

H.266.1 (04/2022)

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS Infrastructure of audiovisual services – Coding of moving video

Conformance specification for ITU-T H.266 versatile video coding

Recommendation ITU-T H.266.1

T-UT

ITU-T H-SERIES RECOMMENDATIONS AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS	H.100–H.199
INFRASTRUCTURE OF AUDIOVISUAL SERVICES	
General	H.200–H.219
Transmission multiplexing and synchronization	H.220–H.229
Systems aspects	H.230–H.239
Communication procedures	H.240–H.259
Coding of moving video	H.260–H.279
Related systems aspects	H.280–H.299
Systems and terminal equipment for audiovisual services	H.300–H.349
Directory services architecture for audiovisual and multimedia services	H.350–H.359
Quality of service architecture for audiovisual and multimedia services	H.360–H.369
Telepresence, immersive environments, virtual and extended reality	H.420–H.439
Supplementary services for multimedia	H.450–H.499
MOBILITY AND COLLABORATION PROCEDURES	
Overview of Mobility and Collaboration, definitions, protocols and procedures	H.500-H.509
Mobility for H-Series multimedia systems and services	H.510-H.519
Mobile multimedia collaboration applications and services	H.520-H.529
Security for mobile multimedia systems and services	H.530–H.539
Security for mobile multimedia collaboration applications and services	H.540–H.549
VEHICULAR GATEWAYS AND INTELLIGENT TRANSPORTATION SYSTEMS (ITS)	
Architecture for vehicular gateways	H.550–H.559
Vehicular gateway interfaces	H.560–H.569
BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES	
Broadband multimedia services over VDSL	H.610–H.619
Advanced multimedia services and applications	H.620–H.629
Content delivery and ubiquitous sensor network applications	H.640–H.649
IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV	
General aspects	H.700–H.719
IPTV terminal devices	H.720–H.729
IPTV middleware	H.730–H.739
IPTV application event handling	H.740–H.749
IPTV metadata	H.750–H.759
IPTV multimedia application frameworks	H.760–H.769
IPTV service discovery up to consumption	H.770–H.779
Digital Signage	H.780–H.789
E-HEALTH MULTIMEDIA SYSTEMS, SERVICES AND APPLICATIONS	
Personal health systems	H.810–H.819
Interoperability compliance testing of personal health systems (HRN, PAN, LAN, TAN and	H.820–H.859
WAN)	
Multimedia e-health data exchange services	H.860–H.869
Safe listening	H.870–H.879

For further details, please refer to the list of ITU-T Recommendations.

Conformance specification for ITU-T H.266 versatile video coding

Summary

Recommendation ITU-T H.266.1 V1 "Conformance specification for ITU-T H.266 versatile video coding" specifies tests for (non-exhaustive) testing to verify whether bitstreams and decoders meet the normative requirements specified in Rec. ITU-T H.266 | ISO/IEC 23090-3 Versatile video coding (VVC). The bitstreams provided with this document correspond to the 08/2020 (V1) edition of Rec. ITU-T H.266.

This Recommendation was developed collaboratively with ISO/IEC JTC 1, Information technology, Subcommittee SC 29, Coding of audio, picture, multimedia and hypermedia information, and corresponds with ISO/IEC 23090-15 as technically aligned twin text.

The conformance bitstreams needed for this Recommendation are available at:

https://www.itu.int/net/itu-t/sigdb/spevideo/VideoForm-s.aspx?val=102002661

NOTE - The link above will be replaced after approval with a link in the ITU-Test Signal Database.

History

Edition	Recommendation	Approval	Study Group	Unique ID^*
1.0	ITU-T H.266.1	2022-04-29	16	11.1002/1000/14969

^{*} To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, <u>http://handle.itu.int/11.1002/1000/11830-en</u>.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents/software copyrights, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at http://www.itu.int/ITU-T/ipr/.

© ITU 2022

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

CONTENTS

Norn	native refe	Prences
2.1	General	
2.1	Identics	al Recommendations International Standards
2.2	Doirod I	Pacommandations International Standards aquivalent in technical content
2.5		Recommendations International Standards equivalent in technical content
Defii	nitions	
Abbr	eviated te	rms
Conv	entions	
Conf	ormance f	testing for ITU-T H.266 ISO/IEC 23090-3
6.1	Introdu	ction
6.2	Bitstrea	m conformance
63	Decode	r conformance
64	Procedu	re to test bitstreams
65	Procedu	ire to test decoder conformance
0.5	6.5.1	Conformance bitstreams
	6.5.2	Contents of the bitstream file
	6.5.3	Requirements on output of the decoding process and timing
	6.5.4	Static tests for output order conformance
	6.5.5	Dynamic tests for output timing conformance
	6.5.6	Decoder conformance test for a particular profile, tier, and level
6.6	Specific	cation of the test bitstreams
	6.6.1	General
	6.6.2	Test bitstreams – Coding tools for Main 10 profile with 4:2:0 chroma format and 10 bit
	663	Test bitstreams – High-level syntax features for Main 10 profile with 4.2.0 chroma format
	0.0.5	and 10 bit depth
	6.6.4	Test bitstreams – Additional chroma formats and bit depths for Main 10 profile
	6.6.5	Test bitstreams - Coding tools for Main 10 4:4:4 profile for 4:4:4 chroma format and 10 bit
		depth
	6.6.6	Test bitstreams – Additional chroma formats and bit depths for Main 10 4:4:4 profile
	6.6.7	Test bitstreams – Multilayer Main 10 profile
	6.6.8	Test bitstreams – Multilayer Main 10 4:4:4 profile
	6.6.9	Test bitstreams – Main 10 Still Picture profile
	6.6.10	Test bitstreams – Main 10 4:4:4 Still Picture profile
6.7	Confor	mance test suites for Rec. ITU-T H.266 ISO/IEC 23090-3
	6.7.1	Bitstreams for Main 10 profile
	6.7.2	Bitstreams for Multilever Main 10 erefle
	0.7.3	Distreams for Multilayer Main 10 profile
	675	Bitstreams for Main 10 Still Dicture profile
	0.7.5	Distribution for Main 10 Sun Ficture Profile

Conformance specification for ITU-T H.266 versatile video coding

1 Scope

This Recommendation | International Standard¹ specifies a set of tests and procedures designed to indicate whether encoders or decoders meet the normative requirements specified in Rec. ITU-T H.266 | ISO/IEC 23090-3.

2 Normative references

2.1 General

The following Recommendations and International Standards contain provisions which, through reference in this text, constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently valid ITU-T Recommendations.

2.2 Identical Recommendations | International Standards

– None.

2.3 Paired Recommendations | International Standards equivalent in technical content

- Recommendation ITU-T H.266 (in force), Versatile video coding.
 - ISO/IEC 23090-3:in force, Information technology Coded representation of immersive media– Part 3: Versatile video coding.
- Recommendation ITU-T H.266.2 (in force), Reference software for ITU-T H.266 Versatile video coding.
 ISO/IEC 23090-16:in force, Information technology Coded representation of immersive media Part 16: Reference software for versatile video coding.

3 Definitions

For the purposes of this Recommendation | International Standard, the terms, definitions, abbreviations and symbols specified in Rec. ITU-T H.266 | ISO/IEC 23090-3 (particularly in clause 3) apply. The following terms are further clarified for purposes herein:

- 3.1 bitstream: A Rec. ITU-T H.266 | ISO/IEC 23090-3 video bitstream.
- **3.2 decoder**: A Rec. ITU-T H.266 | ISO/IEC 23090-3 video decoder, i.e., an embodiment of the decoding process specified by Rec. ITU-T H.266 | ISO/IEC 23090-3. The decoder does not include the display process, which is outside the scope of this Recommendation | International Standard.
- **3.3 encoder**: An embodiment of a process, not specified in this Recommendation | International Standard (except in regard to identification of the reference software encoder), that produces a bitstream.
- **3.4** reference software decoder: The software decoder provided in Rec. ITU-T H.266.2 | ISO/IEC 23090-16.
- **3.5** reference software encoder: The software encoder provided in Rec. ITU-T H.266.2 | ISO/IEC 23090-16.

4 Abbreviations

For the purposes of this Recommendation | International Standard, relevant abbreviations and acronyms specified in clause 4 of Rec. ITU-T H.266 | ISO/IEC 23090-3 and the following abbreviations apply.

- AMVP Adaptive Motion Vector Prediction
- CCLM Cross-Component Linear Model

¹ This Recommendation | International Standard includes an electronic attachment containing the conformance bitstreams identified within the text. The conformance bitstreams needed for this Recommendation are available in the the ITU-T Test Signal Database at the following link: <u>https://www.itu.int/net/itu-t/sigdb/spevideo/VideoForm-s.aspx?val=102002661/</u>

CIIP	Combined Inter/Intra Prediction
CST	Chroma Separate Tree
CTC	Common Test Conditions
DCT	Discrete Cosine Transform
DMVR	Decoder-side Motion Vector Refinement
DQ	Dependent Quantization
DST	Discrete Sine Transform
FTP	File Transfer Protocol
ISP	Intra Subblock Partitioning
JCCR	Joint Coding of Chroma Residuals
MMVD	Merge with MVD
MPM	Most Probable Mode
MRL	Multiple Reference Line
MVD	Motion Vector Difference
NUT	NAL Unit Type
PDPC	Position-Dependent (intra) Prediction Combination
PERP	Padded Equirectangular Projection
RPR	Reference Picture Resampling
SAD	Sum of Absolute Differences
SBT	Subblock Transform
SbTMVP	Subblock based Temporal Motion Vector Prediction
SCC	Screen Content Coding
SMVD	Symmetric MVD
TMVP	Temporal Motion Vector Prediction

5 Conventions

For the purposes of this Recommendation | International Standard, relevant conventions are specified in clause 5 of Rec. ITU-T H.266 | ISO/IEC 23090-3.

6 Conformance testing for ITU-T H.266 | ISO/IEC 23090-3

6.1 Introduction

The following clauses specify normative tests for verifying conformance of video bitstreams as well as decoders. These normative tests make use of the reference software decoder specified in Rec. ITU-T H.266.2 | ISO/IEC 23090-16, and the normative tests for decoder conformance also make use of test data (bitstream test suites) provided as an electronic annex to this Recommendation | International Standard.

6.2 Bitstream conformance

Bitstream conformance for Rec. ITU-T H.266 | ISO/IEC 23090-3 is specified by clause C.4 of Rec. ITU-T H.266 | ISO/IEC 23090-3.

6.3 Decoder conformance

Decoder conformance for Rec. ITU-T H.266 | ISO/IEC 23090-3 is specified by clause C.5 of Rec. ITU-T H.266 | ISO/IEC 23090-3.

6.4 **Procedure to test bitstreams**

A bitstream that is claimed to conform to Rec. ITU-T H.266 | ISO/IEC 23090-3 shall pass the following normative test. This test should not be applied to bitstreams that are known to contain errors introduced by transmission, as such errors are highly likely to result in bitstreams that lack conformance to Rec. ITU-T H.266 | ISO/IEC 23090-3.

The bitstream under test shall be decoded by processing it with the reference software decoder. When processed by the reference software decoder, the bitstream shall not cause any error or non-conformance messages to be reported by the reference software decoder. When the bitstream under test contains decoded picture hash SEI messages, the hash values signalled in the decoded picture hash SEI messages in the bitstream shall match those calculated by the reference software decoder.

Successfully passing this test provides only a strong presumption that the bitstream under test does indeed meet all the requirements specified in Rec. ITU-T H.266 | ISO/IEC 23090-3 that are tested by the reference software decoder.

Additional tests may be necessary to more thoroughly check that the bitstream properly meets all the requirements specified in Rec. ITU-T H.266 | ISO/IEC 23090-3, including hypothetical reference decoder (HRD) conformance (based on Annexes C and D). Such complementary tests may be performed using other video bitstream verifiers that perform more complete tests than those implemented by the reference software decoder.

Rec. ITU-T H.266 | ISO/IEC 23090-3 contains several informative recommendations that are not an integral part of that Recommendation | International Standard. When testing a bitstream for conformance, it may also be useful to test whether or not the bitstream follows those recommendations.

To check the correctness of a bitstream, it is necessary to parse the entire bitstream and to extract all the syntax elements and other values derived from those syntactic elements and used by the decoding process specified in Rec. ITU-T H.266 | ISO/IEC 23090-3.

A bitstream verifier may not necessarily perform all stages of the decoding process specified in Rec. ITU-T H.266 | ISO/IEC 23090-3 in order to verify bitstream correctness. Many tests can be performed on syntax elements in a state prior to their use in some processing stages.

6.5 **Procedure to test decoder conformance**

6.5.1 Conformance bitstreams

A bitstream that conforms to Rec. ITU-T H.266 | ISO/IEC 23090-3 has values of general_profile_idc, general_tier_flag, and general_level_idc corresponding to a set of specified constraints on a bitstream for which a decoder conforming to a corresponding specified profile, tier, and level is required in Annex A of Rec. ITU-T H.266 | ISO/IEC 23090-3 to properly perform the decoding process.

6.5.2 Contents of the bitstream file

The associated conformance testing bitstreams are included with this Recommendation | International Standard as an electronic attachment. The following information is included in a single zipped file for each such bitstream.

- *.bit bitstream (provided for all bitstreams)
- *.txt description (provided for all bitstreams)
- *.yuv.md5 MD5 checksum of the complete decoded yuv file (provided for all bitstreams)
- *.md5 MD5 checksum of the bitstream file (provided for all bitstreams)
- *.opl output picture log (provided for all bitstreams)
- *.cfg config file used to generate bitstream with VTM encoder software (not provided for all bitstreams, not applicable if a VTM encoder release version was not used)

6.5.3 Requirements on output of the decoding process and timing

Two classes of decoder conformance are specified:

- output order conformance; and
- output timing conformance.

The output of the decoding process is specified in clause 8 and Annex C of Rec. ITU-T H.266 | ISO/IEC 23090-3.

For output order conformance, it is a requirement that all of the cropped decoded pictures specified for output in Annex C of Rec. ITU-T H.266 | ISO/IEC 23090-3 shall be output by a conforming decoder in the specified order and that the values of the decoded samples of the cropped decoded pictures that are output shall be (exactly equal to) the values specified in clause 8 of Rec. ITU-T H.266 | ISO/IEC 23090-3.

For output timing conformance, it is a requirement that a conforming decoder shall also output the cropped decoded pictures at the picture rates and times specified in Annex C of Rec. ITU-T H.266 | ISO/IEC 23090-3.

The display process, which ordinarily follows the output of the decoding process, is outside the scope of this Recommendation | International Standard.

6.5.4 Static tests for output order conformance

Static tests of a video decoder require testing of the samples of the cropped decoded pictures that are output from the decoder, and can be accomplished when the decoded samples at the output of the decoding process are available. It may not be possible to perform this type of test with a production decoder (due to the lack of an appropriate accessible interface in the design at which to perform the test). In such a case this test should be performed by the manufacturer during the design and development phase. Static tests are used for testing the decoding process.

The pictures that are output by the decoder under test are checked to ensure that the following requirements are fulfilled:

- The cropped decoded pictures that are output by the decoder under test shall correspond to those that are output by the reference software decoder.
- The cropped decoded pictures that are output by the decoder under test shall be output in the same order as those that are output by the reference software decoder.
- The values of the samples of the cropped decoded pictures that are output by the decoder under test shall be identical to those that are output by the reference software decoder.

To assist with the checking of the decoding process and the cropped decoded pictures, hash values for the cropped decoded pictures that are output by conforming decoders are provided in a corresponding output picture log file for each test bitstream that is used in the specified conformance tests, and most of these test bitstreams also contain decoded picture hash SEI messages that may be used for checking the results of the decoding process of the decoder under test.

