

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T J.1203
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(05/2020)

SERIES J: CABLE NETWORKS AND TRANSMISSION
OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS

Smart TV operating system

The specification of a smart TV operating
system

Recommendation ITU-T J.1203

 Rec. ITU-T J.1203 (05/2020) i

Recommendation ITU-T J.1203

The specification of a smart TV operating system

Summary

Recommendation ITU-T J.1203 defines the detailed specification of a smart television operating

system (TVOS) to enable integrated broadcast and broadband (IBB)-capable cable set-top box (STB)

and TV to apply to broadcasting services and IP-based interactive services provided by cable

television operators and third-party providers. By running the smart TV operating system, the IBB

capable STB and TV will be able to provide subscribers with advanced and personalized services by

downloading and installing advanced and personalized apps from cable operators' platforms and

third-party platforms, which are interconnected with the related cable operators' platforms.

Recommendation ITU-T J.1203 is developed in accordance with the requirements defined in

Recommendation ITU-T J.1201 and based on the architecture defined in Recommendation ITU-T

J.1202. This Recommendation provides a specification for administrations and entities who intend to

implement a smart TV operating system.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T J.1203 2020-05-29 9 11.1002/1000/14281

Keywords

Broadband, broadcast, cable television, smart TV, smart television operating system, TVOS.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/14281
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T J.1203 (05/2020)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,

establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on

these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some

other obligatory language such as "must" and the negative equivalents are used to express requirements. The

use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may

involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,

validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others

outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers

are cautioned that this may not represent the latest information and are therefore strongly urged to consult the

TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the

prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T J.1203 (05/2020) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 2

4 Abbreviations and acronyms .. 3

5 Conventions .. 4

6 Reference architecture of the TVOS software .. 5

7 TV related service components .. 6

7.1 DTV component ... 6

7.2 Media engine component ... 8

7.3 HTML5 engine component .. 19

7.4 DRM component .. 22

7.5 DCAS component ... 24

7.6 Smart home component .. 27

7.7 HCI component .. 28

7.8 Second screen interaction component .. 32

7.9 Terminal control component .. 34

7.10 Data collection component ... 36

7.11 Broadcast information service component ... 38

7.12 ATV component ... 40

8 Application execution environment .. 42

8.1 TVM ... 42

8.2 Web Runtime .. 43

9 Application framework ... 44

9.1 Architecture of the Java application framework .. 44

9.2 Web application framework ... 46

Bibliography... 49

 Rec. ITU-T J.1203 (05/2020) 1

Recommendation ITU-T J.1203

The specification of a smart TV operating system

1 Scope

In accordance with the requirements defined in [ITU-T J.1201] and based on the viewpoint of

[ITU-T J.1202], this Recommendation provides specification for administrations and entities who

intend to implement a smart TV operating system.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the

currently valid ITU-T Recommendations is regularly published. The reference to a document within

this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.770] Recommendation ITU-T H.770 (2015), Mechanisms for

service discovery and selection for IPTV services.

[ITU-T J.205] Recommendation ITU-T J.205 (2012), Requirements for an

application control framework using integrated broadcast

and broadband digital television.

[ITU-T J.295] Recommendation ITU-T J.295 (2012), Functional

requirements for a hybrid cable set-top box.

[ITU-T J.1026] Recommendation ITU-T J.1026 (2019), Downloadable

conditional access system for unidirectional networks –

Requirements.

[ITU-T J.1201] Recommendation ITU-T J.1201 (2019), Functional

requirements of a smart TV operating system.

[ITU-T J.1202] Recommendation ITU-T J.1202 (2019), The architecture of a

smart TV operating system.

[ECMA 262] Recommendation ECMA-262 (2015), ECMAScript 2015

Language Specification.

[W3C CSS2.1] Recommendation W3C CSS2.1 (2011), Cascading Style

Sheets Level 2 Revision 1 (CSS 2.1) Specification.

[W3C DOM2 Core] Recommendation W3C DOM2 Core (2000), Document

Object Model (DOM) Level 2 Core Specification.

[W3C DOM2 Events] Recommendation W3C DOM2 Events (2000), Document

Object Model (DOM) Level 2 Events Specification.

[W3C DOM2 HTML] Recommendation W3C DOM2 HTML (2003), Document

Object Model (DOM) Level 2 HTML Specification.

[W3C DOM2 Style] Recommendation W3C DOM2 Style (2000), Document

Object Model (DOM) Level 2 Style Specification.

2 Rec. ITU-T J.1203 (05/2020)

[W3C DOM2 Traversal and Range] Recommendation W3C DOM2 Traversal and Range (2000),

Document Object Model (DOM) Level 2 Traversal and

Range Specification.

[W3C DOM2 Views] Recommendation W3C DOM2 Views (2000), Document

Object Model (DOM) Level 2 Views Specification.

[W3C DOM3 Core] Recommendation W3C DOM3 Core (2004), Document

Object Model (DOM) Level 3 Core Specification.

[W3C HTML5] Recommendation W3C HTML5.2 (2017), A vocabulary and

associated APIs for HTML and XHTML.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 Integrated broadcast and broadband (IBB) DTV service [ITU-T J.205]: A service that

simultaneously provides an integrated experience of broadcasting and interactivity relating to media

content, data and applications from multiple sources, where the interactivity is sometimes

associated with broadcasting programmes.

3.1.2 second screen [ITU-T J.295]: This refers to a display screen of mobile phones or other

network-enabled devices that show services associated with the television screen.

3.1.3 television operating system (TVOS) [ITU-T J.1201]: A system software running on the

IBB-capable cable STB and TV which is capable of managing hardware, software and data

resources of IBB-capable cable STB and TV, supporting and controlling the application software

execution.

3.1.4 rich execution environment (REE) [ITU-T J.1201]: A hugely extensible and versatile

operating environment which brings flexibility and capability.

3.1.5 trusted execution environment (TEE) [ITU-T J.1201]: A secure area of the main

processor in an IBB-capable cable STB and TV to ensure that sensitive data is stored, processed and

protected in an isolated and trusted environment. It offers isolated safe execution of authorized

security software providing end-to-end security by enforcement of protected execution of

authenticated code, confidentiality, authenticity, privacy, system integrity and data access rights.

3.1.6 secure OS [ITU-T J.1202]: An operating system running in a trusted execution

environment (TEE) which is used to trigger secure execution of applications within the TEE.

3.1.7 downloadable conditional access system (DCAS) [ITU-T J.1026]: A conditional access

(CA) system that supports all the features of legacy conditional access and provides a CA-neutral

mechanism to securely download CA client image and switch CA terminals without changing

hardware through either a broadcasting or a two-way network.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 DRM App: An application running in a television operating system (TVOS) that executes

none-secure sensitive digital rights management (DRM) functionalities such as communication with

DRM head end and retrieving content authorization. TVOS can manage multiple DRM applications

to support different DRM services from different service providers.

 Rec. ITU-T J.1203 (05/2020) 3

3.2.2 DRM TApp: A trusted application running in a television operating system (TVOS) trusted

execution environment that executes secure digital rights management (DRM) functionalities such

as content decryption, secure video path and trust chain verification.

3.2.3 DCAS App: An application running in a television operating system (TVOS) that executes

none-secure sensitive downloadable conditional access system (DCAS) functionalities such as

setting a filter to get an entitlement control message (ECM)/entitlement management message

(EMM) packet, known as an ECM/EMM packet from a transport stream, and sending the

ECM/EMM to the DCAS TApp. TVOS can manage multiple DCAS applications to support

different DCAS services from different service providers.

3.2.4 DCAS TApp: A trusted application running in a television operating system (TVOS)

trusted execution environment that executes secure downloadable conditional access system

(DCAS) functionalities such as ECM/EMM packet decryption and signature verification.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

API Application Programming Interface

App Application

ATV Analogue Television

AV Audio Video

AVSource Audio and Video stream Source

CA Certification Authority

CSS Cascading Style Sheets

DASH Dynamic Adaptive Streaming over HTTP

DB Database

DCAS Downloadable Conditional Access System

DLNA Digital Living Network Alliance

DOM Document Object Model

DRM Digital Rights Management

DT Device Tree

DTV Digital Television

DVB Digital Video Broadcasting

ECM Entitlement Control Message

EIT Event Information Table

EMM Entitlement Management Message

EPG Electronic Programme Guide

ES Elementary Stream

HAL Hardware Abstraction Layer

HCI Human-Computer Interaction

HLS HTTP Live Streaming

4 Rec. ITU-T J.1203 (05/2020)

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IPQAM Internet Protocol Quadrature Amplitude Modulation

JNI Java Native Interface

JS Java Script

MPEG Moving Picture Experts Group

NIT Network Information Table

OS Operating System

OSD On-Screen Display

OTT Over-The-Top

PAT Programme Association Table

PCM Pulse Code Modulation

PID Packet Identifier

PMT Programme Map Table

PPV Pay-Per-View

PSI Programme Specific Information

REE Rich Execution Environment

SDT Service Descriptor Table

SI Service Information

TApp Trusted Application

TDT Time Date Table

TEE Trusted Execution Environment

TOT Time of Transmission

TS Transport Stream

TVM TV Virtual Machine

TVOS Television Operating System

UPnP Universal Plug and Play

VOD Video On Demand

5 Conventions

In this Recommendation:

The phrase "is required to" indicates a requirement which must be strictly followed and from

which no deviation is permitted if conformity with this Recommendation is to be claimed.

