

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T H.764
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(11/2019)

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

IPTV multimedia services and applications for IPTV –
IPTV multimedia application frameworks

IPTV services enhanced script language

Recommendation ITU-T H.764

ITU-T H-SERIES RECOMMENDATIONS

AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS H.100–H.199

INFRASTRUCTURE OF AUDIOVISUAL SERVICES

General H.200–H.219

Transmission multiplexing and synchronization H.220–H.229

Systems aspects H.230–H.239

Communication procedures H.240–H.259

Coding of moving video H.260–H.279

Related systems aspects H.280–H.299

Systems and terminal equipment for audiovisual services H.300–H.349

Directory services architecture for audiovisual and multimedia services H.350–H.359

Quality of service architecture for audiovisual and multimedia services H.360–H.369

Telepresence, immersive environments, virtual and extended reality H.420–H.439

Supplementary services for multimedia H.450–H.499

MOBILITY AND COLLABORATION PROCEDURES

Overview of Mobility and Collaboration, definitions, protocols and procedures H.500–H.509

Mobility for H-Series multimedia systems and services H.510–H.519

Mobile multimedia collaboration applications and services H.520–H.529

Security for mobile multimedia systems and services H.530–H.539

Security for mobile multimedia collaboration applications and services H.540–H.549

VEHICULAR GATEWAYS AND INTELLIGENT TRANSPORTATION SYSTEMS (ITS)

Architecture for vehicular gateways H.550–H.559

Vehicular gateway interfaces H.560–H.569

BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES

Broadband multimedia services over VDSL H.610–H.619

Advanced multimedia services and applications H.620–H.629

Ubiquitous sensor network applications and Internet of Things H.640–H.649

IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV

General aspects H.700–H.719

IPTV terminal devices H.720–H.729

IPTV middleware H.730–H.739

IPTV application event handling H.740–H.749

IPTV metadata H.750–H.759

IPTV multimedia application frameworks H.760–H.769

IPTV service discovery up to consumption H.770–H.779

Digital Signage H.780–H.789

E-HEALTH MULTIMEDIA SYSTEMS, SERVICES AND APPLICATIONS

Personal health systems H.810–H.819

Interoperability compliance testing of personal health systems (HRN, PAN, LAN, TAN and
WAN)

H.820–H.859

Multimedia e-health data exchange services H.860–H.869

Safe listening H.870–H.879

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T H.764 (11/2019) i

Recommendation ITU-T H.764

IPTV services enhanced script language

Summary

Recommendation ITU-T H.764 describes an object-oriented programming language called "Internet

protocol television services enhanced script language (IPTV SESL)", which is based on LIME-Script

of Recommendation ITU-T H.762, and includes enhanced functionalities. The language is used in

IPTV services for performing computations and manipulating computational objects within an IPTV

terminal device environment. There are two primary implementations of this Recommendation, the

"Core script profile" and the "Extended script profile". The core script profile is conformant with the

LIME-Script of Recommendation ITU-T H.762 and is used for the objects for client-side computation.

The extended script profile is necessary for the functional extensions required for IPTV services.

This revision corrects or clarifies the definitions of some properties and methods in extended script

profile and makes some editorial modifications.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T H.764 2012-06-29 16 11.1002/1000/11667

2.0 ITU-T H.764 V2 2019-11-29 16 11.1002/1000/14124

Keywords

IPTV SESL, multimedia application framework (MAFR), script language, web-based.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/11667
http://handle.itu.int/11.1002/1000/14124
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T H.764 (11/2019)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers are

cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB

patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2020

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T H.764 (11/2019) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 2

3.1 Terms defined elsewhere .. 2

3.2 Terms defined in this Recommendation ... 3

4 Abbreviations and acronyms .. 3

5 Conventions .. 4

6 Overview .. 4

7 Core script profile ... 5

7.1 Global ... 5

7.2 Object ... 5

7.3 Function .. 6

7.4 Array ... 6

7.5 String .. 7

7.6 Boolean ... 8

7.7 Number ... 8

7.8 Date ... 9

8 Extended script profile .. 11

8.1 MediaController object ... 12

8.2 Event object .. 33

8.3 Service object ... 36

8.4 XMLHttpRequest object .. 43

Annex A – Data types .. 47

Annex B – Content Metadata used by MediaController object ... 48

Appendix I – Remote control key code ... 50

Appendix II – Informative text on extended script profile .. 52

II.1 MediaController object ... 52

II.2 Event object .. 52

II.3 Service object ... 62

Bibliography... 63

 Rec. ITU-T H.764 (11/2019) 1

Recommendation ITU-T H.764

IPTV services enhanced script language

1 Scope

This Recommendation describes a script language for IPTV services, Internet protocol television

services enhanced script language (IPTV SESL). This language is used to provide interoperability

and harmonization among IPTV multimedia application frameworks. It is foreseeable that a

combination of different standard multimedia application frameworks will be used to provide

standard IPTV services globally. This Recommendation describes IPTV SESL, as one of these

standard multimedia application frameworks for providing the interoperable use of IPTV services.

The core script profile, as well as enhanced functionalities for IPTV services, are given.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T H.721] Recommendation ITU-T H.721 (2015), IPTV terminal devices: Basic

model.

[ITU-T H.722] Recommendation ITU-T H.722 (2014), IPTV terminal device:

Full-fledged model.

[ITU-T H.730] Recommendation ITU-T H.730 (2012), Web-based terminal middleware

for IPTV services.

[ITU-T H.750] Recommendation ITU-T H.750 (2008), High-level specification of

metadata for IPTV services.

[ITU-T H.762] Recommendation ITU-T H.762 (2011), Lightweight interactive multimedia

environment (LIME) for IPTV services.

[ITU-T Y.1901] Recommendation ITU-T Y.1901 (2009), Requirements for the support of

IPTV services.

[IETF RFC 2326] IETF RFC 2326 (1998), Real time Streaming protocol (RTSP).

[ISO/IEC 8601] ISO/IEC 8601:2004, Data Elements and Interchange Formats –

Information Interchange – Representation of dates and times.

[ISO/IEC 16262] ISO/IEC 16262:2011, Information technology – Programming languages,

their environments and system software interfaces – ECMAScript

language specification.

2 Rec. ITU-T H.764 (11/2019)

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 ECMAScript [ISO/IEC 16262]: The programming language defined by

ISO/IEC 16262:2011.

NOTE – Edition 5.1 of ECMAScript [b-ECMA-262] is fully aligned with [ISO/IEC 16262] (third edition).

3.1.2 electronic programme guide (EPG) [ITU-T Y.1901]: A structured set of data, intended

to provide information on available content that may be accessed by end users.

NOTE – In some traditional broadcast services, EPG is defined as an on-screen guide used to display

information on scheduled live broadcast television programmes, allowing a viewer to navigate, select and

discover programmes by time, title, channel, genre. This traditional definition does not cover "catalogues" for

on-demand and download services (sometimes called an electronic content guide (ECG) and broadband

content guide (BCG) and bidirectional interactive services (sometimes called an interactive programme guide

(IPG)) for end-user interaction with a server or head-end.

3.1.3 end system [ITU-T Y.1901]: A single or set of consumer devices that support IPTV

services (e.g., delivery network gateway, display).

3.1.4 end user [ITU-T Y.1910]: The actual user of the products or services.

NOTE – The end user consumes the product or service. An end user can optionally be a subscriber.

3.1.5 Internet protocol television (IPTV) [ITU-T Y.1901]: Multimedia services such as

television/video/audio/text/graphics/data delivered over IP-based networks that are managed to

support the required level of QoS/QoE, security, interactivity and reliability.

3.1.6 IPTV terminal device [ITU-T Y.1901]: A terminal device which has ITF functionality,

e.g., a STB.

3.1.7 IPTV terminal function (ITF) [ITU-T Y.1901]: The end-user function(s) associated with

a) receiving and responding to network control channel messages regarding session set-up,

maintenance, and teardown, and b) receiving the content of IP transport from the network and

rendering.

3.1.8 linear TV [ITU-T Y.1901]: A television service in which a continuous stream flows in real

time from the service provider to the terminal device and where the user cannot control the temporal

order in which contents are viewed.

3.1.9 metadata [ITU-T Y.1901]: Structured, encoded data that describe characteristics of

information-bearing entities to aid in the identification, discovery, assessment and management of

the described entities.

NOTE – EPG metadata has many applications and may vary in depth from merely identifying the content

package title or information to populate an EPG to providing a complete index of different scenes in a movie

or providing business rules detailing how the content package may be displayed, copied or sold.

3.1.10 middleware [ITU-T Y.1901]: A layer of software between applications and resources,

which consists of a set of service enablers that allow multiple functionalities running on one or more

devices in an IPTV system to interact across a network.

3.1.11 network personal video recorder (nPVR) [ITU-T Y.1901]: This is the same as PVR

except that the recording device is located at the service provider's premises.

3.1.12 personal video record (PVR) [ITU-T Y.1901]: An end-user controlled device that

records, stores and plays back multimedia content. PVR is also known as personal digital recorder

(PDR).

3.1.13 SCP [ITU-T Y.1901]: A combination of service protection and content protection.

 Rec. ITU-T H.764 (11/2019) 3

3.1.14 terminal device (TD) [ITU-T Y.1901]: An end-user device which typically presents and/or

processes the content, such as a personal computer, a computer peripheral, a mobile device, a TV set,

a monitor, a VoIP terminal or an audiovisual media player.

3.1.15 time shifting [ITU-T Y.1901]: A function which allows playback of content after its initial

transmission.

3.1.16 trick mode functionality [ITU-T Y.1901]: The ability to pause, rewind or forward stored

content.

3.1.17 TV with trick mode [ITU-T Y.1901]: TV service with trick mode functionality.

3.1.18 user agent [b-W3C WebArch]: One type of Web agent; a piece of software acting on

behalf of a person.

3.1.19 video-on-demand (VoD) [ITU-T Y.1901]: A service in which the end user can, on

demand, select and view video content and where the end user can control the temporal order in which

the video content is viewed (e.g., the ability to start the viewing, pause, fast forward, rewind, etc.).

NOTE – The viewing may occur sometime after the selection of the video content.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 application: A functional implementation realized as software running in one or spread

over several interplaying hardware entities.

3.2.2 resource-constrained TD: An IPTV terminal device with a basic set of capabilities, such

as those given in [ITU-T H.721].

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

DOM Document Object Module

DRM Digital Rights Management

FFW Fast Forward

FRW Fast Rewind

HTML Hypertext Markup Language

HTTP Hypertext Transport Protocol

HTTPS Hypertext Transport Protocol over Secure socket layer

IGMP Internet Group Management Protocol

JSON JavaScript Object Notation

LIME Lightweight Interactive Multimedia Environment

NPT Normal Play Time

PAL Phase Alternating Line

PE Presentation Engine

RTSP Real Time Session Protocol

SCP Service and Content Protection

SP Service Provider

STB Set-Top Box

4 Rec. ITU-T H.764 (11/2019)

TD Terminal Device

TV Television

URI Uniform Resource Identifier

URL Uniform Resource Locator

VoD Video on Demand

XML extensible Markup Language

5 Conventions

The following conventions apply to operational restrictions on attributes and properties:

R/W The corresponding attribute or property can be read and written. An IPTV terminal device

designed for basic services should support R/W of the corresponding attribute or property in

the content.

R The corresponding attribute can be read but cannot be written. An IPTV terminal device

designed for basic services should support R/W of the corresponding attribute or property in

the content. Write operations to this item may be ignored.

M M indicates "Mandatory". The corresponding attribute or method must be implemented by

an IPTV terminal device supporting this Recommendation.

O O indicates "Optional". The corresponding attribute or method can either be implemented or

ignored by an IPTV terminal device supporting this Recommendation.

6 Overview

The IPTV services enhanced script language (IPTV SESL) is based on LIME-Script [ITU-T H.762]

with enhanced functionalities. IPTV SESL is an object-oriented programming language for

performing computations and manipulating computational objects within a host environment. It was

originally designed to be a web scripting language, providing a mechanism to enliven webpages in

browsers and to perform server computation as part of web-based, client-server architecture. Together

with the server-side scripting, it is possible to distribute computation between the client and the server,

while providing a customised user interface for web-based applications.

NOTE – LIME-Script [ITU-T H.762] is a subset of ECMAScript [ISO/IEC 16262]. Only objects, properties

and methods that are suitable for IPTV services are referred to in ITU-T H.762 LIME-Script.

In this Recommendation, two primary parts are defined to implement web-based IPTV services:

– The "core script profile", which is designed for resource-constrained IPTV TDs, such as the

basic TD model defined in [ITU-T H.721]. This profile is fully conformant with LIME-Script

of [ITU-T H.762] and comprises a subset of ECMAScript.