6.5.5 Dynamic tests for output timing conformance

Dynamic tests are applied to check that all the decoded samples of the cropped decoded pictures are output and that the timing of the output of the decoder's decoded samples conforms to the specifications of clause 8 and Annex C of Rec. ITU-T H.266 | ISO/IEC 23090-3, and to verify that the decoder under test can operate according to bitstream flow characteristics prescribed by the specified HRD models (as specified by the CPB and DPB specification in Annex C of Rec. ITU-T H.266 | ISO/IEC 23090-3) when the bits of the bitstream are delivered at the proper rate.

The dynamic test is often easier to perform on a complete decoding system, which may include a systems decoder, a video decoder and a display process. It may be possible to record the output of the display process and to check that display order and timing of the cropped decoded pictures are correct at the output of the display process. However, since the display process is not within the normative scope of Rec. ITU-T H.266 | ISO/IEC 23090-3, there may be cases where the output of the display process differs in timing or value even though the video decoder is conforming. In this case, the output of the video decoder itself (before the display process) would need to be captured in order to perform the dynamic tests on the video decoder. In particular the output order and timing of the output of the cropped decoded pictures shall be correct.

If buffering period and picture timing SEI messages are included in the test bitstream, HRD conformance shall be verified using the values of nal_initial_cpb_removal_delay, nal_initial_cpb_removal_offset, au_cpb_removal_delay_minus1 and pic_dpb_output_delay that are included in the bitstream.

If buffering period and picture timing SEI messages are not included in the bitstream, the following inferences shall be made to generate the missing parameters:

- fixed_pic_rate_general_flag[i] shall be inferred to be equal to 1.
- low_delay_hrd_flag[i] shall be inferred to be equal to 0.
- cbr_flag[subLayerId][j] shall be inferred to be equal to 0.
- The frame rate of the bitstream shall be inferred to be equal to the frame rate value specified in the .txt file for the bitstream. If this is missing, then a frame rate of either 25 or 30000 ÷ 1001 can be inferred.
- The bit rate of the bitstream shall be inferred to be equal to the maximum value for the level specified in Rec. ITU-T H.266 | ISO/IEC 23090-3.
- CPB and DPB sizes shall be inferred to be equal to the maximum value for the level specified in Rec. ITU-T H.266 | ISO/IEC 23090-3.

With the above inferences, the HRD shall be operated as follows.

The CPB is filled starting at time t = 0, until it is full, before removal of the first access unit. This means that the bp_nal_initial_cpb_removal_delay[i][j] shall be inferred to be equal to the total CPB buffer size divided by the bit rate divided by 90000 (rounded downwards) and bp_vcl_initial_cpb_removal_offset[i][j] shall be inferred to be equal to zero.

- The first access unit is removed at time t = bp_nal_initial_cpb_removal_delay[i][j] ÷ 90000 and subsequent access units are removed at intervals based on the picture distance
- Using these inferences with the accompanying bitstreams, the CPB will not overflow or underflow and the DPB will not overflow.

6.5.6 Decoder conformance test for a particular profile, tier, and level

In order for a decoder for a particular profile, tier, and level to claim output order conformance to Rec. ITU-T H.266 | ISO/IEC 23090-3, the decoder shall successfully pass the static test specified in clause 6.5.4 with all the bitstreams of the normative test suite specified for testing decoders of this particular profile, tier, and level combination.

In order for a decoder of a particular profile, tier, and level to claim output timing conformance to Rec. ITU-T H.266 | ISO/IEC 23090-3, the decoder shall successfully pass both the static test specified in clause 6.5.4 and the dynamic test specified in clause 6.5.5 with all the bitstreams of the normative test suite specified for testing decoders of this particular profile, tier, and level.

Tables 1 through 10 specify the normative test suites. The profile, tier, and level combinations are described in the tables or in the .txt file associated with the bitstream.

6.6 Specification of the test bitstreams

6.6.1 General

Some characteristics of each bitstream listed in Table 1 are specified in this clause.

6.6.2 Test bitstreams – Coding tools for Main 10 profile with 4:2:0 chroma format and 10 bit depth

6.6.2.1 Chroma separate tree (CST)

6.6.2.1.1 Test bitstream CST_A_MediaTek

Specification: All pictures are coded in I slices with CST enabled. CST is tested with all possible luma and chroma block sizes, and luma-chroma block size combinations (e.g., luma block size is larger than, equal to, or smaller than the corresponding chroma block size).

Functional stage: Reconstruction process.

Purpose: Check that the decoder can properly decode slices with CST enabled.

6.6.2.2 Dependent quantization (DQ)

6.6.2.2.1 Test bitstream DQ_A_HHI

Specification: The bitstream consists of three CVSs, with the following properties:

- The first CVS uses dependent quantization for all pictures, all non-related features (inter tools, ALF, ...) are disabled, and MTS and LFNST are disabled.
- The second CVS uses dependent quantization for all pictures, all non-related features (inter tools, ALF, ...) are disabled, and MTS (for intra) and LFNST are enabled.
- The third CVS exercises a picture-level selection between dependent quantization, sign data hiding, and standard quantization, all non-related features (inter tools, ALF, ...) are disabled, and MTS (for intra) and LFNST are enabled.

Functional stage: Dependent quantization.

Purpose: Check that the decoder can properly decode slices with DQ enabled.

6.6.2.2.2 Test bitstream DQ_B_HHI

Specification: The bitstream consists of three CVSs of resolution 1920 x 1080, with the following properties:

- The first CVS uses dependent quantization for all pictures, all non-related features (inter tools, ALF, ...) are disabled, and MTS and LFNST are disabled.
- The second CVS uses dependent quantization for all pictures, all non-related features (inter tools, ALF, ...) are disabled, and MTS (for intra) and LFNST are enabled.

 The third CVS exercises a picture-level selection between dependent quantization, sign data hiding, and standard quantization, all non-related features (inter tools, ALF, ...) are disabled, and MTS (for intra) and LFNST are enabled.

Functional stage: Dependent quantization.

Purpose: Check that the decoder can properly decode slices with DQ enabled.

6.6.2.3 Cross-component linear model (CCLM)

6.6.2.3.1 Test bitstream CCLM_A_KDDI

Specification: The bitstream exercises corner cases for coding structures using CCLM with the following properties:

- POC0: Chroma CU size is 64x64.
- POC1: First split of CU is horizontal, i.e., CU size is 64x32.
- POC2: First split of CU is quad, i.e., CU size is 32x32.
- POC3: First and second split of CU are horizontal and vertical, respectively.
- POC4: First split of CU is vertical or ternary, i.e., none of condition is satisfied for CCLM.
- POC5: CU size is 64x64 and ISP is enabled.
- POC6: First luma split is something else than quad.

Functional stage: Intra prediction.

Purpose: Check that the decoder can properly decode slices with CCLM enabled.

6.6.2.4 Multiple transform set (MTS)

6.6.2.4.1 Test bitstream MTS_A_LGE

Specification: The bitstream exercises the following transform features:

- 1st part
 - Explicit intra MTS on and explicit inter MTS off with low frequency non-separable transform (LFNST) disabled.
 - Include all test cases for ISP, MIP, luma tree, and CST.
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - o Include all possible block sizes and partitions where all MTS combinations can happen.
- 2nd part
 - o Implicit MTS on and explicit inter MTS off with LFNST disabled.
 - Include all test cases for ISP, MIP, luma tree, and CST.
 - o Include all possible block sizes and partitions (especially for ISP) for all allowable MTS combinations.

Functional stage: Transform.

Purpose: Check that the decoder can properly decode slices with MTS enabled.

6.6.2.4.2 Test bitstream MTS_B_LGE

Specification: The bitstream exercises the following transform features:

- 1st part
 - \circ $\;$ Explicit intra MTS on and explicit inter MTS off with LFNST disabled.
 - o Include all test cases for SBT, single tree and TU-tiling based on maximum transform size (64).
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - $\circ~$ Include all possible block sizes and partitions (especially for SBT) where all MTS combinations can happen.
- 2nd part
 - \circ $\;$ Implicit intra MTS on and explicit inter MTS off with LFNST disabled.

- Include all test cases for SBT, single tree, and TU-tiling based on maximum transform size (64).
- Include all possible block sizes and partitions (especially for SBT) where all MTS combinations can happen.
- 3rd part
 - o Implicit MTS on and explicit inter MTS off with LFNST disabled.
 - Include all test cases for SBT and single tree.
 - \circ $\,$ Include all possible block sizes and partitions (especially for SBT) where all MTS combinations can happen.
- 4th part
 - Explicit intra MTS on and explicit inter MTS on with LFNST disabled.
 - Include all test cases for SBT and single tree.
 - Include all possible block sizes and partitions (especially for SBT) where all MTS combinations can happen.

Purpose: Check that the decoder can properly decode slices with MTS enabled.

6.6.2.5 Adaptive loop filter (ALF)

6.6.2.5.1 Test bitstream ALF_A_Huawei

Specification: This bitstream uses both ALF and virtual boundary, as follows:

- Applies ALF virtual boundary (VB) at non-CTC CTU sizes (CTU size of 64 is used).
- Positions luma VB at 4 lines (Pos: 60) and chroma VB at 2 lines (Pos: 62) above the CTU height.

Functional stage: Adaptive loop filter.

Purpose: Check that the decoder can properly decode slices with ALF enabled.

6.6.2.5.2 Test bitstream ALF_B_Huawei

Specification: This bitstream uses both ALF and virtual boundary, as follows:

- Applies ALF virtual boundary (VB) to sequences whose picture height is 1 CTU (CTU size of 128 is used as per CTC).
- Positions luma VB at 4 lines (Pos: 124) and chroma VB at 2 lines (Pos: 62) above the CTU height.

Functional stage: Adaptive loop filter.

Purpose: Check that the decoder can properly decode slices with ALF enabled.

6.6.2.5.3 Test bitstream ALF_C_KDDI

Specification: Bitstream exercises clipping values of non-linear ALF.

Functional stage: Adaptive loop filter.

Purpose: Check that the decoder can properly decode slices with ALF enabled.

6.6.2.5.4 Test bitstream ALF_D_Qualcomm

Specification: Bitstream uses multiple ALF APSs with LMCS enabled.

Functional stage: Adaptive loop filter.

Purpose: Check that the decoder can properly decode slices with ALF enabled.

6.6.2.6 Affine motion model (AFF)

6.6.2.6.1 Test bitstream AFF_A_HUAWEI

Specification: The bitstream enables 6-parameter affine mode by SPS flag. All allowed blocks sizes of Affine merge mode are exercised multiple times. All allowed blocks sizes of Affine AMVP mode, including 4-parameter and 6-parameter Affine mode, are exercised multiple times. All allowed candidates for Affine merge mode, including two

inherited candidates, four 6-parameter constructed candidates, two 4-parameter constructed candidates, and zero padding candidate are exercised multiple times. Inheritance of affine model from top CTU are exercised multiple times. Fallback mode for affine memory bandwidth restriction is triggered multiple times.

Functional stage: Affine mode inter prediction.

Purpose: Check that the decoder can properly decode slices with affine mode enabled.

6.6.2.6.2 Test bitstream AFF_B_HUAWEI

Specification: The bitstream uses affine mode, with 6-parameter affine mode disabled by SPS flag. All allowed blocks sizes of Affine merge mode are exercised multiple times. All allowed blocks sizes of 4-parameter Affine AMVP mode are exercised multiple times. All allowed candidates for Affine merge mode, including two inherited candidates, two 4-parameter constructed candidates, and zero padding candidate are exercised multiple times. Inheritance of affine model from top CTU are exercised multiple times. Fallback mode for affine memory bandwidth restriction is triggered multiple times. All allowed blocks sizes of 4-parameter Affine AMVP mode are exercised multiple times. All allowed blocks sizes of 4-parameter Affine merge mode are exercised multiple times. All allowed blocks sizes of 4-parameter Affine AMVP mode are exercised multiple times. All allowed blocks sizes of 4-parameter constructed candidates, and zero padding candidates for Affine merge mode, including two inherited candidates, two 4-parameter constructed candidates, and zero padding candidates for Affine merge mode, including two inherited candidates, two 4-parameter constructed candidates, and zero padding candidate are exercised multiple times. Inheritance of affine model from top CTU are exercised multiple times. Fallback mode for affine memory bandwidth restriction is triggered multiple times.

Functional stage: Affine mode inter prediction.

Purpose: Check that the decoder can properly decode slices with affine mode enabled.

6.6.2.7 Subblock-based temporal merging candidates (SbTMVP)

6.6.2.7.1 Test bitstream SbTMVP_A_Bytedance

Specification: The bitstream uses SbTMVP when affine is disabled.

Functional stage: Inter prediction process.

Purpose: Check that the decoder can properly decode PUs with SbTMVP on and affine off.

6.6.2.7.2 Test bitstream SbTMVP_B_Bytedance

Specification: This bitstream disables SbTMVP.

Functional stage: Inter prediction process.

Purpose: Check that the decoder can properly decode PUs with SbTMVP off.

6.6.2.8 Adaptive motion vector resolution (AMVR)

6.6.2.8.1 Test bitstream AMVR_A_HHI

Specification: The bitstream exercises translational and affine AMVR with different settings. It represents a concatenation of five CVSs with the following properties:

- The first CVS exercises translational AMVR with amvr_precision_idx equal to 1 (i.e., 1 luma sample motion vector resolution).
- The second CVS exercises translational AMVR with amvr_precision_idx equal to 2 (i.e., 4 luma samples motion vector resolution).
- The third CVS exercises translational AMVR with amvr_precision_idx equal to 0 (i.e., 1/2 luma sample motion vector resolution). This implies application of the Switchable Interpolation Filter (SIF).
- The fourth CVS exercises affine AMVR with amvr_precision_idx equal to 0 (i.e., 1/16 luma sample motion vector resolution).
- The fifth CVS exercises affine AMVR with amvr_precision_idx equal to 1 (i.e., 1 luma sample motion vector resolution).

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with AMVR enabled.

6.6.2.8.2 Test bitstream AMVR_B_HHI

Specification: The bitstream exercises AMVR. It cycles frame-by-frame between the following variants:

- Translational AMVR with amvr_precision_idx equal to 1 (i.e., 1 luma sample motion vector resolution).
- Translational AMVR with amvr_precision_idx equal to 2 (i.e., 4 luma samples motion vector resolution).
- Translational AMVR with amvr_precision_idx equal to 0 (i.e., 1/2 luma sample motion vector resolution), this implies application of the Switchable Interpolation Filter (SIF).
- Affine AMVR with amvr_precision_idx equal to 0 (i.e., 1/16 luma sample motion vector resolution).
- Affine AMVR with amvr_precision_idx equal to 1 (i.e., 1 luma sample motion vector resolution).

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with AMVR enabled.

6.6.2.9 Bi-directional optical flow (BDOF)

6.6.2.9.1 Test bitstream BDOF_A_MediaTek

Specification: Bitstream exercises all possible implicit BDOF on/off conditions and subblock usages.

Functional stage: Inter prediction process.

Purpose: Check that the decoder can properly decode CUs with BDOF enabled.

6.6.2.10 Combined intra/inter prediction (CIIP)

6.6.2.10.1 Test bitstream CIIP_A_MediaTek

Specification: The bitstream exercises all possible inter direction, block sizes, and combining weights for CIIP.

Functional stage: Inter prediction process.

Purpose: Check that the decoder can properly decode CUs with CIIP enabled.

6.6.2.11 Merge with MVD (MMVD)

6.6.2.11.1 Test bitstream MMVD_A_SAMSUNG

Specification: The bitstream uses MMVD with different numbers of MMVD distance entries.

Functional stage: Inter prediction process.

