

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T J.1013
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(04/2020)

SERIES J: CABLE NETWORKS AND TRANSMISSION
OF TELEVISION, SOUND PROGRAMME AND OTHER
MULTIMEDIA SIGNALS

Conditional access and protection – Exchangeable
embedded conditional access and digital rights
management solutions

 Embedded common interface for exchangeable
CA/DRM solutions; The virtual machine

Recommendation ITU-T J.1013

 Rec. ITU-T J.1013 (04/2020) i

Recommendation ITU-T J.1013

Embedded common interface for exchangeable CA/DRM solutions;

The virtual machine

Summary

Recommendation ITU-T J.1013 is part of a multi-part deliverable covering the virtual machine for the

embedded common interface (ECI) for exchangeable conditional access/digital rights management

(CA/DRM) solutions specification.

This ITU-T Recommendation is a transposition of the ETSI standard ETSI GS ECI 001-4 and is a

result of a collaboration between ITU-T SG9 and ETSI ISG ECI. A minor modification was done in

clause 7.3.7.1.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T J.1013 2020-04-23 9 11.1002/1000/13574

Keywords

CA, DRM, swapping.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/13574
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T J.1013 (04/2020)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected

by patents, which may be required to implement this Recommendation. However, implementers are cautioned

that this may not represent the latest information and are therefore strongly urged to consult the TSB patent

database at http://www.itu.int/ITU-T/ipr/.

© ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T J.1013 (04/2020) iii

Table of Contents

 Page

1 Scope ... 1

2 References ... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 1

4 Abbreviations and acronyms .. 2

5 Conventions .. 2

6 Conceptual principles ... 3

6.1 The virtual machine as a central processing unit .. 3

6.2 Characteristics of the virtual machine .. 3

6.3 Isolation of individual ECI Clients ... 3

6.4 Specifying the virtual machine ... 4

6.5 ECI Client loader .. 4

7 The virtual machine .. 4

7.1 Execution environment ... 4

7.2 Virtual machine architecture .. 5

7.3 Virtual machine instruction set ... 9

8 Interface between the ECI Client and the ECI Host ... 14

8.1 General principles ... 14

8.2 Error value .. 15

8.3 SYS_EXIT .. 15

8.4 SYS_PUTMSG ... 15

8.5 SYS_GETMSG .. 16

8.6 SYS_HEAPSIZE .. 16

8.7 SYS_STACKSIZE ... 16

8.8 SYS_SYNCCALL .. 16

8.9 SYS_CLIB .. 17

9 Bytecode lifecycle .. 17

9.1 Introduction .. 17

9.2 Loading a new ECI Client into the VM .. 17

9.3 Initialization of the VM .. 18

9.4 The central run loop .. 18

Annex A – VM system resources .. 19

Annex B – Op codes for the VM ... 20

Annex C – Standard C library routines .. 24

C.1 Introduction .. 24

C.2 memmove ... 24

iv Rec. ITU-T J.1013 (04/2020)

 Page

C.3 strcpy .. 24

C.4 strncpy .. 24

C.5 strcat ... 25

C.6 strncat ... 25

C.7 memcmp ... 25

C.8 strcmp ... 25

C.9 strncmp ... 25

C.10 memchr ... 26

C.11 strchr ... 26

C.12 strcspn ... 26

C.13 strpbrk ... 26

C.14 strrchr .. 26

C.15 strspn ... 27

C.16 strstr .. 27

C.17 memset .. 27

Annex D – ECI Client file format .. 28

Appendix I – Areas for further development ... 29

Bibliography... 31

 Rec. ITU-T J.1013 (04/2020) v

Introduction

This ITU-T Recommendation1 is a transposition of the ETSI standard [b-ETSI GS ECI 001-4] and is

a result of a collaboration between ITU-T SG9 and ETSI ISG ECI. A minor modification was done

in clause 7.3.7.1.

The objective of this Recommendation is to facilitate interoperability and competition in electronic

communications services and, in particular, in the market for broadcast and audio-visual devices.

However other technologies are available and may also be appropriate and beneficial depending on

the circumstances in Member States.

This Recommendation describes the concept of a virtual machine (VM) that executes in a sandbox

and offers a range of instructions and System Call functions. The VM is designed to work in a variety

of environments and interoperates with other applications that exist on the same machine using

well-defined interfaces. It provides a combination of support for its own instruction set and a modular

mechanism for the execution of elements written in the Native Code2 of the ECI Host Central

Processing Unit (CPU) and interacts with the hardware and other elements of the ECI Host

environment. This provides the VM with the means to execute a readily renewable code that can

provide a wide range of potential secure applications, including the implementation of CA/DRM

clients.

1 Several areas for further development have been identified in Appendix I.

2 The use of boldface in the text of this Recommendation indicates terms with definitions specific to the

context of the embedded common interface that may differ from common use.

 Rec. ITU-T J.1013 (04/2020) 1

Recommendation ITU-T J.1013

Embedded common interface for exchangeable CA/DRM solutions;

The virtual machine

1 Scope

This Recommendation specifies a virtual machine that is intended for inclusion in the implementation

of digital television receivers and set top boxes, and which is able to provide a secured environment

for executing conditional access kernel or digital rights management client applications. The intention

is to provide a uniform execution environment in which such clients can operate in the knowledge

that minimum ECI Host performance requirements are met, that a standard API is provided to be

used for retrieval of essential security data from content (i.e., encapsulated with content) or via

external networks (e.g., the Internet) and where resources can be accessed from the ECI Host

environment in a standardized way. Refer also to [b-ITU-T J.1010] and [b-ITU-T J.1011].

The presence and use of the VM allows for the exchange of CA/DRM clients at will and for the

support of multiple simultaneous instances of such clients in ECI Hosts. This ensures that users and

operators are not bound to a particular content protection (CP) provider and facilitate the use of

different types of security solutions to suit various content types. For providers of content protection

systems, it ensures the availability of a known execution platform that does not require specific

integration with any and every vendor of ECI Host devices.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T J.1012] Recommendation ITU-T J.1012 (2020), Embedded common interface for

exchangeable CA/DRM solutions; CA/DRM container, loader, interfaces,

revocation.

[ETSI GS ECI 001-4] ETSI GS ECI 001-4 V1.1.1 (2017), Embedded Common Interface (ECI)

for exchangeable CA/DRM solutions; Part 4: The Virtual Machine.

3 Definitions

3.1 Terms defined elsewhere

None.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 bytecode: Code of ECI Client (typically comprising a conditional access kernel or digital

rights management client) that is executed by the virtual machine (VM).

3.2.2 customer premises equipment (CPE): A customer device that provides embedded common

interface (ECI) specified decryption and encryption functions.

2 Rec. ITU-T J.1013 (04/2020)

3.2.3 ECI (Embedded CI): The architecture and the system specified in the ETSI ISG

"Embedded CI", which allows the development and implementation of software-based swappable

ECI Clients in customer premises equipment (CPE) and thus provides the interoperability of CPE

devices with respect to ECI.

3.2.4 ECI Client (Embedded CI Client): The implementation of a conditional access/digital

rights management (CA/DRM) client which is compliant with the embedded common interface (ECI)

specifications.

3.2.5 ECI Host: The hardware and software system of a CPE, which covers ECI related

functionalities and has interfaces to an ECI Client.

3.2.6 Native Code: Programmatic code written in the native executable instruction set of the

ECI Host processor.

3.2.7 VM Instance: The instantiation of a virtual machine (VM) established by an ECI Host that

appears to an ECI Client as an execution environment in which to operate.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

API Application Programming Interface

CA Conditional Access

CAS Conditional Access System

CI Common Interface

CP Content Protection

CPE Customer Premises Equipment

CPU Central Processing Unit

DRM Digital Rights Management

ECI Embedded Common Interface

ECP Enhanced Content Protection

ELF Executable and Linkable Format

EPG Electronic Programme Guide

ID Identification/Identity/Identifier

OS Operating System

OTT Over The Top

PC Program Counter

POSIX Portable Operating System Interface

RISC Reduced Instruction Set Computer

VM Virtual Machine

5 Conventions

The use of terms in bold and starting with capital letters in this Recommendation indicates that those

terms are defined with an ECI specific meaning that may deviate from the common use of those terms.

 Rec. ITU-T J.1013 (04/2020) 3

6 Conceptual principles

6.1 The virtual machine as a central processing unit

In essence, the virtual machine (VM) comprises a virtual central processing unit (CPU) with its own

code and data memory and a set of system interfaces that provide access to hardware features of the

ECI Host machine. The emulated CPU executes code in the manner of a virtual 32-bit CPU, and in

this Recommendation the code it executes is called Bytecode. Since the VM is a simulation of a

general-purpose reduced instruction set computer (RISC) processor, it is able to execute a variety of

applications.

6.2 Characteristics of the virtual machine

The VM shall provide a single-process, single-threaded environment.

The interface to the ECI Host hardware and other functions is provided in the form of a standard

library of calls, termed SYSCALLs. The SYSCALL instruction is one of the customized instructions

of the VM and it is generally executed after preparing the parameters required by the library routine

(i.e., passed in "registers" of the VM).