The phrase "is recommended" indicates a requirement which is recommended but which is not

absolutely required. Thus this requirement need not be present to claim conformity.

The phrase "is prohibited from" indicates a requirement which must be strictly followed and from

which no deviation is permitted if conformity with this Recommendation is to be claimed.

 Rec. ITU-T J.1203 (05/2020) 5

The phrase "can optionally" indicates an optional requirement which is permissible, without

implying any sense of being recommended. This term is not intended to imply that the vendor's

implementation must provide the option and the feature can be optionally enabled by the network

operator/service provider. Rather, it means the vendor may optionally provide the feature and still

claim conformity with this Recommendation.

In the body of this Recommendation and its annexes, the words shall, shall not, should, and may

sometimes appear, in which case they are to be interpreted, respectively, as is required to, is

prohibited from, is recommended, and can optionally. The appearance of such phrases or keywords

in an appendix or in material explicitly marked as informative are to be interpreted as having no

normative intent.

6 Reference architecture of the TVOS software

According to the architecture defined in clause 6 of [ITU-T J.1202], TVOS software is

recommended to be implemented with the following architecture as defined in [b-GY/T 303.1] and

shown in Figure 1.

Figure 1 – Reference architecture of the TVOS software

The television operating system (TVOS) kernel layer and the TVOS HAL should be implemented

as defined in [ITU-T J.1202].

6 Rec. ITU-T J.1203 (05/2020)

The TVOS functional component layer is recommended to provide service component modules

such as media processing, digital television (DTV), digital rights management (DRM),

downloadable conditional access system (DCAS), smart home, human-computer interaction (HCI),

terminal control, etc.

The TVOS execution environment layer is recommended to implement the interpretative execution

environment of the application software and application adaptation software and support the loading

and running of the Java and web applications. The execution environment of Java applications is a

TV virtual machine (TVM) and that of web applications is Web Runtime.

The TVOS application framework layer is recommended to provide application programming

interfaces (APIs) to Java and web applications, so that Java and web applications can be adapted to

the interface encapsulation of functional component modules. The Java application framework

contains the TVOS Java application programming interface unit and is compatible with the

interface units of third-party Java applications. The web application framework contains the TVOS

Web application programming interface units.

7 TV related service components

7.1 DTV component

7.1.1 Functions

The DTV component should implement the following functions:

– Implement the searching, filtering, obtaining, parsing, storage, and management of the

programme specific information/service information (PSI/SI) data of various DTV and

cable protocols including those used for interactive services.

– Control the tuning and demodulation of demodulation devices and provide functional

interfaces and capability support for applications related to DTV live programmes.

– Collaborate with the media engine, DCAS, and DRM components to assist related

applications in implementing DTV services such as live programme, programme guide, TV

teletext advertisement, video on demand (VOD), programme recording and time-shifting,

interactive services, and channel preview.

The DTV component should support parsing of the protocols and tables, supporting the cable,

terrestrial wireless, and satellite multi-mode DTV terminals.

7.1.2 Component implementation and invocation mode

The DTV component should be implemented according to the component model. Figure 2 shows

the component invocation mode.

 Rec. ITU-T J.1203 (05/2020) 7

Figure 2 – Component implementation and invocation mode of the DTV component

7.1.3 Functional architecture and modules

The server of the DTV component consists of the tuner, DataEngine, scan, DB, electronic

programme guide (EPG), and device tree (DT) modules. Figure 3 shows the functional architecture

of the DTV component.

Figure 3 – Functional architecture of the DTV component

The tuner module controls the channel tuning and demodulation of the cable, terrestrial and satellite

broadcast demodulators.

The DataEngine module filters and buffers the section data in the currently receiving transport

stream and manages lower-layer filters and packet identifier (PID) conflict of the transport stream

(TS) packets.

The scan module parses the section data in the basic tables related to the audio and video broadcast

programmes and obtains the table information related to the PSI/SI programmes such as network

information table (NIT), programme association table (PAT), programme map table (PMT), and

service descriptor table SDT. The scan module supports multiple searching modes including

automatic search, single-frequency manual search, and frequency-based manual search.

The DB module is a database module and saves the table information related to the PSI/SI

programmes such as NIT, PAT, PMT, and SDT and provides the query service for other software

modules.

8 Rec. ITU-T J.1203 (05/2020)

The EPG module parses the section data in the EIT programme event information table, generates

the EPG information data, and provides the query service for other software modules.

The DT module parses the section data in the tables related to the time date table (TDT) and time of

transmission (TOT) time, generates the time data, and provides the query service for other software

modules.

7.1.4 Interfaces

The DTV component provides interfaces for other software modules including tuner control,

programme search, PSI/SI data obtaining, EPG data obtaining, and programme information query

by using the client. These interfaces are functional component interfaces.

7.1.5 Collaboration with other software modules

The DTV component interacts with the media processing component, DCAS component, and

functional units related to different TVOS interpretative application environments. Figure 4 shows

the relationship between the DTV component and other software modules.

Figure 4 – Relationship between the DTV component and other software modules

7.2 Media engine component

7.2.1 Functions

The media engine functional component module processes various media formats and protocols and

collaborates with the lower-layer hardware to implement the playing, recording, and dispatching of

various media data of cable DTV and video on demand, over-the-top (OTT), gaming audio and

video, and local media files.

The cable DTV function supports playing of the unscrambled and scrambled DTV live streams and

provides the playing control functions such as channel selection as well as volume and display size.

The cable video on demand function supports playing of the VOD streams and provides the playing

control functions such as programme playing, pause, resume, stop, fast forward, fast rewind, time

selection, and volume.

The OTT function supports playing of the non-encrypted and encrypted OTT streams and provides

the playing control functions such as programme playing, pause, resume, stop, fast forward, fast

rewind, time selection, and volume.

 Rec. ITU-T J.1203 (05/2020) 9

The local media file playing function supports playing of local media files in various audio and

video formats and provides the playing control functions such as programme playing, pause,

resume, stop, fast forward, fast rewind, time selection and volume.

7.2.2 Component implementation and invocation mode

The media engine component should be implemented according to the component model. Figure 5

shows the component invocation mode.

Figure 5 – Implementation and invocation mode of the media engine component

7.2.3 Basic architecture and mechanism

The server of the media engine component should be implemented by using the plug-in-based

pipeline full media processing architecture, including the player manager, media players such as the

DVBPlayer, VODPlayer, OTTPlayer, and LocalPlayer, media playing pipeline manager, and player

pipeline modules such as the DVBPipeline, VODPipeline, OTTPipeline, and LocalPipeline.

Figure 6 shows the functional architecture of the media engine component.

10 Rec. ITU-T J.1203 (05/2020)

Figure 6 – Functional architecture of the media engine component

The player manager implements player management functions such as player registration, creation,

destruction, type selection, and status management, and provides media playing services for other

software modules.

The DVBPlayer, VODPlayer, OTTPlayer, and LocalPlayer implements the playing control logic of

the corresponding media according to the related media playing and control protocols.

The media playing pipeline manager manages the plug-in elements as well as pipeline setup and

running. A plug-in element is a plug-in unit responsible for a single media processing function.

The plug-in element types include Source, Typefind, Demux, ProtocolParse, VideoDecode,

VideoSink, AudioDecode, and AudioSink.

The DVBPipeline, VODPipeline, OTTPipeline, and LocalPipeline implements the media playing

functions of the corresponding media player by combining the plug-in elements according to

instructions of the media playing pipeline manager.

The pipeline selects appropriate plug-in elements from the Source, Typefind, Demux,

ProtocolParse, VideoDecode, VideoSink, AudioDecode, and AudioSink elements and places them

on the corresponding pipeline nodes according to the requirements of the media playing pipeline

manager. Figure 7 shows the structure of the player pipeline.