– The profile hereinafter called "extended script profile" is designed for enhanced IPTV TDs,

such as the fully-fledged model defined in [ITU-T H.722]. This profile defines the functional

extensions required for IPTV services. This profile is optional, but, if implemented, there are

some mandatory objects, methods and properties.

IPTV SESL can be supported in many applications and can also be included as a component in many

presentation engines (PE), e.g., LIME [ITU-T H.762]. Some implementations may have a completely

different set of libraries; what makes applications written in one IPTV SESL dialect work does not

necessarily work in another dialect.

In the IPTV TD, the user agent (e.g., a web browser) provides an IPTV SESL host environment for

client-side computation, which includes objects that represent windows, menus, etc. Further, the user

agent provides a means to attach scripting code to events such as page and image loading, unloading,

 Rec. ITU-T H.764 (11/2019) 5

etc. Scripting code appears within the LIME HTML of [ITU-T H.762] and the displayed page is a

combination of user interface elements, together with the extended objects for IPTV services to

provide web-based multimedia interaction.

7 Core script profile

ECMAScript [ISO/IEC 16262] was originally designed to be a web scripting language, providing a

mechanism to enliven webpages in browsers and to perform server computation as part of web-based

client-server architecture. It is suitable for being applied in web-based IPTV services to perform

computations and provide interoperability with the end users within a host environment, which is the

user agent (e.g., a browser) in the IPTV terminal device. It should be noted that not all of the

manipulating computational objects defined by ECMAScript are necessary for implementation of the

functionality defined for resource-constrained devices. Therefore, an optimized set of objects has

been identified to efficiently implement that category of TDs. In this context, the core script profile

has been defined.

The following clauses list the core script profile for IPTV services. All the built-in objects listed

below are the objects whose semantics are defined in the LIME-Script of [ITU-T H.762]. Built-in

objects must be supplied by the implementation at the start of the execution of the user agent in the

IPTV terminal device.

7.1 Global

Global properties and functions can be used with built-in objects.

Properties:

• NaN

 The not-a-number value

Functions:

• parseInt (String, radix)

 Parses a string and returns an integer

 Radix of parseInt() can be 8 for octal, 10 for decimal or 16 for hexadecimal (0 is

interpreted as 10)

• isNaN (number)

 Tests whether a value is the not-a-number value (i.e., an illegal number)

7.2 Object

LIME-Script objects provide basic language and facilities. The "Object" is one of the built-in

objects.

Properties:

• prototype

Functions:

• Object ([value])

 Creates a new Object object

Constructor:

• new Object ([value])

 When called with new, a constructor may create an object

6 Rec. ITU-T H.764 (11/2019)

7.2.1 Object.prototype

Properties:

• constructor

 Returns the function that created the Object prototype

Functions:

• toString()

 Returns the string value corresponding to the [Class] internal property of the object

• valueOf()

 Returns the primitive value of an Object object

7.3 Function

A function is a callable object that may be invoked as a subroutine.

Properties:

• prototype

 Value is used to initialize the prototype internal property

• length

 Indicates the number of arguments expected by the function

7.3.1 Function.prototype

Properties:

• constructor

 It returns the function that created the prototype (in this case Function)

Functions:

• toString()

 It returns a representation of the function

7.4 Array

The Array object is used to store multiple values in a single variable.

Properties:

• prototype

 Allows the adding of properties and methods to an object

• length

 Sets or returns the number of elements in an array

Functions:

• Array (item0, item1, …)

 Creates a new array

• new Array (item0, item1,…)

 Creates and initializes an array

• new Array ([len])

 Creates and initializes an array with length set to len

 Rec. ITU-T H.764 (11/2019) 7

7.4.1 Array.prototype

Properties:

• constructor

 Returns the function that creates the Array object prototype

Functions:

• toString()

 Converts an array to a String, and returns the result

• join ([separator])

 Joins all elements of an array into a String

• reverse()

 Reverses the order of the elements in an array

• sort ([comparefn])

 Sorts the elements of an array

7.5 String

A String is used to manipulate a stored piece of text.

Properties:

• prototype

 Allows properties and methods to be added to an object

• length

 Returns the length of a String

Functions:

• String ([value])

 When called as a function it performs a type conversion

Constructor:

• new String ([value])

 Used to create a String object

• String.fromCharCode (char0[,char1, …])

 Returns a String value containing as many characters as arguments

7.5.1 String.prototype

Properties:

• constructor

 Returns the function that creates the String object prototype

Functions:

• toString()

 Returns this String value

• valueOf()

 Returns the primitive value of a String object

• charAt (pos)

 Returns the character at the specified index

8 Rec. ITU-T H.764 (11/2019)

• charCodeAt (pos)

 Returns the unicode of the character at the specified index

• indexOf (searchString, position)

 Returns the position of the first found occurrence of a specified value in a String

• lastIndexOf (searchString, position)

 Returns the position of the last found occurrence of a specified value in a String

• split(separator)

 Splits a String into an array of substrings

• substring (start[,end])

 Extracts the characters from a String, between two specified indices

• toLowerCase()

 Converts a String to lowercase

• toUpperCase()

 Converts a String to uppercase

7.6 Boolean

Boolean is used to convert a non-Boolean value to a Boolean value.

Properties:

• prototype

 Allows adding properties and methods to an object

Functions:

• Boolean ([value])

 Returns a Boolean value

Constructor:

• new Boolean ([value])

 Used to create a Boolean object with an initial value

7.6.1 Boolean.prototype

Properties:

• constructor

 Returns the function that creates the Boolean object prototype

Functions:

• toString()

 Converts a Boolean value to a String, and returns the result

• valueOf()

 Returns the primitive value of a Boolean object

7.7 Number

Object wrapper for primitive numeric values.

Properties:

• prototype

 Rec. ITU-T H.764 (11/2019) 9

 Allows you to add properties and methods to an object

• MAX_VALUE

 Returns the largest number possible

• MIN_VALUE

 Returns the smallest number possible

• NaN

 The not-a-number value

Functions:

• Number ([value])

 Function used to create a Number object

Constructor:

• new Number ([value])

 Used to create Number objects

7.7.1 Number.prototype

• constructor

 Returns the function that creates the Number object prototype

Functions:

• toString ([radix])

 Converts a Number object to a String

• valueOf()

 Returns the primitive value of a Number object

7.8 Date

Date is used to work with dates and time.

Properties:

• prototype

 Allows properties and methods to be added to an object

Functions:

• Date ([year, month [, date [, hours [, minutes [, seconds [, ms]]]]]])

Constructor:

• new Date ([year, month [, date [, hours [, minutes [, seconds [,

ms]]]]]])

 Used to create Date objects

7.8.1 Date.prototype

Properties:

• constructor

 Returns the function that created the Date object prototype

Functions:

• toString()

 Converts a Date object to a String

10 Rec. ITU-T H.764 (11/2019)

• getFullYear()

 Returns the year (four digits)

• getUTCFullYear()

 Returns the year, according to universal time (four digits)

• getMonth()

 Returns the month (from 0-11)

• getUTCMonth()

 Returns the month, according to universal time (from 0-11)

• getDate()

 Returns the day of the month (from 1-31)

• getUTCDate()

 Returns the day of the month, according to universal time (from 1-31)

• getDay()

 Returns the day of the week (from 0-6)

• getUTCDay()

 Returns the day of the week, according to universal time (from 0-6)

• getHours()

 Returns the hour (from 0-23)

• getUTCHours()

 Returns the hour, according to universal time (from 0-23)

• getMinutes()

 Returns the minutes (from 0-59)

• getUTCMinutes()

 Returns the minutes, according to universal time (from 0-59)

• getSeconds()

 Returns the seconds (from 0-59)

• getUTCSeconds()

 Returns the seconds, according to universal time (from 0-59)

• getMilliseconds()

 Returns the milliseconds (from 0-999)

• getUTCMilliseconds()

 Returns the milliseconds, according to universal time (from 0-999)

• getTimezoneOffset()

 Returns the time difference between GMT and local time, in minutes

• setMilliseconds (ms)

 Sets the milliseconds (from 0-999)

• setUTCMilliseconds (ms)

 Sets the milliseconds, according to universal time (from 0-999)

• setSeconds (sec, [, ms])

 Sets the seconds (from 0-59)

 Rec. ITU-T H.764 (11/2019) 11

• setUTCSeconds (sec, [, ms])

 Set the seconds, according to universal time (from 0-59)

• setMinutes (min [, sec, [, ms]])

 Set the minutes (from 0-59)

• setUTCMinutes (min [, sec, [, ms]])

 Set the minutes, according to universal time (from 0-59)

• setHours (hour [, min [, sec, [, ms]]])

 Sets the hour (from 0-23)

• setUTCHours (hour [, min [, sec, [, ms]]])

 Sets the hour, according to universal time (from 0-23)

• setDate(date)

 Sets the day of the month (from 1-31)

• setMonth (mon [, date])

 Sets the month (from 0-11)

• setUTCMonth (mon [, date])

 Sets the month, according to universal time (from 0-11)

• setFullYear (year [, mon [, date]])

 Sets the year (four digits)

• setUTCFullYear (year [, mon [, date]])

 Sets the year, according to universal time (four digits)

• setYear (year)

 Use the setFullYear() method instead

• toLocaleString()

 Converts a Date object to a String object using locale conventions

 Produces the same output format as Date.prototype.toString()

• toUTCString()

 Converts a Date object to a String, according to universal time

 Produces the same output format as Date.prototype.toString()

8 Extended script profile

The core script profile for IPTV provides the basic native built-in objects implemented by resource-

restrained IPTV TDs. Since web-based IPTV also requires video controlling and user interactivity,

an extension is needed to the core script profile for IPTV. The extended script profile defined in this

Recommendation provides for these additional manipulating computational objects for video and

interactivity-related performing computations, which may be optionally implemented by IPTV TDs.

The procedure on how the core script profile and extended script profile coordinate with the

web-based terminal middleware to implement interactivity amongst the end user, terminal device and

IPTV service platform is given in [ITU-T H.730].

8.1 MediaController object

The MediaController object encapsulates the capabilities of the terminal device to play live channel,

nPVR, VoD, music and other media types. The MediaController object can provide necessary

methods and properties to control a media.

12 Rec. ITU-T H.764 (11/2019)

The essential behaviour of playing for live channel, nPVR, VoD, music and other media types are the

same as for those which can be abstracted to the methods and properties of MediaController, including

the status of play, trick mode, stop, etc.

The programmed MediaController object in the web document not only carries the necessary

information of the current media with it, but also provides methods for user interactivity such as trick

mode control and web document refreshment.

8.1.1 Media control

8.1.1.1 Properties

Since the MediaController object provides the ability to control and display the media for IPTV, the

identifier, status and other properties of the player are listed in the following clauses.

8.1.1.1.1 allowTrickmode

The property controls trick mode (fast forward/fast rewind/pause) operation during the life cycle of

the player. This property is in logic AND relationship with “playbackMode” property of the

MediaController.

• Optionality: Mandatory

• DataType: unsignedInt[0:1]

• Reference value:

– 0: TRICK mode disabled

– 1 (default): TRICK mode enabled

• Read-write: R/W

8.1.1.1.2 currentPlayTime

The current playing time of the media. For VoD, the time represents the relative time (NPT) since the

start point of the media. For nPVR, it represents the current absolute time (ClockTime). For channel,

it is meaningless and an empty string will be returned.

• Optionality: Mandatory

• DataType: String(128)

• Reference value:

– Empty string

• Read-write: R

NOTE – NormalPlayTime(NPT) and AbsoluteTime(ClockTime) refer to [IETF RFC 2326].

8.1.1.1.3 channelNum

The number of the current channel.

• Optionality: Mandatory

• DataType: int[-1:4294967295]

• Reference value:

– If the current media is not a channel, the property is set to "–1"

• Read-write: R

8.1.1.1.4 cycleFlag

The property controls media loop play.

• Optionality: Mandatory

• DataType: unsignedInt[0:1]

 Rec. ITU-T H.764 (11/2019) 13

• Reference value:

– 0: loop mode

– 1 (default): Single play mode

• Read-write: R/W

8.1.1.1.5 height

The height of the video output (in pixels). Each time the property is changed, the video output

remains unchanged until the "refreshVideoDisplay" method is called.

• Optionality: Mandatory

• DataType: int[4]

• Reference value:

– The default value is set to the height of the browser window (e.g., for PAL the height is

576 pixels)

• Read-write: R/W

8.1.1.1.6 instanceId

The unique ID of the local media player instance created.

