

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T H.264
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(03/2009)

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS
Infrastructure of audiovisual services – Coding of moving
video

 Advanced video coding for generic audiovisual
services

Recommendation ITU-T H.264

ITU-T H-SERIES RECOMMENDATIONS
AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS H.100–H.199
INFRASTRUCTURE OF AUDIOVISUAL SERVICES

General H.200–H.219
Transmission multiplexing and synchronization H.220–H.229
Systems aspects H.230–H.239
Communication procedures H.240–H.259
Coding of moving video H.260–H.279
Related systems aspects H.280–H.299
Systems and terminal equipment for audiovisual services H.300–H.349
Directory services architecture for audiovisual and multimedia services H.350–H.359
Quality of service architecture for audiovisual and multimedia services H.360–H.369
Supplementary services for multimedia H.450–H.499

MOBILITY AND COLLABORATION PROCEDURES
Overview of Mobility and Collaboration, definitions, protocols and procedures H.500–H.509
Mobility for H-Series multimedia systems and services H.510–H.519
Mobile multimedia collaboration applications and services H.520–H.529
Security for mobile multimedia systems and services H.530–H.539
Security for mobile multimedia collaboration applications and services H.540–H.549
Mobility interworking procedures H.550–H.559
Mobile multimedia collaboration inter-working procedures H.560–H.569

BROADBAND, TRIPLE-PLAY AND ADVANCED MULTIMEDIA SERVICES
Broadband multimedia services over VDSL H.610–H.619
Advanced multimedia services and applications H.620–H.629

IPTV MULTIMEDIA SERVICES AND APPLICATIONS FOR IPTV
General aspects H.700–H.719
IPTV terminal devices H.720–H.729
IPTV middleware H.730–H.739
IPTV application event handling H.740–H.749
IPTV metadata H.750–H.759
IPTV multimedia application frameworks H.760–H.769
IPTV service discovery up to consumption H.770–H.779

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T H.264 (03/2009) i

Recommendation ITU-T H.264

Advanced video coding for generic audiovisual services

Summary

This Recommendation | International Standard represents an evolution of the existing video coding standards (H.261,
H.262, and H.263) and it was developed in response to the growing need for higher compression of moving pictures for
various applications such as videoconferencing, digital storage media, television broadcasting, Internet streaming, and
communication. It is also designed to enable the use of the coded video representation in a flexible manner for a wide
variety of network environments. The use of this Recommendation | International Standard allows motion video to be
manipulated as a form of computer data and to be stored on various storage media, transmitted and received over existing
and future networks and distributed on existing and future broadcasting channels.

The revision approved 2005-03 contained modifications of the video coding standard to add four new profiles, referred
to as the High, High 10, High 4:2:2, and High 4:4:4 profiles, to improve video quality capability and to extend the range
of applications addressed by the standard (for example, by including support for a greater range of picture sample
precision and higher-resolution chroma formats). Additionally, a definition of new types of supplemental data was
specified to further broaden the applicability of the video coding standard. Finally, a number of corrections to errors in
the published text were included.

Corrigendum 1 to ITU-T Rec. H.264 corrected and updated various minor aspects to bring the ITU-T version of the text
up to date relative to the April 2005 output status approved as a new edition of the corresponding jointly-developed and
technically-aligned text ISO/IEC 14496-10. It additionally fixed a number of minor errors and needs for clarification and
defined three previously-reserved sample aspect ratio indicators.

The H.264 edition published in 2005-11 included the text approved 2005-03 and its Corrigendum 1 approved 2005-09.

Amendment 1 "Support of additional colour spaces and removal of the High 4:4:4 Profile" contained alterations to
ITU-T Rec. H.264 | ISO/IEC 14496-10 Advanced Video Coding to specify the support of additional colour spaces and to
remove the definition of the High 4:4:4 Profile.
NOTE – ITU-T Rec. H.264 is a twin text with ISO/IEC 14496-10 and this amendment was published in two different documents in
the ISO/IEC series:

– The removal of the High 4:4:4 profile was found in ISO/IEC 14496-10:2005/Cor.2.
– The specification for support of additional colour spaces was found in ISO/IEC 14496-10:2005/Amd.1.

Amendment 2 "New profiles for professional applications" contained extensions to ITU-T Rec. H.264 |
ISO/IEC 14496-10 Advanced Video Coding to specify the support of five additional profiles intended primarily for
professional applications (the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, CAVLC 4:4:4 Intra, and High 4:4:4
Predictive profiles) and two new types of supplemental enhancement information (SEI) messages (the post-filter hint SEI
message and the tone mapping information SEI message).

Amendment 3 "Scalable video coding" contained extensions to ITU-T Rec. H.264 | ISO/IEC 14496-10 Advanced Video
Coding to specify a scalable video coding extension in three profiles (the Scalable Baseline, Scalable High, and Scalable
High Intra profiles).

The H.264 edition published in 2005-11 included the text approved 2005-03 and its Corrigendum 1 approved 2005-09.
H.264 (2005) Amd.2 (2007) was available only as pre-published text since it was superseded by H.264 Amd.3 (2007-11)
before its publication; further, H.264 Amd.3 was not published separately. The third edition integrated into the H.264
edition published in 2005-11 all changes approved in Amendments 1 (2006-06), 2 (2007-04) and 3 (2007-11).

Corrigendum 1 (2009) provides a significant number of minor corrections, clarifications, consistency improvements and
formatting improvements drafted in response to accumulated errata reports collected since publication of the 2nd edition
(dated 2005-03, which included a Cor.1 approved 2005-09).

This revision to ITU-T Rec. H.264 contains enhancement extensions to support multiview video coding (MVC),
specification of a "Constrained Baseline Profile", and some miscellaneous corrections and clarifications. Specifically,
Annex H specifies multiview video coding (MVC). The reader is referred to Annex H for the entire decoding process for
MVC, which is specified there with references being made to clauses 2-9 and Annexes A-E. Clause H.10 specifies one
profile for MVC (Multiview High).

Source

Recommendation ITU-T H.264 was approved on 16 March 2009 by ITU-T Study Group 16 (2009-2012) under
Recommendation ITU-T A.8 procedures.

ii Rec. ITU-T H.264 (03/2009)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2009

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T H.264 (03/2009) iii

CONTENTS

 Page
0 Introduction.. 1

0.1 Prologue... 1
0.2 Purpose .. 1
0.3 Applications ... 1
0.4 Publication and versions of this specification .. 1
0.5 Profiles and levels .. 2
0.6 Overview of the design characteristics .. 3

0.6.1 Predictive coding ... 3
0.6.2 Coding of progressive and interlaced video... 3
0.6.3 Picture partitioning into macroblocks and smaller partitions... 4
0.6.4 Spatial redundancy reduction... 4
0.6.5 How to read this specification.. 4

1 Scope ... 5
2 Normative references... 5
3 Definitions ... 5
4 Abbreviations... 13
5 Conventions ... 13

5.1 Arithmetic operators .. 13
5.2 Logical operators ... 14
5.3 Relational operators ... 14
5.4 Bit-wise operators .. 14
5.5 Assignment operators... 15
5.6 Range notation ... 15
5.7 Mathematical functions.. 15
5.8 Order of operation precedence... 16
5.9 Variables, syntax elements, and tables... 17
5.10 Text description of logical operations.. 18
5.11 Processes.. 19

6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships 19
6.1 Bitstream formats... 19
6.2 Source, decoded, and output picture formats ... 19
6.3 Spatial subdivision of pictures and slices... 24
6.4 Inverse scanning processes and derivation processes for neighbours .. 25

6.4.1 Inverse macroblock scanning process .. 25
6.4.2 Inverse macroblock partition and sub-macroblock partition scanning process.................................. 26

6.4.2.1 Inverse macroblock partition scanning process ... 27
6.4.2.2 Inverse sub-macroblock partition scanning process... 27

6.4.3 Inverse 4x4 luma block scanning process .. 27
6.4.4 Inverse 4x4 Cb or Cr block scanning process for ChromaArrayType equal to 3............................... 28
6.4.5 Inverse 8x8 luma block scanning process .. 28
6.4.6 Inverse 8x8 Cb or Cr block scanning process for ChromaArrayType equal to 3............................... 28
6.4.7 Derivation process of the availability for macroblock addresses ... 28
6.4.8 Derivation process for neighbouring macroblock addresses and their availability 28
6.4.9 Derivation process for neighbouring macroblock addresses and their availability in MBAFF

frames .. 29
6.4.10 Derivation processes for neighbouring macroblocks, blocks, and partitions 30

6.4.10.1 Derivation process for neighbouring macroblocks .. 31
6.4.10.2 Derivation process for neighbouring 8x8 luma block.. 31
6.4.10.3 Derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3 32
6.4.10.4 Derivation process for neighbouring 4x4 luma blocks .. 32
6.4.10.5 Derivation process for neighbouring 4x4 chroma blocks .. 32
6.4.10.6 Derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3 33
6.4.10.7 Derivation process for neighbouring partitions.. 33

6.4.11 Derivation process for neighbouring locations .. 34
6.4.11.1 Specification for neighbouring locations in fields and non-MBAFF frames 35

iv Rec. ITU-T H.264 (03/2009)

 Page
6.4.11.2 Specification for neighbouring locations in MBAFF frames... 35

6.4.12 Derivation processes for block and partition indices ... 37
6.4.12.1 Derivation process for 4x4 luma block indices.. 38
6.4.12.2 Derivation process for 4x4 chroma block indices.. 38
6.4.12.3 Derivation process for 8x8 luma block indices.. 38
6.4.12.4 Derivation process for macroblock and sub-macroblock partition indices 38

7 Syntax and semantics... 39
7.1 Method of specifying syntax in tabular form... 39
7.2 Specification of syntax functions, categories, and descriptors... 40
7.3 Syntax in tabular form ... 42

7.3.1 NAL unit syntax... 42
7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax.. 42

7.3.2.1 Sequence parameter set RBSP syntax.. 42
7.3.2.2 Picture parameter set RBSP syntax.. 46
7.3.2.3 Supplemental enhancement information RBSP syntax.. 47
7.3.2.4 Access unit delimiter RBSP syntax ... 47
7.3.2.5 End of sequence RBSP syntax... 48
7.3.2.6 End of stream RBSP syntax... 48
7.3.2.7 Filler data RBSP syntax ... 48
7.3.2.8 Slice layer without partitioning RBSP syntax.. 48
7.3.2.9 Slice data partition RBSP syntax ... 48
7.3.2.10 RBSP slice trailing bits syntax... 49
7.3.2.11 RBSP trailing bits syntax ... 49
7.3.2.12 Prefix NAL unit RBSP syntax ... 50
7.3.2.13 Slice layer extension RBSP syntax .. 50

7.3.3 Slice header syntax... 51
7.3.3.1 Reference picture list modification syntax... 52
7.3.3.2 Prediction weight table syntax ... 53
7.3.3.3 Decoded reference picture marking syntax.. 54

7.3.4 Slice data syntax .. 55
7.3.5 Macroblock layer syntax.. 56

7.3.5.1 Macroblock prediction syntax.. 57
7.3.5.2 Sub-macroblock prediction syntax... 58
7.3.5.3 Residual data syntax .. 59

7.4 Semantics ... 62
7.4.1 NAL unit semantics ... 63

7.4.1.1 Encapsulation of an SODB within an RBSP (informative) ... 66
7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences 67

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics .. 72
7.4.2.1 Sequence parameter set RBSP semantics .. 72
7.4.2.2 Picture parameter set RBSP semantics .. 80
7.4.2.3 Supplemental enhancement information RBSP semantics .. 82
7.4.2.4 Access unit delimiter RBSP semantics .. 82
7.4.2.5 End of sequence RBSP semantics.. 83
7.4.2.6 End of stream RBSP semantics.. 83
7.4.2.7 Filler data RBSP semantics.. 83
7.4.2.8 Slice layer without partitioning RBSP semantics .. 83
7.4.2.9 Slice data partition RBSP semantics.. 83
7.4.2.10 RBSP slice trailing bits semantics ... 85
7.4.2.11 RBSP trailing bits semantics.. 85
7.4.2.12 Prefix NAL unit RBSP semantics.. 85
7.4.2.13 Slice layer extension RBSP semantics... 85

7.4.3 Slice header semantics ... 85
7.4.3.1 Reference picture list modification semantics ... 91
7.4.3.2 Prediction weight table semantics.. 92
7.4.3.3 Decoded reference picture marking semantics .. 93

7.4.4 Slice data semantics ... 96
7.4.5 Macroblock layer semantics... 97

7.4.5.1 Macroblock prediction semantics .. 105
7.4.5.2 Sub-macroblock prediction semantics ... 106
7.4.5.3 Residual data semantics ... 108

 Rec. ITU-T H.264 (03/2009) v

 Page
8 Decoding process... 110

8.1 NAL unit decoding process.. 111
8.2 Slice decoding process... 112

8.2.1 Decoding process for picture order count .. 112
8.2.1.1 Decoding process for picture order count type 0 ... 113
8.2.1.2 Decoding process for picture order count type 1 ... 114
8.2.1.3 Decoding process for picture order count type 2 ... 115

8.2.2 Decoding process for macroblock to slice group map ... 116
8.2.2.1 Specification for interleaved slice group map type.. 117
8.2.2.2 Specification for dispersed slice group map type... 117
8.2.2.3 Specification for foreground with left-over slice group map type ... 118
8.2.2.4 Specification for box-out slice group map types.. 118
8.2.2.5 Specification for raster scan slice group map types ... 119
8.2.2.6 Specification for wipe slice group map types .. 119
8.2.2.7 Specification for explicit slice group map type.. 119
8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map 119

8.2.3 Decoding process for slice data partitions.. 119
8.2.4 Decoding process for reference picture lists construction.. 120

8.2.4.1 Decoding process for picture numbers... 121
8.2.4.2 Initialisation process for reference picture lists ... 121
8.2.4.3 Modification process for reference picture lists... 125

8.2.5 Decoded reference picture marking process .. 127
8.2.5.1 Sequence of operations for decoded reference picture marking process 127
8.2.5.2 Decoding process for gaps in frame_num.. 127
8.2.5.3 Sliding window decoded reference picture marking process... 128
8.2.5.4 Adaptive memory control decoded reference picture marking process 129

8.3 Intra prediction process.. 131
8.3.1 Intra_4x4 prediction process for luma samples.. 131

8.3.1.1 Derivation process for Intra4x4PredMode... 132
8.3.1.2 Intra_4x4 sample prediction .. 133

8.3.2 Intra_8x8 prediction process for luma samples.. 137
8.3.2.1 Derivation process for Intra8x8PredMode... 138
8.3.2.2 Intra_8x8 sample prediction .. 139

8.3.3 Intra_16x16 prediction process for luma samples.. 145
8.3.3.1 Specification of Intra_16x16_Vertical prediction mode.. 146
8.3.3.2 Specification of Intra_16x16_Horizontal prediction mode.. 146
8.3.3.3 Specification of Intra_16x16_DC prediction mode ... 146
8.3.3.4 Specification of Intra_16x16_Plane prediction mode.. 147

8.3.4 Intra prediction process for chroma samples.. 147
8.3.4.1 Specification of Intra_Chroma_DC prediction mode .. 148
8.3.4.2 Specification of Intra_Chroma_Horizontal prediction mode... 150
8.3.4.3 Specification of Intra_Chroma_Vertical prediction mode ... 150
8.3.4.4 Specification of Intra_Chroma_Plane prediction mode ... 150
8.3.4.5 Intra prediction for chroma samples with ChromaArrayType equal to 3 151

8.3.5 Sample construction process for I_PCM macroblocks .. 151
8.4 Inter prediction process.. 152

8.4.1 Derivation process for motion vector components and reference indices.. 154
8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices........... 155
8.4.1.2 Derivation process for luma motion vectors for B_Skip, B_Direct_16x16, and B_Direct_8x8.. 156
8.4.1.3 Derivation process for luma motion vector prediction... 163
8.4.1.4 Derivation process for chroma motion vectors .. 166

8.4.2 Decoding process for Inter prediction samples .. 166
8.4.2.1 Reference picture selection process ... 167
8.4.2.2 Fractional sample interpolation process... 168
8.4.2.3 Weighted sample prediction process.. 173

8.4.3 Derivation process for prediction weights ... 175
8.5 Transform coefficient decoding process and picture construction process prior to deblocking filter

process ... 177
8.5.1 Specification of transform decoding process for 4x4 luma residual blocks....................................... 178
8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock

prediction mode ... 178

vi Rec. ITU-T H.264 (03/2009)

