcore, May 1996. 

[14] ANSI T1A1 Contribution Number T1A1.5/96-121, Objective and subjective measures of 
MPEG video quality, GTE Labs., NTIA/ITS, October 1996. 



 

22 ITU-T J.144 (03/2001) 

APPENDIX III 

Tektronix/Sarnoff 

Introduction 
New digital television services create a demand for monitoring Quality of Service with measurement 
tools that are very different from their analogue counterparts. A key requirement is that Objective 
picture quality measurements should correlate closely to subjective quality assessment. 

This appendix describes a Human Vision Model based measurement tool that can be used within a 
digital television system. A practical implementation provides results that demonstrate high 
correlation with subjective assessments made in accordance with ITU-R BT.500-7. 

Specific issues addressed include: 
• measurement of PQR objective picture quality rating within digital video transmission 

networks; 
• requirements for pre-processing of video prior to analysis; 
• details of the algorithm used for analysis; 
• results of tests showing correlation between objective measurements and subjective picture 

quality assessments. 

A solution to measurement of perceptual video quality within digital video systems is described and 
is already incorporated in a commercial implementation. 

III.1 PQR objective picture quality rating in operational environments 
It is broadly accepted that Objective picture quality measurements may be made more accurately 
when knowledge of the reference video is available. In the generic diagram shown in Figure III.1, 
program video enters the transmission system (Reference Video) and is transmitted through the 
system and monitored at the output (Processed Video). Analysis of the differences between the 
Processed and Reference Video with a Human Vision Model provides an accurate measure of the 
PQR Objective picture quality rating. (Details of the algorithm used within the jointly-developed 
Sarnoff/Tektronix Human Vision Model to provide PQR Objective picture quality rating are 
included in clause III.4.) 
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Figure III.1/J.144 −−−− Generic diagram of a compressed video transmission system 

An essential prerequisite for the Human Vision Model analysis is normalization of the processed 
video. The encoding and decoding may cause horizontal and vertical picture shifts and cropping, and 
may also cause luminance and chrominance gain and level changes. They must be normalized prior 
to application of the Human Vision Model. (Details of the normalizing process are included in 
clause III.2.) 
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Certain transmission systems may require extension of the generic diagram to reflect concatenated 
codecs and/or use of PAL coding and decoding, but the principles remain the same, and the process 
of PQR Objective picture quality rating remains valid. 

In a laboratory environment, video test sequences may be used in place of live video material. They 
provide a repeatable source of video and facilitate common measurements between differing 
laboratories. Inclusion of a wide range of standard programme material within test video sequences 
ensures optimum validity for live programme material. 

In an operational environment, the video test sequences may be replaced by live program material. 
Reference video and Processed video from a decoder placed at the transmission source as in 
Figure III.2 provide a measure of the PQR Objective picture quality rating for the operational 
system. 

T0909790-00

Live program
video

Encoder

Decoder

Cable
transmission

network

Processed
video

Decoder

Reference
video

PQR
measurement

system
PQRs

 

Figure III.2/J.144 −−−− PQR objective picture quality rating with reference available 

Lack of access to the reference video may restrict the use of continuous live material. An obvious 
example is monitoring of satellite feeds at a cable head-end. In this situation, a common video 
sequence such as a station logo may be chosen as the Reference Video. This could be provided to the 
Cable Operator and stored locally as a reference for comparison against the processed video. See 
Figure III.3. 
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Figure III.3/J.144 −−−− PQR objective picture quality rating at a remote head-end 
with stored reference 

III.2 Pre-processing of video – Normalization 
Application of the PQR Objective picture quality rating method to any video system requires 
normalization of the processed video. Normalization means that time-invariant systematic changes in 
the video from reference input to processed video output are removed prior to performing the human 
visual system (HVS) based measurement. As the most sensitive and accurate objective picture 
quality measurement method, the PQR method is based on HVS filters that compare reference and 
processed pictures on what is effectively a pixel-by-pixel basis. Separation of the measurement into 
two parts, normalization and PQR-calculation, is necessary to obtain the most meaningful results. 

Parameters to be adjusted by the normalization process are horizontal and vertical picture shifts; 
luminance and colour gain changes; luminance and colour DC level changes; and component or 
luminance to colour channel-to-channel delay offset. Because these changes could produce changes 
in perceived picture quality they shall be reported as part of the results of the measurement method. 
It is necessary to separate these changes from the PQR calculation for two reasons. The main reason 
is to provide the most accurate PQR value. Second, such normalization corresponds closely with 
typical system operation for the gain and DC level parameters where appropriate adjustments are 
generally available and routinely made. Small values of picture shift, horizontally or vertically, are 
generally not considered to change perceived picture quality; however, their presence is indeed a 
picture error and will produce significant problems in multi-generation applications. Time varying 
changes in the pictures that are due to video content and the compression system are measured by the 
PQR-calculation. 

The idea of normalization prior to making a picture quality assessment is also to be required in 
subjective measurement standards as reflection of typical system operation. The following statement 
is to be included in ITU-T P.911: Subjective Audiovisual Quality Assessment Method for 
Multimedia Applications and ITU-T P.910: Subjective Video Quality Assessment Methods for 
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Multimedia Applications. "Operational parameters, such as signal level, for the test sequences shall 
match those of the alignment signals used to verify the viewing [and listening] conditions. Any 
operational adjustments performed so that source or processed sequences meet this requirement 
should be reported". 

Figure III.4 shows the PQR measurement system operation with respect to normalization. Processed 
video is normalized on a field-by-field basis by comparison with the reference video or by 
measurement of calibrated test signals embedded in the reference sequence. Only time-invariant 
static changes in video are removed, dynamic changes due to the compression and decompression 
processes are measured as part of the PQR calculation. Normalization of the processed video prior to 
PQR calculations shall meet the tolerances shown in Table III.1. 
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Figure III.4/J.144 −−−− PQR measurement system operation 

Table III.1/J.144 −−−− Normalization parameters and tolerance 

Parameter Normalization tolerance 

Luminance gain < 0.2 dB 
Colour (difference) gain < 0.2 dB 
Luminance DC level < 0.5% of signal max 
Colour (difference) DC level < 0.5% of signal max 
Channel-to-channel delay offset < 2 ns 
Horizontal pixel shift < 0.1 pixel 
Vertical line shift < 0.1 line 

III.3 System overview 
PQR objective picture quality ratings are one of the key results provided by the PQR measurement 
system referred to earlier. The following provides a description of the Human Vision Model used 
within the PQR measurement system. 

The Sarnoff/Tektronix Human Vision Model is a method of predicting the perceptual ratings that 
human subjects will assign to a degraded colour-image sequence relative to its non-degraded 
counterpart. The model takes in two image sequences and produces several difference estimates, 
including a single metric of perceptual differences between the sequences. These differences are 
quantified in units of the modelled human just-noticeable difference (JND). A version of the model 
that applies only to static, achromatic images is described by Lubin (1993, 1995). 
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The Human Vision Model can be useful in a general context (see Figure III.5). An input video 
sequence passes through two different channels on the way to a human observer (not shown in the 
figure). One channel is uncorrupted (the reference channel), and the other distorts the image in some 
way (the channel under test). The distortion, a side effect of some measure taken for economy, can 
occur at an encoder prior to transmission, in the transmission channel itself, or in the decoding 
process. In Figure III.5, the box called "system under test" refers schematically to any of these 
alternatives. Ordinarily, evaluation of the subjective quality of the test image relative to the reference 
sequence would involve the human observer and a real display device. This evaluation would be 
facilitated by replacing the display and observer by the Human Vision Model, which compares the 
test and reference sequences to produce a sequence of JND maps instead of the subjective 
comparison. 
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Figure III.5/J.144 −−−− Human vision model in system evaluation 

Figure III.6 shows an overview of the algorithm. The inputs are two image sequences of arbitrary 
length. For each field of each input sequence, there are three data sets, labelled Y', Cb', and Cr' at the 
top of Figure III.6 derived, e.g. from a D1 tape. Y, Cb, Cr data are then transformed to R', G', and B' 
electron-gun voltages that give rise to the displayed pixel values. In the model, R', G', B' voltages 
undergo further processing to transform them to a luminance and two chromatic images that are 
passed to subsequent stages. 

The purpose of the front-end processing is to transform video input signals to light outputs, and then 
to transform these light outputs to psychophysically defined quantities that separately characterize 
luma and chroma. 
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Figure III.6/J.144 −−−− Sarnoff/Tektronix human vision model flow chart 
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A luma-processing stage accepts two images (test and reference) of luminances Y, expressed as 
fractions of the maximum luminance of the display. From these inputs, the luma-processing stage 
generates a luma JND map. This map is an image whose gray levels are proportional to the number 
of JNDs between the test and reference image at the corresponding pixel location. 

Similar processing, based on the CIE L*u*v* uniform-colour space, occurs for each of the chroma 
images u* and v*. Outputs of u* and v* processing are combined to produce the chroma JND map. 
Both chroma and luma processing are influenced by inputs from the luma channel called masking, 
which render perceived differences more or less visible depending on the structure of the luma 
images. 

Luma, chroma and combined luma-chroma JND maps are each available as output, together with a 
small number of summary measures derived from these maps. Single PQR value summaries model 
an observer's overall rating of distortions in a test sequence. JND maps give a more detailed view of 
the location and severity of artifacts. 