• Optionality: Mandatory

• DataType: unsignedInt[0:255]

• Reference value:

– The default value is 0, indicating no MediaController object instance has been

initialized

• Read-write: R/W

8.1.1.1.7 left

The relative excursion from the left-top corner of the browser window (in pixels). Each time the

property is changed, the video output remains unchanged until the "refreshVideoDisplay"

method is called.

• Optionality: Mandatory

• DataType: int[4]

• Reference value:

– The default value is 0

• Read-write: R/W

8.1.1.1.8 playMode

The play mode of the MediaController. The property has to be defined since the initiation of the

player. It cannot be changed during playing until the MediaController is stopped.

• Optionality: Mandatory

• DataType: unsignedInt[0:1]

• Reference value:

– 0 (default): single media mode

– 1: playlist mode

• Read-write: R/W

14 Rec. ITU-T H.764 (11/2019)

8.1.1.1.9 width

The width of the video output (in pixels). Each time the property is changed, the video output remains

unchanged until the "refreshVideoDisplay" (see clause 8.1.1.2.15) method is called.

• Optionality: Mandatory

• DataType: int[4]

• Reference value:

– The default value is set to the width of the browser window (e.g., for PAL, the width is

720 pixels)

• Read-write: R/W

8.1.1.1.10 mute

Set the mute/sound status of the MediaController. It works as soon as the property is set.

• Optionality: Mandatory

• DataType: unsignedInt[0:1]

• Reference value:

– 0 (default): sound

– 1: mute

• Read-write: R/W

8.1.1.1.11 mediaCode

The unique identifier of the current media played by the MediaController instance. If the "playMode"

property of the MediaController is set to playlist mode, the property represents the "mediaCode" of

the current played media.

• Optionality: Mandatory

• DataType: String

• Reference value:

– None

• Read-write: R

8.1.1.1.12 mediaDuration

The duration (in seconds) of the current media.

• Optionality: Mandatory

• DataType: unsignedInt

• Reference value:

– 0

• Read-write: R

8.1.1.1.13 playbackMode

The playback state of the MediaController object. The player functional block should notify the web

document by Event object, whenever the status of the player changes. This property is encapsulated

into a formatted string like JSON or XML, which contains the following 2 parameters.

• Optionality: Mandatory

• Current Mode: NormalPlay, Pause, Trickmode.

• Speed: 0x, 1x, 2x/-2x, 4x/-4x, 8x/-8x, 16x/-16x, 32x/-32x, etc.

 Rec. ITU-T H.764 (11/2019) 15

• DataType: String(128)

• Reference value:

– 0

• Read-write: R

8.1.1.1.14 top

The relative excursion from the left-top corner of the browser window (in pixels). Each time the

property is changed, the video output remains unchanged until the "refreshVideoDisplay"

method is called.

• Optionality: Mandatory

• DataType: int[4]

• Reference value:

– 0

• Read-write: R/W

8.1.1.1.15 videoAlpha

It represents the transparency of the video.

• Optionality: Optional

• DataType: unsignedInt[0:100]

• Reference value:

– 0 (default): Opaque

– 1: Transparent

• Read-write: R/W

8.1.1.1.16 videoDisplayMode

The video display mode of the MediaController. Each time the "videoDisplayMode" is changed,

the video output remains unchanged until the "refreshVideoDisplay" method is called.

• Optionality: Mandatory

• DataType: unsignedInt[0:3,255]

• Reference value:

– 0: The video should be displayed according to the "left", "top", "width", "left"

properties.

– 1 (default): Full screen mode.

– 2: The video should be displayed according to the height of the screen without

changing the height video aspect ratio.

– 3: The video should be displayed according to the width of the screen without changing

the width video aspect ratio.

– 255: The video output should be hidden while the audio is still playing.

• Read-write: R/W

8.1.1.2 Methods

8.1.1.2.1 Constructor

The constructor of the MediaController object with a default value.

• Optionality: Mandatory

16 Rec. ITU-T H.764 (11/2019)

• Syntax:

 MediaController()

• Parameters:

– None

• Return value:

– None

8.1.1.2.2 bindNativePlayerInstance

Create a new MediaController object by binding an existing native player instance and take over the

management to that media player or media stream.

• Optionality: Mandatory

• Syntax:

 number bindNativePlayerInstance (input number instanceID)

• Parameters:

– instanceID: Refer to "instanceId".

• Return value:

– 0: success

– –1: failure

– Others: undefined

NOTE – If the newly created player cannot match a local "instanceId", the operation will be reported with

failure by returning –1.

8.1.1.2.3 fastForward

Media fast forwarding with the rate indicated by "speed".

• Optionality: Mandatory

• Syntax:

fastForward (input number speed)

• Parameters:

– speed (int): valid values are positive integers, e.g., 64, 32, 16, 8, 4, 2, etc.

• Return value:

– None

8.1.1.2.4 fastRewind

Media fast rewinding with the rate indicated by "speed".

• Optionality: Mandatory

• Syntax:

fastRewind (input number speed)

• Parameters:

– speed (int): valid values are negative integers, e.g., –64, –32, –16, –8, –4, –2, etc.

• Return value:

 – None

8.1.1.2.5 getVolume

Get the current volume of the IPTV TD.

 Rec. ITU-T H.764 (11/2019) 17

• Optionality: Mandatory

• Syntax:

number getVolume()

• Parameters:

– None

• Return value:

– Current volume of the IPTV TD (unsignedInt[0:100])

8.1.1.2.6 gotoEnd

Jump to the end of the media.

• Optionality: Mandatory

• Syntax:

gotoEnd()

• Parameters:

– None

• Return value:

– None

8.1.1.2.7 gotoStart

Jump to the beginning of the media.

• Optionality: Mandatory

• Syntax:

gotoStart()

• Parameters:

– None

• Return value:

– None

8.1.1.2.8 initMediaController

Initialize the properties of a new MediaController object. This method does not bind an existing

player instance of the MediaController.

• Optionality: Mandatory

• Syntax:

number initMediaController (input number instanceID,

input number playlistFlag,

input number videoDisplayMode,

input number height,

input number width,

input number left,

input number top,

input number muteFlag,

input number useNativeUIFlag,

input number subtitleFlag,

input number videoAlpha,

input number cycleFlag)

• Parameters:

– Refer to related MediaController properties

18 Rec. ITU-T H.764 (11/2019)

• Return value:

– 0: success

– -1: failure

– Others: undefined

8.1.1.2.9 joinChannel

Join in a channel and return the result immediately. The channel could be:

– a multicast channel

– a unicast channel

– a web channel

• Optionality: Mandatory

• Syntax:

number joinChannel (input number userchannelid)

• Parameters:

– userchannelid (unsignedInt[0: 4294967295])

• Return value:

– 0: success

– -1: failure

– Others: undefined

NOTE – Before joining a channel, the "leaveChannel" method should be called first to quit the previously

joined channel.

8.1.1.2.10 launchIPTVContent

To launch an IPTV content identified by "content_uri" from the temporal position of the start of

the viewing identified by "start_npt" with the licence identifier "license_id", which is optional.

When the video is finished, the document to be displayed should be identified by "ret_uri".

• Optionality: Mandatory

• Syntax:

number launchIPTVContent (input String content_uri,

input String ret_uri,

input number start_npt[,

input number license_id])

• Parameters:

– content_uri (String): URI of the content to be played.

– ret_uri (String): the URI of the document to be displayed when the video is

finished.

– start_npt (unsignedInt): the temporal position of the start of the viewing (the

temporal position from the beginning of the content).

– license_id (String): the licence ID used for the viewing of the content.

• Return value:

– 1: success

– NaN: failure

8.1.1.2.11 leaveChannel

Quit the current channel.

 Rec. ITU-T H.764 (11/2019) 19

• Optionality: Mandatory

• Syntax:

number leaveChannel()

• Parameters:

– None.

• Return value:

– 0: success

– -1: failure

NOTE – This method can only be called to quit the channels joined by the "joinChannel" method.

8.1.1.2.12 pause

Pause the media which is playing.

• Optionality: Mandatory

• Syntax:

pause()

• Parameters:

– None

• Return value:

– None

8.1.1.2.13 playFromStart

Play from the beginning of the media. This method works only when the "playMode" property is set

to 0.

• Optionality: Mandatory

• Syntax:

number playFromStart()

• Parameters:

– None

• Return value:

– 0: success

– -1: failure

8.1.1.2.14 playByTime

Play from a certain time of the current media. If in playlist mode, this method works on the

currently selected media. This method is invalid for linear TV service but valid for linear TV in

trick mode.

• Optionality: Mandatory

• Syntax:

number playByTime (input number type,

input String timestamp[,

input number speed])

• Parameters:

– type (unsignedInt[1:2]): 1: NPT, 2: Clock Time

– timestamp (String): Refer to NormalPlayTime(NPT) and AbsoluteTime

(ClockTime) in [IETF RFC 2326].

20 Rec. ITU-T H.764 (11/2019)

– speed: play rate

• Return value:

– 0: success

– -1: failure

NOTE – For VoD, the time represents the relative time (NPT) since the start point of media. For nPVR, it

represent the current absolute time (ClockTime).

8.1.1.2.15 refreshVideoDisplay

Adjust the display of the video according to the property "videoDisplayMode", "left", "top",

"width ", "height".

• Optionality: Mandatory

• Syntax:

refreshVideoDisplay()

• Parameters:

– None

• Return value:

– None

8.1.1.2.16 releaseMediaController

Release the resources occupied by the player which is identified by the "instanceId".

• Optionality: Mandatory

• Syntax:

number releaseMediaController (input number instanceID)

• Parameters:

– instanceID: Refer to "instanceId ".

• Return value:

– 0: success

– -1: failure

– Others: undefined

8.1.1.2.17 resume

Resume from the pause/forward/rewind mode of the current media.

• Optionality: Mandatory

• Syntax:

resume()

• Parameters:

– None

• Return value:

– None

8.1.1.2.18 setSingleMedia

Locate the resource of a single media.

• Optionality: Mandatory

• Syntax:

 Rec. ITU-T H.764 (11/2019) 21

setSingleMedia (input anySimpleType mediaStr)

• Parameters:

– mediaStr: formatted string containing content metadata. Refer to Annex B on Content

metadata

• Return value:

– None

8.1.1.2.19 setVolume

Set the volume of the IPTV TD.

• Optionality: Mandatory

• Syntax:

setVolume (input number volume)

• Parameters:

– volume (unsignedInt[0:100]): 0 means mute and 100 means maximum.

• Return value:

– None

8.1.1.2.20 stop

Stop the current media.

• Optionality: Mandatory

• Syntax:

stop()

• Parameters:

– None

• Return value:

– None

8.1.2 Graphic user interface

8.1.2.1 Properties

8.1.2.1.1 nativeUIFlag

Enable or disable the display of the local UI, e.g., the process bar, volume, channel number, etc. It

works as long as the property is set.

• Optionality: Optional

• DataType: unsignedInt[0:1]

• Reference value:

– 0: Disable the local UI display of the player.

– 1 (default): Enable the local UI display of the player.

• Read-write: R/W

8.1.2.1.2 audioVolumeUI

Enable or disable the display of the player's local volume reminder. This property is in logic AND

relationship with "nativeUIFlag" property. It works as long as the property is set.

• Optionality: Optional

• DataType: unsignedInt[0:1]

22 Rec. ITU-T H.764 (11/2019)

• Reference value:

– 0: Disable the player's local UI of the volume reminder.

– 1 (default): Enable the player's local UI of the volume reminder.

• Read-write: R/W

8.1.2.1.3 audioTrackUI

Enable or disable the display of the player's local audio track selection reminder. This property is in

logic AND relationship with "nativeUIFlag" property. It works as long as the property is set.

• Optionality: Optional

• DataType: unsignedInt[0:1]

• Reference value:

– 0: Disable the player's local UI of the audio track selection reminder.

– 1 (default): Enable the player's local UI of the audio track selection reminder.

• Read-write: R/W

8.1.2.1.4 channelNoUI

Enable or disable the display of the player's local channel number reminder. This property is in

logic AND relationship with "nativeUIFlag" property. It works as long as the property is set.

• Optionality: Optional

• DataType: unsignedInt[0:1]

– 0: Disable the player's local UI of the channel number reminder.

– 1 (default): Enable the player's local UI of the channel number reminder.

• Read-write: R/W

8.1.2.1.5 muteUI

Enable or disable the display of the player's local mute reminder. This property is in logic AND

relationship with "nativeUIFlag" property. It works as long as the property is set.

• Optionality: Optional

• DataType: unsignedInt[0:1]

• Reference value:

– 0: Disable the player's local UI of the mute reminder.

