ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

H.811 (11/2017)

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS E-health multimedia services and applications – Personal health systems

Interoperability design guidelines for personal connected health systems: Personal Health Devices interface

Recommendation ITU-T H.811

1-0-1

ITU-T H-SERIES RECOMMENDATIONS AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS	H.100-H.199
INFRASTRUCTURE OF AUDIOVISUAL SERVICES	
General	H.200-H.219
Transmission multiplexing and synchronization	H.220–H.229
Systems aspects	H.230-H.239
Communication procedures	H.240-H.259
Coding of moving video	H.260-H.279
Related systems aspects	H.280-H.299
Systems and terminal equipment for audiovisual services	H.300-H.349
Directory services architecture for audiovisual and multimedia services	H.350–H.359
Quality of service architecture for audiovisual and multimedia services	H.360-H.369
Telepresence	H.420–H.429
Supplementary services for multimedia	H.450–H.499
MOBILITY AND COLLABORATION PROCEDURES	
Overview of Mobility and Collaboration, definitions, protocols and procedures	H.500-H.509
Mobility for H-Series multimedia systems and services	H.510–H.519
Mobile multimedia collaboration applications and services	H.520–H.529
Security for mobile multimedia systems and services	H.530–H.539
Security for mobile multimedia collaboration applications and services	H.540–H.549
VEHICULAR GATEWAYS AND INTELLIGENT TRANSPORTATION SYSTEMS (ITS)	
Architecture for vehicular gateways	Н.550-Н.559
Vehicular gateway interfaces	H.560-H.569
BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES	
Broadband multimedia services over VDSL	H.610–H.619
Advanced multimedia services and applications	H.620-H.629
Ubiquitous sensor network applications and Internet of Things	H.640–H.649
IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV	
General aspects	H.700-H.719
IPTV terminal devices	H.720–H.729
IPTV middleware	Н.730-Н.739
IPTV application event handling	H.740–H.749
IPTV metadata	Н.750-Н.759
IPTV multimedia application frameworks	H.760–H.769
IPTV service discovery up to consumption	H.770–H.779
Digital Signage	H.780-H.789
E-HEALTH MULTIMEDIA SERVICES AND APPLICATIONS	
Personal health systems	H.810-H.819
Interoperability compliance testing of personal health systems (HRN, PAN, LAN, TAN and WAN)	H.820–H.859
Multimedia e-health data exchange services	H.860–H.869

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T H.811

Interoperability design guidelines for personal connected health systems: Personal Health Devices interface

Summary

The Continua Design Guidelines (CDG) defines a framework of underlying standards and criteria that ensure the interoperability of devices and data used for personal connected health services. The Continua Design Guidelines also contains design guidelines (DGs) that further clarify the underlying standards or specifications by reducing options or by adding missing features to improve interoperability.

ITU-T H.811 focuses on the Personal Health Devices interface (PHD-IF).

ITU-T H.811 is part of the "ITU-T H.810 interoperability design guidelines for personal connected health systems" subseries that covers the following areas:

- ITU-T H.810 Interoperability design guidelines for personal connected health systems: Introduction
- ITU-T H.811 Interoperability design guidelines for personal connected health systems: Personal Health Devices interface (this design guidelines document)
- ITU-T H.812 Interoperability design guidelines for personal connected health systems: Services interface
- ITU-T H.812.1 Interoperability design guidelines for personal connected health systems: Services interface: Observation Upload capability
- ITU-T H.812.2 Interoperability design guidelines for personal connected health systems: Services interface: Questionnaire capability
- ITU-T H.812.3 Interoperability design guidelines for personal connected health systems: Services interface: Capability Exchange capability
- ITU-T H.812.4 Interoperability design guidelines for personal connected health systems: Services interface: Authenticated Persistent Session capability
- ITU-T H.813 Interoperability design guidelines for personal connected health systems: Healthcare Information System interface

History

Edition	Recommendation	Approval	Study Group	Unique ID*
1.0	ITU-T H.811	2015-11-29	16	11.1002/1000/12652
2.0	ITU-T H.811	2016-07-14	16	<u>11.1002/1000/12912</u>
3.0	ITU-T H.811	2017-11-29	16	11.1002/1000/13414

Keywords

CDG, Continua Design Guidelines, healthcare information systems, personal connected health systems, personal health devices, services.

^{*} To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, <u>http://handle.itu.int/11.1002/1000/11830-en</u>.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2018

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

Page

0	Intro	duction		1
	0.1	Organ	nization	1
	0.2	Guide	line releases and versioning	1
	0.3	What's	s new?	2
1	Scop	e		3
2	Refe	rences		5
2	2.1		alent IEEE and ISO specifications	
3	Defir	-	-	
4			and acronyms	
5			· · · · · · · · · · · · · · · · · · ·	
6			Personal Health Devices guidelines	
Ū	6.1		nterface architecture (informative)	
		6.1.1	Introduction to X73 interface	
		6.1.2	Overview of the X73 interface	
		6.1.3	Common data/messaging layer and selected standards	
		6.1.4	Transport protocols and selected standards	
	6.2	Comn	non X73 layer guidelines	
		6.2.1	Applicable interfaces	
		6.2.2	Exchange protocol	9
		6.2.3	Standard configuration support	
		6.2.4	Sensor component – communication capabilities	
		6.2.5	Sensor component multi-function devices	
	6.3	X73 d	levices	
		6.3.1	Pulse oximeter	
		6.3.2	Basic 1-3 lead ECG	
		6.3.3	Heart-rate sensor	
		6.3.4	Blood pressure monitor	
		6.3.5	Thermometer	
		6.3.6	Weighing scales	
		6.3.7	Glucose meter	
		6.3.8	INR meter	35
		6.3.9	Body composition analyser	35
		6.3.10	Peak expiratory flow monitor	36
		6.3.11	Cardiovascular fitness	36

				Page
		6.3.12	Cardiovascular step counter	
		6.3.13	Strength fitness	37
		6.3.14	Activity hub	
		6.3.15	Fall sensor	
		6.3.16	Motion sensor	
		6.3.17	Enuresis sensor	
		6.3.18	Contact closure sensor	
		6.3.19	Switch sensor	
		6.3.20	Dosage sensor	40
		6.3.21	Water sensor	40
		6.3.22	Smoke sensor	41
		6.3.23	Property exit sensor	41
		6.3.24	Temperature sensor	42
		6.3.25	Usage sensor	42
		6.3.26	PERS sensor	43
		6.3.27	CO sensor	43
		6.3.28	Gas sensor	44
		6.3.29	Adherence monitor	44
		6.3.30	Sleep apnoea breathing therapy equipment (SABTE)	44
		6.3.31	Continuous glucose monitor (CGM)	44
		6.3.32	Insulin pump (IP)	45
		6.3.33	Power status monitor (PSM)	45
7	NFC	interface	design guidelines	45
	7.1	NFC i	interface architecture (informative)	45
		7.1.1	Overview of NFC interface	46
		7.1.2	Transport protocols and selected standards	47
		7.1.3	Exchange protocols and selected standards	47
		7.1.4	Device communication styles	47
		7.1.5	NFC interface security	47
	7.2	NFC i	interface guidelines	47
		7.2.1	NFC PHD to PHG linkage	47
		7.2.2	NFC user experience	48
		7.2.3	NFC Personal Health Device communication	48
		7.2.4	Multi-function devices	48
		7.2.5	NFC quality of service	49
	7.3	NFC (Certified Capability Classes	49
8	USB	interface	design guidelines	51
	8.1	USB i	interface architecture (informative)	51
		8.1.1	Overview of USB interface	51

				Page
		8.1.2	Exchange protocols and selected standards	
		8.1.3	USB device communication styles	
		8.1.4	USB-IF security	
	8.2	USB c	device and interface guidelines	
		8.2.1	USB device to PHG linkage	
		8.2.2	USB general requirements	
		8.2.3	USB map to IEEE 11073-20601	
		8.2.4	Sending metadata via USB PHDC	
		8.2.5	USB quality of service	
		8.2.6	USB multi-function devices	
		8.2.7	USB connectors	
		8.2.8	USB data rates	
	8.3	USB (Certified Capability Classes	
9	Bluet	ooth BR/I	EDR interface design guidelines	
	9.1	Blueto	both BR/EDR interface architecture (informative)	
		9.1.1	Overview of Bluetooth BR/EDR interface	60
	9.2	Blueto	both BR/EDR interface guidelines	60
		9.2.1	Bluetooth BR/EDR PHD to PHG linkage	60
		9.2.2	Bluetooth health device profile	61
		9.2.3	Discovery and pairing	61
		9.2.4	Bluetooth BR/EDR discoverable mode	
		9.2.5	Notifying the user	
		9.2.6	Quality of service	
		9.2.7	Secure simple pairing debug mode	
	9.3	Blueto	both BR/EDR Certified Capability Classes	
10	ZigBo	ee interfac	ce design guidelines	
	10.1	ZigBe	e interface architecture (informative)	
		10.1.1	Introduction to the ZigBee interface	
		10.1.2	Scope of the ZigBee interface	71
		10.1.3	Overview of the ZigBee interface	72
		10.1.4	Transport protocol and selected standards	72
		10.1.5	Data exchange protocol and selected standards	73
	10.2	ZigBe	ee interface guidelines	
		10.2.1	ZigBee transport layer	73
		10.2.2	ZigBee data/messaging layer	74
	10.3	ZigBe	ee Certified Capability Classes	
11	Bluet	ooth low	energy (LE) design guidelines	
	11.1		tecture of Bluetooth LE (informative)	

			Page
	11.1.1	Introduction	80
	11.1.2	Overview	81
11.2	Blueto	both LE interface guidelines	83
	11.2.1	Bluetooth LE services and profiles	83
	11.2.2	Device discovery, connection establishment, pairing, service discovery and bonding	83
	11.2.3	User notification	88
	11.2.4	Security, authentication and privacy	89
	11.2.5	Device information requirements	91
	11.2.6	Date and time requirements	92
	11.2.7	Certification and regulatory aspects	92
	11.2.8	Transcoding	93
11.3	Blueto	both LE PHDs and PHGs	94
	11.3.1	Blood pressure monitor	94
	11.3.2	Thermometer	95
	11.3.3	Heart-rate sensor	95
	11.3.4	Glucose meter	95
	11.3.5	Weighing scale	96
	11.3.6	Continuous glucose monitor	96
	11.3.7	Pulse oximeter	97
11.4	Blueto	both LE Certified Capability Classes	97
		l Bluetooth BR/EDR information	
		erminology	
		BR/EDR pairing methods	
		BR/EDR legacy pairing procedures	
		Bluetooth OEM subsystems and components	
I.5 Q	uality of s	ervice bins for Bluetooth	99
		al ZigBee information	
II.1 Z	ZigBee net	working	102
II.2 Z	ZigBee pai	ring process/service discovery types	102
II.3 Z	ZigBee sec	curity	103
Appendix II	I Recomm	nendation for use of generic USB drivers	104
Bibliograph	у		105

List of Tables

	Page
Table 6-1 – Applicable interfaces	9
Table 6-2 –X73 wired/wireless general requirements	9
Table 6-3 – Minimally supported base protocol version(s) for device specializations	11
Table 6-4 – Correspondence between 11073-20601 protocol versions and specifications	
Table 6-5 – Communication capabilities – General	
Table 6-6 – Communication capabilities – Event reporting	12
Table 6-8 – Communication capabilities – Time setting	
Table 6-9 – Device information	
Table 6-10 – Unsupported service component	
Table 6-12 – Bidirectional transport layer: Message type/QoS bin mapping	
Table 6-13 – Regulatory / certification information	
Table 6-14 – Manager conformance	
Table 6-15 – Nomenclature codes	
Table 6-16 – User identification	
Table 6-17 – Communication capabilities – general	
Table 6-18 – Communication capabilities association and configuration	
Table 6-19 – Multi-function devices	
Table 6-20 – Pulse oximeter – General requirements	
Table 6-21 – Pulse Oximeter PM-Store measurement requirements	
Table 6-22 – Pulse Oximeter PM-Store object attributes guideline	
Table 6-23 – Basic 1-3 lead ECG – General requirements	
Table 6-24 – ECG PM-Store measurement requirements	
Table 6-25 – ECG PM-Store object attributes guidelines	
Table 6-26 – Heart-rate sensor – General requirements	
Table 6-27– Heart-rate sensor PM-Store measurement requirements	
Table 6-28 – PM-Store object attributes guidelines	
Table 6-29 – Blood pressure monitor – General requirements	
Table 6-30 – Thermometer – General requirements	
Table 6-31 – Weighing scales – General requirements	
Table 6-32 – Glucose meter – General requirements	
Table 6-33 – INR meter – General requirements	
Table 6-34 – Body composition analyzer – General requirements	
Table 6-35 – Peak flow monitor – General requirements	
Table 6-36 – Cardiovascular fitness – General requirements	
Table 6-37 – Cardiovascular step counter – General requirements	

Page

Table 6-38 – Strength fitness – General requirements	
Table 6-39 – Activity hub – General requirements	
Table 6-40 – Fall sensor – General requirements	
Table 6-41 – Motion sensor – General requirements	
Table 6-42 – Enuresis sensor – General requirements	
Table 6-43 – Contact closure sensor – General requirements	
Table 6-44 – Switch use sensor – General requirements	40
Table 6-45 – Dosage sensor – General requirements	40
Table 6-46 – Water sensor – General requirements	
Table 6-47 – Smoke sensor – General requirements	
Table 6-48 – Property exit sensor – General requirements	
Table 6-49 – Temperature sensor – General requirements	
Table 6-50 – Usage sensor – General requirements	
Table 6-51 – PERS sensor – General requirements	
Table 6-52 – CO sensor – General requirements	
Table 6-53 – Gas sensor – General requirements	
Table 6-54 – Adherence monitor – General requirements	44
Table 6-55 – SABTE – General requirements	
Table 6-56 – Continuous Glucose Monitor General Requirements	
Table 6-57 – Insulin pump - General requirements	
Table 7-1 – NFC PHD to PHG linkage	47
Table 7-2 – NFC user experience	
Table 7-3 – NFC personal health device communication map	
Table 7-4 – NFC multi-function devices	49
Table 7-5 – NFC quality of service	49
Table 7-6 – NFC Certified Capability Classes	49
Table 8-1 – USB device to PHG linkage	52
Table 8-2 – USB personal healthcare capability class v1.0 map	53
Table 8-3 – ISO/IEEE 11073-20601 messaging layer	53
Table 8-4 – Using USB PHDC metadata/QoS feature	54
Table 8-5 – Mapping of USB PHDC QoS bins into Continua QoS bins	55
Table 8-6 – USB multi-function devices	56
Table 8-7 – USB connectors	56
Table 8-8 – USB data rates	
Table 8-9 – USB Certified Capability Classes	
Table 9-1 – Bluetooth BR/EDR PHD to PHG linkage	60

Page

Table 9-2 – Bluetooth health device profile map	61
Table 9-3 – Bluetooth BR/EDR pairing guidelines	
Table 9-4 – Bluetooth BR/EDR pairing in non-discoverable states	64
Table 9-5 – Bluetooth BR/EDR pairing data	
Table 9-6 – Bluetooth BR/EDR discovery disable	
Table 9-7 – Bluetooth SDP access	
Table 9-8 – Bluetooth SDP record	
Table 9-9 – Bluetooth BR/EDR user notification	67
Table 9-10 – Bluetooth BR/EDR authentication/security failure notification	67
Table 9-11 – Bluetooth BR/EDR quality of service	67
Table 9-12 – Bluetooth BR/EDR error detection	
Table 9-13 – Bluetooth BR/EDR Certified Capability Classes	
Table 10-1 – ZigBee health care profile map	73
Table 10-2 – ZigBee quality of service	74
Table 10-3 – ZigBee multiple connections	74
Table 10-4 – ZigBee dominant association	75
Table 10-5 – ZigBee time-stamping	77
Table 10-6 – ZigBee timeout management	
Table 10-7 – ZigBee Certified Capability Classes	
Table 11-1 – Bluetooth LE transport	
Table 11-2 – Bluetooth LE device discovery, pairing and service discovery	
Table 11-3 – Bluetooth LE user notification	88
Table 11-4 – Bluetooth LE authentication	89
Table 11-5 – Bluetooth LE OEM requirements	91
Table 11-6 –Bluetooth LE date and time requirements	
Table 11-7 – Bluetooth LE certification and regulation	
Table 11-8 – Bluetooth LE transcoding	
Table 11-9 – Blood pressure general requirements for Bluetooth LE	
Table 11-10 – Thermometer general requirements for Bluetooth LE	
Table 11-11 – Heart-rate sensor general requirements for Bluetooth LE	
Table 11-12 – Glucose meter general requirements for Bluetooth LE	
Table 11-13 – Weighing scale general requirements for Bluetooth LE	
Table 11-14 – CGM general requirements for Bluetooth LE	
Table 11-15 – Pulse Oximeter general requirements for Bluetooth LE	97
Table 11-16 – Bluetooth LE Certified Capability Classes	

List of Figures

	Page
Figure 1-1 – Personal Health Devices interfaces in the Continua architecture	
Figure 6-1 – X73-IF in the Continua E2E architecture	7
Figure 6-2 – X73-IF protocol stack	8
Figure 6-3 – ASN.1 definition of Continua certification structures	
Figure 6-4 – PM-Store usage for pulse oximeter	
Figure 6-5 – Alternate PM-segment organization	
Figure 6-6 – PM-store usage example for heart-rate sensor	
Figure 7-1 – NFC interface context	
Figure 7-2 – NFC interface stack	
Figure 8-1 – USB interface context	
Figure 8-2 – USB PHDC mapping to IEEE 11073-20601 associations	56
Figure 9-1 – Bluetooth interface context	60
Figure 9-2 – Continua Bluetooth BR/EDR pairing process for service components	64
Figure 9-3 – Continua Bluetooth BR/EDR pairing process for client components	64
Figure 10-1 – ZigBee interface	70
Figure 10-2 – ZigBee conceptual set-up	72
Figure 11-1 – Bluetooth LE interface	81
Figure 11-2 – Bluetooth LE interface stack	82

Recommendation ITU-T H.811

Interoperability design guidelines for personal connected health systems: Personal Health Devices interface

0 Introduction

The Continua Design Guidelines (CDG) defines a framework of underlying standards and criteria that ensure the interoperability of devices and data used for personal connected health services. The Continua Design Guidelines also contains design guidelines (DGs) that further clarify the underlying standards or specifications by reducing options or by adding missing features to improve interoperability. These guidelines focus on the Personal Health Devices interface (PHD-IF).

This design guidelines document is part of the "ITU-T H.810 interoperability design guidelines for personal health systems" subseries. See [ITU-T H.810] for more details.

0.1 Organization

This design guidelines document is organized in the following manner:

- Clauses 0-5: Introduction and terminology These clauses provide useful background information to help understand the structure of the design specifications.
- Clause 6: Common X73 PHD-IF design guidelines This clause provides an overview of the common elements of the PHD-IF architecture with design guidelines that apply to all Personal Health Devices (PHDs) and Personal Health Gateways (PHGs) implementing the PHD-IF and using an IEEE 11073 PHD device specialization (X73 device).
- Clause 7: NFC design guidelines This clause is an overview of the near-field communication (NFC) architecture along with the design guidelines for PHDs and PHGs that use NFC and IEEE 11073 PHD (X73) to implement the PHD-IF.
- Clause 8: Bluetooth BR/EDR design guidelines This clause is an overview of the Bluetooth BR/EDR (basic rate / enhanced data rate) architecture along with the design guidelines for PHDs and PHGs that use Bluetooth BR/EDR and X73 to implement the PHD-IF.
- Clause 9: USB design guidelines This clause is an overview of the universal serial bus (USB) architecture along with design guidelines for PHDs and PHGs that use USB and IEEE 11073 PHD to implement the PHD-IF.
- Clause 10: ZigBee design guidelines This clause is an overview of the ZigBee architecture with design guidelines for PHDs and PHGs that use ZigBee and X73 to implement the PHD-IF.
- Clause 11: Bluetooth LE design guidelines This clause is an overview of the Bluetooth LE (low energy) architecture along with the design guidelines for PHDs and PHGs that use Bluetooth LE to implement the PHD-IF. This clause does not refer to IEEE 11073 PHD.

0.2 Guideline releases and versioning

Information on releases and versioning of these guidelines can be found in Table 0-1.

Note that since 2017-Q2 this design guideline document is released independently of the other Continua design guideline documents mentioned in [ITU-T H.810]. Since that date this design guideline document has its own version number. This version number is used in the communication between a PHD and PHG as defined in the Regulatory Certification data list. See clauses 6.2.2.6 and 11.2.7.

Continua ITU-T H.811 design guidelines – external release date	Also known as	Major version	Minor version
1.0		1	0
2010	1.5	1	5
2010 + Errata		1	6
2011	2.0, Adrenaline	2	0
2011 + Errata		2	1
2012	Catalyst	3	0
2012 + Errata		3	1
2014	Endorphin	4	0
2014 + Errata		4	1
2015	Genome	5	0
2015 + Errata		5	1
2016	Iris	6	0
2016 + Errata	Iris with architectural refresh	6	1
2017	Keratin	7	0
2017-Q2	Power Status Monitoring update	8	0
2017-Q3	Fixes for Bluetooth LE interoperability issues	8	1

Table 0-1 – Guideline releases and corresponding version numbers

0.3 What's new?

This update (v8.1) includes the following new items compared to v7.0:

- Support for the power status monitor device specialization. See clause 6.3.33.
- Fixed a bug: the IEEE 11073-10441 cardiovascular fitness and step counter device specialization requires v3 of the IEEE 11073-20601 protocol.
- Made this guideline document more stand-alone from [ITU-T H.810], allowing new releases without having to release a new version of [ITU-T H.810].
- Fixes for a number of identified Bluetooth LE interoperability issues related to pairing and security.

1 Scope

This design guidelines focuses on the Personal Health Devices interface (PHD-IF) that consists of the following sub-interfaces:

X73 interface (X73-IF) – an interface based on ISO/IEEE 11073-20601 and a supported transport technology. Supported transport technologies are:

o NFC

- Bluetooth BR/EDR
- o USB
- o ZigBee
- Bluetooth LE interface (BLE-IF) an interface based on a Bluetooth LE as transport technology and one or more (application level) services and profiles defined by the Bluetooth Special Interest Group (SIG).

The PHD-IF and other Continua interfaces are defined in the Continua architecture in [ITU-T H.810]. Figure 1-1 illustrates this architecture and shows the focus on the PHD-IF.

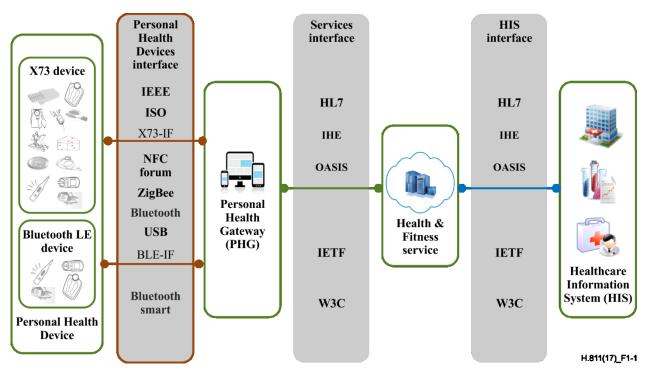


Figure 1-1 – Personal Health Devices interfaces in the Continua architecture

These guidelines cover the following X73 devices that can use one of the X73-IF supported transport technologies (ZigBee, NFC, USB and Bluetooth BR/EDR):

- activity hub
- adherence monitor
- basic 1-3 lead ECG sensor
- blood pressure monitor
- body composition analyser
- cardiovascular fitness
- CO sensor

- contact closure sensor
- continuous glucose monitor
- dosage sensor
- enuresis sensor
- fall sensor
- gas sensor
- glucose meter
- heart-rate sensor
- INR meter
- insulin pump
- motion sensor
- peak expiratory flow monitor
- PERS sensor
- power status monitor
- property exit sensor
- pulse oximeter
- sleep apnoea breathing therapy equipment (SABTE)
- smoke sensor
- step counter
- strength fitness
- switch sensor
- temperature sensor
- thermometer
- usage sensor
- water sensor
- weighing scales

These guidelines also cover a second group of Personal Health Device types that use Bluetooth LE technology. This group consists of:

- blood pressure monitor
- continuous glucose monitor
- glucose meter
- heart-rate sensor
- pulse oximeter
- thermometer
- weighing scales.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.810] Recommendation ITU-T H.810 (2017), Interoperability design guidelines for personal connected health systems: Introduction.

All other referenced documents can be found in clause 2 of [ITU-T H.810].

2.1 Equivalent IEEE and ISO specifications

ISO adopts certain IEEE specifications under the "ISO/IEEE Partner Standards Development Organization Cooperation Agreement". Table 2-1 shows ISO equivalents of IEEE 11073 Personal Health Device specifications referenced by the Continua Design Guidelines (CDG). Typically ISO versions are published one or more years after the IEEE version.