It should be noted that two basic assumptions underlie the model presented here: 
a) Each pixel is square and subtends .03 degrees of viewing angle. This number was derived 

from a screen height of 480 pixels, and a viewing distance of four screen heights (the closest 
viewing distance prescribed by the ITU-R BT.500). When the model is compared with 
human perception at longer viewing distances than four screen heights, the model 
overestimates the human's sensitivity to spatial details. In the absence of hard constraints on 
viewing distance, the model is chosen to be as sensitive as possible within the frame of 
ITU-R BT.500. 

b) The model applies to screen luminances of .01 to 100 ft-L (for which overall sensitivity was 
calibrated), but with greatest accuracy at about 20 ft-L (for which all spatio-temporal 
frequencies were calibrated). It is assumed that changing luminance incurs proportional 
sensitivity changes at all spatio-temporal frequencies, and this assumption is less important 
near 20 ft-L, where more calibration took place. 

The processing shown in certain of the boxes in Figure III.6 is described in more detail below, keyed 
to Figures III.7, III.8 and III.9. 

III.4 Algorithm overview 

III.4.1 Front end processing 

The stack of four fields labelled Y', Cb', Cr' at the top of Figure III.7 indicates a set of four 
consecutive fields from either a test or reference image sequence. The first stage of processing 
transforms Y', Cb', Cr' data, to R', G', B' gun voltages. 
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Figure III.7/J.144 −−−− Front end processing 

The second stage of processing, applied to each R', G', B' image, is a point-non-linearity. This stage 
models the transfer from R', G', B' gun voltages to model-intensities (R, G, B) of the display 
(fractions of maximum luminance). The non-linearity also performs clipping at low luminances in 
each plane by the display. 

Following the non-linearity, one of two processing options is available: half-height and full-height. 
For interlaced scans, half-height images1 are processed as given, without blank inter-lines. 
Full-height modelling is available for progressive scans (in which a field contains one frame, i.e. a 
single image rather than two interlaced fields). 

Then, the vector (R, G, B) at each pixel in the field is subjected to a linear transformation (which 
depends on the display phosphors) to CIE 1931 tristimulus coordinates (X, Y, Z). The luminance 
component Y of this vector is passed to luma processing. 

To ensure (at each pixel) approximate perceptual uniformity of the colour space to isoluminant 
colour differences, the individual pixels are mapped into CIELUV, an international-standard 
uniform-colour space (see Wyszecki and Stiles, 1982). The chroma components u*, v* of this space 
are passed to the chroma processing steps in the model2. 

III.4.2 Luma processing 
As shown in Figure III.8, each luma value is first subjected to a compressive non-linearity. Then, 
each luma field is filtered and down-sampled in a four-level Gaussian pyramid, in order to model the 
psychophysically and physiologically observed decomposition of incoming visual signals into 
different spatial-frequency bands. After this decomposition, the bulk of subsequent processing by the 
model consists of similar operations (e.g. oriented filtering) performed at each pyramid level. 

____________________ 
1  Rows in a half-height image correspond to one field, i.e. to either the even or odd lines of a frame. 
2  The luminance channel L* from CIELUV is not used in luma processing, but instead is replaced by a 

visual non-linearity for which the vision model has been calibrated over a range of luminance values. L* is 
used in chroma processing, however, to create a chroma metric that is approximately uniform and familiar 
to display engineers. 
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Figure III.8/J.144 −−−− Luma processing overview 

After this pyramid-making process, the lowest-resolution pyramid image is subjected to temporal 
filtering and contrast computation, and the other three levels are subjected to spatial filtering and 
contrast computation. In each case the contrast is a local difference of pixel values divided by a local 
sum, appropriately scaled. Initially, this establishes the definition of 1 JND, which is passed on to 
subsequent stages of the model3. (Calibration iteratively revises the 1-JND interpretation at 
intermediate model stages.) The absolute value of the contrast response is passed to the following 
stage, and the algebraic sign is preserved for reattachment just prior to image comparison (JND map 
computation). 

The next stage (contrast masking) is a gain-setting operation in which each contrast response is 
divided by a function of all the contrast responses. This combined attenuation of each response by 
other local responses is included to model visual "masking" effects such as the decrease in sensitivity 
to distortions in "busy" image areas. At this stage in the model, temporal structure (flicker) is made 
to mask spatial differences, and spatial structure is also made to mask temporal differences. Luma 
masking is also applied on the chroma side, as discussed below. 

The masked contrast responses (together with the contrast signs) are used to produce the Luma JND 
map. This is done by: 
• separating each image into positive and negative components (half-wave rectification); 
• performing local pooling (averaging and downsampling, to model the local spatial 

summation observed in psychophysical experiments); 
• evaluating the absolute image differences channel by channel; 

____________________ 
3  The association of a constant contrast with 1 JND is an implementation of what is known as Weber's law 

for vision. 
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• up-sampling to the same resolution (which will be half the resolution of the original image 
due to the pooling stage); 

• evaluating the Minkowski Q-norm over all channels. 

III.4.3 Chroma processing 
Chroma processing parallels luma processing in several ways. Intra-image differences of chroma (u* 
and v*) of the CIELUV space are used to define the detection thresholds for the chroma model, in 
analogy to the way contrast (and Weber's law) is used to define the detection threshold in the 
luminance model. Also, in analogy with the luminance model, the chromatic "contrasts" defined by 
u* and v* differences are subjected to a masking step. A transducer non-linearity makes the 
discrimination of a contrast increment between one image and another depend on the contrast 
response that is common to both images. 

Figure III.9 shows that, as in luma processing, each chroma component u*, v* is subjected to 
pyramid decomposition. However, whereas luma processing needs only four pyramid levels, chroma 
processing is given seven levels. This captures the empirical fact that chromatic channels are 
sensitive to far lower spatial frequencies than luma channels (Mullen, 1985). Also, it takes into 
account the intuitive fact that colour differences can be observed in large, uniform regions. 

To reflect the inherent insensitivity of the chroma channels to flicker, temporal processing is 
accomplished by averaging over four image fields. 

Then, spatial filtering by a Laplacian kernel is performed in u* and v*. This operation produces a 
colour difference in u*, v*, which (by definition of the uniform colour space) is metrically connected 
to just-noticeable colour differences. A value of one at this stage is taken to mean a single JND has 
been achieved, in analogy to the role of Weber's-law-based contrast in the luma channel. (As in the 
case of luma, the 1-JND chroma unit must undergo reinterpretation during calibration.) 

This colour difference value is weighted, absolute-valued, and passed (with the contrast algebraic 
sign) to the contrast-masking stage. The masking stage performs the same function as it did in the 
luma model. It is somewhat simpler, since it receives input only from the luma channels and from 
the chroma channel whose difference is being evaluated. Finally, the masked contrast responses are 
processed exactly as in the luma model (see the last paragraph of III.4.2). 
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Figure III.9/J.144 −−−− Chroma processing overview 

III.4.4 Output summaries 
For each field in the video-sequence comparison, the luma and chroma JND maps are first combined 
to give a total-JND map. This total-JND map is computed as a linear combination of the sum and the 
maximum of the luma and chroma map values, pixel-by-pixel.  

Then, each of the three JND maps (luma, chroma, and combined luma-chroma) is reduced to a 
single-number summary, called a PQR (Picture Quality Rating) value. Single number summaries are 
computed by the Minkowski Q-norm. With this approach, each JND-map pixel value is raised to the 
Qth power. The PQR is then computed as the Qth root of a normalized sum of all Qth power pixel 
values. 

Next, three single performance measures for many fields of a video sequence (one for luma, one for 
chroma, and one for combined luma-chroma) are computed. PQR values for each field in a sequence 
are reduced to one Picture Quality Rating for the entire sequence, again by a Minkowski Q-norm. 

III.5 Correlation with subjective results 

III.5.1 Overview 
The IRT (Institut für Rundfunktechnik GmbH, Munich, Germany) and Tektronix recently completed 
the initial phase of an investigation into the performance of an objective picture quality rating (PQR) 
method based on the jointly-developed Sarnoff/Tektronix Human Vision Model. This clause 
provides a brief summary of the results of a blind test comparing the PQR Picture Quality Metric and 
the subjective Mean Opinion Scores (MOS) of viewers. The data set of 60 video scenes used in the 
experiment was generated by IRT from five different video sequences passed through two different 
MPEG-2 encoders at compressed rates of 2, 3, 4.5, 7, and 10 Mbit/s. The MOS scores were 
determined by IRT and the objective PQR assessments were determined by Tektronix. The 
subjective scoring procedure used panels of 25 assessors and followed strict ITU-R BT.500-7 
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(DSCQS method) procedures. The objective PQR scores were computed by Tektronix with the 
Sarnoff/Tektronix Human Vision Model based on Just-Noticeable Difference principles. No model 
parameters were adjusted to fit the IRT data set. To avoid possible biases in the experiment, the 
subjective and objective ratings were exchanged by Tektronix and IRT only after each group had 
completed their scoring. Given the absence of any adjustments to the model parameters, which are 
based on human vision science, the agreement between subjective and objective results displays a 
strong correlation of 0.88. Correlation over typical broadcast quality is 0.91. The results are shown in 
Figure III.12, and are promising for the future use of objective methods in the characterization and 
monitoring of video picture quality. 

III.5.2 Video test set and processing 
The video test scenes were supplied by IRT to Tektronix in SMPTE 125M 422-625/50 Hz format 
(i.e. PAL D1 tape format). Each scene is of 9 seconds duration. In the following, HRC stands for 
"Hypothetical Reference Circuit" (as defined by ANSI T1A1.5). Before the video was passed 
through the HRCs, Tektronix added a barcode near the top of each video frame. This code is used for 
determining horizontal and vertical pixel misalignment, frame count and other factors. The stripe 
was covered for the subjective tests, but the results of a test with a small control group and visible 
stripe showed that the stripe had little effect on viewer evaluations. After the alignment stripes were 
added, the sequences were passed through the HRCs by IRT. Two video coders (IRT4 and Thomson) 
were employed at bit rates of 2.0, 3.0, 4.5, 7.0 and 10.0 Mbit/s. Although commercial broadcast 
systems are unlikely to operate below 3 Mbit/s, the 2.0 Mbit/s scenes were included to explore 
performance beyond normal limits. A final set of HRCs consisted of following a PAL conversion 
stage with the same two coders running at 3 Mbit/s. It is expected that the PAL conversion in 
particular would likely introduce some sub-pixel misalignment. The original sequences and their 
processing into the test scenes are summarized below. 