All interaction between the ECI Client and the ECI Host is achieved through this operation.

No interrupt architecture is defined and, once started, the ECI Client runs to completion. Therefore,

there is no opportunity to invoke calls into the VM. Whilst restricting flexibility to a certain extent,

this is outweighed by the enhanced control of the VM execution (ensuring robustness of operation),

the avoidance of race conditions, interference with time-critical operations, etc.

Consequently, the only means of passing data or messages to the ECI Client executing in the VM is

on the basis of requests issued by the ECI Client by invoking the appropriate SYSCALLs.

6.3 Isolation of individual ECI Clients

The ECI Client executes in a virtual machine, which exists as an application running in the firmware

of the ECI Host. It shall be possible to invoke multiple instances of the virtual machine,

each potentially running a different ECI Client. This places three fundamental requirements on the

ECI Host operating environment:

1) Isolation of individual ECI Clients – The Operating System (OS) shall allocate sufficient

resources to each VM Instance such that the performance requirements are met by all

instances running simultaneously; proposed values for performance requirements are laid out

in [b-ITU-T J-Suppl.7].

2) The libraries defined in clause 8 and Annex C shall be fully re-entrant or implemented

separately for each instance of the VM.

3) The Operating System and VM shall ensure that no information can be exchanged between

running ECI Clients and the outside world, including other ECI Clients by means other than

those explicitly specified for such purpose as part of the SYSCALL interface. This, among

others, implies that all memory mapped into the data space of a VM Instance is wiped from

its previous content beforehand, and any attempts to use exceptional conditions in the VM to

trigger unspecified behaviour shall be prevented. This also implies that there is no means for

an ECI Client to change its Bytecode. It specifically implies that the ECI Host and the VM

shall make all required checks to prevent an ECI Client from inducing unintended behaviour

in the ECI Host or VM implementations that may, for instance, lead directly or indirectly to

the ECI Client being able to manipulate (hack) the ECI Host.

4 Rec. ITU-T J.1013 (04/2020)

6.4 Specifying the virtual machine

In subsequent clauses of this Recommendation, the following are explicitly detailed regarding the

VM itself:

1) The technical architecture of the VM.

2) The instruction set of the VM.

3) The ECI Host interface.

6.5 ECI Client loader

In order to execute the ECI Client, the Bytecode shall first be loaded into the code space of the VM

memory and the data space initialized. Clause 9 addresses some specific aspects of the format of the

ECI Client container and initialization of the VM.

7 The virtual machine

7.1 Execution environment

Figure 1 – VM Host environment

As depicted in Figure 1, the VM shall be executed in a sandboxed environment that ensures isolation

from the ECI Host's operating system, other virtual machine instances and any other applications

executing in the ECI Host.

The VM comprises a native application of the ECI Host, with associated memory, and interface

library and a loader for installing the Bytecode forming an ECI Client. The interface library provides

the ECI Client with access to features of the ECI Host operating system and hardware as well as to

other applications that may be executing in the ECI Host and with which the ECI Client may need

to interact. A typical example would be an interaction with an Electronic Programme Guide (EPG)

application that would require authorization status for specific content for display to the user.

 Rec. ITU-T J.1013 (04/2020) 5

7.2 Virtual machine architecture

7.2.1 CPU architecture

Figure 2 – Virtual processor architecture

Figure 2 shows the architecture of the virtual machine CPU. The VM is a register machine with the

following characteristics:

– A register file with general purpose registers of 32 bits. The registers are organized in register

windows. Each register window contains 32 registers. The last 16 registers of each window

overlap with the first 16 registers of the next window. Two of these registers in each window

serve as stack pointer and frame pointer. The total number of registers in the register file is

REGISTER_FILE_SIZE, specified in Annex A.

– A Harvard CPU architecture. Data is stored in a 32-bit flat memory space. Code is stored in

a read-only, non-addressable memory space.

– A separate control stack keeps track of return addresses. The contents of this stack are

inaccessible to the Bytecode or external applications. The stack can store up to

CONTROL_STACK_SIZE return addresses (see Annex A).

– Load and store instructions for signed and unsigned byte, half-word and word data types,

which are 8, 16 and 32 bits respectively.

– An instruction set with many data processing instructions tailored for the application domain.

– Native byte ordering for efficient load and store, independent of endianness. Natural

alignment (alignment = size) is used for the basic types to make the Bytecode maximally

portable. In other words, the memory address of a half-word is always even, and the address

of a word is always a multiple of four.

– A System Call instruction (SYSCALL) which can be used to implement system services.

This also allows the VM to be extended with built-in functions, e.g., to perform frequently

occurring data processing natively.

6 Rec. ITU-T J.1013 (04/2020)

– Paged memory supporting a fragmented memory space. It allows mapping of native memory

into the VM's memory space.

7.2.2 Registers

In each register window, 32 registers are visible, R0 through R31. Two registers are reserved for

special treatment. R0 is the Frame Pointer and R16 is the Stack Pointer. The use of these registers is

further detailed below.

At entry of a function, the ENTER instruction shifts the register window up by sixteen registers.

This turns the old stack pointer into the new frame pointer, and makes a new stack pointer and fifteen

more registers available. The new stack pointer is initialized by subtracting the frame size supplied

by the ENTER instruction from the frame pointer.

The RETURN instruction reverses this process. It shifts the window down by sixteen registers, thus

restoring the old frame pointer and stack pointer.

Since the original R0 through R15 cannot be reached from the called routine, they are automatically

callee-saved. Since the return address is saved on a separate control stack, there is no data stack used

for callee-saved registers and return addresses.

The true number of registers is limited, so there is a maximum on the call depth of an ECI Client

(CONTROL_STACK_SIZE). Exceeding this depth will abort the VM program. The number of

registers and the corresponding depth of the control stack can be specified when creating the VM

process.

 Rec. ITU-T J.1013 (04/2020) 7

Figure 3 – Register file architecture

8 Rec. ITU-T J.1013 (04/2020)

7.2.3 Data space

The base data address of the VM defined as DATA_BASE_ADDRESS (see Annex A) shall be

0x1000000 (16 Mbyte). The smallest address above the addressable memory that is not addressable

is DATA_BASE_ADDRESS + ADDRESSABLE_DATA_SIZE (see Annex A). The base address of

the stack shall be defined by the VM implementation but shall be towards the high end of the address

space. The VM may reserve a maximum of VM_RESEVED_SIZE (see Annex A) for private

purposes in the address space of the ECI Client "below" the bottom of the stack (at a higher address).

At VM initialization the stack pointer shall point to the first free stack location. The ECI Client can

assume that the top of the (empty) heap at initialization is equal to the size of the initialized data +

size of the uninitialized data segments, both rounded up to multiple of 4.

The data memory layout is outlined in Figure 4.

Figure 4 – VM data memory layout

At ECI Client initialization, the ECI Client loader shall load the initialized and uninitialized data

segments starting at address DATA_BASE_ADDRESS. All bytes of the uninitialized data segment

shall be set to zero. The initialized data segment is not write-protected.

NOTE 1 – The stack size is initially restricted. Since local data structures defined in c-functions are typically

allocated to the stack the stack segment should be set by the ECI Client to an appropriate size in case large

local variables are used in the c-code.

NOTE 2 – The ECI Host may map message buffers in the VM reserved memory below the base stack address.

Future VM versions might reserve more addressable memory for ECI Clients, i.e., they might have

a larger ADDRESSABLE_DATA_SIZE. For backward compatibility purposes, ECI Clients shall

not depend on the specific value or value range of the stack pointer presently defined, but simply use

the stack pointer as passed on initialization.

The ECI Client Loader shall not load any image files that do not adhere to the above memory layout

convention for the initialized and uninitialized data segments.

7.2.4 Code space

Code cannot be directly accessed by the program. The program may obtain 32-bit opaque references

to static code objects (e.g., routine entry point, jump target) called code references

(see MOVF instruction). code references may only be used with indirect control flow instructions

 Rec. ITU-T J.1013 (04/2020) 9

(JMPR and CALLR). code references are not pointers to code memory space, and no pointer

arithmetic shall take place with them.

The start address of the code segment in the code address space shall be 0x00000000. The maximum

size of the code segment is defined as CODE_SIZE (see Annex A).

7.2.5 Stack

The stack is conventionally defined to be located in data memory, to contain words only, to increase

toward lower addresses, and to have its tip (word that was pushed last) always pointed to by the

R16 register (stack pointer) of the current register window.

R0, the frame pointer, is used as a pointer into the callee's stack so that parameters or other data

pushed onto the stack may be accessed by a called routine (see clause 7.2.8).

7.2.6 Endianness

Multi-byte data (half-words and words) are represented in system memory in little-endian format.

The ECI Client software shall use little-endian.

7.2.7 Exceptions

The VM CPU does not issue any exception during execution. If an instruction operates under

conditions outside those outlined in this Recommendation (e.g., unaligned access to a half-word or

word in memory, access to any memory address which has no corresponding memory, a branch to an

unknown code reference), the behaviour is undefined. The VM may choose to terminate the kernel.

The VM shall ensure that under no circumstances may an ECI Client operating outside the scope of

this Recommendation gain access to unauthorized data or to influence any other application.