 Page
8.5.3 Specification of transform decoding process for 8x8 luma residual blocks....................................... 179
8.5.4 Specification of transform decoding process for chroma samples ... 180
8.5.5 Specification of transform decoding process for chroma samples with ChromaArrayType equal

to 3 .. 182
8.5.6 Inverse scanning process for 4x4 transform coefficients and scaling lists... 182
8.5.7 Inverse scanning process for 8x8 transform coefficients and scaling lists... 183
8.5.8 Derivation process for chroma quantisation parameters .. 185
8.5.9 Derivation process for scaling functions.. 185
8.5.10 Scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock

type .. 187
8.5.11 Scaling and transformation process for chroma DC transform coefficients....................................... 187

8.5.11.1 Transformation process for chroma DC transform coefficients... 188
8.5.11.2 Scaling process for chroma DC transform coefficients ... 188

8.5.12 Scaling and transformation process for residual 4x4 blocks .. 189
8.5.12.1 Scaling process for residual 4x4 blocks ... 190
8.5.12.2 Transformation process for residual 4x4 blocks .. 190

8.5.13 Scaling and transformation process for residual 8x8 blocks .. 192
8.5.13.1 Scaling process for residual 8x8 blocks ... 192
8.5.13.2 Transformation process for residual 8x8 blocks .. 192

8.5.14 Picture construction process prior to deblocking filter process.. 195
8.5.15 Intra residual transform-bypass decoding process ... 197

8.6 Decoding process for P macroblocks in SP slices or SI macroblocks ... 197
8.6.1 SP decoding process for non-switching pictures.. 197

8.6.1.1 Luma transform coefficient decoding process ... 198
8.6.1.2 Chroma transform coefficient decoding process.. 199

8.6.2 SP and SI slice decoding process for switching pictures ... 200
8.6.2.1 Luma transform coefficient decoding process ... 200
8.6.2.2 Chroma transform coefficient decoding process.. 201

8.7 Deblocking filter process ... 202
8.7.1 Filtering process for block edges ... 206
8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge............................... 207

8.7.2.1 Derivation process for the luma content dependent boundary filtering strength 208
8.7.2.2 Derivation process for the thresholds for each block edge .. 210
8.7.2.3 Filtering process for edges with bS less than 4 .. 211
8.7.2.4 Filtering process for edges for bS equal to 4.. 213

9 Parsing process .. 214
9.1 Parsing process for Exp-Golomb codes ... 214

9.1.1 Mapping process for signed Exp-Golomb codes ... 216
9.1.2 Mapping process for coded block pattern .. 216

9.2 CAVLC parsing process for transform coefficient levels .. 219
9.2.1 Parsing process for total number of transform coefficient levels and trailing ones 219
9.2.2 Parsing process for level information... 222

9.2.2.1 Parsing process for level_prefix... 223
9.2.3 Parsing process for run information ... 224
9.2.4 Combining level and run information .. 227

9.3 CABAC parsing process for slice data... 227
9.3.1 Initialisation process .. 229

9.3.1.1 Initialisation process for context variables... 230
9.3.1.2 Initialisation process for the arithmetic decoding engine... 253

9.3.2 Binarization process... 253
9.3.2.1 Unary (U) binarization process .. 257
9.3.2.2 Truncated unary (TU) binarization process ... 258
9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGk) binarization process 258
9.3.2.4 Fixed-length (FL) binarization process.. 259
9.3.2.5 Binarization process for macroblock type and sub-macroblock type .. 259
9.3.2.6 Binarization process for coded block pattern... 262
9.3.2.7 Binarization process for mb_qp_delta ... 262

9.3.3 Decoding process flow... 262
9.3.3.1 Derivation process for ctxIdx... 263
9.3.3.2 Arithmetic decoding process.. 276

9.3.4 Arithmetic encoding process (informative).. 283

 Rec. ITU-T H.264 (03/2009) vii

 Page
9.3.4.1 Initialisation process for the arithmetic encoding engine (informative) 283
9.3.4.2 Encoding process for a binary decision (informative) ... 284
9.3.4.3 Renormalization process in the arithmetic encoding engine (informative).................................. 285
9.3.4.4 Bypass encoding process for binary decisions (informative)... 287
9.3.4.5 Encoding process for a binary decision before termination (informative)................................... 288
9.3.4.6 Byte stuffing process (informative) ... 290

Annex A – Profiles and levels ... 291
A.1 Requirements on video decoder capability .. 291
A.2 Profiles ... 291

A.2.1 Baseline profile .. 291
A.2.1.1 Constrained Baseline profile.. 292

A.2.2 Main profile ... 292
A.2.3 Extended profile... 292
A.2.4 High profile.. 293
A.2.5 High 10 profile ... 293
A.2.6 High 4:2:2 profile... 294
A.2.7 High 4:4:4 Predictive profile.. 294
A.2.8 High 10 Intra profile .. 294
A.2.9 High 4:2:2 Intra profile .. 295
A.2.10 High 4:4:4 Intra profile .. 296
A.2.11 CAVLC 4:4:4 Intra profile... 296

A.3 Levels... 296
A.3.1 Level limits common to the Baseline, Constrained Baseline, Main, and Extended profiles.............. 297
A.3.2 Level limits common to the High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,

High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles ... 299
A.3.3 Profile-specific level limits .. 300

A.3.3.1 Baseline and Constrained Baseline profile level limits.. 302
A.3.3.2 Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,

High 4:4:4 Intra, and CAVLC 4:4:4 Intra profile level limits.. 303
A.3.3.3 Extended Profile level limits.. 304

A.3.4 Effect of level limits on frame rate (informative) .. 306
A.3.5 Effect of level limits on maximum DPB size in units of frames (informative).................................. 308

Annex B – Byte stream format .. 310
B.1 Byte stream NAL unit syntax and semantics ... 310

B.1.1 Byte stream NAL unit syntax... 310
B.1.2 Byte stream NAL unit semantics ... 310

B.2 Byte stream NAL unit decoding process ... 311
B.3 Decoder byte-alignment recovery (informative).. 311

Annex C – Hypothetical reference decoder ... 312
C.1 Operation of coded picture buffer (CPB)... 316

C.1.1 Timing of bitstream arrival .. 316
C.1.2 Timing of coded picture removal ... 317

C.2 Operation of the decoded picture buffer (DPB) ... 318
C.2.1 Decoding of gaps in frame_num and storage of "non-existing" frames... 318
C.2.2 Picture decoding and output... 318
C.2.3 Removal of pictures from the DPB before possible insertion of the current picture.......................... 319
C.2.4 Current decoded picture marking and storage.. 320

C.2.4.1 Marking and storage of a reference decoded picture into the DPB.. 320
C.2.4.2 Storage of a non-reference picture into the DPB ... 320

C.3 Bitstream conformance .. 320
C.4 Decoder conformance .. 322

C.4.1 Operation of the output order DPB .. 323
C.4.2 Decoding of gaps in frame_num and storage of "non-existing" pictures ... 323
C.4.3 Picture decoding... 323
C.4.4 Removal of pictures from the DPB before possible insertion of the current picture.......................... 324
C.4.5 Current decoded picture marking and storage.. 324

C.4.5.1 Storage and marking of a reference decoded picture into the DPB ... 324
C.4.5.2 Storage and marking of a non-reference decoded picture into the DPB 325
C.4.5.3 "Bumping" process .. 325

viii Rec. ITU-T H.264 (03/2009)

 Page
Annex D – Supplemental enhancement information ... 327

D.1 SEI payload syntax .. 327
D.1.1 Buffering period SEI message syntax .. 329
D.1.2 Picture timing SEI message syntax .. 329
D.1.3 Pan-scan rectangle SEI message syntax... 331
D.1.4 Filler payload SEI message syntax .. 331
D.1.5 User data registered by ITU-T Rec. T.35 SEI message syntax .. 331
D.1.6 User data unregistered SEI message syntax... 332
D.1.7 Recovery point SEI message syntax .. 332
D.1.8 Decoded reference picture marking repetition SEI message syntax .. 332
D.1.9 Spare picture SEI message syntax.. 333
D.1.10 Scene information SEI message syntax ... 333
D.1.11 Sub-sequence information SEI message syntax... 334
D.1.12 Sub-sequence layer characteristics SEI message syntax .. 334
D.1.13 Sub-sequence characteristics SEI message syntax... 334
D.1.14 Full-frame freeze SEI message syntax ... 335
D.1.15 Full-frame freeze release SEI message syntax ... 335
D.1.16 Full-frame snapshot SEI message syntax... 335
D.1.17 Progressive refinement segment start SEI message syntax.. 335
D.1.18 Progressive refinement segment end SEI message syntax ... 335
D.1.19 Motion-constrained slice group set SEI message syntax ... 335
D.1.20 Film grain characteristics SEI message syntax .. 336
D.1.21 Deblocking filter display preference SEI message syntax ... 336
D.1.22 Stereo video information SEI message syntax ... 337
D.1.23 Post-filter hint SEI message syntax.. 337
D.1.24 Tone mapping information SEI message syntax.. 338
D.1.25 Reserved SEI message syntax.. 338

D.2 SEI payload semantics ... 338
D.2.1 Buffering period SEI message semantics... 338
D.2.2 Picture timing SEI message semantics... 339
D.2.3 Pan-scan rectangle SEI message semantics ... 344
D.2.4 Filler payload SEI message semantics ... 345
D.2.5 User data registered by ITU-T Rec. T.35 SEI message semantics... 345
D.2.6 User data unregistered SEI message semantics.. 346
D.2.7 Recovery point SEI message semantics ... 346
D.2.8 Decoded reference picture marking repetition SEI message semantics ... 348
D.2.9 Spare picture SEI message semantics .. 348
D.2.10 Scene information SEI message semantics .. 350
D.2.11 Sub-sequence information SEI message semantics.. 351
D.2.12 Sub-sequence layer characteristics SEI message semantics... 353
D.2.13 Sub-sequence characteristics SEI message semantics.. 354
D.2.14 Full-frame freeze SEI message semantics.. 355
D.2.15 Full-frame freeze release SEI message semantics.. 355
D.2.16 Full-frame snapshot SEI message semantics ... 355
D.2.17 Progressive refinement segment start SEI message semantics... 356
D.2.18 Progressive refinement segment end SEI message semantics.. 356
D.2.19 Motion-constrained slice group set SEI message semantics .. 356
D.2.20 Film grain characteristics SEI message semantics ... 357
D.2.21 Deblocking filter display preference SEI message semantics .. 363
D.2.22 Stereo video information SEI message semantics.. 365
D.2.23 Post-filter hint SEI message semantics .. 365
D.2.24 Tone mapping information SEI message semantics... 366
D.2.25 Reserved SEI message semantics... 368

Annex E – Video usability information ... 369
E.1 VUI syntax... 369

E.1.1 VUI parameters syntax... 369
E.1.2 HRD parameters syntax ... 370

E.2 VUI semantics.. 371
E.2.1 VUI parameters semantics ... 371
E.2.2 HRD parameters semantics .. 382

 Rec. ITU-T H.264 (03/2009) ix

 Page
Annex G – Scalable video coding.. 384

G.1 Scope.. 384
G.2 Normative references ... 384
G.3 Definitions ... 384
G.4 Abbreviations... 388
G.5 Conventions ... 388
G.6 Source, coded, decoded and output data formats, scanning processes, neighbouring and reference layer

relationships ... 388
G.6.1 Derivation process for reference layer macroblocks.. 388

G.6.1.1 Field-to-frame reference layer macroblock conversion process .. 390
G.6.1.2 Frame-to-field reference layer macroblock conversion process .. 391

G.6.2 Derivation process for reference layer partitions ... 391
G.6.3 Derivation process for reference layer sample locations in resampling ... 392
G.6.4 SVC derivation process for macroblock and sub-macroblock partition indices 394

G.7 Syntax and semantics... 394
G.7.1 Method of specifying syntax in tabular form ... 394
G.7.2 Specification of syntax functions, categories, and descriptors... 394
G.7.3 Syntax in tabular form.. 394

G.7.3.1 NAL unit syntax... 394
G.7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax.. 395
G.7.3.3 Slice header syntax .. 397
G.7.3.4 Slice data syntax .. 400
G.7.3.5 Macroblock layer syntax.. 401
G.7.3.6 Macroblock layer in scalable extension syntax.. 402

G.7.4 Semantics ... 405
G.7.4.1 NAL unit semantics ... 406
G.7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics .. 414
G.7.4.3 Slice header semantics ... 418
G.7.4.4 Slice data semantics ... 431
G.7.4.5 Macroblock layer semantics .. 431
G.7.4.6 Macroblock layer in scalable extension semantics .. 432

G.8 SVC decoding process ... 435
G.8.1 SVC initialisation and decoding processes .. 436

G.8.1.1 Derivation process for the set of layer representations required for decoding............................. 437
G.8.1.2 Array assignment, initialisation, and restructuring processes .. 437
G.8.1.3 Layer representation decoding processes... 440
G.8.1.4 Slice decoding processes.. 443
G.8.1.5 Macroblock initialisation and decoding processes... 444

G.8.2 SVC reference picture lists construction and decoded reference picture marking process 455
G.8.2.1 SVC decoding process for picture order count .. 457
G.8.2.2 SVC decoding process for picture numbers... 457
G.8.2.3 SVC decoding process for reference picture lists construction.. 458
G.8.2.4 SVC decoded reference picture marking process .. 459
G.8.2.5 SVC decoding process for gaps in frame_num.. 465

G.8.3 SVC intra decoding processes.. 465
G.8.3.1 SVC derivation process for intra prediction modes ... 466
G.8.3.2 SVC intra sample prediction and construction process.. 469

G.8.4 SVC Inter prediction process ... 475
G.8.4.1 SVC derivation process for motion vector components and reference indices 475
G.8.4.2 SVC decoding process for Inter prediction samples .. 481

G.8.5 SVC transform coefficient decoding and sample array construction processes................................. 486
G.8.5.1 Transform coefficient scaling and refinement process .. 486
G.8.5.2 Transform coefficient level scaling process prior to transform coefficient refinement 493
G.8.5.3 Residual construction and accumulation process... 495
G.8.5.4 Sample array accumulation process... 499

G.8.6 Resampling processes for prediction data, intra samples, and residual samples................................ 502
G.8.6.1 Derivation process for inter-layer predictors for macroblock type, sub-macroblock type,

reference indices, and motion vectors.. 502
G.8.6.2 Resampling process for intra samples.. 512
G.8.6.3 Resampling process for residual samples .. 525

x Rec. ITU-T H.264 (03/2009)

 Page
G.8.7 SVC deblocking filter processes .. 531

G.8.7.1 Deblocking filter process for Intra_Base prediction .. 532
G.8.7.2 Deblocking filter process for target representations .. 532
G.8.7.3 Derivation process for quantisation parameters used in the deblocking filter process................. 533
G.8.7.4 Macroblock deblocking filter process.. 534

G.8.8 Specification of bitstream subsets .. 543
G.8.8.1 Sub-bitstream extraction process ... 543
G.8.8.2 Specification of the base layer bitstream ... 544

G.9 Parsing process .. 544
G.9.1 Alternative parsing process for coded block pattern .. 545
G.9.2 Alternative CAVLC parsing process for transform coefficient levels ... 545

G.9.2.1 Additional parsing process for total number of transform coefficient levels and trailing ones.... 546
G.9.2.2 Alternative parsing process for run information .. 548

G.9.3 Alternative CABAC parsing process for slice data in scalable extension.. 549
G.9.3.1 Initialisation process .. 549
G.9.3.2 Binarization process... 550
G.9.3.3 Decoding process flow... 551

G.10 Profiles and levels .. 552
G.10.1 Profiles .. 552

G.10.1.1 Scalable Baseline profile.. 552
G.10.1.2 Scalable High profile ... 554
G.10.1.3 Scalable High Intra profile... 555

G.10.2 Levels .. 555
G.10.2.1 Level limits common to Scalable Baseline, Scalable High, and Scalable High Intra profiles 555
G.10.2.2 Profile specific level limits .. 557

G.11 Byte stream format... 560
G.12 Hypothetical reference decoder ... 560
G.13 Supplemental enhancement information.. 560