 
Original sequences  HRCs Bit rates Mbit/s 

1. Barcelona 1  IRT Coder 2.0 
2. Mobile and Calendar 2     " 3.0 
3. NDR 3     "     4.5 
4. Football (Soccer) 4     " 7.0 
5. Flower Garden 5     " 10.0 
 6  Thomson Coder 2.0 
 7     " 3.0 
 8     " 4.5 
 9     " 7.0 
 10    " 10.0 
 11 PAL + MPEG (Thomson) 3.0 
 12 PAL + MPEG (IRT) 3.0 
 13 Reference – no compression  

 Total Test Set of 60 Scenes = (5 sequences) × [(2 encoders) × (5 bit rates) + 2 PAL] 
Barcelona: Colourful patterned extravaganza parade formation on a large playing field 
(see Figure III.13). The camera is slowly zooming out and the motion is low. The background stands 
contribute fine detail. The sequence is colourful, low motion, fine detail. 

____________________ 
4  The "IRT coder" was developed by the IRT and several European partners in the framework of the projects 

Eureka 625 VADI, Race HD-SAT and Race DISTIMA. 
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Mobile and Calendar: Familiar animation sequence used throughout the video compression 
community. Involves colourful display of animal cartoon figures, toy train in motion, rolling ball and 
calendar with text detail. The sequence is colourful, low motion and fine detail. 

NDR: Radio announcer standing in front of an aggregate stone wall. The wall forms very fine detail, 
not much colour. The camera slowly zooms out. The main challenge to compression is the detail of 
the stone wall. The motion content is very low. The sequence is low motion, fine detail. 

Football (Soccer in United States): Soccer game is being played with the camera angle wide. Not 
much close in action. The motion is characterized as moderate. The first second of video is quite 
defocused in the original scene. The sequence is fast motion, fine detail. 

Flower Garden: This sequence is widely used in the video compression research community. The 
camera, in an open vehicle, is moving at moderate speed passing a colourful flower garden. A 
windmill in motion and persons are in the background. The garden and bare tree limbs provide fine 
detail. The apparent motion is characterized as moderate. The sequence is colourful, low motion, 
fine detail. 

In Figure III.13 a typical frame image for each of the above sequences is shown. 

III.5.3 Subjective evaluation 
The Double Stimulus Continuous Quality Scale (DSCQS) Method (ITU-R BT.500-7) was used for 
the tests. 

The presentation structure consisted of the following phase lengths illustrated in Figure III.10. 
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Figure III.10/J.144 −−−− Presentation order for DSCQS method 

A was the reference and B the HRC or vice versa, varying from test to test. The order was unknown 
to the assessors. The overall length of a test was 50 seconds. 
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Figure III.11/J.144 −−−− Test sheet used for the assessment of the test sequences 

For the rating of the test sequences, a test sheet of the following type as shown in Figure III.11 was 
used. 

The quality of A and B was indicated by the assessors on a linear scale. The terms of quality on the 
left side are: excellent, good, fair, poor, bad. The results were evaluated electronically and the 
distance between the lower end of the scale and the quality indicator set by the assessor was 
calculated for each case in millimetres. The difference between the results for reference and HRC 
was the important result. 
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In addition to the real test, examples and training sequences were shown. Four examples were shown 
at the beginning of the first session. They demonstrated the test method and spanned the quality 
range to be expected. The viewers were told not to assess the sequences because they were only 
examples. The examples are listed in Table III.2 below. 

Table III.2/J.144 −−−− Example sequences 

Number Test sequence Coder Bit rate Mbit/s 

1 Zoom on a street IRT 3 
2 Barcelona 2 Thomson 4 
3 Zoom on a street IRT 10 
4 Barcelona 2 Thomson 2 

"Zoom on a street" is a well-known BBC production showing a street scene in Edinburgh. Barcelona 
2 is a scene from the same production as "Barcelona", but is a close-up of participants. 

The training sequences had to be assessed by the subjects who did not know that the results were not 
evaluated. The training sequences are listed in Table III.3. 

Table III.3/J.144 −−−− Training sequences 

Number Test sequence Coder Bit rate Mbit/s 

1 Renata Thomson 2 
2 Table Tennis IRT 10 
3 Renata Thomson 4 
4 Table Tennis IRT 2 
5 Renata Thomson 10 
6 Table Tennis IRT 4 

"Renata" and "Table Tennis" are well-known test sequences. 

The test sessions were structured in the following way: 

Session 1: examples (4) – training sequences (6) – real tests (31) 

Session 2: training sequences (6) – real tests (34) 

The overall length of session 1 was 34 minutes and 10 seconds, the corresponding time of session 2 
was 33 minutes and 20 seconds. Twenty-five assessors took part in the test series, with 15 of them 
"external" people (housewives, students, etc.), and 10 people were members of the IRT staff 
(non-experts). The viewing distance was 6 H (H: picture height). All other conditions were in 
agreement with ITU-R BT.500-7. Sony monitors were used. 

The bar-code stripes at the top of each picture were covered by dark paper attached to the screen. A 
test with a small group of five assessors (from IRT staff, non-experts) where the stripe was not 
covered showed that this condition had no significant influence on the results. 

The key subjective test results were the mean values (subjective Mean Opinion Scores, MOS) and 
95% confidence intervals of the differences between the results for the reference and the HRC. As 
the whole scale is 100 millimetres long, the worst result is 100, the best one is 0. A result of 20 
corresponds to the difference between "excellent" and "good", or between "good" and "fair", etc. 
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III.5.4 Objective picture quality assessment 
After the video sequences had been processed by IRT through the HRCs as described above to 
produce the test set, the PQR objective quality assessments were performed at Tektronix. The 
process is briefly described as follows: 
• video is acquired from D1 tape to computer files for digital processing; 
• temporal and spatial alignment algorithms are applied to determine misalignments; 
• the video is then realigned temporally and spatially. For this data set, spatial realignment 

was performed only to the nearest integral pixel location, hence no interpolation filters were 
invoked. Temporal alignment is done by frame shifting and does not modify the data in any 
way; 

• the video was then processed with the Sarnoff/Tektronix PQR objective picture quality 
method. This analysis was carried out by a software version of the quality model running on 
a SUN Sparc workstation. The method generates a frame-by-frame picture quality time 
history for the full length of the video so that continuous quality can be analysed. For 
comparison to the subjective assessments, these time histories were condensed into an 
overall Picture Quality Rating (PQR) for each scene that was a measure of global quality 
over the duration of the scene. 

III.5.5 Comparison of subjective and objective assessments 
Figure III.12 displays the subjective MOSs determined by IRT and the objective PQRs estimated by 
Tektronix. The vertical error bars display the 95% confidence intervals for the spread in subjective 
viewer ratings. The relationship between subjective and objective assessments is well behaved and 
monotonic with a strong correlation of 0.88. From the rightward curvature in the relationship, it can 
be seen that there is a compression in viewer's picture quality assessment as quality degrades towards 
very poor. This effect is well known in the field of subjective testing, and is consistent with the 
compression effects found in other areas of human perception such as loudness and brightness. The 
group of three points in the upper right hand corner contains scenes where the encoder either failed 
catastrophically in regions of the scene or the quality was very poor. If these points are excluded 
then the correlation coefficient increases to 0.91. Given that the objective quality ratings did not 
require any fitting or optimization of parameters to the test data set, the results are quite encouraging 
that objective methods will contribute to reducing the time, expense, and possible biases associated 
with characterization and monitoring of video. 
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Figure III.12/J.144 −−−− Comparison of IRT subjective mean opinion scores (MOSs) and 
Tektronix objective picture quality rating (PQR) for 60 2-10 Mbit/s MPEG-2 

and PAL test scenes 

The 95% confidence intervals for subjective scores are indicated by vertical bars. Correlation 
between objective and subjective ratings is 0.88 for the complete data set, and viewer compression in 
quality rating is apparent for upper right poorest quality scenes. The correlation is 0.91 if upper 
rightmost data scenes of poorest quality are excluded. 
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Figure III.13/J.144 −−−− Typical frame images of video test sequences 
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APPENDIX IV 
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Abstract 
A digital compressed picture quality assessment system has been developed, in which picture 
degradation is calculated in real-time taking account of human visual perception. In this system, 
noise sensitivity in spatio-temporal frequencies is considered in relation to picture brightness. This 
approach has improved the accuracy of picture quality assessment for many types of degradation. 

IV.1 Method of evaluating quality deterioration objectively 
The model emulates human-visual characteristics using 3D (spatio-temporal) filters, which are 
applied to differences between source and processed signals. For the filter implementation, 
block-type frequency analysis methods like DCT are not used to avoid potential mutual effects 
between coding and assessment systems. The filter characteristics are varied based on the luminance 
level. The output quality score is calculated as a sum of weighted measures from the filters. The 
system is aimed at assessing picture quality in terms of fineness and repeatability, by exactly 
reflecting visual functions in the assessment system. In the following, these human visual 
characteristics are described, followed by explanations of hardware implementation. 