7.2.8 Calling convention

The calling conventions pass the first seven scalar parameters (pointers and integers) in R17 through

R23. The callee will see these as R1 through R7.

Scalar parameters beyond the seventh are passed on the stack by the caller in a right-to-left order.

Because of the register window mechanism, the callee will always find the eighth parameter

(if present) pointed to by R0. R0 is therefore the frame pointer. Structure parameters are always

passed on the stack, or by reference. Pointers always refer to the VM memory space.

NOTE – All SYSCALLs pass any structures and arrays by reference only. This approach should be used for

other calls, too.

The callee leaves the return value in R1, which will be seen as R17 by the caller. Types smaller

than 32 bits are passed (and returned) as 32-bit values.

Structure return is implemented by passing an implicit first parameter which is a pointer to the

memory area where the return type is expected to be stored (passed by reference). The callee writes

its result to the location to which this parameter points. This return pointer is treated like a normal

argument (passed in R17 → R1), which implies that the regular arguments of a function, which returns

a structure, shift to other calling convention registers (R18..R23 → R2..R7) or via the stack.

7.3 Virtual machine instruction set

7.3.1 Notation

The following notation is used:
rx Register x.

uimm5 5 bit unsigned immediate.

uimms9 9 bit unsigned immediate. Always a multiple of two.

uimms10 10 bit unsigned immediate. Always a multiple of four.

simm11 11 bit signed immediate.

simm16 16 bit signed immediate.

uimm16 16 bit unsigned immediate.

pcr16 16 bit signed PC-relative

10 Rec. ITU-T J.1013 (04/2020)

pcr24 24 bit signed PC-relative

imm32 32 bit immediate.

low8(x) The least significant 8 bits of x.

low16(x) The least significant 16 bits of x.

The functional descriptions use C-semantics on 32-bit integer types. The ability of the operation to

support signed or unsigned data types is indicated as comments. Memory access is given by MEM1(),

MEM2() and MEM4(), accessing 1, 2 or 4 bytes of memory, respectively. The operand of these is an

offset into the data segment. When relevant, MEM is prefixed by U for unsigned operations or S for

sign-extended operations.

7.3.2 Arithmetic instructions

7.3.2.1 Register operands
ADD r1,r2,rd ; rd = r1 + r2;

SUB r1,r2,rd ; rd = r1 - r2;

OR r1,r2,rd ; rd = r1 | r2;

AND r1,r2,rd ; rd = r1 & r2;

XOR r1,r2,rd ; rd = r1 ^ r2;

SRA r1,r2,rd ; rd = r1 >> r2; signed shift right

SRL r1,r2,rd ; rd = r1 >> r2; logic shift right

SLL r1,r2,rd ; rd = r1 << r2;

MUL r1,r2,rd ; rd = r1 * r2;

SDIV r1,r2,rd ; rd = r1 / r2; signed divide

SMOD r1,r2,rd ; rd = r1 % r2; signed remainder

UDIV r1,r2,rd ; rd = r1 / r2; unsigned divide

UMOD r1,r2,rd ; rd = r1 % r2; unsigned remainder

EQ r1,r2,rd ; rd = r1 == r2;

NE r1,r2,rd ; rd = r1 != r2;

LT r1,r2,rd ; rd = r1 < r2; signed less than

GE r1,r2,rd ; rd = r1 >= r2; signed greater or equal

LTU r1,r2,rd ; rd = r1 < r2; unsigned less than

GEU r1,r2,rd ; rd = r1 >= r2; unsigned greater or equal

NOT r1,rd ; rd = ~r1;

NEG r1,rd ; rd = -r1;

ABS r1,rd ; rd = abs(r1);

MOV r1,rd ; rd = r1;

EXTB r1,rd ; rd = (int8_t) r1; sign-extend from 8 bits

EXTH r1,rd ; rd = (int16_t) r1; sign-extend from 16 bits

ZEXTB r1,rd ; rd = (uint8_t) r1; zero-extend from 8 bits

ZEXTH r1,rd ; rd = (uint16_t) r1; zero-extend from 16 bits

MASKHI r1,rd ; rd = ~(-1) >> r1; logic shift right

7.3.2.2 Register, immediate
ADDI r1,imm32,rd ; rd = r1 + imm32;

RSUBI r1,imm32,rd ; rd = imm32 - r1;

ORI r1,imm32,rd ; rd = r1 | imm32;

NORI r1,imm32,rd ; rd = ~(r1 | imm32);

ANDI r1,imm32,rd ; rd = r1 & imm32;

NANDI r1,imm32,rd ; rd = ~(r1 & imm32);

XORI r1,imm32,rd ; rd = r1 ^ imm32;

XNORI r1,imm32,rd ; rd = ~(r1 ^ imm32);

SRAI r1,uimm5,rd ; rd = r1 >> uimm5; signed

SRLI r1,uimm5,rd ; rd = r1 >> uimm5; logic

SLLI r1,uimm5,rd ; rd = r1 << uimm5;

MULI r1,imm32,rd ; rd = r1 * imm32;

MACI r1,imm32,rd ; rd += r1 * imm32;

SMODI r1,imm32,rd ; rd = r1 % imm32; signed

SDIVI r1,imm32,rd ; rd = r1 / imm32; signed

UMODI r1,imm32,rd ; rd = r1 % imm32; unsigned

UDIVI r1,imm32,rd ; rd = r1 / imm32; unsigned

EQI r1,imm32,rd ; rd = r1 == imm32;

NEI r1,imm32,rd ; rd = r1 != imm32;

LTI r1,imm32,rd ; rd = r1 < imm32; signed

GTI r1,imm32,rd ; rd = r1 > imm32; signed

GEI r1,imm32,rd ; rd = r1 >= imm32; signed

LEI r1,imm32,rd ; rd = r1 <= imm32; signed

LTUI r1,imm32,rd ; rd = r1 < imm32; unsigned

GTUI r1,imm32,rd ; rd = r1 > imm32; unsigned

GEUI r1,imm32,rd ; rd = r1 >= imm32; unsigned

LEUI r1,imm32,rd ; rd = r1 <= imm32; unsigned

ADDMXI r1,imm32,rd ; rd = (r1 + imm32) % 0x7fffffff;

MOVC simm16,rd ; rd = simm16;

MOVI imm32,rd ; rd = imm32;

 Rec. ITU-T J.1013 (04/2020) 11

MOVF caddr,rd ; rd = caddr; load code reference

CLR rd ; rd = 0;

INC rd ; rd = rd + 1;

DEC rd ; rd = rd – 1;

The signed divide and remainder operations follow the C99 definition: Division truncates the

mathematical result toward zero; the remainder respects the relation:

 a=bab
b

a
%+

Where % represents the remainder function, or modulus.

The right operand of the shift instructions shall be in range of [0, 31], otherwise the behaviour is

undefined. The signed shift right copies the original most-significant bit into the vacated positions.

Arithmetically, this corresponds to division with a power of two, rounding the mathematical result to

minus infinity (floor rounding).

7.3.3 Short forms

Many occurrences of the three-operand instructions use one of the operands also as the result. Since

these can be coded more compactly, special opcodes for these are available:
ADD2 r1,rd ; rd += r1;

SUB2 r1,rd ; rd -= r1;

MUL2 r1,rd ; rd *= r1;

AND2 r1,rd ; rd &= r1;

OR2 r1,rd ; rd |= r1;

XOR2 r1,rd ; rd ^= r1;

XNOR2 r1,rd ; rd = ~(rd ^ r1);

NE2 r1,rd ; rd = r1 != rd;

EQ2 r1,rd ; rd = r1 == rd;

SLL2 r1,rd ; rd <<= r1;

SRA2 r1,rd ; rd >>= r1; signed

SRL2 r1,rd ; rd >>= r1; logical

Bitwise immediate operations test or modify a single bit. Those immediates can be coded using 5 bits

giving the bit position.
ANDB r1,uimm5,rd ; rd = r1 & (1 << uimm5);

ORB r1,uimm5,rd ; rd = r1 | (1 << uimm5);

XORB r1,uimm5,rd ; rd = r1 ^ (1 << uimm5);

TESTB r1,uimm5,rd ; rd = (r1 >> uimm5) & 1;

TESTBC r1,uimm5,rd ; rd = ! ((r1 >> uimm5) & 1);

Many comparisons are against zero. This saves an immediate operand and will be cheaper to emulate.
EQZ r1,rd ; rd = r1 == 0;

NEZ r1,rd ; rd = r1 != 0;

LTZ r1,rd ; rd = r1 < 0;

GTZ r1,rd ; rd = r1 > 0;

LEZ r1,rd ; rd = r1 <= 0;

GEZ r1,rd ; rd = r1 >= 0;

Unsigned versions of these do not make sense. They are either true or false or can be expressed using

EQZ or NEZ.

7.3.4 Control flow

7.3.4.1 Common rules

Control flow instructions with direct operands code their targets relative to the end address of the

instruction. In register-based control flow, the register holds a function pointer index.