 Rec. ITU-T J.1203 (05/2020) 11

Figure 7 – Structure of the player pipeline

In the media engine component, the player manager controls the media playing pipeline manager

through the corresponding media player to select related plug-in elements, sets up the corresponding

media playing pipeline, and provides media playing services for the corresponding software

modules that request media playing.

The media engine component has a media player corresponding to each type of media playing

request. The media playing functions are implemented through the media player pipeline according

to the playing and control logic of the corresponding media player.

The media players are extensible and the plug-in elements used to build the media player pipeline

also are extensible to support full media parsing and playing.

The media engine component schedules and manages resources such as players according to

resource management strategies.

7.2.4 Core functional modules

7.2.4.1 Basic plug-in elements

The basic plug-in element types include Source, Typefind, ProtocolParse, Demux, VideoDecode,

VideoSink, AudioDecode, and AudioSink.

a) The Source element obtains media streams, including local storage, HTTP server and so on.

b) The Typefind element identifies the encapsulation format by MIME type of the Source

element and determines the appropriate Demux type.

c) The ProtocolParse element parses various media protocols and contains the HLS Parse,

DASH Parse, and other elements.

d) The Demux element demultiplexes the media data, extracts the audio, video, and embedded

subtitle ESs, and separately transfers them to the decoding plug-in element for decoding.

e) The VideoDecode element implements hardware decoding on the video ES by invoking the

HAL interfaces.

f) The VideoSink element outputs decoded video frames through the hardware abstraction

layer (HAL) interface.

g) The AudioDecode element implements hardware decoding on the audio ES by invoking the

HAL interfaces.

h) The AudioSink element outputs decoded pulse code modulation (PCM) audio frames

through the HAL interface.

12 Rec. ITU-T J.1203 (05/2020)

7.2.4.2 Player pipeline manager

The player pipeline manager manages the plug-in elements as well as pipeline setup and running.

The player pipeline manager is capable of registering and identifying type of plug-in elements and

allows selection of appropriate plug-in elements to media data.

The player pipeline manager supports automatic progressive pipeline setup. That is, the pipelines

setup starts from creating the Source element. Then an appropriate plug-in element is selected as the

node element based on the created Source element and the player capability. The element of the

next-level node is determined based on the previous-level node element and the player capability. In

this way, the entire player pipeline is constructed progressively.

The player pipeline manager manages the execution of the player pipeline through the operations

and control of the control flow, data flow, and state machine as well as clock priority selection.

7.2.4.3 DVBPlayer functional module and DVBPipeline

As a functional module that implements DTV programmes in the media engine component, the

DVBPlayer supports playing of the unscrambled and scrambled live streams and provides the

playing control functions such as channel selection as well as volume and display size.

The DVBPlayer functional module contains sub-modules such as tuning, programme information

obtaining, programme descrambling and programme playing. Figure 8 shows the relationship

between the framework of the functional module and other modules.

Figure 8 – The DVBPlayer functional module framework and its relationship

with other functional modules

The tuning submodule calls interfaces related to the tuner module of the DTV component and tunes

to the designated live TV programme channel through the DTV component.

The programme information obtaining submodule calls interfaces related to the DB module of the

DTV component and obtains the programme information about the live TV programme through the

DTV component.

The programme descrambling submodule calls interfaces related to the DCAS component and

transfers the scrambling information of the live TV programme to the DCAS component to

descramble the live TV programme.

The programme playing submodule collaborates with the media playing pipeline manager to build

the DVBPipeline through combination of the plug-in elements related to the media engine, realizing

the function of playing live TV programmes.

 Rec. ITU-T J.1203 (05/2020) 13

The DVBPipeline implements media playing functions under the control of the media playing

pipeline manager in response to the control of the DVBPlayer. Figure 9 shows the structure of the

DVBPipeline.

Figure 9 – Structure of the DVBPipeline

The DVBPipeline includes DVBSource, DVBDemux, VideoDecode, AudioDecode, VideoSink,

AudioSink elememts. The DVB Source is a virtual element to make the pipeline complete and does

not generate data. DVBDemux gets element streams and sends to VideoDecode and AudioDecode.

VideoDecode and AudioDecode elements decode the element stream to video frame and audio

frame. VideoSink and AudioSink elements get and render the video and audio frames.

7.2.4.4 VODPlayer functional module and VODPipeline

As a functional module that implements DTV on demand and playing in the media engine

component, the VODPlayer supports the functions of playing of VOD streams and providing the

related control functions such as programme playing, pause, resume, stop, fast forward, fast rewind,

time selection and volume setting.

The VODPlayer functional module contains sub-modules such as frequency tuning, programme

information obtaining, signalling interaction protocol processing, and programme playing.

Figure 10 shows the relationship between the framework of the functional module and other

modules.

14 Rec. ITU-T J.1203 (05/2020)

Figure 10 – The VODPlayer functional module framework and its relationship

with other functional modules

The frequency tuning submodule invokes interfaces related to the tuner module of the DTV

component and tunes the frequency of the on-demand programme channel through the tuner

module.

The programme information obtaining submodule invokes interfaces related to the DB module of

the DTV component and obtain the programme information about the on-demand programme

through the DB module.

The signalling interaction protocol processing submodule implements signalling interaction with the

front-end DTV VOD system and control the programme playing submodule to play audio on

demand streams and VOD streams based on the Internet protocol quadrature amplitude modulation

(IPQAM) channel or IP broadband channel.

The programme playing submodule collaborates with the media playing pipeline manager to build

the VODPipeline through combination of the plug-in elements related to the media engine,

implementing the function of playing on demand TV programmes.

VODPipeline supports IPQAM channel and IP channel.

Figure 11 shows the structure of the VODPipeline.

Figure 11 – Structure of the VODPipeline

The IPQAM channel pipeline implements the the function of playing VOD streams using IPQAM

channel and includes DVBSource, DVBDemux, VideoDecode, AudioDecode, VideoSink,

 Rec. ITU-T J.1203 (05/2020) 15

AudioSink elememts. The DVBSource is a virtual element to make the pipeline complete and does

not generate data. DVBDemux gets element streams and sends to VideoDecode and AudioDecode.

VideoDecode and AudioDecode elements decode the element stream to video frame and audio

frame. VideoSink and AudioSink elements get and render the video and audio frames.

The IP channel pipeline implements the the function of playing VOD streams using IP channel and

includes AVSource, TSDemux, VideoDecode, AudioDecode, VideoSink, AudioSink elememts.

The AVSource gets the VOD stream in TS or ES format. TSDemux is loaded in case of TS format

VOD stream. TSDemux demultiplexes the TS stream into element streams and sends element

streams to VideoDecode and AudioDecode. VideoDecode, AudioDecode, VideoSink and

AudioSink elements implements the same as in IPQAM channel mode pipeline.

7.2.4.5 OTTPlayer functional module and OTTPipeline

OTTPlayer is a functional module that implements the Internet TV playing function in the media

engine component and supports the function of playing on demand streams based on the streaming

media protocols such as HTTP live streaming (HLS) and MPEG DASH and provides the related

control functions such as programme playing, pause, resume, stop, fast forward, fast rewind, time

selection and audio volume control.

OTTPlayer functional module consists of programme decryption and playing sub-module,

Figure 12 shows the OTTPlayer functional module framework and its relationship with other

functional modules.

Figure 12 – The OTTPlayer functional module framework and its relationship

with other functional modules

The programme decryption sub-module implements programme decryption by invoking related

interfaces of the DRM functional module, and sending the encrypted information of the encrypted

on demand programme to the DRM functional module and getting the respective decrypted

information from the DRM functional module.

The programme playing sub-module implements on demand programme playing functions by

establishing OTTPipeline through coordinating with player pipeline manager and combining with

related plugin elements of the media engine.

OTTPipeline supports playing unencrypted stream and encrypted stream.

OTTPipeline for playing unencrypted stream includes Source, TypeFind, ProtocolParse, Demux,

AudioDecode, VideoDecode, AudioSink and VideoSink elements.

Figure 13 shows the structure of the OTTPipeline for unencrypted stream.

16 Rec. ITU-T J.1203 (05/2020)

Figure 13 – The structure of the OTTPipeline for unencrypted stream

Source element gets media streaming files from the Internet, and passes them to TypeFind.

TypeFind element analyses the received streaming files from the Source element, and selects the

right ProtocolParse element based on the result of the analysis in order to establish the appropriate

OTTPipeline. ProtocolParse element can analyse streaming media protocols such as HLS and

DASH, and parses the received streaming file from the TypeFind element, and sends the parsed

streaming file to Demux element. Demux element processes the demultiplexing of the received

streaming file from the ProtocolParse element, and sends the processed result to AudioDecode and

VideoDecode elements. AudioDecode and VideoDecode elements perform audio and video

decoding respectively, and generate audio and video data frames. AudioSink and VideoSink

elements get audio and video data frames from AudioDecode and VideoDecode elements, and

render them.