Purpose: Check that the decoder can properly decode bitstreams with merge with MMVD enabled.

6.6.2.12 Bi-predictive with CU weights (BCW)

6.6.2.12.1 Test bitstream BCW_A_MediaTek

Specification: The bitstream exercises all possible combining weights for BCW.

Functional stage: Inter prediction process.

Purpose: Check that the decoder can properly decode CUs with BCW enabled.

6.6.2.13 Multi-reference line prediction (MRLP)

6.6.2.13.1 Test bitstream MRLP_A_HHI

Specification: The bitstream contains all possible combinations of extended intra reference lines for luma indicated by intra_luma_ref_idx = $\{1, 2\}$ and most probable modes except the DC, indicated by intra_luma_mpm_idx = $\{0, 1, 2, 3, 4\}$. For the CUs at the top border of a CTU, extended references lines are not used in the MRL index is not present in the bitstream. All CTC tools are enabled.

Functional stage: Intra prediction and mode signalling processes.

Purpose: Test all combinations of reference line indices and associated MPM signalling with all tools on.

6.6.2.13.2 Test bitstream MRLP_B_HHI

Specification: The bitstream contains all possible combinations of extended intra reference lines for luma indicated by intra_luma_ref_idx = $\{1, 2\}$ and most probable modes except the DC, indicated by intra_luma_mpm_idx = $\{0, 1, 2, 3, 4\}$. For the CUs at the top border of a CTU, extended references lines are not used in the MRL index is not present in the bitstream. The following prediction modes have been disabled: Intra: ISP and MIP, Inter: SBT, MMVD, Affine, SubPuMvp, IMV, BCW, BIO, CIIP, GPM, DisFracMMVD, AffineAmvr, DMVR, SMVD, and PROF.

Functional stage: Intra prediction and mode signalling processes.

Purpose: Test all combinations of reference line indices and associated MPM signalling with specific intra and inter tools turned off.

6.6.2.14 Intra block copy mode (IBC)

6.6.2.14.1 Test bitstream IBC_A_Tencent

Specification: This bitstream exercises general IBC features, merge, skip and AMVP modes.

Functional stage: Intra prediction.

Purpose: Check that the decoder can properly decode bitstreams with IBC enabled.

6.6.2.14.2 Test bitstream IBC_B_Tencent

Specification: This bitstream exercises general IBC features, merge, skip and AMVP modes, with BV predictor size equal to 1 (MaxNumIBCMergeCand=1).

Functional stage: Intra prediction.

Purpose: Check that the decoder can properly decode bitstreams with IBC enabled.

6.6.2.14.3 Test bitstream IBC_C_Tencent

Specification: This bitstream exercises general IBC features, merge, skip and AMVP modes, with Dual Tree disabled (DualITree=0).

Functional stage: Intra prediction.

Purpose: Check that the decoder can properly decode bitstreams with IBC enabled.

6.6.2.14.4 Test bitstream IBC_D_Tencent

Specification: This bitstream exercises general IBC features, merge, skip and AMVP modes, with AMVR disabled.

Functional stage: Intra prediction.

Purpose: Check that the decoder can properly decode bitstreams with IBC enabled.

6.6.2.14.5 Test bitstream IBC_E_Tencent

Specification: This bitstream exercises general IBC blocks with all possible block sizes.

Functional stage: Intra prediction.

Purpose: Check that the decoder can properly decode bitstreams with IBC enabled.

6.6.2.15 Intra sub-partitioning (ISP)

6.6.2.15.1 Test bitstream ISP_A_HHI

Specification: The bitstream contains various combinations of block sizes, ISP split types, intra modes and LFNST indices. It uses an AI configuration and 34 frames with QP 28.

Functional stage: Intra prediction.

Purpose: Check that the decoder can properly decode bitstreams with ISP enabled.

6.6.2.15.2 Test bitstream ISP_B_HHI

Specification: The bitstream contains various combinations of block sizes, ISP split types, intra modes and LFNST indices. It uses a RA configuration and 161 frames with QP 34.

Functional stage: Intra prediction.

Purpose: Check that the decoder can properly decode bitstreams with ISP enabled.

6.6.2.16 Decoder motion vector refinement (DMVR)

6.6.2.16.1 Test bitstream DMVR_A_Huawei

Specification: This bitstream exercises DMVR with the following features:

- All allowed blocks sizes of DMVR are exercised multiple times.
- Motion vector wraparound is enabled where DMVR uses wrapped around reference samples.
- BCW and explicit weighted biprediction is turned on for luma and chroma components, to test disabling of DMVR.
- All integer delta motion vector combinations are exercised multiple times.
- All fractional delta MV are exercised multiple times.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with DMVR enabled.

6.6.2.16.2 Test bitstream DMVR_B_KDDI

Specification: This bitstream exercises DMVR with corner cases of SAD variations.

Functional stage: Inter prediction process.

Purpose: Check that the decoder can properly decode bitstreams with DMVR enabled.

6.6.2.17 Sub-block transform (SBT)

6.6.2.17.1 Test bitstream SBT_A_Huawei

Specification: The bitstream exercises SVT with all allowed blocks sizes exercised multiple times (at least once for each SBT mode for each allowed CU size).

Functional stage: Transform process.

Purpose: Check that the decoder can properly decode bitstreams with DMVR enabled.

6.6.2.18 Luma mapping with chroma scaling (LMCS)

6.6.2.18.1 Test bitstream LMCS_A_Dolby

Specification: This bitstream tests control of LMCS at the slice level, with the picture split into 4 tiles and 4 rectangular slices.

Functional stage: In-loop filter process.

Purpose: Check that the decoder can properly decode bitstreams with LMCS enabled.

6.6.2.18.2 Test bitstream LMCS_B_Dolby

Specification: This bitstream tests control of LMCS at the slice level, with the picture split into 8 rectangular slices, 12 tiles and 2 subpictures.

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with LMCS enabled.

6.6.2.18.3 Test bitstream LMCS_C_Dolby

Specification: This bitstream tests control of LMCS for the entire CVS according to NoLmcsConstraintFlag.

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with LMCS enabled.

6.6.2.19 Sign data hiding (SDH)

6.6.2.19.1 Test bitstream SDH_A_Dolby

Specification: This bitstream tests SDH on/off control at picture level.

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with LMCS enabled.

6.6.2.20 Symmetric motion vector difference (SMVD)

6.6.2.20.1 Test bitstream SMVD_A_HUAWEI

Specification: This bitstream exercises all allowed blocks sizes of SMVD mode multiple times.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with SMVD enabled.

6.6.2.21 Block-based delta pulse code modulation (BDPCM)

6.6.2.21.1 Test bitstream BDPCM_A_Orange

Specification: This bitstream exercises BDPCM-coded block of each possible block size, in both luma and chroma.

Functional stage: Intra coding.

Purpose: Check that the decoder can properly decode bitstreams with BDPCM enabled.

6.6.2.22 Matrix based intra prediction (MIP)

6.6.2.22.1 Test bitstream MIP_A_HHI

Specification: This bitstream exercises MIP in different combinations with other tools. The bitstream consists of three CVSs with the following properties:

- First CVS: For each M, N in {4, 8, 16, 32, 64}, the bitstream contains an MxN-luma-intra-block in which the intra-prediction signal is generated by a mip-mode and in which intra_mip_transposed_flag is false and it contains an MxN-luma-intra-block in which the intra-prediction signal is generated by a mip-mode and in which intra_mip_transposed_flag is true. For each mip-matrix occurring in the spec, the bitstream contains a luma-intra-block in which the intra-prediction signal is generated by a mip-mode that uses this mip-matrix.
- Second CVS: MIP is enabled, MTS and intra tools LFNST, ISP, MRL are disabled. Each slice is an intra slice.
- Third CVS: MIP is enabled, all other intra tools are enabled. Each slice is an intra slice.

Functional stage: Intra coding.

Purpose: Check that the decoder can properly decode bitstreams with MIP enabled.

6.6.2.22.2 Test bitstream MIP_B_HHI

Specification: This bitstream exercises MIP with all other CTC tools enabled.

Functional stage: Intra coding.

Purpose: Check that the decoder can properly decode bitstreams with MIP enabled.

6.6.2.23 Low frequency non-separable transform (LFNST)

6.6.2.23.1 Test bitstream LFNST_A_LGE

Specification: This bitstream exercises LFNST with MTS disabled, as follows:

- Include all test cases for ISP, MIP, luma tree, and CST with LFNST.
- Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
- Include all possible block sizes and partitions (especially for ISP) where LFNST can be applied.

Purpose: Check that the decoder can properly decode bitstreams with LFNST enabled.

6.6.2.23.2 Test bitstream LFNST_B_LGE

Specification: This bitstream exercises LFNST with MTS disabled, as follows:

- Include all test cases for single tree with LFNST.
- Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
- Include all possible block sizes where LFNST can be applied.

Functional stage: Transform.

Purpose: Check that the decoder can properly decode bitstreams with LFNST enabled.

6.6.2.23.3 Test bitstream LFNST_C_HHI

Specification: This bitstream exercises LFNST and its signalling in different combination with other tools. The bitstream consists of four CVSs with the following properties:

- The first CVS enables LFNST and explicit MTS; ISP and MIP are enabled.
- The second CVS enables LFNST and explicit MTS; ISP and MIP are disabled.
- The third CVS enables LFNST and explicit MTS; ISP is enabled and MIP is disabled.
- The fourth CVS enables LFNST and explicit MTS; ISP is disabled and MIP is enabled.

Functional stage: Transform.

Purpose: Check that the decoder can properly decode bitstreams with LFNST enabled.

6.6.2.23.4 Test bitstream LFNST_D_HHI

Specification: This bitstream exercises LFNST and its signalling in different combination with other tools. The bitstream consists of four CVSs with the following properties:

- The first CVS enables LFNST and explicit MTS; ISP and MIP are enabled.
- The second CVS enables LFNST and explicit MTS; ISP and MIP are disabled.
- The third CVS enables LFNST and explicit MTS; ISP is enabled and MIP is disabled.
- The fourth CVS enables LFNST and explicit MTS; ISP is disabled and MIP is enabled.

Functional stage: Transform.

Purpose: Check that the decoder can properly decode bitstreams with LFNST enabled.

6.6.2.24 Transform tool set (MTS_LFNST)

6.6.2.24.1 Test bitstream MTS_LFNST_A_LGE

Specification: This bitstream exercises various types of enabling of MTS and LFNST. The bitstream consists of five parts with the following properties:

- 1st part
 - Explicit intra MTS on and explicit inter MTS off (CTC).
 - Include all test cases for ISP, MIP, luma tree, and CST.
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - \circ $\;$ Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
 - $\circ~$ Include all possible block sizes and partitions (especially for ISP) where all combinations of MTS and LFNST can happen.

- 2nd part
 - Explicit intra MTS on and explicit inter MTS off with maximum transform size set to 32.
 - Include all test cases for ISP, MIP, luma tree, CST, and TU-tiling based on maximum transform size (32).
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - o Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
 - Include all possible block sizes and partitions (especially for ISP) where all combinations of MTS and LFNST can happen.
- 3rd part
 - Implicit MTS on and explicit inter MTS off.
 - Include all test cases for ISP, MIP, luma tree, and CST.
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - o Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
 - Include all possible block sizes and partitions (especially for ISP) where all combinations of MTS and LFNST can happen.
- 4th part
 - Implicit MTS on and explicit inter MTS on.
 - Include all test cases for ISP, MIP, luma tree, and CST.
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - o Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
 - \circ $\,$ Include all possible block sizes and partitions (especially for ISP) where all combinations of MTS and LFNST can happen.
- 5th part
 - Explicit MTS on and explicit inter MTS on.
 - Include all test cases for ISP, MIP, luma tree, and CST.
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - o Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
 - Include all possible block sizes and partitions (especially for ISP) where all combinations of MTS and LFNST can happen.

Purpose: Check that the decoder can properly decode bitstreams with MTS and LFNST enabled.

6.6.2.24.2 Test bitstream MTS_LFNST_B_LGE

Specification: This bitstream exercises various types of enabling of MTS and LFNST. The bitstream consists of five parts with the following properties:

- 1st part
 - Explicit intra MTS on and explicit inter MTS off (CTC).
 - o Include all test cases for SBT, single tree, and TU-tiling based on maximum transform size (64).
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - o Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
 - Include all possible block sizes and partitions (especially for SBT) where all combinations of MTS and LFNST can happen.
- 2nd part
 - Explicit intra MTS on and explicit inter MTS off with maximum transform size set to 32.

- Include all test cases for SBT, single tree, and TU-tiling based on maximum transform size (32).
- Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
- o Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
- Include all possible block sizes and partitions (especially for SBT) where all combinations of MTS and LFNST can happen.
- 3rd part
 - Implicit MTS on and explicit inter MTS off.
 - o Include all test cases for SBT, single tree and TU-tiling based on maximum transform size (64).
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
 - Include all possible block sizes and partitions (especially for SBT) where all combinations of MTS and LFNST can happen.
- 4th part
 - Implicit MTS on and explicit inter MTS on.
 - Include all test cases for SBT, single tree and TU-tiling based on maximum transform size (64).
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - o Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
 - Include all possible block sizes and partitions (especially for ISP) where all combinations of MTS and LFNST can happen.
- 5th part
 - Explicit MTS on and explicit inter MTS on.
 - Include all test cases for SBT, single tree and TU-tiling based on maximum transform size (64).
 - Include all candidates of explicit MTS, i.e., DCT2-DCT2, DST7-DST7, DCT8-DST7, DST7-DCT8, and DCT8-DCT8.
 - o Include all sets and candidates of LFNST, i.e., 4 sets and 2 candidates per set.
 - Include all possible block sizes and partitions (especially for SBT) where all combinations of MTS and LFNST can happen.

Purpose: Check that the decoder can properly decode bitstreams with MTS and LFNST enabled.

6.6.2.25 Joint coding of chroma residuals (JCCR)

6.6.2.25.1 Test bitstream JCCR_A_Nokia

Specification: Bitstream exercises all possible JCCR modes. In addition, different combinations for values of ph_joint_cbcr_sign_flag and sh_joint_cbcr_qp_offset syntax elements are included in the bitstream. Coded video contains three frames at resolution of 416x240.

Functional stage: TU reconstruction.

Purpose: Check that the decoder can properly decode TUs with different JCCR modes, different JCCR QP offsets and different JCCR signs.

6.6.2.25.2 Test bitstream JCCR_B_Nokia

Specification: Bitstream exercises all possible JCCR modes. In addition, different combinations for values of ph_joint_cbcr_sign_flag and sh_joint_cbcr_qp_offset syntax elements are included in the bitstream. Coded video contains three frames at resolution of 1920x1080.

Functional stage: TU reconstruction.

Purpose: Check that the decoder can properly decode TUs with different JCCR modes, different JCCR QP offsets and different JCCR signs.

6.6.2.25.3 Test bitstream JCCR_C_HHI

Specification: This bitstream exercises joint chroma residual coding in combination with other tools. The bitstream consists of two CVSs with the following properties:

- The first CVS uses a random selection of the jointCbCr sign flag, forces the usage of all possible jointCbCr modes, non-related features (inter tools, ALF, ...) are disabled, MTS, LFNST, LMCS, and DQ are disabled.
- The first CVS uses a random selection of the jointCbCr sign flag, forces the usage of all possible jointCbCr modes, non-related features (inter tools, ALF, ...) are disabled, MTS (for intra), LFNST, LMCS, and DQ are enabled.

Functional stage: TU reconstruction.

Purpose: Check that the decoder can properly decode TUs with different JCCR modes.