– 1 (default): Enable the player's local UI of the mute reminder.

• Read-write: R/W

8.1.2.1.6 progressBarUI

Enable or disable the display of the player's local process bar. This property is in logic AND

relationship with "nativeUIFlag" property. It works as long as the property is set.

• Optionality: Optional

• DataType: unsignedInt[0:1]

• Reference value:

– 0: Disable the player's local UI of the process bar.

– 1 (default): Enable the player's local UI of the process.

• Read-write: R/W

 Rec. ITU-T H.764 (11/2019) 23

8.1.2.2 Methods

No methods are provided for the graphic user interface.

8.1.3 Audio and subtitles

8.1.3.1 Properties

8.1.3.1.1 audioTrack

The audio track of the current media.

• Optionality: Optional

• DataType: String

• Reference value:

– Possible values are "English", "Spanish", "Chinese", "Japanese", "Korean", etc.

• Read-write: R

8.1.3.1.2 currentAudioChannel

The audio channel of the current media.

• Optionality: Optional

• DataType: String

• Reference value:

– Possible values are "LEFT", "RIGHT","STEREO","JOINTSTEREO", etc.

• Read-write: R

8.1.3.1.3 subtitle

Disable/enable the display of subtitles. It works as soon as the property is set.

• Optionality: Optional

• DataType: unsignedInt[0:1]

• Reference value:

– 0: Subtitles disabled

– 1 (default): Subtitles enabled

• Read-write: R/W

8.1.3.1.4 subtitleType

The subtitle type of the current media.

• Optionality: Optional

• DataType: String

• Reference value:

– Possible values are "English", "Spanish", "Chinese", "Japanese", "Korean", etc.

• Read-write: R

8.1.3.2 Methods

8.1.3.2.1 switchAudioChannel

Switch the audio channel in rotation.

• Optionality: Optional

24 Rec. ITU-T H.764 (11/2019)

• Syntax:

switchAudioChannel()

• Parameters:

– None

• Return value:

– None

8.1.3.2.2 switchAudioTrack

Switch the audio track in rotation.

• Optionality: Optional

• Syntax:

switchAudioTrack()

• Parameters:

– None

• Return value:

– None

8.1.3.2.3 switchSubtitle

Switch the subtitles in rotation.

• Optionality: Optional

• Syntax:

switchSubtitle()

• Parameters:

– None

• Return value:

– None

8.1.4 Playlist mode

8.1.4.1 Properties

8.4.1.1.1 playlist

The playlist of the media player instance, encapsulated in a formatted string like JSON or XML.

The property is only available when the "playMode" is set to 1.

• Optionality: Optional

• DataType: String

• Reference value:

– None

• Read-write: R

NOTE – Refer to content metadata in Annex B.

8.1.4.1.2 playlistCount

The amount of media in the playlist. The property is only available when the "playMode" is set to 1.

• Optionality: Optional

• DataType: unsignedInt

 Rec. ITU-T H.764 (11/2019) 25

• Reference value:

– If the "playMode" is set to 0, this property is always "1".

• Read-write: R

8.1.4.1.3 playlistEntryID

The unique ID of the media in the playlist, for fast access. The property is only available when the

"playMode" is set to 1.

• Optionality: Optional

• DataType: String

• Reference value:

– None

• Read-write: R

8.1.4.1.4 playlistIndex

The index of the current media in the playlist. The index starts from 0, which indicates the top of

the playlist. The property is only available when the "playMode" is set to 1.

• Optionality: Optional

• DataType: unsignedInt

• Reference value:

– None

• Read-write: R

8.1.4.2 Methods

8.1.4.2.1 addMedia

Add one or several media to the current playlist.

• Optionality: Optional

• Syntax:

addMedia (input number index,

input String mediaStr)

• Parameters:

– Index: the position that the media is added to in the current playlist starting from 0.

– mediaStr: the description of the media. Refer to Annex B on Content metadata.

• Return value:

– None

8.1.4.2.2 clearAllMedia

Clear all the media in the current playlist.

• Optionality: Optional

• Syntax:

clearAllMedia()

• Parameters:

– None

• Return value:

– None

26 Rec. ITU-T H.764 (11/2019)

8.1.4.2.3 getCurrentMediaIndex

Get the index of the current playing media in the playlist.

• Optionality: Optional

• Syntax:

number getCurrentMediaIndex()

• Parameters:

– None

• Return value:

– Index of the current playing media in the playlist; 0 indicates the first media.

8.1.4.2.4 getCurrentPlaylistEntryID

Get the "PlaylistEntryID" of the media currently playing in the playlist.

• Optionality: Optional

• Syntax:

String getCurrentPlaylistEntryID()

• Parameters:

– None

• Return value:

– the "PlaylistEntryID" of the current playing media in the playlist.

8.1.4.2.5 getMediaCount

Get the number of media in the current playlist

• Optionality: Optional

• Syntax:

number getMediaCount()

• Parameters:

– None

• Return value:

– The number of media in the current playlist.

8.1.4.2.6 getPlaylist

Get current playlist.

• Optionality: Optional

• Syntax:

String getPlaylist()

• Parameters:

– None

• Return value:

– The current playlist.

8.1.4.2.7 moveMediaByIndex

Move one media identified by the "playlistEntryID" to a specific position in the current playlist.

• Optionality: Optional

 Rec. ITU-T H.764 (11/2019) 27

• Syntax:

moveMediaByIndex (input String playlistEntryID,

input number toIndex)

• Parameters:

– playlistEntryID: Refer to the "playlistEntryID" property.

– toIndex: The destination position in the playlist starting from 0.

• Return value:

– None

8.1.4.2.8 moveMediaByOffset

Move one media identified by the "playlistEntryID" by offset in the current playlist.

• Optionality: Optional

• Syntax:

moveMediaByOffset (input String playlistEntryID,

input number offset)

• Parameters:

– playlistEntryID: Refer to the "playlistEntryID" property.

– offset: The offset count from the position of the current media. A negative number

indicates moving to the front of the media and a positive number indicates moving to

the back of the media.

• Return value:

– None

8.1.4.2.9 moveMediaByIndex1

Move the media from one position to another in the current playlist.

• Optionality: Optional

• Syntax:

moveMediaByIndex1 (input number index,

input number toIndex)

• Parameters:

– index: The position of the media in the current playlist.

– toIndex: The destination position in the playlist.

• Return value:

– None

8.1.4.2.10 moveMediaByOffset1

Move the media in a specific position by offset in the current playlist.

• Optionality: Optional

• Syntax:

moveMediaByOffset1 (input number index,

input number offset)

• Parameters:

– index: The position of the media in the current playlist.

28 Rec. ITU-T H.764 (11/2019)

– offset: The offset count from the position of the current media. A negative number

indicates moving to the front of the media and a positive number indicates moving to

the back of the media.

• Return value:

– None.

8.1.4.2.11 moveMediaToNext

Move one media identified by the "playlistEntryID" to the next position in the playlist.

• Optionality: Optional

• Syntax:

moveMediaToNext (input String playlistEntryID)

• Parameters:

– playlistEntryID: Refer to the "playlistEntryID" property.

• Return value:

– None.

8.1.4.2.12 moveMediaToPrevious

Move one media identified by the "playlistEntryID" to the previous position in the playlist.

• Optionality: Optional

• Syntax:

moveMediaToPrevious (input String playlistEntryID)

• Parameters:

– playlistEntryID: Refer to the "playlistEntryID" property.

• Return value:

– None

8.1.4.2.13 moveMediaToTop

Move one media identified by the "playlistEntryID" to the top in the playlist.

• Optionality: Optional

• Syntax:

moveMediaToTop (input String playlistEntryID)

• Parameters:

– playlistEntryID: Refer to the "playlistEntryID" property.

• Return value:

– None

8.1.4.2.14 moveMediaToBottom

Move one media identified by the "playlistEntryID" to the bottom of the playlist.

• Optionality: Optional

• Syntax:

moveMediaToBottom (input String playlistEntryID)

• Parameters:

– playlistEntryID: Refer to the "playlistEntryID" property.

• Return value:

 Rec. ITU-T H.764 (11/2019) 29

– None

8.1.4.2.15 moveMediaToNext1

Move the media from the current position to the next.

• Optionality: Optional

• Syntax:

moveMediaToNext1 (input number index)

• Parameters:

– index: The position of the media in the current playlist.

• Return value:

– None

8.1.4.2.16 moveMediaToPrevious1

Move the media from the current position to the previous one.

• Optionality: Optional

• Syntax:

moveMediaToPrevious1 (input number index)

• Parameters:

– index: The position of the media in the current playlist.

• Return value:

– None.

8.1.4.2.17 moveMediaToTop1

Move the media from the current position to the top of the playlist.

• Optionality: Optional

• Syntax:

moveMediaToTop1 (input number index)

• Parameters:

– index: The position of the media in the current playlist.

• Return value:

– None

8.1.4.2.18 moveMediaToBottom1

To move the media from the current position to the bottom of the playlist.

• Optionality: Optional

• Syntax:

moveMediaToBottom1 (input number index)

• Parameters:

– index: The position of the media in the current playlist.

• Return value:

– None

30 Rec. ITU-T H.764 (11/2019)

8.1.4.2.19 removeCurrent

Remove the currently selected media in the playlist. Once this method is called, the current media

that is being played will stop and the media following the removed media becomes the current

selection, but the media will not be played until the media control-related methods are called.

• Optionality: Optional

• Syntax:

removeCurrent()

• Parameters:

– None

• Return value:

– 0: success

– -1: failure

– Others: undefined

8.1.4.2.20 removeMediaByIndex

Remove one or more media by its or their index in the playlist.

• Optionality: Optional

• Syntax:

removeMediaByIndex (input number Array index)

• Parameters:

– index: The array of the position of the media in the current playlist.

• Return value:

– 0: success

– -1: failure

– Others: undefined

8.1.4.2.21 removeMediaByPlaylistEntryID

Remove one or more media identified by "playlistEntryID" in the playlist.

• Optionality: Optional

• Syntax:

removeMediaByPlaylistEntryID (input String Array

playlistEntryID)

• Parameters:

– playlistEntryID: The string array of the media identified by the playlistEntryID

property in the current playlist.

• Return value:

– 0: success

– -1: failure

– Others: undefined

8.1.4.2.22 removeNext

Remove the next media of the current selected/playing media in the playlist.

• Optionality: Optional

• Syntax:

 Rec. ITU-T H.764 (11/2019) 31

removeNext()

• Parameters:

– None.

• Return value:

– 0: success

– -1: failure

– Others: undefined

8.1.4.2.23 removePrevious

Remove the previous media of the current selected/playing media in the playlist.

• Optionality: Optional

• Syntax:

removePrevious()

• Parameters:

– None

• Return value:

– 0: success

– -1: failure

– Others: undefined

8.1.4.2.24 selectMediaByIndex

Select one media by its index in the playlist. The media will not be played until the media control-

related methods are called.

• Optionality: Optional

• Syntax:

selectMediaByIndex (input number index)

• Parameters:

– index: The position of the media in the current playlist.

• Return value:

– None

8.1.4.2.25 selectMediaByOffset

Select one media according to its given offset from the current media that has been selected or playing

in the playlist. The media will not be played until the media control-related methods are called.

• Optionality: Optional

• Syntax:

selectMediaByOffset (input number offset)

• Parameters:

– offset: The offset count from the position of the current media. A negative number

indicates moving to the front of the media and a positive number indicates moving to the

back of the media.

• Return value:

– None

32 Rec. ITU-T H.764 (11/2019)

8.1.4.2.26 selectNext

Select the next media of the current selected/playing media in the playlist. The media will not be

played until the media control-related methods are called.

• Optionality: Optional

• Syntax:

selectNext()

• Parameters:

– None

• Return value:

– None

8.1.4.2.27 selectPrevious

Select the previous media of the current selected/playing media in the playlist. The media will not

be played until the media control-related methods are called.

• Optionality: Optional

• Syntax:

selectPrevious()

• Parameters:

– None

• Return value:

– None

8.1.4.2.28 selectTop

Select the first media in the playlist. The media will not be played until the methods related to

media control are called.

• Optionality: Optional

• Syntax:

selectTop()

• Parameters:

– None

• Return value:

– None

8.1.4.2.29 selectBottom

Select the last media in the playlist. The media will not be played until the media control-related

methods are called.

• Optionality: Optional

• Syntax:

selectBottom()

• Parameters:

– None

• Return value:

– None

 Rec. ITU-T H.764 (11/2019) 33

8.1.4.2.30 selectMediaByPlaylistEntryID

Select the media identified by "playlistEntryID" in the playlist. The media will not be played

until the media control-related methods are called.