OTTPipeline for playing encrypted stream includes Source, TypeFind, ProtocolParse, Demux,

AudioDecode, VideoDecode, AudioSink and VideoSink elements. The AudioDecode and

VideoDecode send encrypted ES to the respective audio decoder and video decoder in the secure

channel.

Figure 14 shows the structure of the OTTPipeline for encrypted stream.

 Rec. ITU-T J.1203 (05/2020) 17

Figure 14 – The structure of the OTTPipeline for encrypted stream

The Source element gets media streaming files from Internet, and passes them to the TypeFind

element. The TypeFind element analyses the encrypted streaming files received from the Source

element, and selects the right ProtocolParse element based on the result of the analysis in order to

establish the appropriate OTTPipeline. The ProtocolParse element can analyse streaming media

protocols such as HLS and DASH, and parses the encrypted streaming file received from the

TypeFind element, and sends the parsed streaming file to the Demux element. The Demux element

processes the demultiplexing of the encrypted streaming data received from the ProtocolParse

element, and sends the processed result to AudioDecode and VideoDecode elements. AudioDecode

and VideoDecode elements send the encrypted streaming data received from the Demux element to

the secure channel, and invoke the DRM functional module to assist the decryption and decoding of

the encrypted streaming data by the related secure hardware and generate audio and video data

frames in the secure channel. AudioSink and VideoSink elements control the rendering of audio and

video data frames in the secure channel.

7.2.4.6 LocalPlayer functional module and LocalPipeline

LocalPlayer functional module implements playing of the local media files in the media engine

component and supports parsing of media files in different formats and provides the related control

functions such as programme playing, pause, resume, stop, fast forward, fast rewind, time selection

and audio volume setting.

Figure 15 shows the LocalPlayer functional module framework and its relationship with other

functional modules.

18 Rec. ITU-T J.1203 (05/2020)

Figure 15 – The LocalPlayer functional module framework and its relationship

with other functional modules

The Local file playing sub-module implements local file playing functions by establishing

LocalPipeline through coordinating with player pipeline manager and combining with related

plugin elements of the media engine.

LocalPipeline includes FileSource, TypeFind, Demux, AudioDecode, VideoDecode, AudioSink and

VideoSink elements. Figure 16 shows the structure of the LocalPipeline.

Figure 16 – The structure of the LocalPipeline

The FileSource element gets local files, and passes them to the TypeFind element. The TypeFind

element analyses the received files from the FileSource element, and selects the right Demux

element based on the result of the analysis in order to establish the appropriate LocalPipeline. The

Demux element processes the demultiplexing of the received file from the TypeFind element, and

sends the processed result to AudioDecode and VideoDecode elements. AudioDecode and

VideoDecode elements perform audio and video decoding respectively, and generate audio and

video data frames. AudioSink and VideoSink elements get audio and video data frames from

AudioDecode and VideoDecode elements and render them.

7.2.5 Interfaces

The media engine component provides interfaces for other software modules in a unified manner

through the component client. The invocation interfaces provided by the component client should

be extended according to the extension requirements of the media player functions. These interfaces

are functional component interfaces.

7.2.6 Collaboration with other software modules

Figure 17 shows the relationship between the media engine component and other software modules.

 Rec. ITU-T J.1203 (05/2020) 19

Figure 17 – Relationship between the media engine component and other software modules

7.3 HTML5 engine component

7.3.1 Functions

The HTML5 engine component implements the following functions:

– Downloading, parsing, rendering, typesetting, presentation, and script execution of

HTML5 web pages.

– Cooperating with the application management component to suspend, abort, and destroy

web applications.

– Cooperating with the window management component to implement the event forwarding

function, such as forwarding the input event.

– Adapting to and invoking other components such as the DTV, DCAS, DRM, media engine,

and HCI components.

– Providing unified HTML5 engine interfaces for Web Runtime and other upper-layer

modules; have the capability of invoking HAL interfaces and other lower-layer modules.

The HTML5 engine component should support HTML5 interface [W3C HTML5], CSS

interface [W3C CSS2.1], JS interface [ECMA 262] and DOM interface [W3C DOM3 Core]

[W3C DOM2 HTML], [W3C DOM2 Core], [W3C DOM2 Events], [W3C DOM2 Style],

[W3C DOM2 Traversal and Range], an [W3C DOM2 Views] and adapt the JS APIs related to the

web application framework, including the TVOS Web application programming interface, DCAS

APIs, and broadcast information service APIs.

7.3.2 Component mplementation and invocation mode

The HTML5 engine component uses the client-server model. The component server implements

page downloading, parsing, rendering, typesetting, presentation, and script execution. The

component client cooperates with the application management component and Web Runtime to

suspend, abort, and destroy applications and manage instances that run on the component server.

The component client also cooperates with the window management component to implement event

forwarding functions such as the input event. Both the server and client can run multiple instances

and these instances run in different process space. Other software modules such as the application

management component and Web Runtime can create different instances that run on the client. Web

Runtime can create multiple different instances that run on the component server. Generally a web

20 Rec. ITU-T J.1203 (05/2020)

application corresponds to an instance that runs on the component server. Figure 18 shows the

implementation and invoke mode of the HTML5 engine component.

Figure 18 – Implementation and invocation mode of the HTML5 engine component

7.3.3 Functional architecture and modules

The server of the HTML5 engine component contains multiple functional modules such as the

ContentShell, ContentBrowser, graphics, network, window, ContentRender, HTML rendering, JS

execution, plug-in, media, font, diagnosis, and database. Figure 19 shows the functional architecture

of the component server.

Figure 19 – Functional architecture of the component server

The ContentShell module provides the HTML5 engine interfaces, which are invoked by Web

Runtime.

 Rec. ITU-T J.1203 (05/2020) 21

The ContentBrowser module receives ContentShell commands, manages message scheduling of the

graphics, network, and window modules, and transfers messages for the ContentRender module.

The ContentRender module manages message scheduling of the HTML rendering, JS execution,

plug-in, media, font, diagnosis, and database modules.

The HTML rendering module loads page resources, parses the content and format, calculates the

layout, and displays the rendering effect.

The JS execution module parses and runs the JS as well as controls and accesses the DOM tree

through the script, implementing dynamic interaction.

The plug-in module manages the plug-ins of the HTML5 engine so that the browser can execute

external programmes in plug-in mode.

The graphics module implements drawing and image compositing. It is recommended to support

hardware acceleration.

The network module downloads various types of resources.

The media module connects to the media engine component to implement the media playing

function of the web page.

The diagnosis module implements the programme crash capture mechanism, supports cross-

platform crash dump, and has capability of performing unified exception analysis.

The window module implements window management, UI event interaction mechanism, and

element display.

The database module manages the database.

7.3.4 Interfaces

Both the server and client of the HTML5 engine component provide external interfaces. The

component server provides the fork, ContentShell, and ContentBrowser interfaces. The component

client provides the input event, window drawing event, and application management interfaces.

The fork interface allows the component server to create running instances.

The ContentShell interface allows the component server to start auto-running services.

The ContentBrowser interface provides the application entry loading function, management

services such as browsing history recording, and user agent configuration service.

The input event interface receives messages of input devices such as the remote control.

The window drawing event interface distributes the drawing, re-drawing, and invalid area events.

The application management interface provides the functionalities to run, pause, interrupt, and

destroy applications.

These interfaces are functional component interfaces.

7.3.5 Collaboration with other software modules

Figure 20 shows the position of the HTML5 engine in the TVOS and its surrounding associated

components.

22 Rec. ITU-T J.1203 (05/2020)

Figure 20 – Collaboration of the HTML5 engine with other software modules

7.4 DRM component

7.4.1 Functions

The DRM component should implement the following functions:

– Manage the registration, deregistration, and running status of DRM App.

– Transfer messages between the media engine component and DRM App and DRM TApp.

– Allow the DRM App, DRM TApp, and media component to collaboratively decrypt

encrypted media streams.

– Provide DRM invocation interfaces for the functional interface units at the application

framework layer and other components at the functional component layer.

7.4.2 Component implementation and invocation mode

The DRM component should be implemented according to the component model. Figure 21 shows

the structure of the components.

Figure 21 – The structure of the DRM components

 Rec. ITU-T J.1203 (05/2020) 23

7.4.3 Functional architecture and modules

The DRM component server consists of the DRM application manager and message manager.

Figure 22 shows the functional architecture.