IV.2 Human visual characteristics 

IV.2.1 Spatial frequency response of visibility 
The spatio-temporal frequency response of human visibility as shown in Figure IV.1 has been 
measured by J.G. Robson [1] and others. The spatial frequency response of visibility displays a 
sectional feature of perpendicularity to the temporal frequency response, achieving rotational 
symmetry with the optical axes in centre. 
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Figure IV.1/J.144 −−−− Spatio-temporal frequency response of visibility 

IV.2.2 Frequency response of visibility depending on picture brightness 
As regards brightness dependency on the frequency response of visibility, the measurements by 
Kelly [2] and others show that not only the spatial frequency response but also the temporal 
frequency response depends on picture brightness. Figure IV.2 indicates dependency of the spatial 
frequency response of visibility on picture brightness in the case of an almost still picture with a 
temporal frequency of less than 4 Hz for visual sensitivity. "td" is a unit for the luminance of an 
eyeground image. 
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Figure IV.2/J.144 −−−− Dependency of spatial frequency response of visibility on brightness 

Figure IV.3 shows dependency of the temporal frequency response of visibility on brightness in the 
case of a uniform image. Human eyes are typically sensitive to flicker of about 10 Hz when picture 
brightness is high. When it is very low, flicker is largely invisible. 
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Figure IV.3/J.144 −−−− Dependency of temporal frequency response of visibility on brightness 

IV.2.3 Visual sensitivity depending on brightness 
Figure IV.4 shows the perception limits of random noise on the TV monitor [3] at different 
brightness levels. It is found that there is dependency of visual sensitivity on brightness. 
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Figure IV.4/J.144 −−−− Perception limits of random noise on the TV monitor 

IV.3 Realization of visual functions by digital filter 

IV.3.1 Structure of the assessment system 
Figure IV.5 shows the structure of the assessment system. First, difference signals from the original 
and test sequence pictures are produced and then fed to the brightness-adaptive 3D digital filter with 
the same 3D frequency response of visibility and brightness dependency. Next, the filtered 
difference signals are compared with visual perception in each pixel. As a result, a numerical 
expression of the distortion beyond the perception limits of the human eye is obtained. 
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Figure IV.5/J.144 −−−− Structure of an experimental assessment system 

IV.3.2 Brightness-adaptive 3D digital filter 
Figure IV.6 shows the composition of 3D digital filters, with the frequency response and sensitivity 
changing according to brightness. By combining the spatial filters and the temporal filters according 
to picture brightness, the frequency response of human visibility is emulated. 
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Figure IV.6/J.144 −−−− Composition of 3D digital filters, with the frequency response and 
sensitivity changing according to brightness 

IV.3.3 Adaptive spatial filter depending on picture brightness 
Figure IV.7 shows the adaptive spatial filter d) in Figure IV.6, which is obtained by switching spatial 
filters having different characteristics. 
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Figure IV.7/J.144 −−−− Adaptive spatial filter obtained by switching spatial filters 

IV.3.4 Volcano-shaped spatial frequency response 
It follows that visual functions possess the characteristics of a band-pass spatial filter the horizontal 
and vertical axes. Representing these characteristics by a 3D digital filter, we obtain the volcano-
shaped feature shown in the contour graph of Figure IV.8. This feature represents the response of 
human eyes to the effect that deterioration is conspicuous on the edges of the picture. 
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Figure IV.8/J.144 −−−− Volcano-shaped spatial filter 
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IV.4 Example of assessment by the picture quality assessment system 
Figure IV.9 illustrates the relationship between subjective assessment scores obtained by 20 video 
experts in accordance with ITU-R BT.500 and objective assessment scores that we obtained using 
our new assessment system. We made our assessment using component and composite images for 
the test sequence, and component images for the original sequence. 

Regarding not only compression distortion, but also quality deterioration, including 
composite/component conversion and bandwidth limits, we can see that the picture quality (PQ) by 
the objective assessment system agrees well with the double stimulus continuous quality scale 
(DSCQS) of subjective evaluation. 
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Figure IV.9/J.144 −−−− Relationship between subjective and the objective assessment results 
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For reference, a relationship between RMS errors of the processed pictures and subjective scores is 
shown in Figure IV.10. In contrast to Figure IV.9, this graph shows lower correlation. 
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Figure IV.10/J.144 −−−− Relationship between RMS error and subjective scores 

IV.5 Real-time picture quality assessment system 
Figure IV.11 is the external appearance of the assessment system. The system features: 
1) real-time measurement; 
2) automatic adjustment of CODEC delay and synchronization phase shift; and 
3) ease of measurement because the system has original images built in. 
The system has been improved in terms of accuracy by the faithful representation of human-style 
visibility functions. Typically, the human eye can see detail when it is bright, but only indistinctly 
when it is dark. Obviously, the spatial frequency response varies according to brightness. Moreover, 
our eyes can see flicker on the screen well when it is bright. When it gets dark, the temporal 
frequency response changes with the persistence of vision. Using the system, we have represented to 
the best of our ability human-style visibility functions that change substantially according to the 
level of brightness. 

The assessment system has made it possible to measure with high correlation to subjective 
evaluation, irrespective of the type of video signal, and with good representation. 
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Figure IV.11/J.144 −−−− External appearance of the assessment system 
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APPENDIX V 

KDD 
Objective video quality assessment scheme and performance evaluation 

V.1 Scope 
Recently, digital television broadcasting and transmission services are beginning to come into 
practical use. These services use video codecs (video signal encoding devices) based on MPEG-2, an 
international standard method for compression of digital video signals. Video codecs are comprised 
of encoders, which perform the compression, and decoders, which reconstruct the compressed video 
data. These devices work by removing redundant information from the enormous volume of 
information contained in video signals. This makes it possible to transmit the information efficiently 
using only a limited amount of bandwidth. 

There is always some amount of degradation in the quality of video that has been compressed and 
transmitted using a video codec. The amount of degradation depends on the contents of the picture. 
Generally there is more distortion in fast-moving scenes, like those in a sports broadcast. There are 
also variations in the quality of the output produced by different codecs. MPEG-2 is an international 
standard, but the quality of specific types of compressed video still depends to a certain extent on the 
manufacturer's implementation. 

For its television transmission especially in TV1, TV2 and TV3 (Contribution, Primary and 
Secondary distribution) [1], it is required to strive to achieve consistently high quality by constantly 
monitoring the quality of the transmitted pictures.  

In conventional analogue FM transmission, there is little degradation in the picture due to the 
contents or to analogue modulation, so quality is stable. But in the transmission of compressed 
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digital video, the quality of the picture varies as described above according to the nature of the 
contents and the codec employed, and checking the quality of this kind of video is expected to be a 
very complex operation. 

Hence, it is considered necessary to standardize a scheme to evaluate the picture quality of MPEG-2 
based video codecs mainly used in TV1, TV2 and TV3. In these classes, the following functions are 
considered to be necessary: 
• Generic assessment for various types of video contents Analogue/Digital 

Composite/Component video formats are supported. 
• Real time assessment Precise temporal and spatial alignment between an original and a 

codec out signal. 
• Sensitive and accurate assessment to subtle and complex distortions. 

Considering the above, we are proposing a new evaluation scheme and its implementation based on 
the characteristics of human visual perception, enabling very precise measurements of video quality 
in [2]. In this appendix, we report verification results of this scheme. 

V.2 Objective video quality assessment scheme 
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Figure V.1/J.144 −−−− Three-layered model for video signal 

Figure V.1 shows the three-layered picture quality assessment model as seen by the human eye. 
Generally, the human eye cannot watch a whole frame at a glance, but watch only a local spot area in 
a frame, which is around the gaze point of the human eyes, and recognizes the texture and also 
quality of the area depending on the degrees and characteristics of noise mixed in this texture. The 
whole frame is understood by moving the gaze point among objects, which are picture components 
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of the frame and picture quality assessment is also conducted for the whole frame at the same time. 
In this process, picture quality is determined by the noise over a frame. Therefore, to perform 
objective measurement of subjective picture quality, the macro-to-micro three-layered picture 
structures (object, texture and noise layers) are used, and a bottom-up noise weighting scheme is 
proposed which uses a particular weighting function at each layer taking into account human visual 
perception (Figure V.2). 
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Figure V.2/J.144 −−−− Three-layered bottom-up noise weighting 

First, at the noise layer, common noise in a video compression process such as high frequency noise, 
low frequency noise, chroma noise, jerkiness, flicker and so on are weighted depending on their 
degrees and characteristics. For this weighting, it is useful to perform a frequency conversion to 
classify these noises. Second, at the texture layer, local spot areas are classified into several groups 
by their texture types. These groups include for example, "detail texture" such as a forest, trees and a 
stadium in which noises are strongly masked, and "flat texture" such as a human skin and a sky in 
which noises are easily recognized. Consequently, noises are weighted more or less according to 
their texture types. Finally, at the object layer, the dispersion degree of the gaze point is predicted by 
measuring how complicated the structure is of objects in the video frame. Then, noises in the whole 
frame are weighted corresponding to a decline in noise sensitivity caused by this dispersion. 

To obtain mathematical expressions for these weighting processes, we make the following 
definitions: 
 P(j,m,i): Power of a noise i in a local area m of a frame j 
 hi: Weighting function for a noise i 
 C(j,m): Texture in a local area (j,m) 
 tc: Noise weighting function in a texture C 
 G(j): Parameter indicating how complicated the structure is of objects of a frame j 
 qG: Noise weighting function depending on dispersion degree of a gaze point 
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Following these definitions, noises are summed up in order from the low layer to the high layer.  