Description	IEEE 11073 standard	ISO equivalent
10101 Nomenclature	IEEE 11073-10101-2004	ISO/IEEE 11073-10101:2004
10101 Nomenclature - additions	IEEE 11073-10101a-2015	-
20601 Protocol (v1)	IEEE 11073-20601-2008	ISO/IEEE 11073-20601:2010
20601 Protocol Amendment (v2)	IEEE 11073-20601A-2010	ISO/IEEE 11073- 20601:2010/Amd 1:2015
20601 Protocol (v3)	IEEE 11073-20601-2014	-
10404 Pulse oximeter	IEEE 11073-10404-2008	ISO/IEEE 11073-10404:2010
10406 Basic Electrocardiograph (ECG) (1 to 3-lead ECG)	IEEE 11073-10406-2011	ISO/IEEE 11073-10406:2012
10407 Blood Pressure Monitor	IEEE 11073-10407-2008	ISO/IEEE 11073-10407:2010
10408 Thermometer	IEEE 11073-10408-2008	ISO/IEEE 11073-10408:2010
10415 Weighing scale	IEEE 11073-10415-2008	ISO/IEEE 11073-10415:2010
10417 Glucose meter	IEEE 11073-10417-2015	-
10418 INR monitor	IEEE 11073-10418-2011	ISO/IEEE 11073-10418:2014
10419 Insulin Pump	IEEE 11073-10419-2015	ISO/IEEE 11073-10419:2016
10420 Body composition analyser	IEEE 11073-10420-2010	ISO/IEEE 11073-10420:2012
10421 Peak expiratory flow monitor	IEEE 11073-10421-2010	ISO/IEEE 11073-10421:2012
10424 Sleep Apnoea Breathing Therapy Equipment	IEEE 11073-10424-2014	ISO/IEEE 11073-10424:2016
10425 Continuous Glucose Monitor	IEEE 11073-10425-2015	ISO/IEEE 11073-10425:2016
10427 Power Status Monitor of Personal Health Devices	IEEE 11073-10427-2016	-

Table 2-1 – ISO equivalent specifications for IEEE 11073 Personal Health Device specifications

Table 2-1 – ISO equivalent specifications for IEEE 11073 Personal Health Device specifications

Description	IEEE 11073 standard	ISO equivalent
10441 Cardiovascular Fitness and Activity monitor	IEEE 11073-10441-2013	ISO/IEEE 11073-10441:2015
10442 Strength fitness equipment	IEEE 11073-10442-2008	ISO/IEEE 11073-10442:2015
10471 Independent living activity hub	IEEE 11073-10471-2008	ISO/IEEE 11073-10471:2010
10472 Medication Monitor	IEEE 11073-10472-2010	ISO/IEEE 11073-10472:2012

3 Definitions

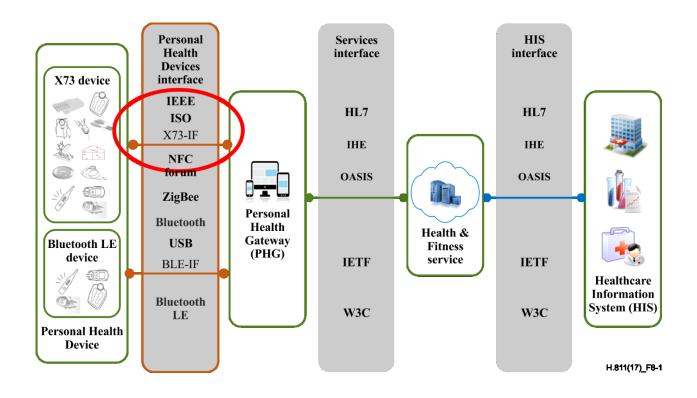
This design guidelines document uses terms defined in [ITU-T H.810].

4 Abbreviations and acronyms

This design guidelines document uses abbreviations and acronyms defined in [ITU-T H.810].

5 Conventions

This design guidelines document follows the conventions defined in [ITU-T H.810].


6 Common X73 Personal Health Devices guidelines

NOTE – This clause (except for clause 6.2.2.6) does not apply to Bluetooth LE devices.

6.1 X73 interface architecture (informative)

6.1.1 Introduction to X73 interface

This clause lists the application layer design guidelines that are common to the X73 PHD. This clause does not apply to the BLE-IF subclass of the PHD-IF (see Figure 6-2). See clauses 7 to 10 for the specific guidelines per supported transport protocol.

Figure 6-1 – X73-IF in the Continua E2E architecture

6.1.2 Overview of the X73 interface

The X73-IF is composed of different layers. Appropriate standards are selected for the individual layers and establish interoperability in the personal health ecosystem. Figure 6-2 gives an overview of the protocol stack for the X73-IF.

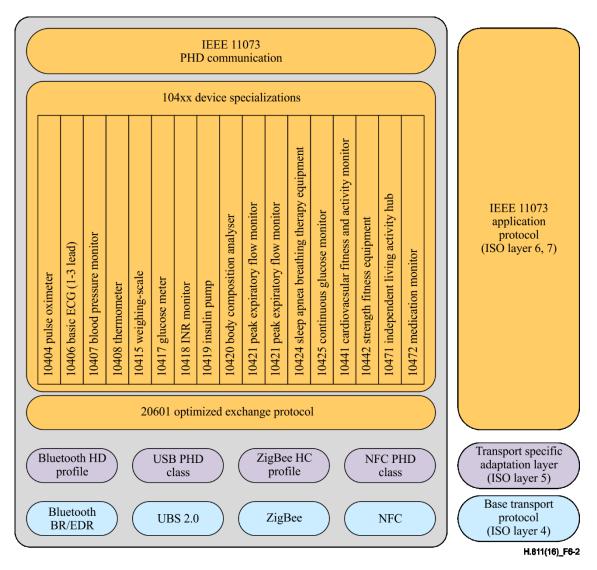


Figure 6-2 – X73-IF protocol stack

6.1.3 Common data/messaging layer and selected standards

Widely supported transport technologies and profiles have been selected for wireless and wired versions of the X73-IF. In addition for the application level data/messaging there is considerable commonality. A common solution has therefore been selected to serve as the data/messaging layer on top of the supported transport protocols.

The IEEE 11073-20601 optimized exchange protocol described in [IEEE 11073-20601] has been selected as the basis of the application protocol for the X73-IF. This internationally harmonized standard provides an interoperable messaging protocol and has definitions and structures in place to convert from an abstract data format into a transmission format. Thus, a consistent data exchange layer is enabled for the X73-IF.

The IEEE 11073-20601 protocol (see [IEEE 11073-20601]) acts as a bridge between devicespecific information defined in individual so-called device specializations and the underlying transports to provide a framework for optimized exchange of interoperable data units. The selected device specialization standards specify the data model and nomenclature terms to be used for individual devices. The device specializations are also illustrated in Figure 6-2.

6.1.4 Transport protocols and selected standards

The following wired and wireless solutions have been selected to serve as CDG transport for the X73-IF:

- Bluetooth BR/EDR Bluetooth health device profile
- USB USB personal healthcare device class
- NFC NFC Personal Health Device communication
- ZigBee ZigBee health care profile

The selected protocols for the transport layer ensure interoperable set-up and tear-down of the communication channel for the transfer of control and data messages across all domains.

6.2 Common X73 layer guidelines

6.2.1 Applicable interfaces

This clause contains a general design guideline for applicable interfaces. Table 6-1 lists the CDG network interfaces for which the common data/messaging layer guidelines described in clauses 6.2.2 to 6.2.3 are applicable.

Name	Description	Comments
11073-20601_ Applicable_Interfaces	Continua X73-IF service and client components shall implement the guidelines in Table 6-2.	The referenced tables contain guidelines on the data/messaging layer, which are consistent for the listed interfaces. The BLE-IF uses a different data/messaging layer (see clause 6.1.4).

Table 6-1 – Applicable interfaces

6.2.2 Exchange protocol

6.2.2.1 X73 component – general requirements

This clause contains general design guidelines, listed in Table 6-2, on the implementation of the [IEEE 11073-20601] specifications. All requirements in clause 6.2.2 refer to these specifications.

Table 6-3 shows minimally supported base protocol version(s) for device specializations and Table 6-4 shows the correspondence between 11073-20601 protocol versions and the respective specifications.

Name	Description	Comments
11073-20601_Reqt	Continua X73-IF service and client components shall implement at least the version or versions of the [ISO/IEEE 11073-20601] specifications as defined in Table 6-3.	The version or versions of [IEEE 11073-20601] that shall at least be supported for a certified capability class depends on the supported device specializations and on the client or service role. Client and service components are allowed to implement multiple versions, with the minimum version(s) as specified in Table 6-3.
11073-20601-2010- BOT-Restriction	If the client component chooses to use protocol-version 1 in the association phase then the service component shall not use BO-time in the communication with this client.	[ISO/IEEE 11073-20601-2010] (version 1) did not support base offset time, so all device specializations prior to CDG V2012 cannot support this attribute. This requirement guarantees backward

Table 6-2 – X73 wired/wireless general requirements

Name	Description	Comments
		compatibility and interoperability. The client (the manager) indicates it wants to use version 1 by setting (only) the version 1 bit of the protocol-version field in the association response message.
11073-20601-2010- BOT-Recommended	Continua X73-IF service components using IEEE 11073-20601 protocol version 2 or higher should use BO-time when reporting time and time-stamps in events.	[IEEE 11073-20601A] supports different flavours of time reporting. BO-time is the one that gives the best possibilities on handling local time changes, DST settings, and synchronization with UTC.
11073-20601A_ Service_Proto_Version	Continua X73-IF service components using IEEE 11073-20601 protocol version 1 in an association shall adhere to the corrections and clarifications from [ISO/IEEE 11073-20601A]	Components certifying to CDG 2012 (and later) are required to indicate supported protocol versions as per the standards. Since early Continua X73-IF service components require implementation of [ISO/IEEE 11073-20601-2010] version 1 with only the corrections and clarifications from [IEEE 11073- 20601A], these interfaces will follow protocol version 1 (with corrections).
11073-20601A_Client_ Proto_Version	Continua X73-IF client components using IEEE 11073-20601 protocol version 1 in an association shall adhere to the corrections and clarifications from [ISO/IEEE 11073-20601A]	Responding to an association request (AARQ) with the version 1 bit of the protocol version set indicates that the base offset time (BO-time) is not used. Similar to the Continua X73-IF service components, the Continua X73-IF client component shall nevertheless follow the remaining specifications of [IEEE 11073-20601A] even though the specification requires protocol version bit 2 to be set.
11073-20601A_Client_ Other_Proto_Version	Continua X73-IF client components may accept other bit settings in the protocol version than the ones implied by Table 6-3, but would then be operating in a non-Continua certified association	This guideline allows Continua X73-IF client components to implement new technical extensions NOTE – This is outside the current Continua Certification Programme.

Table 6-2 –X73 wired/wireless general requirements

IEEE 11073- 104xx specification	Device specialization(s)	20601 protocol version client component (*)	20601 protocol version service component (*)	specificatio n supports BO-time
10404	pulse oximeter	v1	v1	no
10406	basic 1-3 lead ECG and heart-rate sensor	v2	v2	yes
10407	blood pressure monitor	v1	v1	no
10408	thermometer	v1	v1	no
10415	weighing scales	v1	v1	no
10417	glucose meter	v1, v3	v3	yes
10418	INR meter	v2	v2	yes
10419	insulin pump	v3	v3	yes
10420	body composition analyser	v1	v1	no
10421	peak expiratory flow monitor	v1	v1	no
10424	sleep apnoea breathing therapy equipment	v2	v2	yes
10425	continuous glucose monitor	v3	v3	yes
10427	Power status monitor	v2	v2	yes
10441	cardiovascular fitness and step counter	v3	v3	yes
10442	strength fitness	v1	v1	no
10471	activity hub, fall sensor, motion sensor, enuresis sensor, contact closure sensor, switch sensor, dosage sensor, water sensor, smoke sensor, property exit sensor, temperature sensor, usage sensor, PERS sensor, CO sensor and gas sensor	v1	v1	no
10472	adherence monitor	v1	v1	no

Table 6-3 – Minimally supported base protocol version(s) for device specializations

(*) The protocol versions "v1", "v2" and "v3" as used in Table 6-3 refer to the protocol version of the 11073-20601 protocol. The supported version(s) are indicated by bits in the "protocol –version" field included in the PHDAssociationInformation structure in the association request (AARQ) and association response (AARE) of the 11073-20601 protocol.

Table 6-4 – Correspondence between 11073-20601 protocol versions and specifications

11073-20601 protocol version	Corresponding specification
v1	[ISO/IEEE 11073-20601:2010]
v2	[ISO/IEEE 11073-20601:2010/Amd 1:2015]
v3	[ISO/IEEE 11073-20601:2016]

6.2.2.2 X73 component – Communication capabilities

This clause contains guidelines for the general communication capabilities of sensor components in Table 6-5, Table 6-6, Table 6-7 and Table 6-8.

Name	Description	Comments
11073-20601_Bidirectional	Continua X73-IF service and client components shall support bidirectional transmission (i.e., sending and receiving, of [ISO/IEEE 11073-20601] defined application layer messages)	
11073_Manager_Initiated_ Communications	Continua X73-IF service components shall not support the MDS-Data-Request Action for the transfer of CDG data. This prohibits the service component from using manager initiated event reporting as a mechanism of measurement transfer	This guideline prohibits the use of manager-initiated event transmission. Use of this mechanism causes increased implementation and test effort that can be avoided through the use of a scanner. CDG data is defined as data from any object normatively defined in a device specialization
11073_DataReqMode_Alignment	Continua X73-IF service components shall ensure that the fields in the <i>Metric-Spec-Small</i> attribute of metric objects are aligned with what was declared in the DataReqModeCapab structure during Association	For example, if the <i>mss-acc-agent-initiated</i> bit is set in <i>Metric-Spec-Small</i> , then <i>data-req-init-agent-count</i> in <i>DataReqModeCapab</i> needs to be set to 1
11073-20601_FIFO_Store_and_ Forward	Continua X73-IF service components that are designed to store and forward temporary measurements shall transmit data in a "First In First Out" sequence	This guideline applies to both temporarily stored measurement events and to measurement data stored in a PM-store

 Table 6-5 – Communication capabilities – General

Table 6-6 – Communication capabilities – Event reporting

Name	Description	Comments
11073-20601_Config_Changes_ Service	Continua X73-IF service components shall report configuration changes to future measurements only	In the context of these guidelines, configuration changes are changes to attributes that provide context for the measurement. The interpretation of the measurement depends on the values of these contextual attributes, or configuration values. An example of configuration change would be changing the unit code of the reported measurement (e.g., from pounds to kilograms)
11073-20601_Config_Changes_ Client	Continua X73-IF client components that receive a report of a configuration change shall apply the change to future measurements only	A configuration update does not apply retroactively to data already received by the client component

Name	Description	Comments
11073-20601_Scanner_Sole_ Reporter	Continua X73-IF service components shall send changes to any particular attribute via a single scanner object (if enabled) or the medical device system (MDS) object, but never more than one object (of either the MDS or scanner type)	This guideline assigns responsibility to objects in the system for notifying the manager of changes and updates The scanner will report changes for attributes in the Scan-Handle- Attr-Val-Map
11073-20601_Unique_Scanner	Continua X73-IF client components shall not simultaneously turn on multiple scanners that embed the same measurement object provided by a single service component	This guideline assigns responsibility to objects in the system for notifying the manager of changes and updates The scanner will report changes for attributes in the Scan-Handle- Attr-Val-Map

Table 6-7 – Communication capabilities – Scanner requirements

Table 6-8 – Communication capabilities – Time setting

Name	Description	Comments
11073-20601_Set-Time	Continua X73-IF client components that receive a report containing the <i>Mds-Time-Info</i> attribute, with the mds-time-mgr- set-time bit set to 1, shall invoke the Set-Time action command within a <i>TO_{config}</i> time period in order to set the absolute time on the Continua X73-IF service component that has sent the report.	This guideline ensures the same client behaviour as for the case when the mds-time-mgr-set-time bit is received via a GET MDS response message, see [ISO/IEEE 11073-20601].
11073-20601_ DateAndTimeUpdate_ PMSegmentTransfer_Server	Continua X73-IF service components that are in the middle of a PM-segment transfer shall not update the PM-Segment object <i>Date-and-Time–</i> <i>Adjustment</i> attribute regardless of any time changes that occur while the segment continues to be transferred	This guideline ensures that the PM-segment includes measurements from the same, unbroken timeline. NOTE: This is somewhat less likely to occur at the USB/NFC/Bluetooth BR/EDR level since there is not programmatic control from another channel, but it could happen that the user interface is still turned on during the transfer so this will cover this case

Name	Description	Comments	
11073-20601_ DateAndTimeUpdate_ PMSegmentTransfer_Client	Continua X73-IF client components that receive a <i>Date-</i> <i>and-Time</i> update from a Continua X73-IF service component in the middle of a PM-segment transfer shall use the service component's time reference at the time the first segment entry is transmitted as the reference for the full segment regardless of any time changes that occur while the segment continues to be transferred	This guideline accounts for the fact that the service component's PM-segment contains measurements from the same, unbroken timeline.	
11073-20601_ DateAndTimeUpdate_ PMSegment_LowResource_ Service	Continua X73-IF service components with limited memory which implement PM-Store and do not implement Base-Offset- Time may maintain measurements across date or time adjustments within a single PM- segment. In this case, the user- facing time of the X73-IF service component at the time of the measurement shall be communicated as the measurement timestamp. See Note below.	In this case, such service components will not be capable of communicating date or time adjustments and cannot fulfil the requirement within [ISO/IEEE 11073-20601] Time Coordination section which states: "If an agent collects PM-store measurements and the Date-and-Time attribute is adjusted, the agent shall ensure that each PM-segment includes only measurements from the same, unbroken timeline."	

Table 6-8 – Communication capabilities – Time setting

NOTE – This requirement resolves the issue with some configurations of current IEEE device specializations that do use a PM Store with multiple segments and that do not include support for Base Offset time. Support of such a configuration would require an implementation to create new segments on each time or date change and to report on this in a single application protocol data unit (APDU) as response to a GetSegmentInfo request from the manager. The memory needed to store the additional segments and the size of the response APDU both grow significantly with each time or date change. This is seen as an unreasonable requirement on such implementations as they would run out of memory too quickly.

This affects configurations of the following device specializations that include a PM Store:

- Medication monitor [ISO/IEEE 11073-10472]
- Pulse oximeter [ISO/IEEE 11073-10404]

6.2.2.3 X73 component – Device information

This clause contains design guidelines that describe how to map CDG required device information to [ISO/IEEE 11073-20601] defined attributes. These guidelines are covered in Table 6-9.

Table 6-9 – Device information

Name	Description	Comments
11073-20601_Manufacturer	Continua X73-IF service components shall set the <i>manufacturer</i> field of the <i>System-</i> <i>Model</i> MDS object attribute to the device original manufacturer's name. If this capability is available, the <i>manufacturer</i> field may be overwritten to the customer-facing company's name by the customer-facing company	
11073-20601_Model	Continua X73-IF service components shall set the <i>model-</i> <i>number</i> field of the <i>System-Model</i> MDS object attribute to the device original manufacturer's model number. The <i>model-</i> <i>number</i> field may be overwritten to the customer-facing company's model by the customer-facing company	
11073-20601_OUI	The OUI part of the MDS <i>System-Id</i> attribute in a Continua X73-IF service component shall remain unchanged from the value set by the original manufacturer	This is a unique identifier, which is obtained by the IEEE registration authority and which is associated with a company. This attribute maps to the organizationally unique identifier (OUI) part (first 24 bits) of the EUI-64 attribute
11073-20601_DID	The 40 bit manufacturer defined identifier in the <i>System-Id</i> of the MDS object attribute of a Continua X73-IF service component shall remain unchanged from the value set by the original manufacturer	In combination with the System- Id attribute OUI part, this is a unique identifier associated with the device. It is required in order to facilitate data quality analysis. This attribute maps to the company-defined part (last 40 bits) of the EUI-64 attribute
11073-20601_DID_Bijective	There shall not be multiple different <i>System-Id</i> values that identify the same X73-IF service component	This guideline ensures that the System-Id value is an objective identifier of a device, i.e., in addition to every physical device having a globally unique identifier, each assigned identifier corresponds to a different physical device. As a consequence, a device cannot use multiple different System-Id values

Name	Description	Comments
11073-20601_Serial_Number	Continua X73-IF service components shall include a component to the <i>Production-</i> <i>Specification</i> MDS-object attribute with the <i>spec-type</i> field set to <i>serial-number</i> and the <i>prod-spec</i> field set to the serial number of the device	
11073-20601_FW_Revision	Continua X73-IF service components that provide a firmware identifier shall include a component to the <i>Production-</i> <i>Specification</i> MDS-object attribute with the <i>spec-type</i> field set to <i>fw-revision</i> and the <i>prod-</i> <i>spec</i> field set to the firmware identifier of the device	The firmware identifier is the version of the firmware deployed on the X73 device. The firmware release deployed on an X73 device is uniquely identified by the firmware identifier

Table 6-9 – Device information

6.2.2.4 X73 component – Unsupported service component

The CDG provides the data and messaging information to enable interoperability between Personal Health Devices. However, there may be regulatory reasons that require some client components to be exclusive about the data they accept. Not all client components will need to be this exclusive. However, the CDG provides the data and the messages for client components that are exclusive to providing the user with a positive experience.

This clause contains design guidelines, in Table 6-10, that define the expected behaviour when a service-side certified capability is not available.

Name	Description	Comments
11073_Unsupported_Device_ Rejection	If a Continua service component does not support at least one Continua certified capability class supported by the client component and the client component only accepts Continua Certified Capability Classes, then the Continua X73-IF client components shall request to release the association with a Continua service component using the result field no-more- configurations	If the service component supports any Continua certified capability classes, it supports the corresponding Reg-Cert- Data-List MDS object attribute where the certified capability class will be listed. The client will need to query the MDS to retrieve this attribute. It is recommended that this query is done before the service component enters the operating state to avoid the unwanted transfer of data
11073_Unsupported_Device_ Utilize_11073	Continua X73-IF service and client components that need to selectively accept or reject service or client component data for a specialization they support in order to comply with regulatory requirements shall utilize only [ISO/IEEE 11073-20601] data structures to make the decision to reject or accept data from a client or service component	It will be necessary to simulate "accepted" devices to fully test service and client components. Device manufacturers will need to document and provide 11073 data structures for "accepted" devices for use during interoperability testing. Note that this design guideline is not a testable design guideline. It is simply used to facilitate testing
11073_Unsupported_Device_ UserNotification_Client	Continua X73-IF client components shall notify the user of failure of the connection and corresponding reason, if it has released or rejected the association according to requirement 11073- Unsupported-Device-Rejection	This requirement is related to the user interface of the client component. Notification can be done in various ways (e.g., by displaying a text message or by means of a blinking LED)

Table 6-10 – Unsupported service component

Name	Description	Comments
11073_Unsupported_Device_ UserNotification_Service	Continua X73-IF service components should notify the user of failure of the connection and corresponding reason, if the client has released or rejected the association according to requirement 11073-Unsupported-Device-Rejection	This requirement is related to the user interface of the service/client component. Notification can be done in various ways (e.g., by displaying a text message or by means of a blinking LED)
11073_Unsupported_Device_ UserNotification_String_Client	Continua X73-IF client components with appropriate UI capabilities should use the following text string to notify the user of the connection failure in accordance with guideline 11073-Unsupported-Device- UserNotification-Client: "Thank you for choosing Continua certified personal health products. The device you are connecting either has not been Continua certified or the data is not intended for use in this solution. Please see your user manual for more details."	This string may be localized by the manufacturer based on the product and target geography
11073_Unsupported_Device_ UserNotification_String_Service	Continua X73-IF service components with appropriate UI capabilities should use the following text string to notify the user of any failure of the connection according to guideline 11073- Unsupported-Device-UserNotification- Service: "Thank you for choosing Continua certified personal health products. The device you are connecting either has not been Continua certified or the data is not intended for use in this solution. Please see your user manual for more details."	This string may be localized by the manufacturer based on the product and target geography
11073_Unsupported_Device_ NotificationDocu	Continua X73-IF service and client components shall be shipped with a documentation of the notification mechanism with respect to requirements 11073-Unsupported-Device- UserNotification-Service and 11073- Unspported-Device-UserNotification- Client	

Table 6-10 – Unsupported service component

6.2.2.5 X73 component – Quality of service

To send IEEE 11073-20601 data and messages on logical channels based on QoS characteristics, the requirements in Table 6-11 are defined, while the corresponding Continua QoS bins are in Table 6-12.

Name	Description	Comments
DataMessaging_BiDir_QoS	Continua X73-IF service and client components shall send all messages on the corresponding Continua QoS bins listed in Table 6-12	

Table 6-11 – X73 QoS implementation

Table 6-12 – Bidirectional transport layer: Message type/QoS bin mapping

Msg Grp	Message type description	APDU type	QoS bin type
	Association Request	Aarq	best.medium
	Association Response	Aare	best.medium
0	Association Release Request	Rlrq	best.medium
	Association Release Response	Rlre	best.medium
	Association Abort	Abrt	best.medium
	DATA(Invoke-UnconfirmedEventReport (Unbuf-Scan-Report-*), ScanReportInfo*)	Prst	best.medium or good.medium
1	DATA(Invoke-UnconfirmedEventReport(Buf-Scan-Report-*), ScanReportInfo*)	Prst	best.medium or good.medium
	DATA(Invoke-UnconfirmedEventReport (MDS-Dynamic-Data- Update-*), ScanReportInfo*)	Prst	best.medium or good.medium
	DATA(Invoke-ConfirmedEventReport(MDS-Configuration- Event), ConfigReport)	Prst	best.medium
	DATA(Response-ConfirmedEventReport(MDS-Configuration- Event), ConfigReportRsp)	Prst	best.medium
	DATA(Invoke-ConfirmedEventReport(Segment-Data-Event), SegmentDataEvent)	Prst	best.medium
	DATA(Response-ConfirmedEventReport(Segment-Data-Event), SegmentDataResult)	Prst	best.medium
2	DATA(Invoke-ConfirmedEventReport(Unbuf-Scan-Report-*), ScanReportInfo*)	Prst	best.medium
	DATA(Response-ConfirmedEventReport(Unbuf-Scan-Report-*))	Prst	best.medium
	DATA(Invoke-ConfirmedEventReport(Buf-Scan-Report-*), ScanReportInfo*)	Prst	best.medium
	DATA(Response-ConfirmedEventReport(Buf-Scan-Report-*))	Prst	best.medium
	DATA(Invoke-ConfirmedEventReport (MDS-Dynamic-Data- Update-*), ScanReportInfo*)	Prst	best.medium
	DATA(Response-ConfirmedEventReport (MDS-Dynamic-Data- Update-*))	Prst	best.medium
3	DATA(Invoke-UnconfirmedAction()): <none 11073-20601]="" [iso="" defined="" ieee="" in=""></none>	N/A	N/A
4	DATA(Invoke-ConfirmedAction(MDS-Data-Request), DataRequest)	Prst	best.medium

Msg Grp	Message type description	APDU type	QoS bin type
	DATA(Response-ConfirmedAction(MDS-Data-Request), DataResponse)	Prst	best.medium
	DATA(Invoke-ConfirmedAction(Set-Time), SetTimeInvoke)	Prst	best.medium
	DATA(Response-ConfirmedAction(Set-Time))	Prst	best.medium
	DATA(Invoke-ConfirmedAction(Get-Segment-Info), SegmSelection)	Prst	best.medium
	DATA(Response-ConfirmedAction(Get-Segment-Info), SegmentInfoList)	Prst	best.medium
	DATA(Invoke-ConfirmedAction(Trig-Segment-Data-Xfer), TrigSegmDataXferReq)	Prst	best.medium
	DATA(Response-ConfirmedAction(Trig-Segment-Data-Xfer), TrigSegmDataXferRsp)	Prst	best.medium
	DATA(Invoke-ConfirmedAction(Clear-Segments), SegmSelection)	Prst	best.medium
	DATA(Response-ConfirmedAction(Clear-Segments))	Prst	best.medium
	DATA(Invoke-ConfirmedAction(MDS-Data-Request), DataRequest)	Prst	best.medium
	DATA(Response-ConfirmedAction(MDS-Data-Request), DataResponse)	Prst	best.medium
	DATA(Invoke-ConfirmedAction(MDS-Data-Request), DataRequest)	Prst	best.medium
	DATA(Response-ConfirmedAction(MDS-Data-Request))	Prst	best.medium
5	DATA(Invoke-UnconfirmedSet()) {scanner OperationalState}	Prst	best.medium
6	DATA(Invoke-ConfirmedSet()){scanner OperationalState}	Prst	best.medium
6	DATA(Response-ConfirmSet()){scanner OperationalState}	Prst	best.medium
	DATA(Invoke-ConfirmedGet()) {MDS attributes}	Prst	best.medium
7	DATA(Response-ConfirmGet()){MDS attributes}	Prst	best.medium
7	DATA(Invoke-ConfirmedGet()) {PM-store attributes}	Prst	best.medium
	DATA(Response-ConfirmGet()){PM-store attributes}	Prst	best.medium
8	DATA(Error(), ErrorResult)	Prst	best.medium
0	DATA(Reject()), RejectResult)	Prst	best.medium

Table 6-12 – Bidirectional transport layer: Message type/QoS bin mapping

6.2.2.6 X73 component – Regulatory settings

This clause contains design guidelines that deal with the Continua requirements for regulatory issues using the IEEE 11073-20601 capabilities. These guidelines are covered in Table 6-13, Table 6-14 and Table 6-15.