G.13.1 SEI payload syntax... 561
G.13.1.1 Scalability information SEI message syntax.. 561
G.13.1.2 Sub-picture scalable layer SEI message syntax ... 563
G.13.1.3 Non-required layer representation SEI message syntax... 564
G.13.1.4 Priority layer information SEI message syntax.. 564
G.13.1.5 Layers not present SEI message syntax ... 564
G.13.1.6 Layer dependency change SEI message syntax ... 564
G.13.1.7 Scalable nesting SEI message syntax... 565
G.13.1.8 Base layer temporal HRD SEI message syntax ... 566
G.13.1.9 Quality layer integrity check SEI message syntax ... 566
G.13.1.10 Redundant picture property SEI message syntax... 567
G.13.1.11 Temporal level zero dependency representation index SEI message syntax 567
G.13.1.12 Temporal level switching point SEI message syntax... 567

G.13.2 SEI payload semantics ... 567
G.13.2.1 Scalability information SEI message semantics .. 569
G.13.2.2 Sub-picture scalable layer SEI message semantics .. 584
G.13.2.3 Non-required layer representation SEI message semantics ... 584
G.13.2.4 Priority layer information SEI message semantics .. 585
G.13.2.5 Layers not present SEI message semantics.. 585
G.13.2.6 Layer dependency change SEI message semantics.. 586
G.13.2.7 Scalable nesting SEI message semantics ... 587
G.13.2.8 Base layer temporal HRD SEI message semantics .. 588
G.13.2.9 Quality layer integrity check SEI message semantics.. 589
G.13.2.10 Redundant picture property SEI message semantics.. 590
G.13.2.11 Temporal level zero dependency representation index SEI message semantics 591
G.13.2.12 Temporal level switching point SEI message semantics ... 592

G.14 SVC video usability information extension ... 593
G.14.1 SVC VUI parameters extension syntax.. 594
G.14.2 SVC VUI parameters extension semantics .. 594

 Rec. ITU-T H.264 (03/2009) xi

 Page
Annex H – Multiview video coding .. 596

H.1 Scope.. 596
H.2 Normative references ... 596

 Page
H.3 Definitions ... 596
H.4 Abbreviations... 598
H.5 Conventions ... 598
H.6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships.... 598
H.7 Syntax and semantics... 598

H.7.1 Method of specifying syntax in tabular form ... 598
H.7.2 Specification of syntax functions, categories, and descriptors... 599
H.7.3 Syntax in tabular form.. 599

H.7.3.1 NAL unit syntax... 599
H.7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax.. 599
H.7.3.3 Slice header syntax .. 601
H.7.3.4 Slice data syntax .. 602
H.7.3.5 Macroblock layer syntax.. 602

H.7.4 Semantics ... 603
H.7.4.1 NAL unit semantics ... 603
H.7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics .. 609
H.7.4.3 Slice header semantics ... 612
H.7.4.4 Slice data semantics ... 614
H.7.4.5 Macroblock layer semantics .. 614

H.8 MVC decoding process.. 615
H.8.1 MVC decoding process for picture order count ... 615
H.8.2 MVC decoding process for reference picture lists construction... 615

H.8.2.1 Initilisation process for reference picture list for inter-view prediction references 616
H.8.2.2 Modification process for reference picture lists... 616

H.8.3 MVC decoded reference picture marking process ... 619
H.8.4 MVC inter prediction and inter-view prediction process ... 620
H.8.5 Specification of bitstream subsets .. 620

H.8.5.1 Derivation process for required anchor view components... 620
H.8.5.2 Derivation process for required non-anchor view components.. 620
H.8.5.3 Sub-bitstream extraction process ... 621
H.8.5.4 Specification of the base view bitstream.. 622
H.8.5.5 Creation of a base view during sub-bitstream extraction (informative)....................................... 622

H.9 Parsing process .. 623
H.10 Profiles and levels .. 623

H.10.1 Multiview High profile .. 624
H.10.2 Levels .. 624

H.11 Byte stream format... 627
H.12 MVC hypothetical reference decoder .. 627
H.13 MVC SEI messages ... 627

H.13.1 SEI message syntax.. 628
H.13.1.1 Parallel decoding information SEI message syntax ... 628
H.13.1.2 MVC scalable nesting SEI message syntax ... 628
H.13.1.3 View scalability information SEI message syntax... 629
H.13.1.4 Multiview scene information SEI message syntax .. 630
H.13.1.5 Multiview acquisition information SEI message syntax.. 630
H.13.1.6 Non-required view component SEI message syntax.. 631
H.13.1.7 View dependency change SEI message syntax.. 632
H.13.1.8 Operation point not present SEI message syntax ... 632
H.13.1.9 Base view temporal HRD SEI message syntax.. 633

H.13.2 SEI message semantics .. 633
H.13.2.1 Parallel decoding information SEI message semantics.. 634
H.13.2.2 MVC scalable nesting SEI message semantics .. 635
H.13.2.3 View scalability information SEI message semantics.. 636
H.13.2.4 Multiview scene information SEI message semantics ... 639
H.13.2.5 Multiview acquisition information SEI message semantics... 639

xii Rec. ITU-T H.264 (03/2009)

 Page
H.13.2.6 Non-required view component SEI message semantics .. 642
H.13.2.7 View dependency change SEI message semantics .. 643
H.13.2.8 Operation point not present SEI message semantics.. 644
H.13.2.9 Base view temporal HRD SEI message semantics .. 644

H.14 MVC video usability information extension.. 645
H.14.1 MVC VUI parameters extension syntax .. 645
H.14.2 MVC VUI parameters extension semantics ... 645

LIST OF FIGURES
Figure 6-1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame........................... 21
Figure 6-2 – Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields.................. 22
Figure 6-3 – Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame........................... 22
Figure 6-4 – Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields...................... 23
Figure 6-5 – Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a frame........................... 23
Figure 6-6 – Nominal vertical and horizontal sampling locations of 4:4:4 samples top and bottom fields...................... 24
Figure 6-7 – A picture with 11 by 9 macroblocks that is partitioned into two slices.. 25
Figure 6-8 – Partitioning of the decoded frame into macroblock pairs .. 25
Figure 6-9 – Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock

partition scans ... 26
Figure 6-10 – Scan for 4x4 luma blocks... 27
Figure 6-11 – Scan for 8x8 luma blocks... 28
Figure 6-12 – Neighbouring macroblocks for a given macroblock .. 29
Figure 6-13 – Neighbouring macroblocks for a given macroblock in MBAFF frames.. 30
Figure 6-14 – Determination of the neighbouring macroblock, blocks, and partitions (informative) 31
Figure 7-1 – Structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in the

range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive ... 70
Figure 8-1 – Intra_4x4 prediction mode directions (informative) .. 132
Figure 8-2 – Example for temporal direct-mode motion vector inference (informative) ... 163
Figure 8-3 – Directional segmentation prediction (informative) .. 164
Figure 8-4 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded

blocks with lower-case letters) for quarter sample luma interpolation ... 170
Figure 8-5 – Fractional sample position dependent variables in chroma interpolation and surrounding integer

position samples A, B, C, and D... 172
Figure 8-6 – Assignment of the indices of dcY to luma4x4BlkIdx .. 178
Figure 8-7 – Assignment of the indices of dcC to chroma4x4BlkIdx: (a) ChromaArrayType equal to 1, (b)

ChromaArrayType equal to 2 ... 180
Figure 8-8 – 4x4 block scans. (a) Zig-zag scan. (b) Field scan (informative) .. 182
Figure 8-9 – 8x8 block scans. (a) 8x8 zig-zag scan. (b) 8x8 field scan (informative) .. 183
Figure 8-10 – Boundaries in a macroblock to be filtered.. 202
Figure 8-11 – Convention for describing samples across a 4x4 block horizontal or vertical boundary 206
Figure 9-1 – Illustration of CABAC parsing process for a syntax element SE (informative) .. 227
Figure 9-2 – Overview of the arithmetic decoding process for a single bin (informative) ... 274

 Rec. ITU-T H.264 (03/2009) xiii

Figure 9-3 – Flowchart for decoding a decision ... 275
Figure 9-4 – Flowchart of renormalization... 277
Figure 9-5 – Flowchart of bypass decoding process... 278
Figure 9-6 – Flowchart of decoding a decision before termination .. 279
Figure 9-7 – Flowchart for encoding a decision ... 281
Figure 9-8 – Flowchart of renormalization in the encoder ... 282
Figure 9-9 – Flowchart of PutBit(B)... 283
Figure 9-10 – Flowchart of encoding bypass.. 284
Figure 9-11 – Flowchart of encoding a decision before termination .. 285
Figure 9-12 – Flowchart of flushing at termination.. 285
Figure C-1 – Structure of byte streams and NAL unit streams for HRD conformance checks 308
Figure C-2 – HRD buffer model... 310
Figure E-1 – Location of chroma samples for top and bottom fields for chroma_format_idc equal to 1 (4:2:0 chroma

format) as a function of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field.......... 375

LIST OF TABLES
Table 5-1 – Operation precedence from highest (at top of table) to lowest (at bottom of table) 17
Table 6-1 – SubWidthC, and SubHeightC values derived from chroma_format_idc and separate_colour_plane_flag ... 20
Table 6-2 – Specification of input and output assignments for subclauses 6.4.10.1 to 6.4.10.7....................................... 30
Table 6-3 – Specification of mbAddrN .. 35
Table 6-4 – Specification of mbAddrN and yM ... 37
Table 7-1 – NAL unit type codes, syntax element categories, and NAL unit type classes... 64
Table 7-2 – Assignment of mnemonic names to scaling list indices and specification of fall-back rule.......................... 75
Table 7-3 – Specification of default scaling lists Default_4x4_Intra and Default_4x4_Inter... 75
Table 7-4 – Specification of default scaling lists Default_8x8_Intra and Default_8x8_Inter... 76
Table 7-5 – Meaning of primary_pic_type ... 83
Table 7-6 – Name association to slice_type ... 86
Table 7-7 – modification_of_pic_nums_idc operations for modification of reference picture lists 92
Table 7-8 – Interpretation of adaptive_ref_pic_marking_mode_flag ... 94
Table 7-9 – Memory management control operation (memory_management_control_operation) values 95
Table 7-10 – Allowed collective macroblock types for slice_type... 98
Table 7-11 – Macroblock types for I slices .. 99
Table 7-12 – Macroblock type with value 0 for SI slices ... 100
Table 7-13 – Macroblock type values 0 to 4 for P and SP slices.. 101
Table 7-14 – Macroblock type values 0 to 22 for B slices.. 102
Table 7-15 – Specification of CodedBlockPatternChroma values.. 104
Table 7-16 – Relationship between intra_chroma_pred_mode and spatial prediction modes .. 105
Table 7-17 – Sub-macroblock types in P macroblocks... 106
Table 7-18 – Sub-macroblock types in B macroblocks .. 107
Table 8-1 – Refined slice group map type .. 116

xiv Rec. ITU-T H.264 (03/2009)

Table 8-2 – Specification of Intra4x4PredMode[luma4x4BlkIdx] and associated names.. 131
Table 8-3 – Specification of Intra8x8PredMode[luma8x8BlkIdx] and associated names.. 138
Table 8-4 – Specification of Intra16x16PredMode and associated names ... 145
Table 8-5 – Specification of Intra chroma prediction modes and associated names... 148
Table 8-6 – Specification of the variable colPic ... 156
Table 8-7 – Specification of PicCodingStruct(X)... 156
Table 8-8 – Specification of mbAddrCol, yM, and vertMvScale ... 158
Table 8-9 – Assignment of prediction utilization flags... 160
Table 8-10 – Derivation of the vertical component of the chroma vector in field coding mode 166
Table 8-11 – Differential full-sample luma locations... 171
Table 8-12 – Assignment of the luma prediction sample predPartLXL[xL, yL] .. 172
Table 8-13 – Specification of mapping of idx to cij for zig-zag and field scan... 182
Table 8-14 – Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan... 183
Table 8-15 – Specification of QPC as a function of qPI.. 184
Table 8-16 – Derivation of offset dependent threshold variables α′ and β′ from indexA and indexB 210
Table 8-17 – Value of variable t′C0 as a function of indexA and bS ... 210
Table 9-1 – Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative) 213
Table 9-2 – Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)............................ 214
Table 9-3 – Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)............ 215
Table 9-4 – Assignment of codeNum to values of coded_block_pattern for macroblock prediction modes 215
Table 9-5 – coeff_token mapping to TotalCoeff(coeff_token) and TrailingOnes(coeff_token)................................. 220
Table 9-6 – Codeword table for level_prefix (informative).. 223
Table 9-7 – total_zeros tables for 4x4 blocks with tzVlcIndex 1 to 7 .. 224
Table 9-8 – total_zeros tables for 4x4 blocks with tzVlcIndex 8 to 15 .. 225
Table 9-9 – total_zeros tables for chroma DC 2x2 and 2x4 blocks .. 225
Table 9-10 – Tables for run_before .. 226
Table 9-11 – Association of ctxIdx and syntax elements for each slice type in the initialisation process...................... 229
Table 9-12 – Values of variables m and n for ctxIdx from 0 to 10... 230
Table 9-13 – Values of variables m and n for ctxIdx from 11 to 23... 230
Table 9-14 – Values of variables m and n for ctxIdx from 24 to 39... 231
Table 9-15 – Values of variables m and n for ctxIdx from 40 to 53... 231
Table 9-16 – Values of variables m and n for ctxIdx from 54 to 59, and 399 to 401 ... 231
Table 9-17 – Values of variables m and n for ctxIdx from 60 to 69... 232
Table 9-18 – Values of variables m and n for ctxIdx from 70 to 104... 232
Table 9-19 – Values of variables m and n for ctxIdx from 105 to 165... 233
Table 9-20 – Values of variables m and n for ctxIdx from 166 to 226... 234
Table 9-21 – Values of variables m and n for ctxIdx from 227 to 275... 235
Table 9-22 – Values of variables m and n for ctxIdx from 277 to 337... 236
Table 9-23 – Values of variables m and n for ctxIdx from 338 to 398... 237
Table 9-24 – Values of variables m and n for ctxIdx from 402 to 459... 238

 Rec. ITU-T H.264 (03/2009) xv

Table 9-25 – Values of variables m and n for ctxIdx from 460 to 483... 239
Table 9-26 – Values of variables m and n for ctxIdx from 484 to 571... 239
Table 9-27 – Values of variables m and n for ctxIdx from 572 to 659... 241
Table 9-28 – Values of variables m and n for ctxIdx from 660 to 717... 243
Table 9-29 – Values of variables m and n for ctxIdx from 718 to 775... 244
Table 9-30 – Values of variables m and n for ctxIdx from 776 to 863... 245
Table 9-31 – Values of variables m and n for ctxIdx from 864 to 951... 247
Table 9-32 – Values of variables m and n for ctxIdx from 952 to 1011... 249
Table 9-33 – Values of variables m and n for ctxIdx from 1012 to 1023... 250
Table 9-34 – Syntax elements and associated types of binarization, maxBinIdxCtx, and ctxIdxOffset......................... 252
Table 9-35 – Bin string of the unary binarization (informative)... 254
Table 9-36 – Binarization for macroblock types in I slices .. 257
Table 9-37 – Binarization for macroblock types in P, SP, and B slices.. 258
Table 9-38 – Binarization for sub-macroblock types in P, SP, and B slices... 259
Table 9-39 – Assignment of ctxIdxInc to binIdx for all ctxIdxOffset values except those related to the syntax

elements coded_block_flag, significant_coeff_flag, last_significant_coeff_flag, and
coeff_abs_level_minus1 ... 261

Table 9-40 – Assignment of ctxIdxBlockCatOffset to ctxBlockCat for syntax elements coded_block_flag,
significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minus1 ... 262

Table 9-41 – Specification of ctxIdxInc for specific values of ctxIdxOffset and binIdx.. 270
Table 9-42 – Specification of ctxBlockCat for the different blocks ... 271
Table 9-43 – Mapping of scanning position to ctxIdxInc for ctxBlockCat = = 5, 9, or 13... 272
Table 9-44 – Specification of rangeTabLPS depending on pStateIdx and qCodIRangeIdx ... 276
Table 9-45 – State transition table .. 277
Table A-1 – Level limits... 295
Table A-2 – Specification of cpbBrVclFactor and cpbBrNalFactor... 298
Table A-3 – Baseline and Constrained Baseline profile level limits .. 299
Table A-4 – Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,

High 4:4:4 Intra, and CAVLC 4:4:4 Intra profile level limits .. 300
Table A-5 – Extended profile level limits... 301
Table A-6 – Maximum frame rates (frames per second) for some example frame sizes.. 302
Table A-7 – Maximum DPB size (frames) for some example frame sizes... 304
Table D-1 – Interpretation of pic_struct ... 337
Table D-2 – Mapping of ct_type to source picture scan ... 338
Table D-3 – Definition of counting_type values .. 339
Table D-4 – scene_transition_type values .. 346
Table D-5 – model_id values.. 354
Table D-6 – blending_mode_id values ... 355
Table D-7 – filter_hint_type values .. 361
Table E-1 – Meaning of sample aspect ratio indicator ... 368
Table E-2 – Meaning of video_format.. 369

xvi Rec. ITU-T H.264 (03/2009)