In the noise layer, by summing up noise which is weighted by hi corresponding to noise 
characteristics in a local area (j,m), we calculate WMSENL as: 

  ( ) ( )∑
=

⋅=
I

i
iNL imjPh

I
mjWMSE

1
,,1,  (V-1) 

Next, at the texture layer, by summing up WMSENL(j,m) over the whole frame (m = 1, ..., M) being 
weighted by tc corresponding to a texture C(j,m) in a local area (j,m), we calculate WMSETL(j) as: 
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Finally, at the object layer, by taking an average value of WMSETL over frames j = 1, ..., J being 
weighted by G(j) corresponding to the dispersion degree of the gaze point, we calculate WMSEOL 
as: 

  ( ) ( )∑
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J
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1

1  (V-3) 

We further convert this WMSEOL to WSNR and calculate the DSCQS (Double-stimulus continuous 
quality-scale method) (0-100%) defined in ITU-R BT.500-7 as: 

  
WMSE

dBWSMR
2

10
255log10)( =  (V-4) 

  )((%) WSNRfD =  (V-5)    

V.3 Implementation 
The system is made up of two parts: a synchronization module, which enables precise comparison 
between the reconstructed video and the original video, and a calculation module, which 
determines video quality with reference to characteristics of human visual perception. Figure V.3 
shows the configuration of the system, and Table V.1 describes principal parameters. As Table V.1 
shows, both composite (NTSC)/component signals with full samplings are supported. 
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Figure V.3/J.144 −−−− System configuration 

V.3.1 Synchronization module 
Television signals from the original video source are read into the system through input module 1 
and marked with a synchronization marker that varies with each frame. Then the frames with 
markers are sent to the delay module, where they are stored in memory. At the same time, the frames 
are sent via the output module to the video codec that is to be evaluated. The video codec 
compresses the frames, which are read into the system again through input module 2 and compared 
with the marked frames stored in the delay of the video codec being evaluated. Finally, the 
synchronization module performs temporal (frame delay) and spatial (line and pixel shift) alignment 
precisely, so that the amount of quality degradation described below will be as close as possible to 
subjective assessment by human viewers. 

These operations provide the synchronization needed for the evaluation, and the markers used in 
these operations are designed so as to work well even through the severely signal-distorted process 
such as high compression, Y/C separation and filterings in a video codec. 

V.3.2 Calculation module 
Unlike human vision, calculation of the quality of the picture takes a bottom-up approach, building 
up the whole from the various parts. First, in order to evaluate the effect of variations in sensitivity 
due to the spatial frequencies of noise, a difference value (noise is obtained for the frequency 
components of the original picture and the reconstructed image). This value is input into the WSNR 



 

52 ITU-T J.144 (03/2001) 

(Weighted Signal-to-Noise Ratio) module, which assigns different sensitivity weights for each 
frequency region. At the same time, it obtains a value (the block activity) that indicates whether each 
block in the picture is flat or busy. The noise masking effect is also applied to obtain an overall 
WSNR. 

Finally, a value to indicate the size of the objects making up the picture is obtained (the frame 
activity). This enables the system to estimate the degree to which sensitivity to noise decreases due 
to dispersion of the amount of degradation in quality is obtained by applying the decrease in 
sensitivity to noise to the WSNR. 

Table V.1/J.144 −−−− Principal parameters 

Applicable video 
signal format 

NTSC composite signal 
525/60 component signal 
D1 serial digital  

Sampling frequency 
(Analogue input) 

14.318 MHz (NTSC) 
13.5 MHz (Component Y) 
6.75 MHz (Component C) 

Applicable codec MPEG-1, 2 based codec 
Composite codec, etc. 

Effective evaluation area 768 pixels~480 lines (NTSC) 
720 pixels~480 lines (Component Y) 
360 pixels~480 lines (Component C) 

Signal analysis Hadamard transform (NTSC) 
Discrete cosine transform (Component) 
Alternative: Fourier transform 

Noise Weighting Spatial frequency visual sensitivity 
Noise masking effect 
Gaze point scattering 

Evaluation result Picture quality assessment (Distortion, %) 
WSNR (dB) 
SNR (dB) 

Control signal interface RS-232C 

V.4 Verification results 
We compared the evaluation results of a proposed scheme with subjective assessment test results 
which have been already graded following ITU-R BT.500-7. Assessment targets are MPEG-2 
SP@ML with 5 Mbit/s, 7 Mbit/s and 10 Mbit/s applied for ITU-R BT.601, 4:2:2 component TV test 
signals. These are 17 data including Mobile, Flower garden, Cheer leaders etc. Therefore, we have in 
total 17 data × 3 bit rate = 51 samples (Table V.2). 

For these samples, we conducted the subjective assessment test on two different days (23 and 
24 March 1995) with the same conditions and viewers. The "triangle" of the objective assessment 
and two days subjective assessment results are shown in Figure V.4. 
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Table V.2/J.144 −−−− Test data list 

1 Susie 
2 Popple 
3 Table tennis 
4 Mobile & Calendar 
5 Autumn leaves 
6 Football 
7 Storm 
8 Cheer leaders 
9 Cast 
10 Cruising 
11 Bicycle 
12 Horse riding 
13 Summer flowers 
14 Ferris wheel 
15 Flower garden 
16 Kiel Harbor 4 
17 Balls of wool 

T0910040-00

Subjective 
assessment

(23 March 1995)

m = 3.08
w = 10.37
C = 0.91

Proposed 
objective 

assessment m = 3.50
w = 11.46
C = 0.89

True assessment 
value

Subjective 
assessment

(24 March 1995)

m    Root mean square error
w    Root worst square error
C    Correlation 

m = 3.32
w = 12.40
C = 0.91

 

Figure V.4/J.144 −−−− Comparisons with subjective assessment tests 

Figure V.4 proves that assessment accuracy expressed by rmse, rwse and correlation of three 
assessment results are nearly equal from the triangle centre, which is the true assessment value. In 
addition, Figure V.5 shows distributions of 51 samples among an objective and two subjective 
assessments. Samples in the three graphs are randomly distributed but the subtle difference in each 
distribution can be seen. In distribution of 23rd and 24th subjective comparison, it is uniformly 
random but inequality in distributions can be seen in subjective and objective assessment 
comparisons depending on score range. That is, both graphs of 23rd and 24th vs objective scheme 
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give sample plots with higher correlation at 20% – 40% but less correlation at 10% – 20%. Further 
study will be needed to eliminate this. 

By this fact, it is concluded to be feasible to use the proposed scheme in addition to ITU-R 
BT.500-7. 
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Figure V.5/J.144 −−−− Comparisons among an objective and two subjective assessments 

V.5 References 
[1] 2nd version of Table defining video quality classes, Expert meeting on subjective and 

objective video quality assessment, Turin, 14-16 October 1997. 

[2] Progress report on development of digital compressed picture quality assessment system in 
Japan, SG 9 Document D15 Geneva, 21-25 April 1997. 
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APPENDIX VI 

EPFL 

The perceptual distortion metric (PDM) submitted by EPFL is based on a spatio-temporal model of 
the human visual system. It consists of four stages, through which both the reference and the 
processed sequences pass. The first converts the input to an opponent-colours space. The second 
stage implements a spatio-temporal perceptual decomposition into separate visual channels of 
different temporal frequency, spatial frequency and orientation. The third stage models effects of 
pattern masking by simulating excitatory and inhibitory mechanisms according to a model of 
contrast gain control. The fourth and final stage of the metric serves as pooling and detection stage 
and computes a distortion measure from the difference between the sensor outputs of the reference 
and the processed sequence. 

APPENDIX VII 

NASA 

VII.1 Introduction 
The emerging infrastructure for digital video requires a critical component: a reliable means for 
automatically measuring visual quality. Such a means is essential for evaluation of codecs, for 
monitoring broadcast transmissions, and for ensuring the most efficient compression of sources and 
utilization of communication bandwidths. This appendix describes a new video quality metric, called 
DVQ (Digital Video Quality), that can be used for automatically measuring visual quality. 

VII.2 The DVQ metric 
All video quality metrics are inherently models of human vision. The DVQ metric is an attempt to 
incorporate many aspects of human visual sensitivity in a simple image processing algorithm. 
Simplicity is an important goal, since one would like the metric to run in real-time and require only 
modest computational resources. One of the most complex and time-consuming elements of other 
proposed metrics are the spatial filtering operations employed to implement the multiple, bandpass 
spatial filters that are characteristic of human vision. We accelerate this step by using the Discrete 
Cosine Transform (DCT) for this decomposition into spatial channels. This provides a powerful 
advantage since efficient hardware and software are available for this transformation, and because in 
many applications the transform may have already been done as part of the compression process. 

Figure VII.1 is an overview of the processing steps of the DVQ metric. These steps are described in 
greater detail elsewhere [1] to [3], here we provide only a brief review. The input to the metric is a 
pair of colour image sequences: reference (R) and test (T). The first step consists of various 
sampling, cropping, and colour transformations that serve to restrict processing to a region of interest 
and to express the sequences in a perceptual colour space. This stage also deals with de-interlacing 
and de-gamma-correcting the input video. The sequences are then subjected to a blocking (BLK) and 
a Discrete Cosine Transform (DCT), and the results are then transformed to local contrast (LC). 
Local contrast is the ratio of DCT amplitude to DC amplitude for the corresponding block. The next 
step is a temporal filtering operation (TF) which implements the temporal part of the contrast 
sensitivity function. This is accomplished through a suitable recursive discrete second order filter. 
The results are then converted to just-noticeable differences by dividing each DCT coefficient by its 
respective visual threshold. This implements the spatial part of the contrast sensitivity function 
(CSF). At the next stage the two sequences are subtracted. The difference sequence is then subjected 
to a contrast masking operation (CM), which also depends upon the reference sequence. Finally the 
masked differences may be pooled in various ways to illustrate the perceptual error over various 
dimensions (POOL), and the pooled error may be converted to visual quality (VQ). 
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Figure VII.1/J.144 −−−− Overview of DVQ processing steps 

The parameters of the metric have been estimated from psychophysical data, both from the existing 
literature and from measurements of visibility of dynamic DCT quantization error. 