For this purpose, the following abstract syntax notation one (ASN.1) definitions are introduced and referenced in Table 6-13.

NOTE – This syntax is also used for Bluetooth LE in clause 11.2.7.

```
ContinuaStructType ::= INT-U8 {
    continua-version-struct(1), -- auth-body-data is a ContinuaBodyStruct
                                    -- auth-body-data is a ContinuaRegStruct
    continua-reg-struct(2)
}
ContinuaBodyStruct ::= SEQUENCE {
       major-IG-version INT-U8,
minor-IG-version INT-U8,
       certified- certified-capabilities CertifiedCapabilityClassList
}
CertifiedCapabilityClassList::= SEQUENCE OF CertifiedCapabilityClassEntry
-- See guideline 11073-20601 CapabilityEntry for the algorithm to compute the
value
CertifiedCapabilityClassEntry ::= INT-U16
ContinuaRegStruct ::= SEQUENCE {
       regulation-bit-field
                                RegulationBitFieldType
}
RegulationBitFieldType ::= BITS-16 {
    unregulated-device (0) -- This bit shall be set if the device is not
regulated }
```

Figure 6-3 – ASN.1 definition of Continua certification structures

6.2.2.6.1 Regulatory / certification information

This clause contains guidelines for the conformance of client components to the usage of regulatory and certification information. The guidelines are contained in Table 6-13.

Name	Description	Comments
11073-20601_ Certification	Continua X73-IF service components shall support the <i>Reg-Cert-Data-List</i> MDS object attribute containing a <i>RegCertData</i> element with the <i>auth-body</i> field set to <i>auth-body-</i> <i>continua</i> and the <i>auth-body-struc-type</i> field set to <i>continua-version-struct</i> from a ContinuaStructType as defined above. The field <i>auth-body-data</i> shall be filled in as a <i>ContinuaBodyStruct</i> as defined above	Continua certification information - This is used to indicate whether a capability is Continua certified and (if so) to which version of the guidelines it is certified to
11073-20601- CapabilitiesList	Continua X73-IF service components shall list all implemented and only the implemented Certified Capability Classes in the "certified-capabilities" attribute of the ContinuaBodyStruct structure	

Table 6-13 – Regulatory / certification information

NT				
Name	Description	Comments		
11073-20601- CapabilityEntry	Continua X73-IF service components shall assign the following CertifiedCapabilityClassEntry to an implemented certified capability class: MDC_DEV_*_SPEC_PROFILE_* - 4096 + TCode x 8192, where MDC_DEV_*_SPEC_PROFILE_* denotes the IEEE 11073 PHD nomenclature code for the corresponding device (sub-) specialization, and TCode denotes the corresponding transport standard, with TCode = {1 for USB, 2 for Bluetooth BR/EDR, 3 for ZigBee, 4 for Bluetooth LE, and 5 for NFC}. For backward compatibility with CDG version 1 which did not define TCodes, USB and Bluetooth BR/EDR service components should additionally include the supported MDC_DEV_*_SPEC_PROFILE_* codes along with a TCode of 0 to interoperate with version 1 client components	Example 1: For a Bluetooth BR/EDR step counter, the assigned CertifiedCapabilityClassEntry computes as 0x4068 (16488 decimal), where it has been substituted MDC_DEV_*_SPEC_PROFILE_* = MDC_DEV_SUB_SPEC_PROFILE_S TEP_COUNTER = 4200 and TCode = 2. This gives, 4200 - 4096 + 2 x 8192 = 16488 (0x4068) Example 2: For a ZigBee smoke sensor, the assigned CertifiedCapabilityEntry computes as 0x6077 (24,695 decimal), where it has been substituted MDC_DEV_*_SPEC_PROFILE_* = MDC_DEV_SUB_SPEC_PROFILE_S MOKE_SENSOR = 4215 and TCode = 3. This gives, 4215 - 4096 + 3 x 8192 = 24,695 (0x6077)		
11073-20601- DeviceSpecList	Continua X73-IF service components shall list MDC_DEV_SPEC_PROFILE_* value(s) corresponding to each supported Continua certified Capability Class in the System- Type-Spec-List attribute of the MDS object. The attribute may contain additional MDC_DEV_SPEC_PROFILE_* value(s) corresponding to supported IEEE specializations that are not Continua certified			
11073-20601- Regulation	Continua X73-IF service components shall support the <i>Reg-Cert-Data-List</i> MDS object attribute containing a <i>RegCertData</i> element with the <i>auth-body</i> field set to <i>auth-body-</i> <i>continua</i> and the <i>auth-body-struc-type</i> field set to <i>continua-reg-struct</i> from a ContinuaStructType as defined in the sub- clauses below. The field <i>auth-body-data</i> shall be filled in as a <i>ContinuaRegStruct</i> as defined below	Regulation information - This is used to provide a coarse regulatory indication (e.g., "Regulated" or "Not Regulated")		

Table 6-13 – Regulatory / certification information

6.2.2.6.2 Conformance

This clause contains guidelines for the conformance of client components to [ISO/IEEE 11073-20601] and [ISO/IEEE 11073-104xx] specifications and capabilities. The guidelines are contained in Table 6-14.

Name	Description	Comments
11073-20601-Manager- Conformance	Continua X73-IF client components shall appropriately utilize the mandatory measurement objects from compliant device specializations	In the context of these requirements, the term "appropriately utilize" implies that the objects get utilized in accordance with the function of the device. That is, a mandatory measurement object can be displayed, and/or forwarded, and/or used as input for an assessment algorithm, etc.
11073-20601-Utilization- Documentation	Continua X73-IF client components shall provide to the Test and Certification organization documentation on the appropriate utilization of the individual mandatory measurement objects	

Table 6-14 – Manager conformance

6.2.2.6.3 Nomenclature codes

This clause contains guidelines for the use of nomenclature codes by client and service components. The guidelines are contained in Table 6-15.

Table 6-15 – Nomenclature codes

Name	Description	Comments
11073-20601-Continua- Nomenclature-Codes	Continua X73-IF service and client components that use private nomenclature codes shall allocate them from the range 0xF000 through 0xFBFF	The range from 0xFC00 through 0xFFFF is reserved for future use by the CDG

6.2.2.7 X73 component – User identification

This clause contains guidelines for service components on user identification. The guidelines are contained in Table 6-16.

Table 6-16 –	User identification
--------------	---------------------

Name	Description	Comments
11073-20601-PID- ScanReport	Continua X73-IF serv components designed store and utilize data from multiple users simultaneously and th use agent-initiated measurement data transmission shall identify users and set person-id field in the corresponding ScanReportPer* structure	the distinguishing between users of the measurement device

Table 6-16 – User identification

Name		Description	Comments
11073-20601-PID-PM- Store	c s f s m i u s F c c t t	Continua X73-IF service components designed to store and utilize data from multiple users simultaneously in one or more PM-stores shall identify users and support the PM-Seg- Person-Id PM-segment object attribute and set the pmsc-multi-person bit in the PM-Store- Capab PM-Store object attribute	Identification means distinguishing between users of the measurement device

6.2.3 Standard configuration support

This clause contains guidelines on the support of standard and extended configurations by X73-IF client and service components to better guarantee interoperability. The guidelines are covered by Table 6-17.

Name	Description	Comments
11073-20601-standard-config- support	Continua X73-IF service components shall (always) support one of the pre-defined standard configurations for supported [ISO/IEEE 11073- 104xx] device specializations if such configurations are defined in the corresponding [ISO/IEEE 11073-104xx] device specialization.	[ISO/IEEE 11073-20601-2016] and later no longer requires a service component to always support a standard configuration: a service component that supports an extended configuration with a PM store does not need to support a standard configuration. The CDGs do require support for a standard configuration by the service component to maintain interoperability.
11073-20601-extended-config- support	Continua X73-IF client components that support protocol IEEE 11073-20601 protocol v3 should support extended configurations as used by [ISO/IEEE 11073-104xx] device implementations for supported [ISO/IEEE 11073-104xx] device specializations as long as these configurations consist of objects and attributes defined in the corresponding [ISO/IEEE 11073- 104xx] specification.	[ISO/IEEE 11073-20601-2016] and later no longer require a service component to always support a standard configuration: a service component that supports an extended configuration with a PM store does not need to support a standard configuration. The CDGs require that such extended configurations should be supported by the Personal Health Gateway (PHG) for improved interoperability.

Table 6-17 – Communication capabilities – general

NOTE - the following device specializations do not define standard configurations:

- 11073-10441 Cardiovascular fitness and activity monitor
- 11073-10442 Strength fitness equipment
- 11073-10471 Independent living activity hub

6.2.4 Sensor component – communication capabilities

This clause contains guidelines for general communications capabilities of sensor components, see Table 6-18.

Name	Description	Comments
11073-20601-Complete-Config- Object-List	Continua X73-IF service components shall always populate the ConfigObjectList of a configuration message with the complete set of objects and attributes supported by the configuration	[ISO/IEEE 11073-20601] allows an agent to send a configuration event with an empty ConfigObjectList if the configuration-id is within the range of standard-config-start and standard-config-end. This mechanism was designed in [ISO/IEEE 11073-20601] to optimize bytes transferred. However this mechanism is likely to cause interoperability problems as the feature is not well known. It is believed that the enhancement to interoperability outweighs the optimization.

Table 6-18 – Communication capabilities association and configuration

6.2.5 Sensor component multi-function devices

This clause describes guidelines for multi-function devices (e.g., how to make combined use of [ISO/IEEE 11073-104xx] to create multi-function devices, or how to use the [ISO/IEEE 11073-20601] mechanisms for association in this case). See Table 6-19.

Name	Description	Comments
11073-20601-Multi-Function	A Continua X73-IF service component shall have at most one [ISO/IEEE 11073-20601] association to an X73-IF client component at any point in time regardless of whether the device is a single function or multi- function device	This guideline prohibits the device from having two concurrent associations. The device may provide different configuration options only in subsequent associations only after closing the currently active association

 Table 6-19 – Multi-function devices

6.3 X73 devices

This clause contains guidelines for client and service components that implement specific [ISO/IEEE 11073-104xx] device specializations. There is a subclause per device specialization.

6.3.1 Pulse oximeter

This clause contains guidelines for client and service components that implement the pulse oximeter device specialization. The guidelines are contained in Table 6-20 and additionally in Table 6-21 and Table 6-22 for implementations supporting PM stores.

6.3.1.1 Pulse oximeter – general requirements

Name	Description	Comments
11073-10404-Reqt	Continua X73 pulse oximeter service and client components shall implement [ISO/IEEE 11073-10404]	
11073-Pulse-Oximeter-PM-Store	Continua X73 pulse oximeter service and client components that implement and use the PM-Store model shall implement the guidelines in Table 6-21, and Table 6-22 as well as Table 6-2 or Table 6-3 and subsequent explanatory text.	

Table 6-20 – Pulse oximeter – General requirements

6.3.1.2 **PM-store objects for the pulse oximeter**

The PM-store and PM-segment classes provide a flexible and powerful means for storing large amounts of measurement data for later transmission to a PHD. However, this flexibility could potentially lead to ambiguities that could jeopardize interoperability. This clause describes recommended implementations for the most common use case, the sleep study.

Figure 6-4 illustrates one arrangement of a PM-store organized into two PM-segments. Each PM-segment stores periodically sampled data from a single contiguous session and each PM-segment entry contains a SpO₂ measurement and a pulse rate measurement sampled at a single point in time.

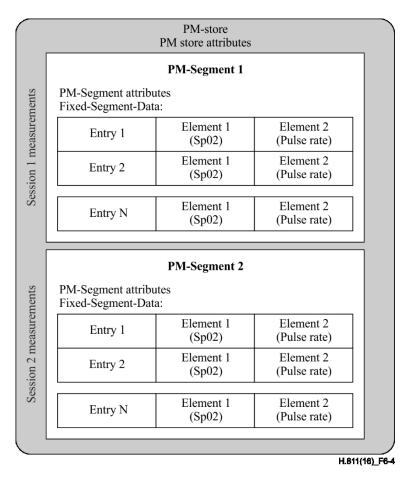


Figure 6-4 – PM-Store usage for pulse oximeter

Some situations may not be suitable for the previous approach. For instance, a pulse oximeter may record SpO_2 measurements at a different sampling period than pulse rate measurements, or one of the measurements during a session could conceivably be episodic. A PM-segment organization that could be better suited to this situation is illustrated in Figure 6-5.

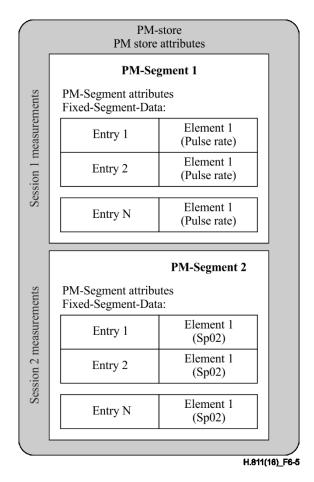


Figure 6-5 – Alternate PM-segment organization

This alternate arrangement challenges the notion of measurement association. Given a collection of PM-segments, how can the PHG determine which, if any, segments are associated?

Time stamps are used to determine whether one or more PM-segments are associated with another. Any measurements within one or more PM-segments in a PM-store are considered to be associated if their start and end segment attributes are overlapping, or if one segment's time range is contained within another segment. Guidelines in Table 6-21 prohibit the storage of associated PM-segments in separate PM-stores, which would add unnecessary complexity for client components to identify associated PM-segments.

Name	Description	Comments
11073-Pulse_Oximeter_PM_ Store_Organization	Continua X73 pulse oximeter service components should organize their stored measurements as shown in Figure 6-4 or Figure 6-5.	The order of SpO2 and pulse rate is defined in the SegEntryMap
11073-Pulse_Oximeter_PM_ Store_StartTime_StopTime	Continua X73 pulse oximeter service components shall store the start time and end time in the PM-Segment attributes <i>Segment-</i> <i>Start-Abs-Time</i> and <i>Segment-end-</i> <i>Abs-Time</i>	Enables the PHG to determine whether one or more PM- segments are associated
11073_Pulse_Oximeter_PM_ Store_Associated_ Measurements_Locations	Continua X73 pulse oximeter service components shall create PM-segments within the same PM-store, if the PM-segments are overlapping in time	PM-segments are considered to be overlapping in time if the time ranges defined by their Segment- Start-Abs-Time and Segment- End-Abs-Time attribute values are overlapping

Table 6-21 – Pulse oximeter PM-Store measurement requirements

6.3.1.3 PM-Store object attributes

Table 6-22 contains guidelines for pulse oximeter PM-Store object attributes.

Table 6-22 –	- Pulse oximeter	· PM-Store	object	attributes	guideline
	I unse ommeter		UDjece	attributes	Summe

Name	Description	Comments
11073-Pulse-Oximeter-PM- Store-Object-Attributes-PM- Store-Capab-set	Continua X73 pulse oximeter service components shall set the following bit value for the PM-store-Capab attribute of the PM-store Object: <i>pmsc-clear-segm-by-all-sup</i>	
11073-Pulse-Oximeter-PM- Store-Object-Attributes-PM- Store-Capab-clear	Continua X73 pulse oximeter service components shall clear the following bit value for the PM-store-Capab attribute of the PM-Store object: <i>pmsc-clear-segm-by-time-sup</i>	
11073-Pulse-Oximeter-PM- Store-Object-Attributes-PM- Store-Label	Continua X73 pulse oximeter service components, that implement the PM-store-Label attribute of the PM-store object, shall not set a value of size larger than 255 octets	
11073-Pulse-Oximeter-PM- Store-Object-Attributes- Sample-Period-Attribute	Continua X73 pulse oximeter service components shall implement the <i>Sample-Period</i> attribute of a PM-store object, if the stored measurements are periodic and the <i>Sample-</i> <i>Period</i> attribute is not implemented in each of the PM-segment objects created within that PM- store object. If the Sample-Period is defined in both the PM-store and in the PM-segment(s), the PM-segment attribute value shall take precedence	
11073-Pulse-Oximeter-PM- Store-Object-alignment	Continua X73 pulse oximeter service components shall align periodic measurements so that the time of the first measurement is equivalent to <i>Segment-Start-Abs-Time</i>	Need to align events in case two associated PM- segments have

Name	Description	Comments
		widely varying sample periods

Table 6-22 – Pulse oximeter PM-Store object attributes guideline

6.3.2 Basic 1-3 lead ECG

This clause contains guidelines for client and service components that implement the ECG device specialization. The guidelines are contained in Table 6-23 and additionally in Table 6-24 and Table 6-24 for implementations supporting PM stores.

Name	Description	Comments
11073-10406-Basic- ECG-Reqt	Continua X73 Basic 1-3 lead ECG service and client components shall implement [IEEE 11073- 10406]	
11073-10406-Simple- ECG-Profile	Continua X73 Basic 1-3 lead ECG service and client components shall implement the simple ECG profile defined in [IEEE 11073- 10406]	The simple ECG profile defined in [IEEE 11073-10406] mandates implementation of ECG waveform functionality
11073-Basic-ECG-PM- Store	Continua X73 Basic 1-3 lead ECG service and client components that implement and use the PM-Store model shall implement the guidelines in Table 6-24 and Table 6-25, and should follow the storage layout as shown in Figure 7 of [IEEE 11073-10406]	Figure 7 of [IEEE 11073-10406] illustrates the example of a 3-lead Basic 1-3 lead ECG, with measurement data from all leads being contained in each entry preceded by a segment entry header. For a lower number of leads the number of elements in each entry reduces accordingly. The order of elements within an entry is defined in the SegEntryMap attribute

Table 6-23 – Basic 1-3 lead ECG – General requirements

6.3.2.1 PM-store objects for the Basic 1-3 lead ECG

The PM-store and PM-segment classes provide a flexible and powerful means for storing large amounts of measurement data for later transmission to a PHG. However, this flexibility could potentially lead to ambiguities that could jeopardize interoperability. This clause describes recommended implementations for the most common use case involving persistently stored metric data, the storage of ECG waveform data.

Figure 7 of [IEEE 11073-10406] illustrates one arrangement of a periodic PM-store organized into two PM-segments. Each PM-segment stores periodically sampled data from a single contiguous session and each PM-segment entry contains sample arrays of ECG waveform data for all implemented leads sampled during the same period of time.

Some situations may not be suitable for the previous approach. For instance, a Basic 1-3 lead ECG may record heart-rate measurements at a different sampling period than ECG waveform measurements, or one of the measurements during a session could conceivably be aperiodic. A PM-segment organization that could be better suited to this situation is to use a separate PM-segment for

different measurement types. See also Figure 6-5 for a conceptual illustration of this type of PMsegment organization. This alternate arrangement challenges the notion of measurement association, i.e., for the PHG to determine which segments are associated for a given collection of PM-segments. Storage of periodic and aperiodic measurements involves organization in separate aperiodic and periodic PM-stores, respectively.

Time stamps are used to determine whether one or more PM-segments are associated with another. Any measurements within one or more PM-segments in a PM-store are considered to be associated if their start and end segment attributes are overlapping, or if one segment's time range is contained within another segment. The guidelines contained in Table 6-24 prohibit the storage of associated PM-segments in separate PM-stores, which would add unnecessary complexity for client components to identify associated PM-segments.

Name	Description	Comments
11073_Basic_ECG_Periodic_ PM_Store_Associated_ Measurements_Locations	For periodic measurements, Continua X73 Basic 1-3 lead ECG service components shall create PM- segments within the same periodic PM-store, if the PM-segments are overlapping in time	PM-segments are considered to be overlapping in time if the time ranges defined by their Segment- Start-Abs-Time and Segment- End-Abs-Time attribute values are overlapping
11073_Basic_ECG_ Aperiodic_PM_Store_ Associated_Measurements_ Locations	For aperiodic measurements, Continua X73 Basic 1-3 lead ECG service components shall create PM- segments within the same aperiodic PM-store, if the PM-segments are overlapping in time	PM-segments are considered to be overlapping in time if the time ranges defined by their Segment- Start-Abs-Time and Segment- End-Abs-Time attribute values are overlapping

Table 6-24 – ECG PM-Store measurement requirements

6.3.2.2 PM-store object attributes

Name	Description	Comments
11073_Basic_ECG_PM_ Store_Object_Attributes_ PM-Store-Label	Continua X73 Basic 1-3 lead ECG service components, that implement the PM-Store-Label attribute of the PM-Store object, shall not set a value of size larger than 255 octets	
11073_Basic_ECG_PM_ Store_Object_alignment	Continua X73 Basic 1-3 lead ECG service components shall align periodic measurements such that the time of the first measurement is equivalent to <i>Segment-Start-Abs-Time</i>	Need to align events in case two associated PM-segments have widely varying sample periods

6.3.3 Heart-rate sensor

This clause contains guidelines for client and service components that implement the heart-rate sensor device specialization. The guidelines are contained in Table 6-26 and additionally in Table 6-27 and Table 6-28 for implementations supporting PM stores.

Name	Description	Comments
11073-10406_Heart_ Rate_Reqt	Continua X73 heart-rate sensor service and client components shall implement [IEEE 11073-10406]	
11073-10406_Heart_ Rate_Profile	Continua X73 heart-rate sensor service and client components shall implement the heart rate profile defined in [IEEE 11073-10406]	The heart rate profile defined in [IEEE 11073-10406] mandates the implementation of heart-rate functionality
11073_Heart_Rate_PM_ Store	Continua X73 heart-rate sensor service and client components that implement and use the PM-Store model shall implement the guidelines in Table 6-27 and Table 6-28	For simple heart-rate sensors PM- Store functionality is typically not implemented. This guideline provides guidance for the case that PM-Store functionality is implemented

Table 6-26 – Heart-rate sensor – General requirements

6.3.3.1 PM-store objects for the heart-rate sensor

The PM-store and PM-segment classes provide a flexible and powerful means for storing large amounts of measurement data for later transmission to a PHG. For simple heart-rate sensors this functionality is typically not implemented. However, if implemented this clause provides guidance to ensure interoperability.

A common use case involves persistently stored R-R interval data. Figure 6-6 illustrates a simple arrangement of an aperiodic PM-store containing PM-segments for storing R-R interval data from different measurement sessions. The entries of a PM-segment each contain an element of R-R interval data.

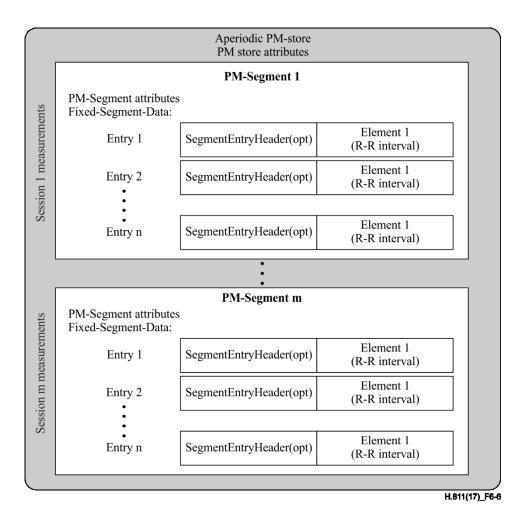


Figure 6-6 – PM-store usage example for heart-rate sensor

Time stamps are used to determine whether one or more PM-segments are associated with another. Any measurements within one or more PM-segments in a PM-store are considered to be associated if their start and end segment attributes are overlapping, or if one segment's time range is contained within another segment. The guidelines contained in Table 6-27 prohibit the storage of associated PM-segments in separate PM-stores, which would add unnecessary complexity for client components to identify associated PM-segments.

Name	Description	Comments
11073_Heart_rate_Periodic_PM_ Store_Associated_ Measurements_Locations	For periodic measurements, Continua X73 heart-rate sensor service components shall create PM-segments within the same periodic PM-store, if the PM- segments are overlapping in time	PM-segments are considered to be overlapping in time if the time ranges defined by their Segment- Start-Abs-Time and Segment- End-Abs-Time attribute values are overlapping
11073_Heart_Rate_Aperiodic_ PM_Store_Associated_ Measurements_Locations	For aperiodic measurements, Continua X73 heart-rate sensor service components shall create PM-segments within the same aperiodic PM-store, if the PM- segments are overlapping in time	PM-segments are considered to be overlapping in time if the time ranges defined by their <i>Segment-</i> <i>Start-Abs-Time</i> and <i>Segment-</i> <i>End-Abs-Time</i> attribute values are overlapping

Table 6-27– Heart-rate sensor PM-Store measurement requirements

6.3.3.2 **PM-store object attributes**

Table 6-28 contains guidelines for PM-Store object attributes.

Name	Description	Comments
11073_Heart_Rate_PM_ Store_Object_Attributes_ PM-Store-Label	Continua X73 heart-rate sensor service components, that implement the PM-Store-Label attribute of the PM-Store object, shall not set a value of size larger than 255 octets	
11073_Heart_Rate_PM_ Store_Object_alignment	Continua X73 heart-rate sensor service components shall align periodic measurements such that the time of the first measurement is equivalent to <i>Segment-Start-Abs-Time</i>	Need to align events in case two associated PM-segments have widely varying sample periods

6.3.4 Blood pressure monitor

This clause contains guidelines for client and service components that implement the blood pressure monitor device specialization. The guidelines are contained in Table 6-29.

Table 6-29 – Blood pressure monitor – General	requirements
---	--------------

Name	Description	Comments
11073-10407_Reqt	Continua X73 blood pressure monitor service and client components shall implement [ISO/IEEE 11073-10407]	

6.3.5 Thermometer

This clause contains guidelines for client and service components that implement the thermometer device specialization. The guidelines are contained in Table 6-30.

Name	Description	Comments
11073-10408_Reqt	Continua X73 thermometer service and client components shall implement [ISO/IEEE 11073-10408]	

6.3.6 Weighing scales

This clause contains guidelines for client and service components that implement the weighing scales device specialization. The guidelines are contained in Table 6-31.