• Optionality: Optional

• Syntax:

SelectMediaByPlaylistEntryID (input String playlistEntryID)

• Parameters:

• playlistEntryID: Refer to the playlistEntryID property.

• Return value:

• None.

8.2 Event object

The Event object is an object designed for event notification from the service component layer of the

IPTV TD to the web-based user agent. Events are caused by user interaction or remote server

notification. Once an event happens, an event notification is generated by the service component layer

and handed to the user agent in the presentation engine layer. Virtual key operation events are

encapsulated in an Event object; they will be generated by the user agent and executed according to

the service logic pre-programmed in the web document.

NOTE – See [ITU-T H.730] for the definition of the service component layer and presentation engine layer.

The types of events include channel change, play mode change, system error and so on. With the

combination of different types of Event objects, the service provider who generated the web

document, will easily handle the behaviour in the IPTV TD caused by the service logic

pre-programmed in the web documents to provide the corresponding service experience.

8.2.1 General data structure

An event object is a data structure which contains the basic information of the event generated by the

service component layer and provides a formatted structure with "anySimpleType" for the user agent's

script execution.

In this Recommendation, the Event object mainly concerns the media-related event. Table 8-1

shows the data structure of the Event object.

Table 8-1 – Data structure

Properties DataType Instructions

type String(64) The types of event being referred to in Table 8-2

instance_id unsignedInt[0:255] The native MediaController instance ID of the IPTV TD

Others, for future use anySimpleType Extended properties according to different statuses

8.2.2 Event types

According to the different values of the "type" property in the Event object of Table 8-1, different

data structures are defined. Table 8-2 gives the definitions of the Event types, with further details

being in the following clauses.

34 Rec. ITU-T H.764 (11/2019)

Table 8-2 – Event types

EVENT_TYPE Instructions

EVENT_GO_CHANNEL Event triggered when the CH+, CH- or the number keys are pressed,

the IPTV TD open the new channel.

EVENT_MEDIA_END Event triggered when the media in the MediaController is played to the

end.

EVENT_MEDIA_BEGINNING Event triggered when the media in the MediaController is played from

the start.

EVENT_MEDIA_ERROR Event triggered when an error happens in the MediaController.

EVENT_PLAYMODE_CHANGE Event triggered when the playback mode of the MediaController

changes.

EVENT_REMINDER Event triggered when the IPTV TD sends a reminder.

8.2.2.1 EVENT_GO_CHANNEL

Table 8-3 gives the data structure of the Event object when the IPTV TD successfully joins in a live

channel.

Table 8-3 – Definition of EVENT_GO_CHANNEL

Properties DataType Optionality Instructions

type String(64) M The value is EVENT_GO_CHANNEL

instance_id
unsignedInt

[0:255]

M The native MediaController instance ID of the

IPTV TD

channel_code
unsignedInt

[0:4294967295]

M
The unified code of the channel

channel_num
unsignedInt

[0:4294967295]

O
The channel number

8.2.2.2 EVENT_MEDIA_END

Table 8-4 gives the data structure of the Event object when the IPTV TD quits a VoD or nPVR.

Table 8-4 – Definition of EVENT_MEDIA_END

Properties DataType Optionality Instructions

type String(64) M The value is EVENT_MEDIA_END

instance_id unsignedInt[0:255] M
The native MediaController instance ID of the

IPTV TD

media_code String O The unified code of the media

entry_id String(1024) O
The unified code of the media in the media

playlist

8.2.2.3 EVENT_MEDIA_BEGINNING

Table 8-5 gives the data structure of the Event object when the IPTV TD starts a VoD or nPVR.

 Rec. ITU-T H.764 (11/2019) 35

Table 8-5 – Definition of EVENT_MEDIA_BEGINNING

Properties DataType Optionality Instructions

type String(64) M The value is EVENT_MEDIA_BEGINNING

instance_id unsignedInt[0:255] M
The native MediaController instance ID of the

IPTV TD

media_code String O The unified code of the media

entry_id String(1024) O
The unified code of the media in the media

playlist

8.2.2.4 EVENT_MEDIA_ERROR

Table 8-6 gives the data structure of the Event object when any error occurs during the VoD or

nPVR.

Table 8-6 – Definition of EVENT_MEDIA_ERROR

Properties DataType Optionality Instructions

type String(64) M The value is EVENT_MEDIA_ERROR

instance_id unsignedInt[0:255] M
The native MediaController instance ID of the

IPTV TD

error_code int M The code of the error

error_message String O The detail of the error

media_code String O The unified code of the media

8.2.2.5 EVENT_PLAYMODE_CHANGE

Table 8-7 gives the data structure of the Event object when the event of the pause, fast rewind and

fast forward actions is triggered by the end user and successfully handled by the IPTV TD during

the VoD or nPVR.

Table 8-7 – Definition of EVENT_PLAYMODE_CHANGE

Properties DataType Optionality Instructions

type String(64) M The value is EVENT_PLAYMODE_CHANGE

instance_id unsignedInt[0:255] M
The native MediaController instance ID of the

IPTV TD

new_play_mode unsignedInt[0:255] M

It is the play mode after the play mode

changes. For possible values refer to

Table 8-8.

new_play_rate int O

It is the play rate after the play mode changes.

When the play mode is trick mode, this

information is required to be provided. For

possible values refer to Table 8-9.

old_play_mode unsignedInt[0:255] M

This is the play mode before the play mode

changes. For possible values refer to

Table 8-8.

old_play_rate int O

It is the play rate before the play mode

changes. When the play mode is trick mode,

this information is required to be provided. For

possible values refer to Table 8-9.

36 Rec. ITU-T H.764 (11/2019)

8.2.2.5.1 PLAY_MODE

Table 8-8 gives the possible values of the "PLAY_MODE".

Table 8-8 – Definition of PLAY_MODE

Value PLAY MODE Instructions

0 STOP Stop

1 PAUSE Pause

2 NORMAL_PLAY Normal play

3 TRICK_MODE Fast forward, fast rewind, slow forward and slow rewind

4 MULTICAST_CHANNEL_PLAY The broadcast state of the multicast channel.

5 UNICAST_CHANEL_PLAY The broadcast state of the unicast channel.

Others Unspecified

8.2.2.5.2 PLAY_RATE

The support of trick mode in VoD service is recommended in [ITU-T Y.1901]. The applicable

PLAY_RATE values are listed in Table 8-9, with their respective descriptions. In the table, positive

numbers stand for normal and forward play, and the negative values stand for rewind play. It should

be noted that the values need not be restricted to those listed in Table 8-9.

Table 8-9 – Definition of PLAY_RATE

Value Instructions

1 Normal speed

2 Double speed fast forward

4 Quad speed fast forward

0.5 Half speed slow forward

0 Pause

-1 Reverse play at normal speed

-2 Double speed fast rewind

-4 Quad-speed fast rewind

-0.5 Half-speed slow rewind

8.2.2.6 EVENT_REMINDER

Table 8-10 gives the data structure of the Event object when some messages need to be informed by

the service component layer to the presentation engine layer.

Table 8-10 – Definition of EVENT_REMINDER

Properties DataType Optionality Instructions

type String(64) M The value is EVENT_REMINDER

message String(2048) M The content of the reminder

8.3 Service object

Once the web-based IPTV terminal device connects to a service discovery server and an IPTV service

provider from the service list is chosen by the end user, the service information of the chosen IPTV

 Rec. ITU-T H.764 (11/2019) 37

service provider (SP) should be specified. For web-based terminal devices that follow this

Recommendation, a top-level, built-in object which is called a service object must be implemented.

The service object can be accessed without using a constructor and can be called by the SPs to specify

the service information used by the end users during the service procedure. By calling the object

methods in the web documents, SPs can specify the necessary service information, such as the service

URL for different colour keys on the remote, the service entry for linear TV with trick mode and

VoD, etc.

8.3.1 Content-related functionalities

8.3.1.1 Properties

No property is defined for content-related functionalities.

8.3.1.2 Methods

8.3.1.2.1 getContentPackageEndDate

To obtain the end date of the purchased content package.

• Optionality: Optional

• Syntax:

Date getContentPackageEndDate (input String id)

• Parameters:

– id (String): the identifier for the content package.

• Return value:

– Valid end date of the content package is returned

8.3.1.2.2 getContentPackageStartDate

To obtain the start date of the purchased content package.

• Optionality: Optional

• Syntax:

date getContentPackageStartDate (input String id)

• Parameters:

– id (String): the identifier for the content package.

• Return value:

– Valid start date of the content package is returned

8.3.1.2.3 setContentPackageInfo

To set the information on the purchased content package.

• Optionality: Optional

• Syntax:

Number setContentPackageInfo (input String id

,input Date valid_start_date

[,input Date valid_end_date])

• Parameters:

– id (String): the identifier for the content package.

– valid_start_date (Date): valid start date of the content package.

– valid_end_date (Date): valid end date of the content package.

• Return value:

38 Rec. ITU-T H.764 (11/2019)

– 1: success

– NaN: failure

8.3.2 Parental control

Parental control-related properties and methods allow the IPTV SPs to provide parental control

services on web documents.

8.3.2.1 Properties

8.3.2.1.1 parentalCtrlEnabled

Enable parental control.

• Optionality: Mandatory

• DataType: Boolean

• Reference value:

– true: parental control enabled

– false: parental control disabled

• Read-write: R/W

8.3.2.1.2 parentalCtrlPassword

The parental control password.

• Optionality: Mandatory

• DataType: String

• Reference value:

– None.

• Read-write: R/W

8.3.2.2 Methods

8.3.2.2.1 enableParentalCtrl

Enable parental control functionality.

• Optionality: Optional

• Syntax:

Number enableParentalCtrl (input Boolean parentalCtrlEnabled)

• Parameters:

– parentalCtrlEnabled (Boolean): enable or disable parental control.

• Return value:

– 0: success

– -1: failure

8.3.2.2.2 checkParentalCtrlPassword

To check the parental control password: confirms the password for ensuring parental control.

• Optionality: Optional

• Syntax:

Number checkParentalCtrlPassword (input String parentalCtrlPassword)

• Parameters:

– parentalCtrlPassword (String): the password of parental control.

 Rec. ITU-T H.764 (11/2019) 39

• Return value:

– 1: Password verified successfully, or parental control is unlocked

– 0: incorrect password

– NaN: Password has not been set

8.3.2.2.3 setParentalCtrlPassword

To set the parental control password.

• Optionality: Optional

• Syntax:

Number setParentalCtrlPassword (input String parentalCtrlPassword)

• Parameters:

– parentalCtrlPassword (String): the password of parental control.

• Return value:

– 0: success

– -1: failure

8.3.3 Service registration

8.3.3.1 Properties

8.3.3.1.1 serviceEntry

This property identifies unique service information kept by the terminal itself, which can be defined

by the SPs to approve the user identity and designate the available services for the end user.

• Optionality: Optional

• DataType: String

• Reference value:

– The service information that can be provided by the SPs is listed in Table 8-11.

• Read-write: R

Table 8-11 – Fields defined for serviceEntry

Field name Instructions

PortalURL URL of the portal for a specific SP service platform

BTVEPGURL URL defined to access the webpage presenting the channel list

VoDEPGURL URL defined to access the webpage presenting VoD programmes

SelfServiceEPGURL URL defined to access the webpage presenting customer self service

UserSpaceURL URL defined to access the webpage presenting IPTV TD local services

InfoEPGURL URL defined to access the webpage presenting IPTV information services

GameEPGURL URL defined to access the webpage presenting IPTV games services

EmailEPGURL URL defined to access the webpage presenting IPTV mail services

UMEPGURL URL defined to access the webpage presenting IPTV on-line message

services

40 Rec. ITU-T H.764 (11/2019)

8.3.3.2 Methods

8.3.3.2.1 checkIPTVServiceRegistrationInfo

To find out the information related to the basic IPTV service, i.e., linear TV and VoD.

• Optionality: Optional

• Syntax:

Array checkIPTVServiceRegistrationInfo (input String id)

• Parameters:

– id (String): Service provider ID

• Return value:

Array that stores data

– Array containing data: Success

– Array[0] (String): key

– Array[1] (Date): expire_date

– Array[2] (String): license_uri

– null: failure

8.3.3.2.2 getServiceEntryURL

The method provides the ability to get service information from the IPTV TD, which is specified by

the "setServiceEntry" method. This method returns the registered service entry URL.

• Optionality: Optional

• Syntax:

String getServiceEntryURL (input String serviceEntry)

• Parameters:

– serviceEntry (String): An identifier for different service entries.

• Return value:

– The URL of the registered service entry is returned to describe the service entry.