Table E-3 – Colour primaries ... 370
Table E-4 – Transfer characteristics ... 371
Table E-5 – Matrix coefficients .. 374
Table E-6 – Divisor for computation of Δtfi,dpb(n) .. 376
Table G-1 – Name association to slice_type for NAL units with nal_unit_type equal to 20.. 419
Table G-2 – Interpretation of adaptive_ref_base_pic_marking_mode_flag ... 428
Table G-3 – Memory management base control operation (memory_management_base_control_operation) values ... 428
Table G-4 – Allowed collective macroblock types for slice_type. ... 431
Table G-5 – Inferred macroblock type I_BL for EI slices. ... 432
Table G-6 – Scale values cS for transform coefficient level scaling .. 490
Table G-7 – Macroblock type predictors mbTypeILPred... 508
Table G-8 – Sub-macroblock type predictors subMbTypeILPred[mbPartIdx] .. 508
Table G-9 – 16-phase luma interpolation filter for resampling in Intra_Base prediction ... 517
Table G-10 – Mapping of (nX, nY) to coeffTokenIdx and vice versa.. 542
Table G-11 – Association of ctxIdx and syntax elements for each slice type in the initialisation process 545
Table G-12 – Values of variables m and n for ctxIdx from 1024 to 1026 .. 546
Table G-13 – Values of variables m and n for ctxIdx from 1027 to 1030 .. 546
Table G-14 – Syntax elements and associated types of binarization, maxBinIdxCtx, and ctxIdxOffset........................ 546
Table G-15 – Assignment of ctxIdxInc to binIdx for the ctxIdxOffset values related to the syntax elements

base_mode_flag and residual_prediction_flag.. 547
Table G-16 – Scalable Baseline profile level limits ... 555
Table G-17 – Specification of cpbBrVclFactor and cpbBrNalFactor... 555
Table H-1 – modification_of_pic_nums_idc operations for modification of reference picture lists 597
Table H-2 – Association between camera parameter variables and syntax elements. .. 597

 Rec. ITU-T H.264 (03/2009) xvii

Introduction

Foreword

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T
is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view
to standardising telecommunications on a world-wide basis. The World Telecommunication Standardization Assembly
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce
Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in
WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards
are prepared on a collaborative basis with ISO and IEC.

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialised system for world-wide standardisation. National Bodies that are members of ISO and IEC participate in
the development of International Standards through technical committees established by the respective organisation to
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual
interest. Other international organisations, governmental and non-governmental, in liaison with ISO and IEC, also take
part in the work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a
vote.

This Recommendation | International Standard was prepared jointly by ITU-T SG 16 Q.6, also known as VCEG (Video
Coding Experts Group), and by ISO/IEC JTC 1/SC 29/WG 11, also known as MPEG (Moving Picture Experts Group).
VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video coding standard(s)
appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish
standards for coding of moving pictures and associated audio for various applications such as digital storage media,
distribution, and communication.

In this Recommendation | International Standard Annexes A through E, G and H contain normative requirements and
are an integral part of this Recommendation | International Standard.

 Rec. ITU-T H.264 (03/2009) 1

Recommendation ITU-T H.264

Advanced video coding for generic audiovisual services

0 Introduction
This clause does not form an integral part of this Recommendation | International Standard.

0.1 Prologue

This subclause does not form an integral part of this Recommendation | International Standard.

As the costs for both processing power and memory have reduced, network support for coded video data has
diversified, and advances in video coding technology have progressed, the need has arisen for an industry standard for
compressed video representation with substantially increased coding efficiency and enhanced robustness to network
environments. Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture
Experts Group (MPEG) formed a Joint Video Team (JVT) in 2001 for development of a new
Recommendation | International Standard.

0.2 Purpose

This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard was developed in response to the growing need for higher compression
of moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting,
internet streaming, and communication. It is also designed to enable the use of the coded video representation in a
flexible manner for a wide variety of network environments. The use of this Recommendation | International Standard
allows motion video to be manipulated as a form of computer data and to be stored on various storage media,
transmitted and received over existing and future networks and distributed on existing and future broadcasting channels.

0.3 Applications

This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:

CATV Cable TV on optical networks, copper, etc.
DBS Direct broadcast satellite video services
DSL Digital subscriber line video services
DTTB Digital terrestrial television broadcasting
ISM Interactive storage media (optical disks, etc.)
MMM Multimedia mailing
MSPN Multimedia services over packet networks
RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance
SSM Serial storage media (digital VTR, etc.)

0.4 Publication and versions of this specification

This subclause does not form an integral part of this Recommendation | International Standard.

This specification has been jointly developed by ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving
Picture Experts Group. It is published as technically-aligned twin text in both organizations ITU-T and ISO/IEC.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 1 refers to the first approved version of this Recommendation |
International Standard. Version 1 was approved by ITU-T on 30 May 2003. The first published version in ISO/IEC
corresponded to version 1.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 2 refers to the integrated text containing the corrections specified in the
first technical corrigendum. The first fully-published version in the ITU-T was version 2 as approved by ITU-T on

2 Rec. ITU-T H.264 (03/2009)

7 May 2004, due to the development of the corrigendum during the publication process. Version 2 was also published in
integrated form by ISO/IEC.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 3 refers to the integrated text containing both the first technical
corrigendum (2004) and the first amendment, which is referred to as the "Fidelity range extensions". Version 3 was
approved by ITU-T on 1 March 2005.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 4 refers to the integrated text containing the first technical corrigendum
(2004), the first amendment (the "Fidelity range extensions"), and an additional technical corrigendum (2005).
Version 4 was approved by ITU-T on 13 September 2005. In both ITU-T and ISO/IEC, the next complete published
version after version 2 was version 4.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 5 refers to the integrated version 4 text with its specification of the
High 4:4:4 profile removed.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 6 refers to the integrated version 5 text after its amendment to support
additional colour space indicators. In the ITU-T, the changes for versions 5 and 6 were approved on 13 June 2006 and
were published as a single amendment.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 7 refers to the integrated version 6 text after its amendment to define
five new profiles intended primarily for professional applications (the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra,
CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles) and two new types of supplemental enhancement information
(SEI) messages (the post-filter hint SEI message and the tone mapping information SEI message). Version 7 was
approved by ITU-T on 6 April 2007.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 8 refers to the integrated version 7 text after its amendment to specify
scalable video coding in three profiles (Scalable Baseline, Scalable High, and Scalable High Intra profiles). Version 8
was approved by ITU-T on 22 November 2007.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 9 refers to the integrated version 8 text after applying the corrections
specified in a third technical corrigendum. Version 9 was approved by the ITU-T on 13 January 2009.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 10 refers to the integrated version 9 text after its amendment to specify
multiview video coding in one profile (Multiview High profile).

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 11 (the current Specification) refers to the integrated version 10 text
after its amendment to define a new profile (the Constrained Baseline profile) intended primarily to enable
implementation of decoders supporting only the common subset of capabilities supported in various previously-
specified profiles. In the ITU-T, the changes for versions 10 and 11 were approved on 16 March 2009.

0.5 Profiles and levels

This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage
media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets
of the syntax are also stipulated by means of "profiles" and "levels". These and other related terms are formally defined
in clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the
specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement
a decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

In order to deal with this problem, "levels" are specified within each profile. A level is a specified set of constraints
imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values.
Alternatively they may take the form of constraints on arithmetic combinations of values (e.g., picture width multiplied
by picture height multiplied by number of pictures decoded per second).

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that
signal the presence or absence of syntactic elements that occur later in the bitstream.

 Rec. ITU-T H.264 (03/2009) 3

0.6 Overview of the design characteristics

This subclause does not form an integral part of this Recommendation | International Standard.

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image
quality. With the exception of the transform bypass mode of operation for lossless coding in the High 4:4:4 Intra,
CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles, and the I_PCM mode of operation in all profiles, the algorithm
is typically not lossless, as the exact source sample values are typically not preserved through the encoding and
decoding processes. A number of techniques may be used to achieve highly efficient compression. Encoding algorithms
(not specified in this Recommendation | International Standard) may select between inter and intra coding for block-
shaped regions of each picture. Inter coding uses motion vectors for block-based inter prediction to exploit temporal
statistical dependencies between different pictures. Intra coding uses various spatial prediction modes to exploit spatial
statistical dependencies in the source signal for a single picture. Motion vectors and intra prediction modes may be
specified for a variety of block sizes in the picture. The prediction residual is then further compressed using a transform
to remove spatial correlation inside the transform block before it is quantised, producing an irreversible process that
typically discards less important visual information while forming a close approximation to the source samples. Finally,
the motion vectors or intra prediction modes are combined with the quantised transform coefficient information and
encoded using either variable length coding or arithmetic coding.

Scalable video coding is specified in Annex G allowing the construction of bitstreams that contain sub-bitstreams that
conform to this Specification. For temporal bitstream scalability, i.e., the presence of a sub-bitstream with a smaller
temporal sampling rate than the bitstream, complete access units are removed from the bitstream when deriving the
sub-bitstream. In this case, high-level syntax and inter prediction reference pictures in the bitstream are constructed
accordingly. For spatial and quality bitstream scalability, i.e., the presence of a sub-bitstream with lower spatial
resolution or quality than the bitstream, NAL units are removed from the bitstream when deriving the sub-bitstream. In
this case, inter-layer prediction, i.e., the prediction of the higher spatial resolution or quality signal by data of the lower
spatial resolution or quality signal, is typically used for efficient coding. Otherwise, the coding algorithm as described
in the previous paragraph is used.

Multiview video coding is specified in Annex H allowing the construction of bitstreams that represent multiple views.
Similar to scalable video coding, bitstreams that represent multiple views may also contain sub-bitstreams that conform
to this Specification. For temporal bitstream scalability, i.e., the presence of a sub-bitstream with a smaller temporal
sampling rate than the bitstream, complete access units are removed from the bitstream when deriving the sub-
bitstream. In this case, high-level syntax and inter prediction reference pictures in the bitstream are constructed
accordingly. For view bitstream scalability, i.e. the presence of a sub-bitstream with fewer views than the bitstream,
NAL units are removed from the bitstream when deriving the sub-bitstream. In this case, inter-view prediction, i.e., the
prediction of one view signal by data of another view signal, is typically used for efficient coding. Otherwise, the
coding algorithm as described in the previous paragraph is used.

0.6.1 Predictive coding

This subclause does not form an integral part of this Recommendation | International Standard.

Because of the conflicting requirements of random access and highly efficient compression, two main coding types are
specified. Intra coding is done without reference to other pictures. Intra coding may provide access points to the coded
sequence where decoding can begin and continue correctly, but typically also shows only moderate compression
efficiency. Inter coding (predictive or bi-predictive) is more efficient using inter prediction of each block of sample
values from some previously decoded picture selected by the encoder. In contrast to some other video coding standards,
pictures coded using bi-predictive inter prediction may also be used as references for inter coding of other pictures.

The application of the three coding types to pictures in a sequence is flexible, and the order of the decoding process is
generally not the same as the order of the source picture capture process in the encoder or the output order from the
decoder for display. The choice is left to the encoder and will depend on the requirements of the application. The
decoding order is specified such that the decoding of pictures that use inter-picture prediction follows later in decoding
order than other pictures that are referenced in the decoding process.

0.6.2 Coding of progressive and interlaced video

This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard specifies a syntax and decoding process for video that originated in
either progressive-scan or interlaced-scan form, which may be mixed together in the same sequence. The two fields of
an interlaced frame are separated in capture time while the two fields of a progressive frame share the same capture
time. Each field may be coded separately or the two fields may be coded together as a frame. Progressive frames are
typically coded as a frame. For interlaced video, the encoder can choose between frame coding and field coding. Frame
coding or field coding can be adaptively selected on a picture-by-picture basis and also on a more localized basis within

4 Rec. ITU-T H.264 (03/2009)

a coded frame. Frame coding is typically preferred when the video scene contains significant detail with limited motion.
Field coding typically works better when there is fast picture-to-picture motion.

0.6.3 Picture partitioning into macroblocks and smaller partitions

This subclause does not form an integral part of this Recommendation | International Standard.

As in previous video coding Recommendations and International Standards, a macroblock, consisting of a 16x16 block
of luma samples and two corresponding blocks of chroma samples, is used as the basic processing unit of the video
decoding process.

A macroblock can be further partitioned for inter prediction. The selection of the size of inter prediction partitions is a
result of a trade-off between the coding gain provided by using motion compensation with smaller blocks and the
quantity of data needed to represent the data for motion compensation. In this Recommendation | International Standard
the inter prediction process can form segmentations for motion representation as small as 4x4 luma samples in size,
using motion vector accuracy of one-quarter of the luma sample grid spacing displacement. The process for inter
prediction of a sample block can also involve the selection of the picture to be used as the reference picture from a
number of stored previously-decoded pictures. Motion vectors are encoded differentially with respect to predicted
values formed from nearby encoded motion vectors.

Typically, the encoder calculates appropriate motion vectors and other data elements represented in the video data
stream. This motion estimation process in the encoder and the selection of whether to use inter prediction for the
representation of each region of the video content is not specified in this Recommendation | International Standard.

0.6.4 Spatial redundancy reduction

This subclause does not form an integral part of this Recommendation | International Standard.

Both source pictures and prediction residuals have high spatial redundancy. This Recommendation | International
Standard is based on the use of a block-based transform method for spatial redundancy removal. After inter prediction
from previously-decoded samples in other pictures or spatial-based prediction from previously-decoded samples within
the current picture, the resulting prediction residual is split into 4x4 blocks. These are converted into the transform
domain where they are quantised. After quantisation many of the transform coefficients are zero or have low amplitude
and can thus be represented with a small amount of encoded data. The processes of transformation and quantisation in
the encoder are not specified in this Recommendation | International Standard.

0.6.5 How to read this specification

This subclause does not form an integral part of this Recommendation | International Standard.

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be
read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics)
specifies the order to parse syntax elements from the bitstream. See subclauses 7.1-7.3 for syntactical order and see
subclause 7.4 for semantics; i.e., the scope, restrictions, and conditions that are imposed on the syntax elements. The
actual parsing for most syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 (Decoding process)
specifies how the syntax elements are mapped into decoded samples. Throughout reading this specification, the reader
should refer to clauses 2 (Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through
E, G, and H also form an integral part of this Recommendation | International Standard.

Annex A specifies twelve profiles (Baseline, Constrained Baseline, Main, Extended, High, High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra), each being tailored to
certain application domains, and defines the so-called levels of the profiles. Annex B specifies syntax and semantics of
a byte stream format for delivery of coded video as an ordered stream of bytes. Annex C specifies the hypothetical
reference decoder and its use to check bitstream and decoder conformance. Annex D specifies syntax and semantics for
supplemental enhancement information message payloads. Annex E specifies syntax and semantics of the video
usability information parameters of the sequence parameter set.

Annex G specifies scalable video coding (SVC). The reader is referred to Annex G for the entire decoding process for
SVC, which is specified there with references being made to clauses 2-9 and Annexes A-E. Subclause G.10 specifies
three profiles for SVC (Scalable Baseline, Scalable High, and Scalable High Intra).

Annex H specifies multiview video coding (MVC). The reader is referred to Annex H for the entire decoding process
for MVC, which is specified there with references being made to clauses 2-9 and Annexes A-E. Subclause H.10
specifies one profile for MVC (Multiview High).

Throughout this specification, statements appearing with the preamble "NOTE -" are informative and are not an integral
part of this Recommendation | International Standard.

 Rec. ITU-T H.264 (03/2009) 5

1 Scope
This document specifies ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 Advanced
video coding.

2 Normative references
The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

– ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T defined codes for
non-standard facilities.

– ISO/IEC 11578:1996, Annex A, Universal Unique Identifier.
– ISO/CIE 10527:2007, Colorimetric Observers.

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply:

3.1 access unit: A set of NAL units that are consecutive in decoding order and contain exactly one primary coded
picture. In addition to the primary coded picture, an access unit may also contain one or more redundant coded
pictures, one auxiliary coded picture, or other NAL units not containing slices or slice data partitions of a coded
picture. The decoding of an access unit always results in a decoded picture.

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in one or both
dimensions is non-zero.