Table 6-31 – Weighing scales – General requirements

Name	Description	Comments
11073-10415_Reqt	Continua X73 weighing scales service and client components shall implement [ISO/IEEE 11073-10415]	

6.3.7 Glucose meter

This clause contains guidelines for client and service components that implement the glucose meter device specialization. The guidelines are contained in Table 6-32.

Table 6-32 – Glucose meter – General requirements

Name	Description	Comments
11073-10417_Reqt	Continua X73 glucose meter service and client components shall implement [IEEE 11073-10417]	

6.3.8 INR meter

This clause contains guidelines for client and service components that implement the INR meter device specialization. The guidelines are contained in Table 6-33.

Table 6-33 – INR meter – General re	equirements
-------------------------------------	-------------

Name	Description	Comments
11073-10418_Reqt	Continua X73 INR meter service and client	
	components shall implement [IEEE 11073-10418]	

6.3.9 Body composition analyser

This clause contains guidelines for client and service components that implement the body composition analyser device specialization. The guidelines are contained in Table 6-34.

Name	Description	Comments
11073-10420_Reqt	Continua X73 Body composition analyser service and client components shall implement [IEEE 11073-10420]	

Table 6-34 – Body	composition	analyser –	General re	auirements
Tuble of Doug	composition	anarysei	Ochici al 10	qui chienes

6.3.10 Peak expiratory flow monitor

This clause contains guidelines for client and service components that implement the peak expiratory flow monitor device specialization. The guidelines are contained in Table 6-35.

Name	Description	Comments
11073-10421_Reqt	Continua X73 peak expiratory flow monitor service and client components shall implement [ISO/IEEE 11073-10421]	

Table 6-35 – Peak expiratory flow monitor – General requirements

6.3.11 Cardiovascular fitness

This clause contains guidelines for client and service components that implement the cardiovascular fitness device specialization. The guidelines are contained in Table 6-36.

Table 6-36 - Cardiovascular fitness - General requirements

Name	Description	Comments
11073-10441_Reqt	Continua X73 cardiovascular fitness service and client components shall implement [IEEE 11073-10441]	

6.3.12 Cardiovascular step counter

There is no IEEE 11073 device specialization dedicated to a cardiovascular step counter. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10441] to create an X73 cardiovascular step counter. The guidelines are contained in Table 6-37.

Name	Description	Comments
11073_10441_Reqt	Continua X73 cardiovascular step counter service and client components shall implement [IEEE 11073-10441]	
11073_Step_Counter_ Service_Max_APDU	Continua X73 cardiovascular step counter service components shall be able to support a maximum APDU size of 224 octets from Continua X73 client components	These are consistent with weighing scales, thermometer, glucose meter, blood pressure monitor and independent living activity hub
11073_Step_Counter_ Client_Max_APDU	Continua X73 cardiovascular step counter client components shall be able to support a maximum APDU size of 6624 octets from Continua X73 service components	
11073_Step_Counter_ Service_Mandatory_Objects	Continua X73 cardiovascular step counter service components shall support the session and distance object in units of steps	

 Table 6-37 – Cardiovascular step counter – General requirements

Name	Description	Comments
11073_Step_Counter_ Client_Mandatory_Objects	Continua X73 cardiovascular step counter client components shall support the session and distance object (all unit codes)	
11073_Step_Counter_ Service_Optional_Objects	Continua X73 cardiovascular step counter service components may support the subsession, cadence, speed, distance (in metres and/or feet), stride length, or energy expended objects as defined in [IEEE 11073-10441]	
11073_Step_Counter_ Client_Optional_Objects	Continua X73 cardiovascular step counter client components may support the subsession, cadence, speed, stride length, or energy expended objects as defined in [ISO/IEEE 11073-10441]	
11073_Step_Counter_ MDC_Code	Continua X73 step counter service components shall set the MDC_DEV_*_ SPEC_PROFILE_* code to MDC_DEV_ SUB_SPEC_PROFILE_STEP_ COUNTER = 4200 (0x1068)	

Table 6-37 – Cardiovascular step counter – General requirements

6.3.13 Strength fitness

This clause contains guidelines for client and service components that implement the strength fitness device specialization. The guidelines are contained in Table 6-38.

Table 6-38 – Strength fitness – General requirements

Name	Description	Comments
11073-10442_Reqt	Continua X73 strength fitness service and client components shall implement [ISO/IEEE 11073-10442]	

6.3.14 Activity hub

This clause contains guidelines for client and service components that implement the activity hub device specialization. The guidelines are contained in Table 6-39.

Table 6-39 – Activity hub – General requirements

Name	Description	Comments
11073-10471_Reqt	Continua X73 activity hub service and client components shall implement [ISO/IEEE 11073-10471]	

6.3.15 Fall sensor

There is no IEEE 11073 device specialization dedicated to a fall sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create a PHD fall sensor. The guidelines are covered by Table 6-40.

Name	Description	Comments
11073-10471_Fall_Reqt	Continua X73 fall sensor service and client components shall implement [ISO/IEEE 11073-10471]	
11073_Fall_Sensor_Object	Continua X73 fall sensor service and client components shall implement the fall sensor enumeration object	
11073_Fall_Sensor_MDC_ Code	Continua X73 fall sensor service components shall set the MDC_DEV_*_ SPEC_PROFILE_* code to MDC_DEV_ SUB_SPEC_PROFILE_FALL_SENSOR = 4213 (0x1075)	

Table 6-40 – Fall sensor – General requirements

6.3.16 Motion sensor

There is no IEEE 11073 device specialization dedicated to a motion sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create a PHD motion sensor. The guidelines are covered by Table 6-41.

Name	Description	Comments
11073-10471_Motion_Reqt	Continua X73 motion sensor service and client components shall implement [ISO/IEEE 11073-10471]	
11073_Motion_Sensor_ Object	Continua X73 motion sensor service and client components shall implement the motion sensor enumeration object	
11073_Motion_Sensor_ MDC_Code	Continua X73 motion sensor service components shall set the MDC_DEV_*_SPEC_PROFILE_* code to MDC_DEV_SUB_SPEC_PROFILE_ MOTION_SENSOR = 4219 (0x107B)	

Table 6-41 – Motion sensor – General requirements

6.3.17 Enuresis sensor

There is no IEEE 11073 device specialization dedicated to an enuresis sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 enuresis sensor. The guidelines are covered by Table 6-42.

Name	Description	Comments
11073-10471_Enuresis_ Reqt	Continua X73 enuresis sensor service and client components shall implement [ISO/IEEE 11073-10471]	
11073_Enuresis_Sensor_ Object	Continua X73 enuresis sensor service and client components shall implement the enuresis sensor enumeration object	
11073_Enuresis_Sensor_ MDC_Code	Continua X73 enuresis sensor service components shall set the MDC_DEV_*_SPEC_PROFILE_* code to MDC_DEV_SUB_SPEC_PROFILE_ ENURESIS_SENSOR = 4221 (0x107D)	

Table 6-42 – Enuresis sensor – General requirements

6.3.18 Contact closure sensor

There is no IEEE 11073 device specialization dedicated to a contact closure sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 contact closure sensor. The guidelines are covered by Table 6-43.

	-		
Name	Description	Comments	
11073-10471_Contact_Reqt	Continua X73 contact closure sensor service and client components shall implement ISO/IEEE 11073-10471-2008		
11073_Contact_Closure_ Sensor_Object	Continua X73 contact closure sensor service and client components shall implement the contact closure sensor enumeration object		
11073_Contact_Closure_ Sensor_MDC_Code	Continua X73 contact closure sensor service components shall set the MDC_DEV_*_SPEC_ PROFILE_* code to MDC_DEV_SUB_SPEC_ PROFILE_CONTACTCLOSURE_SENSOR = 4222 (0x107E)		

Table 6-43 – Contact closure sensor – General requirements

6.3.19 Switch sensor

There is no IEEE 11073 device specialization dedicated to a switch use sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 switch sensor. The guidelines are covered by Table 6-44.

Name	Description	Comments
11073-10471_Switch_Reqt	Continua X73 switch sensor service and client components shall implement [ISO/IEEE 11073-10471]	
11073_Switch_Sensor_ Object	Continua X73 switch sensor service and client components shall implement the Switch use sensor enumeration object	
11073_Switch_Sensor_ MDC_Code	Continua X73 switch sensor service components shall set the MDC_DEV_*_SPEC_PROFILE_* code to MDC_DEV_SUB_SPEC_PROFILE_ SWITCH_SENSOR = 4224 (0x1080)	

Table 6-44 – Switch use sensor – General requirements

6.3.20 Dosage sensor

There is no IEEE 11073 device specialization dedicated to a medication dosage sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 dosage sensor. The guidelines are covered by Table 6-45.

Name	Description	Comments
11073-10471_Dosage_Reqt	Continua X73 dosage sensor service and client components shall implement [ISO/IEEE 11073-10471]	
11073_Dosage_Sensor_ Object	Continua X73 dosage sensor service and client components shall implement the medication dosage sensor enumeration object	
11073_Dosage_Sensor_ MDC_Code	Continua X73 dosage sensor service components shall set the MDC_DEV_*_SPEC_PROFILE_* code to MDC_DEV_SUB_SPEC_PROFILE_ DOSAGE_SENSOR = 4225 (0x1081)	

Table 6-45 – Dosage sensor – General requirements

6.3.21 Water sensor

There is no IEEE 11073 device specialization dedicated to a water sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 water sensor. The guidelines are covered by Table 6-46.

Name	Description	Comments
11073-10471_Water_Reqt	Continua X73 Water Sensor service and client components shall implement [ISO/IEEE 11073-10471]	
11073_Water_Sensor_ Object	Continua X73 water sensor service and client components shall implement the water sensor enumeration object	
11073_Water_Sensor_ MDC_Code	Continua X73 water sensor service components shall set the MDC_DEV_*_SPEC_PROFILE_* code to MDC_DEV_SUB_SPEC_PROFILE_ WATER_SENSOR = 4217 (0x1079)	

Table 6-46 – Water sensor – General requirements

6.3.22 Smoke sensor

There is no IEEE 11073 device specialization dedicated to a smoke sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 smoke sensor. The guidelines are covered by Table 6-47.

Name	Description	Comments
11073-10471_Smoke_Reqt	Continua X73 smoke sensor service and client components shall implement [ISO/IEEE 11073- 10471]	
11073_Smoke_Sensor_ Object	Continua X73 smoke sensor service and client components shall implement the smoke sensor enumeration object	
11073_Smoke_Sensor_ MDC_Code	Continua X73 smoke sensor service components shall set the MDC_DEV_*_SPEC_PROFILE_* code to MDC_DEV_SUB_SPEC_PROFILE_ SMOKE_SENSOR = 4215 (0x1077)	

Table 6-47 – Smoke sensor – General requirements

6.3.23 Property exit sensor

There is no IEEE 11073 device specialization dedicated to a property exit sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 property exit sensor. The guidelines are covered by Table 6-48.

Name	Description	Comments
11073-10471_Exit_Reqt	Continua X73 property exit sensor service and client components shall implement [ISO/IEEE 11073-10471]	
11073_Property_Exit_ Sensor_Object	Continua X73 property exit sensor service and client components shall implement the property exit sensor enumeration object	
11073_Property_Exit_ Sensor_MDC_Code	Continua X73 property exit sensor service components shall set the MDC_DEV_*_SPEC_ PROFILE_* code to MDC_DEV_SUB_SPEC_ PROFILE_PROPEXIT_SENSOR = 4220 (0x107C)	

Table 6-48 – Property exit sensor – General requirements

6.3.24 Temperature sensor

There is no IEEE 11073 device specialization dedicated to a temperature sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 temperature sensor. The guidelines are covered in Table 6-49.

Name	Description	Comments
11073-10471_Temperature_ Reqt	Continua X73 temperature sensor service and client components shall implement [ISO/IEEE 11073-10471]	
11073_Temperature_ Sensor_Object	Continua X73 temperature sensor service and client components shall implement the temperature sensor enumeration object	
11073_Temperature_ Sensor_MDC_Code	Continua X73 temperature sensor service components shall set the MDC_DEV_*_SPEC_ PROFILE_* code to MDC_DEV_SUB_SPEC_ PROFILE_TEMP_SENSOR = 4226 (0x1082)	

Table 6-49 – Temperature sensor – General requirements

6.3.25 Usage sensor

There is no IEEE 11073 device specialization dedicated to a usage sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 usage sensor. The guidelines are covered in Table 6-50.

Name	Description	Comments
11073-10471_Usage_Reqt	Continua X73 usage sensor service and client components shall implement [ISO/IEEE 11073- 10471]	
11073_Usage_Sensor_ Object	Continua X73 usage sensor service and client components shall implement the usage sensor enumeration object	
11073_Usage_Sensor_ MDC_Code	Continua X73 usage sensor service components shall set the MDC_DEV_*_SPEC_PROFILE_* code to MDC_DEV_SUB_SPEC_PROFILE_ USAGE_SENSOR = 4223 (0x107F)	

Table 6-50 – Usage sensor – General requirements

6.3.26 PERS sensor

There is no IEEE 11073 device specialization dedicated to a PERS sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 PERS sensor. The guidelines are covered in Table 6-51.

Name	Description	Comments
11073-10471_PERS_Reqt	Continua X73 PERS sensor service and client components shall implement ISO/IEEE 11073- 10471-2008	
11073_PERS_Sensor_ Object	Continua X73 PERS sensor service and client components shall implement the PERS sensor enumeration object	
11073_PERS_Sensor_ MDC_Code	Continua X73 PERS sensor service components shall set the MDC_DEV_*_SPEC_PROFILE_* code to MDC_DEV_SUB_SPEC_PROFILE_ PERS_SENSOR = 4214 (0x1076)	

Table 6-51 – PERS sensor – General requirements

6.3.27 CO sensor

There is no IEEE 11073 device specialization dedicated to a carbon monoxide sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 CO sensor. The guidelines are covered in Table 6-52.

Name	Description	Comments
11073-10471_CO_Reqt	Continua X73 CO Sensor service and client components shall implement [ISO/IEEE 11073- 10471]	
11073_CO_Sensor_Object	Continua X73 CO sensor service and client components shall implement the CO sensor enumeration object	
11073_CO_Sensor_MDC_ Code	Continua X73 CO sensor service components shall set the MDC_DEV_*_SPEC_PROFILE_* code to MDC_DEV_SUB_SPEC_PROFILE_ FALL_SENSOR = 4216 (0x1078)	

Table 6-52 – CO sensor – General requirements

6.3.28 Gas sensor

There is no IEEE 11073 device specialization dedicated to a gas sensor. This clause gives guidelines on how to make use of the generic functionality of [ISO/IEEE 11073-10471] to create an X73 gas sensor. The guidelines are covered by Table 6-53.

Name	Description	Comments
11073-10471_Gas_Reqt	Continua X73 gas sensor service and client components shall implement [ISO/IEEE 11073- 10471]	
11073_Gas_Sensor_Object	Continua X73 gas sensor service and client components shall implement the gas sensor enumeration object	
11073_Gas_Sensor_MDC_ Code	Continua X73 gas sensor service components shall set the MDC_DEV_*_SPEC_PROFILE_* code to MDC_DEV_SUB_SPEC_PROFILE_ GAS_SENSOR = 4218 (0x107A)	

6.3.29 Adherence monitor

This clause contains guidelines for client and service components that implement the adherence monitor device specialization. The guidelines are contained in Table 6-54.

Table 6-54 – Adherence monitor – General requirements

Name	Description	Comments
11073-10472_Reqt	Continua X73 adherence monitor service and client components shall implement [ISO/IEEE 11073-10472]	

6.3.30 Sleep apnoea breathing therapy equipment (SABTE)

This clause contains guidelines for client and service components that implement the SABTE device specialization. The guidelines are contained in Table 6-55.

Table 6-55 – SABTE – General requirements

Name	Description	Comments
11073-10424_Reqt	Continua X73 SABTE service and client components shall implement [ISO/IEEE 11073-10424]	

6.3.31 Continuous glucose monitor (CGM)

This clause contains guidelines for client and service components that implement the CGM device specialization. The guidelines are contained in Table 6-56.

Name	Description	Comments
11073-10425-Reqt	Continua X73 CGM service and client components shall implement [ISO/IEEE 11073- 10425]	

Table 6-56 – Continuous glucose monitor – General requirements

6.3.32 Insulin pump (IP)

This clause contains guidelines for client and service components that implement the insulin pump device specialization. The guidelines are contained in Table 6-57.

Table 6-57 – Insulin pump - General requirements	Table 6-57 –	Insulin p	oump - (General	requirements
--	--------------	-----------	----------	---------	--------------

Name	Description	Comments
11073-10419-Reqt	Continua X73 IP service and client components shall implement [ISO/IEEE 11073- 10419]	

6.3.33 Power status monitor (PSM)

This clause contains guidelines for client and service components that implement the power status monitor device specialization. The guidelines are contained in Table 6-58.

Name	Description	Comments
11073-10427-Reqt	Continua X73 PSM service and client components shall implement [IEEE 11073-10427]	

7 NFC interface design guidelines

7.1 NFC interface architecture (informative)

This clause lists the design guidelines specific for interoperability of Personal Health Devices and Personal Health Gateways using the NFC interface. The position of the NFC interface in the Continua architecture is illustrated in Figure 7-1.

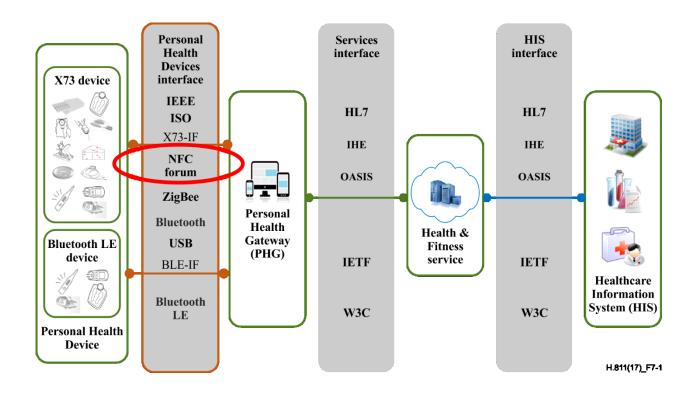


Figure 7-1 – NFC interface context

7.1.1 Overview of NFC interface

NFC enables a Continua Personal Health Device (PHD) to communicate with a Continua Personal Health Gateway (PHG) by touch. A user brings the two devices into close proximity for a short period of time – typically by touching one device with the other. While the devices are touching, data may be exchanged bidirectionally. In a typical use case a user would transfer blood pressure readings from their blood pressure meter (Continua PHD) to a mobile phone (Continua PHG) by simply touching the two devices together. Figure 7-2 illustrates the structure of the NFC interface stack.

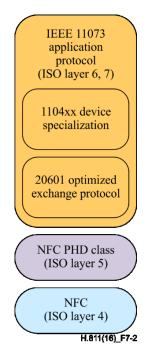


Figure 7-2 – NFC interface stack

7.1.2 Transport protocols and selected standards

[NFC PHDC] has been selected to serve as the transport protocol for the NFC interface (NFC-IF).

The selected protocol for the transport layer ensures interoperable set-up and tear-down of the communication channel for the transfer of control and data messages across all domains. Note that NFC works over a range of up to 10 centimetres, so that actual touching of devices might not even be required.

7.1.3 Exchange protocols and selected standards

For the data and messaging layer of the NFC-IF, the IEEE 11073 Personal Health Device family of standards has been selected. For the detailed list of selected data/messaging layer standards see clause 6.1.3.

7.1.4 Device communication styles

NFC is intended for a batch communication style. This style requires the transport between the device and the PHG to communicate previously collected data points at a later time. The user chooses the moment of communication by touching the devices.

In QoS terms explained in clause 6.1.7 of [ITU-T H.810], NFC is best.medium. Communication is acknowledged and must be complete or the transaction is rejected. Latency is typically <1 second for a NFC application.

7.1.5 NFC interface security

For a NFC solution, it is assumed that the physical action of the user touching two devices provides a suitable level of security to prevent inadvertent leakage of data to a different PHG.

Designers of NFC PHDs should take normal care for NFC systems to ensure a robust design that cannot be easily intercepted or interrogated by an antenna that is not in very close physical contact or touching. Typically this is done by managing power and physically shielding components to ensure that only two antennas that are in very close contact are capable of communication exchange.

Note that such measures help to increase the security of the system, but they cannot prevent the effects of all security threats that are inherent to the nature of NFC. It is advised that PHD manufacturers implement suitable security controls and mechanisms based on a security risk analysis.

7.2 NFC interface guidelines

This clause contains design guidelines that apply to NFC physical devices. These can be Personal Health Devices implementing service components or Personal Health Gateways implementing client components.

7.2.1 NFC PHD to PHG linkage

This clause contains a guideline for NFC-IF service components to limit connections to one client component. The guideline is covered by Table 7-1.

Name	Description	Comments
NFC-Device-PHG-Linkage	A Continua NFC-IF service component shall connect with only one Continua NFC-IF client component at any given time.	The Continua reference topology as described in [ITU-T H.810] restricts communication to a single client component.

Table 7-1 – NFC PHD to PHG linkage

7.2.2 NFC user experience

NFC PHDs and PHGs communicate in close proximity which is normally caused by the user bringing a NFC-IF service component PHD close to a NFC-IF client component PHG, or vice versa. This clause contains design guidelines that strongly recommend specific device behaviour to ensure a satisfying user experience. The guidelines are covered by Table 7-2.

Name	Description	Comments
TAN_Device_Taptime	A Continua NFC-IF service component should complete data exchange within 3 seconds	Completion of data exchange within an acceptable amount of time is specifically important where the user must hold NFC service and client components in proximity for the duration of the data exchange
TAN_User_Notification	Continua NFC-IF service and client components with appropriate UI capabilities should notify the user when data exchange is completed	Appropriate user notifications are specifically important where the user must hold NFC service and client components in proximity for the duration of the data exchange

Table 7-2 – NFC user experience

7.2.3 NFC Personal Health Device communication

This clause contains a general design guideline that points to [NFC PHDC]. All subsequent requirements in clause 7.2.3 refer to this specification. The guideline is covered in Table 7-3.

Name	Description	Comments
TAN_NFC_PHDC_ Map	Continua NFC-IF wireless service and client components shall implement NFC Personal Health Device communication version 1.0 subject to the design guidelines described in the sub-clauses below.	

7.2.4 Multi-function devices

This clause defines how devices that implement more than one IEEE 11073 PHD device specialization are represented via [NFC PHDC]. These guidelines require that all multi-function devices expose all device specializations via a single IEEE 11073-20601 association. In NFC, a single IEEE 11073-20601 association maps best to a single NFC PHDC agent interface. Thus, a Continua-certified NFC PHDC device has only one NFC PHDC agent interface for Continua functionality, regardless of whether it exposes a single device specialization or multiple device specializations. The guideline is covered in Table 7-4.

Name	Description	Comments
TAN_11073-20601_ Multi-Function	A Continua NFC-IF service component shall have at most one IEEE 11073- 20601 association to a NFC-IF client component at any point in time regardless of whether the device is a single function or multi-function device	This guideline prohibits the device from having two concurrent associations. The device may provide different configuration options in subsequent associations only after closing the currently active association

Table 7-4 – NFC multi-function devices

7.2.5 NFC quality of service

The requirements in Table 7-5 describe how quality of service (QoS) attributes are used for Continua NFC-IF service and client components.

Name	Description	Comments
NFC-PHDC-QoS- Best.Medium	Continua NFC-IF service and client components shall provide the Continua best.medium QoS bin	NFC PHDC transport does exchange all data on best.medium QoS bin
NFC-PHDC-QoS- Good.Medium	Continua NFC-IF service and client components shall not provide the Continua good.medium QoS bin	NFC PHDC transport does exchange all data on best.medium QoS bin

Table 7-5 – NFC quality of service

7.3 NFC Certified Capability Classes

Table 7-6 shows the Certified Capability Classes defined for the NFC interface design guidelines. A certification program run by the Personal Connected Health Alliance exists for devices that implement the CDG. For NFC devices, the certification testing will be performed on an integrated device, meaning the testing and certification is applied to the hardware and software of the device. Changes to components of the device may require a re-certification. Table 7-6 also references the guidelines (clause numbers) that are applicable for each of the Certified Capability Classes. An empty table entry would indicate that there is currently no certified capability class defined.

Certified Capability Classes	Relevant guidelines
NFC Activity Hub service NFC Activity Hub client	6.2, 6.3.14, 7.2
NFC Adherence Monitor service NFC Adherence Monitor client	6.2, 6.3.29, 7.2
NFC Basic 1-3 Lead ECG service NFC Basic 1-3 Lead ECG client	6.2, 6.3.2, 7.2
NFC Blood Pressure Monitor service NFC Blood Pressure Monitor client	6.2,, 6.3.4, 7.2
NFC Cardiovascular Fitness service NFC Cardiovascular Fitness client	6.2, 6.3.11, 7.2
NFC Cardiovascular Fitness Step Counter service NFC Cardiovascular Fitness Step Counter client	6.2, 6.3.12, 7.2

Table 7-6 – NFC Certified Capability Classes

Certified Capability Classes	Relevant guidelines
NFC CO Sensor service	6.2, 6.3.27, 7.2
NFC CO Sensor client	
NFC Contact Closure Sensor service	6.2, 6.3.18, 7.2
NFC Contact Closure Sensor client	
NFC Continuous Glucose Monitor service	6.2, 6.3.31, 7.2
NFC Continuous Glucose Monitor client	
NFC Enuresis Sensor service	6.2, 6.3.17, 7.2
NFC Enuresis Sensor client	
NFC Fall Sensor service	6.2, 6.3.15, 7.2
NFC Fall Sensor client	
NFC Gas Sensor service	6.2, 6.3.28, 7.2
NFC Gas Sensor client	
NFC Glucose Meter service	6.2, 6.3.7, 7.2
NFC Glucose Meter client	
NFC Heart-rate Sensor service	6.2, 6.3.3, 7.2
NFC Heart-rate Sensor client	
NFC INR Meter service	6.2, 6.3.8, 7.2
NFC INR Meter client	
NFC Insulin Pump service	6.2, 6.3.32, 7.2
NFC Insulin Pump client	
NFC Medication Dosage Sensor service	6.2, 6.3.20, 7.2
NFC Medication Dosage Sensor client	
NFC Motion Sensor service	6.2, 6.3.16, 7.2
NFC Motion Sensor client	
NFC peak expiratory flow monitor service	6.2, 6.3.10, 7.2
NFC peak expiratory flow monitor client	
NFC PERS Sensor service	6.2, 6.3.26, 7.2
NFC PERS Sensor client	
NFC Power Status Monitor service	6.2, 6.3.33, 7.2
NFC Power Status Monitor client	
NFC Property Exit Sensor service	6.2, 6.3.23, 7.2
NFC Property Exit Sensor client	
NFC Pulse Oximeter service	6.2, 6.3.1, 7.2
NFC Pulse Oximeter client	
NFC Smoke Sensor service	6.2, 6.3.22, 7.2
NFC Smoke Sensor client	
NFC Strength Fitness service	6.2, 6.3.13, 7.2
NFC Strength Fitness client	
NFC Switch Sensor service	6.2, 6.3.19, 7.2
NFC Switch Sensor client	

Table 7-6 – NFC Certified Capability Classes

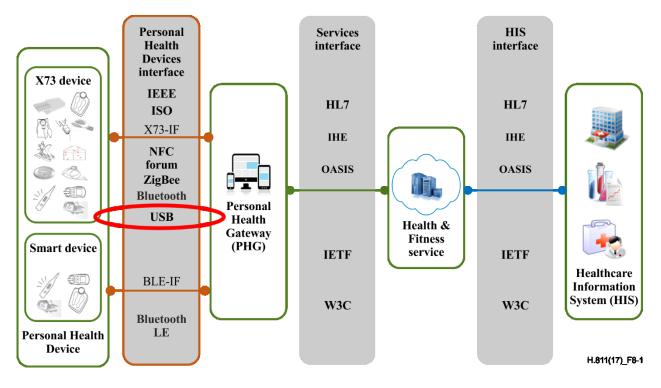

Certified Capability Classes	Relevant guidelines
NFC Temperature Sensor service NFC Temperature Sensor client	6.2, 6.3.24, 7.2
NFC Thermometer service NFC Thermometer client	6.2, 6.3.5, 7.2
NFC Usage Sensor service NFC Usage Sensor client	6.2, 6.3.25, 7.2
NFC Water Sensor service NFC Water Sensor client	6.2, 6.3.21, 7.2
NFC Weighing scales service NFC Weighing scales client	6.2, 6.3.6, 7.2

Table 7-6 – NFC Certified Capability Classes

8 USB interface design guidelines

8.1 USB interface architecture (informative)

This clause lists the design guidelines specific for interoperability between certified PHDs and PHGs when using USB across the Personal Health Devices interface (PHD-IF).