8.3.3.2.3 setIPTVServiceRegistrationInfo

To set the information related to a basic IPTV service, i.e., linear TV and VoD.

• Optionality: Optional

• Syntax:

Number setIPTVServiceRegistrationInfo (input String id

,input String key

,input Date expire_date

[,input String license_uri

 ,input String signature

 ,input String certificate_uri])

• Parameters:

– id (String): service provider ID

– key (String): key information for authentication

– expire_date (Date): basic registration expiration date/time

– license_uri (String): URI of the SCP server for linear TV/VoD of the licenser

– signature (String): signature of license_uri

 Rec. ITU-T H.764 (11/2019) 41

– certificate_uri (String): URI of the public key certificate (chain) used for

signature verification

• Return value:

– 1: success

– -1: failed to verify the signature of the SCP server URL

– NaN: other failure

8.3.3.2.4 setServiceEntry

To register service information in the IPTV TD. When this method is called, the former service

information registered for the same service entry will be substituted.

• Optionality: Optional

• Syntax:

Number setServiceEntry (input String serviceEntry

, input String serviceEntryURL

[, input String serviceEntryHotKey,

 input String serviceEntryDesc])

• Parameters:

– serviceEntry (String): An identifier for different service entries.

– serviceEntryURL (String): A URL for a specified service entry.

– serviceEntryHotKey (String): Hot keys for a specified service entry, such as the

blue, red, green, yellow colour keys.

– serviceEntryDesc (String): A brief introduction about the service entry.

• Return value:

– 0: success

– -1: failure

8.3.4 Licences and DRM

8.3.4.1 Properties

8.3.4.1.1 drmSystem

The location identifier of the DRM system.

• Optionality: Mandatory

• DataType: String

• Reference value:

– None

• Read-write: R/W

8.3.4.2 Methods

8.3.4.2.1 getDRMID

To obtain the identifier of the CAS/DRM client supporting the specified CAS/DRM.

• Optionality: Optional

• Syntax:

String getDRMID (input String drm_system

, input String id

, input Array license_id)

42 Rec. ITU-T H.764 (11/2019)

• Parameters:

– drm_system (String): the string that identifies the DRM and/or conditional access

system

– id (String): the identifier for the service provider

– license_id (Array): the array of the identifiers for the licences to be used

• Return value:

– DRMID: success

8.3.4.2.2 getIPTVLicense

Obtain the licence for the specified content.

• Optionality: Optional

• Syntax:

Number getIPTVLicense (input String drm_system

, input String id

, input Array license_id)

• Parameters:

– drm_system (String): the string that identifies the DRM and/or conditional access

system

– id (String): the identifier for the service provider

– license_id (Array): the array of the identifiers for the licences to be used

• Return value:

– 1: incorrect SCP method

– 2: unknown SCP server URL

– 3: licence acquisition rejected

– 4 client authentication failure on the server

– 5 server authentication failure

– 6 communication error with SCP server

– NaN: other failure

8.3.4.2.3 getIPTVLicenseInfo

To obtain information concerning a specified licence.

• Optionality: Optional

• Syntax:

Array getIPTVLicenseInfo (input String license_id

,input Number search_type)

• Parameters:

– license_id (String): The ID of the specified licence.

– search_type (Number): type of searching for the specified licence.

• Return value:

– Arrays with information: success

– Array[1] (Date): viewing start time

– Array[2] (Date): viewing end time

– Array[3] (String): tier bit array

 Rec. ITU-T H.764 (11/2019) 43

– Array[4] (Boolean): update-false: no, update-true: yes

– Array[5] (Date): update start date and time

– -1: specified licence does not exist

– NaN: other failure

– null: failure

8.3.4.2.4 updatePackageLicenseInfo

To update all the package information

• Optionality: Optional

• Syntax:

Number updatePackageLicenseInfo (input String id)

• Parameters:

– id(String): the identifier for the package

• Return value:

– 1: success

– NaN: failure

8.4 XMLHttpRequest object

The XMLHttpRequest object implements an interface exposed by a scripting engine that allows

scripts to perform an HTTP client functionality (for example, submission of form data or loading

data from a server). By using the XMLHttpRequest object, the user agent may retrieve and submit

XML data directly in the background and conveniently connect an HTML presentation directly to

XML data for interim updates without reloading the page. The user agent converts the retrieved

XML data into renderable HTML content by reading the XML document node tree and composing

HTML elements.

The XMLHttpRequest object is an HTTP application programming interface used by scripts to

programmatically send HTTP or HTTPS requests directly to a web server and load the server

response data directly back into the script. The data might be received from the server either as

XML text or as plain text. Data from the response can be used directly to alter the document object

module (DOM) of the currently active document in the user agent without loading a new webpage

document. The response data can also be evaluated by client-side scripting.

NOTE – The HTTP protocol (such as message headers, methods, status code, etc.) used in this

Recommendation refers to [b-IETF RFC 2616].

8.4.1 Properties

The properties provided by the XMLHttpRequest object indicate related status changes; once a

request has been sent by the user agent, the data are retrieved from the server.

8.4.1.1 onreadystatechange

An event handler for an event that is triggered at every state change.

• Optionality: Mandatory

• DataType: event handler for call back function.

• Reference value:

– None

• Read-write: R

44 Rec. ITU-T H.764 (11/2019)

8.4.1.2 readyState

The "readyState" should be used inside the event handler function that processes request object state

change events. While the object may undergo interim state changes during its creation and

processing, the value that signals the completion of the transaction is 4 (complete).

• Optionality: Mandatory

• DataType: unsignedInt[0:4].

• Reference value:

– 0: uninitialized

– 1: loading

– 2: loaded

– 3: interactive

– 4: complete

• Read-write: R

8.4.1.3 responseText and responseXML

The "responseText" property is the String version of the data returned from the server process.

The "responseXML" property is a DOM-compatible document object of data returned from the

server process. Note that the "responseXML" property is a fully-fledged document node object,

which contains XML rather than HTML, and can be examined and parsed using DOM node tree

methods and properties.

• Optionality: Mandatory

• DataType: String

• Reference value:

– None

• Read-write: R

8.4.1.4 status and statusText

The "status" property is a numeric code returned by the server, such as 404 for "Not Found" or 200

for "OK". The "statusText" property is the String message accompanying the status code.

Accessing the "status" property provides more information on whether the transaction has been

completed successfully; however, further checks are advisable before operating on the results.

• Optionality: Mandatory

• DataType:

– status: integer

– statusText: String

• Reference value:

– None

• Read-write: R

8.4.2 Methods

8.4.2.1 Constructor

The constructor of the XMLHttpRequest object with a default value.

• Optionality: Mandatory

• Syntax:

 Rec. ITU-T H.764 (11/2019) 45

XMLHttpRequest()

• Parameters:

– None

• Return value:

– An instantiated XMLHttpRequest object.

8.4.2.2 abort

Stops the current request.

• Optionality: Mandatory

• Syntax:

abort()

• Parameters:

– None

• Return value:

– None

8.4.2.3 getAllResponseHeaders

Gets a complete set of headers (labels and values).

• Optionality: Mandatory

• Syntax:

String getAllResponseHeaders()

• Parameters:

– None

• Return value:

– Complete set of headers as a String.

8.4.2.4 getResponseHeader

Returns the String value of a single header label.

• Optionality: Mandatory

• Syntax:

String getResponseHeader (input String headerLabel)

• Parameters:

– headerlabel: available label defined in the HTTP header field such as "Content-type",

"Content-length", etc.

• Return value:

– Formatted String of the HTTP header specified by headerlabel.

8.4.2.5 open

Assigns the destination URL, method, and other optional attributes of a pending request.

• Optionality: Mandatory

• Syntax:

open (input String method,

input String URL

[, input Boolean asyncFlag

[, input String userName

[,input String password]]])

46 Rec. ITU-T H.764 (11/2019)

• Parameters:

– method: the HTTP method intended for the request. For the method parameter, use

"GET" on operations that are primarily data retrieval requests; use "POST" on

operations that send data to the server, especially if the length of the outgoing data is

potentially greater than 512 bytes.

– URL: the URL for the connection. It may be either a complete or a relative URL.

– asyncFlag: Controls whether the upcoming transaction should be handled

asynchronously. The default value "true" is to act asynchronously, which means that

script processing carries on immediately after the send() method is invoked, without

waiting for a response. The value "false" means that the script waits for the request to

be sent and for a response to arrive from the server.

– userName: the username to access the server.

– password: the password to access the server.

• Return value:

– None

8.4.2.6 send

Transmits the request to the server.

• Optionality: Mandatory

• Syntax:

send (input String content)

• Parameters:

– content: the data transmitted to the server, which is optionally with a postable String

or DOM object data.

• Return value:

– None

8.4.2.7 setRequestHeader

Assigns a label/value pair to the header to be sent with a request.

• Optionality: Mandatory

• Syntax:

setRequestHeader (input String headerlabel

, input String value)

• Parameters:

– headerlabel: available label defined in the HTTP header field such as "Content-type",

"Content-length", etc.

– value: formatted String of the specified HTTP header label.

• Return value:

– None

 Rec. ITU-T H.764 (11/2019) 47

Annex A

Data types

(This annex forms an integral part of this Recommendation.)

The following table lists the set of extra data types that are not defined in the core script profile and

which is utilized in this Recommendation, along with the notation used to represent these types.

Table A.1 – Definition of data types

Type Description

String For strings listed in this specification, a maximum allowed length can be listed using

the form String (N), where N is the maximum string length in characters.

If a string does not have an explicitly indicated maximum length or is not an

enumeration, the default maximum is 32 characters.

int int, which in the range –2147483648 to +2147483647 (inclusive) is a pronoun for

integer Number object in the core script profile.

For some int types listed, a value range is given using the form int[Min:Max], where

the Min and Max values are inclusive. If either Min or Max are missing, this indicates

no limit.

unsignedInt unsignedInt, which in the range 0 to 4294967295, inclusive, is a pronoun for unsigned

integer Number object in the core script profile.

For some unsignedInt types listed, a value range is given using the form

unsignedInt[Min:Max], where the Min and Max are inclusive values. If either Min or

Max are missing, this indicates no limit.

dateTime/Date The subset of the [ISO/IEC 8601] date-time format.

The dateTime equals the return value of toUTCString() of Date type defined in the core

script profile.

If the time is unknown or not applicable, the following value representing "Unknown

Time" MUST be used: 00010101T000000Z.

anySimpleType The value of an element defined to be of type "anySimpleType" MAY be of any simple

data types, including (but not limited to) any of the other types listed in this table. The

element of this type MUST be well formatted with a name-value pair such as XML,

JSON, etc.

48 Rec. ITU-T H.764 (11/2019)

Annex B

Content Metadata used by MediaController object

(This annex forms an integral part of this Recommendation.)

According to [ITU-T H.750], content metadata is produced by content providers and service

providers. Content providers typically supply the title, synopsis, genre and other descriptive

metadata about the content. The formatted content metadata is set into the MediaController

methods, like setSingleMedia(), addMedia(), etc.

It should be noted that not all the information provided by content providers is necessary for the

MediaController to provide media control during the lifecycle of the media. The following metadata

elements are the ones required in service and content metadata.

– Identifier

• [b-ETSI TS 102 822-3-1] 6.3.6 programId, 6.3.7 groupId (Group), 6.4.2

InstanceMetadataId, 6.4.3 serviceId, 6.6.5 segmentId, 6.6.6 groupId (SegmentGroup)

• [b-ETSI TS 102 822-3-3] 8.4 item_id, 8.5 component_id, 8.6 crid (Package)

• [b-ETSI TS 102 471] 5.4.1 serviceID, 5.5.2 serviceBundleID, 5.6.1 contentID, 5.7.1

scheduleId

• [b-UPnP CDS2] B.8.3 upnp:programID, B.8.4 upnp:seriesID, B.8.5 upnp:channelID,

B.9.1.1 upnp:channelGroupName@id, B.10.2 upnp:radioStationID

• [b-IETF RFC 4287] 4.2.6 id

– Encrypted or not

• [b-ETSI TS 102 471] 5.4.1 clearToAir (Service), 5.7.1 clearToAir (ScheduleEvent)

– Codec or format

• [b-ETSI TS 102 822-3-1] 6.3.5 Coding

• [b-ETSI TS 102 822-3-3] 6.1.1.1 Coding (Audio), 6.1.1.2 Coding (Video)

• [b-ETSI TS 102 471] 5.10.7.1 Codec, ProfileLevelIndication

– Aspect ratios, resolution, bit rate, frame rate for video

• [b-ETSI TS 102 822-3-1] 6.3.5 AspectRatio, HorizontalSize, VerticalSize, Bitrate,

FrameRate

• [b-ETSI TS 102 822-3-3] 6.1.1.2 BitRate, AspectRatio, HorizontalSize, VerticalSize,

FrameRate

• [b-ETSI TS 102 471] 5.10.7.2 Bandwidth, FrameRate

• [b-UPnP CDS2] B.2.1.10 res@resolution, B.2.1.6 res@bitrate

– Mono, stereo, multi-channel indication for audio

• [b-ETSI TS 102 822-3-1] 6.3.5 MixType, NumOfChannels

• [b-ETSI TS 102 822-3-3] 6.1.1.1 MixType, NumOfChannels

• [b-ETSI TS 102 471] 5.10.7.2 Mode

• [b-UPnP CDS2] B.2.1.9 res@nrAudioChannels

 Rec. ITU-T H.764 (11/2019) 49

– Duration

• [b-ETSI TS 102 822-3-1] 6.3.4 Duration (Program, Group), 6.6.5 SegmentLocator

(Segment), 6.6.6 duration (SegmentGroup)

• [b-ETSI TS 102 471] 5.6.2 Duration (Content)

• [b-UPnP CDS2] B.2.1.4 res@duration

50 Rec. ITU-T H.764 (11/2019)

Appendix I

Remote control key code

(This appendix does not form an integral part of this Recommendation.)