3.3 adaptive binary arithmetic decoding process: An entropy decoding process that derives the values of bins
from a bitstream produced by an adaptive binary arithmetic encoding process.

3.4 adaptive binary arithmetic encoding process: An entropy encoding process, not normatively specified in
this Recommendation | International Standard, that codes a sequence of bins and produces a bitstream that can be
decoded using the adaptive binary arithmetic decoding process.

3.5 alpha blending: A process not specified by this Recommendation | International Standard, in which an
auxiliary coded picture is used in combination with a primary coded picture and with other data not specified by this
Recommendation | International Standard in the display process. In an alpha blending process, the samples of an
auxiliary coded picture are interpreted as indications of the degree of opacity (or, equivalently, the degrees of
transparency) associated with the corresponding luma samples of the primary coded picture.

3.6 arbitrary slice order (ASO): A decoding order of slices in which the macroblock address of the first
macroblock of some slice of a slice group may be less than the macroblock address of the first macroblock of some
other preceding slice of the same slice group or, in the case of a picture that is coded using three separate colour planes,
some other preceding slice of the same slice group within the same colour plane, or in which the slices of a slice group
of a picture may be interleaved with the slices of one or more other slice groups of the picture or, in the case of a
picture that is coded using three separate colour planes, with the slices of one or more other slice groups within the
same colour plane.

3.7 auxiliary coded picture: A picture that supplements the primary coded picture that may be used in
combination with other data not specified by this Recommendation | International Standard in the display process. An
auxiliary coded picture has the same syntactic and semantic restrictions as a monochrome redundant coded picture. An
auxiliary coded picture must contain the same number of macroblocks as the primary coded picture. Auxiliary coded
pictures have no normative effect on the decoding process. See also primary coded picture and redundant coded
picture.

3.8 B slice: A slice that may be decoded using intra prediction or inter prediction using at most two motion
vectors and reference indices to predict the sample values of each block.

3.9 bin: One bit of a bin string.

6 Rec. ITU-T H.264 (03/2009)

3.10 binarization: A set of bin strings for all possible values of a syntax element.

3.11 binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin
strings.

3.12 bin string: A string of bins. A bin string is an intermediate binary representation of values of syntax elements
from the binarization of the syntax element.

3.13 bi-predictive slice: See B slice.

3.14 bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one
or more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a byte stream.

3.15 block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

3.16 bottom field: One of two fields that comprise a frame. Each row of a bottom field is spatially located
immediately below a corresponding row of a top field.

3.17 bottom macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the bottom row of samples for the macroblock pair. For a field macroblock pair, the bottom macroblock
represents the samples from the region of the bottom field of the frame that lie within the spatial region of the
macroblock pair. For a frame macroblock pair, the bottom macroblock represents the samples of the frame that lie
within the bottom half of the spatial region of the macroblock pair.

3.18 broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding
order may contain serious visual artefacts due to unspecified operations performed in the generation of the bitstream.

3.19 byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant
bit on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

3.20 byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from
the position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the position
at which it appears in a bitstream is byte-aligned.

3.21 byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified
in Annex B.

3.22 can: A term used to refer to behaviour that is allowed, but not necessarily required.

3.23 category: A number associated with each syntax element. The category is used to specify the allocation of
syntax elements to NAL units for slice data partitioning. It may also be used in a manner determined by the application
to refer to classes of syntax elements in a manner not specified in this Recommendation | International Standard.

3.24 chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and Cr.

NOTE – The term chroma is used rather than the term chrominance in order to avoid the implication of the use of linear light
transfer characteristics that is often associated with the term chrominance.

3.25 coded field: A coded representation of a field.

3.26 coded frame: A coded representation of a frame.

3.27 coded picture: A coded representation of a picture. A coded picture may be either a coded field or a coded
frame. Coded picture is a collective term referring to a primary coded picture or a redundant coded picture, but not to
both together.

3.28 coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in
the hypothetical reference decoder in Annex C.

3.29 coded representation: A data element as represented in its coded form.

3.30 coded slice data partition NAL unit: A NAL unit containing a slice data partition.

3.31 coded slice NAL unit: A NAL unit containing a slice that is not a slice of an auxiliary coded picture.

3.32 coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit
followed by zero or more non-IDR access units including all subsequent access units up to but not including any
subsequent IDR access unit.

3.33 component: An array or single sample from one of the three arrays (luma and two chroma) that make up a
field or frame in 4:2:0, 4:2:2, or 4:4:4 colour format or the array or a single sample of the array that make up a field or
frame in monochrome format.

 Rec. ITU-T H.264 (03/2009) 7

3.34 complementary field pair: A collective term for a complementary reference field pair or a complementary
non-reference field pair.

3.35 complementary non-reference field pair: Two non-reference fields that are in consecutive access units in
decoding order as two coded fields of opposite parity where the first field is not already a paired field.

3.36 complementary reference field pair: Two reference fields that are in consecutive access units in decoding
order as two coded fields and share the same value of the frame_num syntax element, where the second field in
decoding order is not an IDR picture and does not include a memory_management_control_operation syntax element
equal to 5.

3.37 context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an
equation containing recently decoded bins.

3.38 DC transform coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

3.39 decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is either a
decoded frame, or a decoded field. A decoded field is either a decoded top field or a decoded bottom field.

3.40 decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output
delay specified for the hypothetical reference decoder in Annex C.

3.41 decoder: An embodiment of a decoding process.

3.42 decoder under test (DUT): A decoder that is tested for conformance to this Recommendation | International
Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and to the
hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

3.43 decoding order: The order in which syntax elements are processed by the decoding process.

3.44 decoding process: The process specified in this Recommendation | International Standard that reads a
bitstream and derives decoded pictures from it.

3.45 direct prediction: An inter prediction for a block for which no motion vector is decoded. Two direct
prediction modes are specified that are referred to as spatial direct prediction and temporal prediction mode.

3.46 display process: A process not specified in this Recommendation | International Standard having, as its input,
the cropped decoded pictures that are the output of the decoding process.

3.47 emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit contains a start
code prefix.

3.48 encoder: An embodiment of an encoding process.

3.49 encoding process: A process, not specified in this Recommendation | International Standard, that produces a
bitstream conforming to this Recommendation | International Standard.

3.50 field: An assembly of alternate rows of a frame. A frame is composed of two fields, a top field and a bottom
field.

3.51 field macroblock: A macroblock containing samples from a single field. All macroblocks of a coded field are
field macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded frame may
be field macroblocks.

3.52 field macroblock pair: A macroblock pair decoded as two field macroblocks.

3.53 field scan: A specific sequential ordering of transform coefficients that differs from the zig-zag scan by
scanning columns more rapidly than rows. Field scan is used for transform coefficients in field macroblocks.

3.54 flag: A variable that can take one of the two possible values 0 and 1.

3.55 frame: A frame contains an array of luma samples in monochrome format or an array of luma samples and
two corresponding arrays of chroma samples in 4:2:0, 4:2:2, and 4:4:4 colour format. A frame consists of two fields, a
top field and a bottom field.

3.56 frame macroblock: A macroblock representing samples from the two fields of a coded frame. When
macroblock-adaptive frame/field decoding is not in use, all macroblocks of a coded frame are frame macroblocks.
When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded frame may be frame
macroblocks.

3.57 frame macroblock pair: A macroblock pair decoded as two frame macroblocks.

8 Rec. ITU-T H.264 (03/2009)

3.58 frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior
to an inverse transform part of the decoding process.

3.59 hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the
variability of conforming NAL unit streams or conforming byte streams that an encoding process may produce.

3.60 hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of
the input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the conformance of a
bitstream or a decoder.

3.61 I slice: A slice that is not an SI slice that is decoded using intra prediction only.

3.62 informative: A term used to refer to content provided in this Recommendation | International Standard that is
not an integral part of this Recommendation | International Standard. Informative content does not establish any
mandatory requirements for conformance to this Recommendation | International Standard.

3.63 instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an
IDR picture.

3.64 instantaneous decoding refresh (IDR) picture: A coded picture in which all slices are I or SI slices that
causes the decoding process to mark all reference pictures as "unused for reference" immediately after decoding the
IDR picture. After the decoding of an IDR picture all following coded pictures in decoding order can be decoded
without inter prediction from any picture decoded prior to the IDR picture. The first picture of each coded video
sequence is an IDR picture.

3.65 inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

3.66 inter prediction: A prediction derived from decoded samples of reference pictures other than the current
decoded picture.

3.67 interpretation sample value: A possibly-altered value corresponding to a decoded sample value of an
auxiliary coded picture that may be generated for use in the display process. Interpretation sample values are not used
in the decoding process and have no normative effect on the decoding process.

3.68 intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.

3.69 intra prediction: A prediction derived from the decoded samples of the same decoded slice.

3.70 intra slice: See I slice.

3.71 inverse transform: A part of the decoding process by which a set of transform coefficients are converted into
spatial-domain values, or by which a set of transform coefficients are converted into DC transform coefficients.

3.72 layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the coded video sequence, picture, slice, and macroblock layers.

3.73 level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this
Recommendation | International Standard. The same set of levels is defined for all profiles, with most aspects of the
definition of each level being in common across different profiles. Individual implementations may, within specified
constraints, support a different level for each supported profile. In a different context, level is the value of a transform
coefficient prior to scaling.

3.74 list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture
list 0 (list 1).

3.75 list 0 (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into
reference picture list 0 (list 1).

3.76 luma: An adjective specifying that a sample array or single sample is representing the monochrome signal
related to the primary colours. The symbol or subscript used for luma is Y or L.

NOTE – The term luma is used rather than the term luminance in order to avoid the implication of the use of linear light transfer
characteristics that is often associated with the term luminance. The symbol L is sometimes used instead of the symbol Y to
avoid confusion with the symbol y as used for vertical location.

3.77 macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples of a picture
that has three sample arrays, or a 16x16 block of samples of a monochrome picture or a picture that is coded using three
separate colour planes. The division of a slice or a macroblock pair into macroblocks is a partitioning.

3.78 macroblock-adaptive frame/field decoding: A decoding process for coded frames in which some
macroblocks may be decoded as frame macroblocks and others may be decoded as field macroblocks.

 Rec. ITU-T H.264 (03/2009) 9

3.79 macroblock address: When macroblock-adaptive frame/field decoding is not in use, a macroblock address is
the index of a macroblock in a macroblock raster scan of the picture starting with zero for the top-left macroblock in a
picture. When macroblock-adaptive frame/field decoding is in use, the macroblock address of the top macroblock of a
macroblock pair is two times the index of the macroblock pair in a macroblock pair raster scan of the picture, and the
macroblock address of the bottom macroblock of a macroblock pair is the macroblock address of the corresponding top
macroblock plus 1. The macroblock address of the top macroblock of each macroblock pair is an even number and the
macroblock address of the bottom macroblock of each macroblock pair is an odd number.

3.80 macroblock location: The two-dimensional coordinates of a macroblock in a picture denoted by (x, y). For
the top left macroblock of the picture (x, y) is equal to (0, 0). x is incremented by 1 for each macroblock column from
left to right. When macroblock-adaptive frame/field decoding is not in use, y is incremented by 1 for each macroblock
row from top to bottom. When macroblock-adaptive frame/field decoding is in use, y is incremented by 2 for each
macroblock pair row from top to bottom, and is incremented by an additional 1 when a macroblock is a bottom
macroblock.

3.81 macroblock pair: A pair of vertically contiguous macroblocks in a frame that is coupled for use in
macroblock-adaptive frame/field decoding. The division of a slice into macroblock pairs is a partitioning.

3.82 macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a macroblock for inter prediction for a picture that has three sample arrays or a block of luma
samples resulting from a partitioning of a macroblock for inter prediction for a monochrome picture or a picture that is
coded using three separate colour planes.

3.83 macroblock to slice group map: A means of mapping macroblocks of a picture into slice groups. The
macroblock to slice group map consists of a list of numbers, one for each coded macroblock, specifying the slice group
to which each coded macroblock belongs.

3.84 map unit to slice group map: A means of mapping slice group map units of a picture into slice groups. The
map unit to slice group map consists of a list of numbers, one for each slice group map unit, specifying the slice group
to which each coded slice group map unit belongs.

3.85 may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the
optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used to provide
emphasis.

3.86 memory management control operation: Seven operations that control reference picture marking.

3.87 motion vector: A two-dimensional vector used for inter prediction that provides an offset from the
coordinates in the decoded picture to the coordinates in a reference picture.

3.88 must: A term used in expressing an observation about a requirement or an implication of a requirement that is
specified elsewhere in this Recommendation | International Standard. This term is used exclusively in an informative
context.

3.89 NAL unit: A syntax structure containing an indication of the type of data to follow and bytes containing that
data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

3.90 NAL unit stream: A sequence of NAL units.

3.91 non-paired field: A collective term for a non-paired reference field or a non-paired non-reference field.

3.92 non-paired non-reference field: A decoded non-reference field that is not part of a complementary
non-reference field pair.

3.93 non-paired reference field: A decoded reference field that is not part of a complementary reference field
pair.

3.94 non-reference field: A field coded with nal_ref_idc equal to 0.

3.95 non-reference frame: A frame coded with nal_ref_idc equal to 0.

3.96 non-reference picture: A picture coded with nal_ref_idc equal to 0. A non-reference picture is not used for
inter prediction of any other pictures.

3.97 note: A term used to prefix informative remarks. This term is used exclusively in an informative context.

3.98 opposite parity: The opposite parity of top is bottom, and vice versa.

3.99 output order: The order in which the decoded pictures are output from the decoded picture buffer.

10 Rec. ITU-T H.264 (03/2009)

3.100 P slice: A slice that is not an SP slice that may be decoded using intra prediction or inter prediction using at
most one motion vector and reference index to predict the sample values of each block.

3.101 parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used
as part of the defined term quantisation parameter.

3.102 parity: The parity of a field can be top or bottom.

3.103 partitioning: The division of a set into subsets such that each element of the set is in exactly one of the
subsets.

3.104 picture: A collective term for a field or a frame.

3.105 picture parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded
pictures as determined by the pic_parameter_set_id syntax element found in each slice header.

3.106 picture order count: A variable having a value that is non-decreasing with increasing picture position in
output order relative to the previous IDR picture in decoding order or relative to the previous picture containing the
memory management control operation that marks all reference pictures as "unused for reference".

3.107 prediction: An embodiment of the prediction process.

3.108 prediction process: The use of a predictor to provide an estimate of the sample value or data element
currently being decoded.

3.109 predictive slice: See P slice.

3.110 predictor: A combination of specified values or previously decoded sample values or data elements used in
the decoding process of subsequent sample values or data elements.

3.111 primary coded picture: The coded representation of a picture to be used by the decoding process for a
bitstream conforming to this Recommendation | International Standard. The primary coded picture contains all
macroblocks of the picture. The only pictures that have a normative effect on the decoding process are primary coded
pictures. See also redundant coded picture.

3.112 profile: A specified subset of the syntax of this Recommendation | International Standard.

3.113 quantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.

3.114 random access: The act of starting the decoding process for a bitstream at a point other than the beginning of
the stream.

3.115 raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the
first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned from left to
right, followed similarly by the second, third, etc., rows of the pattern (going down) each scanned from left to right.

3.116 raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is
encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax elements
followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

3.117 raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload
(RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be identified by
searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the RBSP.

3.118 recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation
of the decoded pictures represented by the bitstream is achieved after a random access or broken link.

3.119 redundant coded picture: A coded representation of a picture or a part of a picture. The content of a
redundant coded picture shall not be used by the decoding process for a bitstream conforming to this
Recommendation | International Standard. A redundant coded picture is not required to contain all macroblocks in the
primary coded picture. Redundant coded pictures have no normative effect on the decoding process. See also primary
coded picture.

3.120 reference field: A reference field may be used for inter prediction when P, SP, and B slices of a coded field
or field macroblocks of a coded frame are decoded. See also reference picture.

3.121 reference frame: A reference frame may be used for inter prediction when P, SP, and B slices of a coded
frame are decoded. See also reference picture.

3.122 reference index: An index into a reference picture list.

 Rec. ITU-T H.264 (03/2009) 11

3.123 reference picture: A picture with nal_ref_idc not equal to 0. A reference picture contains samples that may
be used for inter prediction in the decoding process of subsequent pictures in decoding order.

3.124 reference picture list: A list of reference pictures that is used for inter prediction of a P, B, or SP slice. For
the decoding process of a P or SP slice, there is one reference picture list. For the decoding process of a B slice, there
are two reference picture lists.