8.1.1 Overview of USB interface

The connectivity in the USB interface (USB-IF) is tailored to satisfying three basic requirements that are uniform across the application domains serviced by CDG-certified products:

allow bidirectional sensor control

- allow bidirectional sensor information exchange
- allow appropriate linkage between a Personal Health Device and a Personal Health Gateway

The interface is further structured into three distinct layers, with appropriate standards selected to represent the individual layers and establish interoperability in the personal health ecosystem. Figure 8-1 illustrates the USB interface context.

8.1.2 Exchange protocols and selected standards

For the data and messaging layer of the standard USB-IF, the standards from the IEEE 11073 Personal Health Device family of standards have been selected. For the detailed list of selected data/messaging layer standards, see clause 6.2.3.

8.1.3 USB device communication styles

The protocols selected in the USB-IF permits the device to transfer data in the following three communication styles:

- Transaction communication style: When it is required that the transport between the PHD and the PHG communicates a single data point immediately.
- Streaming communication style: When it is required that the transport between the PHD and the PHG communicates several data points continuously.
- Batch communication style: When it is required that the transport between the PHD and the PHG communicates previously collected data points at a later time.

The specific requirements pertaining to the QoS for USB for the various communication styles are outlined in clause 8.2.5.

8.1.4 USB-IF security

For a USB solution, it is assumed that the physical action of the user connecting a USB PHD to the PHG provides the necessary security to prevent inadvertent leakage of data to a different PHG.

8.2 USB device and interface guidelines

This clause contains design guidelines that apply to USB physical devices. These can be Personal Health Devices or Personal Health Gateways.

8.2.1 USB device to PHG linkage

Table 8-1 shows USB device to PHG linkage.

Name	Description	Comments
USB-Device-PHG-Linkage	A Continua USB-IF service component shall connect with only one Continua USB-IF client component at any given time.	The Continua reference topology as described in [ITU-T H.810] restricts communication to a single client component.

Table 8-1 – USB device to PHG linkage

8.2.2 USB general requirements

This clause contains a general design guideline that points to the USB personal healthcare device class (PHDC) v1.0 [USB DevClass]. All subsequent requirements in clause 8.2 refer to this specification.

For more information about [USB DevClass] device drivers please see Appendix III and in [b-CHA USB-PHDC].

Name	Description	Comments
USB-Personal Healthcare-v1.0	Continua USB-IF service and client components shall implement the USB personal healthcare device class v1.0 plus the Feb. 15, 2008 errata, subject to the requirements listed in the sub- clauses below.	

Table 8-2 – USB personal healthcare device class v1.0 map

8.2.3 USB map to IEEE 11073-20601

This clause requires that a Continua-compliant device send only IEEE 11073-20601 data and messages over USB PHDC. In addition, driver software implementing the USB PHDC transport should not need to parse the IEEE 11073-20601 data to fully function.

Name	Description	Comments
USB-PHDC-20601-Map-Service	Continua USB-IF service components shall set the USB PHDC v1.0 bPHDCDataCode field of the PHDC Class Function descriptor equal to PHDC_11073_20601	
USB-PHDC-20601-Map-Client	Continua USB-IF client components shall accept PHDC Class Function descriptors with the USB PHDC v1.0 bPHDCDataCode field equal to PHDC_11073_20601	
USB-PHDC-20601-Device-Spec- Cert-Dev-Classes	Continua USB-IF service components shall set the wDevSpecializations field(s) to the corresponding [ISO/IEEE 11073-20601] <i>MDC_DEV_SPEC_PROFILE_*</i> value(s) corresponding to the certified Capability Class(es) that the component supports	
USB-PHDC-20601-Device-Spec- Not-Cert	Continua USB-IF service components may add additional [ISO/IEEE 11073-20601] <i>MDC_DEV_SPEC_PROFILE_</i> * value(s) corresponding to supported IEEE specializations that are not Continua certified in the wDevSpecializations array	

Table 8-3 – ISO/IEEE 11073-20601 messaging layer

Name	Description	Comments
USB-PHDC-20601-10101-Client	Continua USB-IF client components shall not pre-filter and reject a service component based on the wDevSpecializations field(s) value(s)	The rejection of unsupported device specializations happens in the higher layers via the [ISO/IEEE 11073-20601] optimized exchange protocol
USB-EndOfTransfer	Continua USB-IF service and client components shall signify the end of a bulk transfer by transferring a payload of size less than wMaxPacketSize or a zero- length packet	USB-IF service and client components are not required to read the [ISO/IEEE 11073- 20601] data to obtain the length

Table 8-3 – ISO/IEEE 11073-20601 messaging layer

8.2.4 Sending metadata via USB PHDC

The USB PHDC specification [USB DevClass] contains a feature to enable the sending of QoS information with IEEE 11073-20601 [ISO/IEEE 11073-20601] data and messages. The USB PHDC specification states that this feature is optional for service components to support and mandatory for client components to support.

It is not expected that Continua USB-IF service components will implement the feature or Continua USB-IF client components will enable the feature; however, if a service component or client component chooses to make use of the feature, the design guidelines contained in Table 8-4 apply.

Name	Description	Comments
USB-PHDC-Enable-Meta-Data- Preamble	Continua USB-IF client components that choose to enable the USB PHDC Meta-Data Message Preamble feature shall attempt to enable the feature by sending the USB PHDC SET_FEATURE (FEATURE_PHDC_METADAT A) request after the [ISO/IEEE 11073-20601] Association Request message has been received and before it sends the [ISO/IEEE 11073-20601] Association Response message	

 Table 8-4 – Using USB PHDC metadata/QoS feature

Name	Description	Comments
USB-PHDC-Disable-Meta-Data- Preamble	Continua USB-IF client components that choose to enable the USB PHDC Meta-Data Message Preamble feature shall disable the feature <i>when in the</i> <i>Unassociated state</i> only by sending the USB PHDC CLEAR_FEATURE (FEATURE_PHDC_METADAT A) request	
USB- bQoSEncodingVersionOOB	Continua USB-IF client components that receive a bQoSEncodingVersion field that is not 01h shall ignore the bmLatencyReliability bitmap as it could have a different meaning in a future version of the specification	This replaces the text "In order to remain forward compatible, if a host implementing 01h QoS information encoding receives a bQoSEncodingVersion field that is not 01h, it shall ignore the descriptor." on page 22, 1st paragraph, of [USB DevClass]

Table 8-4 – Using USB PHDC metadata/QoS feature

8.2.5 USB quality of service

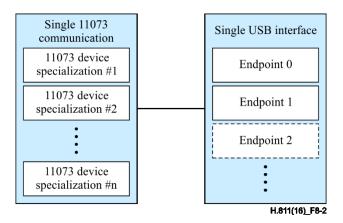

The requirements contained in Table 8-5 describe how QoS attributes are used for Continua USB-IF service and client components.

Table 8-5 – Mapping	of USB PHDC	OoS bins into	Continua OoS bins
Table 0-5 Mapping		Que bine into	

Name	Description	Comments
USB-QoS-Best.Medium	Continua USB-IF service and client components that implement the Continua <i>best.medium</i> QoS bin shall utilize the USB PHDC <i>best.medium</i> QoS bin to do this	
USB-QoS-Good.Medium	Continua USB-IF service and client components that implement the Continua <i>good.medium</i> QoS bin shall utilize the USB PHDC <i>good.medium</i> QoS bin to do this	

8.2.6 USB multi-function devices

This clause defines how devices that implement more than one IEEE 11073 PHD device specialization are represented via USB PHDC. The Continua CDG requires that all multi-function devices expose all device specializations via a single IEEE 11073-20601 association. In USB, a single IEEE 11073-20601 association maps best to a single USB PHDC interface. Thus, a Continua-certified USB PHDC device has only one USB PHDC interface for CDG functionality, regardless of whether it exposes a single device specialization or multiple device specializations. This is shown in Figure 8-2.

Figure 8-2 – USB PHDC mapping to IEEE 11073-20601 associations

Table 8-6 contains the design guidelines for USB multi-function devices.

Name	Description	Comments
USB-PHDC-Multi-Function- Single-Interface	Continua USB-IF service components, whether multi- function or single function, shall implement one and only one USB PHDC interface for the component's IEEE 11073-20601 association	CDG requires that all USB multi- function devices expose all functions via a single IEEE 11073-20601 association. See 11073-20601-Multi-Function.

Table 8-6 – USB multi-function devices

8.2.7 USB connectors

USB contains a few connector options on the service and client side. The design guidelines contained in Table 8-7 give guidance on connector choices for implementation.

Name	Description	Comments
USB-B-Connector-Connectivity	A Continua USB PHD should be shipped with a mechanism for connecting itself to a PHG assuming a standard-A connector to the PHG	Example connectivity mechanisms include a cable that connects to the device and exposes a standard-A connector and an integral cable on the device that exposes a standard-A connector
USB-B-Connector-Mechanism- to-Obtain-Connectivity	If a Continua USB PHD does not ship with a mechanism for connectivity as defined in USB- B-Connector-Connectivity, it shall ship with a mechanism for obtaining such connectivity	Example mechanisms for obtaining connectivity include documentation on the type of cable needed and possibly, a phone number, mail in the form or website for requesting and/or purchasing that cable

Table 8-7 – USB connectors

Name	Description	Comments
USB-A-Connector-Connectivity	Continua USB PHGs that do not accept a standard-A female connector should be shipped with a mechanism for converting to accept a standard-A female connector	Example mechanisms include a converter from the A connector on the PHG to standard-A
USB-A-Connector-Mechanism- to-Obtain-Connectivity	If a Continua USB PHG that does not accept a Standard-A female connector does not ship with a mechanism for converting to standard-A female connector, it shall be shipped with a mechanism for obtaining a conversion to accept a standard-A female connector	Example mechanisms include documentation on the necessary converter and possibly, a phone number, mail in the form or website for requesting and/or purchasing that converter

8.2.8 USB data rates

USB 2.0 provides full speed and high speed data rates. USB 1.1 provides low speed and full speed data rates. Table 8-8 describes the requirements CDG places on the data rates to be used.

Name	Description	Comments
USB-Low-Speed	Continua USB-IF service and client components shall not use low speed	Low speed is mostly used for keyboards, mice and joysticks. Low speed does not support all data rates required by the CDG. Max packet size for low-speed is 8 bytes. Low-speed also has behavioural differences with full and high speed. NOTE - Low speed is only available in USB 1.1
USB-USB-2.0	Continua USB-IF service and client components should implement USB 2.0	
USB-USB-1.1	Continua USB-IF service and client components shall implement at least USB 1.1 or any superior version compatible with USB 1.1	

Table 8-8 – USB data rates

8.3 USB Certified Capability Classes

Table 8-9 shows the Certified Capability Classes defined for the USB-IF design guidelines. A certification program run by Continua Health Alliance exists for devices that implement the CDG. For USB PHDs and PHGs, the certification testing will be performed on an integrated device,

meaning the testing and certification is applied to the hardware and software of the device. Changes to components of the device may require a re-certification. Table 8-9 also references the guidelines (clause numbers) that are applicable for each of the Certified Capability Classes.

Certified Capability Classes	USB (relevant guidelines)
USB Activity Hub service	6.2, 6.3.14, 8.2
USB Activity Hub client	
USB Adherence Monitor service	6.2, 6.3.29, 8.2
USB Adherence Monitor client	
USB Basic 1-3 Lead ECG service	6.2, 6.3.2, 8.2
USB Basic 1-3 Lead ECG client	
USB Blood Pressure Monitor service	6.2, 6.3.4, 8.2
USB Blood Pressure Monitor client	
USB Cardiovascular Fitness service	6.2, 6.3.11, 8.2
USB Cardiovascular Fitness client	
USB Cardiovascular Fitness Step Counter service	6.2, 6.3.12, 8.2
USB Cardiovascular Fitness Step Counter client	
USB CO Sensor service	6.2, 6.3.27, 8.2
USB CO Sensor client	
USB Contact Closure Sensor service	6.2, 6.3.18, 8.2
USB Contact Closure Sensor client	
USB Continuous Glucose Monitor service	6.2, 6.3.31, 8.2
USB Continuous Glucose Monitor client	
USB Enuresis Sensor service	6.2, 6.3.17, 8.2
USB Enuresis Sensor client	
USB Fall Sensor service	6.2, 6.3.15, 8.2
USB Fall Sensor client	
USB Gas Sensor service	6.2, 6.3.28, 8.2
USB Gas Sensor client	
USB Glucose Meter service	6.2, 6.3.7, 8.2
USB Glucose Meter client	
USB Heart-rate Sensor service	6.2, 6.3.3, 8.2
USB Heart-rate Sensor client	
USB INR Meter service	6.2, 6.3.8, 8.2
USB INR Meter client	
USB Insulin Pump service	6.2, 6.3.32, 8.2
USB Insulin Pump client	
USB Medication Dosage Sensor service	6.2, 6.3.20, 8.2
USB Medication Dosage Sensor client	
USB Motion Sensor service	6.2, 6.3.16, 8.2
USB Motion Sensor client	
USB peak expiratory flow monitor service	6.2, 6.3.10, 8.2
USB peak expiratory flow monitor client	

Table 8-9 – USB Certified Capability Classes

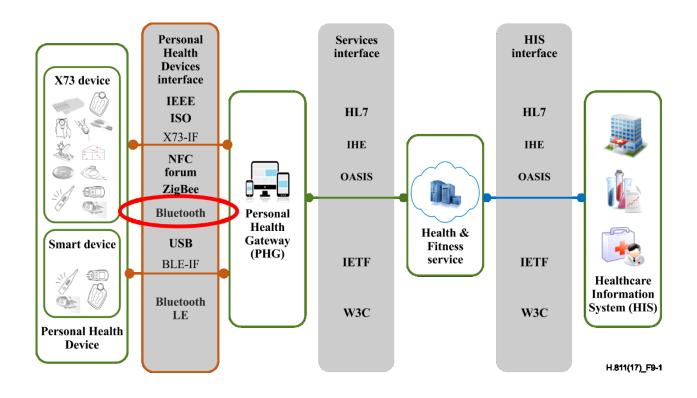

Certified Capability Classes	USB (relevant guidelines)
USB PERS Sensor service USB PERS Sensor client	6.2, 6.3.26, 8.2
USB Power Status Monitor service USB Power Status Monitor client	6.2, 6.3.33, 8.2
USB Property Exit Sensor service USB Property Exit Sensor client	6.2, 6.3.23, 8.2
USB Pulse Oximeter service USB Pulse Oximeter client	6.2, 6.3.1, 8.2
USB SABTE service USB SABTE client	6.2, 6.3.30, 8.2
USB Smoke Sensor service USB Smoke Sensor client	6.2, 6.3.22, 8.2
USB Strength Fitness service USB Strength Fitness client	6.2, 6.3.13, 8.2
USB Switch Sensor service USB Switch Sensor client	6.2, 6.3.19, 8.2
USB Temperature Sensor service USB Temperature Sensor client	6.2, 6.3.24, 8.2
USB Thermometer service USB Thermometer client	6.2, 6.3.5, 8.2
USB Usage Sensor service USB Usage Sensor client	6.2, 6.3.25, 8.2
USB Water Sensor service USB Water Sensor client	6.2, 6.3.21, 8.2
USB Weighing scales service USB Weighing scales client	6.2, 6.3.6, 8.2

Table 8-9 – USB Certified Capability Classes

9 Bluetooth BR/EDR interface design guidelines

9.1 Bluetooth BR/EDR interface architecture (informative)

This clause lists the design guidelines specific for interoperability between certified PHDs and PHGs when using Bluetooth BR/EDR across the Personal Health Devices interface.

Figure 9-1 – Bluetooth interface context

9.1.1 Overview of Bluetooth BR/EDR interface

The connectivity in the Bluetooth BR/EDR interface (BR/EDR-IF) is tailored to satisfying three basic requirements that are uniform across the application domains serviced by CDG-certified products:

- allow bidirectional sensor control
- allow bidirectional sensor information exchange
- allow appropriate linkage between a Personal Health Device and a Personal Health Gateway

The interface is further structured into three distinct layers, with appropriate standards selected to represent the individual layers and establish interoperability in the personal health ecosystem. Figure 9-1 illustrates the the Bluetooth interface context.

9.2 Bluetooth BR/EDR interface guidelines

9.2.1 Bluetooth BR/EDR PHD to PHG linkage

Table 9-1 contains a guideline for Bluetooth BR/EDR PHD to PHG linkage.

Name	Description	Comments
ContinuaStructType	A Continua BR/EDR-IF service component shall connect with only one Continua BR/EDR-IF client component at any given time.	The Continua reference topology as described in [ITU-T H.810] restricts communication to a single client component.

Table 9-1 – Bluetooth BR/EDR PHD to PHG linkage

9.2.2 Bluetooth health device profile

This clause contains general design guidelines covered in Table 9-2 that point to [Bluetooth HDPv1.1]. All subsequent requirements in clause 9.2 refer to this specification. For further guidance on implementing the Bluetooth health device profile the reader is referred to the white paper [b-Bluetooth HDPIP].

Throughout this clause, some common Bluetooth terms are used:

When the term "discovery" is used, this is meant to describe use of the Bluetooth inquiry substate to learn of the existence of other Bluetooth devices within transmission range. This is sometimes called "device discovery" to distinguish from service discovery. A Bluetooth device is discoverable if it periodically enters the inquiry scan substate. A discoverable device will respond to inquiry procedures (usually a general inquiry) from any device that wants to search.

A Bluetooth device enters the inquiry substate to discover other Bluetooth devices. Discoverable devices will periodically enter the inquiry scan substate.

Service discovery creates a baseband connection to a specific device (may be paired, but does not need to be) to discover details about services offered on that device.

When the term "pairing" is used, this is meant to describe the exchange of link keys to establish a future trust relationship with a known device. Except in legacy cases, this is performed with secure simple pairing (SSP).

When the term "connectable" is used, this is meant to describe a previously paired device that is periodically entering the page scan substate and responds to pages from devices that address it specifically (by Bluetooth MAC address). For a device to be connected, it must first be paired.

Name	Description	Comments
Bluetooth-BR/EDR-Map	Continua BR/EDR-IF service and client components shall be compliant with Bluetooth 2.1.	Later versions of the Bluetooth specification can be used as long as version 2.1 functionality is fully supported.
Bluetooth-BR/EDR-HDP-Map	Continua BR/EDR-IF service and client components shall be compliant with Bluetooth Health Device Profile version 1.1, subject to the design guidelines described in the sub-clauses below.	Later versions of the Bluetooth HDP specification can be used as long as version 1.1 functionality is fully supported.

 Table 9-2 – Bluetooth health device profile map

9.2.3 Discovery and pairing

Continua X73 Bluetooth BR/EDR devices transfer measurement data to partner devices. These partnerships are formed either following a search initiated by the client component that will receive the data or through an out-of-band configuration.

This specification requires a process of discovery of the service component by the client component for all Bluetooth CDG devices. This ensures a consistent and user-friendly pairing procedure.

The guidelines throughout this clause create a single and universally supported technique for pairing devices that give a minimum of surprise or inconvenience to users. These guidelines contained in Table 9-3 apply to Bluetooth versions 2.0 and 2.1.

Name	Description	Comments
Bluetooth-BR/EDR- Discovery-Initiation- Client	Continua BR/EDR-IF client components shall initiate discovery (a Bluetooth "Inquiry")	
Bluetooth-BR/EDR- Discovery-Initiation- Service	Continua BR/EDR-IF service components should not initiate discovery (a Bluetooth "Inquiry")	
Bluetooth-BR/EDR- Pairing-Service	Continua BR/EDR-IF service components shall have a documented way (decided by the vendor) to initiate a mode of "discoverable by the client component" Once a service component has been made discoverable in this way, it shall support pairing with compatible client components, as shown in Figure 9-2	The words 'compatible client components' refer to client components that share the same device specialization as the service component
Bluetooth-BR/EDR- Pairing-Client	Continua BR/EDR-IF client components shall have a documented way (decided by the vendor) to initiate a search for service components that are "discoverable" Once the client component has discovered such service component, it shall support pairing with compatible service components, as shown in Figure 9-3	The words 'compatible service components' refer to service components that share the same device specialization as the client component Client components may be pre- configured to pair with a specific service component; however, they are required to provide support for discovery and pairing of any compatible service component.
Bluetooth-BR/EDR- All-Pairing-Client	Continua BR/EDR-IF client components shall support all pairing methods for Bluetooth 2.1, including Just Works, Numeric Comparison, and Passkey Entry, if the client component has the appropriate I/O capabilities	I/O capabilities include display, keyboard, yes/no. See the Bluetooth core specification [Bluetooth CS2.1] and secure simple pairing white papers for further information. This pairing guideline is necessary to ensure interoperability and give reasonable assurance that a service component's chosen pairing method will be supported by client components
Bluetooth-BR/EDR- Legacy-Pairing-Client	Continua BR/EDR-IF client components shall support legacy (Bluetooth 2.0) pin entry pairing	This guideline is necessary to ensure backward compatibility with existing Continua BT 2.0 service components

Name	Description	Comments
Bluetooth-BR/EDR- Pairing-Service-2	Continua BR/EDR-IF service components shall support at least one of the following Bluetooth 2.1 pairing methods depending on their I/O capabilities and appropriate security for the service component device type: Just Works, Numeric Comparison, or Passkey Entry	I/O capabilities include display, keyboard, yes/no. See the Bluetooth core specification [Bluetooth CS2.1] and secure simple pairing white papers for further information
Bluetooth-BR/EDR- Re-Pairing	Once a Continua BR/EDR-IF service component has been paired with a client component, it shall remain possible to re- initiate the mode "discoverable by the client component"	
Bluetooth-BR/EDR- Data-Exchange-Service	Continua BR/EDR-IF service component data (not including HDP service discovery record or static information like capabilities, service names, etc.) shall not be exchanged with client components for which a pairing has not been established	
Bluetooth-BR/EDR- Discoverability-Mode- Service	By default, Continua BR/EDR-IF service components should not be discoverable unless put in that mode as documented above	
Bluetooth-BR/EDR- Discoverability-Mode- Client	Continua BR/EDR-IF client components should not be discoverable unless put in that mode as documented above	
Bluetooth-BR/EDR- Discoverability- Duration	Continua BR/EDR-IF service components should provide a documented minimum duration (decided by the vendor) for this discoverable mode, once initiated, after which it ceases to be discoverable	
Bluetooth-BR/EDR- Paired	When a Continua BR/EDR-IF service component is discoverable and successfully completes a pairing procedure, it should immediately become undiscoverable	

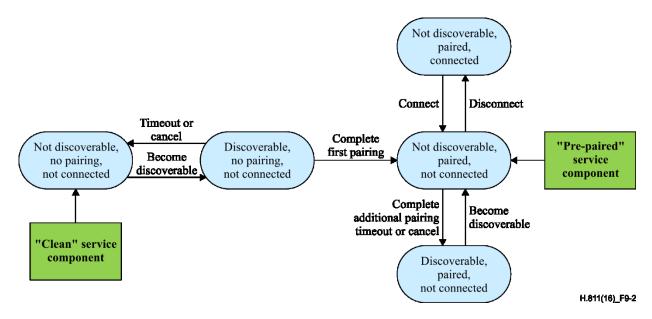


Figure 9-2 – Continua Bluetooth BR/EDR pairing process for service components

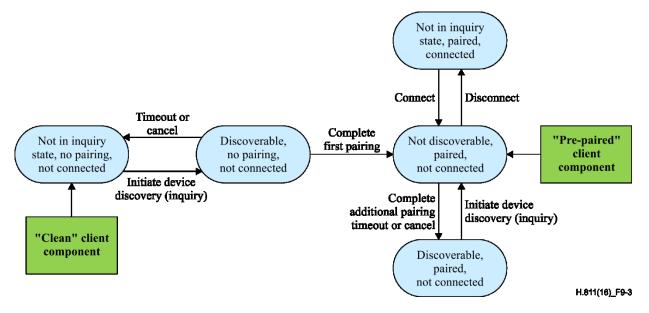


Figure 9-3 – Continua Bluetooth BR/EDR pairing process for client components

The diagram in Figure 9-2 shows the behaviour of a Continua BR/EDR-IF service component in the pairing process and the diagram in Figure 9-3 shows the behaviour of a BR/EDR-IF client component in the pairing process. Some Bluetooth BR/EDR devices may permit pairing from non-discoverable states, if the partner device knows the MAC address of the service component (either through out-of-band configuration or from a previous device discovery operation). These transitions although technically possible are not shown, for reasons of simplicity. Because they represent a non-standard operation of the device, they may present a security vulnerability for some applications.