The user agent of a web-based terminal device will dispatch the key press event to the web

document with IPTV SESL. The user agent will handle the key code and execute the corresponding

IPTV SESL functions predefined in the web document, as identified in Table I.1.

Table I.1 – Key code list

Remote control

key
Key code Remarks

Backspace BACKSPACE
"Backspace" can be combined with "Stop" in a media

playing scenario.

OK OK

Cancel CANCEL
"Cancel" can be combined with "Stop" in a media

playing scenario.

PageUp PAGE_UP

PageDown PAGE_DOWN

Left arrow LEFT

Up arrow UP

Right arrow RIGHT

Down arrow DOWN

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

＃ POUND

* STAR

Channel up CH_UP

Channel down CH_DOWN

Volume up VOL_UP

Volume down VOL_DOWN

Mute MUTE

Play PLAY
"Play" and "Pause" are to always be used serially.

Pause PAUSE

 Rec. ITU-T H.764 (11/2019) 51

Table I.1 – Key code list

Remote control

key
Key code Remarks

Fast rewind FFR
"Fast rewind" can be combined with "Left arrow" in a

media playing scenario.

Fast forward FFW
"Fast Forward" can be combined with "Right arrow" in a

media playing scenario.

Stop STOP

Go to end GO_TO_END Go directly to the end of the media.

Go to beginning GO_TO_BEGIN Go directly to the beginning of the media.

Portal key MENU Hot key for portal.

Red key HKEY_RED

Hot key for specified URL defined by IPTV SP.
Green key HKEY_GREEN

Yellow key HKEY_YELLOW

Blue key HKEY_BLUE

Audio channel

switching
AUDIO_CH_SWITCH

Others undefined
Other key codes on the remote control can be defined by

the SPs at will.

52 Rec. ITU-T H.764 (11/2019)

Appendix II

Informative text on extended script profile

(This appendix does not form an integral part of this Recommendation.)

II.1 MediaController object

The following code sample explains how to create an instance of MediaController to control and

display media content.

// A web page including the following ECMAscript sample can control and

display the media content:

// create an instance of MediaController

var mp = new MediaController ();

// If this is the first time an instance of MediaController has been created,

// then get the unique instanceId of the local media player created in the

// IPTV TD and save it for probable further use in other webpages

var nativePlayerInstanceId = mp.instanceId;

// Or

// else the new player created by MediaController () just binds an existed

// nativePlayerInstanceID. Note: In order to support services such as PIP, the

// IPTV TD shall support more than one native controller simultaneous. In this

// case, the instanceId property of different instances indicate different

// local media players.

mp.bindNativePlayerInstance(nativePlayerInstanceId);

// set the URL of the media

mp.setSingleMedia(mediaUrl);

// Start to play the media content

mp.play();

// Trick mode control such as FFW/RW/PAUSE.

mp.fastforward();

// Stop to play the media content and release the native media controller

mp.stop();

mp.releaseMediaController (nativePlayerInstanceId);

II.2 Event object

Figure II.1 shows an example of providing the control of media playing for users by using Event

object. The workflow of media control interaction is explained in [ITU-T H.730].

 Rec. ITU-T H.764 (11/2019) 53

Figure II.1 – Example of the Event object controlling the media status

II.2.1 State transition for Event object in a VoD scenario

The Event object is used to inform webpages with IPTV SESL about the state transition of the

MediaController object, which is caused by user interaction during the VoD scenario. The

webpages provide the service information and control the service logic of the IPTV service.

H.764(12)_FII-2

Beginning

of stream

Normal

play
Pause FFW FRW

Stop or end

of stream

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

VOD media

Figure II.2 – State transition for Event object in a VoD scenario

Assumptions

– The ID of the MediaController object instance in this scenario, which is described by

"instance_id", is set to 1.

54 Rec. ITU-T H.764 (11/2019)

– The code of the VoD media, which is described by "media_code", is set to "vod/2102". The

"entry_id" of the media is set to "12".

– The sampled play rate is limited to the listed values in Table 8-9 "Definition of

PLAY_RATE".

– The information of the Event object can be encapsulated with "anySimpleType", which is

defined in Annex A, and the XML formatted expression is used here.

Instructions

The state transition information caused by user interaction e.g., from "normal play" to "pause" is

generated by the media client in the IPTV terminal device and is sent to the presentation engine

agent. The event dispatching component in the presentation engine will generate the Event object

structure and send it to the agent so that the agent can inform the webpages with IPTV SESL to

handle the service logic by e.g., changing the display of webpages, etc. The IPTV SESL execution

functional block in the presentation engine will execute the extended script profile according to the

information contained in the Event object.

State transition A: starting to play the VoD from the beginning

<EVENT>

 <type> EVENT_MEDIA_BEGINNING</type>

 <instance_id>1</instance_id>

 <media_code>vod/2102</media_code>

 <entry_id>12</entry_id>

</EVENT>

State transition B: from play to pause

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>1</new_play_mode>

 <new_play_rate>0</new_play_rate>

 <old_play_mode>2</old_play_mode>

 <old_play_rate>1</old_play_rate>

</EVENT>

State transition C: from pause to play

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>2</new_play_mode>

 <new_play_rate>1</new_play_rate>

 <old_play_mode>1</old_play_mode>

 <old_play_rate>0</old_play_rate>

</EVENT>

 Rec. ITU-T H.764 (11/2019) 55

State transition D: from play to forward

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>3</new_play_mode>

 <new_play_rate>2</new_play_rate>

 <old_play_mode>2</old_play_mode>

 <old_play_rate>1</old_play_rate>

</EVENT>

State transition E: from forward to play

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>2</new_play_mode>

 <new_play_rate>1</new_play_rate>

 <old_play_mode>3</old_play_mode>

 <old_play_rate>2</old_play_rate>

</EVENT>

State transition F: from normal play to rewind play

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>3</new_play_mode>

 <new_play_rate>-2</new_play_rate>

 <old_play_mode>2</old_play_mode>

 <old_play_rate>1</old_play_rate>

</EVENT>

State transition G: from rewind to play

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>2</new_play_mode>

 <new_play_rate>1</new_play_rate>

 <old_play_mode>3</old_play_mode>

 <old_play_rate>-2</old_play_rate>

</EVENT>

State transition H: from play to stop or end of the VoD

<EVENT>

 <type>EVENT_MEDIA_END</type>

 <instance_id>1</instance_id>

 <media_code>vod/2102</media_code>

 <entry_id>12</entry_id>

</EVENT>

56 Rec. ITU-T H.764 (11/2019)

State transition I: from pause to forward

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>3</new_play_mode>

 <new_play_rate>2</new_play_rate>

 <old_play_mode>1</old_play_mode>

 <old_play_rate>0</old_play_rate>

</EVENT>

State transition J: from forward to pause

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>1</new_play_mode>

 <new_play_rate>0</new_play_rate>

 <old_play_mode>3</old_play_mode>

 <old_play_rate>2</old_play_rate>

</EVENT>

State transition K: from pause to rewind

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>3</new_play_mode>

 <new_play_rate>-2</new_play_rate>

 <old_play_mode>1</old_play_mode>

 <old_play_rate>0</old_play_rate>

</EVENT>

State transition L: from rewind play to pause

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>1</new_play_mode>

 <new_play_rate>0</new_play_rate>

 <old_play_mode>3</old_play_mode>

 <old_play_rate>-2</old_play_rate>

</EVENT>

State transition M: from pause to stop

<EVENT>

 <type>EVENT_MEDIA_END</type>

 <instance_id>1</instance_id>

 <media_code>vod/2102</media_code>

 <entry_id>12</entry_id>

</EVENT>

 Rec. ITU-T H.764 (11/2019) 57

State transition N: from pause to beginning of the VoD

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>2</new_play_mode>

 <new_play_rate>1</new_play_rate>

 <old_play_mode>1</old_play_mode>

 <old_play_rate>0</old_play_rate>

</EVENT>

<EVENT>

 <type>EVENT_MEDIA_BEGINNING</type>

 <instance_id>1</instance_id>

 <media_code>vod/2102</media_code>

 <entry_id>12</entry_id>

</EVENT>

State transition O: from forward to rewind

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>3</new_play_mode>

 <new_play_rate>-2</new_play_rate>

 <old_play_mode>3</old_play_mode>

 <old_play_rate>2</old_play_rate>

</EVENT>

State transition P: from rewind to forward

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>3</new_play_mode>

 <new_play_rate>2</new_play_rate>

 <old_play_mode>3</old_play_mode>

 <old_play_rate>-2</old_play_rate>

</EVENT>

State transition Q: from forward play to stop or end of the VoD
<EVENT>

 <type>EVENT_MEDIA_END</type>

 <instance_id>1</instance_id>

 <media_code>vod/2102</media_code>

 <entry_id>12</entry_id>

</EVENT>

58 Rec. ITU-T H.764 (11/2019)

State transition R: from rewind until reaching the beginning of the VoD

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>2</new_play_mode>

 <new_play_rate>1</new_play_rate>

 <old_play_mode>3</old_play_mode>

 <old_play_rate>–2</old_play_rate>

</EVENT>

<EVENT>

 <type>EVENT_MEDIA_BEGINNING</type>

 <instance_id>1</instance_id>

 <media_code>vod/2102</media_code>

 <entry_id>12</entry_id>

</EVENT>

State transition S: from rewind play to stop or the end of the VoD

<EVENT>

 <type>EVENT_MEDIA_END</type>

 <instance_id>1</instance_id>

 <media_code>vod/2102</media_code>

 <entry_id>12</entry_id>

</EVENT>

State transition T: rewind the media until reaching the the beginning of the VoD

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>2</new_play_mode>

 <new_play_rate>1</new_play_rate>

 <old_play_mode>3</old_play_mode>

 <old_play_rate>-2</old_play_rate>

</EVENT>

//If the media reaches the beginning, the following event will occur.

<EVENT>

 <type>EVENT_MEDIA_BEGINNING</type>

 <instance_id>1</instance_id>

 <media_code>vod/2102</media_code>

 <entry_id>12</entry_id>

</EVENT>

II.2.2 State transition for Event object in a linear TV with trick mode scenario

The Event object is used to inform the webpages with IPTV SESL about a state transition in the

MediaController object (caused by user interaction during the linear TV with trick mode scenario).

The Event object provides the service information and controls the service logic of the IPTV

service.

 Rec. ITU-T H.764 (11/2019) 59

Figure II.3 – State transition for Event object in a linear TV with trick mode scenario

Assumptions

– The ID of the MediaController object instance in this scenario, which is described by

"instance_id", is set to 1.

– The unique ID of a linear TV channel with trick mode, which is described by

"channel_code", is set to "433". The channel number displayed on screen, which is

described by "channel_num", is set to "1".

– The sampled play rate is limited to the listed values in Table 8-9.

– The information of the Event object can be encapsulated with "anySimpleType" (see

definition in Annex A) and the XML formatted expression is used.

Instructions

The state transition information caused by user interaction e.g., from "normal play" to "pause" is

generated by the media client in the IPTV terminal device and is sent to the presentation engine

agent, which could be a browser, by internal interfaces defined in [ITU-T H.730]. In this scenario,

the WBTM and IPTV SESL work in the same way as in the VoD scenario.