3.125 reference picture list 0: A reference picture list used for inter prediction of a P, B, or SP slice. All inter
prediction used for P and SP slices uses reference picture list 0. Reference picture list 0 is one of two reference picture
lists used for inter prediction for a B slice, with the other being reference picture list 1.

3.126 reference picture list 1: A reference picture list used for inter prediction of a B slice. Reference picture list 1
is one of two reference picture lists used for inter prediction for a B slice, with the other being reference picture list 0.

3.127 reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter
prediction.

3.128 reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element,
are for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this
Recommendation | International Standard, but may be used in future extensions of this
Recommendation | International Standard by ITU-T | ISO/IEC.

3.129 residual: The decoded difference between a prediction of a sample or data element and its decoded value.

3.130 run: A number of consecutive data elements represented in the decoding process. In one context, the number
of zero-valued transform coefficient levels preceding a non-zero transform coefficient level in the list of transform
coefficient levels generated by a zig-zag scan or a field scan. In other contexts, run refers to a number of macroblocks.

3.131 sample aspect ratio: Specifies, for assisting the display process, which is not specified in this
Recommendation | International Standard, the ratio between the intended horizontal distance between the columns and
the intended vertical distance between the rows of the luma sample array in a frame. Sample aspect ratio is expressed as
h:v, where h is horizontal width and v is vertical height (in arbitrary units of spatial distance).

3.132 scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

3.133 sequence parameter set: A syntax structure containing syntax elements that apply to zero or more entire
coded video sequences as determined by the content of a seq_parameter_set_id syntax element found in the picture
parameter set referred to by the pic_parameter_set_id syntax element found in each slice header.

3.134 shall: A term used to express mandatory requirements for conformance to this Recommendation |
International Standard. When used to express a mandatory constraint on the values of syntax elements or on the results
obtained by operation of the specified decoding process, it is the responsibility of the encoder to ensure that the
constraint is fulfilled. When used in reference to operations performed by the decoding process, any decoding process
that produces identical results to the decoding process described herein conforms to the decoding process requirements
of this Recommendation | International Standard.

3.135 should: A term used to refer to behaviour of an implementation that is encouraged to be followed under
anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this Recommendation |
International Standard.

3.136 SI slice: A slice that is coded using intra prediction only and using quantisation of the prediction samples. An
SI slice can be coded such that its decoded samples can be constructed identically to an SP slice.

3.137 skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock
is to be decoded as "skipped". This indication may be common to several macroblocks.

3.138 slice: An integer number of macroblocks or macroblock pairs ordered consecutively in the raster scan within
a particular slice group. For the primary coded picture, the division of each slice group into slices is a partitioning.
Although a slice contains macroblocks or macroblock pairs that are consecutive in the raster scan within a slice group,
these macroblocks or macroblock pairs are not necessarily consecutive in the raster scan within the picture. The
macroblock addresses are derived from the first macroblock address in a slice (as represented in the slice header) and
the macroblock to slice group map, and, when a picture is coded using three separate colour planes, a colour plane
identifier.

3.139 slice data partition: A non-empty subset of the syntax elements of the slice data syntax structure for a slice.
The syntax elements of a slice data partition are associated with the same category.

3.140 slice data partitioning: A method of partitioning selected syntax elements into syntax structures based on a
category associated with each syntax element.

12 Rec. ITU-T H.264 (03/2009)

3.141 slice group: A subset of the macroblocks or macroblock pairs of a picture. The division of the picture into
slice groups is a partitioning of the picture. The partitioning is specified by the macroblock to slice group map.

3.142 slice group map units: The units of the map unit to slice group map.

3.143 slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks
represented in the slice.

3.144 source: Term used to describe the video material or some of its attributes before encoding.

3.145 SP slice: A slice that may be coded using intra prediction or inter prediction with quantisation of the
prediction samples using at most one motion vector and reference index to predict the sample values of each block. An
SP slice can be coded such that its decoded samples can be constructed identically to another SP slice or an SI slice.

3.146 start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a
prefix to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning of a new
NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within NAL units by the
inclusion of emulation prevention bytes.

3.147 string of data bits (SODB): A sequence of some number of bits representing syntax elements present within
a raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most bit is
considered to be the first and most significant bit, and the right-most bit is considered to be the last and least significant
bit.

3.148 sub-macroblock: One quarter of the samples of a macroblock, i.e., an 8x8 luma block and two corresponding
chroma blocks of which one corner is located at a corner of the macroblock for a picture that has three sample arrays or
an 8x8 luma block of which one corner is located at a corner of the macroblock for a monochrome picture or a picture
that is coded using three separate colour planes.

3.149 sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples
resulting from a partitioning of a sub-macroblock for inter prediction for a picture that has three sample arrays or a
block of luma samples resulting from a partitioning of a sub-macroblock for inter prediction for a monochrome picture
or a picture that is coded using three separate colour planes.

3.150 switching I slice: See SI slice.

3.151 switching P slice: See SP slice.

3.152 syntax element: An element of data represented in the bitstream.

3.153 syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.

3.154 top field: One of two fields that comprise a frame. Each row of a top field is spatially located immediately
above the corresponding row of the bottom field.

3.155 top macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the top row of samples for the macroblock pair. For a field macroblock pair, the top macroblock represents
the samples from the region of the top field of the frame that lie within the spatial region of the macroblock pair. For a
frame macroblock pair, the top macroblock represents the samples of the frame that lie within the top half of the spatial
region of the macroblock pair.

3.156 transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding process.

3.157 transform coefficient level: An integer quantity representing the value associated with a particular
two-dimensional frequency index in the decoding process prior to scaling for computation of a transform coefficient
value.

3.158 universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal
unique identifiers.

3.159 unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax
element, indicates that the values have no specified meaning in this Recommendation | International Standard and will
not have a specified meaning in the future as an integral part of this Recommendation | International Standard.

3.160 variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to
symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

3.161 VCL NAL unit: A collective term for coded slice NAL units and coded slice data partition NAL units.

 Rec. ITU-T H.264 (03/2009) 13

3.162 zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest
spatial frequency to the highest. Zig-zag scan is used for transform coefficient levels in frame macroblocks.

4 Abbreviations
For the purposes of this Recommendation | International Standard, the following abbreviations apply:

CABAC Context-based Adaptive Binary Arithmetic Coding

CAVLC Context-based Adaptive Variable Length Coding

CBR Constant Bit Rate

CPB Coded Picture Buffer

DPB Decoded Picture Buffer

DUT Decoder under test

FIFO First-In, First-Out

HRD Hypothetical Reference Decoder

HSS Hypothetical Stream Scheduler

IDR Instantaneous Decoding Refresh

LSB Least Significant Bit

MB Macroblock

MBAFF Macroblock-Adaptive Frame-Field Coding

MSB Most Significant Bit

MVC Multiview Video Coding

NAL Network Abstraction Layer

RBSP Raw Byte Sequence Payload

SEI Supplemental Enhancement Information

SODB String Of Data Bits

SVC Scalable Video Coding

UUID Universal Unique Identifier

VBR Variable Bit Rate

VCL Video Coding Layer

VLC Variable Length Coding

VUI Video Usability Information

5 Conventions
NOTE – The mathematical operators used in this Specification are similar to those used in the C programming language.
However, integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions
generally begin from 0.

5.1 Arithmetic operators

The following arithmetic operators are defined as follows:

+ Addition
− Subtraction (as a two-argument operator) or negation (as a unary prefix operator)
* Multiplication, including matrix multiplication

14 Rec. ITU-T H.264 (03/2009)

x y Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for
superscripting not intended for interpretation as exponentiation.

/ Integer division with truncation of the result toward zero. For example, 7/4 and −7/−4 are truncated
to 1 and −7/4 and 7/−4 are truncated to −1.

÷ Used to denote division in mathematical equations where no truncation or rounding is intended.

y
x

 Used to denote division in mathematical equations where no truncation or rounding is intended.

∑
=

y

xi
if)(The summation of f(i) with i taking all integer values from x up to and including y.

x % y Modulus. Remainder of x divided by y, defined only for integers x and y with x >= 0 and y > 0.

5.2 Logical operators

The following logical operators are defined as follows:
x && y Boolean logical "and" of x and y.
x | | y Boolean logical "or" of x and y.
! Boolean logical "not".
x ? y : z If x is TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z.

5.3 Relational operators

The following relational operators are defined as follows:

> Greater than.

>= Greater than or equal to.

< Less than.

<= Less than or equal to.

= = Equal to.

!= Not equal to.

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not
applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered
not to be equal to any other value.

5.4 Bit-wise operators

The following bit-wise operators are defined as follows:
& Bit-wise "and". When operating on integer arguments, operates on a two's complement representation

of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

| Bit-wise "or". When operating on integer arguments, operates on a two's complement representation
of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

^ Bit-wise "exclusive or". When operating on integer arguments, operates on a two's complement
representation of the integer value. When operating on a binary argument that contains fewer bits than
another argument, the shorter argument is extended by adding more significant bits equal to 0.

x >> y Arithmetic right shift of a two's complement integer representation of x by y binary digits. This
function is defined only for positive integer values of y. Bits shifted into the MSBs as a result of the
right shift have a value equal to the MSB of x prior to the shift operation.

x << y Arithmetic left shift of a two's complement integer representation of x by y binary digits. This
function is defined only for positive integer values of y. Bits shifted into the LSBs as a result of the
left shift have a value equal to 0.

 Rec. ITU-T H.264 (03/2009) 15

5.5 Assignment operators

The following arithmetic operators are defined as follows:

= Assignment operator.

+ + Increment, i.e., x+ + is equivalent to x = x + 1; when used in an array index, evaluates to the value of
the variable prior to the increment operation.

− − Decrement, i.e., x− − is equivalent to x = x − 1; when used in an array index, evaluates to the value of
the variable prior to the decrement operation.

+= Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (−3) is equivalent
to x = x + (−3).

−= Decrement by amount specified, i.e., x −= 3 is equivalent to x = x − 3, and x −= (−3) is equivalent
to x = x − (−3).

5.6 Range notation

The following notation is used to specify a range of values:

x = y..z x takes on integer values starting from y to z, inclusive, with x, y, and z being integer numbers.

5.7 Mathematical functions

The following mathematical functions are defined as follows:

Abs(x) =
⎩
⎨
⎧

<−
>=

0x;x
0x;x

 (5-1)

Ceil(x) the smallest integer greater than or equal to x. (5-2)

Clip1Y(x) = Clip3(0, (1 << BitDepthY) − 1, x) (5-3)

Clip1C(x) = Clip3(0, (1 << BitDepthC) − 1, x) (5-4)

Clip3(x, y, z) =
⎪
⎩

⎪
⎨

⎧
>
<

otherwise;
;
;

z
yzy
xzx

 (5-5)

Floor(x) the greatest integer less than or equal to x. (5-6)

InverseRasterScan(a, b, c, d, e) =
⎩
⎨
⎧

==
==

1;*))/(/(
0;*))/(%(

ecbda
ebbda

 (5-7)

Log2(x) returns the base-2 logarithm of x. (5-8)

Log10(x) returns the base-10 logarithm of x. (5-9)

Median(x, y, z) = x + y + z − Min(x, Min(y, z)) − Max(x, Max(y, z)) (5-10)

16 Rec. ITU-T H.264 (03/2009)

Min(x, y) =
⎩
⎨
⎧

>
<=

yx;y
yx;x

 (5-11)

Max(x, y) =
⎩
⎨
⎧

<
>=

yx;y
yx;x

 (5-12)

Round(x) = Sign(x) * Floor(Abs(x) + 0.5) (5-13)

Sign(x) =
⎩
⎨
⎧

<−
>=

0x;1
0x;1

 (5-14)

Sqrt(x) = x (5-15)

5.8 Order of operation precedence

When order of precedence in an expression is not indicated explicitly by use of parentheses, the following rules apply:
– operations of a higher precedence are evaluated before any operation of a lower precedence,
– operations of the same precedence are evaluated sequentially from left to right.

Table 5-1 specifies the precedence of operations from highest to lowest; a higher position in the table indicates a higher
precedence.

NOTE – For those operators that are also used in the C programming language, the order of precedence used in this Specification
is the same as used in the C programming language.

 Rec. ITU-T H.264 (03/2009) 17

Table 5-1 – Operation precedence from highest (at top of table) to lowest (at bottom of table)

operations (with operands x, y, and z)

"x++", "x− −"

"!x", "−x" (as a unary prefix operator)

xy

"x * y", "x / y", "x ÷ y", "
y
x

", "x % y"

"x + y", "x − y" (as a two-argument operator), "∑
=

y

xi
if)("

"x << y", "x >> y"

"x < y", "x <= y", "x > y", "x >= y"

"x = = y", "x != y"

"x & y"

"x | y"

"x && y"

"x | | y"

"x ? y : z"

"x = y", "x += y", "x −= y"

5.9 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower
case letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of
coded representation. The decoding process behaves according to the value of the syntax element and to the values of
previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears
in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such
variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any
underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax
structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding
process for later syntax structures without mentioning the originating syntax structure of the variable. Variables starting
with a lower case letter are only used within the subclause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE – The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions that specify properties of the current position in the bitstream are referred to as syntax functions. These
functions are specified in subclause 7.2 and assume the existence of a bitstream pointer with an indication of the
position of the next bit to be read by the decoding process from the bitstream. Syntax functions are described by their
names, which are constructed as syntax element names and end with left and right round parentheses including zero or
more variable names (for definition) or values (for usage), separated by commas (if more than one variable).

Functions that are not syntax functions (including mathematical functions specified in subclause 5.7) are described by
their names, which start with an upper case letter, contain a mixture of lower and upper case letters without any
underscore character, and end with left and right parentheses including zero or more variable names (for definition) or
values (for usage) separated by commas (if more than one variable).

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be
syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a
visual depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a

18 Rec. ITU-T H.264 (03/2009)

column (horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for
indexing. Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as
s[x, y] or as syx.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001'
represents an eight-bit string having only its second and its last bits (counted from the most to the least significant bit)
equal to 1.

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its
second and its last bits (counted from the most to the least significant bit) equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any value
different from zero.

5.10 Text description of logical operations

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
 statement 0
else if (condition 1)
 statement 1
…
else /* informative remark on remaining condition */
 statement n

may be described in the following manner:
... as follows / ... the following applies.
– If condition 0, statement 0
– Otherwise, if condition 1, statement 1
– …
– Otherwise (informative remark on remaining condition), statement n

Each "If ... Otherwise, if ... Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following
applies" immediately followed by "If ... ". The last condition of the "If ... Otherwise, if ... Otherwise, ..." is always an
"Otherwise, ...". Interleaved "If ... Otherwise, if ... Otherwise, ..." statements can be identified by matching "... as
follows" or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0a && condition 0b)
 statement 0
else if (condition 1a | | condition 1b)
 statement 1
…
else
 statement n

may be described in the following manner:

... as follows / ... the following applies.
– If all of the following conditions are true, statement 0

– condition 0a
– condition 0b

– Otherwise, if any of the following conditions are true, statement 1
– condition 1a
– condition 1b

 Rec. ITU-T H.264 (03/2009) 19

– …
– Otherwise, statement n

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
 statement 0
if (condition 1)
 statement 1

may be described in the following manner:
When condition 0, statement 0
When condition 1, statement 1

5.11 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable
explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable
that can either be an upper case variable or a lower case variable.

When invoking a process, the assignment of variables is specified as follows.
– If the variables at the invoking and the process specification do not have the same name, the variables are

explicitly assigned to lower case input or output variables of the process specification.
– Otherwise (the variables at the invoking and the process specification have the same name), assignment

is implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to
the address of the specific macroblock.

6 Source, coded, decoded and output data formats, scanning processes, and
neighbouring relationships

6.1 Bitstream formats

This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to
as the bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit
stream format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units.
This sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the
NAL units in the NAL unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding
order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of
bytes. The NAL unit stream format can be extracted from the byte stream format by searching for the location of the
unique start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than
use of the byte stream format are outside the scope of this Recommendation | International Standard. The byte stream
format is specified in Annex B.

6.2 Source, decoded, and output picture formats

This subclause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of either or both frames or fields (called collectively
pictures) in decoding order.

The source and decoded pictures (frames or fields) are each comprised of one or more sample arrays:
– Luma (Y) only (monochrome), with or without an auxiliary array.
– Luma and two Chroma (YCbCr or YCgCo), with or without an auxiliary array.

20 Rec. ITU-T H.264 (03/2009)

– Green, Blue and Red (GBR, also known as RGB), with or without an auxiliary array.
– Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX,

also known as XYZ), with or without an auxiliary array.