Name	Description	Comments
Bluetooth-BR/EDR- Non-Discovery-Service	If a Continua BR/EDR-IF service component is able to prevent pairing while in non-discoverable states, it should do so	

Table 9-4 – Bluetooth BR/EDR pairing in non-discoverable states

Table 9-4 contains the guideline for Bluetooth BR/EDR pairing in non-discoverable states. The reason for this procedure is to provide security and privacy for users while optimizing the ease of use by providing predictable behaviour and by minimizing the time and effort required to execute the pairing.

Another ease-of-use issue is the frequency required for a user to go through the pairing procedure. To avoid unnecessary re-pairings following battery replacements or power failures, persistent storage on sensors is important. Table 9-5 contains guidelines for Bluetooth BR/EDR pairing data.

Name	Description	Comments
Bluetooth-BR/EDR- Pairing-Data-Service	Continua BR/EDR-IF service components shall store the pairing data from at least the most recently paired device in such a way that the data will be retained through normal power interruptions, including battery replacement	
Bluetooth-BR/EDR- Pairing-Data-Client	Continua BR/EDR-IF client components shall store the pairing data from at least the most recently paired device in such a way that the data will be retained through normal power interruptions, including battery replacement Continua BR/EDR-IF client components should store pairing data for at least the number of devices for which they are intended to simultaneously support	

Table 9-5 – Bluetooth BR/EDR pairing data

9.2.4 Bluetooth BR/EDR discoverable mode

The requirements in clause 9.2.3 refer to a mode where a device is "discoverable by the client component". In Bluetooth terms, this means the device is in both "discoverable mode" and "pairable mode" (also known as "bondable mode"). When a device is in Bluetooth "discoverable mode", other devices can perform inquiries to learn its MAC address. From a CDG point of view, since all communication is between paired devices, it does not make sense for a service component to be discoverable unless it is willing to pair with devices that discover it.

Leaving a device in the discoverable (and pairable) state opens the device to hackers who may attempt to connect. Being discoverable is a security risk, as well as a privacy risk. Table 9-6 contains the guideline for the Bluetooth BR/EDR discovery disable mechanism.

Name	Description	Comments
Bluetooth-BR/EDR- Discovery-Disable	Continua BR/EDR-IF service components that may become discoverable in the course of normal use should offer users a mechanism to disable this behaviour	

Table 9-6 – Bluetooth BR/EDR discovery disable

To avoid pairing with devices that cannot be used, it is helpful for devices to allow access to their HDP service discovery protocol (SDP) record to enable a connecting device, to query the capability of devices and identify the device specializations supported. Table 9-7 contains the guideline for Bluetooth SDP access.

Table 9-7 – Bluetooth SDP access

Name	Description	Comments
Bluetooth-BR/EDR- SDP-Access	When possible, Continua BR/EDR-IF service components in "discoverable mode" should allow access to their SDP entries without first requiring a pairing to be established	

The Bluetooth HDP SDP record includes a list of supported [ISO/IEEE 11073-104xx] specializations under the SDP attribute "MDEP Data Type". This list is used to filter devices for suitability and is required by the Bluetooth HDP specification [Bluetooth HDPv1.1] to match the list of [ISO/IEEE 11073-104xx] specializations actually supported by the implementation. Table 9-8 contains the guidelines for the Bluetooth SDP record.

Table 9-8 – Bluetooth SDP record

Name	Description	Comments
Bluetooth-BR/EDR- SDP-Record	The specializations claimed in Continua certification shall match the list of specializations advertised in the Continua BR/EDR-IF service component HDP SDP record	
Bluetooth-BR/EDR- SDP-Extensions	The Continua BR/EDR-IF service component HDP SDP record may contain additional specialization identifiers that are not Continua certified	

9.2.5 Notifying the user

Establishing a new pairing relationship is an important event. Because of the potential for confusion, extreme care should be used before automating the pairing procedure. To allow users reasonable control of their Continua systems, PHGs are required to provide a facility for alerting users of significant events, see Table 9-9. Because discovery may be difficult for users to understand, it is important to inform them of new pairings and reasons for failure. The design guidelines in this clause intentionally leave the nature of notifying and informing the user to be defined by the manufacturer.

Name	Description	Comments
Bluetooth-BR/EDR- Pairing-Creation-Alert- Client	Continua BR/EDR-IF client components shall inform the user when a new pairing relationship is created	
Bluetooth-BR/EDR- Pairing-Creation-Alert- Service	Continua BR/EDR-IF service components should notify the user, whenever possible, when a new pairing relationship is created	
Bluetooth-BR/EDR- Pairing-Failure-Alert- Client	When a pairing fails, Continua BR/EDR-IF client components shall inform the user whether the failure was because no service component was found (discovery failed), no data types are supported in common by both the client component and service component (incompatible device), or the pairing failed (pairing failure)	
Bluetooth-BR/EDR- Pairing-Failure-Alert- Service	Whether or not pairing fails, Continua BR/EDR-IF service components should inform the user, whenever possible, if no data types are supported in common by both the client component and service component (incompatible device), or the pairing failed (pairing failure)	

 Table 9-9 – Bluetooth BR/EDR user notification

Actual use of devices varies widely and it is not always clear which device is more physically convenient to the user during these pairing events. For this reason and also to increase the chance that a user will notice improper use of a device, pairing notifications should be made as noticeable as possible. Table 9-10 contains guidelines for Bluetooth BR/EDR authentication/security failure notification.

Name	Description	Comments
Bluetooth-BR/EDR- Security-Failure-Client	When any authentication/security failure is encountered by Continua BR/EDR-IF client components, client components shall notify the user	
Bluetooth-BR/EDR- Security-Failure-Service	When any authentication/security failure is encountered by Continua BR/EDR-IF service components, service components should notify the user whenever possible	

9.2.6 Quality of service

Table 9-11 contains guidelines for Bluetooth BR/EDR quality of service.

Name	Description	Comments
Bluetooth-	Continua BR/EDR-IF service and client components that	See clause 6.1.7.2 in
BR/EDR-QoS-	implement the Continua <i>best.medium</i> QoS bin shall	[ITU-T H.810] for a
Best.Medium	utilize the HDP reliable data channel type to do this	definition of the QoS bins.
Bluetooth-	Continua BR/EDR-IF service and client components that	See clause 6.1.7.2 in
BR/EDR-QoS-	implement the Continua <i>good.medium</i> QoS bin shall	[ITU-T H.810] for a
Good.Medium	utilize the HDP streaming data channel type to do this	definition of the QoS bins

Table 9-11 – Bluetooth BR/EDR quality of service

While the Bluetooth core specification [Bluetooth CS2.1] specifies the use of a 16-bit FCS by default, it is optional in HDP [Bluetooth HDPv1.1] for "Reliable" and "Streaming" data channel

types to disable the frame check sequence (FCS) if both sides agree during negotiation. The baseband already uses a CRC to detect bit errors in the data frames and FCS implements a second CRC to increase the probability of error detection. While devices that can tolerate an occasional error (e.g., a pedometer counting the number of steps walked) and have limited processor or battery resources may opt not to use FCS, FCS is recommended for all other cases. This will significantly improve (estimated to be on the order of thousands of times) the probability that an error is detected. Table 9-12 contains the guideline for Bluetooth BR/EDR error detection.

Name	Description	Comments
Bluetooth-BR/EDR-FCS	When possible and appropriate to the device, Continua BR/EDR-IF service and client components should use FCS for all data channels	

9.2.7 Secure simple pairing debug mode

If a device compliant with Bluetooth version 2.1 connects to another device also compliant with Bluetooth version 2.1, the use of secure simple pairing (SSP) in Bluetooth is mandatory. SSP results in an encrypted link requiring a private key to decrypt packets. To make the decryption of over-air packets possible for the purposes of test and debug when SSP is used (e.g., via a sniffer or protocol analyser), devices compliant with Bluetooth 2.1 would need to implement the SSP debug mode. Debug mode only needs to be supported by one of the two sides of the link for over-air decryption to be possible.

9.3 Bluetooth BR/EDR Certified Capability Classes

Table 9-13 shows the Certified Capability Classes defined for the BR/EDR-IF design guidelines. A certification program run by Continua Health Alliance exists for devices that implement the CDG. For Bluetooth BR/EDR devices, the certification testing will be performed on an integrated device, meaning the testing and certification is applied to the hardware and software of the device. Changes to components of the device may require a re-certification. Table 9-13 also references the guidelines (clause numbers) that are applicable for each of the Certified Capability Classes.

Certified Capability Class	Relevant guidelines
Bluetooth BR/EDR Activity Hub service Bluetooth BR/EDR Activity Hub client	6.2, 6.3.14, 9.2
Bluetooth BR/EDR Adherence Monitor service Bluetooth BR/EDR Adherence Monitor client	6.2, 6.3.29, 9.2
Bluetooth BR/EDR Basic 1-3 Lead ECG service Bluetooth BR/EDR Basic 1-3 Lead ECG client	6.2, 6.3.2, 9.2
Bluetooth BR/EDR Blood Pressure Monitor service Bluetooth BR/EDR Blood Pressure Monitor client	6.2, 6.3.4, 9.2
Bluetooth BR/EDR Cardiovascular Fitness service Bluetooth BR/EDR Cardiovascular Fitness client	6.2, 6.3.11, 9.2
Bluetooth BR/EDR Cardiovascular Fitness Step Counter service Bluetooth BR/EDR Cardiovascular Fitness Step Counter client	6.2, 6.3.12, 9.2
Bluetooth BR/EDR CO Sensor service Bluetooth BR/EDR CO Sensor client	6.2, 6.3.27, 9.2

 Table 9-13 – Bluetooth BR/EDR Certified Capability Classes

Certified Capability Class	Relevant guidelines
Bluetooth BR/EDR Contact Closure Sensor service Bluetooth BR/EDR Contact Closure Sensor client	6.2, 6.3.18, 9.2
Bluetooth BR/EDR Continuous Glucose Monitor service	62622102
Bluetooth BR/EDR Continuous Glucose Monitor client	6.2, 6.3.31, 9.2
Bluetooth BR/EDR Enuresis Sensor service	6.2, 6.3.17, 9.2
Bluetooth BR/EDR Enuresis Sensor client	0.2, 0.3.17, 9.2
Bluetooth BR/EDR Fall Sensor service	6.2, 6.3.15, 9.2
Bluetooth BR/EDR Fall Sensor client	0.2, 0.3.13, 9.2
Bluetooth BR/EDR Gas Sensor service	
Bluetooth BR/EDR Gas Sensor client	6.2, 6.3.28, 9.2
Bluetooth BR/EDR Glucose Meter service Bluetooth BR/EDR Glucose Meter client	6.2, 6.3.7, 9.2
Bluetooth BR/EDR Heart-rate Sensor service Bluetooth BR/EDR Heart-rate Sensor client	6.2, 6.3.3, 9.2
Bluetooth BR/EDR INR Meter service Bluetooth BR/EDR INR Meter client	6.2, 6.3.8, 9.2
Bluetooth BR/EDR Insulin Pump service Bluetooth BR/EDR Insulin Pump client	6.2, 6.3.32, 9.2
*	
Bluetooth BR/EDR Medication Dosage Sensor service Bluetooth BR/EDR Medication Dosage Sensor client	6.2, 6.3.20, 9.2
Bluetooth BR/EDR Motion Sensor service	62621602
Bluetooth BR/EDR Motion Sensor client	6.2, 6.3.16, 9.2
Bluetooth BR/EDR peak expiratory flow monitor service	6.2, 6.3.10, 9.2
Bluetooth BR/EDR peak expiratory flow monitor client	0.2, 0.5.10, 9.2
Bluetooth BR/EDR PERS Sensor service	6.2, 6.3.26, 9.2
Bluetooth BR/EDR PERS Sensor client	0.2, 0.3.20, 9.2
Bluetooth BR/EDR power status monitor service	6.2, 6.3.33, 9.2
Bluetooth BR/EDR power status monitor service	0.2, 0.5.55, 9.2
Bluetooth BR/EDR Property Exit Sensor service	6.2, 6.3.23, 9.2
Bluetooth BR/EDR Property Exit Sensor client	0.2, 0.5.25, 7.2
Bluetooth BR/EDR Pulse Oximeter service	6.2, 6.3.1, 9.2
Bluetooth BR/EDR Pulse Oximeter client	0.2, 0.5.1, 7.2
Bluetooth BR/EDR SABTE service	6.2, 6.3.30, 9.2
Bluetooth BR/EDR SABTE client	0.2, 0.3.30, 7.2
Bluetooth BR/EDR Smoke Sensor service	6.2, 6.3.22, 9.2
Bluetooth BR/EDR Smoke Sensor service	0.2, 0.3.22, 7.2
Bluetooth BR/EDR Strength Fitness service	6.2, 6.3.13, 9.2
Bluetooth BR/EDR Strength Fitness client	0.2, 0.5.15, 7.2
Bluetooth BR/EDR Switch Sensor service	6.2, 6.3.19, 9.2
Bluetooth BR/EDR Switch Sensor service	0.2, 0.3.17, 7.2

Table 9-13 – Bluetooth BR/EDR Certified Capability Classes

Certified Capability Class	Relevant guidelines
Bluetooth BR/EDR Temperature Sensor service Bluetooth BR/EDR Temperature Sensor client	6.2, 6.3.24, 9.2
Bluetooth BR/EDR Thermometer service Bluetooth BR/EDR Thermometer client	6.2, 6.3.5, 9.2
Bluetooth BR/EDR Usage Sensor service Bluetooth BR/EDR Usage Sensor client	6.2, 6.3.25, 9.2
Bluetooth BR/EDR Water Sensor service Bluetooth BR/EDR Water Sensor client	6.2, 6.3.21, 9.2
Bluetooth BR/EDR Weighing scales service Bluetooth BR/EDR Weighing scales client	6.2, 6.3.6, 9.2

Table 9-13 – Bluetooth BR/EDR Certified Capability Classes

10 ZigBee interface design guidelines

10.1 ZigBee interface architecture (informative)

10.1.1 Introduction to the ZigBee interface

This clause lists the design guidelines specific to interoperability between Continua certified PHDs and PHGs using the ZigBee across the Personal Health Devices interface. Figure 10-1 illustrates the ZigBee interface in the context of the Continua E2E architecture. The ZigBee interface is a particular sub-class of the Continua PHD-IFs and connects ZigBee PHDs to PHGs across all three CDG domains, disease management, ageing independently, and health and fitness.



Figure 10-1 – ZigBee interface

10.1.2 Scope of the ZigBee interface

The ZigBee interface enables sensors (or actuators) to send their measured data to (or to be controlled by) one or many Continua PHGs that are placed around the same house, building, facility or campus. In this respect, the ZigBee interface provides wireless infrastructure based connectivity in an area around a location. The network coverage area can scale up to several hundreds of metres, with several tens and up to several thousands of devices being a part of that network. The location of sensors/actuators (PHDs) connected via the ZigBee interface can be fixed as well as mobile, with the latter case referring to devices (e.g., body worn) roaming throughout the network up to walking/running speed. Furthermore, many years of battery lifetime is enabled for PHDs connected via the ZigBee interface. See Figure 10-2 for a high-level illustrative diagram of the ZigBee conceptual set-up. In Figure 10-2(a), ZigBee PHDs utilize an existing wireless infrastructure network for communication and, in Figure 10-2(b), ZigBee PHDs are part of and are contributing to the wireless infrastructure network.

The use of the ZigBee interface is not limited to large-scale, long-range networks, but can also be used to establish direct short-range connections between PHDs and PHGs as well.

In the 2010 version of the CDG, the scope of the ZigBee interface was restricted to many-to-one connectivity. According to this, a PHG may connect to one or more ZigBee PHDs at the same time, but a Continua ZigBee PHD was allowed to connect to a single Continua PHG at the same time only. In this version of the CDG, the extension to many-to-many connectivity is defined, i.e., the simultaneous connection of a ZigBee PHD to multiple PHGs at the same time is supported.

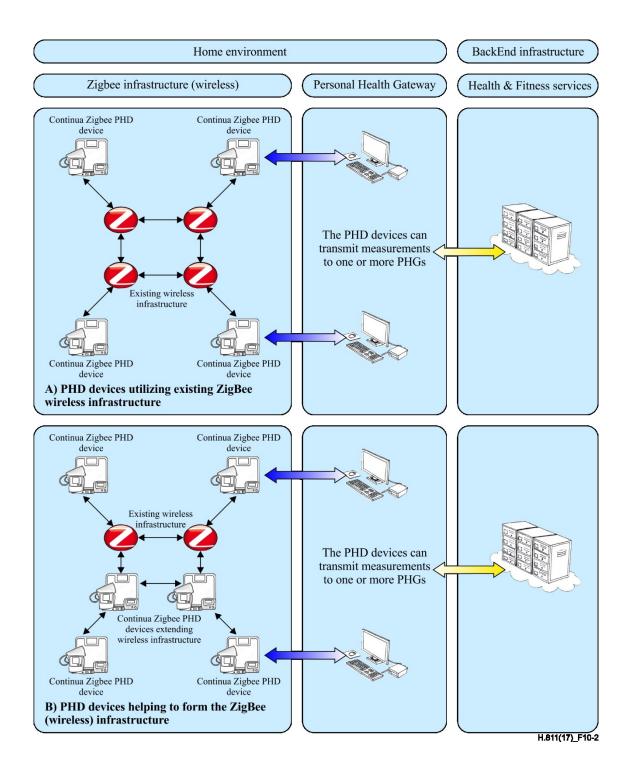


Figure 10-2 – ZigBee conceptual set-up

10.1.3 Overview of the ZigBee interface

The interface is structured into distinct layers. Appropriate standards are selected for the individual layers to establish interoperability in the personal health ecosystem. See Figure 6-2 for an overview of the protocol stack of the ZigBee interface.

10.1.4 Transport protocol and selected standards

The ZigBee health care profile version 1.0 has been selected as the wireless lower layer protocol to serve as the transport for the ZigBee interface. The selected protocol for the transport layer ensures

interoperable set-up and teardown of the communication network for transfer of control information and transfer of data messages across all domains.

10.1.5 Data exchange protocol and selected standards

For the data and messaging layer of the ZigBee interface, the standards from the IEEE 11073 Personal Health Device family of standards have been selected. For the detailed list of selected data/messaging layer standards please see clause 6.

10.2 ZigBee interface guidelines

10.2.1 ZigBee transport layer

10.2.1.1 ZigBee health care profile

This clause contains a general design guideline that points to the ZigBee health care (HC) profile version 1.0 [ZigBee HCP]. All subsequent requirements in clause 10.2.1 refer to this specification.

Because the commissioning of ZigBee devices can be challenging, in particular for large-scale networks due to the wireless nature of the connections, it is important to specify the proper procedures for the commissioning of ZigBee PHDs, which include network-joining and application pairing of devices and device discovery, as well as security mechanisms. It is equally important to inform the users and installers of relevant events related to commissioning, such as the successful application pairing of PHDs and the reasons for failure. These required procedures and notifications are defined in the ZigBee healthcare profile version 1.0. Table 10-1 shows the ZigBee health care profile map.

Name	Description	Comments
ZigBee-HC-Map	Continua ZigBee service and client components shall implement ZigBee Health Care Profile version 1.0, subject to the design guidelines described in the sub-clauses below.	

Table 10-1 – ZigBee health care profile map

10.2.1.2 Quality of service

The requirements contained in Table 10-2 describe how QoS attributes are used for Continua ZigBee components.

Name	Description	Comments
ZigBee-QoS-Best.Medium	Continua ZigBee service and client components that implement the Continua <i>best.medium</i> QoS bin shall utilize ZigBee APS acknowledgements	
ZigBee-QoS-Good.Medium	Continua ZigBee service and client components that implement the Continua <i>good.medium</i> QoS bin shall not utilize ZigBee APS acknowledgements	

Table 10-2 – ZigBee quality of service

10.2.1.3 ZigBee multiple connections

The requirement contained in Table 10-3 describes how the ZigBee health care profile is used for multiple concurrent ZigBee interface connections.

Name	Description	Comments
ZigBee-MultipleConnections	Continua ZigBee service components that establish multiple ZigBee interface connections as described in Clause 10.2.2.1 shall use a separate ZigBee endpoint for each	

Table 10-3 – ZigBee multiple connections

10.2.2 ZigBee data/messaging layer

This clause contains data/messaging layer design guidelines that are specific to the ZigBee interface, and thus it is not part of the set of common data/messaging layer design guidelines in clause 6.2.

10.2.2.1 ZigBee component one-to-many connectivity

This clause describes guidelines for a sensor entering a one-to-many connectivity relationship, i.e., a ZigBee service component establishing multiple concurrent ZigBee interface connections at the same instant in time. Example scenarios include multi-function sensors providing different functionality to multiple PHGs, as well as single-function sensors providing its single functionality to multiple PHGs at the same instant in time. How to use the IEEE 11073-20601 mechanisms for association, sensor time control and PM-store usage in a one-to-many connectivity scenario are described.

10.2.2.1.1 ZigBee dominant association

The 'dominant association' concept is introduced for managing on the service component multiple simultaneous associations with one or more client components. Only through a dominant association, is a service component granting a client component control over its clock and persistently stored data. A service component can have zero or one dominant association. In this way, potential conflicts of multiple client components trying to control these resources on the agent are prevented. Client components are largely unaffected by the dominant association concept. Almost all the guidelines in Table 10-4 apply to service components only.

Name	Description	Comments
ZigBee-11073-20601-One-to- Many-Connect	Any Continua ZigBee service component that establishes more than one, simultaneous connection to one or more ZigBee client components at the same point in time shall create an ISO/IEEE 11073-20601 association to a ZigBee client component per connection and follow the guidelines in the remainder of this table	This guideline provides guidance for a device to establish multiple concurrent ZigBee connections
ZigBee-11073-20601-One-to- Many-SinglePHG	A Continua ZigBee service component that connects to a single ZigBee client component may create a single connection or multiple connections for providing its functions	The use of multiple connections allows turning on and off the connection of individual functions of the agent without affecting the connection of the other functions. However, in some cases, using a single connection only can be required, e.g., in case the ZigBee client component rejects the request for more than a single connection due to the fact that it is compliant to the 2010 CDG release and does not expect multiple connection requests from a single ZigBee service component
ZigBee-11073-20601-One-to- Many-ConnectionSetup	Continua ZigBee service components that establish more than one, simultaneous connection to one ZigBee client components at the same point in time shall create a new association to that ZigBee client component, if and only if, all other connections are in the <i>Unassociated</i> or <i>Operating</i> state	This guideline ensures that connection set-up is completed before the creation of an additional connection, and thus reduces unnecessary complexity on the client side to deal with multiple associations simultaneously
ZigBee-11073-20601- DominantAssoc	Continua ZigBee service components shall have at most a single dominant ISO/IEEE 11073-20601 association at a single point in time	A ZigBee service component provides the PHG control of its resources (e.g., setting of real time clock and removal of PM- Store data) via its dominant association only. An ISO/IEEE 11073-20601 association becomes the dominant association if one or more of the following MDS-Time-Info attribute bits or PM-Store-Capab attribute bits are set: <i>mds-time- mgr-set-time, mds-time-capab</i> -

Table 10-4 - ZigBee dominant association

Name	Description	Comments
		set-clock, pmsc-clear-segm-by- list-sup, pmsc-clear-segm-by- time-sup, pmsc-clear-segm- remove, pmsc-clear-segm-all-sup
ZigBee-11073-20601- DominantAssoc-ControlBits	Continua ZigBee service components shall not set any of following MDS-Time-Info attribute bits or PM-Store-Capab attribute bits for other than its dominant association: <i>mds-time- mgr-set-time, mds-time-capab-</i> <i>set-clock, pmsc-clear-segm-by-</i> <i>list-sup, pmsc-clear-segm-by-</i> <i>time-sup, pmsc-clear-segm-</i> <i>remove, pmsc-clear-segm-all-sup</i>	
ZigBee-11073-20601- DominantAssoc-SetTime	Continua ZigBee service components that modified their clock based on the reception of a Set-Time action via its dominant association shall send an event report that contains the new <i>Date-and-Time</i> attribute value for all their non-dominant associations prior to sending any temporarily stored measurements and prior to starting a new transfer of a PM-Segment	In case the service component receives the Set-Time action during an ongoing PM-Segment transfer, see ZigBee-11073- 20601-DateAndTimeUpdate- PMSegmentTransfer-* for further guidance
ZigBee-11073-20601- DominantAssoc-Closing	Continua ZigBee service components may close their dominant association	
ZigBee-11073-20601- DominantAssoc-Downgrading	Continua ZigBee service components may downgrade their dominant association to become a non-dominant association	Downgrading of the dominant association to a non-dominant association is achieved by sending an event report containing corresponding updates for the MDS-Time-Info attribute bits, so that the conditions of ZigBee-11073-20601- DominantAssoc-ControlBits for non-dominant associations are met. Note that the PM-Store-Capab attribute is static. Changing its bit values requires releasing the association and associating again, using a different configuration
ZigBee-11073-20601- DominantAssoc-Upgrading	Continua ZigBee service components that do not have a dominant association may upgrade an existing non-	Upgrading an existing association to a dominant association is achieved by sending an event report containing corresponding

Table 10-4 - ZigBee dominant association

Name	Description	Comments
	dominant association to become the dominant association	updates for the MDS-Time-Info attribute bits.
		Note that the PM-Store-Capab attribute is static. Changing its bit values requires releasing the association and associating again, using a different configuration

Table 10-4 – ZigBee dominant association

10.2.2.1.2 ZigBee time-stamping

This clause describes additional requirements for the use of time stamps as specified in [ISO/IEEE 11073-20601]. Table 10-5 contains guidelines for ZigBee timestamping.

Name	Description	Comments
ZigBee-11073-20601- DataDuplicate-Timestamping	Continua ZigBee service components shall time-stamp data that is intended to be sent multiple times, over different connections	Sending the same data multiple times can be done over the same connection or over different connections. If time stamps were missing and if the same data was sent multiple times over different connections to separate PHGs, then those PHGs would be responsible for timestamping and might have different notions of time. To cover such scenarios, this guideline sets more restrictions for the timestamping of data sent multiple times. According to [ISO/IEEE 11073-20601] data needs to be time-stamped only if it is locally stored or persistently stored on an agent before being transmitted
ZigBee-11073-20601- FixedTimeStamps	Continua ZigBee service components shall use the same time stamp for data that is transmitted multiple times	An example scenario where this guideline applies is the case that a service component sends the same data to multiple different clients and assigns time stamps while transmitting the data instead of while sampling the data. According to this guideline, the time stamps used for the same data are required to be identical

 Table 10-5 – ZigBee time-stamping

10.2.2.1.3 ZigBee Timeout management

This clause describes additional requirements improving interoperability in cases where timeouts as specified in [ISO/IEEE 11073-20601] are not met. Table 10-6 contains guidelines for ZigBee timeout management.