12 Rec. ITU-T J.1013 (04/2020)

7.3.4.2 Unconditional branches and function calls
JMP pcr24 ; goto PC+pcr24;

JMPR rd ; goto rd (shall be code reference);

CALL pcr24 ; push PC; goto PC+pcr24;

CALLR rd ; push program counter; goto rd (code reference);

ENTER uimm16 ; shift register file by 16 (new r0 is old r16);

 ; r16 = r0 - 4 * uimm16;

ENTER0 ; equivalent to ENTER 0

ENTERC uimms10 ; equivalent to ENTER uimms10

LEAVE ; unshift register file

RETURN ; unshift register file;

 ; goto popped program counter;

RETURNL ; goto popped program counter;

SWITCH r1,uimm16 ; goto PC + MIN(r1, uimm16)

 ; advance to r1th CASE statement below

CASE pcr24 ; goto PC + pcr24

 ; add a case in the previous SWITCH. The first

 ; entry is case value zero, each next one adds

 ; one to the case value.

7.3.4.3 Conditional branches
JEQ r1,r2,pcr16 ; if (r1 == r2) goto PC+pcr16;

JNE r1,r2,pcr16 ; if (r1 != r2) goto PC+pcr16;

JLT r1,r2,pcr16 ; if (r1 < r2) goto PC+pcr16;

JGE r1,r2,pcr16 ; if (r1 >= r2) goto PC+pcr16;

JLTU r1,r2,pcr16 ; if ((unsigned)r1 < (unsigned)r2) goto PC+pcr16;

JGEU r1,r2,pcr16 ; if ((unsigned)r1 >= (unsigned)r2) goto PC+pcr16;

JEQC r1,simm11,pcr16 ; if (r1 == simm11) goto PC+pcr16;

JNEC r1,simm11,pcr16 ; if (r1 != simm11) goto PC+pcr16;

JLTC r1,simm11,pcr16 ; if (r1 < simm11) goto PC+pcr16;

JGEC r1,simm11,pcr16 ; if (r1 >= simm11) goto PC+pcr16;

JLTUC r1,uimm11,pcr16 ; if ((unsigned) r1 < uimm11) goto PC+pcr16;

JGEUC r1,uimm11,pcr16 ; if ((unsigned) r1 >= uimm11) goto PC+pcr16;

JGTC r1,simm11,pcr16 ; if (r1 > simm11) goto PC+pcr16;

JLEC r1,simm11,pcr16 ; if (r1 <= simm11) goto PC+pcr16;

JGTUC r1,uimm11,pcr16 ; if ((unsigned) r1 > uimm11) goto PC+pcr16;

JLEUC r1,uimm11,pcr16 ; if ((unsigned) r1 <= uimm11) goto PC+pcr16;

7.3.4.4 Conditional branches based on memory comparisons with constant
JWEQC r1,simm11,pcr16 ; if (MEM4(r1) == simm11) goto PC+pcr16;

JWNEC r1,simm11,pcr16 ; if (MEM4(r1) != simm11) goto PC+pcr16;

These read a word from memory and compare it with a constant.

7.3.4.5 Far conditional branches

For each of the conditional branches described above, there is a far version, which has a 24-bit offset.

The assembler should choose the shortest version that fits.

7.3.5 Load and store instructions

7.3.5.1 Register + offset
LDSBI r1,imm32,rd ; rd = SMEM1(r1 + imm32);

LDUBI r1,imm32,rd ; rd = UMEM1(r1 + imm32);

LDSHI r1,imm32,rd ; rd = SMEM2(r1 + imm32);

LDUHI r1,imm32,rd ; rd = UMEM2(r1 + imm32);

LDWI r1,imm32,rd ; rd = MEM4 (r1 + imm32);

STBI rd,r1,imm32 ; MEM1(r1 + imm32) = low8(rd);

STHI rd,r1,imm32 ; MEM2(r1 + imm32) = low16(rd);

STWI rd,r1,imm32 ; MEM4(r1 + imm32) = rd;

7.3.5.2 Register + short offset
LDSBC r1,uimm8,rd ; rd = SMEM1(r1 + uimm8);

LDUBC r1,uimm8,rd ; rd = UMEM1(r1 + uimm8);

LDSHC r1,uimms9,rd ; rd = SMEM2(r1 + uimms9);

LDUHC r1,uimms9,rd ; rd = UMEM2(r1 + uimms9);

LDWC r1,uimms10,rd ; rd = MEM4 (r1 + uimms10);

STBC rd,r1,uimm8 ; MEM1(r1 + uimm8) = low8(rd);

 Rec. ITU-T J.1013 (04/2020) 13

STHC rd,r1,uimms9 ; MEM2(r1 + uimms9) = low16(rd);

STWC rd,r1,uimms10 ; MEM4(r1 + uimms10) = rd;

7.3.5.3 Register indexed
LDUB r1,r2,rd ; rd = UMEM1(r1 + r2);

LDSB r1,r2,rd ; rd = SMEM1(r1 + r2);

LDUH r1,r2,rd ; rd = UMEM2(r1 + 2 * r2);

LDSH r1,r2,rd ; rd = SMEM2(r1 + 2 * r2);

LDW r1,r2,rd ; rd = MEM4(r1 + 4 * r2);

STB rd,r1,r2 ; MEM1(r1 + r2) = rd;

STH rd,r1,r2 ; MEM2(r1 + 2 * r2) = rd;

STW rd,r1,r2 ; MEM4(r1 + 4 * r2) = rd;

LDW1 r1,r2,rd ; rd = MEM4(r1 + r2);

STW1 rd,r1,r2 ; MEM4(r1 + r2) = rd;

7.3.5.4 Absolute indexed
LDSHAX imm32,r1,rd ; rd = SMEM2(imm32 + 2 * r1);

LDUHAX imm32,r1,rd ; rd = UMEM2(imm32 + 2 * r1);

LDWAX imm32,r1,rd ; rd = MEM4(imm32 + 4 * r1);

STHAX rd,imm32,r1 ; MEM2(imm32 + 2 * r1)= rd;

STWAX rd,imm32,r1 ; MEM4(imm32 + 4 * r1)= rd;

It should be noted that no absolute indexed byte loads are needed. For instance, LDSBAX is equivalent

to LDSBI.

7.3.5.5 Dedicated stack access

These are word loads and stores that use the frame pointer implicitly.
LDFP simm16,r1 ; r1 = MEM4(FP + simm16);

STFP r1,simm16 ; MEM4(FP + simm16) = r1;

7.3.5.6 Memory transfer

A block copy instruction used for compiler-generated block copies.
COPY r1,s:uimm32,r2,o:uimm32 ; copy s bytes from r1 to r2+o

7.3.6 Complex instructions

These are instructions that perform a combination of operations, usually with immediate operands. In

this summary each operand designated as i1, i2, etc., is a 32-bit immediate (imm32).
ADDANDI2 r1,i1,i2,rd ; rd = (r1 + i1) & i2;

ADDMULI2 r1,i1,i2,rd ; rd = (r1 + i1) * i2;

ADDORI2 r1,i1,i2,rd ; rd = (r1 + i1) | i2;

ADDXORI2 r1,i1,i2,rd ; rd = (r1 + i1) ^ i2;

MULADDI2 r1,i1,i2,rd ; rd = (r1 * i1) + i2;

MULANDI2 r1,i1,i2,rd ; rd = (r1 * i1) & i2;

MULORI2 r1,i1,i2,rd ; rd = (r1 * i1) | i2;

MULXORI2 r1,i1,i2rd ; rd = (r1 * i1) ^ i2;

RSUBANDI2 r1,i1,i2,rd ; rd = (i1 – r1) & i2;

RSUBORI2 r1,i1,i2,rd ; rd = (i1 – r1) | i2;

RSUBXORI2 r1,i1,i2,rd ; rd = (i1 – r1) ^ i2;

ORADDI2 r1,i1,i2,rd ; rd = (r1 | i1) + i2;

ORMULI2 r1,i1,i2,rd ; rd = (r1 | i1) * i2;

SLLADDI2 r1,s1:uimm5,i2,rd ; rd = (r1 << s1) + i2;

SLLANDI2 r1,s1:uimm5,i2,rd ; rd = (r1 << s1) & i2;

SLLORI2 r1,s1:uimm5,i2,rd ; rd = (r1 << s1) | i2;

SLLRSUBI2 r1,s1:uimm5,i2,rd ; rd = i2 - (r1 << s1);

ANDSLLI2 r1,i1,s2:uimm5,rd ; rd = (r1 & i1) << s2;

MAMI3 r1,i1,i2,i3,rd ; rd = ((r1 * i1) & i2) * i3;

MPMI3 r1,i1,i2,i3,rd ; rd = ((r1 * i1) + i2) * i3;

MOMI3 r1,i1,i2,i3,rd ; rd = ((r1 * i1) | i2) * i3;

MPAI3 r1,i1,i2,i3,rd ; rd = ((r1 * i1) + i2) & i3;

14 Rec. ITU-T J.1013 (04/2020)

MPOI3 r1,i1,i2,i3,rd ; rd = ((r1 * i1) + i2) | i3;

RORI3 r1,i1,i2,i3,rd ; rd = i3 - ((i1 – r1) | i2);

AMPI3 r1,i1,i2,i3,rd ; rd = ((r1 & i1) * i2) + i3;

LPAI3 r1,s1:uimm5,i2,i3,rd ; rd = ((r1 << s1) + i2) & i3;

MPMPI4 r1,i1,i2,i3,i4,rd ; rd = (((r1 * i1) + i2) * i3) + i4;

MPOMI4 r1,i1,i2,i3,i4,rd ; rd = (((r1 * i1) + i2) | i3) * i4;

7.3.7 Miscellaneous

7.3.7.1 System calls

A variety of services are implemented by System Calls.
SYSCALL uimm16 ; system service uimm16

A minimal set of portable operating system interface (POSIX) System Calls is implemented that are

mapped directly to the underlying OS. More application-specific services may be added.