6.6.2.25.4 Test bitstream JCCR_D_HHI

Specification: This bitstream exercises joint chroma residual coding in combination with other tools. The bitstream consists of two CVSs with the following properties:

- The first CVS uses a random selection of the jointCbCr sign flag, forces the usage of all possible jointCbCr modes, non-related features (inter tools, ALF, ...) are disabled, MTS, LFNST, LMCS, and DQ are disabled.
- The first CVS uses a random selection of the jointCbCr sign flag, forces the usage of all possible jointCbCr modes, non-related features (inter tools, ALF, ...) are disabled, MTS (for intra), LFNST, LMCS, and DQ are enabled.

Functional stage: TU reconstruction.

Purpose: Check that the decoder can properly decode TUs with different JCCR modes.

6.6.2.25.5 Test bitstream JCCR_E_Nokia

Specification: Bitstream exercises all possible JCCR modes. In addition, different combinations for values of ph_joint_cbcr_sign_flag and sh_joint_cbcr_qp_offset syntax elements are included in the bitstream. Coded video contains three frames at resolution of 416x240.

Functional stage: TU reconstruction.

Purpose: Check that the decoder can properly decode TUs with different JCCR modes, different JCCR QP offsets and different JCCR signs.

6.6.2.25.6 Test bitstream JCCR_F_Nokia

Specification: Bitstream exercises all possible JCCR modes. In addition, different combinations for values of ph_joint_cbcr_sign_flag and sh_joint_cbcr_qp_offset syntax elements are included in the bitstream. Coded video contains three frames at resolution of 1920x1080.

Functional stage: TU reconstruction.

Purpose: Check that the decoder can properly decode TUs with different JCCR modes, different JCCR QP offsets and different JCCR signs.

6.6.2.26 Temporal motion vector predictor (TMVP)

6.6.2.26.1 Test bitstream TMVP_A_Chipsnmedia

Specification: Bitstream disables TMVP. Uses scaled 'ParkRunning3' test sequence with QP 32 and random access configuration.

Functional stage: Motion vector prediction.

Purpose: Check that the decoder can properly decode bitstreams with temporal motion vector prediction enabled and disabled.

6.6.2.26.2 Test bitstream TMVP_B_Chipsnmedia

Specification: Bitstream enables TMVP. Uses scaled 'ParkRunning3' test sequence with QP 32 and random access configuration.

Functional stage: Motion vector prediction.

Purpose: Check that the decoder can properly decode bitstreams with temporal motion vector prediction enabled and disabled.

6.6.2.26.3 Test bitstream TMVP_C_Chipsnmedia

Specification: Bitstream disables TMVP. Uses scaled 'ParkRunning3' test sequence with QP 32 and low delay configuration.

Functional stage: Motion vector prediction.

Purpose: Check that the decoder can properly decode bitstreams with temporal motion vector prediction enabled and disabled.

6.6.2.26.4 Test bitstream TMVP_D_Chipsnmedia

Specification: Bitstream enables TMVP. Uses scaled 'ParkRunning3' test sequence with QP 32 and low delay configuration.

Functional stage: Motion vector prediction.

Purpose: Check that the decoder can properly decode bitstreams with temporal motion vector prediction enabled and disabled.

6.6.2.27 Motion vector compression (MVCOMP)

6.6.2.27.1 Test bitstream MVCOMP_A_Sharp

Specification: This bitstream includes large motion vectors that are stored in the temporal motion vector buffer and that are later retrieved for motion vector prediction.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with large motion vectors.

6.6.2.28 Sampled adaptive offset (SAO)

6.6.2.28.1 Test bitstream SAO_A_SAMSUNG

Specification: This bitstream uses SAO with ALF and CCALF disabled.

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with various in-loop filter combinations.

6.6.2.28.2 Test bitstream SAO_B_SAMSUNG

Specification: This bitstream uses SAO with LMCS disabled.

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with various in-loop filter combinations.

6.6.2.28.3 Test bitstream SAO_C_SAMSUNG

Specification: This bitstream uses SAO with ALF, CCALF, and LMCS disabled.

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with various in-loop filter combinations.

6.6.2.29 Prediction refinement using optical flow (PROF)

6.6.2.29.1 Test bitstream PROF_A_Interdigital

Specification: This bitstream contains pictures with high rotation motion.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with PROF enabled.

6.6.2.29.2 Test bitstream PROF_B_Interdigital

Specification: The bitstream contains pictures with high zoom and rotation motion.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with PROF enabled.

6.6.2.30 Deblocking (DEBLOCKING)

6.6.2.30.1 Test bitstream DEBLOCKING_A_Sharp

Specification: This bitstream has luma deblocking filters of lengths (7,7), (7,5), (5,7), (7,3), (3,7), (5,5), (5,3) and (3,5).

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with deblocking filter enabled.

6.6.2.30.2 Test bitstream DEBLOCKING_B_Sharp

Specification: This bitstream has luma deblocking filters of lengths (3,3) and (1,3).

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with deblocking filter enabled.

6.6.2.30.3 Test bitstream DEBLOCKING_C_Huawei

Specification: This bitstream tests that luma deblocking is performed on a 4 x 4 deblocking grid and ensures that constrained weak filter (1 + 1) is applied when one of the blocks sharing the edge has size ≤ 4 samples in the direction of deblocking.

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with deblocking filter enabled.

6.6.2.30.4 Test bitstream DEBLOCKING_E_Ericsson

Specification: Bitstream exercises all luma and chroma deblocking lengths for deblocking of transform and prediction block and sub-block boundaries.

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with deblocking filter enabled.

6.6.2.30.5 Test bitstream DEBLOCKING_F_Ericsson

Specification: Bitstream exercises deblocking control features luma adaptive deblocking and control of beta and tc for both luma and chroma.

Functional stage: In-loop filter.

Purpose: Check that the decoder can properly decode bitstreams with deblocking filter enabled.

6.6.2.31 Weighted prediction (WP)

6.6.2.31.1 Test bitstream WP_A_InterDigital

Specification: The bitstream was encoded in random access configuration. The content has fading to black. WP have been disabled for pictures with Tid equal to 2.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with weighted prediction enabled.

6.6.2.31.2 Test bitstream WP_B_InterDigital

Specification: The bitstream was encoded in low-delay configuration. The content has flashing and fading.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with weighted prediction enabled.

6.6.2.32 Parallel merge (PMERGE)

6.6.2.32.1 Test bitstream PMERGE_A_MediaTek

Specification: This bitstream exercises the sps_log2_parallel_merge_level_minus2 equals to 1 with luma CTB size 128x128.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with parallel merge control.

6.6.2.32.2 Test bitstream PMERGE_B_MediaTek

Specification: This bitstream exercises the sps_log2_parallel_merge_level_minus2 equals to 2 with luma CTB size 128x128.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with parallel merge control.

6.6.2.32.3 Test bitstream PMERGE_C_MediaTek

Specification: This bitstream exercises the sps_log2_parallel_merge_level_minus2 equals to 3 with luma CTB size 128x128.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with parallel merge control.

6.6.2.32.4 Test bitstream PMERGE_D_MediaTek

Specification: This bitstream exercises the sps_log2_parallel_merge_level_minus2 equals to 4 with luma CTB size 128x128.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with parallel merge control.

6.6.2.32.5 Test bitstream PMERGE_E_MediaTek

Specification: This bitstream exercises the sps_log2_parallel_merge_level_minus2 equals to 5 with luma CTB size 128x128.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with parallel merge control.

6.6.2.33 Intra prediction (IP)

6.6.2.33.1 Test bitstream IP_A_Huawei

Specification: The bitstream exercises luminance intra prediction modes.

Functional stage: Intra sample prediction.

Purpose: Test intra sample reconstruction process.

6.6.2.33.2 Test bitstream IP_B_Nokia

Specification: Bitstream exercises all the intra prediction modes.

Functional stage: Intra sample prediction.

Purpose: Test intra sample reconstruction process, especially wide angle modes in non-square blocks.

6.6.2.34 Luma intra prediction mode (MPM)

6.6.2.34.1 Test bitstream MPM_A_LGE

Specification: This bitstream contains MPM candidate for all the sizes of the blocks, i.e., all WxH-sized TUs, where both W and H are equal to one of the following values: {4, 8, 16 or 32}. All intra coding tools except MIP are enabled.

Functional stage: Intra prediction.

Purpose: Check that the decoder can properly decode all MPM modes.

6.6.2.35 CTU sizes (CTU, CU)

6.6.2.35.1 Test bitstream CTU_A_MediaTek

Specification: Bitstream exercises all possible CU sizes when maximum CTU size is set to 128x128.

Functional stage: Partitioning.

Purpose: Check that a decoder can parse and reconstruct correctly when maximum CTU size is set to 128x128.

6.6.2.35.2 Test bitstream CTU_B_MediaTek

Specification: Bitstream exercises all possible CU sizes when maximum CTU size is set to 64x64.

Functional stage: Partitioning.

Purpose: Check that a decoder can parse and reconstruct correctly when maximum CTU size is set to 64x64.

6.6.2.35.3 Test bitstream CTU_C_MediaTek

Specification: Bitstream exercises all possible CU sizes when maximum CTU size is set to 32x32.

Functional stage: Test the parsing and reconstruction of slices.

Purpose: Check that a decoder can parse and reconstruct correctly when maximum CTU size is set to 32x32.

6.6.2.36 Trees and partitioning (TREE, QTBTT)

6.6.2.36.1 Test bitstream TREE_A_HHI

Specification: This bitstream exercises a range of tree size and depths for CTUSize=32.

Functional stage: Partitioning.

Purpose: Check that the decoder can properly decode all partitioning modes.

6.6.2.36.2 Test bitstream TREE_B_HHI

Specification: This bitstream exercises a range of tree size and depths for CTUSize=64.

Functional stage: Partitioning.

Purpose: Check that the decoder can properly decode all partitioning modes.

6.6.2.36.3 Test bitstream TREE_C_HHI

Specification: This bitstream exercises a range of tree size and depths for CTUSize=128.

Functional stage: Partitioning.

Purpose: Check that the decoder can properly decode all partitioning modes.

6.6.2.36.4 Test bitstream QTBTT_A_MediaTek

Specification: Bitstream exercises all possible range of CU sizes and depths for QTBTT partitions.

Functional stage: Test the parsing and reconstruction of slices.

Purpose: Check that a decoder can parse and reconstruct correctly for all exercise range of CU sizes and depth for QTBTT partitions.

6.6.2.37 Boundary partition (BOUNDARY)

6.6.2.37.1 Test bitstream BOUNDARY_A_Huawei

Specification: This bitstream tests boundary handling on specific resolution with WidthxHeight, where Width = 256+8*n, Height = 256+8*m, m and n belong to $\{0...15\}$. QT depths for boundary blocks are selected as $\{1, 2, 3, 4\}$ with POC = $\{1, 2, 3, 4\}$, respectively.

Functional stage: Partitioning.

Purpose: Check that the decoder can properly decode all partitioning modes.

6.6.2.38 Transform (TRANS)

6.6.2.38.1 Test bitstream TRANS_A_Chipsnmedia

Specification: The bitstream has size 64 transform off, LFNST off, and DepQuant off for All Intra.

Functional stage: Transform.

Purpose: Check that the decoder can properly decode all transform modes.

6.6.2.38.2 Test bitstream TRANS_B_Chipsnmedia

Specification: The bitstream has size 64 transform on, LFNST off, and DepQuant off for All Intra.

Functional stage: Transform.

Purpose: Check that the decoder can properly decode all transform modes.

6.6.2.38.3 Test bitstream TRANS_C_Chipsnmedia

Specification: The bitstream has size 64 transform off, LFNST off, and DepQuant off for random access.

Functional stage: Transform.

Purpose: Check that the decoder can properly decode all transform modes.

6.6.2.38.4 Test bitstream TRANS_D_Chipsnmedia

Specification: The bitstream has size 64 transform on, LFNST off, and DepQuant off for random access.

Functional stage: Transform.

Purpose: Check that the decoder can properly decode all transform modes.

6.6.2.39 Quantization (QUANT)

6.6.2.39.1 Test bitstream QUANT_A_Huawei

Specification: This bitstream tests CU level QP adaptation.

Functional stage: Quantization.

Purpose: Check that the decoder can properly decode all quantization modes.

6.6.2.39.2 Test bitstream QUANT_B_Huawei

Specification: This bitstream tests CU level QP adaptation.

Functional stage: Quantization.

Purpose: Check that the decoder can properly decode all quantization modes.

6.6.2.39.3 Test bitstream QUANT_C_Huawei

Specification: This bitstream uses low QP with transform skip, so that deblocking filtering not used.

Functional stage: Quantization, In-loop filtering.

Purpose: Check that the decoder can properly decode all quantization modes.

6.6.2.39.4 Test bitstream QUANT_D_Huawei

Specification: Deblocking filtering is forced to be used by setting LoopFilterTcOffset_div2 and LoopFilterTcOffset_div2 to 12.

Functional stage: Quantization, In-loop filtering.

Purpose: Check that the decoder can properly decode all quantization modes.

6.6.2.39.5 Test bitstream QUANT_E_Interdigital

Specification: The bitstream use of local chroma QP offsets. It signals a PPS chroma QP offset list of maximal size, making use of maximal QP offset range.

Functional stage: Quantization.

Purpose: Check that the decoder can parse and use local chroma QP offsets.

6.6.2.40 Scaling list (SCALING)

6.6.2.40.1 Test bitstream SCALING_A_InterDigital

Specification: Bitstream uses scaling list in monochrome mode. Composed of 2 concatenated streams. The first one sets scaling lists every 8 frames, the second one sets scaling lists based on temporal ID.

Functional stage: Inverse quantization.

Purpose: Check that decoder can parse and use scaling list quantization matrices.

6.6.2.40.2 Test bitstream SCALING_B_InterDigital

Specification: The bitstream uses quantization matrices in colour mode for LFNST blocks. Composed of 2 concatenated streams. The first one sets scaling lists every 8 frames, the second one sets scaling lists based on temporal ID with sps_scaling_matrix_for_lfnst_disabled_flag OFF.

Functional stage: Inverse quantization.

Purpose: Check that decoder can parse and use scaling list quantization matrices.

6.6.2.40.3 Test bitstream SCALING_C_InterDigital

Specification: The bitstream sses scaling lists, reuses apsId, sets scaling lists ON and OFF. Uses slices, varying the scaling list enable flag in slice header.

Functional stage: Inverse quantization.

Purpose: Check that decoder can parse and use scaling list quantization matrices.

6.6.2.41 Entropy coding (ENTROPY)

6.6.2.41.1 Test bitstream ENTROPY_A_Chipsnmedia

Specification: This bitstream uses high bitrate for Low Delay P mode, with MIP enabled.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.41.2 Test bitstream ENTROPY_B_Sharp

Specification: The bitstream includes all combinations of cabac_init_flag in slice header (0, 1, absent).

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.41.3 Test bitstream ENTROPY_C_Qualcomm

Specification: Bitstream tests CABAC initialization, sweeping QP from 0 to 63.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.42 Entropy coding (ENTMAINTIER)

6.6.2.42.1 Test bitstream ENTMAINTIER_A_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 4. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.42.2 Test bitstream ENTMAINTIER_B_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 4.1. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.42.3 Test bitstream ENTMAINTIER_C_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 5. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.42.4 Test bitstream ENTMAINTIER_D_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 5.1. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.43 Entropy coding (ENTHIGHTIER)

6.6.2.43.1 Test bitstream ENTHIGHTIER_A_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 4 for High tier. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.43.2 Test bitstream ENTHIGHTIER_B_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 4.1 for High tier. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.43.3 Test bitstream ENTHIGHTIER_C_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 5 for High tier. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.43.4 Test bitstream ENTHIGHTIER_D_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 5.1 for High tier. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.

- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.2.44 All merge modes (MERGE)

6.6.2.44.1 Test bitstream MERGE_A_Qualcomm

Specification: This bitstream exercises the maximum number of merge candidates (MaxNumMergeCand) = 1 and Maximum number of GPM merge candidates (MaxNumGpmMergeCand) = 0.

Functional stage: Inter prediction.

Purpose: Check that the decoder properly decodes all merge modes.

6.6.2.44.2 Test bitstream MERGE_B_Qualcomm

Specification: This bitstream exercises the maximum number of merge candidates (MaxNumMergeCand) = 2 and Maximum number of GPM merge candidates (MaxNumGpmMergeCand) = 2.

Functional stage: Inter prediction.

Purpose: Check that the decoder properly decodes all merge modes.

6.6.2.44.3 Test bitstream MERGE_C_Qualcomm

Specification: This bitstream exercises the maximum number of merge candidates (MaxNumMergeCand) = 3 and Maximum number of GPM merge candidates (MaxNumGpmMergeCand) = 3.

Functional stage: Inter prediction.

Purpose: Check that the decoder properly decodes all merge modes.

6.6.2.44.4 Test bitstream MERGE_D_Qualcomm

Specification: This bitstream exercises the maximum number of merge candidates (MaxNumMergeCand) = 4 and Maximum number of GPM merge candidates (MaxNumGpmMergeCand) = 4.

Functional stage: Inter prediction.

Purpose: Check that the decoder properly decodes all merge modes.

6.6.2.44.5 Test bitstream MERGE_E_Qualcomm

Specification: This bitstream exercises the maximum number of merge candidates (MaxNumMergeCand) = 5 and Maximum number of GPM merge candidates (MaxNumGpmMergeCand) = 5.

Functional stage: Inter prediction.

Purpose: Check that the decoder properly decodes all merge modes.

6.6.2.44.6 Test bitstream MERGE_F_Qualcomm

Specification: This bitstream exercises the maximum number of merge candidates (MaxNumMergeCand) = 1 and Maximum number of GPM merge candidates (MaxNumGpmMergeCand) = 0.

Functional stage: Inter prediction.

Purpose: Check that the decoder properly decodes all merge modes.

6.6.2.44.7 Test bitstream MERGE_G_Qualcomm

Specification: This bitstream exercises the maximum number of merge candidates (MaxNumMergeCand) = 2 and Maximum number of GPM merge candidates (MaxNumGpmMergeCand) = 2.

Functional stage: Inter prediction.

Purpose: Check that the decoder properly decodes all merge modes.

6.6.2.44.8 Test bitstream MERGE_H_Qualcomm

Specification: This bitstream exercises the maximum number of merge candidates (MaxNumMergeCand) = 3 and Maximum number of GPM merge candidates (MaxNumGpmMergeCand) = 3.

Functional stage: Inter prediction.

Purpose: Check that the decoder properly decodes all merge modes.

6.6.2.44.9 Test bitstream MERGE_I_Qualcomm

Specification: This bitstream exercises the maximum number of merge candidates (MaxNumMergeCand) = 4 and Maximum number of GPM merge candidates (MaxNumGpmMergeCand) = 4.

Functional stage: Inter prediction.

Purpose: Check that the decoder properly decodes all merge modes.

6.6.2.44.10 Test bitstream MERGE_J_Qualcomm

Specification: This bitstream exercises the maximum number of merge candidates (MaxNumMergeCand) = 5 and Maximum number of GPM merge candidates (MaxNumGpmMergeCand) = 5.

Functional stage: Inter prediction.

Purpose: Check that the decoder properly decodes all merge modes.

6.6.2.45 Position dependent prediction combination (PDPC)

6.6.2.45.1 Test bitstream PDPC_A_Qualcomm

Specification: This bitstream tests the clipping function in PDPC for horizontal or vertical intra prediction modes.

Functional stage: Intra coding.

Purpose: Check that the decoder properly decodes the bitstream when PDPC is enabled.

6.6.2.45.2 Test bitstream PDPC_B_Qualcomm

Specification: This bitstream uses DPC with various block sizes.

Functional stage: Intra coding.

Purpose: Check that the decoder properly decodes the bitstream when PDPC is enabled.

6.6.2.45.3 Test bitstream PDPC_C_Qualcomm

Specification: This bitstream tests the clipping function in PDPC and the PDPC conditional check on the intra prediction mode. In this test each picture is a single I-slice where all the luma blocks are encoded using an identical intra prediction mode.

Functional stage: Intra coding.

Purpose: Check that the decoder properly decodes the bitstream when PDPC is enabled.

6.6.2.46 Wavefronts (WPP)

6.6.2.46.1 Test bitstream WPP_A_Sharp

Specification: The bitstream is encoded with sps_entropy_coding_sync_enabled_flag equal to 1.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with wavefront enabled.

6.6.2.46.2 Test bitstream WPP_B_Sharp

Specification: The bitstream is encoded with rectangular tile and sps_entropy_coding_sync_enabled_flag equal to 1 and pictures contain 4 tiles.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with wavefront enabled and tiles.

6.6.2.47 Lossless and near-lossless, include transform skip (LOSSLESS)

6.6.2.47.1 Test bitstream LOSSLESS_A_HHI

Specification: The coded slices are either I or B, and all blocks employ the transform skip mode and the regular residual coding stage for entropy coding.

Functional stage: Test the parsing and reconstruction of slices.

Purpose: Check that a decoder can parse and reconstruct correctly when the bitstream consists of transform skip mode and the regular residual coding stage operating at the lossless operation point.

6.6.2.47.2 Test bitstream LOSSLESS_B_HHI

Specification: The coded slices are either I or B, and most of the blocks employ the transform skip mode and the corresponding residual coding stage for entropy coding.

Functional stage: Test the parsing and reconstruction of slices.

Purpose: Check that a decoder can parse and reconstruct correctly when the bitstream consists of a high amount of transform skip mode but using the transform skip residual coding for entropy coding.

6.6.2.48 Reference picture resizing (RPR)

6.6.2.48.1 Test bitstream RPR_A_Alibaba

Specification: This bitstream has 4 pictures. The bitstream contains CUs encoded with inter-prediction mode using reference pictures with a higher resolution than the current picture. The luma resolution is 832x480 for pictures 0 and 1 and 1664x960 for pictures 2 and 3.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with RPR enabled.

6.6.2.48.2 Test bitstream RPR_B_Alibaba

Specification: The bitstream contains CUs encoded with inter-prediction mode using reference pictures with a higher resolution than the current picture. The luma resolution is 832x480 for pictures 0 and 1 and of 416x240 for pictures 2 and 3.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with RPR enabled.

6.6.2.48.3 Test bitstream RPR_C_Alibaba

Specification: The bitstream contains CUs encoded with inter-prediction mode using reference pictures with a higher resolution than the current picture. The luma resolution is 832x480 for pictures 0 and 1 and of 560x320 for pictures 2 and 3.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with RPR enabled.

6.6.2.48.4 Test bitstream RPR_D_Qualcomm

Specification: The bitstream uses reference picture resampling with 2x ratio with sps_chroma_horizontal_collocated_flag = 03.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with RPR enabled.

6.6.2.49 Cross-component ALF (CCALF)

6.6.2.49.1 Test bitstream CCALF_A_Sharp

Specification: This bitstream enables CCALF with filters that would exceed the output dynamic range and require a clip.

Functional stage: In-loop filtering.

Purpose: Check that the decoder can properly decode bitstreams with CCALF enabled.

6.6.2.49.2 Test bitstream CCALF_B_Sharp

Specification: This bitstream enables CCALF for all CTUs in the bitstream.

Functional stage: In-loop filtering.

Purpose: Check that the decoder can properly decode bitstreams with CCALF enabled.

6.6.2.49.3 Test bitstream CCALF_C_Sharp

Specification: This bitstream changes CCALF filters on a picture-by-picture basis.

Functional stage: In-loop filtering.

Purpose: Check that the decoder can properly decode bitstreams with CCALF enabled.

6.6.2.49.4 Test bitstream CCALF_D_Sharp

Specification: This bitstream enables CCALF for random CTUs in the bitstream (both channels).

Functional stage: In-loop filtering.

Purpose: Check that the decoder can properly decode bitstreams with CCALF enabled.

6.6.2.50 Geometric partitioning mode (GPM)

6.6.2.50.1 Test bitstream GPM_A_Alibaba

Specification: This bitstream contains CUs with all the combinations of geometric partition modes, i.e., all the WxH sized CUs with 0 - 63 geometric partition modes. The value of WxH is equal to one of the following values: {8x8, 8x16, 8x32, 16x8, 16x16, 16x32, 16x64, 32x8, 32x16, 32x32, 32x64, 64x16, 64x32 and 64x64}.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with GPM enabled.

6.6.2.50.2 Test bitstream GPM_B_Alibaba

Specification: This bitstream uses different numbers of GPM candidates, including 2, 3, 4, 5 and 6. Correspondingly, the value of sps_max_num_merge_cand_minus_max_num_gpm_cand is set to 4, 3, 2, 1 and 0, respectively.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams with GPM enabled.

6.6.2.51 Coding tool sets (CodingToolSets)

6.6.2.51.1 Test bitstream CodingToolsSets_A_Tencent

Specification: This bitstream enables and disables coding tools corresponding to set A in Table 2.

Functional stage: General decoding.

Purpose: Check that a decoder can decode bitstreams using various combinations of coding tools.

6.6.2.51.2 Test bitstream CodingToolsSets_B_Tencent

Specification: This bitstream enables and disables coding tools corresponding to set B in Table 2.

Functional stage: General decoding.

Purpose: Check that a decoder can decode bitstreams using various combinations of coding tools.

6.6.2.51.3 Test bitstream CodingToolsSets_C_Tencent

Specification: This bitstream enables and disables coding tools corresponding to set C in Table 2. **Functional stage**: General decoding.

Purpose: Check that a decoder can decode bitstreams using various combinations of coding tools.

6.6.2.51.4 Test bitstream CodingToolsSets_D_Tencent

Specification: This bitstream enables and disables coding tools corresponding to set D in Table 2.

Functional stage: General decoding.

Purpose: Check that a decoder can decode bitstreams using various combinations of coding tools.

6.6.2.51.5 Test bitstream CodingToolsSets_E_Tencent

Specification: This bitstream enables and disables coding tools corresponding to set E in Table 2.

Functional stage: General decoding.

Purpose: Check that a decoder can decode bitstreams using various combinations of coding tools.

6.6.3 Test bitstreams – High-level syntax features for Main 10 profile with 4:2:0 chroma format and 10 bit depth

6.6.3.1 Access unit delimiter (AUD)

6.6.3.1.1 Test bitstream: AUD_A_Broadcom

Specification: Pictures may or may not include associated Access Unit Delimiter (AUD) NAL units. The first 10 pictures of this bitstream do not include AUD, the next 10 pictures included AUD, and finally the last 10 pictures do not include AUD.

Functional stage: High-level syntax processing / picture boundary processing.

Purpose: Check that the decoder can handle and transition between pictures with and without associated Access Unit Delimiter NAL units.

6.6.3.2 Filler (FILLER)

6.6.3.2.1 Test bitstream FILLER_A_Bytedance

Specification: Each picture includes associated Filler data NAL units.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when filler data NAL units are present in the bitstream.

6.6.3.3 Decoding Capability Indication (DCI)

6.6.3.3.1 Test bitstream DCI_A_Tencent

Specification: The bitstream includes a DCI NAL unit.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when DCI NAL unit is present in the bitstream.

6.6.3.3.2 Test bitstream DCI_B_Tencent

Specification: The bitstream does not include a DCI NAL unit.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when DCI NAL unit is not present in the bitstream.

6.6.3.4 Sequence parameter set (SPS)

6.6.3.4.1 Test bitstream SPS_A_Bytedance

Specification: Multiple SPSs are signalled in the same CVS. SPS with SPS ID equal to 0 is used and the other SPSs are never referenced.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when multiple SPSs, including unreferenced ones, are contained in the same CVS.

6.6.3.4.2 Test bitstream SPS_B_Bytedance

Specification: Multiple SPSs are signalled in the bitstream. Different SPS IDs are used in the different CVSs.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when different CVSs use different SPSs with different SPS IDs.

6.6.3.4.3 Test bitstream SPS_C_Bytedance

Specification: Multiple SPSs are signalled in the bitstream and SPS with SPS ID equal to 0 is used in the bitstream. ALF and BCW are enabled in SPS for the first two CVSs and are disabled in SPS for the third CVS.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when the content of an SPS is replaced while using the same SPS ID in different CVSs.

6.6.3.5 Video usability information (PQ, HLG)

6.6.3.5.1 Test bitstream PQ_A_Dolby

Specification: This bitstream uses VUI transfer characteristics for PQ content.

Functional stage: High-level syntax.

Purpose: Check that the decoder can properly parse the VUI.

6.6.3.5.2 Test bitstream HLG_A_NHK

Specification: This bitstream uses video usability information transfer characteristics for HLG content.

Functional stage: High-level syntax.

Purpose: Check that the decoder can properly parse the VUI.

6.6.3.5.3 Test bitstream HLG_B_NHK

Specification: This bitstream uses VUI to indicate "backward-compatible HLG" which is encoded using transfer characteristics with encoded as 1 and also include the alternative transfer characteristics SEI message with preferred transfer characteristics set to 18.

Functional stage: High-level syntax.

Purpose: Check that the decoder can properly parse the VUI.

6.6.3.6 Picture parameter set (PPS)

6.6.3.6.1 Test bitstream PPS_A_Bytedance

Specification: Multiple PPSs are signalled in the bitstream. PPS with PPS ID equal to 0 is used for each picture and the other PPSs are never referenced.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when multiple PPSs, including unreferenced ones, are contained in the same CVS.

6.6.3.6.2 Test bitstream PPS_B_Bytedance

Specification: Each picture uses an individual PPS with a different PPS ID.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when PPS IDs are switched for individual pictures in the bitstream.

6.6.3.6.3 Test bitstream PPS_C_Bytedance

Specification: Multiple PPSs are signalled in the bitstream. PPS with PPS ID equal to 0 is used for the first two CVSs. The content of the PPS is updated and used for all pictures in the second CVS.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when the content of a PPS is replaced while using the same PPS ID in different pictures.

6.6.3.7 Mixed NUT (MNUT)

6.6.3.7.1 Test bitstream MNUT_A_Nokia

Specification: The bitstream contains mixed NAL unit types. Encoded subpicture bitstreams were merged into one bitstream using the subpicMergeApp tool that is included in the VTM package. The bitstream contains 4 subpictures arranged in 2x2 formation. The first subpicture bitstream has CRA subpicture every 32th picture while the other 3 subpicture bitstreams don't have IRAP pictures after the first picture. Hence, in every 32th picture there is a mix of CRA subpicture and trailing subpictures. The encoder was slightly modified to ensure that reference picture list syntax is the same for CRA bitstream and non-CRA bitstreams.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams with mixed NAL unit types in the same picture.

6.6.3.7.2 Test bitstream MNUT_B_Nokia

Specification: The bitstream contains mixed NAL unit bitstream that contains mixed NAL unit types in some of the pictures and uses the sps_idr_rpl_present_flag syntax element.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams with mixed NAL unit types in the same picture.

6.6.3.8 Extension of parameter set (PSEXT)

6.6.3.8.1 Test bitstream: PSEXT_A_Nokia

Specification: The extension flag of the following parameter sets is set to one. DCI, VPS, SPS, PPS, APS.

Functional stage: Test the handling when the extension_flag is set to one and the related extension_data is absent for the following parameter sets. DCI, VPS, SPS, PPS, APS.

Purpose: Check that the decoder can parse the extension_flag set to one and handle when the related extension_data is absent for the following parameter sets. DCI, VPS, SPS, PPS, APS.