VII.2.1 Input 
The input to the metric is a pair of colour image sequences. The dimensions of this input are 
{s,f,c,y,x}, where s = sequence (2), f = frames, c = colour (3), y = rows, and x = columns. The first 
of the two sequences is the reference, the second is the test. Typically the test will differ from the 
reference in the presence of compression artifacts. The input colour space must be defined in 
sufficient detail that it can be transformed into CIE coordinates, for example by specifying the 
gamma and chromaticity coordinates of each primary. Two common examples used in this appendix 
are a linear (gamma = 1) RGB space, and YCbCr with gamma = 2.2. 

VII.2.2 Colour transformations 
The first step in the process is the conversion of both image sequences to the YOZ colour space. This 
is a colour space we have previously used in modelling perceptual errors in still image compression. 
The three components of this space are Y (CIE luminance in candelas/m2), O, a colour-opponent 
channel given by { }1.0;37.0;47.0 −=−=== ZYXO  and a blue channel given by the CIE Z 
coordinate. Transformation to the YOZ space typically involves: 
1) a gamma transformation, followed by; 
2) a linear colour transformation. 
These operations do not alter the dimensionality of the input. 

VII.2.3 Blocked DCT 
At this point a blocked DCT is applied to each frame in each colour channel. The dimensions of the 
result are {s, f, c, by, bx, v, u}, where by and bx are the number of blocks in vertical and horizontal 
directions, and where now v = u = 8. 

VII.2.4 Local contrast 
The DCT coefficients are converted to units of local contrast in the following way. First we extract 
the DC coefficients from all blocks. These are then time filtered, using a first-order, low-pass, IIR 
filter with a gain of 1 and a time constant of τ1. The DCT coefficients are then divided by the filtered 
DC coefficients on a block-by-block basis. The Y and Z blocks are divided by Y and Z DC 
coefficients; the O is divided by the Y DC. In each case, a very small constant is added to the divisor 
to prevent division by zero. Finally, the quotients are adjusted by the relative magnitudes of their 
coefficients corresponding to a unit contrast basis function. These operations convert each DCT 
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coefficient to a number between −1 and 1, that expresses the amplitude of the corresponding basis 
function as a fraction of the average luminance in that block. 

The DC coefficients themselves are converted in a similar fashion: the mean DC over the entire 
frame is subtracted, and the result is divided by that mean. 

VII.2.5 Temporal filtering 
Both sequences are then subjected to temporal filtering. The temporal filter is a second-order IIR 
filter, as described above in the fit of the dynamic DCT noise data. Use of an IIR filter minimizes the 
number of frames of data that must be retained in memory. For even greater simplicity, a first order 
filter may be used. 

VII.2.6 JND conversion 
The DCT coefficients, now expressed in local contrast form, are now converted to just-noticeable-
differences (JNDs) by dividing their respective spatial thresholds. These thresholds are first 
multiplied by a spatial summation factor s, whose purpose and estimation are described below. The 
thresholds for the two colour channels are either derived from the luminance thresholds3 or based on 
additional chromatic thresholds. After conversion to JNDs, the coefficients of the two sequences are 
subtracted to produce a difference sequence. 

VII.2.7 Contrast masking 
Contrast masking is accomplished by first constructing a masking sequence. This begins as the 
reference sequence, after JND conversion. This sequence is rectified, and then time-filtered by a 
first-order, low-pass, discrete IIR filter, with a gain of g1 and a time constant of τ2. These values are 
then raised to a power m, any values less than 1 are replaced by 1, and the result is used to divide the 
difference sequence. This process mimics the traditional contrast masking result in which contrasts 
below threshold have no masking effect, and that above threshold the effect rises as the mth power 
of mask contrast in JNDs. 

VII.2.8 Minkowski pooling 
The dimensions of the result at this point are {f, c, by, bx, v, u}, where, to remind, f is frames, c is 
colour channels, by and bx are the number of blocks in vertical and horizontal directions, and where 
v = u are the vertical and horizontal frequencies. These elementary errors may then be combined 
over various dimensions, or all dimensions, to yield summary measures of visual error. This 
summation is done using a Minkowski metric: 

  ( ) ββ
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In this equation we have indicated summation over all six dimensions, but any subset of these 
dimensions may be considered as well. A virtue of the Minkowski formulation is that it may be 
nested. For example, we may first sum over only the colour dimension (c), and then these results 
may subsequently be summed over, for example, the block dimensions (by and bx). 

VII.3 Evaluation 
We have evaluated the performance of the DVQ video quality metric by comparing its predictions to 
judgments of impairment made by 25 human observers viewing five reference sequences as 
processed by 12 HRCs. The DVQ metric performs considerably better than models based on simple 
bit-rate or root mean square (rms) error. The quality of the predictions suggests the metric may be 
useful in practical applications. More recently we submitted our algorithm to the VQEG (Video 
Quality Experts Group) testing project. DVQ performed quite well over a wide range of HRC 
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subsets. It performed particularly well in the high quality regime, with a Rank Correlation of 0.72. 
Two of the tested conditions, multi-generation 1/2 inch professional record/play cycles and 
transmission errors, are outside the scope of our model. With the removal of these HRCs, the 
Spearman Rank Correlation was 0.82. 

VII.4 References 
[1] WATSON (A.B.): Toward a perceptual video quality metric in Human Vision, Visual 

Processing, and Digital Display VIII, San Jose, CA: SPIE, Bellingham, WA, 1998. 

[2] WATSON (A.B.), et al.: Design and performance of a digital video quality metric in Human 
Vision, Visual Processing, and Digital Display IX. San Jose, CA: SPIE, Bellingham, WA, 
1999. 

[3] WATSON (A.B.), HU (J.), McGOWAN (J.F.), III: DVQ: A digital video quality metric 
based on human vision, Journal of Electronic Imaging, 2000. in press. 

APPENDIX VIII 

KPN/Swisscom CT 

VIII.1 Introduction 
In PVQM, the physical signals of input and output of the device under test (e.g. a codec, or a 
transmission chain) are mapped onto psychophysical representations (see Figure VIII.1) that match 
as close as possible the internal representations of the audio/video signals (representations inside our 
head). The quality of the device under test is judged on the basis of differences in the internal 
representation. In PVQM the internal representation, from which the quality is derived, is such that 
both, spatial and temporal distortions, are covered by the measurement method.  
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Figure VIII.1/J.144 

Overview of the basic philosophy used in the development of PVQM. A computer model of the 
subject, consisting of a perceptual and a cognitive model, is used to compare the output of the device 
under test (e.g. a video codec) with the input, using any video signal.  
In order to be able to use PVQM in practical situations a spatio-temporal-luminance alignment is 
included into the algorithm. It is well known that global changes in the brightness and contrast only 
have a limited impact on the subjectively perceived quality, especially when compared to the impact 
of distortions like blockiness. This effect is quantified in PVQM by using a special 
brightness/contrast adaptation of the distorted video sequence. Furthermore it is trivial that one can 
only calculate a relevant measure of distortion if one knows which parts of the input and output 
signal have to be compared. Therefore PVQM uses a kind of block matching spatio-temporal 
alignment procedure before the actual measurements are carried out. 

The spatial luminance analysis part is based on edge detection of the Y signal, while the temporal 
part is based on difference frames analysis of the Y signal. It is well known that the Human Visual 
System (HVS) is much more sensitive to the sharpness of the luminance component than that of the 
chrominance components. Furthermore, the HVS has a contrast sensitivity function that decreases at 
high spatial frequencies. These basics of the HVS are reflected in the first pass of the PVQM 
algorithm that provides a first order approximation to the contrast sensitivity functions of the 
luminance and chrominance signals. 

In the second step the edginess of the luminance Y is computed as a signal representation that 
contains the most important aspects of the picture. This edginess is computed by calculating the local 
gradient of the luminance signal in each frame. The relative error in the edginess between input and 
output video is aggregated over space and time using Lebesgue p-measures. 
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In the third step the chrominance error is computed as a weighted average of the colour error of both 
the Cb and Cr components normalized on the local saturation with a dominance of the Cr 
component. 

In the last step the three different indicators are mapped onto a single quality indicator, using a 
simple multiple linear regression, which correlates well the subjectively perceived overall video 
quality of the sequence. The method has been validated at KPN Research using a wide variety of 
databases containing both codec (MPEG, ITU-T H.263, etc.) and artificially generated distortions. 
On all relevant databases the correlation between the objective PVQM values and subjective Mean 
Opinion Scores is above 0.9. 

VIII.2 References 
[1] BEERENDS (J.G.), HEKSTRA (A.P.): Objective measurement of video quality, ITU-T 

Study Group 12, Document COM 12-7, February 1997. 

APPENDIX IX 

NTIA 

Introduction 
This appendix provides full disclosure of the algorithm used to compute a Video Quality Metric 
(VQM) that accurately tracks subjective quality judgments of video scenes. This version of VQM 
contains several improvements over the model that was submitted to the Video Quality Experts 
Group (VQEG). These improvements were developed before the VQEG subjective data became 
available [1]. In addition to providing technology-independent perception-based estimates of 
subjective quality, the VQM has low computational complexity and can be used for continuous real-
time in-service quality monitoring applications. Results are presented that compare the VQM with 
mean opinion scores from nine different double-stimulus subjective tests that span many different 
scenes, video systems, and coding technologies. Seven of these data sets contain mostly video scenes 
from contribution-quality and distribution-quality broadcast applications (> 1.5 Mbit/s) while two of 
these data sets contain mostly video scenes from multimedia applications (< 1.5 Mbit/s).  

IX.1 Description of VQM algorithm 
The VQM consists of a linear combination of four parameters that have been optimized for the 
standard viewing distance of six times picture height. Three parameters are extracted from spatial 
gradients of the luminance component (Y) of ITU-R BT.601 [2] input and output video streams 
while one parameter is extracted from the vector formed by the chrominance components (CB, CR). 

