ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

E-health multimedia systems, services and applications – Multimedia e-health data exchange services

Data model for sleep management services

Recommendation ITU-T H.862.1

T-UT

ITU-T H-SERIES RECOMMENDATIONS AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHADACTEDISTICS OF VISUAL TELEDIJONE SVSTEMS	U 100 U 100
INERASTRUCTURE OF AUDIOVISUAL SERVICES	п.100-п.199
General	H 200 H 210
Transmission multiplexing and synchronization	H 220 H 220
Sustame aspects	П.220-П.229 Ц 230 Ц 230
Communication procedures	П.230-П.239 Ц 240 Ц 250
Coding of moving video	П.240-П.239 Ц 260 Ц 270
Poloted systems espects	H.200-H.279
Sustained systems aspects	П.200-П.299 Ц 200-Ц 240
Directory corriges architecture for audiovisual and multimedia corriges	П.300-П.349
Quality of corrige architecture for audiovisual and multimedia services	П.330-П.339
Quality of service architecture for audiovisual and multimedia services	H.300–H.309
Leiepresence, immersive environments, virtual and extended reality	H.420–H.439
Supplementary services for multimedia	H.450–H.499
MUBILITY AND CULLABORATION PROCEDURES	
Overview of Mobility and Collaboration, definitions, protocols and procedures	H.500–H.509
Mobility for H-Series multimedia systems and services	H.510–H.519
Mobile multimedia collaboration applications and services	H.520–H.529
Security for mobile multimedia systems and services	H.530–H.539
Security for mobile multimedia collaboration applications and services	H.540–H.549
VEHICULAR GATEWAYS AND INTELLIGENT TRANSPORTATION SYSTEMS (ITS)	
Architecture for vehicular gateways	H.550–H.559
Vehicular gateway interfaces	H.560–H.569
BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES	
Broadband multimedia services over VDSL	H.610–H.619
Advanced multimedia services and applications	H.620–H.629
Ubiquitous sensor network applications and Internet of Things	H.640–H.649
IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV	
General aspects	H.700–H.719
IPTV terminal devices	H.720–H.729
IPTV middleware	H.730–H.739
IPTV application event handling	H.740–H.749
IPTV metadata	H.750–H.759
IPTV multimedia application frameworks	H.760–H.769
IPTV service discovery up to consumption	H.770–H.779
Digital Signage	H.780–H.789
E-HEALTH MULTIMEDIA SYSTEMS, SERVICES AND APPLICATIONS	
Personal health systems	H.810–H.819
Interoperability compliance testing of personal health systems (HRN, PAN, LAN, TAN and WAN)	H.820–H.859
Multimedia e-health data exchange services	H.860-H.869
Safe listening	H.870–H.879

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T H.862.1

Data model for sleep management services

Summary

Recommendation ITU-T H.862.1 describes the data model for the sleep management services. This Recommendation focuses on the structured model of data for expressing data collected from sensors as information such as sleep time, sleep stage and sleep goal, to be applied to sleep management services.

In many fields of human factors including healthcare, sleep data can be obtained from a variety of sensors such as electroencephalogram (EEG), electrocardiogram (ECG), pulse, motion and sound. Sleep time and sleep quality can be calculated based on the data. A general sleep management service that can handle multiple devices independently of the raw data should be able to represent the quantity and quality of sleep. This can be the sleep stage and its time.

History

Edition	Recommendation	Approval	Study Group	Unique ID*
1.0	ITU-T H.862.1	2020-08-13	16	11.1002/1000/14352

Keywords

Data model, sleep, sleep management.

^{*} To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, <u>http://handle.itu.int/11.1002/1000/11</u> <u>830-en</u>.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

Page

1	Scope		
2	References		
3	Definitions		
	3.1	Terms defined elsewhere	1
	3.2	Terms defined in this Recommendation	1
4	Abbreviations and acronyms		
5	Conventions		
6	Introduction		
7	Sleep data		2
	7.1	Sleep data and sensor types	2
	7.2	Target data	3
	7.3	Metadata	3
	7.4	Sleep data representation by metadata	5
8	Appli	cations	6
	8.1	Sudden death during sleep	6
	8.2	Sleep induction	6

Recommendation ITU-T H.862.1

Data model for sleep management services

1 Scope

This Recommendation describes the data model for the sleep management service. Sleep data can be expressed through data measured by various sensors such as electrocardiogram (ECG), electroencephalogram (EEG) and acceleration sensors. These data are complicated and difficult to express in an integrated system. This Recommendation describes a structured model of data for expressing data collected from sensors as information such as sleep time, sleep stage and sleep goal, to be applied to sleep management services.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ISO 8601-1]	ISO 8601-1:2019, Date and time – Representations for information interchange –
	Part 1: Basic rules.

[ISO 8601-2] ISO 8601-2:2019, Date and time – Representations for information interchange – Part 2: Extensions.

3 Definitions

3.1 Terms defined elsewhere

None.