6.6.3.8.2 Test bitstream: PSEXT_B_Nokia

Specification: The extension flag of the following parameter sets is set to one. DCI, VPS, SPS, PPS, APS.

Functional stage: Test the handling when the extension_flag is set to one and the related extension_data has one or more bits for the following parameter sets. DCI, VPS, SPS, PPS, APS.

Purpose: Check that the decoder can parse the extension_flag set to one and handle when the related extension_data has one or more bits for the following parameter sets. DCI, VPS, SPS, PPS, APS.

6.6.3.9 Hypothetical reference decoder (HRD)

6.6.3.9.1 Test bitstream HRD_A_Fujitsu

Specification: This bitstream tests AU-based HRD operation, using the Buffering Period SEI and Picture Timing SEI messages.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly process HRD data.

6.6.3.9.2 Test bitstream HRD_B_Fujitsu

Specification: This bitstream tests AU-based HRD operation, using the Buffering Period SEI and Picture Timing SEI messages, with 2 DUs in each AU.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly process HRD data.

6.6.3.10 Adaptation parameter set (APSALF, APSLMCS, APSMULT, SUFAPS)

6.6.3.10.1 Test bitstream APSALF_A_Qualcomm

Specification: This bitstream uses multiple ALF APS, with only ALF APS is present in the bitstream (LMCS and scaling list are disabled).

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams using APSs.

6.6.3.10.2 Test bitstream APSLMCS_A_Dolby

Specification: The bitstream uses multiple (3) LMCS APS (APS id = 0, 1 and 2), only LMCS APS is present in the bitstream (ALF is disabled).

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams using APSs.

6.6.3.10.3 Test bitstream APSLMCS_B_Dolby

Specification: The bitstream uses multiple (3) LMCS APS (APS id = 0, 1 and 2), both LMCS APS and ALF APS are present in the bitstream.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams using APSs.

6.6.3.10.4 Test bitstream APSLMCS_C_Dolby

Specification: The bitstream tests the use of LMCS APS with a large variation of lmcs CW values ($[15 \sim 320]$) in each of the 16 bins.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams using APSs.

6.6.3.10.5 Test bitstream APSLMCS_D_Dolby

Specification: The bitstream tests the use of LMCS APS with different min/max bin index.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams using APSs.

6.6.3.10.6 Test bitstream APSLMCS_E_Dolby

Specification: The bitstream tests the use of LMCS APS with negative CRSOffset value.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams using APSs.

6.6.3.10.7 Test bitstream APSMULT_A_MediaTek

Specification: Multiple scaling list APSs (with scaling list APS ID equal to 0 and 1) are signalled in the bitstream. For each picture, the referenced scaling list APS ID is decided according to the picture's POC number.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when multiple scaling list APSs are contained in the same CVS.

6.6.3.10.8 Test bitstream APSMULT_B_MediaTek

Specification: Multiple scaling list APSs are signalled in the bitstream with the same scaling list APS ID. When a scaling list ASP is signalled, it will overwrite the existing scaling list ASP.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when multiple scaling list APSs are contained in the same CVS, and they can be overwritten by each other.

6.6.3.10.9 Test bitstream SUFAPS_A_HHI

Specification: The bitstream contains suffix APS NAL units for ALF.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams containing suffix APSs.

6.6.3.11 Random access points (RAP)

6.6.3.11.1 Test bitstream RAP_A_HHI

Specification: The bitstream starts with a CRA picture. The CRA picture is followed only by RASL pictures, which are expected to be discarded.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams containing various random access picture types.

6.6.3.11.2 Test bitstream RAP_B_HHI

Specification: The bitstream starts with a CRA picture. The CRA picture is followed by RASL and other pictures.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams containing various random access picture types.

6.6.3.11.3 Test bitstream RAP_C_HHI

Specification: The bitstream contains IDR pictures with RADL pictures.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams containing various random access picture types.

6.6.3.11.4 Test bitstream RAP_D_HHI

Specification: The bitstream contains IDR pictures without leading pictures.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams containing various random access picture types.

6.6.3.12 Picture output (POUT)

6.6.3.12.1 Test bitstream POUT_A_Sharplabs

Specification: This bitstream exercises picture output related syntax, with both values of ph_pic_output_flag.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly output pictures.

6.6.3.13 Gradual decoder refresh (GDR)

6.6.3.13.1 Test bitstream GDR_A_Ericsson

Specification: The bitstream starts with GDR pictures with recovery POC = 0.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can decode and handle GDR signalling.

6.6.3.13.2 Test bitstream GDR_B_Nokia

Specification: The bitstream starts with GDR picture (POC 10) with $ph_recovery_poc_cnt = 51$. A second GDR picture starts at POC 70 with $ph_recovery_poc_cnt = 51$.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can decode and handle GDR signalling.

6.6.3.13.3 Test bitstream GDR_C_Nokia

Specification: The bitstreams starts with a GDR picture (POC 60) and ph_recovery_poc_cnt = 29

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can decode and handle GDR signalling.

6.6.3.13.4 Test bitstream GDR_D_Ericsson

Specification: The bitstream exercises overlapping GDR periods with GDR pictures at POC 5, 6 and 30 with recovery points at POC 26, 33 and 51 respectively. The bitstream starts at POC 5 but conformance starts at POC 26. GDR picture at POC 5 references missing pictures POC 1-4, at POC 26 the refresh period has been completed and a decoder may start output.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can decode and handle GDR signalling.

6.6.3.14 Picture order count (POC)

6.6.3.14.1 Test bitstream POC_A_Nokia

Specification: This bitstream exercises POC derivation, including POC reset, using the sps_poc_msb_cycle_flag, ph_poc_msb_cycle_present, ph_poc_msb_cycle_val and sps_poc_msb_cycle_len_minus1 syntax elements.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly derive POC values.

6.6.3.15 Tiles (TILE)

6.6.3.15.1 Test bitstream TILE_A_Nokia

Specification: Each picture contains a single tile and single slice.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode single tile and single slice case.

6.6.3.15.2 Test bitstream TILE_B_Nokia

Specification: Each picture contains uniform tile partitioning along both horizontal and vertical directions with each tile containing single slice.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode uniformly partitioned tiles.

6.6.3.15.3 Test bitstream TILE_C_Nokia

Specification: Each picture contains tile partitioning with one row and N columns with each tile containing single slice.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when tile partitioning has one row and N columns.

6.6.3.15.4 Test bitstream TILE_D_Nokia

Specification: Each picture contains tile partitioning with N rows and one column with each tile containing single slice.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when tile partitioning has N rows and one column.

6.6.3.15.5 Test bitstream TILE_E_Nokia

Specification: Each picture contains tile partitioning with M rows and N columns with each tile containing single slice.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when tile partitioning has M rows and N columns.

6.6.3.15.6 Test bitstream TILE_F_Nokia

Specification: Each picture contains tile partitioning with M rows and N columns with each tile containing multiple slices.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when tile partitioning has M rows and N columns with each tile containing multiple slices.

6.6.3.15.7 Test bitstream TILE_G_Nokia

Specification: Each picture contains tile partitioning with M rows and N columns and the whole picture containing a single slice.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when tile partitioning has M rows and N columns and the whole picture containing a single slice.

6.6.3.16 Slices (SLICES)

6.6.3.16.1 Test bitstream SLICES_A_HUAWEI

Specification: This bitstream exercises several different slice/tile layouts.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when a variety of slice and tile layouts are used.

6.6.3.17 Subpictures (SUBPIC)

6.6.3.17.1 Test bitstream SUBPIC_A_HUAWEI

Specification: This bitstream exercises several different subpicture layouts.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when a variety of subpicture layouts are used.

6.6.3.17.2 Test bitstream SUBPIC_B_HUAWEI

Specification: This bitstream exercises several different subpicture and slice layouts.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode when a variety of subpicture layouts with slices are used.

6.6.3.17.3 Test bitstream SUBPIC_C_Ericsson

Specification: This bitstream exercises signalling of equal size subpictures where each subpicture includes only one tile, slice and CTU. Parameters for RPL, deblocking, SAO, ALF, weighted prediction and delta QP are signalled in the PH.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams with equal size subpictures and parameter information in the PH.

6.6.3.17.4 Test bitstream SUBPIC_D_Ericsson

Specification: This bitstream exercises signalling of subpictures with varying subpicture IDs using multiple PPSs in a way that demonstrates a panning of the field-of-view.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode subpictures when subpicture IDs vary in the CVS.

6.6.3.17.5 Test bitstream SUBPIC_E_MediaTek

Specification: Bitstream exercises deblocking control features across subpicture boundaries.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams when a variety of subpicture layouts and deblocking control features are used.

6.6.3.18 Picture header and slice header (PHSH)

6.6.3.18.1 Test bitstream PHSH_B_Sharp

Specification: This bitstreams includes two CVSs. In the first CVS, the picture header is included in the slice header. In the second CVS, the picture header is in its own NAL unit.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode a picture header whether included in a slice header or not.

6.6.3.19 Temporal scalability (TEMPSCAL)

6.6.3.19.1 Test bitstream TEMPSCAL_A_Panasonic

Specification: This bitstream has 6 temporal sublayers with a GOP size of 32.

Functional stage: High-level syntax processing / GOP processing.

Purpose: Check that the decoder can handle a GOP of 32.

6.6.3.19.2 Test bitstream TEMPSCAL_B_Panasonic

Specification: This bitstream has 5 temporal sublayers with a GOP size of 16 and HRD signalling (including buffering period and picture timing SEI message with timing) for all temporal sublayers.

Functional stage: High-level syntax processing / Hypothetical Reference Decoder.

Purpose: Check the hypothetical reference decoder for temporal sublayers.

6.6.3.19.3 Test bitstream TEMPSCAL_C_Panasonic

Specification: This bitstream has 3 temporal sublayers with a GOP size of 6.

Functional stage: High-level syntax processing / GOP processing.

Purpose: Check that the decoder can properly decode bitstreams with various hierarchy structures.

6.6.3.20 Inter-layer reference picture lists (ILRPL)

6.6.3.20.1 Test bitstream ILRPL_A_Huawei

Specification: This bitstream contains two layers, with layer 1 referencing layer 0.

Functional stage: High-level syntax processing/scalability.

Purpose: Check that the decoder can properly decode bitstreams using inter layer reference prediction.

6.6.3.21 Reference picture lists (RPL)

6.6.3.21.1 Test bitstream RPL_A_ERICSSON

Specification: RPL in SPS, PH and SH. Active and inactive entries. Maximum RPL length.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode and handle reference picture lists with short term references.

6.6.3.22 Long term ref picture (LTRP)

6.6.3.22.1 Test bitstream LTRP_A_Ericsson

Specification: LTRP handling and picture marking.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode and handle reference picture lists with short and long term references.

6.6.3.23 Number of active ref pics (ACTPIC)

6.6.3.23.1 Test bitstream ACTPIC_A_Huawei

Specification: This bitstream contains 1 active picture in list 0, and 1 active picture in list1.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams containing various numbers of active reference pictures.

6.6.3.23.2 Test bitstream ACTPIC_B_Huawei

Specification: This bitstream contains 1 active picture in list 0, and up to 2 active frames in list 1.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams containing various numbers of active reference pictures.

6.6.3.23.3 Test bitstream ACTPIC_C_Huawei

Specification: This bitstream contains 1 active picture in list 0, and up to 2 active frames in list 1.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams containing various numbers of active reference pictures.

6.6.3.24 Virtual boundaries (VIRTUAL)

6.6.3.24.1 Test bitstream VIRTUAL_A_MediaTek

Specification: Virtual boundaries are enabled and signalled in SPS with 3 vertical and 2 horizontal virtual boundaries.

Functional stage: High-level syntax processing and in-loop filter process.

Purpose: Check that the decoder can properly decode and handle the virtual boundaries signalled in the SPS.

6.6.3.24.2 Test bitstream VIRTUAL_B_MediaTek

Specification: Virtual boundaries are enabled and signalled in PH only for pictures with an odd POC value. When virtual boundaries are enabled in a picture, 2 vertical and 1 horizontal virtual boundaries are applied.

Functional stage: High-level syntax processing and in-loop filter process.

Purpose: Check that the decoder can properly decode and handle the virtual boundaries signalled in the PH.

6.6.3.25 Reference wraparound (WRAP)

6.6.3.25.1 Test bitstream WRAP_A_InterDigital

Specification: This bitstream uses reference wraparound mode with content using the PERP format for 360° video in random access mode.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams using reference wraparound.

6.6.3.25.2 Test bitstream WRAP_B_InterDigital

Specification: This bitstream uses reference wraparound mode with content using the PERP format for 360° video in random access mode.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams using reference wraparound.

6.6.3.25.3 Test bitstream WRAP_C_InterDigital

Specification: This bitstream uses reference wraparound mode with content using the PERP format for 360° video in low delay B mode.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams using reference wraparound.

6.6.3.25.4 Test bitstream WRAP_D_InterDigital

Specification: This bitstream uses reference wraparound mode with content using the PERP format for 360° video in low delay B mode.

Functional stage: Inter prediction.

Purpose: Check that the decoder can properly decode bitstreams using reference wraparound.

6.6.3.26 360-degree video (CUBEMAP, ERP)

6.6.3.26.1 Test bitstream CUBEMAP_A_MediaTek

Specification: A generalized cubemap projection SEI message is signalled in the bitstream with packing type equal to 2, mapping function equal to 2, and guard band flag equal to 0 to indicate that the coded pictures are 3x2-packed non-uniform cubemap projected pictures without guard bands.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can parse the generalized cubemap projection SEI message.

6.6.3.26.2 Test bitstream CUBEMAP_B_MediaTek

Specification: A generalized cubemap projection SEI message is signalled in the bitstream with packing type equal to 3, mapping function equal to 1, and guard band flag equal to 1 to indicate that the coded pictures are 6x1-packed equal-angular cubemap projected pictures with guard bands.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can parse the generalized cubemap projection SEI message.

6.6.3.26.3 Test bitstream CUBEMAP_C_MediaTek

Specification: A generalized cubemap projection SEI message is signalled in the bitstream with packing type equal to 4, mapping function equal to 0, and guard band flag equal to 1 to indicate that the coded pictures are 5x1-packed hemicubemap projected pictures with guard bands.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can parse the generalized cubemap projection SEI message.

6.6.3.26.4 Test bitstream ERP_A_MediaTek

Specification: An equirectangular projection SEI message is signalled in the bitstream with guard band flag equal to 1 to indicate that the coded pictures are equirectangular projected pictures with guard bands on the left and right sides.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can parse the equirectangular projection SEI message.

6.6.3.27 Conformance cropping window (CROP)

6.6.3.27.1 Test bitstream CROP_A_Panasonic

Specification: This bitstream uses large offsets for the conformance cropping window that are not aligned with CTU boundaries.

Functional stage: High-level syntax processing / conformance cropping.

Purpose: Check that the decoder outputs the correct conformance cropped region.

6.6.3.27.2 Test bitstream CROP_B_Panasonic

Specification: The bitstream uses odd offset values for the conformance cropping window.

Functional stage: High-level syntax processing / conformance cropping.

Purpose: Check that the decoder outputs the correct conformance cropped region.

6.6.3.28 Bumping (BUMP)

6.6.3.28.1 Test bitstream BUMP_A_LGE

Specification: This bitstream exercises bumping process in regard to the setting of DPB size and reordering. The bitstream is generated with optimized values for dpb_max_dec_pic_buffering_minus1[i] and dpb_max_num_reorder_pics[i].

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams exercising the DPB bumping process.

6.6.3.28.2 Test bitstream BUMP_B_LGE

Specification: This bitstream exercises bumping process in regard to the setting of DPB size and reordering. The bitstream is generated with optimized value for dpb_max_num_reorder_pics[i] but with DPB size that is more than the optimal one.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams exercising the DPB bumping process.