Figure 22 – Functional architecture of the DRM component

The DRM application manager should manage the DRM App, maintain the DRM App identifier as

well as the mapping between the DRM App and DRM TApp, receive requests from other service

modules in the DRM Server, and execute signature verification, loading, invocation and unloading

of the DRM App.

The message manager should transfer messages between the media engine component and the

DRM App, and the DRM App should transfer the encrypted session key and encrypted content key

which are downloaded from the server to the DRM TApp.

The message manager transfers messages on stream decryption from the media engine component

and/or the DRM App to the DRM TApp. The message manager receives the information about the

encrypted content handling from the media engine component and the content id from the DRM

App, and passes the received information to the DRM TApp. As responses, the message manager

receives information of decryption status and handling of the decrypted data from the DRM TApp,

and passes the received information to the media engine component, and to the DRM App.

7.4.4 Interfaces

The DRM component should provide the following two types of interfaces:

– Decrypting content interface:

 This interface receives the DRM decryption information including content information,

product key information, and encrypted content and is invoked by the media engine

component.

– DRM application interface:

 This interface is used for data interaction between the DRM App and the DRM component.

These interfaces are functional component interfaces.

7.4.5 Collaboration with other software modules

The DRM component should collaborate with relevant functional interface units such as the

application framework layer, component layer, DRM TApp, and media engine component.

Figure 23 shows the collaborative relationship.

24 Rec. ITU-T J.1203 (05/2020)

Figure 23 – Relationship between the DRM component and other software modules

7.5 DCAS component

7.5.1 Functions

The DCAS component should implement the following functions:

– Collaborate with the DTV component to receive and forward the in-band transmission CA

ECM and EMM.

– Collaborate with the network protocol stack module to receive and forward the out-band

transmission CA EMM.

– Provide a message exchange channel for the DCAS App and DCAS TApp.

– Assist the media engine component in implementing message interaction between the

DCAS App and DCAS TApp.

– Register and manage the DCAS App.

– Support query of the CA-related information such as the CA version, chip ID, and

entitlement status, and receive and forward the OSD and fingerprint display information.

7.5.2 Component implementation and invocation mode

The DCAS component should be implemented according to the component model. Figure 24 shows

the component invocation mode.

 Rec. ITU-T J.1203 (05/2020) 25

Figure 24 – Component implementation and invocation mode of the DCAS component

7.5.3 Functional architecture and modules

The DCAS component should contain three functional modules: CA data reception and forwarding,

CA application management, and TApp interface. Figure 25 shows the component architecture.

Figure 25 – Logical architecture of the DCAS component

The CA data reception and forwarding module obtains the ECM and EMM data from the DTV

component or network protocol stack module according to the received DTV descrambling

parameter information, and then forwards the obtained data to the DCAS App.

The TApp interface module interfaces with the DCAS TApp and provides a message exchange

channel between the DCAS App and DCAS TApp.

The CA application management module implements the following functions:

– Manage the registration and deregistration of the DCAS application.

– Match the encrypted media flow with the DCAS application according to the CAS

identifier.

– Receive the DTV descrambling parameters from the media engine and forward them to the

matched DCAS application. The parameters include the DTV programme video stream

26 Rec. ITU-T J.1203 (05/2020)

identity, audio stream identity, CA application identity, ECM identity, EMM identity, and

stream path.

– Query the CA-related information such as the CA version, chip ID, and entitlement status,

and receive and forward the OSD and fingerprint display information.

7.5.4 Interfaces

The DCAS component should provide the following two types of interfaces:

– Descrambling operation notification interface:

 This interface receives the DCAS descrambling notification information (including starting

descrambling and stopping descrambling notification) and is invoked by the media engine

component.

– CA application interface:

 This interface is used for data interaction between the DCAS App and the DCAS

component.

These interfaces are functional component interfaces.

7.5.5 Collaboration with other software modules

Figure 26 shows the relationship between the DCAS component and other components.

Figure 26 – Relationship between the DCAS component and other components

The media engine component needs to invoke the descrambling operation notification interface of

the DCAS component.

The DCAS App needs to invoke the CA application interface of the DCAS component through the

functional interface units related to TVOS Java application programming interface or TVOS Web

application programming interface.

The DCAS component needs to rely on the interfaces related to DTV component data obtaining and

interfaces of the TEE client HAL module.

 Rec. ITU-T J.1203 (05/2020) 27

7.6 Smart home component

7.6.1 Functions

The smart home component should implement the following functions:

– Identify smart home devices, establish connections, and control the devices.

– Provide interfaces to convert and adapt to third-party smart home interconnection protocols.

These interfaces support the extension of third-party smart home interconnection protocols

and manage smart home devices.

– Configure Wi-Fi network parameters for smart home devices.

– Support third-party smart home interconnection protocols, network parameter configuration

protocols, and standard Bluetooth protocols.

7.6.2 Component implementation and invocation mode

The smart home component should be implemented according to the component model. Figure 27

shows the component invocation mode.

Figure 27 – Component implementation and invocation mode of the smart home component

7.6.3 Functional architecture and modules

The smart home component consists of the device configuration module, smart home management

module, and protocol conversion and adaptation module. Figure 28 shows the structure.

Figure 28 – Architecture of the smart home component

28 Rec. ITU-T J.1203 (05/2020)

The device configuration module should configure the network access parameters for smart home

devices based on network parameter configuration protocols.

The smart home management module should identify, connect, and control smart home devices.

This module supports third-party smart home interconnection protocols and related secure

interconnection functions. This module also provides other software modules with invocation

interfaces to control smart home devices.

The protocol conversion and adaption module should provide interfaces used to convert and adapt

third-party smart home interconnection protocols. These interfaces support the extension of third-

party smart home interconnection protocols.

7.6.4 Interfaces

Each module in the smart home component provides its own interface to work together with other

software modules or components as shown in Figure 28:

a) Device network access interface of the smart home component: This interface configures

network parameters for the Wi-Fi or Bluetooth smart home devices.

b) Device management interface of the smart home component: This interface manages smart

home devices.

c) Protocol conversion and adaptation interface of the smart home component: This interface

converts and adapts the third-party smart home interconnection protocols for other software

modules.

These interfaces are functional component interfaces.

7.7 HCI component

7.7.1 Functions

The main objective of HCI component is to manager TVOS input devices such as remote controller,

mouse, keyboard, game handle, and smartphone. It provides unified management and adaptation for

different human-computer interaction devices to access TVOS with customized API, and thus to

enhance user experience of human-computer interaction by making the application more convenient

to access all kinds of input devices.

The first function of HCI component is to realize the adaptation of all kinds of input devices. The

second function is to realize information encapsulation and transportation for various input

information including key message, voice message, sensor message, game handle message, virtual

device control message, etc.

HCI component should support following scenarios:

a) The TVOS terminal is controlled by universal input devices such as remote controller,

mouse and keyboard.

b) The TVOS terminal is controlled by voice input devices such as voice remote control and

microphone.

c) The TVOS terminal is controlled by game handles.

d) The TVOS terminal is controlled by smart terminals such as smart phone, smart speaker.

Figure 29 shows HCI component scenarios.

 Rec. ITU-T J.1203 (05/2020) 29

Figure 29 – Scenarios of HCI component

7.7.2 Component Implementation and Invocation Mode

The HCI component should be implemented according to the component model. Figure 30 shows

the component invocation mode.

Figure 30 – Component implementation and invocation mode of the HCI component

7.7.3 Functional architecture and modules

The HCI component is a system service component and activated when the TVOS system is started.

HCI server consists of key message processing, voice message processing, sensor message

processing, game handle message processing and virtual input message processing sub-modules.

Figure 31 shows the structure.

30 Rec. ITU-T J.1203 (05/2020)

Figure 31 – HCI server module

The game handle message processing module is responsible for processing data from game handles.

The messages from game handles includes key messages, voice messages and sensor messages.

The virtual input message processing module is responsible for processing data from remote smart

terminals such as smart phone, smart speaker. Remote smart terminals can send different kinds of

messages such as key message and voice message to TVOS terminal.

The key message processing module is responsible for processing remote controller, keyboard and

mouse data from universal input devices, and also processing virtual keyboard and mouse data from

the game handle processing module and the virtual input message processing module.

The voice message processing module is responsible for processing the voice data from voice input

devices such as voice remote control and microphone. It supports the integration of different

vendors' voice message recognition engines.

The sensor message processing module is responsible for processing virtual sensor data from the

game handle processing module and the virtual input message module.

7.7.4 Interfaces

The HCI component provides key message interface, voice message interface, sensor message

interface, game handle message interface and virtual input message interface for other software

modules.

a) key message interface:

 The HCI component provides the interface to the application framework layer to send key

messages to the application.