Name	Description	Comments
ZigBee-11073-20601- TimeoutIndication	Continua ZigBee service components shall not cause a timeout on a particular connection, due to activity related to another existing connection	Here, timeouts caused by service components relate to an expected response to a GET request, a confirmed SET command, or a confirmed Action command, invoked by a ZigBee client component being in the operating state
ZigBee-11073-20601-PM-Store- TransferTimeout	Continua ZigBee service components that implement and use the PM-Store model should correctly initialize the PM- Segment object <i>Transfer-Timeout</i> attribute to a value accounting for the maximum number of entries stored in the segment, as well as the maximum number of supported ongoing segment transfers via other associations	The size of a segment, as well as the amount of traffic due to potential concurrent segment transfer via other connections affects the time needed for transferring a complete PN- Segment

Table 10-6 – ZigBee timeout management

10.3 ZigBee Certified Capability Classes

Table 10-7 shows the Certified Capability Classes defined for the ZigBee interface design guidelines. A certification program run by Personal Connected Health Alliance exists for devices that implement the CDG. For ZigBee PHDs and PHGs, the certification testing will be performed on an integrated device, meaning the testing and certification is applied to the hardware and software of the device. Changes to components of the device may require a re-certification.

Table 10-7 also references the guidelines (clause numbers) that are applicable for each of the Certified Capability Classes on the service as well as the client side.

Certified Capability Class	Relevant guidelines
ZigBee Activity Hub service, ZigBee Activity Hub client	6.2, 6.3.14, 10.2
ZigBee Adherence Monitor service, ZigBee Adherence Monitor client	6.2, 6.3.29, 10.2
ZigBee Basic 1-3 Lead ECG service, ZigBee Basic 1-3 Lead ECG client	6.2, 6.3.2, 10.2
ZigBee Blood Pressure Monitor service, ZigBee Blood Pressure Monitor client	6.2, 6.3.4, 10.2
ZigBee Body Composition Analyser service, ZigBee Body Composition Analyser client	6.2, 6.3.9, 10.2

Table 10-7 – ZigBee Certified Capability Classes

Certified Capability Class	Relevant guidelines
ZigBee Cardiovascular Fitness service, ZigBee Cardiovascular Fitness client	6.2, 6.3.11, 10.2
ZigBee Cardiovascular Step Counter service, ZigBee Cardiovascular Step Counter client	6.2, 6.3.12, 10.2
ZigBee CO Sensor service, ZigBee CO Sensor client	6.2, 6.3.27, 10.2
ZigBee Contact Closure Sensor service, ZigBee Contact Closure Sensor client	6.2, 6.3.18, 10.2
ZigBee Continuous Glucose Monitor service, ZigBee Continuous Glucose Monitor client	6.2, 6.3.31, 10.2
ZigBee Dosage Sensor service, ZigBee Dosage Sensor client	6.2, 6.3.20, 10.2
ZigBee Enuresis Sensor service, ZigBee Enuresis Sensor client	6.2, 6.3.17, 10.2
ZigBee Fall Sensor service, ZigBee Fall Sensor client	6.2, 6.3.15, 10.2
ZigBee Gas Sensor service, ZigBee Gas Sensor client	6.2, 6.3.28, 10.2
ZigBee Glucose Meter service, ZigBee Glucose Meter client	6.2, 6.3.7, 10.2
ZigBee Heart-rate Sensor service, ZigBee Heart-rate Sensor client	6.2, 6.3.3, 10.2
ZigBee INR Meter service, ZigBee INR Meter client	6.2, 6.3.8, 10.2
ZigBee Insulin Pump service ZigBee Insulin Pump client	6.2, 6.3.32, 10.2
ZigBee Motion Sensor service, ZigBee Motion Sensor client	6.2, 6.3.16, 10.2
ZigBee Pulse Oximeter service, ZigBee Pulse Oximeter client	6.2, 6.3.1, 10.2
ZigBee Peak Flow Monitor service, ZigBee Peak Flow Monitor client	6.2, 6.3.10, 10.2
ZigBee PERS Sensor service, ZigBee PERS Sensor client	6.2, 6.3.26, 10.2
ZigBee Power Status Monitor service ZigBee Power Status Monitor client	6.2, 6.3.33, 10.2
ZigBee Property Exit Sensor service, ZigBee Property Exit Sensor client	6.2, 6.3.23, 10.2
ZigBee Smoke Sensor service, ZigBee Smoke Sensor client	6.2, 6.3.22, 10.2
ZigBee Strength Fitness service, ZigBee Strength Fitness client	6.2, 6.3.13, 10.2
ZigBee Switch Sensor service, ZigBee Switch Sensor client	6.2, 6.3.19, 10.2

Table 10-7 – ZigBee Certified Capability Classes

Certified Capability Class	Relevant guidelines
ZigBee Temperature Sensor service, ZigBee Temperature Sensor client	6.2, 6.3.24, 10.2
ZigBee Thermometer service, ZigBee Thermometer client	6.2, 6.3.5, 10.2
ZigBee Usage Sensor service, ZigBee Usage Sensor client	6.2, 6.3.25, 10.2
ZigBee Water Sensor service, ZigBee Water Sensor client	6.2, 6.3.21, 10.2
ZigBee Weighing scales service, ZigBee Weighing scales client	6.2, 6.3.6, 10.2

Table 10-7 – ZigBee Certified Capability Classes

11 Bluetooth low energy (LE) design guidelines

11.1 Architecture of Bluetooth LE (informative)

11.1.1 Introduction

This clause lists the design guidelines specific for interoperability between Continua Certified PHDs and PHGs using Bluetooth Low Energy across the Personal Health Devices interface. Figure 11-1 illustrates the Bluetooth Low Energy interface (BLE-IF) in the context of the Continua E2E architecture. The BLE-IF is a particular sub-class of the Continua PHD-IFs and connects Bluetooth Low Energy PHDs to PHGs across all three Continua domains, disease management, ageing independently, and health and fitness.

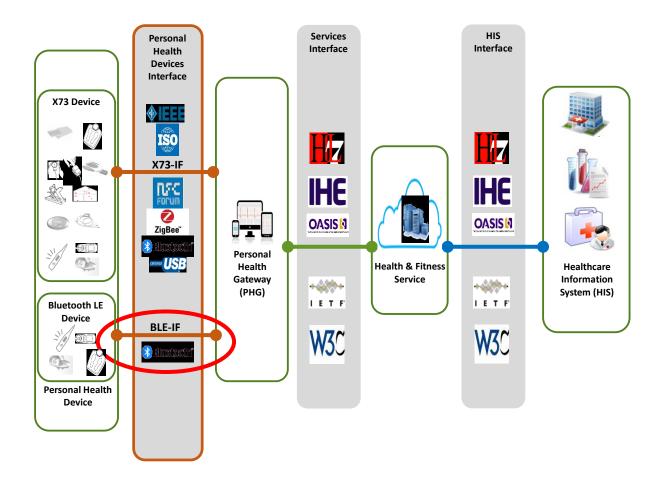


Figure 11-1 – Bluetooth LE interface

11.1.2 Overview

The Bluetooth Low Energy protocol is also a Continua-supported transport technology for the PHD-IF as a widely supported low-energy, low-bandwidth, limited range wireless protocol. The Bluetooth Special Interest Group (SIG) has defined device specific profiles and services on top of the Bluetooth low energy attribute profile that are supported by the PHD-IF. This is illustrated in Figure 11-2.

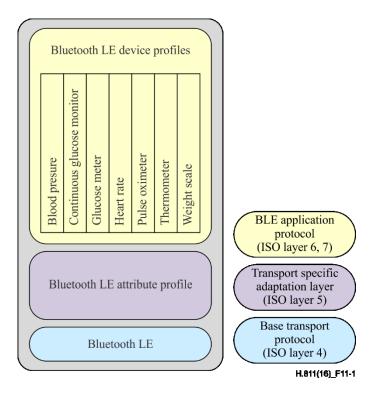


Figure 11-2 – Bluetooth LE interface stack

The Bluetooth LE interface does not utilize the IEEE 11073-20601 protocol for data exchange. The Bluetooth LE interface utilizes the Bluetooth LE protocol with data types compatible to the IEEE 11073-10101 nomenclature and the IEEE 11073-20601 domain information model. For the characteristics defined in the Bluetooth low energy profiles, the *Personal Health Devices Transcoding White Paper* describes how to transcode into an equivalent IEEE DIM and/or nomenclature representation. At a minimum, this covers the mandatory attributes from the supported [ISO/IEEE 11073-104xx] device specializations.

The following Bluetooth LE device-specific specifications from the Bluetooth SIG apply to the Bluetooth LE interface.

- Blood pressure profile and Blood pressure service (e.g., blood pressure measurement, intermediate cuff pressure)
- Continuous glucose monitor profile and Continuous glucose monitor service (e.g., glucose measurements)
- Current time service (e.g., local time)
- Device information service (e.g. manufacturer name, model number, serial number, hardware revision, firmware revision, software revision, system ID)
- Glucose profile and Glucose service (e.g., glucose measurement)
- Health thermometer profile and Health thermometer service (e.g., temperature)
- Heart rate profile and Heart rate service (e.g., heart rate, R-R interval)
- Personal Health Devices Transcoding White Paper describes how to transcode Bluetooth low energy data structures and format into an equivalent IEEE 11073 PHD data representation regarding DIM and/or nomenclature
- Pulse oximeter profile and Pulse oximeter service (e.g., SpO2 measurement)
- Weight scale profile, Weight scale service and Body composition service (e.g., weight measurement, BMI, body fat mass percentage).

11.2 Bluetooth LE interface guidelines

11.2.1 Bluetooth LE services and profiles

Bluetooth LE technology has been selected as the low-power (LP) wireless technology. The specifications relating to Bluetooth LE are in version 4.0 (or later) of the core Bluetooth specification [Bluetooth CS4.0]. Any related profile specifications are detailed in separate documents. Bluetooth PHDs and PHGs that support Bluetooth LE can be either a dual mode device, which is a device that supports both standard BR/EDR Bluetooth and Bluetooth LE, or a single mode device, which is a device that supports Bluetooth LE only. It is envisioned that service components (PHDs) supporting Bluetooth LE will mostly be single mode devices. Table 11-1 shows the guideline for Bluetooth LE transport.

Name	Description	Comments
Bluetooth-LE-Map- minimum	Continua Bluetooth LE service and client components shall implement Bluetooth LE as described in <i>Bluetooth Specification</i> <i>Version 4.0</i> [Bluetooth CS4.0] or a later version as long as compatibility with Version 4.0 is maintained, and subject to the design guidelines described in the sub- clauses below.	
Bluetooth-LE-Map- recommended	Continua Bluetooth LE service and client components should implement Bluetooth LE as described in <i>Bluetooth Specification</i> <i>Version 4.2</i> [Bluetooth CS4.2], subject to the design guidelines described in the sub- clauses below.	Version 4.2 comes with improved security (LE Secure Connections) making Bluetooth LE as secure as Bluetooth BR/EDR.

Table 11-1 – Bluetooth LE transport

11.2.2 Device discovery, connection establishment, pairing, service discovery and bonding

Continua Bluetooth LE service devices (PHDs) transfer measurement data to client devices (PHGs). Continua Bluetooth LE client and service components are required to pair with each other, either following a search initiated by the client component that obtains a list of compatible devices or through an out-of-band configuration.

Bluetooth LE pairing is the process to establish a secure connection. Bonding is the process to store the security keys on both sides to speed up the reconnection process. Pairing can be done without bonding, but bonding cannot be done without previous pairing. Although end-users may be unaware of the difference and often consider pairing and bonding to be the same, these guidelines distinguish between pairing and bonding and follow the definitions of [Bluetooth CS4.0].

Continua Bluetooth LE client and service components are not required to support bonding.

A process of discovery of the service component by the client component is required for all Continua Bluetooth LE devices. This ensures a consistent and user-friendly pairing and bonding procedure.

The guidelines throughout this clause and contained in Table 11-2, create a single and universally supported technique for pairing devices that give a minimum of surprise or inconvenience to users and implementers.

Name	Description	Comments
Bluetooth-LE-Pairing-Start- Client	Once a Continua Bluetooth LE client component has discovered a Continua Bluetooth LE service component that supports a compatible service, it shall support pairing with that Continua Bluetooth LE service component.	
Bluetooth-LE-Enter- Discoverability-Service	A Continua Bluetooth LE service component shall have a documented way to be set to be discoverable and a documented way to pair with a Continua Bluetooth LE client component.	
Bluetooth-LE-Enter-Advertise- Service	When discoverable, a Continua Bluetooth LE service component shall advertise at least the UUIDs of the service(s) the service component for which it is certified.	This allows client components to initiate pairing with just the service components with which they can and want to work.
Bluetooth-LE-Initiate-Discovery- Pairing-Client	A Continua Bluetooth LE client component shall have a documented way to initiate a search for discoverable Continua Bluetooth LE service component and a documented way of initiating pairing with a Continua Bluetooth LE service component.	
Bluetooth-LE-Discoverability- Mode-Service	A Continua Bluetooth LE service component shall not be discoverable unless initiated by a user.	
Bluetooth-LE-Discoverable- Mode-Bits-Service	A Continua Bluetooth LE service component shall set the General Discoverable Mode bit or the Limited Discoverable Mode bit when in Discoverable Mode. The bit should be chosen as appropriate for the usage of the device.	See [Bluetooth CS4.0] or later for implementation details on the General and Limited Discoverable Mode bits. Limited discoverability may be most appropriate for devices for personal usage such as most medical measurement devices. General discoverability may be most appropriate for devices for public usage, such as gym and fitness equipment.
Bluetooth-LE-Discoverable- Mode-Client	A Continua Bluetooth LE client component shall only attempt to connect to a service component advertising in General or Limited Discoverable Modes if the client component is intending to pair with	This will improve pairing operation by eliminating client components not intending to pair from interfering with other client components intending to

Name	Description	Comments
	this service component.	pair with a service component in Discoverable Mode.
Bluetooth-LE-Delete-Pairing- Service	A Continua Bluetooth LE service component should have a way to delete stored pairings (bonds).	Note that on commercial platforms this may be called "pairing" or "paired devices" in the user interface.
Bluetooth-LE-Delete-Pairing- Client	A Continua Bluetooth LE client component should have a way to delete stored pairings (bonds).	
Bluetooth-LE-Additional- Pairing-Service	A Continua Bluetooth LE service component shall support replacing its stored pairing (bonds).	Bonding is not exclusive for the lifetime of the service component to enhance interoperability. Note also that simple devices may not have a UI that supports deleting of bonds, but also such devices must allow replacing bonds.
Bluetooth-LE-No-Data- Exchange-Before-Pairing-Service	Continua Bluetooth LE service component data (other than service discovery and related data or capability or service name from the advertising packet) shall not be exchanged with a Continua Bluetooth LE client component prior to pairing with that client component.	The Bluetooth Device Information Service [Bluetooth DIS] characteristics may be read without pairing and are considered to be part of the service discovery related data.
Bluetooth-LE-Disc-Mode-Max- Duration-Service	A Continua Bluetooth LE service component intended for personal use should have a documented maximum duration for discoverable mode whereby after the maximum time, the Continua Bluetooth LE service component ceases to be discoverable until put back into that mode by the user.	This guideline implies that the use of "Limited Discoverable Mode" is the recommended option for personal use devices.
Bluetooth-LE-After-Pairing- Undiscoverable-Service	After a Continua Bluetooth LE service component is successfully paired, it shall immediately (e.g., within 1 second) become undiscoverable until made discoverable again by the user.	
Bluetooth-LE-Bonding-Service	Continua Bluetooth LE service components should bond (i.e., store the pairing data) with at least the most recently paired device such that the data is persistent (e.g., with loss of power, including removal of a battery).	
Bluetooth-LE-Bonding-Client	Continua Bluetooth LE client	

Name	Description	Comments
	components should bond (i.e., store pairing data) with at least the most recently bonded device such that the data is persistent (e.g., with loss of power including removal of a battery).	
Bluetooth-LE-Number-of-Bonds- Client	Continua Bluetooth LE client components should bond (store pairing data) with at least the number of devices they are intended to simultaneously support.	
Bluetooth-LE-Supported- Services-Service	Continua Bluetooth LE service component's Attribute database shall list all supported Bluetooth LE services claimed in Continua certification documentation.	
Bluetooth-LE-Stay-Connected- Period-Service	When connected, a Continua Bluetooth LE service component should stay connected for a period of at least 5 seconds when being idle. This period is not applicable if the client explicitly wants to terminate the connection for a good reason. "Idle" means not receiving any GATT messages from the connected client. "Staying connected" means NOT executing the GAP Terminate Connection Procedure or an equivalent GATT service procedure resulting in a disconnect.	This time-out period before disconnecting allows connected client components to discover service component services and characteristics, configure characteristics for indications/notifications; it also allows them to read the current time from the device and/or to start the pairing/bonding process. A good reason for a service component to disconnect is for example avoiding of interference with the execution of a higher priority task such as taking a measurement or interacting with the user. This period applies when the service component has just completed sending all (stored) measurements via indications or notifications to the client component. This period also applies when the service component has sent a recoverable error message to the client such as a security error message ("Insufficient Authentication", "Insufficient Authorization" or "Insufficient Encryption Key Size") or a service

Name	Description	Comments
		discovery error message in response to a GATT service request. See [BT CS 4.0] volume 3, part F and G, Security Considerations. A client component is expected not to misuse this time-out to stay connected without useful data exchange.
Bluetooth-LE-Stay-Connected- Period-Client	When connected, a Continua Bluetooth LE client component should stay connected for a period of at least 5 seconds when being idle. This period is not applicable if the service explicitly wants to terminate the connection for a good reason, e.g., by using the GAP Terminate Connection Procedure or an equivalent GATT service procedure resulting in a disconnect. "Idle" and "Staying connected" are defined as in the Bluetooth-LE- Pairing-Stay-Connected-Period- Service guideline above.	An example of data that the service may want to collect from the client in this period is the name of the client device. Note that Device Name support is mandatory for LE Peripheral and Central roles. See [Bluetooth CS4.2] Part C, Section 12. A good reason for a client component to disconnect is for example avoiding of interference with the execution of a higher priority task such as interacting with the user.
Bluetooth-LE-Service-Changed- Service	A Continua Bluetooth LE service component supporting the Service Changed characteristic shall send indications of this characteristic, when appropriate, after reconnecting with a trusted (bonded) client component before sending any other indications or notifications to this client component.	The Service Changed characteristic must be supported on Bluetooth service components for which the service definitions as exposed by service discovery can change. When the service definition changes and a client that enabled Service Changed indications earlier reconnects, an indication must be given to trigger service discovery of these changes in order to avoid using e.g., incorrect handles. The Bluetooth Core Specification does specify when the Service Changed indications will be sent, but does not clearly specify the timing of this behaviour, which is needed to be able

Name	Description	Comments
		to understand indications properly.
Bluetooth-LE-Service-Changed- Client	A Continua Bluetooth LE client component shall enable indications on the Service Changed characteristic when supported by a Bluetooth service component to which this client is bonded before enabling any other indications or notifications on the service component.	Just to be safe, this is required to be done before enabling other indications or notifications.

11.2.3 User notification

Establishing a new pairing relationship is an important event. Because of the potential for confusion, extreme care should be used before automating the pairing and bonding procedures. To allow users reasonable control of their Continua systems, PHGs are required to provide a facility for alerting users of significant events. Because discovery may be difficult for users to understand, it is important to inform them of new pairings, bondings and reasons for failure. The guidelines in this clause and contained in Table 11-3, intentionally leave the nature of notifying and informing the user to be defined by the manufacturer.

Name	Description	Comments
Bluetooth-LE-Inform- Pairing-Success-Service	If supported by the UI, Continua Bluetooth LE service components should inform the user that pairing and authentication were successful.	
Bluetooth-LE-Inform- Pairing-Success-Client	If supported by the UI, Continua Bluetooth LE client components shall inform the user that pairing and authentication were successful.	
Bluetooth-LE-Filter- Compatible-Client	Continua Bluetooth LE client components in a mode of device discovery should filter discovered Continua Bluetooth LE service components to include only those that have compatible services.	
Bluetooth-LE-Inform-User- Pairing-Failure-Client	If there is a failure during the discovery, pairing and authentication process, and if supported by the UI, the Continua Bluetooth LE client component shall inform the user whether the failure is because 1) no compatible Continua Bluetooth LE service components was found (compatible device not found) or 2) the pairing failed (pairing failure) or 3) the authentication process timed out (authentication time-out) or 4) the user entered the incorrect passkey (incorrect PIN).	

Table 11-3 – Bluetooth LE user notification

11.2.4 Security, authentication and privacy

In Bluetooth LE profiles referenced in these guidelines, the service component chooses the mode of security it desires and the client component is required to accept this. Bluetooth LE profiles can mandate Just Works authentication, Passkey Entry of a six-digit PIN, Numeric Comparison or an out-of-band obtained passkey. While in Bluetooth Low Energy there are various authentication options, Continua places more requirements on security, authentication and privacy features to ensure interoperability. Table 11-4 contains guidelines on Bluetooth LE authentication and a high level of security.

Name	Description	Comments
Bluetooth-LE- Authentication- Support-Service	Continua Bluetooth LE service components shall support at least one of the following Bluetooth 4.0 pairing methods (association models) depending on its I/O capabilities and the appropriate security for the service component device type: Just Works or Passkey Entry.	I/O capabilities include display, keyboard, yes/no. See Bluetooth Core Specification 4.0 [Bluetooth CS4.0] for further information. The association models from Bluetooth LE in CS 4.0 are called "LE Legacy Pairing" in CS 4.2 [Bluetooth CS4.2].
Bluetooth-LE- Authentication- Support-Client	Continua Bluetooth LE client components shall support Just Works and Passkey Entry pairing methods (association models) for Bluetooth 4.0 if the client component has the appropriate I/O capabilities.	I/O capabilities include display, keyboard, yes/no. See Bluetooth Core Specification 4.0 [Bluetooth CS4.0] for further information. This guideline is necessary to ensure interoperability and give reasonable assurance that a service component's chosen pairing method (association model) will be supported by client components.
Bluetooth-LE-Secure- Connections	Continua Bluetooth LE client and service components shall support LE Secure Connections if they support Bluetooth 4.2 [Bluetooth CS4.2] or later.	"LE Secure Connections" are defined in CS4.2. With LE Secure Connections the key generation scheme is made more robust and equivalent to that of Bluetooth BR/EDR.
Bluetooth-LE- Authentication- Support-Service-v42	Continua Bluetooth LE service components supporting Bluetooth 4.2 [Bluetooth CS4.2] or later shall support at least one of the following Bluetooth 4.2 association models depending on its I/O capabilities and the appropriate security for the service component device type: Just Works, Passkey Entry or Numeric Comparison.	I/O capabilities include display, keyboard, yes/no. See Bluetooth Core Specification 4.2 [Bluetooth CS4.2] for further information. These association models are the successors of the "legacy" models from older versions of the CS.

Table 11-4 – Bluetooth LE authentication

Name	Description	Comments
Bluetooth-LE- Authentication- Support-Client-v42	Continua Bluetooth LE client components shall support Just Works, Passkey Entry and Numeric Comparison association models if supporting Bluetooth 4.2 [Bluetooth CS4.2] or later and if the client component has the appropriate I/O capabilities.	This pairing guideline is necessary to ensure interoperability and give reasonable assurance that a service component's chosen association model will be supported by client components.
Bluetooth-LE-Link- Layer- Privacy- Recommended-Service	Continua Bluetooth LE service components that are implemented in devices that support BT v4.2 or later and that may reveal information on the use of a device, such as the location of the user by regular advertising, should implement the Link Layer Privacy as defined by [BT CS v4.2] Volume 6, part B, section 6.	Link Layer Privacy prevents a user being tracked by changing the MAC address used by a Bluetooth LE device randomly, while maintaining the capability to pair and bond with known devices. For a device like a fitness machine shared by multiple users, this may not be a useful feature.
Bluetooth-LE-Link- Layer- Privacy- Recommended-Client	Continua Bluetooth LE client components that are implemented in devices that support BT v4.2 or later and that may reveal information on the use of a device, such as the location of the user by regular advertising, should implement the Link Layer Privacy as defined by [BT CS v4.2] Volume 6, part B, section 6.	Similar to the service component, a Bluetooth LE client component could reveal information that should stay private. This can be avoided using Link Layer Privacy. Recent smart phones models typically implement this feature out of the box.
Bluetooth-LE-Link- Layer- Privacy- Required-Service	Continua Bluetooth LE service components that support BT v4.2 or later shall be able to connect to client components using the Link Layer Privacy as defined by [BT CS v4.2] Volume 6, part B, and section 6.	For service components to work with client components using Link Layer Privacy means that they shall support decoding randomly generated resolvable private addresses in connection and scan requests.
Bluetooth-LE-Link- Layer- Privacy- Required-Client	Continua Bluetooth LE client components that support BT v4.2 or later shall be able to connect to service components using the Link Layer Privacy as defined by [BT CS v4.2] Volume 6, part B, section 6.	For client components to work with service components using Link Layer Privacy means that they shall support decoding randomly generated resolvable private addresses in advertisements.

Table 11-4 – Bluetooth LE authentication

Name	Description	Comments
Bluetooth-LE-Link- Layer- Privacy- Restricted-Advertising- Service	Continua Bluetooth LE service components using Link Layer Privacy should not include any device- traceable information in the advertising data or in the scan response data.	Examples of such data would be the device name, or a device specific service UUID.

Table 11-4 – Bluetooth LE authentication

11.2.5 Device information requirements

Bluetooth LE profiles referenced in these guidelines define some characteristics within the Bluetooth SIG device information service as optional. This clause describes the guidelines that are targeted at the Device Information characteristics, see Table 11-5. All of the fields defined in this clause are from the Bluetooth SIG device information service.