State transition A: joining linear TV with trick mode

<EVENT>

 <type>EVENT_GO_CHANNEL</type>

 <instance_id>1</instance_id>

 < channel_code >433</ channel_code >

 < channel_num >1</ channel_num >

</EVENT>

60 Rec. ITU-T H.764 (11/2019)

State transition B: from linear TV with trick mode to pause (trick mode)

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>1</new_play_mode>

 <new_play_rate>0</new_play_rate>

 <old_play_mode>4</old_play_mode>

 <old_play_rate>1</old_play_rate>

</EVENT>

State transition C: from linear TV to rewind (trick mode)

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>3</new_play_mode>

 <new_play_rate>-2</new_play_rate>

 <old_play_mode>4</old_play_mode>

 <old_play_rate>1</old_play_rate>

</EVENT>

State transition D: from linear TV to the left border of the record

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>2</new_play_mode>

 <new_play_rate>1</new_play_rate>

 <old_play_mode>4</old_play_mode>

 <old_play_rate>1</old_play_rate>

</EVENT>

State transition E: from play (trick mode) to leaving linear TV

<EVENT>

 <type>EVENT_MEDIA_END</type>

 <instance_id>1</instance_id>

</EVENT>

State transition F: from trick mode to re-joining linear TV

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>4</new_play_mode>

 <new_play_rate>-1</new_play_rate>

 <old_play_mode>2</old_play_mode>

 <old_play_rate>1</old_play_rate>

</EVENT>

 Rec. ITU-T H.764 (11/2019) 61

State transition G: from pause (trick mode) to leaving linear TV

<EVENT>

 <type>EVENT_MEDIA_END</type>

 <instance_id>1</instance_id>

</EVENT>

State transition H: from pause state (trick mode) to re-join the live TV channel

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>4</new_play_mode>

 <new_play_rate>-1</new_play_rate>

 <old_play_mode>1</old_play_mode>

 <old_play_rate>0</old_play_rate>

</EVENT>

State transition I: from forward (trick mode) to leaving linear TV

<EVENT>

 <type>EVENT_MEDIA_END</type>

 <instance_id>1</instance_id>

</EVENT>

State transition J: from forward (trick mode) to re-joining linear TV

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>4</new_play_mode>

 <new_play_rate>-1</new_play_rate>

 <old_play_mode>3</old_play_mode>

 <old_play_rate>2</old_play_rate>

</EVENT>

State transition K: from rewind play state (trick mode) to leaving the live TV channel

<EVENT>

 <type>EVENT_MEDIA_END</type>

 <instance_id>1</instance_id>

</EVENT>

62 Rec. ITU-T H.764 (11/2019)

State transition L: from rewind (trick mode) to re-joining linear TV

<EVENT>

 <type>EVENT_PLAYMODE_CHANGE</type>

 <instance_id>1</instance_id>

 <new_play_mode>4</new_play_mode>

 <new_play_rate>1</new_play_rate>

 <old_play_mode>3</old_play_mode>

 <old_play_rate>-2</old_play_rate>

</EVENT>

State transition M: from play (trick mode) to leaving linear TV

<EVENT>

 <type>EVENT_MEDIA_END</type>

 <instance_id>1</instance_id>

</EVENT>

II.3 Service object

When the web-based IPTV terminal boots up, the browser is initialized to progress service

discovery, which is a specific URI (URL) for the browser. When it visits the URL, the service

server will respond with a webpage containing LIME HTML [ITU-T H.762] and IPTV SESL. A

service object could be embedded in the webpage to gain information about the end user after user

authentication; additionally, SPs can provide individual services for the user.

Since the identity of the IPTV TD and the end user can be specified after the user authentication

procedure, the SP service server will redirect the browser to a webpage that provides a typical

service of the specified SP and an individual service for the end user. The service object here should

provide a method to keep this service information in the terminal for subsequent usage during the

whole service session.

Since the service object provides the ability for SPs to approve user identity and designate the

available services for the end user, unique service information could be kept by the terminal itself

and be called by the EPG (which is provided by the same SP) to keep in step with the service

attribute of the end user.

 Rec. ITU-T H.764 (11/2019) 63

Bibliography

[b-ECMA-262] Standard ECMA-262 Edition 5.1 (2011), ECMAScript Language

Specification.

[b-ETSI TS 102 471] ETSI TS 102 471 V1.2.1 (2006), Digital Video Broadcasting (DVB);

IP Datacast over DVB-H: Electronic Service Guide (ESG).

[b-ETSI TS 102 822-3-1] ETSI TS 102 822-3-1 V1.4.1 (2007), Broadcast and On-line Services:

Search, select, and rightful use of content on personal storage systems

("TV-Anytime"); Part 3: Metadata; Sub-part 1: Phase 1 – Metadata

schemas.

[b-ETSI TS 102 822-3-3] ETSI TS 102 822-3-3 V1.2.1 (2007), Broadcast and On-line Services:

Search, select, and rightful use of content on personal storage systems

("TV-Anytime"); Part 3: Metadata; Sub-part 3: Phase 2 – Extended

Metadata Schema.

[b-IETF RFC 2616] IETF RFC 2616 (1999), Hypertext Transfer Protocol – HTTP/1.1.

[b-IETF RFC 4287] IETF RFC 4287 (2005), The Atom Syndication Format.

[b-UPnP CDS2] UPnP Forum (2006), ContentDirectory:2 Service Template

Version 1.01.

[b-W3C WebArch] W3C Recommendation, Architecture of the World Wide Web, Volume

One (2004).

Printed in Switzerland
Geneva, 2020

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation

and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Rec. ITU-T H.764 (11/2019) IPTV services enhanced script language
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview
	7 Core script profile
	7.1 Global
	7.2 Object
	7.2.1 Object.prototype

	7.3 Function
	7.3.1 Function.prototype

	7.4 Array
	7.4.1 Array.prototype

	7.5 String
	7.5.1 String.prototype

	7.6 Boolean
	7.6.1 Boolean.prototype

	7.7 Number
	7.7.1 Number.prototype

	7.8 Date
	7.8.1 Date.prototype

	8 Extended script profile
	8.1 MediaController object
	8.1.1 Media control
	8.1.1.1 Properties
	8.1.1.1.1 allowTrickmode
	8.1.1.1.2 currentPlayTime
	8.1.1.1.3 channelNum
	8.1.1.1.4 cycleFlag
	8.1.1.1.5 height
	8.1.1.1.6 instanceId
	8.1.1.1.7 left
	8.1.1.1.8 playMode
	8.1.1.1.9 width
	8.1.1.1.10 mute
	8.1.1.1.11 mediaCode
	8.1.1.1.12 mediaDuration
	8.1.1.1.13 playbackMode
	8.1.1.1.14 top
	8.1.1.1.15 videoAlpha
	8.1.1.1.16 videoDisplayMode

	8.1.1.2 Methods
	8.1.1.2.1 Constructor
	8.1.1.2.2 bindNativePlayerInstance
	8.1.1.2.3 fastForward
	8.1.1.2.4 fastRewind
	8.1.1.2.5 getVolume
	8.1.1.2.6 gotoEnd
	8.1.1.2.7 gotoStart
	8.1.1.2.8 initMediaController
	8.1.1.2.9 joinChannel
	8.1.1.2.10 launchIPTVContent
	8.1.1.2.11 leaveChannel
	8.1.1.2.12 pause
	8.1.1.2.13 playFromStart
	8.1.1.2.14 playByTime
	8.1.1.2.15 refreshVideoDisplay
	8.1.1.2.16 releaseMediaController
	8.1.1.2.17 resume
	8.1.1.2.18 setSingleMedia
	8.1.1.2.19 setVolume
	8.1.1.2.20 stop

	8.1.2 Graphic user interface
	8.1.2.1 Properties
	8.1.2.1.1 nativeUIFlag
	8.1.2.1.2 audioVolumeUI
	8.1.2.1.3 audioTrackUI
	8.1.2.1.4 channelNoUI
	8.1.2.1.5 muteUI
	8.1.2.1.6 progressBarUI

	8.1.2.2 Methods

	8.1.3 Audio and subtitles
	8.1.3.1 Properties
	8.1.3.1.1 audioTrack
	8.1.3.1.2 currentAudioChannel
	8.1.3.1.3 subtitle
	8.1.3.1.4 subtitleType

	8.1.3.2 Methods
	8.1.3.2.1 switchAudioChannel
	8.1.3.2.2 switchAudioTrack
	8.1.3.2.3 switchSubtitle

	8.1.4 Playlist mode
	8.1.4.1 Properties
	8.4.1.1.1 playlist
	8.1.4.1.2 playlistCount
	8.1.4.1.3 playlistEntryID
	8.1.4.1.4 playlistIndex

	8.1.4.2 Methods
	8.1.4.2.1 addMedia
	8.1.4.2.2 clearAllMedia
	8.1.4.2.3 getCurrentMediaIndex
	8.1.4.2.4 getCurrentPlaylistEntryID
	8.1.4.2.5 getMediaCount
	8.1.4.2.6 getPlaylist
	8.1.4.2.7 moveMediaByIndex
	8.1.4.2.8 moveMediaByOffset
	8.1.4.2.9 moveMediaByIndex1
	8.1.4.2.10 moveMediaByOffset1
	8.1.4.2.11 moveMediaToNext
	8.1.4.2.12 moveMediaToPrevious
	8.1.4.2.13 moveMediaToTop
	8.1.4.2.14 moveMediaToBottom
	8.1.4.2.15 moveMediaToNext1
	8.1.4.2.16 moveMediaToPrevious1
	8.1.4.2.17 moveMediaToTop1
	8.1.4.2.18 moveMediaToBottom1
	8.1.4.2.19 removeCurrent
	8.1.4.2.20 removeMediaByIndex
	8.1.4.2.21 removeMediaByPlaylistEntryID
	8.1.4.2.22 removeNext
	8.1.4.2.23 removePrevious
	8.1.4.2.24 selectMediaByIndex
	8.1.4.2.25 selectMediaByOffset
	8.1.4.2.26 selectNext
	8.1.4.2.27 selectPrevious
	8.1.4.2.28 selectTop
	8.1.4.2.29 selectBottom
	8.1.4.2.30 selectMediaByPlaylistEntryID

	8.2 Event object
	8.2.1 General data structure
	8.2.2 Event types
	8.2.2.1 EVENT_GO_CHANNEL
	8.2.2.2 EVENT_MEDIA_END
	8.2.2.3 EVENT_MEDIA_BEGINNING
	8.2.2.4 EVENT_MEDIA_ERROR
	8.2.2.5 EVENT_PLAYMODE_CHANGE
	8.2.2.5.1 PLAY_MODE
	8.2.2.5.2 PLAY_RATE

	8.2.2.6 EVENT_REMINDER

	8.3 Service object
	8.3.1 Content-related functionalities
	8.3.1.1 Properties
	8.3.1.2 Methods
	8.3.1.2.1 getContentPackageEndDate
	8.3.1.2.2 getContentPackageStartDate
	8.3.1.2.3 setContentPackageInfo

	8.3.2 Parental control
	8.3.2.1 Properties
	8.3.2.1.1 parentalCtrlEnabled
	8.3.2.1.2 parentalCtrlPassword

	8.3.2.2 Methods
	8.3.2.2.1 enableParentalCtrl
	8.3.2.2.2 checkParentalCtrlPassword
	8.3.2.2.3 setParentalCtrlPassword

	8.3.3 Service registration
	8.3.3.1 Properties
	8.3.3.1.1 serviceEntry

	8.3.3.2 Methods
	8.3.3.2.1 checkIPTVServiceRegistrationInfo
	8.3.3.2.2 getServiceEntryURL
	8.3.3.2.3 setIPTVServiceRegistrationInfo
	8.3.3.2.4 setServiceEntry

	8.3.4 Licences and DRM
	8.3.4.1 Properties
	8.3.4.1.1 drmSystem

	8.3.4.2 Methods
	8.3.4.2.1 getDRMID
	8.3.4.2.2 getIPTVLicense
	8.3.4.2.3 getIPTVLicenseInfo
	8.3.4.2.4 updatePackageLicenseInfo

	8.4 XMLHttpRequest object
	8.4.1 Properties
	8.4.1.1 onreadystatechange
	8.4.1.2 readyState
	8.4.1.3 responseText and responseXML
	8.4.1.4 status and statusText

	8.4.2 Methods
	8.4.2.1 Constructor
	8.4.2.2 abort
	8.4.2.3 getAllResponseHeaders
	8.4.2.4 getResponseHeader
	8.4.2.5 open
	8.4.2.6 send
	8.4.2.7 setRequestHeader

	II.1 MediaController object
	II.2 Event object
	II.2.1 State transition for Event object in a VoD scenario
	II.2.2 State transition for Event object in a linear TV with trick mode scenario

	II.3 Service object