 Rec. ITU-T J.1203 (05/2020) 31

b) voice message interface:

 The HCI component provides the interface to the application framework layer to send voice

messages to the application.

c) sensor message interface:

 The HCI component provides the interface to the application framework layer to send

sensor messages to the application.

d) game handle message interface:

 The HCI component provides the interface to the application framework layer to send game

handle messages to the application.

e) virtual input message interface:

 The HCI component provides the interface to the application framework layer to send

virtual input messages to the application, and also provides the interface to other

components to inject virtual input messages.

7.7.5 Collaboration with other software modules

The HCI component supports collaboration with the second screen interaction component, smart

home component, and HTML5 engine component, and provides invocation interfaces for different

applications through the functional unit software modules at the application framework layer.

Figure 32 shows the collaboration between the HCI component and other software modules.

Figure 32 – Collaboration between the HCI component and other software modules

a) HCI component and Application:

 HCI component interacts with Java APP through Java functional interface unit and interacts

with Web APP through Web functional interface unit to provide all kinds of input

messages.

b) HCI component and HTML5 engine component:

 The HCI component provides keyboard and mouse events to HTML5 engine component.

32 Rec. ITU-T J.1203 (05/2020)

c) HCI component and second-screen interaction component:

 HCI component receives messages from second-screen interaction component, converts the

messages to virtual input messages and sends them to the application.

d) HCI component and smart home component:

 HCI component interconnects and interoperates with various smart terminals through

interfaces provided by smart home component.

7.8 Second screen interaction component

7.8.1 Functions

The second screen interaction component should control content delivery, play, and present

multimedia content including graphics, video, and audio among devices such as the mobile phone,

tablet, and TV and support protocols for cross-device communication such as universal plug and

play (UPnP) and digital living network alliance (DLNA), implementing cross-device screen control.

7.8.2 Component implementation and invocation mode

The second-screen interaction component should be implemented according to the component

model. Figure 33 shows the component invocation mode.

Figure 33 – Model of the second screen interaction component

7.8.3 Functional architecture and modules

The second-screen interaction component contains the device detection module, device connection

module, device control module, and cross-screen playing and control module, as shown in

Figure 34.

 Rec. ITU-T J.1203 (05/2020) 33

Figure 34 – Functional architecture of the second-screen interaction component

The device discovery module proactively discovers other devices or is discovered by other devices.

This module stores information of the discovered devices, provides query interfaces for other

software modules, and supports protocols such as UPnP.

The device connection module connects devices, receives connection status change messages of

cross-screen devices, obtains capabilities of connected devices, and supports protocols such as

UPnP.

The device control module implements cross-screen control functions, including receiving and

sending cross-device key control instructions, and service control instructions to/from other devices.

These service instructions can include application startup and audio volume configuration.

Footnote: When presenting a TV programme and an application initiated by a second-screen device,

a proper combination between the TV programme and the application should be respected.

The cross-screen playing and control module implements remote playing of local media files and

locally playing of remote media files such as images, audio, and video. The cross-screen playing

and control module should support protocols such as DLNA.

7.8.4 Interfaces

The second-screen interaction component provides the device discovery interface, device

connection interface, cross-screen control interface, and cross-screen media playing interface. These

interfaces are functional component interfaces.

7.8.5 Collaboration with other software modules

The device control module of the second-screen interaction component is capable of receiving

cross-device key control instructions. This function requires invocation of the HCI component to

34 Rec. ITU-T J.1203 (05/2020)

inject virtual keys. Add media component, application management component and system setting

component.

7.9 Terminal control component

7.9.1 Functions

The terminal control component should parse and encapsulate packets for query, count, configure,

monitor, and report the information and parameters of the IBB capable cable STB and TV,

including restoring factory settings, configuring terminal restart, triggering software upgrade, and

performing network diagnosis, such as TR069 as defined in Amendment 2 of [ITU-T H.770].

The terminal control component should implement the following functions:

a) Parse and encapsulate packets for query, count, configure, monitor, and report the

information and parameters of the IBB capable cable STB and TV.

b) Query the software, hardware, network, application, and CA card information of terminals,

and report the query result of related information in a timely manner.

c) Configure the control and management parameters of terminal functions, including the

parameters that control the enabling, disabling, scheduled startup, and scheduled shutdown

of related functions as well as parameters that configure network diagnosis triggering,

terminal status alarm, and network.

d) Control terminal operations such as software update. In some cases, factory setting

restoration, application cache clearing, and system restart can be supported.

e) Proactively report the system event information according to preset conditions and interval.

f) Register and deregister terminal control App and control its running state.

g) Verify the digital signature of information sent from the terminal control App. Only the

App that passes the digital signature verification can be executed.

h) Digitally sign the report information.

7.9.2 Component implementation and invocation mode

The terminal control component should be implemented according to the component model.

Figure 35 shows the component invocation mode.

Figure 35 – Implementation and invocation mode of the terminal control component

 Rec. ITU-T J.1203 (05/2020) 35

7.9.3 Functional architecture and modules

The server of the terminal control component consists of the modules for reception and reporting,

digital signature, terminal control protocols, collection and configuration, and control App

management. Figure 36 shows the architecture of the server of the terminal control component.

Figure 36 – Architecture of the terminal control component

The reception and reporting module cooperates with the terminal control App to receive the

terminal control information and report the terminal status information to the headend.

The digital signature module verifies the digital signature of the information sent from the terminal

control App and digitally signs the information to be reported to the headend.

The terminal control protocol module handles various kinds of communications for terminal

management.

The collection and configuration module cooperates with other software modules to query and

configure terminal status parameters.

The control App management module implements the registration and deregistration mechanism of

the terminal control App.

7.9.4 Interfaces

The terminal control component should provide the interfaces for the terminal control App to

transfer the control commands and reported information as well as the registration and

deregistration interfaces through the client. These interfaces are functional component interfaces.

7.9.5 Collaboration with other software modules

The terminal control component should collaborate with all other components to collect data such

as the media engine component, DTV component, smart home component, and application

management component. Figure 37 shows the collaborative relationship between the terminal

control component and other components.

36 Rec. ITU-T J.1203 (05/2020)

Figure 37 – Collaborative relationship between the terminal control

component and other components

7.10 Data collection component

7.10.1 Functions

The data collection component collects and reports information and data related to the advanced

TVOS terminal capability and user behaviour.

NOTE – Collection of user's private data must be compliant to local regulations with consideration of the

operator's need.

7.10.2 Component implementation and invocation mode

The data collection component should be implemented according to the component model.

Figure 38 shows the component invocation mode.

 Rec. ITU-T J.1203 (05/2020) 37

Figure 38 – Implementation and invocation mode of the data collection module

7.10.3 Functional architecture and modules

The data collection server consists of the reception and reporting, data collection, and collection

App management modules. Figure 39 shows the architecture of the data collection component.

Figure 39 – Architecture of the data collection component

The reception and reporting module cooperates with the data collection App to receive data

collection instructions and report the collected data and information.

The data collection module cooperates with other software modules to collect terminal service data.

The collection App control module implements the registration and deregistration mechanism on

the data collection App.

7.10.4 Interfaces

The data collection component should provide information delivery interfaces as well as registration

and deregistration interfaces through the client to the data collection App. These interfaces are

functional component interfaces.

7.10.5 Collaboration with other software modules

The data collection component should collaborate with all other components such as the media

engine component, DTV component, smart home component, and application management

component. Figure 40 shows the collaborative relationship between the data collection component

and other components.

38 Rec. ITU-T J.1203 (05/2020)

Figure 40 – Collaborative relationship between the data collection

component and other components

7.11 Broadcast information service component

7.11.1 Functions

The broadcast information service component should implement the following functions:

– Cooperate with the DTV component to monitor, receive, and process broadcast information

services and support services such as emergency broadcast, information service, and

notification from an STB.

– Monitor the relevant tables and filter the section data in the broadcast information service

through the DTV component.

– Obtain the CA user identifier corresponding to the terminal through the DCAS component

and implement precise reception of information such as the terminal emergency broadcast

and advertisements on the basis of the identifier.

7.11.2 Component implementation and invocation mode

The broadcast information service component should be implemented according to the component

model. Figure 41 shows a model of the broadcast information service component.

 Rec. ITU-T J.1203 (05/2020) 39

Figure 41 – Model of the broadcast information service component

7.11.3 Functional architecture and modules

The broadcast information service component should include the emergency broadcast signalling

information monitoring and forwarding, information service data reception, advertisement content

update and notification from an STB update functional modules. Figure 42 shows the structure.