7.3.7.2 Pseudo Instructions

Some operations can be expressed in terms of other ones. The following pseudo opcodes are available:
SUBI r1,imm32,rd = ADDI r1,-imm32,rd

GT r1,r2,rd = LT r2,r1,rd

LE r1,r2,rd = GE r2,r1,rd

GTU r1,r2,rd = LTU r2,r1,rd

LEU r1,r2,rd = GEU r2,r1,rd

8 Interface between the ECI Client and the ECI Host

8.1 General principles

System Calls arise when the SYSCALL instruction is executed. The instruction contains an

immediate operand that identifies the System Call. System Calls are effectively calls to a standard

library, passing the parameters as described in clause 7.2.8.

The first 7 parameters (words or pointers) are passed in registers R1..R8. They are all sign extended

to 32-bit values if the actual parameter type is an 8 or 16 bit scalar. Return values (words or pointers)

shall be placed in R1.

Unless otherwise stated, all memory addresses refer to the VM memory space.

For future compatibility reasons, the ECI Client shall clear to zero all registers R1..R8 not used for

passing parameters. The content of all registers may be trashed by the library function.

The mandatory library system calls that all compliant implementations shall support are listed below.

The format used provides:

– The SYSCALL ID used as the immediate operand (SYSCALL imm32).

– A description of the library function.

– A declaration in C syntax.

– A description of the parameters and return value.

– Any additional notes.

Parameters and return values are typed using the following convention:

– uintnn represents an unsigned integer of nn bits (nn being one of 8, 16 or 32). Values of less

than 32 bits shall be zero-extended to 32 bits when placing them in the registers.

– intnn represents a signed integer. Values of less than 32 bits shall be sign-extended when

placing them in the registers.

– void * represents a generic pointer.

 Rec. ITU-T J.1013 (04/2020) 15

– [u]intnn * represents a pointer to one value of type [u]intnn or an array of them.

– struct struct_type * refers to a pointer to a structure (or an array of structures) in memory –

structures are always passed by reference using this convention.

8.2 Error value

Most SYSCALLs return a negative word to indicate that an error condition was detected. Table 1 lists

the error values.

Table 1 – Error values

value Symbolic name Meaning

−49 EPERM A call was made to a non-existent SYSCALL or CLIB function.

−50 EINVAL One of the parameters is incorrect.

−51 ERRSYSCALLMSGQU

EUE

Number of messages sent to the ECI Host exceeds its buffering

capacity.

−52 ERRHEAPSIZE An inappropriate value for heap size was requested.

−53 ERRSTACKSIZE An inappropriate value for stack size was requested.

8.3 SYS_EXIT

SYSCALL ID: 0x0001

Description: Terminates the VM, providing a reason code.

Declaration: void SYS_EXIT(uint32 reason).

Operands: The reason for termination.

Returns: nothing.

NOTES – reason takes one of the values listed in Table 2.

Table 2 – SYS_EXIT reason values

reason Meaning

0 Normal termination

0x00000001..0x7FFFFFFF Error condition, ECI Client provider specific

0x80000000..0xFFFFFFFF Reserved for future use

8.4 SYS_PUTMSG

SYSCALL ID: 0x0003

Description: Sends an asynchronous message (request or response).

Declaration: int32 SYS_PUTMSG(MessageBuffer *msg_buffer).

The format of MessageBuffer is defined in [ITU-T J.1012].

Operands: msg_buffer is a pointer to a message buffer block.

Returns: The id of the message as assigned by the ECI Host (non-negative 16-bit value) or any of

the error values below (negative): ERRSYSCALLMSGQUEUE (Table 1).

NOTES – The call is considered not to block in normal ECI Host operating conditions. The msg_buffer

content is copied by the ECI Host and can be reused immediately by the ECI Client following the return of

the SYSCALL.

16 Rec. ITU-T J.1013 (04/2020)

8.5 SYS_GETMSG

SYSCALL ID: 0x0004

Description: Retrieves the next message (be it a request or a result) from the ECI Host.

The SYSCALL blocks if no message is available.

Declaration: (MessageBuffer *) SYS_GETMSG().

The format of MessageBuffer is defined in [ITU-T J.1012].

Operands: none.

Returns: The pointer to the buffer containing the next message from the ECI Host or any of the error

values listed in Table 1.

NOTES – The call will block in case the ECI Host has no messages queued for the ECI Client. The message

buffer content will not be changed by the ECI Host until the next SYS_GETMSG SYSCALL. ECI Clients

that wish to have access to message data after the next SYS_GETMSG call need to copy this data.

8.6 SYS_HEAPSIZE

SYSCALL ID: 0x0100

Description: A request to ECI Host to change heap size to the provided parameter.

Declaration: int32 SYS_HEAPSIZE(uint32 heapsize).

Operands: heapsize: size to set the heap of the ECI Client to. It shall be non-negative, a multiple of

4 and not cause an overrun of the heap in the stack segment.

Returns: The memory location offset in bytes from DATA_BASE_ADDRESS that is the lowest

non-heap memory address in addressable memory, or any error value (negative) below:

ERRHEAPSIZE (Table 1).

NOTES – The call will block in case the ECI Host has no messages queued for the ECI Client. At ECI Client

initialization SYS_HEAPSIZE(0) will return the offset of the start of the heap segment (zero size at that time).

8.7 SYS_STACKSIZE

SYSCALL ID: 0x0200

Description: A request to ECI Host to change stack size to the provided parameter.

Declaration: int32 SYS_STACKSIZE(uint32 stacksize)

Operands: stacksize: size to set the heap of the ECI Client to; it shall be non-negative and a multiple

of 4 and not cause an overrun of the stack in the heap segment.

Returns: The memory location offset in bytes from DATA_BASE_ADDRESS that is the lowest stack

memory address in addressable memory, or any error value (negative) below: ERRSTACKSIZE

(Table 1).

NOTES – The call will block in case the ECI Host has no messages queued for the ECI Client.

8.8 SYS_SYNCCALL

SYSCALL ID: 0x1000

Description: the ECI Client sends a synchronous message to the ECI Host and suspends execution

till the return of the System Call.

Declaration: int32 SYS_SYNCCALL(uint32 tag, p1, p2, p3, …, pn).

Operands: tag: same definition as the MsgTag field of the MessageBuffer structure. The MsgFlags

field shall be set to zero and shall be ignored by the ECI Host. p1…pn: parameters of the

synchronous call. For get-messages with a result larger than a 32-bit entity p1 is the start address of

 Rec. ITU-T J.1013 (04/2020) 17

the memory location where the result shall be returned, and p2.. pn are the parameters of the set

message. All regular parameters including structs and arrays are passed by reference.

Returns: For get-messages returning a result fitting in 32-bit the result is returned. Otherwise there is

no return result. All errors are ignored; erroneous parameter configurations simply produce no result

and/or have no effect. Call messages return a status code as defined by their specific semantics.

Results can be returned at the location of pointer parameters to the SYSCALL as defined by the

specific message semantics.

NOTES – This SYSCALL will not block.

8.9 SYS_CLIB

SYSCALL ID: 0x0300

Description: This SYSCALL acts as an application programming interface (API) to allow standard C

library functions to be used by the ECI Client. The set of functions supported is detailed in Annex C.

Declaration: SYS_CLIB(uint32 clibfunc, etc.)

Operands: clibfunc identifies the C library function to be called, as described in Annex C.

All other operands are defined in the list of C function calls.

Returns: A returned value as detailed in the library in Annex C or any of the error values listed in

Table 1.

NOTES – As different C library functions take different numbers and types of parameters, these are not

explicitly described in this Recommendation. The annex details the format of all operands. All operands to

SYS_CLIB are scalar values, or pointers to non-scalar values in the VM memory. Since some C library

functions may take non-scalar parameters, the VM shall make the conversion from parameters passed by

reference to parameters passed by value before passing the execution to the library.

9 Bytecode lifecycle

9.1 Introduction

The VM is implemented as a part of the ECI Host firmware. It is dynamically loaded/executed by

the ECI Host operating system when an ECI Client needs to execute. Multiple instances can be

made available for different ECI Clients, if they are required to be simultaneously available.

The ECI Client is written in the instruction set of the VM as described above. It is prepared by a CP

system vendor (CA provider or DRM operator) and made available to the ECI Host as a logical code

image. Locally, it is transformed to suit the specific design of the ECI Host and its operating

environment and loaded into the VM when required. It executes within the VM until it is deliberately

terminated (or an error condition occurs) and then the execution of the ECI Client is halted and the

VM terminates.