The sampled input and output video streams are assumed to have been calibrated before the 
processes described herein are performed. This calibration includes compensation for system gain 
and level offset, as well as spatial and temporal registration of the images. 

IX.2 Spatial gradient parameters 
An overview of the algorithm used to extract the spatial gradient parameters is given in Figure IX.1. 
The Y components of the input and output video streams are processed using horizontal and vertical 
edge enhancement filters. Next, these processed video streams are divided into spatial-temporal 
(S-T) regions from which features, or summary statistics, are extracted that quantify the spatial 
activity as a function of angular orientation. Then, these features are clipped at the lower end to 
emulate perceptibility thresholds. Next, distortions in video quality due to gains and losses in the 
feature values are calculated for each S-T region by comparing their input and output values using 
functional relationships that emulate visual masking of impairments. These distortions are then 
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pooled across space (spatial collapsing) and time (temporal collapsing) to produce quality 
parameters for a video clip that is nominally 5 to 10 seconds in duration. 

The edge enhancement filters, the S-T region size, and the perceptibility thresholds that are 
presented here were optimized based on correlation with perceptual distortions at six times picture 
height. 
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Figure IX.1/J.144 −−−− Overview of algorithm used to extract spatial gradient parameters 

IX.3 Edge enhancement filters 
The input and output video frames are first processed with horizontal and vertical edge enhancement 
filters that enhance edges while reducing noise. The two filters shown in Figure IX.2 are applied 
separately, one to enhance horizontal pixel differences while smoothing vertically (left filter), and 
the other to enhance vertical pixel differences while smoothing horizontally (right filter). 
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Figure IX.2/J.144 −−−− Edge enhancement filters 
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The two filters are transposes of each other, have size 13 × 13, and have filter weights given by: 
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where x is the pixel displacement from the centre of the filter (0, 1, 2, …, N), c is a constant that sets 
the width of the bandpass filter, and k is a normalization constant selected such that each filter would 
produce the same gain as a true Sobel filter. The optimal amount of horizontal bandpass filtering for 
a viewing distance of six times picture height was found to be given by the c = 2 filter, which has a 
peak response at about 4.5 cycles/degree. The bandpass filter weights that were used are given by: 

[–0.0052625, –0.0173446, –0.0427401, –0.0768961, –0.0957739, –0.0696751, 0, 0.0696751, 
0.0957739, 0.0768961, 0.0427401, 0.0173446, 0.0052625]. 

Notice that the filters in Figure IX.2 have a flat lowpass response. A flat lowpass response produced 
the best quality estimate and has the added advantage of being computationally efficient (e.g. for the 
left filter in Figure IX.2, one merely has to sum the pixels in a column and multiply once by the 
weight). 

IX.4 S-T region size 
The horizontal and vertical edge enhanced input and output video streams are each divided into 
localized S-T regions. Figure IX.3 gives the S-T region size (8 horizontal pixels × 8 vertical lines 
× 6 video frames) that achieved the maximum correlation with subjective ratings. It should be noted, 
however, that the correlation was found to worsen slowly as one moves away from the optimum 
point. Horizontal and vertical widths up to 32 pixels or lines and temporal widths up to 30 frames 
can be used with satisfactory results, giving the objective measurement system designer considerable 
flexibility in adapting the techniques presented here to different S-T region sizes. 

Features are extracted from each S-T region by calculating summary statistics over the S-T region. A 
detailed description of the features that are extracted is given in IX.5. 
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Figure IX.3/J.144 −−−− Optimal spatial-temporal (S-T) region size for extracting features 
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IX.5 Description of features 
This clause describes the extraction of two spatial activity features from S-T regions of the edge 
enhanced input and output video streams from IX.4. The filter shown in Figure IX.2 (left) enhances 
spatial gradients in the horizontal (H) direction while the transposes of these filters enhance spatial 
gradients in the vertical (V) direction. The response at each pixel from the H and V filters can be 
plotted on a two dimensional diagram such as the one shown in Figure IX.4 with the H filter 
response forming the abscissa value and the V filter response forming the ordinate value. For a given 
image pixel located at row i, column j, and time t, the H and V filter responses will be denoted as 
H(i, j, t) and V(i, j, t), respectively. These responses can be converted into polar coordinates (R, θ) 
using the relationships: 

  ( ) ( ) ( )22 ,,,,,, tjiVtjiHtjiR +=  

and: 

  ( ) ( )
( )






=θ −

tjiH
tjiVtji
,,
,,tan,, 1  

The first feature, f1, is computed simply as standard deviation (stdev) over the S-T region of the 
R(i, j, t) samples, and then clipped at the perceptibility threshold of P (i.e. if the results of the stdev 
calculation falls below P, f1 is set equal to P), namely: 

  ( )[ ]{ } PtjiRstdevf ,,1 = : { }Region T-S,, ∈tji  

This feature is sensitive to changes in the overall amount of spatial activity within a given S-T 
region. For instance, localized blurring produces a reduction in the amount of spatial activity 
whereas noise produces an increase. The recommended threshold P for this feature is 12. 
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Figure IX.4/J.144 −−−− Division of horizontal (H) and vertical (V) spatial activity  
into HV (left) and HV  (right) distributions 

The second feature, f2, is sensitive to changes in the angular distribution, or orientation, of spatial 
activity. Complementary images are computed with the shaded spatial gradient distributions shown 
in Figure IX.4. The image with horizontal and vertical gradients, denoted as HV, contains the 
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R(i, j, t) pixels that are horizontal or vertical edges (pixels that are diagonal edges are zeroed). The 
image with the diagonal gradients, denoted as HV , contains the R(i, j, t) pixels that are diagonal 
edges (pixels that are horizontal or vertical edges are zeroed). Gradient magnitudes R(i, j, t) less than 
rmin are zeroed in both images to assure accurate θ computations. Pixels in HV and HV can be 
represented mathematically as: 
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where: 

  { }Region T-S,, ∈tji  

For the computation of HV and HV  above, the recommended value for rmin is 20 and the 
recommended value for ∆θ is 0.05236 radians. Feature f2 for one S-T region is then given by the 
ratio of the mean of HV to the mean of HV , where these resultant means are clipped at their 
perceptibility thresholds P, namely: 
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The recommended perceptibility threshold P for the mean of HV and HV  is 3. The f2 feature is 
sensitive to changes in the angular distribution of spatial activity within a given S-T region. For 
example, if horizontal and vertical edges suffer more blurring than diagonal edges, f2 of the output 
will be less than f2 of the input. On the other hand, if erroneous horizontal or vertical edges are 
introduced, say in the form of blocking or tiling distortions, then f2 of the output will be greater than 
f2 of the input. The f2 feature thus provides a simple means to include variations in the sensitivity of 
the human visual system with respect to angular orientation. 

For the following discussion, an input feature stream will be denoted as fin(s, t) and the 
corresponding output feature stream will be denoted as fout(s, t), where s and t are indices that denote 
the spatial and temporal positions, respectively, of the S-T region within the calibrated input and 
output video streams. 

IX.6 Impairment masking functions 
Next, the perceptual impairment at each S-T region is calculated using a function that models visual 
masking of impairments. Gain and loss must be examined separately, since they produce 
fundamentally different effects on quality perception (e.g. loss of spatial activity due to blurring and 
gain of spatial activity due to noise or blocking). Of the many comparison functions that we have 
evaluated, two have consistently produced the best correlation to subjective ratings. These 
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comparison functions model the perceptibility of spatial or temporal impairments. For a given S-T 
region, gain and loss distortions are computed using: 
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where pp is the positive part operator (i.e. negative values are replaced with zero), and np is the 
negative part operator (i.e. positive values are replaced with zero). These visual masking functions 
imply that impairment perception is inversely proportional to the amount of localized spatial or 
temporal activity in the input scene. In other words, spatial impairments become less visible as the 
spatial activity in the input scene is increased (i.e. spatial masking), and temporal impairments 
become less visible as the temporal activity in the input scene is increased (i.e. temporal masking). 
While the logarithmic and ratio comparison functions behave very similarly, the logarithmic function 
tends to be slightly more advantageous for gains while the ratio function tends to be slightly more 
advantageous for losses. 

IX.7 Spatial collapsing function 
Next, impairments from S-T regions with the same time index t are pooled using a spatial collapsing 
function. Extensive investigation has revealed that the optimal spatial collapsing functions normally 
involve some form of worst-case processing. This is because localized impairments tend to draw the 
focus of the viewer, making the worst part of the picture the predominant factor in the subjective 
quality decision. The spatial collapsing function is computed at each temporal index t as the average 
of the worst 5% of the measured distortions over the spatial index s (denoted as worst_5%space). This 
amounts to rank sorting the gain distortions at each temporal index t and averaging those distortions 
that are above the 95% threshold. Similarly, the loss distortions are rank sorted at each temporal 
index t, but the average of those distortions that are below the 5% threshold is used (since losses are 
negative). Applying the worst_5%space function produces a time history of the gain and loss samples, 
namely gain(t) and loss(t), which must then be temporally collapsed. 

IX.8 Temporal collapsing functions 
Finally, the results from the spatial collapsing function are pooled using a temporal collapsing 
function to produce an objective parameter for the video clip, which is nominally 5 to 10 seconds in 
length. Viewers seem to use several temporal collapsing functions when subjectively rating video 
clips that are from 9 to 10 seconds in length. One temporal collapsing function is indicative of the 
average quality level of the clip while the other is indicative of the worst transient quality of the clip 
(e.g. digital transmission errors normally cause a 1 to 2 second disturbance in the output video). 