For convenience of notation and terminology in this specification, the variables and terms associated with these arrays
are referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of
the actual colour representation method in use. The actual colour representation method in use can be indicated in
syntax that is specified in Annex E. The (monochrome) auxiliary arrays, which may or may not be present as auxiliary
pictures in a coded video sequence, are optional for decoding and can be used for such purposes as alpha blending.

The variables SubWidthC, and SubHeightC are specified in Table 6-1, depending on the chroma format sampling
structure, which is specified through chroma_format_idc and separate_colour_plane_flag. An entry marked as "-" in
Table 6-1 denotes an undefined value for SubWidthC or SubHeightC. Other values of chroma_format_idc, SubWidthC,
and SubHeightC may be specified in the future by ITU-T | ISO/IEC.

Table 6-1 – SubWidthC, and SubHeightC values derived from chroma_format_idc and
separate_colour_plane_flag

chroma_format_idc separate_colour_plane_flag Chroma Format SubWidthC SubHeightC

0 0 monochrome - -
1 0 4:2:0 2 2
2 0 4:2:2 2 1
3 0 4:4:4 1 1
3 1 4:4:4 - -

In monochrome sampling there is only one sample array, which is nominally considered the luma array.

In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.

In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array.

In 4:4:4 sampling, depending on the value of separate_colour_plane_flag, the following applies.
– If separate_colour_plane_flag is equal to 0, each of the two chroma arrays has the same height and width as the

luma array.
– Otherwise (separate_colour_plane_flag is equal to 1), the three colour planes are separately processed as

monochrome sampled pictures.

The width and height of the luma sample arrays are each an integer multiple of 16. In coded video sequences using
4:2:0 chroma sampling, the width and height of chroma sample arrays are each an integer multiple of 8. In coded video
sequences using 4:2:2 sampling, the width of the chroma sample arrays is an integer multiple of 8 and the height is an
integer multiple of 16. The height of a luma array that is coded as two separate fields or in macroblock-adaptive
frame-field coding (see below) is an integer multiple of 32. In coded video sequences using 4:2:0 chroma sampling, the
height of each chroma array that is coded as two separate fields or in macroblock-adaptive frame-field coding (see
below) is an integer multiple of 16. The width or height of pictures output from the decoding process need not be an
integer multiple of 16 and can be specified using a cropping rectangle.

The syntax for the luma and (when present) chroma arrays are ordered such when data for all three colour components
is present, the data for the luma array is first, followed by any data for the Cb array, followed by any data for the Cr
array, unless otherwise specified.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to
the same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set
is half that of frames coded referring to the same sequence parameter set (see below).

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video
sequence is in the range of 8 to 14, and the number of bits used in the luma array may differ from the number of bits
used in the chroma arrays.

When the value of chroma_format_idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in frames are shown in Figure 6-1. Alternative chroma sample relative locations may be indicated in
video usability information (see Annex E).

 Rec. ITU-T H.264 (03/2009) 21

H.264(09)_F6-1

Location of luma sample
Location of chroma sample

Frame

Figure 6-1 – Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame

A frame consists of two fields as described below. A coded picture may represent a coded frame or an individual coded
field. A coded video sequence conforming to this Recommendation | International Standard may contain arbitrary
combinations of coded frames and coded fields. The decoding process is also specified in a manner that allows smaller
regions of a coded frame to be coded either as a frame or field region, by use of macroblock-adaptive frame-field
coding.

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time,
or are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are
interleaved. The first (i.e., top), third, fifth, etc., rows of a decoded frame are the top field rows. The second, fourth,
sixth, etc., rows of a decoded frame are the bottom field rows. A top field consists of only the top field rows of a
decoded frame. When the top field or bottom field of a decoded frame is used as a reference field (see below) only the
even rows (for a top field) or the odd rows (for a bottom field) of the decoded frame are used.

When the value of chroma_format_idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in top and bottom fields are shown in Figure 6-2. The nominal vertical sampling relative locations of
the chroma samples in a top field are specified as shifted up by one-quarter luma sample height relative to the
field-sampling grid. The vertical sampling locations of the chroma samples in a bottom field are specified as shifted
down by one-quarter luma sample height relative to the field-sampling grid. Alternative chroma sample relative
locations may be indicated in the video usability information (see Annex E).

NOTE – The shifting of the chroma samples is in order for these samples to align vertically to the usual location relative to the
full-frame sampling grid as shown in Figure 6-1.

22 Rec. ITU-T H.264 (03/2009)

H.264(09)_F6-2

Top
field

Bottom
field

Location of luma sample
Location of chroma sample

Figure 6-2 – Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields

When the value of chroma_format_idc is equal to 2, the chroma samples are co-sited with the corresponding luma
samples and the nominal locations in a frame and in fields are as shown in Figures 6-3 and 6-4, respectively.

H.264(09)_F6-3

Location of luma sample
Location of chroma sample

Frame

Figure 6-3 – Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame

 Rec. ITU-T H.264 (03/2009) 23

H.264(09)_F6-4

Location of luma sample
Location of chroma sample

Top
field

Bottom
field

Figure 6-4 – Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields

When the value of chroma_format_idc is equal to 3, all array samples are co-sited for all cases of frames and fields and
the nominal locations in a frame and in fields are as shown in Figures 6-5 and 6-6, respectively.

H.264(09)_F6-5

Location of luma sample
Location of chroma sample

Frame

Figure 6-5 – Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a frame

24 Rec. ITU-T H.264 (03/2009)

H.264(09)_F6-6

Location of luma sample
Location of chroma sample

Top
field

Bottom
field

Figure 6-6 – Nominal vertical and horizontal sampling locations of 4:4:4 samples top and bottom fields

The samples are processed in units of macroblocks. The luma array for each macroblock is 16 samples in both width
and height. The variables MbWidthC and MbHeightC, which specify the width and height, respectively, of the chroma
arrays for each macroblock, are derived as follows.
– If chroma_format_idc is equal to 0 (monochrome) or separate_colour_plane_flag is equal to 1, MbWidthC and

MbHeightC are both equal to 0.
– Otherwise, MbWidthC and MbHeightC are derived as

MbWidthC = 16 / SubWidthC (6-1)
MbHeightC = 16 / SubHeightC (6-2)

6.3 Spatial subdivision of pictures and slices

This subclause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A
slice is a sequence of macroblocks, or, when macroblock-adaptive frame/field decoding is in use, a sequence of
macroblock pairs.

Each macroblock is comprised of one 16x16 luma array and, when the chroma sampling format is not equal to 4:0:0 and
separate_colour_plane_flag is equal to 0, two corresponding chroma sample arrays. When separate_colour_plane_flag
is equal to 1, each macroblock is comprised of one 16x16 luma or chroma sample array. When macroblock-adaptive
frame/field decoding is not in use, each macroblock represents a spatial rectangular region of the picture. For example, a
picture may be divided into two slices as shown in Figure 6-7.

When a picture is coded using three separate colour planes (separate_colour_plane_flag is equal to 1), a slice contains
only macroblocks of one colour component being identified by the corresponding value of colour_plane_id, and each
colour component array of a picture consists of slices having the same colour_plane_id value. Coded slices with
different values of colour_plane_id within an access unit can be interleaved with each other under the constraint that for
each value of colour_plane_id, the coded slice NAL units with that value colour_plane_id shall be in the order of
increasing macroblock address for the first macroblock of each coded slice NAL unit.

NOTE – When separate_colour_plane_flag is equal to 0, each macroblock of a picture is contained in exactly one slice. When
separate_colour_plane_flag is equal to 1, each macroblock of a colour component is contained in exactly one slice
(i.e., information for each macroblock of a picture is present in exactly three slices and these three slices have different values of
colour_plane_id).

 Rec. ITU-T H.264 (03/2009) 25

Figure 6-7 – A picture with 11 by 9 macroblocks that is partitioned into two slices

When macroblock-adaptive frame/field decoding is in use, the picture is partitioned into slices containing an integer
number of macroblock pairs as shown in Figure 6-8. Each macroblock pair consists of two macroblocks.

H.264(09)_F6-8

A macroblock pair

Figure 6-8 – Partitioning of the decoded frame into macroblock pairs

6.4 Inverse scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes
for neighbours.

6.4.1 Inverse macroblock scanning process

Input to this process is a macroblock address mbAddr.

Output of this process is the location (x, y) of the upper-left luma sample for the macroblock with address mbAddr
relative to the upper-left sample of the picture.

The inverse macroblock scanning process is specified as follows.
– If MbaffFrameFlag is equal to 0,

x = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamplesL, 0) (6-3)

y = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamplesL, 1) (6-4)

– Otherwise (MbaffFrameFlag is equal to 1), the following ordered steps are specified:

26 Rec. ITU-T H.264 (03/2009)

1. The luma location (xO, yO) is derived by

xO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamplesL, 0) (6-5)

yO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamplesL, 1) (6-6)

2. Depending on the current macroblock the following applies.

– If the current macroblock is a frame macroblock

x = xO (6-7)

y = yO + (mbAddr % 2) * 16 (6-8)

– Otherwise (the current macroblock is a field macroblock),

x = xO (6-9)

y = yO + (mbAddr % 2) (6-10)

6.4.2 Inverse macroblock partition and sub-macroblock partition scanning process

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in
Figure 6-9. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles
refer to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or
inverse sub-macroblock partition scan.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width
and height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-13, 7-14, 7-17, and 7-18.
MbPartWidth() and MbPartHeight() are set to appropriate values for each macroblock, depending on the macroblock
type. SubMbPartWidth() and SubMbPartHeight() are set to appropriate values for each sub-macroblock of a
macroblock with mb_type equal to P_8x8, P_8x8ref0, or B_8x8, depending on the sub-macroblock type.

1 macroblock partition of
16*16 luma samples and

associated chroma samples

2 macroblock partitions of
16*8 luma samples and

associated chroma samples

2 macroblock partitions of
8*16 luma samples and

associated chroma samples

4 sub-macroblocks of
8*8 luma samples and

associated chroma samples

1 sub-macroblock partition
of 8*8 luma samples and

associated chroma samples

2 sub-macroblock partitions
of 8*4 luma samples and

associated chroma samples

2 sub-macroblock partitions
 of 4*8 luma samples and

associated chroma samples

4 sub-macroblock partitions
of 4*4 luma samples and

associated chroma samples

Macroblock
partitions

Sub-macroblock
partitions

0
0

1
0 1

0 1

2 3

0
0

1
0 1

0 1

2 3

Figure 6-9 – Macroblock partitions, sub-macroblock partitions, macroblock partition scans,
and sub-macroblock partition scans

 Rec. ITU-T H.264 (03/2009) 27

6.4.2.1 Inverse macroblock partition scanning process

Input to this process is the index of a macroblock partition mbPartIdx.

Output of this process is the location (x, y) of the upper-left luma sample for the macroblock partition mbPartIdx
relative to the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by

x = InverseRasterScan(mbPartIdx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 0) (6-11)

y = InverseRasterScan(mbPartIdx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 1) (6-12)

6.4.2.2 Inverse sub-macroblock partition scanning process

Inputs to this process are the index of a macroblock partition mbPartIdx and the index of a sub-macroblock partition
subMbPartIdx.

Output of this process is the location (x, y) of the upper-left luma sample for the sub-macroblock partition
subMbPartIdx relative to the upper-left sample of the sub-macroblock.

The inverse sub-macroblock partition scanning process is specified as follows.
– If mb_type is equal to P_8x8, P_8x8ref0, or B_8x8,

x = InverseRasterScan(subMbPartIdx, SubMbPartWidth(sub_mb_type[mbPartIdx]),
 SubMbPartHeight(sub_mb_type[mbPartIdx]), 8, 0) (6-13)

y = InverseRasterScan(subMbPartIdx, SubMbPartWidth(sub_mb_type[mbPartIdx]),
 SubMbPartHeight(sub_mb_type[mbPartIdx]), 8, 1) (6-14)

– Otherwise (mb_type is not equal to P_8x8, P_8x8ref0, or B_8x8),

x = InverseRasterScan(subMbPartIdx, 4, 4, 8, 0) (6-15)

y = InverseRasterScan(subMbPartIdx, 4, 4, 8, 1) (6-16)

6.4.3 Inverse 4x4 luma block scanning process

Input to this process is the index of a 4x4 luma block luma4x4BlkIdx.

Output of this process is the location (x, y) of the upper-left luma sample for the 4x4 luma block with index
luma4x4BlkIdx relative to the upper-left luma sample of the macroblock.

Figure 6-10 shows the scan for the 4x4 luma blocks.

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

Figure 6-10 – Scan for 4x4 luma blocks

The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan(luma4x4BlkIdx / 4, 8, 8, 16, 0) +
 InverseRasterScan(luma4x4BlkIdx % 4, 4, 4, 8, 0) (6-17)

28 Rec. ITU-T H.264 (03/2009)

y = InverseRasterScan(luma4x4BlkIdx / 4, 8, 8, 16, 1) +
 InverseRasterScan(luma4x4BlkIdx % 4, 4, 4, 8, 1) (6-18)

6.4.4 Inverse 4x4 Cb or Cr block scanning process for ChromaArrayType equal to 3

This process is only invoked when ChromaArrayType is equal to 3.

The inverse 4x4 chroma block scanning process is identical to inverse 4x4 luma block scanning process as specified in
subclause 6.4.3 when substituting the term "luma" with the term "Cb" or the term "Cr", and substituting the term
"luma4x4BlkIdx" with the term "cb4x4BlkIdx" or the term "cr4x4BlkIdx" in all places in subclause 6.4.3.

6.4.5 Inverse 8x8 luma block scanning process

Input to this process is the index of an 8x8 luma block luma8x8BlkIdx.

Output of this process is the location (x, y) of the upper-left luma sample for the 8x8 luma block with index
luma8x8BlkIdx relative to the upper-left luma sample of the macroblock.

Figure 6-11 shows the scan for the 8x8 luma blocks.

0 1

2 3

Figure 6-11 – Scan for 8x8 luma blocks

The inverse 8x8 luma block scanning process is specified by

x = InverseRasterScan(luma8x8BlkIdx, 8, 8, 16, 0) (6-19)

y = InverseRasterScan(luma8x8BlkIdx, 8, 8, 16, 1) (6-20)

6.4.6 Inverse 8x8 Cb or Cr block scanning process for ChromaArrayType equal to 3

This process is only invoked when ChromaArrayType is equal to 3.

The inverse 8x8 chroma block scanning process is identical to inverse 8x8 luma block scanning process as specified in
subclause 6.4.5 when substituting the term "luma" with the term "Cb" or the term "Cr", and substituting the term
"luma8x8BlkIdx" with the term "cb8x8BlkIdx" or the term "cr8x8BlkIdx" in all places in subclause 6.4.5.

6.4.7 Derivation process of the availability for macroblock addresses

Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.
NOTE – The meaning of availability is determined when this process is invoked.

The macroblock is marked as available, unless any of the following conditions is true in which case the macroblock is
marked as not available:
– mbAddr < 0,
– mbAddr > CurrMbAddr,
– the macroblock with address mbAddr belongs to a different slice than the macroblock with address CurrMbAddr.

6.4.8 Derivation process for neighbouring macroblock addresses and their availability

This process can only be invoked when MbaffFrameFlag is equal to 0.

The outputs of this process are
– mbAddrA: the address and availability status of the macroblock to the left of the current macroblock,

 Rec. ITU-T H.264 (03/2009) 29

– mbAddrB: the address and availability status of the macroblock above the current macroblock,
– mbAddrC: the address and availability status of the macroblock above-right of the current macroblock,
– mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 6-12 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and
mbAddrD relative to the current macroblock with CurrMbAddr.

mbAddrD mbAddrB mbAddrC

mbAddrA CurrMbAddr

Figure 6-12 – Neighbouring macroblocks for a given macroblock

Input to the process in subclause 6.4.7 is mbAddrA = CurrMbAddr − 1 and the output is whether the macroblock
mbAddrA is available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthInMbs is equal
to 0.

Input to the process in subclause 6.4.7 is mbAddrB = CurrMbAddr − PicWidthInMbs and the output is whether the
macroblock mbAddrB is available.

Input to the process in subclause 6.4.7 is mbAddrC = CurrMbAddr − PicWidthInMbs + 1 and the output is whether the
macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.7 is mbAddrD = CurrMbAddr − PicWidthInMbs − 1 and the output is whether the
macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
CurrMbAddr % PicWidthInMbs is equal to 0.

6.4.9 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames

This process can only be invoked when MbaffFrameFlag is equal to 1.