9.2 Loading a new ECI Client into the VM

VM acts as an intermediate host for an externally provided ECI Client, exactly as if the ECI Client

were a native application executing on the ECI Host device. The only difference is that the ECI

Client is installed by the ECI Host device Operating System into the VM, rather than as a native

application.

In order to load the ECI Client, the VM sub-system first creates a virtual processor context. For

loading purposes, this entails allocating the VM memory and installing the code and data segment

contents into it as if they were native applications, but where the code and initialized data provided

in the executable and linkable format (ELF) [ETSI GS ECI 001-4] files (see Annex D for details) are

transferred to the memory allocated for the VM.

18 Rec. ITU-T J.1013 (04/2020)

Since the code segment is not accessible from the program, the implementation may choose to carry

out any form of pre-processing on the code (e.g., optimization) at load time. In fact, this

Recommendation only describes the format of the program in the image. The internal representation

is fully implementation specific. The only condition is that all code references remain usable by the

program with the same semantics.

Alternatively, the ECI Client image can be pre-processed when it is first retrieved for the ECI Host

device and stored in a form that is ready to be loaded on demand. This is a more efficient manner of

retaining and launching ECI Clients if they are regularly unloaded and reloaded.

9.3 Initialization of the VM

The general CPU context of the VM needs to be created – that is the register file, the control stack,

the data and stack areas, and the Program Counter (PC), plus any control/status logic and flags. These

are not detailed in this Recommendation, as they are implementation dependent.

The register file is set up so that R0 is located at the start of the register file space. All registers are

set to 0. Thus the Frame Pointer and Stack Pointer registers (R0 and R16, respectively) in the first

window are set such that when the first word is pushed onto the stack, the Stack Pointer is

pre-decremented to -4 (0xFFFFFFFC) and the word is stored there.

The Program Counter is initialized to the start of the code segment unless e_entry member of ELF

header [ETSI GS ECI 001-4] in the ECI Client image file has a non-zero value, in which case the

Program Counter is set to the value (virtual address) specified by e_entry member. Control is then

handed over to the execution component of the VM, termed "The Central Run Loop".

9.4 The central run loop

The essence of the VM is in the central execution loop, which reads and translates each sequential

instruction into an appropriate set of actions on registers, VM memory and/or in calls to the library.

The loop executes instructions until an exception occurs. Program termination may be part of normal

execution practice, for instance if the program executes the SYS_EXIT system call, or it may arise

as the result of an error situation, for instance if the control stack overflows.

If the "The Central Run Loop" is terminated, then the VM is shut down and will need to be

re-instantiated if the ECI Client is required at any point in the future.

 Rec. ITU-T J.1013 (04/2020) 19

Annex A

VM system resources

(This annex forms an integral part of this Recommendation.)

The following parameters are used in this Recommendation to define the performance of the VM.

Proposed values for the parameters can be found in [b-ITU-T J Suppl. 7].

– REGISTER_FILE_SIZE

– CONTROL_STACK_SIZE = REGISTER_FILE_SIZE/16

– DATA_BASE_ADDRESS

– ADDRESSABLE_DATA_SIZE

– VM_RESERVED_SIZE

– CODE_SIZE

– DEFAULT_STACK_SIZE

– MIN_RAM

20 Rec. ITU-T J.1013 (04/2020)

Annex B

Op codes for the VM

(This annex forms an integral part of this Recommendation.)

The coding below specifies how the instructions are coded in the binary image. The overview below

shows the different formats. The summary line presents a comma separated list of the fields that make

up the instruction. These are either explicit bits, or a field name followed by a field width indicator.

Different opcodes in the same formats are enumerated with the corresponding pattern that occupies

the 'op' field. The bits are listed in big-endian order.

As an example, SUB R3,R5,R17 is coded as:
1011 00001 00011 00101 10001

or, in nibbles:
1011 0000 1000 1100 1011 0001

or, in bytes:
0xB0, 0x8C, 0xB1

Each instruction name is followed by a number, which is the defined opcode number of that

instruction. This number shall be the same for all future versions of the VM's instruction set.

Fields in opcodes shall not span more than four bytes. Consequently, 32 bit fields shall start at a byte