6.6.3.28.3 Test bitstream BUMP_C_LGE

Specification: This bitstream exercises bumping process in regard to the setting of DPB size and reordering. The bitstream is generated with non-optimal values for both dpb_max_dec_pic_buffering_minus1[i] and dpb_max_num_reorder_pics[i].

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams exercising the DPB bumping process.

6.6.3.29 Decoded picture buffer (DPB)

6.6.3.29.1 Test bitstream DPB_A_Sharplabs

Specification: This bitstream signals sublayer decoded picture buffer (DPB) sizes for multiple sublayers.

Functional stage: High-level syntax processing.

Purpose: Check that decoder can properly decode bitstreams exercising various DPB parameters.

6.6.3.29.2 Test bitstream DPB_B_Sharplabs

Specification: This bitstream signals sublayer decoded picture buffer (DPB) size for a single sublayer.

Functional stage: High-level syntax processing.

Purpose: Check that the decoder can properly decode bitstreams exercising various DPB parameters.

6.6.3.30 Field pictures (FIELD)

6.6.3.30.1 Test bitstream FIELD_A_Panasonic

Specification: This bitstream, contains frame-field information SEI messages for each picture indicating either it is top or bottom field coded.

Functional stage: Test field coding when sps_field_seq_flag is equal to 1.

Purpose: Check that the decoder can properly decode pictures coded in field coding.

6.6.3.30.2 Test bitstream FIELD_B_Panasonic

Specification: This bitstream has field_seq_flag in SPS is equal to 1 contains frame-field information SEI messages. Different values of vui_chroma_sample_loc_type_top_field and vui_chroma_sample_loc_type_bottom_field are tested.

Functional stage: Test field coding when sps_field_seq_flag is equal to 1.

Purpose: Check that the decoder can properly decode pictures coded in field coding.

6.6.4 Test bitstreams – Additional chroma formats and bit depths for Main 10 profile

6.6.4.1 8 bit 4:0:0 (8b400)

6.6.4.1.1 Test bitstream 8b400_A_Bytedance

Specification: 8-bit 4:0:0 bitstream at a low resolution.

Functional stage: Additional chroma format and bit depth setting.

Purpose: Check that the decoder can properly handle the chroma format of 4:0:0 and InternalBitDepth of 8.

6.6.4.1.2 Test bitstream 8b400_B_Bytedance

Specification: 8-bit 4:0:0 bitstream at a higher resolution.

Functional stage: Additional chroma format and bit depth setting.

Purpose: Check that the decoder can properly handle the chroma format of 4:0:0 and InternalBitDepth of 8.

6.6.4.2 8 bit 4:2:0 (8b420)

6.6.4.2.1 Test bitstream 8b420_A_Bytedance

Specification: 8-bit 4:2:0 bitstream at a low resolution.

Functional stage: Additional bit depth setting.

Purpose: Check that the decoder can properly handle the InternalBitDepth of 8.

6.6.4.2.2 Test bitstream 8b420_B_Bytedance

Specification: 8-bit 4:2:0 bitstream at a higher resolution.

Functional stage: Additional bit depth setting.

Purpose: Check that the decoder can properly handle the InternalBitDepth of 8.

6.6.5 Test bitstreams – Coding tools for Main 10 4:4:4 profile for 4:4:4 chroma format and 10 bit depth

6.6.5.1 10-bit 4:4:4 (10b444)

6.6.5.1.1 Test bitstream 10b444_A_Kwai

Specification: The bitstream is 10-bit 4:4:4, in all intra mode, and does not enable any 4:4:4-specific tools.

Functional stage: Decoder.

Purpose: Check that the decoder can properly decode 10-bit 4:4:4 content.

6.6.5.1.2 Test bitstream 10b444_B_Kwai

Specification: The bitstream is 10-bit 4:4:4, in random access mode, and does not enable any 4:4:4-specific tools.

Functional stage: Decoder.

Purpose: Check that the decoder can properly decode 10-bit 4:4:4 content.

6.6.5.2 Adaptive colour transform (ACT)

6.6.5.2.1 Test bitstream ACT_A_Kwai

Specification: This bitstream tests ACT with CU level adaptation of the colour spaces between RGB and YCoCg, in random access mode. The bitstream is Main 10 4:4:4 profile, Main tier, Level 6.

Functional stage: Adaptive colour transform.

Purpose: Check that the decoder can properly decode bitstreams with ACT enabled.

6.6.5.2.2 Test bitstream ACT_B_Kwai

Specification: This bitstream tests ACT with CU level adaptation of the colour spaces between RGB and YCoCg, in all intra mode. The bitstream is Main 10 4:4:4 profile, Main tier, Level 6.

Functional stage: Adaptive colour transform.

Purpose: Check that the decoder can properly decode bitstreams with ACT enabled.

6.6.5.3 Palette mode (PALETTE)

6.6.5.3.1 Test bitstream PALETTE_A_Alibaba

Specification: This bitstream forces the majority of the CUs to be coded using palette mode in a Random Access configuration. The bitstream conforms to the Main 10 4:4:4 profile, Main tier.

Functional stage: Palette.

Purpose: Check that the decoder can properly decode bitstreams with palette mode enabled.

6.6.5.3.2 Test bitstream PALETTE_B_Alibaba

Specification: This bitstream forces the majority of the CUs to be coded using palette mode in an All Intra configuration. The bitstream conforms to the Main 10 4:4:4 profile, Main tier.

Functional stage: Palette.

Purpose: Check that the decoder can properly decode bitstreams with palette mode enabled.

6.6.5.3.3 Test bitstream PALETTE_C_Alibaba

Specification: This bitstream forces the majority of the CUs to be coded using palette mode in a Low Delay B configuration. The bitstream conforms to the Main 10 4:4:4 profile, Main tier.

Functional stage: Palette.

Purpose: Check that the decoder can properly decode bitstreams with palette mode enabled.

6.6.5.3.4 Test bitstream PALETTE_D_Alibaba

Specification: This bitstream forces the majority of the CUs to be coded using palette mode in an All Intra configuration. The bitstream conforms to the Main 10 4:4:4 profile, Main tier.

Functional stage: Palette.

Purpose: Check that the decoder can properly decode bitstreams with palette mode enabled.

6.6.5.3.5 Test bitstream PALETTE_E_Alibaba

Specification: This bitstream forces the majority of the CUs to be coded using palette mode in an All Intra configuration. The bitstream use 4:2:0 chroma format but conforms to the Main 10 4:4:4 profile, Main tier, Level 3, which supports use of palette mode for 4:2:0.

Functional stage: Palette.

Purpose: Check that the decoder can properly decode bitstreams with palette mode enabled.

6.6.5.4 Entropy coding (ENT444MAINTIER)

6.6.5.4.1 Test bitstream ENT444MAINTIER_A_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 4. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.5.4.2 Test bitstream ENT444MAINTIER_B_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 4.1. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.5.4.3 Test bitstream ENT444MAINTIER_C_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 5. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.5.4.4 Test bitstream ENT444MAINTIER_D_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 5.1. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.5.5 Entropy coding (ENT444HIGHTIER)

6.6.5.5.1 Test bitstream ENT444HIGHTIER_A_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 4 for High tier. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.5.5.2 Test bitstream ENT444HIGHTIER_B_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 4.1 for High tier. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.5.5.3 Test bitstream ENT444HIGHTIER_C_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 5 for High tier. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.5.5.4 Test bitstream ENT444HIGHTIER_D_Sony

Specification: The bitstream contains 3 independent CVSs containing one picture, formed from one slice. Each CVS contains the maximum number of bits, given the profile, level and tier, and assuming equal distribution of bits between pictures coded at the maximum luma sample rate for the level, at Level 5.1 for High tier. The 3 concatenated CVSs are as follows:

- The first picture does not require any CABAC zero words.
- The second picture requires one CABAC zero word.
- The third picture requires a substantial quantity of CABAC zero words (75% of the bitstream is padding).

All 3 pictures have a very low subjective quality level due to the artificial nature of these bitstreams. All VCL NAL units contain almost (within 3 bytes worth) of the maximum number of allowed bins, for their size.

Functional stage: Entropy coding.

Purpose: Check that the decoder properly decodes all entropy coding modes.

6.6.6 Test bitstreams – Additional chroma formats and bit depths for Main 10 4:4:4 profile

6.6.6.1 8 bit 4:2:2 (8b422)

6.6.6.1.1 Test bitstream 8b422_A_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in All Intra mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.2 Test bitstream 8b422_B_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in All Intra mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.3 Test bitstream 8b422_C_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Low Delay P mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.4 Test bitstream 8b422_D_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Low Delay P mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.5 Test bitstream 8b422_E_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Random Access mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.6 Test bitstream 8b422_F_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Random Access mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.7 Test bitstream 8b422_G_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in All Intra mode with screen content coding tools enabled. **Functional stage**: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.8 Test bitstream 8b422_H_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in All Intra mode with screen content coding tools enabled. **Functional stage**: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.9 Test bitstream 8b422_I_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Low Delay P mode with screen content coding tools enabled.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.10 Test bitstream 8b422_J_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Low Delay P mode with screen content coding tools enabled.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.11 Test bitstream 8b422_K_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Random Access mode with screen content coding tools enabled.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.1.12 Test bitstream 8b422_L_Sony

Specification: 8-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Random Access mode with screen content coding tools enabled.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:2:2 chroma format.

6.6.6.2 8 bit 4:4:4 (8b444)

6.6.6.2.1 Test bitstream 8b444_A_KWAI

Specification: This bitstream uses 8-bit with 4:4:4 for All Intra.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:4:4 chroma format.

6.6.6.2.2 Test bitstream 8b444_B_KWAI

Specification: This bitstream uses 8-bit with 4:4:4 for random access.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 8-bit depth and 4:4:4 chroma format.

6.6.6.3 10 bit 4:0:0 (10b400)

6.6.6.3.1 Test bitstream 10b400_A_Bytedance

Specification: 10-bit 4:0:0 bitstream at a low resolution.

Functional stage: Additional chroma format setting.

Purpose: Check that the decoder can properly handle the chroma format of 4:0:0.

6.6.6.3.2 Test bitstream 10b400_B_Bytedance

Specification:10-bit 4:0:0 bitstream at a higher resolution.

Functional stage: Additional chroma format setting.

Purpose: Check that the decoder can properly handle the chroma format of 4:0:0.

6.6.6.4 10 bit 4:2:2 (10b422)

6.6.6.4.1 Test bitstream 10b422_A_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in All Intra mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.2 Test bitstream 10b422_B_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in All Intra mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.3 Test bitstream 10b422_C_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Low Delay P mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.4 Test bitstream 10b422_D_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Low Delay P mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.5 Test bitstream 10b422_E_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Random Access mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.6 Test bitstream 10b422_F_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Random Access mode.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.7 Test bitstream 10b422_G_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in All Intra mode, with screen content coding tools enabled.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.8 Test bitstream 10b422_H_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in All Intra mode, with screen content coding tools enabled.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.9 Test bitstream 10b422_I_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Low Delay P mode, with screen content coding tools enabled.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.10 Test bitstream 10b422_J_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Low Delay P mode, with screen content coding tools enabled.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.11 Test bitstream 10b422_K_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Random Access mode, with screen content coding tools enabled.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.6.4.12 Test bitstream 10b422_L_Sony

Specification: 10-bit 4:2:2 bitstream for Main 10 4:4:4 profile, in Random Access mode, with screen content coding tools enabled.

Functional stage: Reconstruction.

Purpose: Check that the decoder can properly decode content coded with 10-bit depth and 4:2:2 chroma format.

6.6.7 Test bitstreams – Multilayer Main 10 profile

6.6.7.1 Video parameter set (VPS)

6.6.7.1.1 Test bitstream VPS_A_INTEL

Specification: The bitstream contains two dependent layers. Layer 0 is encoded with 208x120 input video and layer 1 is encoded with 832x480 input video. Inter-layer prediction is enabled for layer 1 (spatial scalability).

Functional stage: High-level syntax.

Purpose: Check that the decoder can properly decode when the VPS is present in the bitstream.

6.6.7.1.2 Test bitstream VPS_B_ERICSSON

Specification: The bitstream contains a single VPS with three dependent layers. Layer 0 is encoded with 416x240 input video, layer 1 with 640x360 input video and layer 3 with 832x480 input video. Inter-layer prediction is enabled for layer 1 and layer 2. Layer 2 does not reference layer 0.

Functional stage: High-level syntax.

Purpose: Check that the decoder can properly decode when the VPS is present in the bitstream and not all reference layers are direct reference layers.

6.6.7.1.3 Test bitstream VPS_C_ERICSSON

Specification: The bitstream contains a single VPS with two dependent layers that exercises signalling of sublayer levels. Layer 0 is encoded with 176x144 input video and layer 1 with 416x240 input video. Inter-layer prediction is enabled for layer 1.

Functional stage: High-level syntax.

Purpose: Check that the decoder can properly decode when the VPS is present in the bitstream and sublayer levels are signalled.

6.6.7.2 Layered coding with OLS (OLS)

6.6.7.2.1 Test bitstream OLS_A_Tencent

Specification: The bitstream is encoded with two layers, disallowing inter-layer prediction.

Functional stage: High-level syntax processing with multi-layers.

Purpose: Check that the decoder can properly decode when two layers are independently coded and extract a subbitstream.

6.6.7.2.2 Test bitstream OLS_B_Tencent

Specification: The bitstream is encoded with two layers, allowing inter-layer prediction.

Functional stage: High-level syntax processing with multi-layers.

Purpose: Check that the decoder can properly decode when two layers are coded with layer dependencies, and extract a sub-bitstream.

6.6.7.2.3 Test bitstream OLS_C_Tencent

Specification: The bitstream is encoded with three layers, allowing inter-layer prediction.

Functional stage: High-level syntax processing with multi-layers.

Purpose: Check that the decoder can properly decode when three layers are coded with layer dependencies, and extract a sub-bitstream.

6.6.7.3 Operating point information NAL unit (OPI)

6.6.7.3.1 Test bitstream OPI_A_Nokia

Specification: The bitstream has output layer set and a subset of sublayers compared to the information given in VPS, where the bitstream has been extracted from a two-layer original bitstream.

Functional stage: High-level syntax.

Purpose: Check that the decoder can properly decode extracted bitstreams.

6.6.7.3.2 Test bitstream OPI_B_Nokia

Specification: The bitstream tests that the decoder can properly infer the OLS index and the highest temporal ID from the VPS when the OPI NAL unit in the bitstream does not contain the OLS index and the highest temporal ID, from a two-layer bitstream.

Functional stage: High-level syntax.

Purpose: Check that the decoder can properly decode extracted bitstreams.

6.6.7.4 Spatial scalability (SPATSCAL)

6.6.7.4.1 Test bitstream SPATSCAL_A_Qualcomm

Specification: Spatial scalability with noncontinuous 3 layers 0, 30, 50. Scaling ratios are (1.05x, 0.75x), (0.51x, 0.69x), (0.54x, 0.51x).

Functional stage: Spatial scalability.

Purpose: Check that the decoder can properly decode bitstreams with noncontinuous layers and atypical scaling ratios.

6.6.8 Test bitstreams – Multilayer Main 10 4:4:4 profile

6.6.8.1 Spatial scalability (SPATSCAL444)

6.6.8.1.1 Test bitstream SPATSCAL444_A_Qualcomm

Specification: Spatial scalability with noncontinuous 3 layers 0, 30, 50. Scaling ratios are (1.05x, 0.75x), (0.51x, 0.69x), (0.54x, 0.51x).

Functional stage: Spatial scalability.