3.2 Terms defined in this Recommendation

None.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

- ECG Electrocardiogram
- EEG Electroencephalogram
- IoT Internet of Things
- REM Rapid Eye Movement

5 Conventions

In this Recommendation:

- The keywords "is required to" indicate a requirement which must be strictly followed and from which no deviation is permitted if conformance to this document is to be claimed.

- The keywords "is recommended" indicate a requirement which is recommended but which is not absolutely required. Thus, this requirement needs not be present to claim conformance.
- The keywords "can optionally" and "may" indicate an optional requirement which is permissible, without implying any sense of being recommended. These terms are not intended to imply that the vendor's implementation must provide the option and the feature can be optionally enabled by the network operator/service provider. Rather, it means the vendor may optionally provide the feature and still claim conformance with the specification.

6 Introduction

This Recommendation proposes a structured model of data generated from sleep management devices for sleep management services. In the field of healthcare, sleep data can be obtained from a variety of sensors such as EEG, ECG, pulse, motion and sound. See Figure 1. Sleep time and sleep quality can be calculated based on the data. A general sleep management service that can handle multiple devices independently of the raw data should be able to represent the quantity and quality of sleep. This can be the sleep stage and its time.

Figure 1 – Data groups for sleep management services

The sleep management service receives various types of data from different sensors. In the sleep management service, the sleep is expressed and serviced by analysing and reprocessing these data to distinguish the sleep time and the sleep stage.

This Recommendation does not deal with the form and quality of the source data from the sleep management devices, but the sleep management data model and service from the standpoint of the sleep management services.

7 Sleep data

7.1 Sleep data and sensor types

The various devices generating sleep related data do not directly provide the total time and quality of sleep, hence these data need to be processed to generate the data required for sleep management services. Data types and sensor types are shown in Table 1.

Device type	Sensor type	Measure method	
Smart band	Pulse	Measurement of pulse change in sleep phases	
Smart pillow	Pulse, Press	Measurement of pulse changes from blood vessels on the pillow contact surface Measurement of pressure on the pillow	
Smart speaker	Sound	Measuring the sound of breath and snoring during sleep	
ECG	ECG	Measurement of changes in ECG during sleep	
ECG	ECG	Measurement of changes in EEG during sleep	
Smart ring	Pulse, temperature	Measurement of pulse change in stages of sleep	

Table 1 – Sleep management device type

This Recommendation defines a data model for ensuring interoperability by extracting only the common elements necessary for sleep management services, to allow service integration and service implementation using all these data types.

7.2 Target data

Sleep management services differ in the data presented by the service provider, but they all show to the consumer the sleep time and the time for each sleep stage. Table 2 defines the sleep management data covered by the major sleep management services.

NOTE – This Recommendation provides a data model of data for sleep management and does not cover data types coming from sensors.

Data type	Description
Time to sleep	Total sleep time
Bed stay time	Total time in bed
Sleep target	Goals for daily or monthly sleep time
Sleep time by stage	Sleep time for each sleep stage, including sleep stages 1, 2, 3 and REM
Apnea time during sleep	Time by stage for patients with sleep apnea
Number of apneas during sleep	Number of apnea events during sleep
The number and time of backsliding during sleep	Records of backlash during sleep
Bedtime	Time to sleep
Wake up time	Time to wake up

Table 2 – Data types

In addition to data elements that can be quantified, there can be many differences in processing and expression methods for each service or sensing data. The sleep management data element is defined by the items that can be used and defined for the service, based on the service data of the existing service.

7.3 Metadata

Sleep data is defined according to the data to be represented. Metadata of the sleep data is shown in Table 3.

Table 3 – Metadata

Total sleep time			
Metadata ID	sleep_duration	Data type	Time
Object type	Value	R/O	Required
Comment	Describe the total sleep time		
Usage	"sleep_duration": "HH:MM:SS)")	
Goal sleep time			
Metadata ID	goal_sleep_duration	Data type	Time
Object type	Value	R/O	Optional
Comment	Describe the goal sleep time.		
Usage	"goal_sleep_duration": "HH:M	IM:SS"	
Sleep start time			
Metadata ID	sleep_start_time	Data type	DateTime
Object type	Value	R/O	Required
Comment	Describe the sleep start time.		
Usage	"sleep_start_time": "YYYY-M	M-DDTHH:MM:SS:000	Z+01"
Sleep end time			
Metadata ID	sleep_end_time	Data type	DateTime
Object type	Value	R/O	Required
Comment	Describe the sleep end time.		
Usage	"sleep_start_time": "YYYY-M	M-DDTHH:MM:SS:000	Z+01"
Sleep state			
Metadata ID	sleep_end_time	Data type	String
Object type	Value	R/O	Optional
Comment	Define sleep stages, divied into stages 1, 2, 3 and REM sleep.		
Usage	"sleep_stage": "Stage1"		
Sleep disorder			
Metadata ID	sleep_disorder_type	Data type	ID
Object type	Value	R/O	Optional
Comment	Describe the type of sleep disorder.		
Usage	"sleep_disorder_type": "Insom	nia"	
Sleep event			
Metadata ID	sleep_event	Data type	ID
Object type	Set	R/O	Optional
Comment	Describe the events that occurred during sleep.		
Usage	"sleep_event": "Apnea during sleep"		
Data source			
Metadata ID	data_source	Data type	Base64, Linkage
Object type	Value	R/O	Optional
Comment	The original source of the measured data is recorded directly, or the physical path of the data is described.		
Usage	"data_source": ""		