boundary. No field exceeds 32 bits.
0, op:5, r1:5, rd:5

 00000 MOV 16

 00001 ADD2 17

 00010 SUB2 18

 00011 MUL2 19

 00100 AND2 20

 00101 OR2 21

 00110 XOR2 22

 00111 SLL2 23

 01000 SRL2 24

 01001 SRA2 25

 01010 NE2 26

 01011 EQ2 27

 01100 NEZ 28

 01101 EQZ 29

 01110 LTZ 30

 01111 GEZ 31

 10000 GTZ 32

 10001 LEZ 33

 10010 EXTB 34

 10011 EXTH 35

 10100 ZEXTB 36

 10101 ZEXTH 37

 10110 ABS 38

 10111 NEG 39

 11000 NOT 40

 11001 XNOR2 41

 11010 MASKHI 42

100, op:3, r1:5, rd:5, imm:32

 000 ADDI 136

 001 RSUBI 137

 010 ANDI 138

 011 ORI 139

 100 XORI 140

 101 MULI 141

 110 MACI 142

 111 ADDMXI 143

101000, op:2

 00 ENTER0 0

 01 RETURN 1

 10 RETURNL 2

 Rec. ITU-T J.1013 (04/2020) 21

 11 LEAVE 3

10100100, op:3, rd:5

 000 INC 8

 001 DEC 9

 010 JMPR 10

 011 CALLR 11

 100 CLR 12

1010010100000, op:4, r1:5, r2:5, rd:5

 0000 SDIV 80

 0001 SMOD 81

 0010 UDIV 82

 0011 UMOD 83

 0100 TESTBC 84

101001010001, op:4, r1:5, imm:11, pcr:24

 0000 JFNEC 560

 0001 JFEQC 561

 0010 JFLTC 562

 0011 JFGEC 563

 0100 JFGTC 564

 0101 JFLEC 565

 0110 JFLTUC 566

 0111 JFGEUC 567

 1000 JFLEUC 568

 1001 JFGTUC 569

 1010 JFWNEC 570

 1011 JFWEQC 571

10101000, op:3, r1:5, imm:16

 000 STFP 96

 001 LDFP 97

 010 MOVC 98

 011 SWITCH 99

1011, op:5, r1:5, r2:5, rd:5

 00000 ADD 48

 00001 SUB 49

 00010 MUL 50

 00011 AND 51

 00100 OR 52

 00101 XOR 53

 00110 SLL 54

 00111 SRA 55

 01000 SRL 56

 01001 SLLI 57

 01010 SRAI 58

 01011 SRLI 59

 01100 NE 60

 01101 EQ 61

 01110 LT 62

 01111 GE 63

 10000 LTU 64

 10001 GEU 65

 10010 ANDB 66

 10011 ORB 67

 10100 XORB 68

 10101 LDSB 69

 10110 LDUB 70

 10111 LDSH 71

 11000 LDUH 72

 11001 LDW 73

 11010 LDW1 74

 11011 STB 75

 11100 STH 76

 11101 STW 77

 11110 STW1 78

 11111 TESTB 79

110000, op:2, imm:24

 00 JMP 104

 01 CALL 105

 10 CASE 106

110001000, op:2, rd:5, imm:32

 00 MOVI 108

 01 MOVF 109

22 Rec. ITU-T J.1013 (04/2020)

110001001, op:5, r1:5, rd:5, imm:32

 00000 NANDI 144

 00001 NORI 145

 00010 XNORI 146

 00011 NEI 147

 00100 EQI 148

 00101 LTI 149

 00110 GEI 150

 00111 GTI 151

 01000 LEI 152

 01001 LTUI 153

 01010 GEUI 154

 01011 GTUI 155

 01100 LEUI 156

 01101 SMODI 157

 01110 SDIVI 158

 01111 UMODI 159

 10000 UDIVI 160

 10001 STBI 161

 10010 STHI 162

 10011 STWI 163

 10100 LDSBI 164

 10101 LDUBI 165

 10110 LDSHI 166

 10111 LDUHI 167

 11000 LDWI 168

 11001 LDSHAX 169

 11010 LDUHAX 170

 11011 LDWAX 171

 11100 STHAX 172

 11101 STWAX 173

11001000000, op:3, r1:5, rd:5, imm:24

 000 JFNE 576

 001 JFEQ 577

 010 JFLT 578

 011 JFGE 579

 100 JFLTU 580

 101 JFGEU 581

11001000110, op:3, r1:5, r2:5, imm:16

 000 JNE 120

 001 JEQ 121

 010 JLT 122

 011 JGE 123

 100 JLTU 124

 101 JGEU 125

11001000111000, r1:5, r2:5, s:32, o:32

 COPY 112

11001001000, op:3, r1:5, r2:5, imm:8

 000 STBC 128

 001 STHC 129

 010 STWC 130

 011 LDSBC 131

 100 LDUBC 132

 101 LDSHC 133

 110 LDUHC 134

 111 LDWC 135

11001100000000000, op:5, r1:5, rd:5, imm1:32, imm2:32

 00000 ADDANDI2 200

 00001 ADDMULI2 201

 00010 ADDORI2 202

 00011 ADDXORI2 203

 00100 MULADDI2 204

 00101 MULANDI2 205

 00110 MULORI2 206

 00111 MULXORI2 207

 01000 RSUBANDI2 208

 01001 RSUBORI2 209

 01010 RSUBXORI2 210

 01011 ORADDI2 211

 01100 ORMULI2 212

11001100000000010000, op:5, r1:5, imm1:5, rd:5, imm2:32

 00000 SLLADDI2 232

 00001 SLLANDI2 233

 00010 SLLORI2 234

 Rec. ITU-T J.1013 (04/2020) 23

 00011 SLLRSUBI2 235

 00100 ANDSLLI2 236

11001100000000010001, op:5, r1:5, imm1:5, rd:5, imm2:32, imm3:32

 00000 LPAI3 392

110011000000001, op:7, r1:5, rd:5, imm1:32, imm2:32, imm3:32

 0000000 MAMI3 264

 0000001 MPMI3 265

 0000010 MOMI3 266

 0000011 MPAI3 267

 0000100 MPOI3 268

 0000101 RORI3 269

 0000110 AMPI3 270

110011000000010, op:7, r1:5, rd:5, imm1:32, imm2:32, imm3:32, imm4:32

 0000000 MPMPI4 424

 0000001 MPOMI4 425

1101, op:4, r1:5, imm:11, imm:16

 0000 JNEC 1

84

 0001 JEQC 185

 0010 JLTC 186

 0011 JGEC 187

 0100 JGTC 188

 0101 JLEC 189

 0110 JLTUC 190

 0111 JGEUC 191

 1000 JLEUC 192

 1001 JGTUC 193

 1010 JWNEC 194

 1011 JWEQC 195

11100000, uimm:8 ENTERC 5

1110001, op:1, uimm:16

 0 ENTER 6

 1 SYSCALL 7

24 Rec. ITU-T J.1013 (04/2020)

Annex C

Standard C library routines

(This annex forms an integral part of this Recommendation.)

C.1 Introduction

This annex details a set of standard C99 library routines [b-ISO/IEC 9899] that shall be available for

use by the ECI Client. For each function, the details of the operands passed by the ECI Client are

defined and the return value.

Note that "string" means a sequence of non-zero bytes terminated by a zero byte.

The functions detailed below are shown as standard C library calls. In all cases, the first parameter

will go into R2 (as R1 will contain the function ID, clibfunc). The declaration will assume all values

are passed as scalar values or pointers to non-scalar values. If a library function calls for a non-scalar

parameter to be passed by value, then the SYSCALL will pass it by reference and the VM will be

required to convert the parameter as required by the library.

Return values are always scalar values or pointers returned in R1.

NOTE – The value selected for clibfunc is made up as follows:

((clibfunc >> 8) & 0x000000FF) = The sub-chapter number of the C standard chapter dealing with

library functions, coded as binary coded decimal. (For C99, the chapter is 7 and the <string.h> library

is in sub-chapter 21.)

((clibfunc >> 4) & 0x0000000F) = The function type in the library – the number following the

sub-chapter number.

(clibfunc & 0x0000000F) = The function number of a particular type in the library – the number

following the function type number.

For example, memmove() is described under the heading 7.21.2.2 in [b-ISO/IEC 9899]. Therefore,

clibfunc is coded as 0x00002122.

C.2 memmove

clibfunc: 0x00002122

Description: Copy n bytes from the memory pointed by s2 into the memory pointer by s1. Memory

may overlap.

Declaration: uint8 * memmove(uint8 * s1, uint8 * s2, uint32 n)

Returns: s1

C.3 strcpy

clibfunc: 0x00002123

Description: Copy the string (including terminating character) pointed by s2 into the memory pointed

by s1. Results are undefined if memory areas overlap.

Declaration: uint8 * strcpy(uint8 * s1, uint8 * s2)

Returns: s1

C.4 strncpy

clibfunc: 0x00002124

 Rec. ITU-T J.1013 (04/2020) 25

Description: As for strcpy(), but at most n bytes are copied. If the length of s2 is greater than n, then

a null byte will be appended (at s1[n]).

Declaration: uint8 * strncpy(uint8 * s1, uint8 * s2, uint32 n)

Returns: s1

C.5 strcat

clibfunc: 0x00002131

Description: Append a copy of the string pointed by s2 (including terminating character) at the end

of the string pointed by s1. Results are undefined if memory areas overlap.

Declaration: uint8 * strcat(uint8 * s1, uint8 * s2)

Returns: s1

C.6 strncat

clibfunc: 0x00002132

Description: Append a copy of the string pointed by s2 (including terminating character) at the end

of the string pointed by s1, but at most n bytes are copied. If the length of s2 is greater than n, then a

null byte will be appended (at n+1 bytes after the last non-null byte of the original s1). Results are

undefined if memory areas overlap.

Declaration: uint8 * strncat(uint8 * s1, uint8 * s2, uint32 n)

Returns: s1

C.7 memcmp

clibfunc: 0x00002141

Description: Compare the first n bytes pointed by s1 with the first n bytes pointed by s2.

Declaration: uint32 memcmp(uint8 *s1, uint8 *s2, uint32 n)

Returns: R1==0 if they all match, otherwise R1 depends on the first position from the left for which

values do not match.

R1>0 if the byte of s1 at that position is greater than the byte of s2.

R1<0 if the byte of s1 at that position is greater than the byte of s2.

C.8 strcmp

clibfunc: 0x00002142

Description: Compare the strings pointed to by s1 and s2.

Declaration: uint32 strcmp(uint8 * s1, uint8 * s2)

Returns: R1==0 if they match, otherwise R1 depends on the first position from the left for which

values do not match.

R1>0 if the byte of s1 at that position is greater than the byte of s2.

R1<0 if the byte of s1 at that position is greater than the byte of s2.

C.9 strncmp

clibfunc: 0x00002144

Description: Compare the strings pointed to by s1 and s2, but only up to n bytes.

26 Rec. ITU-T J.1013 (04/2020)

Declaration: uint32 strncmp(uint8 * s1, uint8 * s2, uint32 n)

Returns: R1==0 if they match, otherwise R1 depends on the first position from the left for which

values do not match.

R1>0 if the byte of s1 at that position is greater than the byte of s2.

R1<0 if the byte of s1 at that position is greater than the byte of s2.

C.10 memchr

clibfunc: 0x00002151

Description: Find the first occurrence of the byte in c within the n bytes pointed to by s.

Declaration: uint8 * memchr(uint8 *s, uint8 c, uint32 n)

Returns: A pointer to the located byte, or 0 if no byte was found.

C.11 strchr

clibfunc: 0x00002152

Description: Find the first occurrence of the byte in c within the string pointed to by s, up to and

including the terminating (null) byte.

Declaration: uint8 * strchr(uint8 * s, uint8 c)

Returns: A pointer to the located byte, or 0 if no byte was found.

C.12 strcspn

clibfunc: 0x00002153

Description: Compute the length of the maximum initial segment of the string pointed by s1 which

consists entirely of bytes not belonging to the string pointed by s2.

Declaration: uint32 strcspn(uint8 * s1, uint8 * s2)

Returns: The length computed.

C.13 strpbrk

clibfunc: 0x00002154

Description: Find the first occurrence in the string pointed by s1 of any byte in the string pointed

by s2.

Declaration: uint32 strpbrk(uint8 * s1, uint8 * s2)

Returns: The location of the first byte fulfilling the condition, or 0 if no such bytes are found.

C.14 strrchr

clibfunc: 0x00002155

Description: Find the last occurrence of the byte in c within the string pointed to by s, up to and

including the terminating (null) byte.

Declaration: uint8 * strrchr(uint8 * s, uint8 c)

Returns: A pointer to the located byte, or 0 if no byte was found.

 Rec. ITU-T J.1013 (04/2020) 27

C.15 strspn

clibfunc: 0x00002156

Description: Compute the length of the maximum initial segment of the string pointed by s1 which

consists entirely of bytes belonging to the string pointed by s2.

Declaration: uint32 strspn(uint8 * s1, uint8 * s2)

Returns: The computed value.

C.16 strstr

clibfunc: 0x00002157

Description: Find the first occurrence of the string pointed by s1 (terminating byte excluded) in the

string pointed by s2.

Declaration: uint8 strstr(uint8 * s1, uint8 * s2)

Returns: A pointer to the located position, or 0 if it was not found.

C.17 memset

clibfunc: 0x00002161

Description: Copy the least significant byte of c into the memory pointed by s n times.

Declaration: uint8 * memset(uint8 * s, uint8 c, uint32 n)

Returns: s

28 Rec. ITU-T J.1013 (04/2020)

Annex D

ECI Client file format

(This annex forms an integral part of this Recommendation.)

The ECI Client image file shall conform to ELF object file format specification

[ETSI GS ECI 001-4]. This annex describes the specific information necessary to comply with the

VM specification. Since the VM supports 32-bit architecture and little-endian, ELF file identification

in e_ident [ETSI GS ECI 001-4] shall use the values in Table D.1.