Purpose: Check that the decoder can properly decode bitstreams with noncontinuous layers and atypical scaling ratios.

6.6.9 Test bitstreams – Main 10 Still Picture profile

6.6.9.1 Still picture (STILL)

6.6.9.1.1 Test bitstream STILL_A_KDDI

Specification: The bitstream contains a single picture and exercises tools defined for the still picture profiles.

Functional stage: Still picture.

Purpose: Check that the decoder can properly decode bitstreams conforming to the still picture profiles.

6.6.9.1.2 Test bitstream STILL_B_ERICSSON

Specification: This bitstream tests a Main 10 Still Picture decoder's capability of decoding the first picture of a bitstream conforming to the Main 10 profile when the first picture of the bitstream is a GDR picture with ph_recovery_poc_cnt equal to 0.

Functional stage: Still picture.

Purpose: Check that a Main 10 Still Picture decoder can decode the first picture of a Main 10 profile bitstream when the first picture of the bitstream is a GDR picture with ph_recovery_poc_cnt equal to 0.

6.6.10 Test bitstreams – Main 10 4:4:4 Still Picture profile

6.6.10.1 Still picture (STILL444)

6.6.10.1.1 Test bitstream STILL444_A_KDDI

Specification: The bitstream contains a single picture and exercises tools defined for the still picture profiles.

Functional stage: Still picture.

Purpose: Check that the decoder can properly decode bitstreams conforming to the still picture profiles.

6.6.10.1.2 Test bitstream STILL444_B_ERICSSON

Specification: This bitstream tests a Main 10 4:4:4 Still Picture decoder's capability of decoding the first picture of a bitstream conforming to the Main 10 4:4:4 profile when the first picture of the bitstream is an IDR picture.

Functional stage: Still picture.

Purpose: Check that a Main 10 4:4:4 Still Picture decoder can decode the first picture of a Main 10 4:4:4 profile bitstream when the first picture of the bitstream is an IDR picture.

6.7 Conformance test suites for Rec. ITU-T H.266 | ISO/IEC 23090-3

6.7.1 Bitstreams for Main 10 profile

Categories	Tool description	Feature name	Bitstream features
CTU partition	Chroma separate tree	CST	Test CST on and off
Transform and quantization	Dependent quantization	DQ	Dependent quantization enabled for all pictures (with and without enabling MTS and LFNST); picture/slice- level switching between dependent quantization, sign data hiding, and conventional quantization
Intra coding	Cross-component linear model	CCLM	Exercise CCLM with different CU sizes
Transform and quantization	Multiple transform set	MTS	Include MTS combinations of (intra, inter): (implicit, none), (explicit, none), (implicit, explicit), (explicit, explicit)
In-loop filter	Adaptive loop filter	ALF	ALF virtual boundary processing for line buffer reduction; exercise clipping values of non-linear ALF
Inter coding	Affine motion model	AFF	Include affine AMVP and affine merge; control flags
Inter coding	Subblock-based temporal merging candidates	SbTMVP	Test SbTMVP off and test SbTMVP on when affine is off
Inter coding	Adaptive motion vector resolution	AMVR	Include SIF
Inter coding	Bi-directional optical flow	BDOF	Test BDOF with different implicit on/off decision and subblock usages
Inter coding	Combined intra/inter prediction	CIIP	Test CIIP for different sizes and different combining weights
Inter coding	Merge with MVD	MMVD	
Inter coding	Bi-predictive with CU weights	BCW	Test BCW with different BCW weights
Intra coding	Multi-reference line prediction	MRLP	Test all MRL and MPM indices; CUs at the top border of a CTU do not use extended references lines and the MRL index is not present in the bitstream
SCC coding	Intra block copy mode	IBC	Test IBC feature with different options and and combination with CST and AMVR
Intra coding	Intra sub-partitioning	ISP	
Inter coding	Decoder motion vector refinement	DMVR	Exercise enabling conditions, MV wraparound and MV clip at picture boundary, exercise corner cases of SAD variations
Transform and quantization	Sub-block transform	SBT	Different block sizes
In-loop filter	Luma mapping with chroma scaling	LMCS	Exercise multiple APSs, slice level LMCS on/off
Entropy coding	Sign data hiding	SDH	
Inter coding	Symmetric motion vector difference	SMVD	Long-term reference handling, mvd_l1_zero_flag handling
Intra coding	Block-based delta pulse code modulation	BDPCM	
Intra coding	Matrix based intra prediction	MIP	
Transform and quantization	Low frequency non- separable transform	LFNST	Various block sizes /shapes
Transform and quantization	Transform tool set	MTS_LFNST	Tool on or off of MTS and LFNST together with implicit or explicit MTS
Transform and quantization	Joint coding of chroma residuals	JCCR	Exercise all modes of joint coding of chroma residuals (JCCR)
Inter coding	Temporal motion vector predictor	TMVP	

Table 1 – Coding tool bitstreams for Main 10 profile

Categories	Tool description	Feature name	Bitstream features
Inter coding	Motion vector compression	MVCOMP	MV compression for temporal storage (including corner cases)
In-loop filter	Sampled adaptive offset	SAO	
Inter coding	Prediction refinement using optical flow	PROF	Various non-translational motion parameters for PROF
In-loop filter	Deblocking	DEBLOCKING	Exercise luma adaptive deblock filter and long tap filter
Inter coding	Weighted prediction	WP	Various combinations with other inter tools
Inter coding	Parallel merge	PMERGE	Exercise various parallel merge levels
Intra coding	Intra prediction	IP	Enable all modes, especially the wide-angle modes.
Intra coding	Luma intra prediction mode	MPM	Enable all conditions to generate MPM candidate
CTU partition	CTU, CU sizes	CTU	Exercise range of CTU, CU sizes
CTU partition	Trees and partitioning	TREE	Exercise range of sizes and depths of TREE, TT, QT
CTU partition	Trees and partitioning	QTBTT	Exercise range of sizes and depths of QT, TT
CTU partition	Boundary partition	BOUNDARY	Boundary are sizes 8120 samples, all combinations of QT and TREE
Transform and quantization	Transform	TRANS	Min and max transform sizes, min number of entropy coded coefficients, max number of coefficients
Transform and quantization	Quantization	QUANT	CU level delta QP, CU level chroma delta QP, transform-quantization bypass with DB
Transform and quantization	Scaling list	SCALING	Exercise multiple APSs, quantization matrices
Entropy coding	Entropy coding	ENTROPY	CABAC initialization: QP sweep to ensure proper initialization for every QP value; disabling signalling of cabac_init_idc
Entropy coding	Entropy coding	ENTMAINTIER	Max bins and bits, min bits for Main tier
Entropy coding	Entropy coding	ENTHIGHTIER	Max bins and bits for High tier
Inter coding	All merge modes	MERGE	Max number of merge candidates
Intra coding	Position dependent prediction combination (PDPC)	PDPC	Force clipping different PU sizes and shapes.
Entropy coding	Wavefronts	WPP	
Transform and quantization	Lossless and near- lossless, include transform skip	LOSSLESS	
Inter coding	Reference picture resizing	RPR	Multiple RPR scale factors, RPR cropping window and scaling window offsets
In-loop filter	CC-ALF	CCALF	Enable CC-ALF for all CTUs in the bitstream, slice-by- slice adaptation, CTU-by-CTU adaptation, dynamic range exercise (including clip)
Inter coding	Geometric partitioning mode	GPM	

Table 1 – Coding tool bitstreams for Main 10 profile

		CodingToolsSets			
Syntax element	Α	В	С	D	Е
slice_type	Ι	I, P	Ι	I, P	I, P, B
bit_depth_minus8	0	0	0	0	0
separate_colour_plane_flag	0	0	0	0	0
ref_pic_resampling_enabled_flag	0	0	0	0	1
sps_log2_ctu_size_minus5	0	0	1	1	1
subpics_present_flag	0	0	0	0	1
bit_depth_minus8	0	0	2	2	2
sps_weighted_pred_flag	0	0	0	0	1
sps_weighted_bipred_flag	0	0	0	0	1
sps_max_luma_transform_size_64_flag	0	0	0	0	1
sps_sao_enabled_flag	0	0	0	0	1
sps_alf_enabled_flag	0	0	0	0	1
sps_transform_skip_enabled_flag	0	0	0	0	1
sps_bdpcm_enabled_flag	0	0	0	0	1
sps_temporal_mvp_enabled_flag	0	0	0	1	1
sps_sbtmvp_enabled_flag	0	0	0	1	1
sps_amvr_enabled_flag	0	0	0	0	1
sps_bdof_enabled_flag	0	0	0	0	1
sps_bdof_pic_present_flag	0	0	0	0	1
sps_smvd_enabled_flag	0	0	0	0	1
sps_dmvr_enabled_flag	0	0	0	0	1
sps_dmvr_pic_present_flag	0	0	0	0	1
sps_mmvd_enabled_flag	0	0	0	0	1
sps_isp_enabled_flag	0	0	1	1	1
sps_mrl_enabled_flag	0	0	0	1	1
sps_mip_enabled_flag	0	0	0	1	1
sps_mts_enabled_flag	0	0	1	1	1
sps_sbt_enabled_flag	0	0	0	1	1
sps_affine_enabled_flag	0	0	0	0	1
sps_bcw_enabled_flag	0	0	0	0	1
sps_ibc_enabled_flag	0	0	0	1	1
sps_ciip_enabled_flag	0	0	0	0	1
sps_fpel_mmvd_enabled_flag	0	0	0	0	1
sps_geo_enabled_flag	0	0	0	0	1
sps_lmcs_enabled_flag	0	0	0	0	1
sps_lfnst_enabled_flag	0	0	0	1	1
sps_ladf_enabled_flag	0	0	0	0	1
sps_scaling_list_enabled_flag	0	0	0	0	1

Table 2 – Coding tools sets for bitstreams for Main 10 profile

Feature	Feature name	Bitstream features
Access unit delimiter	AUD	AUD NAL units present
Filler data	FILLER	Filler data NAL units present
Decoding Capability Information	DCI	DPS present
Sequence parameter set	SPS	Multiple SPSs
Video usability information	PQ	PQ EOTF
Video usability information	HLG	HLG EOTF
Picture parameter set	PPS	Multiple PPSs
Mixed NUT	MNUT	Mixed NAL unit type within a picture
Extension of parameter set	PSEXT	Extension data in DPS, VPS, SPS, PPS, PH, SH
Hypothetical reference decoder	HRD	HRD signalling, including HSS, DU, repetition
Adaptation parameter set	APSALF	Multiple APSs of each type (ALF)
Adaptation parameter set	APSLMCS	Multiple APSs of each type (LMCS)
Adaptation parameter set	APSMULT	Multiple APSs of each type (scaling list)
Adaptation parameter set	SUFAPS	Suffix APS NAL units
Random access point	RAP	IRAP functionality
Picture output	POUT	Pic output flag, no output pic
Gradual decoder refresh	GDR	Use of GDR pictures
Picture order count	POC	POC derivation, POC reset, POC MSB present
Tiles	TILE	Pictures partitions in tiles with same and different tile size, slices in tiles, tiles in slices
Slices	SLICES	Raster-scan and rectangular slices
Subpictures	SUBPIC	Various number of sub-pictures, sub-pictures of varying sizes, multiple tiles in some sub-pictures, mix of independent and non-independent subpictures, use of subpicture ID in PPS and in PH
Picture header and slice header	PHSH	Signalling control of syntax elements in PH and SH, bitstream with both picture header in slice header as well as picture header in its own NALU, collocated picture for TMVP signalled in picture header
Temporal scalability	TEMPSCAL	Maximum number of temporal layers, varying number of temporal sub-layers
Inter-layer reference picture list	ILRPL	Inter-layer ref pic list
Reference picture lists	RPL	Reference list modification
Long term ref picture	LTRP	LTRP handling
Number of active ref pics	ACTPIC	Using default, using different number of active reference pictures in slices
Virtual boundaries	VIRTUAL	Loop filters on/off at non-tile/slice boundaries

Table 3 – High-level syntax features for bitstreams for Main 10 profile

Feature	Feature name	Bitstream features
Reference wraparound	WRAP	Exercise various wraparound amounts
360° video	CUBEMAP	Cubemap layout and SEI
360° video	ERP	Equirectangular projection layout and SEI
Conformance cropping window	CROP	Use of conformance cropping parameters, varying parameters, large offsets, odd offset values for 4:4:4, cropping window signalling in both SPS and PPS
Bumping	BUMP	Bumping process
Decoded picture buffer	DPB	Sublayer DPB size signalling
Field pictures	FIELD	Frame-field information (SPS)

Table 3 – High-level syntax features for bitstreams for Main 10 profile

Table 4 – Additional chroma formats and bit depths for Main 10 profile

Tool description	Feature name	Bitstream features
8b 4:0:0	8b400	8-bit 4:0:0 in Main 10 profile
8b 4:2:0	8b420	8-bit 4:2:0 in Main 10 profile
10b 4:0:0	10b400	10-bit 4:0:0 in Main 10 profile

6.7.2 Bitstreams for Main 10 4:4:4 profile

Table 5 – Coding tools for Main 10 4:4:4 profile with 4:4:4 10 bit

Categories	Tool description	Feature name	Bitstream features
Basic 4:4:4	10-bit 4:4:4	10b444	No 4:4:4-specific coding tools enabled
SCC coding	Adaptive colour transform	ACT	
SCC coding	Palette mode	PALETTE	
Entropy	Entropy coding for Main 10 4:4:4 profile, Main tier	ENT444MAINTIER	Max bins and bits for Main 10 4:4:4 profile, Main tier
Entropy	Entropy coding for Main 10 4:4:4 profile, High tier	ENT444HIGHTIER	Max bins and bits for Main 10 4:4:4 profile, High tier

Table 6 – Additional chroma	formats and bit dep	ths Main 10 4:4:4	profile
-----------------------------	---------------------	-------------------	---------

Tool description Feature name		Bitstream features
8b 4:2:2	8b422	8-bit 4:2:2 in Main 10 4:4:4 profile
8b 4:4:4	8b444	8-bit 4:4:4 in Main 10 4:4:4 profile
10b 4:2:2	10b422	10-bit 4:2:2 in Main 10 4:4:4 profile

6.7.3 Bitstreams for Multilayer Main 10 profile

Feature	Feature name	Bitstream features
Video parameter set	VPS	Single and multiple VPSs
Spatial scalability	SPATSCAL	Different resolution layers, including unusual scaling ratios
Layered coding with OLS	OLS	Layered coding w/ and w/o inter-layer prediction, with 2 and 3 layers
Operating point information NAL unit	OPI	Use OPI NAL unit in bitstream to determine output

Table 7 – Bitstreams for Multilayer Main 10 profile

6.7.4 Bitstreams for Multilayer Main 10 4:4:4 profile

Table 8 – Bitstreams for Multilayer Main 10 4:4:4 profile

Feature	Feature name	Bitstream features
Spatial scalability	SPATSCAL44 4	Different resolution layers, including unusual scaling ratios

6.7.5 Bitstreams for Main 10 Still Picture profile

Table 9 – Bitstreams for Main 10 Still Picture profile

Feature	Feature name	Bitstream features
Still picture	STILL	Single picture using Main 10 Still Picture profile and testing capability of decoding the first picture of a Main 10 profile bitstream

6.7.6 Bitstreams for Main 10 4:4:4 Still Picture profile

Table 10 – Bitstreams for Main 10 4:4:4 Still Picture profile

Feature	Feature name	Bitstream features
Still picture	STILL444	Single picture using Main 10 4:4:4 Still Picture profile and testing capability of decoding the first picture of a Main 10 4:4:4 profile bitstream

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling, and associated measurements and tests
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities
- Series Z Languages and general software aspects for telecommunication systems