7.4 Sleep data representation by metadata

7.4.1 Sleep time

Sleep time is expressed as the start time, end time and total time of sleep. Sleep time is an item that is visually displayed in the service and is shown as time so that it can be clearly expressed with simple data. The notation of time follows the ISO 8601 standard. An example of sleep time is as follows.

NOTE - ISO 8601 has two parts, [ISO 8601-1] and [ISO 8601-2].

```
"sleepDataModel": {
  "sleepSummary": [
  {
    "sleep_duration": "HH:MM:SS",
    "sleep_start_time": "YYYY-MM-DDTHH:MM:SS:000Z+01"
    "sleep_end_time": "YYYY-MM-DDTHH:MM:SS:000Z+01"
  }
}
```

7.4.2 Sleep stage

The sleep stage is expressed as a subset of sleep, and can be selectively used depending on the characteristics of the sleep management device. The sleep stage is as follows.

```
"sleepDataModel":
                  {
"sleepSummary": [
"sleep duration": "HH:MM:SS",
"sleep start time": "YYYY-MM-DDTHH:MM:SS:000Z+01",
"sleep end time": "YYYY-MM-DDTHH:MM:SS:000Z+01",
"sleep stages": [{
"sleep_stage": "Stage1",
"sleep start time": "YYYY-MM-DDTHH:MM:SS:000Z+01",
"sleep end time": "YYYY-MM-DDTHH:MM:SS:000Z+01",
},
{
"sleep stage": "Stage2",
"sleep_start_time": "YYYY-MM-DDTHH:MM:SS:000Z+01",
"sleep_end_time": "YYYY-MM-DDTHH:MM:SS:000Z+01",
}]
}]
}
```

7.4.3 Sleep event

Sleep events can be used when a special event occurs independently of the sleep phase. For example, if the ability is needed to record the section where the sleep disorder or special sleep event occurred, it can be recorded as follows:

```
{
"sleepDataModel": {
"sleepSummary": [
{
"sleep_duration": "HH:MM:SS",
"sleep_start_time": " YYYY-MM-DDTHH:MM:SS:000Z+01",
"sleep_end_time": " YYYY-MM-DDTHH:MM:SS:000Z+01",
"sleep_stages": [
{
"sleep_stage": "Stage1",
"sleep_start_time": " YYYY-MM-DDTHH:MM:SS:000Z+01",
"sleep_end_time": " YYYY-MM-DDTHH:MM:SS:000Z+01",
"sleep_stage": "Stage2",
"sleep_stage": "Stage2",
"sleep_start_time": " YYYY-MM-DDTHH:MM:SS:000Z+01",
```

```
"sleep_end_time": " YYYY-MM-DDTHH:MM:SS:000Z+01"
}],
"sleep_events": [
{
    "sleep_event": " Sleep apnea",
    "sleep_start_time": " YYYY-MM-DDTHH:MM:SS:000Z+01",
    "sleep_end_time": " YYYY-MM-DDTHH:MM:SS:000Z+01"}]
}
```

In the sleep management service, the expression of the type of sleep disorder is expressed based on the ICD code.

```
"sleep_disorder": [
{
    "sleep_disorder_type": "F473",
    "display_text": "Sleep apnea",
    "coding_system": "ICD-10"
}]
```

8 Applications

8.1 Sudden death during sleep

When a cardiac arrest occurs during sleep, a notification may be provided through tracking of sleep data. If the event persists, the sleep management service may provide information through a device capable of notifying the current situation by connecting to an emergency service or providing a notification to the family or the self. The flowchart of an example of the sudden death detection during sleep is shown in Figure 2. The event can be expressed as follows.

```
"sleep_events": [
{
    "sleep_event": "No sensing signal",
    "sleep_start_time": "YYYY-MM-DDTHH:MM:SS:000Z+01",
    "sleep_end_time": "YYYY-MM-DDTHH:MM:SS:000Z+01"
}]]
```

8.2 Sleep induction

The sleep management service can check if someone is asleep. Tools such as IoT-connected lights and sleep-inducing music can be used to aid persons with sleeping difficulties. If one falls asleep, the service can control the contents for sleep management according to the sleep data. Figure 3 in an example flowchart of the sleep induction mechanism.

Figure 2 – Example of sudden death detection during sleep

Figure 3 – Example of sleep induction

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling, and associated measurements and tests
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities
- Series Z Languages and general software aspects for telecommunication systems