Name	Description	Comments
Bluetooth-LE-11073- 20601-Manufacturer	Continua Bluetooth LE service components shall support and set the manufacturer name string defined in the Bluetooth SIG device information service to the device's original manufacturer's name. If this capability is available, the manufacturer name string may be overwritten to the customer facing company's name by the customer facing company.	
Bluetooth-LE-11073- 20601-Model	Continua Bluetooth LE service components shall set the model number string defined in the Bluetooth SIG device information service to the device's original manufacturer's model number. The model number string field may be overwritten to the customer facing company's model by the customer facing company.	
Bluetooth-LE-11073- 20601-SYSID	Continua Bluetooth LE service components shall include the System ID characteristic defined in the Bluetooth SIG device information service.	
Bluetooth-LE-11073- 20601-OUI	The organizationally unique identifier (OUI) field of the System ID characteristic defined in the Bluetooth SIG device information service in a Continua Bluetooth LE service component shall be set and remain unchanged from the value set by the original manufacturer.	This is a unique identifier, which is obtained by the IEEE registration authority and which is associated with a company. This attribute maps to the OUI part (first 24 bits) of the EUI-64 attribute

Table 11-5 – Bluetooth LE OEM requirements

Name	Description	Comments
Bluetooth-LE-11073- 20601-DID	The 40 bit manufacturer defined identifier field in the System ID characteristic defined in the Bluetooth SIG device information service of a Continua Bluetooth LE service component shall be set and remain unchanged from the value set by the original manufacturer.	In combination with the OUI part above, this is a unique identifier associated with the device. It is required in order to facilitate data quality analysis. This attribute maps to the company defined part (last 40 bits) of the EUI-64 attribute
Bluetooth-LE-11073- 20601-Serial-Number	Continua Bluetooth LE service components shall set the serial number string characteristic defined in the Bluetooth SIG device information service to the serial number of the device.	
Bluetooth-LE-11073- 20601-FW-Revision	Continua Bluetooth LE service components that provide a firmware identifier shall set the firmware revision string characteristic defined in the Bluetooth SIG device information service to the firmware identifier of the device.	The firmware identifier is the version of the firmware deployed on the PAN device. The firmware release deployed on a PAN device is uniquely identified by the firmware identifier

Table 11-5 – Bluetooth LE OEM requirements

11.2.6 Date and time requirements

Bluetooth LE devices which report time-stamped measurements must provide the means to report the current date and time of the device. The following guidelines are intended to provide the means for this support. Table 11-6 covers Bluetooth LE date and time requirements.

Name	Description	Comments
Bluetooth-LE-Date- Time	Continua Bluetooth LE service components that report time-stamped measurements shall support the Current Time Service [Bluetooth CTS] or shall include the "Date Time" characteristic in the service component for the purpose of reporting the current date and time of the service component.	Transcoding of time specified in the Personal Health Devices Transcoding White Paper from the Bluetooth SIG [Bluetooth PHDT v1.5] (or later). Newer versions of this whitepaper require support of CTS by the service component when reporting time- stamped measurements. For newer designs the use of CTS is the preferred choice. Continua still allows use of the Date- Time characteristic for legacy devices that report time-stamped measurements as described in [Bluetooth PHDT V1.4].

Table 11-6 – Bluetooth LE date and time requirements

11.2.7 Certification and regulatory aspects

Since Bluetooth LE profiles referenced in these guidelines define as optional the IEEE 11073-20601 Regulatory Certification Data List characteristic within the Bluetooth SIG device

information service, this clause describes the guidelines that are targeted at certification and regulatory aspects including those specific to this characteristic.

For this purpose, the ASN-1 definitions from Figure 6-3 are referenced in Table 11-7.

Name	Description	Comments
Bluetooth-LE-Support- Reg-Cert-Data-Service	Continua Bluetooth LE service components shall support and fill the IEEE 11073-20601 Regulatory Certification Data List characteristic defined in the Bluetooth SIG device information service with an MDER encoded version of the IEEE 11073-20601 RegCertDataList data structure. The RegCertDataList data structure shall contain a RegCertData element with the <i>auth-body-continua</i> and the <i>auth-body-struc-type</i> field set to <i>continua-</i> <i>version-struct</i> from a ContinuaStructType as defined above. The field <i>auth-body-data</i> shall be filled in as a <i>ContinuaBodyStruct</i> as defined in Figure 11-2	This is used to indicate whether a device is Continua certified and (if so) to which version of the Continua Design Guidelines it is certified.
Bluetooth-LE- CapabilityList	Continua Bluetooth LE service components shall list all implemented and only the implemented Certified Capability Classes in the IEEE 11073- 20601 Regulatory Certification Data List characteristic within the Bluetooth SIG device information service.	
Bluetooth-LE- CapabilityEntry	Continua Bluetooth LE service components shall assign the following certified Capability Class field value within the IEEE 11073-20601 Regulatory Certification Data List characteristic within the Bluetooth SIG device information service to an implemented Certified Capability Class: MDC_DEV_*_SPEC_PROFILE_* - 4096 + TCode x 8192, where MDC_DEV_*_SPEC_PROFILE_* denotes the IEEE 11073 PHD nomenclature code for the corresponding device (sub-) specialization, and TCode denotes the corresponding transport standard, with TCode = {4 for LP wireless PAN}	See [Bluetooth PHDT 1.5] (or later)
Bluetooth-LE-Report- Regulated-Service	All Continua BLe service components shall report information on whether or not they are regulated. This is a single Boolean entitled unregulated-device, which is set to 1 if not regulated and 0 if regulated and contained as part of IEEE 11073-20601 Regulatory Certification Data List defined in the Bluetooth SIG device information service.	

Table 11-7 -	- Bluetooth LI	certification	and regulation
	Diactooth Li	2 cel tilleation	una regulation

11.2.8 Transcoding

Bluetooth LE profiles referenced in these guidelines are designed to be compatible with the IEEE 11073 device information model (DIM) and nomenclature of a corresponding IEEE 11073-20601 device specialization. The Bluetooth SIG published document [Bluetooth PHDT v1.5] (or later) contains the information showing how the applicable Bluetooth LE characteristics can be mapped to the device information model (DIM) and nomenclature of the corresponding IEEE 11073-20601

device specializations. From a Bluetooth LE profile perspective this mapping information is included as informative text for profiles targeted for usage in the Continua context CDG. However, when Bluetooth LE profiles are used within the CDG and transcoding is required, this mapping information is normative for implementations that transcode Bluetooth LE data. Table 11-8 covers the guideline for Bluetooth LE transcoding.

Name	Description	Comments
Bluetooth-LE- Transcode	The guidelines for interfaces in the Continua E2E architecture assume that data coming from the X73 interface are IEEE 11073 nomenclature and DIM representations and then specify necessary data conversions for each of the interfaces. Any solution that interacts with the Bluetooth LE interface and passes the data over other Continua interfaces shall follow [Bluetooth PHDT 1.5] (or later) during the translation process from Bluetooth LE data to final representation for the supported interface(s). Transcoded data shall be compliant to the IEEE 11073 nomenclature and DIM corresponding specifically with [ISO/IEEE 11073- 20601].	[Bluetooth PHDT v1.5] (or later) is informative from the Bluetooth SIG perspective, but is normative for the purposes of these guidelines. This white paper specifies how to convert the Bluetooth LE data into full IEEE 11073 compliant data, which then supports the use of the data for the Continua Services and HIS interfaces. Note that this guideline does not require a PHG to actually create the DIM, objects, and attributes indicated by the white paper. However, the data generated for transmission over the subsequent Continua interface must match the data that would have been generated from such a DIM

Table 11-8 – Bluetooth LE transcoding

11.3 Bluetooth LE PHDs and PHGs

11.3.1 Blood pressure monitor

Table 11-9 shows blood pressure general requirements for Bluetooth LE.

Table 11-9 – Blood pressure general re	equirements for Bluetooth LE
--	------------------------------

Name	Description	Comments
Bluetooth-LE-Blood Pressure-Service	Continua Bluetooth LE blood pressure service components shall implement the blood pressure sensor role as defined by the blood pressure profile and service – [Bluetooth BPP] and [Bluetooth BPS].	
Bluetooth-LE-Blood Pressure-Client	Continua Bluetooth LE blood pressure client components shall implement the collector role as defined by blood pressure profile from [Bluetooth BPP].	

11.3.2 Thermometer

Table 11-10 shows thermometer general requirements for Bluetooth LE.

Name	Description	Comments
Bluetooth-LE- Thermometer-Service	Continua Bluetooth LE thermometer service components shall implement the health thermometer sensor role as defined by the health thermometer profile and service – [Bluetooth HTP] and [Bluetooth HTS].	
Bluetooth-LE- Thermometer-Client	Continua Bluetooth LE thermometer client components shall implement the collector role as defined by the health thermometer profile from [Bluetooth HTP].	

Table 11-10 – Thermometer general requirements for Bluetooth LE

11.3.3 Heart-rate sensor

Table 11-11 shows heart-rate sensor general requirements for Bluetooth LE.

Name	Description	Comments
Bluetooth-LE-Heart- rate-Sensor-Service	Continua Bluetooth LE heart-rate sensor service components shall implement the heart-rate sensor role as define by the heart rate profile and service – [Bluetooth HRP] and [Bluetooth HRS].	
Bluetooth-LE-Heart- Rate-Sensor-Client	Continua Bluetooth LE heart-rate client components shall implement the collector role as defined by the heart rate profile from [Bluetooth HRP].	

Table 11-11 – Heart-rate sensor	general rec	quirements for	Bluetooth LE

11.3.4 Glucose meter

Table 11-12 shows glucose meter general requirements for Bluetooth LE.

Name	Description	Comments
Bluetooth-LE-Glucose- Meter-Service	Continua Bluetooth LE glucose meter service components shall implement the glucose sensor role as defined by the glucose profile and service – [Bluetooth GLP] and [Bluetooth GLS].	
Bluetooth-LE-Glucose- Meter-Client	Continua Bluetooth LE glucose meter client components shall implement the collector role as defined by the glucose meter profile from [Bluetooth GLP].	

11.3.5 Weighing scale

Table 11-13 shows weighing scale general requirements for Bluetooth LE.

Name	Description	Comments
Bluetooth-LE-Weight- Scale-Service	Continua Bluetooth LE weight scale meter service components shall implement the weight scale sensor role as defined by the weight scale profile and service from the Bluetooth SIG – [Bluetooth WSP] and [Bluetooth WSS].	
Bluetooth-LE-Weight- Scale-Body- Composition-Service	Continua Bluetooth LE weight scale service components may implement the body composition service from the Bluetooth SIG [Bluetooth BCS].	
Bluetooth-LE-Weight- Scale-Client	Continua Bluetooth LE weight scale client components shall implement the collector role as defined by the the weight scale profile from the Bluetooth SIG [Bluetooth WSP].	

Table 11-13 – Weighing scale general requirements for Bluetooth LE

11.3.6 Continuous glucose monitor

Table 11-14 shows continuous glucose monitor (CGM) general requirements for Bluetooth LE.

Name	Description	Comments
Bluetooth-LE-CGM-Service	Continua Bluetooth LE CGM service components shall implement the CGM sensor role as defined by the CGM profile and service – [Bluetooth CGMP] and [Bluetooth CGMS].	
Bluetooth-LE-CGM-Client	Continua Bluetooth LE CGM client components shall implement the collector role from the CGM profile from the Bluetooth SIG [Bluetooth CGMP].	

Table 11-14 – CGM general requirements for Bluetooth LE

11.3.7 Pulse oximeter

Table 11-15 shows pulse oximeter general requirements for Bluetooth LE.

Name	Description	Comments	
Bluetooth-LE-POX-Service	Continua Bluetooth LE pulse oximeter service components shall implement the pulse oximeter sensor role as defined by the pulse oximeter profile and service – [Bluetooth POXP] and [Bluetooth POXS].		
Bluetooth-LE-POX-Client	Continua Bluetooth LE pulse oximeter client components shall implement the collector role from the pulse oximeter profile from the Bluetooth SIG [Bluetooth POXP].		

 Table 11-15 – Pulse Oximeter general requirements for Bluetooth LE

11.4 Bluetooth LE Certified Capability Classes

Table 11-16 shows the Certified Capability Classes defined for the Bluetooth LE interface design guidelines. A certification program run by Personal Connected Health Alliance exists for PHDs and PHGs that implement the CDG. For Bluetooth LE PHDs and PHGs, the certification testing will be performed on an integrated device, meaning the testing and certification is applied to the hardware and software of the device. Changes to components of the device may require a re-certification. Table 11-16 also references the guidelines that are applicable for each of the Certified Capability Classes.

Certified Capability Classes	Relevant guidelines	
Bluetooth LE blood pressure monitor service Bluetooth LE blood pressure monitor client	11.2, 11.3.1	
Bluetooth LE continuous glucose monitor service Bluetooth LE continuous glucose monitor client	11.2, 11.3.6	
Bluetooth LE glucose meter service Bluetooth LE glucose meter client	11.2, 11.3.4	
Bluetooth LE heart-rate sensor service Bluetooth LE heart-rate sensor client	11.2, 11.3.3	
Bluetooth LE pulse oximeter service Bluetooth LE pulse oximeter client	11.2, 11.3.7	
Bluetooth LE thermometer service Bluetooth LE thermometer client	11.2, 11.3.2	
Bluetooth LE weighing scales service Bluetooth LE weighing scales client	11.2, 11.3.5	

 Table 11-16 – Bluetooth LE Certified Capability Classes

Appendix I

Additional Bluetooth BR/EDR information

(This appendix does not form an integral part of this Recommendation.)

I.1 Bluetooth terminology

Bonding: Storing a common link key to establish a future trust relationship with a known device. The link key is created and exchanged during pairing.

BR/EDR: Abbreviation for Basic Rate/Enhanced Data Rate. BR/EDR is usually used as a way to describe "Classic" Bluetooth, as opposed to Bluetooth high speed or Bluetooth low energy.

Connectable: A Bluetooth device is connectable if it is periodically entering the Page Scan substate. Page Scan requires an active receiver for about 11.25 ms (default) and can be entered continuously or periodically. Normal periods are in the one second range (modes $R2 \le 2.56$ s, $R1 \le 1.28$ s, R0 is continuous). If a device is connectable, it will respond to pages from devices that address it specifically (by Bluetooth MAC).

(Device) Discovery: Using the Inquiry substate to learn of the existence of other Bluetooth devices within transmission range. May take up to thirty seconds. Sometimes called "device discovery" to distinguish from service discovery.

Discoverable: A Bluetooth device is discoverable if it is periodically entering the Inquiry Scan substate. Inquiry Scan requires an active receiver for about 11.25 ms (default) and is entered at least once every 2.56 s. If a device is discoverable, it will respond to Inquiry procedures (usually a general Inquiry) from any device that wants to search.

Limited discoverable: A Bluetooth term for devices that are discoverable only for a limited period of time, and otherwise not discoverable. Typically, user interaction triggers discoverability.

Pairing: Creating and exchanging link key(s) to establish a trust relationship with a known device. Performed with secure simple pairing (SSP), except in legacy cases.

Out-of-band connection: A data link other than the Bluetooth connection. This may include Bluetooth near-field communication (NFC), patch cables, removable media, or any other mechanism for transferring data between the two devices.

Service discovery: Creating a baseband connection to a specific device (may be paired, but does not need to be) to discover details about services offered on that device.

See Bluetooth Core Specification 4.0 [Bluetooth CS4.0] or later for further definitions.

I.2 Bluetooth BR/EDR pairing methods

Starting with Bluetooth 2.1+EDR, pairing uses secure simple pairing (SSP) which (as the name implies) improved both the security and the simplicity of the Bluetooth pairing procedure. Older devices use a legacy pairing procedure. Both of these procedures result in a shared "link key" that is unique to the pair of devices and can be used both to authenticate future connections and to create session keys for encrypting traffic over the air.

Whichever procedure is used, the user experience will depend heavily on how it is implemented. To produce an adequate level of trust between the two devices while also giving a good user experience, the following factors are particularly relevant:

Security against eavesdropping refers to the required protection from listening devices that are present during the pairing procedure. Legacy pairing offers moderate protection only if long PINs

are used (at least six digits), although attacks are still possible. SSP is always secure against eavesdropping.

Security against active man-in-the-middle (MITM) refers to the required protection from a device that inserts itself between the two parties on the physical link, so instead of pairing with each other (as intended), they both pair with the attacker. The attacker may relay data as if the connection were working correctly, but would be able to intercept or even change that data during transmission. Legacy pairing is not secure against this type of attack. SSP may be secure against it.

Security against confusion refers to the required protection against allowing a device to pair with a device other than the intended partner.

For additional information on Bluetooth discovery and pairing, including device user interface input/output capabilities, see the following Bluetooth SIG documentation as formally referenced in clause 2 and the Bibliography of [ITU-T H.810].

- Bluetooth Core Specification, v2.1 or later, Vol. 3, Part C: Generic Access Profile [Bluetooth CS2.1]
- Bluetooth Discovery White Paper [b-Bluetooth Discovery]
- Bluetooth Secure Simple Pairing User Terminology White Paper [b-Bluetooth SSP UT]
- Bluetooth User Interface Flow Diagrams for Bluetooth Secure Simple Pairing Devices White Paper [b-Bluetooth SSP UI]
- Bluetooth Secure Simple Pairing Usability Metric White Paper [b-Bluetooth SSP UM]

I.3 Bluetooth BR/EDR legacy pairing procedures

Legacy pairing requires keys from both devices. If a device has a user interface, a unique PIN can be entered. It is recommended that well-known values (like "0000") not be used for groups of devices, as this may cause erroneous pairings. PINs should be at least six digits long and selected in such a way that each individual PIN will be re-used only about once in 1 000 000 devices (or less). The PIN for each device should be clearly identified on the device packaging, although that identification may be made removable.

I.4 Supporting Bluetooth OEM subsystems and components

The Bluetooth SIG currently allows the certification of "profile subsystems" devices that completely implement a profile, but are not themselves an "End Product". It is expected that some implementers will develop and market HDP modules that include the entire HDP implementation with the exception of the ISO/IEEE 11073-20601 data layer and ISO/IEEE 11073-104xx device specializations. Others may develop the ISO/IEEE 11073-20601 data layer and device specializations such that when the two implementations are combined, they form an End Product. The Bluetooth Qualification System allows for two partial implementations to be combined forming an "End Product" through the combination of appropriate subsystems or through the use of "subsetting". However, some testing of the combined implementations may be required. Refer to the Bluetooth SIG for further information regarding the Bluetooth qualification process.

I.5 Quality of service bins for Bluetooth

For Bluetooth, the expected quality of service (QoS) for a data connection is identified through the use of the two recognized QoS bins (see clause 9.2.6). Achieving this QoS (knowing what is expected from a channel, policing what is being delivered and flagging exceptional situations) is the responsibility of both ends of the connection.

In the case where a connection is point-to-point, this can often be delegated to the underlying transport layer implementation. For example, when a Bluetooth connection is established between

two devices (by a successful pairing procedure), the link manager protocol can request the "supported features" of the partner device. These features would include information about which enhanced data rate modes are supported and therefore allow the local device (which already knows its own capabilities) to make a good guess at the throughput it can expect over that link. This is the recommended method for this version of the Continua Design Guidelines.

When the data is routed via intermediate nodes, but the QoS is important from end-to-end, some higher-layer function is required to accumulate and correlate the QoS expected from the various components, or at least to assign expected bounds to each hop. This will require communication of QoS characteristics at the end-to-end (transport layer). This version of the CDG support, at maximum, two cascaded transport technologies: USB/Bluetooth and ZigBee. The overall end-to-end latency is statically managed by splitting the end-to-end transport latency budget between these two transports.

See clause 6.1.7.2 in [ITU-T H.810] for a definition of the QoS bins supported by this version of the Continua Design Guidelines.

The two channel types provided for in the Bluetooth HDP specification [Bluetooth HDPv1.1] are reliable and streaming. On the reliable channel, latency will be most sensitive to retransmission times. On the streaming channel (which never retransmits data), it will be most sensitive to buffer sizes and local latency. A 10% margin is reasonable to include when making latency calculations to account for the software latency for handling of messages. The latency expected on the streaming channel can be calculated from the poll interval taking software latency into consideration.

The poll interval is the maximum number of slots that will normally be allowed to separate consecutive opportunities for a slave to begin a transmission. A slave may request a new poll interval from the master (by sending an LMP_quality_of_service_req packet) and will be informed of its value. However, the master sets that value. Legal values are any even number of slots in the range 6 through 4096 (3.75 ms - 2.56 s) and the default value is 40 (25 ms).

The streaming channel may be configured to have a polling interval short enough that, when combined with the actual transmission duration, will provide "Low" latency. However, in some particular configurations this may not be possible. For example, if the device is itself a slave and connects to a master that does not support polling intervals other than the default, it may have the opportunity to start a new data packet only once every 25 ms.

"Medium" or longer latency should always be possible (for reasonable packet sizes) on the streaming channel.

Latency on the reliable data channel depends on retransmission. If an out-of-sequence packet is received, it will trigger retransmission of the intervening lost packets reasonably quickly. In the worst case, however, the last packet of the message may be lost (for example, if only one L2CAP packet were transmitted). In this case, retransmission would not occur until the retransmission timeout period had elapsed. This time is communicated in the option configuration information for L2CAP Enhanced Retransmission mode option and may be in the hundreds of milliseconds range. If the retransmit timer expires in the sending device and unacknowledged frames exist, they will be retransmitted.

Over a normal connection, loss of the same packet twice should be unusual, so a reliable connection should be able to deliver an average latency in the "Medium" range, if its retransmission timeout is around 100 ms. Setting the MaxTransmit value to 2 would require the connection to be closed if the same packet were ever lost twice. However, very few scenarios would benefit from using this feature and MaxTransmit should usually be larger than 2.

For reliability, the Bluetooth channel has a basic bit error rate of less than 0.1% and the data packets are protected with a 16-bit CRC. The SDU (recombined higher-layer data packet) is further

protected by another 16-bit CRC (the FCS). This is true on both the reliable and streaming channels, so the probability of a bit-error in any packet should be less than 10⁻⁹.

The streaming channel may lose packets (particularly due to buffer overflows) but the reliable channel will not lose packets.

Either channel may be broken due to range or extreme interference. Neither the Bluetooth health device profile, nor these guidelines currently require devices to seek a reconnection following an unintentional disconnect, although the possibility is provided for in the protocols.

Before committing to an upper layer that any of these QoS bins is supported by a particular channel, an implementation shall check the relevant configuration parameters of the actual L2CAP channel (once it is established) to verify its commitment is supported.

Appendix II

Additional ZigBee information

(This appendix does not form an integral part of this Recommendation.)

II.1 ZigBee networking

The 802.15.4/ZigBee network provides facilities for commissioning, data transfer and maintenance. Use of a certified ZigBee platform provides a robust self-healing mesh network. The ZigBee health care profile mandates use of the 11073 protocol tunnel and reuses components of the ZigBee cluster library.

Commissioning details depend on the deployment scenario. Three deployment scenarios are addressed by this profile, as follows:

- 1. Service provider scenario. In this scenario, a service provider that provides patient monitoring services is responsible for providing all the devices that are part of the network and preloading these devices with all the information that they need to securely join the network and work together.
- 2. In-house commissioning scenario. In this scenario, the network owner (e.g., a medical care facility) has its own in-house commissioning facility, to configure the devices with all the information that they need to securely join the network and work together.
- 3. Consumer scenario. This scenario covers the case of small networks, where the network owner does not have a service provider and wishes to purchase devices from multiple providers and install them himself. This case is typical of the home environment.

For example, in the consumer scenario, a typical deployment may be as follows:

- 1. The coordinator or router sends a command to the ZigBee network to allow joining of new device for a limited period.
- 2. A ZigBee healthcare device will first do a scan for networks and build a list of available networks that allow joining.
- 3. The ZigBee healthcare device will then pick a network and associate to the nearest node (router or coordinator) that allows joining and start the security authentication process.
- 4. The router/coordinator parent will now send an update-device (device joined) message to the ZigBee security trust centre in encrypted form.
- 5. The trust centre will now determine if it will allow the device in the network or not.
- 6. If the device is allowed in the network the trust centre will send the network security key to the device. Note this is done using a predefined link key.
- 7. The device is now an active participant in the network.

II.2 ZigBee pairing process/service discovery types

A ZigBee device consists of one or more ZigBee device descriptions (e.g., thermometer and pulse oximeter) and their corresponding application profile(s), optionally on a separate endpoint, that share a single physical IEEE802.15.4 radio. Each device has a unique 64-bit IEEE address and contains a collection of clusters and associated functionality implemented on a ZigBee endpoint. Device descriptions are defined in the scope of the ZigBee health care application profile. Each device description has a unique identifier that is exchanged as part of the discovery process.

The ZigBee specification [ZigBee Spec] provides the facility for devices to find out information about other nodes in a network, such as their addresses, which types of applications are running on them, their power source and sleep behaviour. This information is stored in descriptors on each node and is used by the requesting node to tailor its behaviour to the requirements of the network.

Discovery is typically used when a node is being introduced into a health care network. Once the device has joined the network, its integration into the network may require the user to start the integration process by pressing a button or similar, in order to discover other devices that it can talk to. For example, a device implementing a weigh scale conforming to the ZHC profile tries to find devices containing ZHC aggregation devices (similar to the Continua PHG) to which it could potentially send its measurement data.

The ZigBee pairing process allows for fast and easy association between devices. There are a variety of routing algorithms for data packets to find the correct destination, including neighbour and table-based routing. These approaches result in a high degree of flexibility and stability ensuring that devices in the network stay connected and that network performance remains constant even as it is dynamically changing. ZigBee health care offers several way of "pairing" devices.

- End device bind
 - This is a simple push button pair when a button is pressed on 2 devices within a time window and if their services match a "binding" is created
- Service discovery
 - A health care device can build a list of health care devices on the network, for example by listening for new devices to join the network, or by sending a service discovery broadcast to which matching device will respond. The device can now pick which device it would like to communicate with
- Commissioning tool
 - Mandatory primitives in the ZigBee stack allow for a device to query other devices for their services and set up "bindings" and relationships between devices

II.3 ZigBee security

ZigBee security [ZigBee HCP], which is based on a 128-bit advanced encryption standard (AES) algorithm, adds to the security model provided by [b-IEEE 802.15.4]. ZigBee's security services include methods for key establishment and transport, device management and frame protection. Security for health care applications is specified as part of the default ZigBee stack profiles, with support for a network key and link keys for point-to-point secure links. In a health care network, the aggregator device (often the Continua PHG) will contain a function called the trust centre. The trust centre decides whether to allow or disallow new devices into its network. The trust centre may periodically update and switch to a new network key and controls deployment of link keys. The trust centre is usually also the network coordinator.

Appendix III

Recommendation for use of generic USB drivers

(This appendix does not form an integral part of this Recommendation.)

It is recommended that managers for USB PHDC that provide a USB PHDC driver based on a generic USB driver use the following values in the setup information (INF) file:

Attribute	INF file element	WinUSB value	LibUSB value
Device Class GUID	[Version]/ ClassGUID	{182A3B42-D570-4066- 8D13-C72202B40D78}	{EB781AAF-9C70-4523- A5DF-642A87ECA567}
Device Class Text	[Version]/Class [Strings]/ClassName	PHDC	libusb-win32 devices
Interface GUID	[Dev_AddReg]	{B8B610DE-FB41-40A1- A4D6-AB28E87C5F08}	N/A
Device GUID	[Strings]/DeviceGUI D	N/A	{D0C36FAA-CE6D-4887- A3AA-6FC42D3037E5}

For more information see [b-CHA USB-PHDC].

Bibliography

For a list of non-normative references and publications that contain further background information, see [ITU-T H.810].

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

- Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling, and associated measurements and tests
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities
- Series Z Languages and general software aspects for telecommunication systems