Figure 42 – Internal logical architecture of the broadcast information service component

The emergency broadcast signalling information monitoring and forwarding functional module

(embd) monitors, receives, and processes emergency broadcast signalling information and

cooperates with other software modules according to requirements of the received signalling

information such as switching the terminal to the required emergency broadcast channel.

The information service data reception functional module (databd) receives and stores the

information service data transferred in the dedicated data broadcast channel.

The advertisement content functional module (ad) updates the advertisement pictures and data, such

as the startup screen, startup advertisements on the main menu advertising space and programme

browsing advertising space, and real-time advertisement update of programme bar information and

volume bar images.

40 Rec. ITU-T J.1203 (05/2020)

The notification functional module (notification) monitors, receives and parses the notification

signalling information and assists other software modules in displaying and updating the notificaton

information on the terminal UI, such as the basic CA module and pay-per-view (PPV) prompt

information.

7.11.4 Interfaces

The broadcast information service component should be accessed through the client of the

broadcast information service component. Table 1 lists the access interfaces provided by the client

of the broadcast information service component.

Table 1 – Interfaces of the broadcast information service component

No. Functional Unit Description

1 Emergency broadcast Emergency broadcast interface for notifying emergency broadcast event

to the relevant application and emergency broadcast information

acquisition.

2 Information service General information service interface for information data acquisition.

3 Advertisement Advertisement data reception, status query and advertisement data

acquisition interface

4 Notification Notification status and data acquisition interface

7.11.5 Relationship with other components

The broadcast information service component needs to interact with the DTV component and

DCAS component. Figure 43 shows the relationship between the broadcast information service

component and other components.

Figure 43 – Relationship between the broadcast information service

component and other components

7.12 ATV component

7.12.1 Functions

The ATV component should implement the programme search, frequency channel management,

channel management and TV-related configuration parameter management functions, and provide

interfaces and capability support for related applications.

NOTE – Analogue cable services may not be needed in some countries.

 Rec. ITU-T J.1203 (05/2020) 41

– Programme search includes automatic search and manual search.

– Frequency channel management includes frequency channel switching and storage.

– Channel management includes channel switching and information obtaining.

– TV input source management includes AV input, component input, VGA input and HDMI

input ports management.

– TV-related configuration parameter management includes configuration and storage of

basic image and sound parameters.

7.12.2 Component implementation and invocation mode

The ATV component should be implemented according to the component model. Figure 44 shows

the component invocation mode of the ATV component.

Figure 44 – Component implementation and invocation mode of the ATV component

7.12.3 Functional architecture and modules

The ATV component consists of the channel manager, source manager, TV setting, and data

manager modules. Figure 45 shows the architecture of the ATV component.

Figure 45 – Logical architecture of the ATV component

The channel manager implements ATV automatic or manual channel search and management.

42 Rec. ITU-T J.1203 (05/2020)

The source manager switches sources such as the ATV channel, AV, VGA, component, and HDMI

sources as requested by other components or application and responds source state query.

The TV setting module configures and obtains TV-related parameters such as the audio, picture,

factory and system parameters. Audio includes sound-related settings such as the volume and sound

mode. Picture includes picture-related settings such as the brightness, contrast, definition and

saturation. Factory includes settings related to the factory mode. System includes system-related

settings such as screen settings and source settings.

The data manager stores information under the control of this component. The stored data includes

audio, picture, factory, system, source and ATV related parameters.

7.12.4 Interfaces

The ATV component provides interfaces through the client of the ATV component. The provided

interfaces are as follows:

a) The source control interface provides channel switching and status query functions.

b) The channel control interface provides frequency channel search and switching functions.

c) The TV setting interface provides picture, audio, system and factory configuration

functions.

7.12.5 Collaboration with other software modules

The ATV component also cooperates with the DTV component to implement TV-related services.

Figure 46 shows the collaborative relationship between the ATV component and other software

modules.

Figure 46 – Relationship between the ATV component and other software modules

The following describes the relationship between the ATV component and other software modules:

The ATV component invokes the player interfaces of the DTV component to switch between the

DTV channels and other channels.

8 Application execution environment

8.1 TVM

8.1.1 Functions

The TVM execution environment should implement the following functions:

– The interpretation and running environment for Java applications and the application

framework-layer functional interface instances invoked by Java applications.

– Loading and running of Java applications.

 Rec. ITU-T J.1203 (05/2020) 43

– Process isolation for Java applications by using of different TVM instance for each Java

application.

– Cooperation with the application management component to manage the life cycle of Java

applications, including starting, pausing, resuming, and restarting Java applications.

– Managing the access rights of Java application resources.

The TVM should be built with Java virtual machine and application model converter. The

application model converter is used to support applications designed to run on third party virtual

machines.

8.1.2 Architecture and implementation mechanism

TVM Runtime consists of the application model converter, byte code converter, Java ME support

module, and Java virtual machine (VM). Figure 47 shows the architecture and implementation

mechanism of TVM Runtime.

Figure 47 – TVM architecture

The application model converter converts third-party Java application package into Java VM

application package. The byte code converter converts the third-party Java byte code into Java VM

byte code.

The Java ME support module configures the related running environment based on the Java

Specification Requests (JSR) specification, provides support for the running of Java ME

Xlet/MIDlet applications, and supports the CDC 1.1.2 [b-CDC], FP 1.1.2 [b-FP], PBP 1.1.2 [b-

PBP], and MIDP 2.0 [b-MIDP].

8.2 Web Runtime

8.2.1 Functions

Web Runtime should implement the following functions:

– Cooperation with the HTML5 engine to manage the life cycle of web applications,

including loading, starting, suspending, and destroying web applications.

– Managing the access rights of web application resources, including checking and requesting

the rights of web applications.

– Application security management functions such as web application isolation.

– Managing web application policies, including application resource allocation and its

lifecycle.

8.2.2 Architecture and implementation mechanism

Web Runtime closely cooperates with the HTML5 engine component to create and provide the

running execution environment for web applications and manage the running, rights, security, and

policy of web applications.

44 Rec. ITU-T J.1203 (05/2020)

Figure 48 shows the architecture and implementation of Web Runtime and the HTML5 engine

component.

Figure 48 – Architecture and implementation of Web Runtime and the

HTML5 engine component

Web Runtime consists of the application running management module, rights management module,

security management module, and policy management module.

The application management module creates instances of the server of the HTML5 engine

component which is shown in Figure 18, forms the basic environment of web applications, loads

web applications to the basic environment, starts web applications, and manages the life cycle of

web applications.

The rights management module manages the access rights of web application resources when web

applications are running.

The security management module implements security management including process isolation and

data isolation.

The policy management module implements policy management for the running modes of web

applications, including exclusively occupying processes for different application configurations or

sharing the HTML5 engine component of the process.

9 Application framework

9.1 Architecture of the Java application framework

The Java application framework consists of the TVOS Java application programming interface units

and extended functional interface units.

9.1.2 TVOS Java application programming interface units

9.1.2.1 Functions

The TVOS Java application programming interface units implement interfaces of various functional

components and modules, provide Java application programming interfaces, and assist applications

in implementing DTV services such as EPG, channel list, and TV programme playing.

The TVOS Java application programming interface units include:

– DAVIC (Digital Audio Video Council) unit;

 Rec. ITU-T J.1203 (05/2020) 45

– Unidirectional broadcast network access unit;

– Bidirectional broadband access unit;

– HCI unit;

– Media processing unit;

– Message management unit;

– DCAS functional interface unit;

– Terminal control data collection unit;

– Broadcast information service unit.

9.1.2.2 Main functional interface units

Main functional interface units are as follows:

a) DAVIC functional interface unit:

 This unit cooperates with the DTV component to process basic objects and exceptions

related to DTV services to support the DTV-related applications. This unit complies with

DAVIC 1.4.1 [b-DAVIC], including MPEG, DVB.

b) Unidirectional broadcast functional interface unit:

 This unit cooperates with the DTV component to access the unidirectional cable DTV

broadcast network, including controlling the frequency, modulation mode, and symbol rate

as well as obtaining information such as the signal strength and quality. This unit also

cooperates with the DTV component to implement basic DTV functions such as

programme search, programme guide, and information search, supporting the running of

DTV-related applications.

c) Bidirectional broadband network functional interface unit:

 This unit cooperates with the network service to implement bidirectional broadband

network access, including connection management.

d) HCI functional interface unit:

 This unit cooperates with the HCI component to implement the user interface. The user

instructions can be obtained by input devices such as the remote control, mouse, keyboard,

and front-panel key as a form of key messages. The information to the user is shown to the

front panel or display screen.

e) Media playing functional interface unit:

 This unit cooperates with the media component to implement media playing functions,

including playing, control, language selection, event processing, and exception processing.

f) Message management functional interface unit:

 This unit is the TVOS message repository for the applications dealing with message event,

message event listener, and message manager. This unit manages and distributes messages

and assists applications in message acquisition.

g) DCAS functional interface unit:

 This unit cooperates with the DCAS component to implement DCAS application

management, ECM/EMM data processing, and DCAS data interaction, assisting DTV

applications in playing encrypted DCAS programmes. Some interfaces may have limitation

for access by the application.

h) Terminal control and data collection unit:

 This unit cooperates with the terminal control component and other components for some

applications to interact with the terminal control and data collection components.