Table D.1 – ECI-compliant e_ident settings

Name Value

e_ident[EI_CLASS] ELFCLASS32

e_ident[EI_DATA] ELFDATA2LSB

Table D.2 lists values that shall be used for some ELF header members.

Table D.2 – ECI-compliant settings for ELF header members

Name Value

e_type ET_EXEC

e_machine ET_NONE

e_version EV_CURRENT

The loader shall reject any ECI Client image file with values that are different from the ones

presented in this annex.

 Rec. ITU-T J.1013 (04/2020) 29

Appendix I

Areas for further development

(This appendix does not form an integral part of this Recommendation.)

It has been identified that this Recommendation needs further development and validation for it to

meet the requirements set out in [ITU-T J.1010] and that [ITU-T J.1010] needs to be updated to reflect

the requirements of the MovieLabs Enhanced Content Protection (ECP) specification [b-ECP].

Recommendations [b-ITU-T J.1011], [ITU-T J.1012], ITU-T J.1013, [b-ITU-T J.1014], [b-ITU-T

J.1015] and [b-ITU-T J.1015.1] should in the future be updated to reflect those updates to [ITU-T

J.1010].

A number of ITU Member States, as well as stakeholders from a variety of industries – including

manufacturers of devices and electronic components, owners and licensees of copyrighted content,

providers of over-the-top (OTT) and linear television services, and providers of conditional access

system (CAS) and digital rights management (DRM) solutions – based all around the world have

expressed concern that the Embedded Common Interface (ECI) does not fully meet the requirements

of ECP, nor wider industry content protection requirements.

More specifically, their concerns were raised in contributions to the ITU-T Study Group 9 (SG9)

meeting (16-23 April 2020). Contributions from Israel, Australia, ITU-T Sector Member Samsung,

and SG9 Associates Sky Group and MovieLabs proposed that a number of changes be included in

the ECI Recommendations, but agreement on them was not reached. These items are inventoried

in [b-SG9 Report 17 Ann.1].

They include proposals to:

1) Simplify the ECI system by reducing its scope;

2) Remove DRM;

3) Remove the re-encryption of content;

4) Remove software management;

5) Add APIs for secure storage and cryptographic operations;

6) Allow vendor-specific key ladders;

7) Use ITU-T J.1207 TEE requirements;

8) Include TEE implementation for VM;

9) Upgrade the strength of the cryptographic algorithms, e.g., using SHA-384;

10) Use standard certificates, like ITU-T X.509;

11) Reconsider communications between clients;

12) Perform additional liaisons with ETSI;

13) Perform additional peer-review;

14) Explore alternatives to the Trust Authority model;

15) Define further the technical aspects of ECI compliance and robustness rules;

16) Add requirements for diversity, e.g., address space randomization;

17) Add requirements on runtime integrity checking.

These proposals reflect that content protection and the threats of its compromise are continuously

evolving. ECI was originally conceived nearly a decade before approval of this ITU-T

Recommendation. Systems like ECI need to be assessed on a regular basis against the current

state-of-the-art in both attack techniques and industry protection requirements.

30 Rec. ITU-T J.1013 (04/2020)

Other mechanisms exist to enable interoperability. In particular for the DRM use case, most Internet

video services have deployed other solutions to provide interoperability and to address their needs.

Further clarity is important as many Member States regard ITU standards as influential sources of

guidance for the development of their markets and industries. The list of concerns ensures ECI's

implementation in their domestic markets which can involve a full appreciation of implications of

this ITU-T Recommendation and ensure that the issues are considered when legislation, regulation or

market need requiring consumer digital television equipment to be interoperable are being considered.

It also ensures that technology equipment manufacturers, who may prefer to use a unique set of

requirements or other standards to design the products, can consider these issues in developing

products for different markets.

 Rec. ITU-T J.1013 (04/2020) 31

Bibliography

[b-ITU-T J.1010] Recommendation ITU-T J.1010 (2016), Embedded common interface

for exchangeable CA/DRM solutions; Use cases and requirements.

[b-ITU-T J.1011] Recommendation ITU-T J.1011 (2016), Embedded common interface

for exchangeable CA/DRM solutions; Architecture, definitions and

overview.

[b-ITU-T J.1014] Recommendation ITU-T J.1014 (2020), Embedded common interface

for exchangeable CA/DRM solutions; Advanced security – ECI-

specific functionalities.

[b-ITU-T J.1015] Recommendation ITU-T J.1015 (2020), Embedded common interface

for exchangeable CA/DRM solutions; The advanced security system –

Key ladder block.

[b-ITU-T J.1015.1] Recommendation ITU-T J.1015.1 (2020), Embedded common

interface for exchangeable CA/DRM solutions; Advanced security

system - Key ladder block: Authentication of control word-usage rules

information and associated data 1.

[b-ITU-T J-Suppl.7] ITU-T J-series Recommendations – Supplement 7 (2020), Embedded

common interface (ECI) for exchangeable CA/DRM solutions;

Guidelines for the implementation of ECI (EG).

[b-SG9 Report 17 Ann.1] ITU-T SG9 meeting report, SG9-R17-Annex 1 (2020), Annex 1 to

Report 17 of the SG9 fully virtual meeting held 16-23 April 2020.
https://www.itu.int/md/T17-SG09-R-0017/en

[b-ECP] MovieLabs Specification for Enhanced Content Protection –

Version 1.2

Available at: <https://movielabs.com/ngvideo/MovieLabs_ECP_Spec_v1.2.pdf>

[b-ETSI GS ECI 001-3] ETSI GS ECI 001-3 (2017), Embedded Common Interface (ECI) for

exchangeable CA/DRM solutions; Part 3: CA/DRM Container,

Loader, Interfaces, Revocation.

[b-ISO/IEC 9899] ISO/IEC 9899:2018 Information technology – Programming

languages – C.

[b-TIS-ELF] TIS Committee (1995), Tool Interface Standard (TIS) Executable and

Linking Format (ELF) Specification, version 1.2.

 Available at <https://refspecs.linuxfoundation.org/elf/elf.pdf>.

https://www.itu.int/md/T17-SG09-R-0017/en
https://movielabs.com/ngvideo/MovieLabs_ECP_Spec_v1.2.pdf
https://refspecs.linuxfoundation.org/elf/elf.pdf

Printed in Switzerland
Geneva, 2020

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other

multimedia signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T J.1013 (04/2020) – Embedded common interface for exchangeable CA/DRM solutions; The virtual machine
	Summary
	History
	FOREWORD
	Table of Contents
	Introduction
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Conceptual principles
	6.1 The virtual machine as a central processing unit
	6.2 Characteristics of the virtual machine
	6.3 Isolation of individual ECI Clients
	6.4 Specifying the virtual machine
	6.5 ECI Client loader

	7 The virtual machine
	7.1 Execution environment
	7.2 Virtual machine architecture
	7.2.1 CPU architecture
	7.2.2 Registers
	7.2.3 Data space
	7.2.4 Code space
	7.2.5 Stack
	7.2.6 Endianness
	7.2.7 Exceptions
	7.2.8 Calling convention

	7.3 Virtual machine instruction set
	7.3.1 Notation
	7.3.2 Arithmetic instructions
	7.3.2.1 Register operands
	7.3.2.2 Register, immediate

	7.3.3 Short forms
	7.3.4 Control flow
	7.3.4.1 Common rules
	7.3.4.2 Unconditional branches and function calls
	7.3.4.3 Conditional branches
	7.3.4.4 Conditional branches based on memory comparisons with constant
	7.3.4.5 Far conditional branches

	7.3.5 Load and store instructions
	7.3.5.1 Register + offset
	7.3.5.2 Register + short offset
	7.3.5.3 Register indexed
	7.3.5.4 Absolute indexed
	7.3.5.5 Dedicated stack access
	7.3.5.6 Memory transfer

	7.3.6 Complex instructions
	7.3.7 Miscellaneous
	7.3.7.1 System calls
	7.3.7.2 Pseudo Instructions

	8 Interface between the ECI Client and the ECI Host
	8.1 General principles
	8.2 Error value
	8.3 SYS_EXIT
	8.4 SYS_PUTMSG
	8.5 SYS_GETMSG
	8.6 SYS_HEAPSIZE
	8.7 SYS_STACKSIZE
	8.8 SYS_SYNCCALL
	8.9 SYS_CLIB

	9 Bytecode lifecycle
	9.1 Introduction
	9.2 Loading a new ECI Client into the VM
	9.3 Initialization of the VM
	9.4 The central run loop

	Annex A – VM system resources
	Annex B – Op codes for the VM
	Annex C – Standard C library routines
	C.1 Introduction
	C.2 memmove
	C.3 strcpy
	C.4 strncpy
	C.5 strcat
	C.6 strncat
	C.7 memcmp
	C.8 strcmp
	C.9 strncmp
	C.10 memchr
	C.11 strchr
	C.12 strcspn
	C.13 strpbrk
	C.14 strrchr
	C.15 strspn
	C.16 strstr
	C.17 memset

	Annex D – ECI Client file format
	Appendix I – Areas for further development
	Bibliography