The mean over time (denoted as meantime) seems to be indicative of the average quality that is 
observed during the time period. For worst transient quality, the 10% level over time for loss 
parameters (denoted as 10%time) and the 90% level over time for gain parameters (denoted as 
90%time) seems to capture most of the subjective impact (i.e. the time history samples of the loss 
parameter are rank sorted and the 10% level is used; the time history samples of the gain parameter 
are rank sorted and the 90% level is used). Further research needs to be performed to optimize these 
temporal collapsing functions. 
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IX.9 Three spatial gradient parameters 
The three spatial gradient parameters that are used to compute VQM are given by: 

f1_loss (use temporal collapsing function 10%time); 

f2_loss (use temporal collapsing function meantime); and 

f2_gain (use temporal collapsing function meantime). 

Here, the f1 and f2 features are described in IX.5, the loss and gain functions are given in IX.6, the 
spatial collapsing function is given in IX.7, and the temporal collapsing functions are given in IX.8. 

IX.10 Chrominance parameter 
This clause presents a single chrominance distortion parameter that is included in the computation of 
VQM. For a given image pixel located at row i, column j, and time t, let CB(i, j, t) and CR(i, j, t) 
represent ITU-R BT.601 CB and CR values. The components of a two-dimensional chrominance 
feature vector, fC, are computed simply as the mean (mean) over the S-T region of the CB(i, j, t) and 
CR(i, j, t) samples, respectively, giving more perceptual weight to the CR component: 

 ( ) ( )[ ] ( )[ ]( )tjiCmeanWtjiCmeantsf RRBC
,,*,,,, = : { }Region T-S,, ∈tji , and 5.1=RW . 

The recommended S-T region size is 8 horizontal pixels × 8 vertical lines × 1 video frames 
(actually 4 horizontal CB and CR pixels, since these signals are sub-sampled by two in 
ITU-R BT.601). Chrominance distortion for each S-T region, denoted as dC (s, t), where s and t are 
indices that denote the spatial and temporal positions, respectively, of the S-T region within the 
calibrated input and output video streams, is computed as the Euclidean distance between the input 
and output chrominance feature vectors fCin and fCout shown by the dashed line in Figure IX.5, 
namely: 

  ( ) ( ) ( )tsftsftsd CinCoutC ,,, −=  
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Figure IX.5/J.144 −−−− Computation of chrominance distortion dC (s, t) for a S-T region 



 

  ITU-T J.144 (03/2001) 67 

The optimal spatial collapsing function for dC (s, t) is the standard deviation over space (denoted as 
stdevspace), which is similar to the worst_5%space function given previously. The optimal temporal 
collapsing function is the 10% level over time (denoted as 10%time), which represents the level of 
distortion that is nearly always present. The chrominance distortion value after spatial and temporal 
collapsing is clipped at a perceptibility threshold P = 0.8 and then this clipping value is subtracted to 
produce the dC metric. In summary, the chrominance distortion parameter dC is given by: 

  ( )( )[ ]{ } Ptsdstdev%d
PCC −= ,10 spacetime  

IX.11 VQM computation 
VQM is computed as: 

  VQM = –0.3609*f1_loss + 0.5031*(f2_loss) 2 + 0.1390*f2_gain + 0.0295*dC 

The square on the f2_loss parameter is necessary to linearize this parameter response. The f1_loss 
parameter requires a negative multiplier since this parameter is always less than or equal to zero (the 
f2_loss parameter is also always less than or equal to zero but the square of this parameter is being 
used in the VQM calculation). The f2_gain and dC parameters are always greater than or equal to 
zero. VQM computed in this manner will have values greater than or equal to zero and have a 
nominal maximum value of one. VQM may occasionally exceed one for video scenes that are 
extremely distorted. 

IX.12 Description of subjective data sets 
The nine subjective experiments were collected from 1992 to 1999. All of the data sets were 
conducted in accordance with the most recent version of ITU-R BT.500-9 [3] that was available 
when the experiment was performed. All of the data sets used scenes from 9 to 10 seconds in 
duration and used double stimulus viewing (viewers saw both the original and impaired sequences). 
For brevity, only a summary of each subjective experiment is given here. The reader is directed to 
the accompanying references for more complete descriptions. 

Data Set One [4, 5] 
A panel of 48 viewers rated a total of 132 video clips that were generated by random and 
deterministic pairing of 36 test scenes with 27 video systems. The 36 test scenes contained widely 
varying amounts of spatial and temporal information. The 27 video systems included digital video 
compression systems operating at bit rates from 56 kbit/s to 45 Mbit/s with controlled error rates, 
NTSC encode/decode cycles, VHS and S-VHS record/play cycles, and VHF transmission. Viewers 
were shown the original version first, then the degraded version, and asked to rate the difference in 
perceived quality using the 5-point impairment scale (imperceptible, perceptible but not annoying, 
slightly annoying, annoying, very annoying). 

Data Set Two [6, 7] 
Viewer panels comprising a total of 30 viewers from three different laboratories rated 600 video 
clips that were generated by pairing 25 test scenes with 24 video systems. The 25 test scenes 
included scenes from five categories: 
1) one person, mainly head and shoulders; 
2) one person with graphics and/or more detail; 
3) more than one person; 
4) graphics with pointing; and 
5) high object and/or camera motion. 
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The 24 video systems included proprietary and standardized video teleconferencing systems 
operating at bit rates from 56 kbit/s to 1.5 Mbit/s with controlled error rates, one 45 Mbit/s codec, 
and VHS record/play cycle. The subjective test procedure was the same as data set one. 

Data Set Three [8] 
A panel of 32 viewers rated the difference in quality between input scenes with controlled amounts 
of added noise and the resultant MPEG-2 compression-processed output. The data set contains a 
total of 105 video clips that were generated by pairing seven test scenes at three different noise levels 
with five MPEG-2 video systems. The seven test scenes were chosen to span a range of spatial 
detail, motion, brightness, and contrast. The five MPEG-2 video systems operated at bit rates from 
1.8 Mbit/s to 13.9 Mbit/s. Viewers were shown the input and processed output in randomized A/B 
ordering and asked to rate the quality of B using A as a reference. The experiment utilized a seven-
point comparison scale (B much worse than A, B worse than A, B slightly worse than A, B the same 
as A, B slightly better than A, B better than A, B much better than A). 

Data Set Four [9] 
A panel of 32 viewers rated a total of 112 video clips that were generated by pairing subgroups of 
eight scenes each (total number of scenes in the test was 16) with 14 different video systems. The 
16 test scenes spanned a wide range of spatial detail, motion, brightness, and contrast and included 
scene material from movies, sports, nature, and classical ITU-R BT.601 test scenes. The 14 video 
systems included MPEG-2 systems operated at bit rates from 2 Mbit/s to 36 Mbit/s with controlled 
error rates, multi-generation MPEG-2, multi-generation 1/2 inch professional record/play cycles, 
VHS, and video teleconferencing systems operating at bit rates from 768 kbit/s to 1.5 Mbit/s. The 
subjective test procedure was the same as data set three. 

Data Set Five [9] 
A panel of 32 viewers rated a total of 42 video clips that were generated by pairing subgroups of six 
scenes each (total number of scenes in the test was 12) with seven different MPEG-2 systems. The 
12 test scenes included sports material and classical ITU-R BT.601 test scenes. The nine MPEG-2 
systems operated at bit rates from 2 Mbit/s to 8 Mbit/s. The subjective test procedure was the same 
as data set three. 

Data Sets Six to Nine [10] 
Four data sets (525-line high quality, 525-line low quality, 625-line high quality, 625-line low 
quality), each of 90 video clips were generated by pairing ten scenes with nine video systems. For 
each data set, a total of 60 to 80 viewers from four different laboratories (i.e. 15 to 20 viewers per 
laboratory) rated subjective quality using the double stimulus continuous quality scale (DSCQS). 
The twenty different test scenes (ten for 525-line, ten for 625-line) included sports material, classical 
ITU-R BT.601 test scenes, moving graphics, and stills. The video systems included MPEG-2 
systems operating at bit rates from 2 Mbit/s to 50 Mbit/s, video teleconferencing systems operating 
at 768 kbit/s and 1.5 Mbit/s, some systems with digital transmission errors, multi-generation 
MPEG-2, multi-generation 1/2 inch professional record/play cycles, where composite and/or 
component signal formats were used. 

IX.13 Results 
The Pearson linear correlation coefficient between VQM and each of the individual subjective data 
sets is given in Table IX.1. VQM achieved an average Pearson correlation coefficient of 0.90. 

Figure IX.6 shows the scatter plot of the subjective quality judgments from all nine subjective data 
sets versus VQM. In this scatter plot, the subjective mean opinion scores of the nine data sets have 
been mapped to fall between zero and one. The Pearson linear correlation coefficient between the 
subjective scores and VQM in the scatter plot is 0.94 (this correlation coefficient is higher than the 
average of the Table IX.1 values since the range of quality in the combined data set is larger than in 
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any of the individual data sets). The majority of the outliers in the scatter plot are from systems that 
have some form of time varying noise in the output (e.g. VHF transmission, multi-generation 
1/2 inch professional record/play cycles, composite encode/decode cycles, digital transmission errors 
which produce transient error blocks). Future improvements to VQM are being developed that will 
include perception-based parameters to measure these time varying noise effects. One promising 
area of research is quality parameters derived from temporal gradient information (i.e. temporal 
activity). 

Table IX.1/J.144 −−−− Pearson linear correlation coefficient for VQM 

Data Set Pearson linear correlation 
coefficient 

One 0.92 
Two 0.90 

Three 0.94 
Four 0.88 
Five 0.91 

Six to Nine Combined 0.86 
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Figure IX.6/J.144 −−−− Scatter plot of subjective quality vs VQM for nine data sets 
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