46 Rec. ITU-T J.1203 (05/2020)

i) Broadcast message service unit:

 This unit provides the monitoring, reception, and processing functional interfaces related to

broadcast information services.

9.1.2.3 Relationship of the interfaces and functional components

The framework-layer TVOS Java application programming interface depends on function support

from components at the component layer. The JNI is used to work with appropriate functional

components at the component layer to implement the TVOS Java application programming

interface. Figure 49 shows the interface relationship.

Figure 49 – TVOS Java application programming interface of the framework layer

9.1.3 Extended functional interface units

The TVOS Java application framework layer interface may support third-party Java APIs by

extended functional interface units.

9.2 Web application framework

9.2.1 Architecture of the Web application framework

The web application framework consists of the HTML5 functional interface units and TVOS Web

application programming interface units.

9.2.2 HTML5 functional interface unit

The HTML5 functional interface units support different types of interfaces including HTML5, CSS,

ECMA Script, and DOM.

The HTML5 interface unit should support interfaces defined in the HTML5 standard.

The CSS interface unit should support interfaces defined in the CSS3 standard.

The ECMA Script interface unit should support interfaces defined in the ECMA-262 standard.

The DOM interface unit should support interfaces defined in the DOM2 standard.

 Rec. ITU-T J.1203 (05/2020) 47

9.2.3 TVOS Web application programming interface units

9.2.3.1 TVOS Web application programming interface functions

The TVOS Web application programming interface units implement ECMA Script interface

encapsulation for interfaces of various functional components and modules, provide web

applications with functions as ECMA Script object, and assist applications in implementing DTV

services such as EPG, channel list, and TV programme playing.

The TVOS Web application programming interface units include:

– Unidirectional broadcast network access unit;

– Bidirectional broadband access unit;

– HCI unit;

– Media processing unit;

– Message management unit;

– Application management unit;

– DCAS unit;

– Broadcast information service unit.

9.2.3.2 Functional interface units

The TVOS Web application programming interfaces include the following units:

a) Unidirectional broadcast network access unit, which implements functional modules related

to unidirectional broadcast network access such as DVB tuning and demodulation and

provides the channel management, information search, and programme guide management

functions.

b) Broadcast protocol processing unit, which implements broadcast protocol processing.

c) Bidirectional broadband network access unit, which defines functional modules related to

bidirectional broadband network access control.

d) HCI unit, which implements display and control functions such as device input control and

panel.

e) Media processing unit, which processes multimedia files such as audio, video, and images.

f) Message management unit, which captures and processes system messages and

application-layer messages.

g) Application management unit, which manages and controls application download and

running.

h) DCAS unit, which provides functions related to DCAS applications, such as registration,

filter configuration, and communication with the TApp.

i) Broadcast message service unit, which provides the monitoring, reception, and processing

functional interfaces related to broadcast information services.

9.2.3.3 Relationship of the interfaces and functional components

The TVOS Web application programming interface units implement the client to work with servers

of appropriate functional components.

For example, the DvbTune object needs to interact with the DTV component and the media player

object needs to interact with the media engine component. Figure 50 shows the relationship

between TVOS Web application programming interface and other component interfaces.

48 Rec. ITU-T J.1203 (05/2020)

Figure 50 – Relationship between TVOS Web application programming interface

and other component interfaces

 Rec. ITU-T J.1203 (05/2020) 49

Bibliography

[b-CDC] Java Community Process (2006), JSR218, Connected Device

Configuration (CDC), version 1.1.2.

[b-DAVIC] DAVIC, Digital Audio Video Council 1.4.1.

[b-FP] Java Community Process (2006), JSR219, Foundation Profile 1.1.2.

[b-GY/T 303.1] GY/T 303.1-2016, SmartTV operating system – Part 1: Function and

architecture.

[b-MIDP] Java Community Process (2006), JSR118, Mobile Information Device

Profile 2.0.

[b-PBP] Java Community Process (2006), JSR217, Personal Basis Profile 1.1.2.

Printed in Switzerland
Geneva, 2020

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other

multimedia signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T J.1203 (05/2020) The specification of a smart TV operatingsystem
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Reference architecture of the TVOS software
	7 TV related service components
	7.1 DTV component
	7.1.1 Functions
	7.1.2 Component implementation and invocation mode
	7.1.3 Functional architecture and modules
	7.1.4 Interfaces
	7.1.5 Collaboration with other software modules

	7.2 Media engine component
	7.2.1 Functions
	7.2.2 Component implementation and invocation mode
	7.2.3 Basic architecture and mechanism
	7.2.4 Core functional modules
	7.2.4.1 Basic plug-in elements
	7.2.4.2 Player pipeline manager
	7.2.4.3 DVBPlayer functional module and DVBPipeline
	7.2.4.4 VODPlayer functional module and VODPipeline
	7.2.4.5 OTTPlayer functional module and OTTPipeline
	7.2.4.6 LocalPlayer functional module and LocalPipeline

	7.2.5 Interfaces
	7.2.6 Collaboration with other software modules

	7.3 HTML5 engine component
	7.3.1 Functions
	7.3.2 Component mplementation and invocation mode
	7.3.3 Functional architecture and modules
	7.3.4 Interfaces
	7.3.5 Collaboration with other software modules

	7.4 DRM component
	7.4.1 Functions
	7.4.2 Component implementation and invocation mode
	7.4.3 Functional architecture and modules
	7.4.4 Interfaces
	7.4.5 Collaboration with other software modules

	7.5 DCAS component
	7.5.1 Functions
	7.5.2 Component implementation and invocation mode
	7.5.3 Functional architecture and modules
	7.5.4 Interfaces
	7.5.5 Collaboration with other software modules

	7.6 Smart home component
	7.6.1 Functions
	7.6.2 Component implementation and invocation mode
	7.6.3 Functional architecture and modules
	7.6.4 Interfaces

	7.7 HCI component
	7.7.1 Functions
	7.7.2 Component Implementation and Invocation Mode
	7.7.3 Functional architecture and modules
	7.7.4 Interfaces
	7.7.5 Collaboration with other software modules

	7.8 Second screen interaction component
	7.8.1 Functions
	7.8.2 Component implementation and invocation mode
	7.8.3 Functional architecture and modules
	7.8.4 Interfaces
	7.8.5 Collaboration with other software modules

	7.9 Terminal control component
	7.9.1 Functions
	7.9.2 Component implementation and invocation mode
	7.9.3 Functional architecture and modules
	7.9.4 Interfaces
	7.9.5 Collaboration with other software modules

	7.10 Data collection component
	7.10.1 Functions
	7.10.2 Component implementation and invocation mode
	7.10.3 Functional architecture and modules
	7.10.4 Interfaces
	7.10.5 Collaboration with other software modules

	7.11 Broadcast information service component
	7.11.1 Functions
	7.11.2 Component implementation and invocation mode
	7.11.3 Functional architecture and modules
	7.11.4 Interfaces
	7.11.5 Relationship with other components

	7.12 ATV component
	7.12.1 Functions
	7.12.2 Component implementation and invocation mode
	7.12.3 Functional architecture and modules
	7.12.4 Interfaces
	7.12.5 Collaboration with other software modules

	8 Application execution environment
	8.1 TVM
	8.1.1 Functions
	8.1.2 Architecture and implementation mechanism

	8.2 Web Runtime
	8.2.1 Functions
	8.2.2 Architecture and implementation mechanism

	9 Application framework
	9.1 Architecture of the Java application framework
	9.1.2 TVOS Java application programming interface units
	9.1.2.1 Functions
	9.1.2.2 Main functional interface units
	9.1.2.3 Relationship of the interfaces and functional components

	9.1.3 Extended functional interface units

	9.2 Web application framework
	9.2.1 Architecture of the Web application framework
	9.2.2 HTML5 functional interface unit
	9.2.3 TVOS Web application programming interface units
	9.2.3.1 TVOS Web application programming interface functions
	9.2.3.2 Functional interface units
	9.2.3.3 Relationship of the interfaces and functional components

	Bibliography