The outputs of this process are
– mbAddrA: the address and availability status of the top macroblock of the macroblock pair to the left of the current

macroblock pair,
– mbAddrB: the address and availability status of the top macroblock of the macroblock pair above the current

macroblock pair,
– mbAddrC: the address and availability status of the top macroblock of the macroblock pair above-right of the

current macroblock pair,
– mbAddrD: the address and availability status of the top macroblock of the macroblock pair above-left of the

current macroblock pair.

Figure 6-13 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and
mbAddrD relative to the current macroblock with CurrMbAddr.

mbAddrA, mbAddrB, mbAddrC, and mbAddrD have identical values regardless whether the current macroblock is the
top or the bottom macroblock of a macroblock pair.

30 Rec. ITU-T H.264 (03/2009)

mbAddrD mbAddrB mbAddrC

mbAddrA CurrMbAddr or

 CurrMbAddr

Figure 6-13 – Neighbouring macroblocks for a given macroblock in MBAFF frames

Input to the process in subclause 6.4.7 is mbAddrA = 2 * (CurrMbAddr / 2 − 1) and the output is whether the
macroblock mbAddrA is available. In addition, mbAddrA is marked as not available when
(CurrMbAddr / 2) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.7 is mbAddrB = 2 * (CurrMbAddr / 2 − PicWidthInMbs) and the output is
whether the macroblock mbAddrB is available.

Input to the process in subclause 6.4.7 is mbAddrC = 2 * (CurrMbAddr / 2 − PicWidthInMbs + 1) and the output is
whether the macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr / 2 + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.7 is mbAddrD = 2 * (CurrMbAddr / 2 − PicWidthInMbs − 1) and the output is
whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
(CurrMbAddr / 2) % PicWidthInMbs is equal to 0.

6.4.10 Derivation processes for neighbouring macroblocks, blocks, and partitions

Subclause 6.4.10.1 specifies the derivation process for neighbouring macroblocks.

Subclause 6.4.10.2 specifies the derivation process for neighbouring 8x8 luma blocks.

Subclause 6.4.10.3 specifies the derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal
to 3.

Subclause 6.4.10.4 specifies the derivation process for neighbouring 4x4 luma blocks.

Subclause 6.4.10.5 specifies the derivation process for neighbouring 4x4 chroma blocks.

Subclause 6.4.10.6 specifies the derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal
to 3.

Subclause 6.4.10.7 specifies the derivation process for neighbouring partitions.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in
mbAddrN, mbPartIdxN, subMbPartIdxN, luma8x8BlkIdxN, cb8x8BlkIdxN, cr8x8BlkIdxN, luma4x4BlkIdxN,
cb4x4BlkIdxN, cr4x4BlkIdxN, and chroma4x4BlkIdxN for the output. These input and output assignments are used in
subclauses 6.4.10.1 to 6.4.10.7. The variable predPartWidth is specified when Table 6-2 is referred to.

Table 6-2 – Specification of input and output assignments for subclauses 6.4.10.1 to 6.4.10.7

N xD yD

A −1 0

B 0 −1

C predPartWidth −1

D −1 −1

 Rec. ITU-T H.264 (03/2009) 31

Figure 6-14 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the
current macroblock, partition, or block, when the current macroblock, partition, or block is in frame coding mode.

Figure 6-14 – Determination of the neighbouring macroblock, blocks, and partitions (informative)

6.4.10.1 Derivation process for neighbouring macroblocks

Outputs of this process are
– mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status,
– mbAddrB: the address of the macroblock above the current macroblock and its availability status.

mbAddrN (with N being A or B) is derived as specified by the following ordered steps:
1. The difference of luma location (xD, yD) is set according to Table 6-2.
2. The derivation process for neighbouring locations as specified in subclause 6.4.11 is invoked for luma

locations with (xN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.

6.4.10.2 Derivation process for neighbouring 8x8 luma block

Input to this process is an 8x8 luma block index luma8x8BlkIdx.

The luma8x8BlkIdx specifies the 8x8 luma blocks of a macroblock in a raster scan.

Outputs of this process are
– mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and

its availability status,
– luma8x8BlkIdxA: the index of the 8x8 luma block to the left of the 8x8 block with index luma8x8BlkIdx and its

availability status,
– mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its

availability status,
– luma8x8BlkIdxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8BlkIdx and its

availability status.

mbAddrN and luma8x8BlkIdxN (with N being A or B) are derived as specified by the following ordered steps:
1. The difference of luma location (xD, yD) is set according to Table 6-2.
2. The luma location (xN, yN) is specified by

xN = (luma8x8BlkIdx % 2) * 8 + xD (6-21)

yN = (luma8x8BlkIdx / 2) * 8 + yD (6-22)

3. The derivation process for neighbouring locations as specified in subclause 6.4.11 is invoked for luma
locations with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

4. The variable luma8x8BlkIdxN is derived as follows.

– If mbAddrN is not available, luma8x8BlkIdxN is marked as not available.

32 Rec. ITU-T H.264 (03/2009)

– Otherwise (mbAddrN is available), the derivation process for 8x8 luma block indices as specified in
subclause 6.4.12.3 is invoked with the luma location (xW, yW) as the input and the output is assigned
to luma8x8BlkIdxN.

6.4.10.3 Derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3

This process is only invoked when ChromaArrayType is equal to 3.

The derivation process for neighbouring 8x8 chroma block is identical to the derivation process for neighbouring 8x8
luma block as specified in subclause 6.4.10.2 when substituting the term "luma" with the term "Cb" or the term "Cr",
and substituting the term "luma8x8BlkIdx" with the term "cb8x8BlkIdx" or the term "cr8x8BlkIdx" in all places in
subclause 6.4.10.2.

6.4.10.4 Derivation process for neighbouring 4x4 luma blocks

Input to this process is a 4x4 luma block index luma4x4BlkIdx.

Outputs of this process are
– mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and

its availability status,
– luma4x4BlkIdxA: the index of the 4x4 luma block to the left of the 4x4 block with index luma4x4BlkIdx and its

availability status,
– mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its

availability status,
– luma4x4BlkIdxB: the index of the 4x4 luma block above the 4x4 block with index luma4x4BlkIdx and its

availability status.

mbAddrN and luma4x4BlkIdxN (with N being A or B) are derived as specified by the following ordered steps:
1. The difference of luma location (xD, yD) is set according to Table 6-2.
2. The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with

luma4x4BlkIdx as the input and (x, y) as the output.
3. The luma location (xN, yN) is specified by

xN = x + xD (6-23)

yN = y + yD (6-24)

4. The derivation process for neighbouring locations as specified in subclause 6.4.11 is invoked for luma
locations with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

5. The variable luma4x4BlkIdxN is derived as follows.
– If mbAddrN is not available, luma4x4BlkIdxN is marked as not available.
– Otherwise (mbAddrN is available), the derivation process for 4x4 luma block indices as specified in

subclause 6.4.12.1 is invoked with the luma location (xW, yW) as the input and the output is
assigned to luma4x4BlkIdxN.

6.4.10.5 Derivation process for neighbouring 4x4 chroma blocks

This subclause is only invoked when ChromaArrayType is equal to 1 or 2.

Input to this process is a 4x4 chroma block index chroma4x4BlkIdx.

Outputs of this process are
– mbAddrA (either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock) and

its availability status,
– chroma4x4BlkIdxA (the index of the 4x4 chroma block to the left of the 4x4 chroma block with index

chroma4x4BlkIdx) and its availability status,
– mbAddrB (either equal to CurrMbAddr or the address of the macroblock above the current macroblock) and its

availability status,
– chroma4x4BlkIdxB (the index of the 4x4 chroma block above the 4x4 chroma block with index chroma4x4BlkIdx)

and its availability status.

 Rec. ITU-T H.264 (03/2009) 33

mbAddrN and chroma4x4BlkIdxN (with N being A or B) are derived as specified by the following ordered steps:
1. The difference of chroma location (xD, yD) is set according to Table 6-2.
2. The position (x, y) of the upper-left sample of the 4x4 chroma block with index chroma4x4BlkIdx is

derived by

x = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (6-25)

y = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (6-26)

3 The chroma location (xN, yN) is specified by

xN = x + xD (6-27)

yN = y + yD (6-28)

4. The derivation process for neighbouring locations as specified in subclause 6.4.11 is invoked for chroma
locations with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

5. The variable chroma4x4BlkIdxN is derived as follows.
– If mbAddrN is not available, chroma4x4BlkIdxN is marked as not available.
– Otherwise (mbAddrN is available), the derivation process for 4x4 chroma block indices as specified

in subclause 6.4.12.1 is invoked with the chroma location (xW, yW) as the input and the output is
assigned to chroma4x4BlkIdxN.

6.4.10.6 Derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3

This process is only invoked when ChromaArrayType is equal to 3.

The derivation process for neighbouring 4x4 chroma block in 4:4:4 chroma format is identical to the derivation process
for neighbouring 4x4 luma block as specified in subclause 6.4.10.4 when substituting the term "luma" with the term
"Cb" or the term "Cr", and substituting the term "luma4x4BlkIdx" with the term "cb4x4BlkIdx" or the term
"cr4x4BlkIdx" in all places in subclause 6.4.10.4.

6.4.10.7 Derivation process for neighbouring partitions

Inputs to this process are

– a macroblock partition index mbPartIdx

– a current sub-macroblock type currSubMbType

– a sub-macroblock partition index subMbPartIdx

Outputs of this process are

– mbAddrA\mbPartIdxA\subMbPartIdxA: specifying the macroblock or sub-macroblock partition to the left of the
current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status,

– mbAddrB\mbPartIdxB\subMbPartIdxB: specifying the macroblock or sub-macroblock partition above the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and
its availability status,

– mbAddrC\mbPartIdxC\subMbPartIdxC: specifying the macroblock or sub-macroblock partition to the right-above
of the current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status,

– mbAddrD\mbPartIdxD\subMbPartIdxD: specifying the macroblock or sub-macroblock partition to the left-above
of the current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status.

mbAddrN, mbPartIdxN, and subMbPartIdxN (with N being A, B, C, or D) are derived as specified by the following
ordered steps:

34 Rec. ITU-T H.264 (03/2009)

1. The inverse macroblock partition scanning process as described in subclause 6.4.2.1 is invoked with
mbPartIdx as the input and (x, y) as the output.

2. The location of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows.

– If mb_type is equal to P_8x8, P_8x8ref0 or B_8x8, the inverse sub-macroblock partition scanning
process as described in subclause 6.4.2.2 is invoked with subMbPartIdx as the input and (xS, yS) as the
output.

– Otherwise, (xS, yS) are set to (0, 0).

3. The variable predPartWidth in Table 6-2 is specified as follows.

– If mb_type is equal to P_Skip, B_Skip, or B_Direct_16x16, predPartWidth = 16.

– Otherwise, if mb_type is equal to B_8x8, the following applies.

– If currSubMbType is equal to B_Direct_8x8, predPartWidth = 16.
NOTE 1 – When currSubMbType is equal to B_Direct_8x8 and direct_spatial_mv_pred_flag is equal
to 1, the predicted motion vector is the predicted motion vector for the complete macroblock.

– Otherwise, predPartWidth = SubMbPartWidth(sub_mb_type[mbPartIdx]).

– Otherwise, if mb_type is equal to P_8x8 or P_8x8ref0,
predPartWidth = SubMbPartWidth(sub_mb_type[mbPartIdx]).

– Otherwise, predPartWidth = MbPartWidth(mb_type).

4. The difference of luma location (xD, yD) is set according to Table 6-2.

5. The neighbouring luma location (xN, yN) is specified by

xN = x + xS + xD (6-29)

yN = y + yS + yD (6-30)

6. The derivation process for neighbouring locations as specified in subclause 6.4.11 is invoked for luma
locations with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

7. Depending on mbAddrN, the following applies.

– If mbAddrN is not available, the macroblock or sub-macroblock partition
mbAddrN\mbPartIdxN\subMbPartIdxN is marked as not available.

– Otherwise (mbAddrN is available), the following ordered steps are specified:

a. Let mbTypeN be the syntax element mb_type of the macroblock with macroblock address mbAddrN
and, when mbTypeN is equal to P_8x8, P_8x8ref0, or B_8x8, let subMbTypeN be the syntax element
list sub_mb_type of the macroblock with macroblock address mbAddrN.

b. The derivation process for macroblock and sub-macroblock partition indices as specified in
subclause 6.4.12.4 is invoked with the luma location (xW, yW), the macroblock type mbTypeN, and,
when mbTypeN is equal to P_8x8, P_8x8ref0, or B_8x8, the list of sub-macroblock types
subMbTypeN as the inputs and the outputs are the macroblock partition index mbPartIdxN and the
sub-macroblock partition index subMbPartIdxN.

c. When the partition given by mbPartIdxN and subMbPartIdxN is not yet decoded, the macroblock
partition mbPartIdxN and the sub-macroblock partition subMbPartIdxN are marked as not available.

NOTE 2 – The latter condition is, for example, the case when mbPartIdx = 2, subMbPartIdx = 3, xD = 4,
yD = −1, i.e., when neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

6.4.11 Derivation process for neighbouring locations

Input to this process is a luma or chroma location (xN, yN) expressed relative to the upper left corner of the current
macroblock.

Outputs of this process are:

– mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its
availability status,

 Rec. ITU-T H.264 (03/2009) 35

– (xW, yW): the location (xN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather
than relative to the upper-left corner of the current macroblock).

Let maxW and maxH be variables specifying maximum values of the location components xN, xW, and yN, yW,
respectively. maxW and maxH are derived as follows.

– If this process is invoked for neighbouring luma locations,

maxW = maxH = 16 (6-31)

– Otherwise (this process is invoked for neighbouring chroma locations),

maxW = MbWidthC (6-32)

maxH = MbHeightC (6-33)

Depending on the variable MbaffFrameFlag, the neighbouring locations are derived as follows.

– If MbaffFrameFlag is equal to 0, the specification for neighbouring locations in fields and non-MBAFF frames as
described in subclause 6.4.11.1 is applied.

– Otherwise (MbaffFrameFlag is equal to 1), the specification for neighbouring locations in MBAFF frames as
described in subclause 6.4.11.2 is applied.

6.4.11.1 Specification for neighbouring locations in fields and non-MBAFF frames

The specifications in this subclause are applied when MbaffFrameFlag is equal to 0.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.8 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-3 specifies mbAddrN depending on (xN, yN).

Table 6-3 – Specification of mbAddrN

xN yN mbAddrN

< 0 < 0 mbAddrD

< 0 0..maxH − 1 mbAddrA

0..maxW − 1 < 0 mbAddrB

0..maxW − 1 0..maxH − 1 CurrMbAddr

> maxW − 1 < 0 mbAddrC

> maxW − 1 0..maxH − 1 not available

 > maxH − 1 not available

The neighbouring location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxW) % maxW (6-34)

yW = (yN + maxH) % maxH (6-35)

6.4.11.2 Specification for neighbouring locations in MBAFF frames

The specifications in this subclause are applied when MbaffFrameFlag is equal to 1.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.9 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

The variable currMbFrameFlag is derived as follows.

36 Rec. ITU-T H.264 (03/2009)

– If the macroblock with address CurrMbAddr is a frame macroblock, currMbFrameFlag is set equal to 1.

– Otherwise (the macroblock with address CurrMbAddr is a field macroblock), currMbFrameFlag is set equal to 0.

The variable mbIsTopMbFlag is derived as follows.

– If the macroblock with address CurrMbAddr is a top macroblock (i.e., CurrMbAddr % 2 is equal to 0),
mbIsTopMbFlag is set equal to 1.

– Otherwise (the macroblock with address CurrMbAddr is a bottom macroblock, i.e., CurrMbAddr % 2 is equal to 1),
mbIsTopMbFlag is set equal to 0.

Table 6-4 specifies the macroblock addresses mbAddrN and yM in two ordered steps:

1. Specification of a macroblock address mbAddrX depending on (xN, yN) and the variables currMbFrameFlag
and mbIsTopMbFlag:

2. Depending on the availability of mbAddrX, the following applies.

– If mbAddrX is not available, mbAddrN is marked as not available.

– Otherwise (mbAddrX is available), mbAddrN is marked as available and Table 6-4 specifies mbAddrN
and yM depending on (xN, yN), currMbFrameFlag, mbIsTopMbFlag, and the variable
mbAddrXFrameFlag, which is derived as follows.

– If the macroblock mbAddrX is a frame macroblock, mbAddrXFrameFlag is set equal to 1.

– Otherwise (the macroblock mbAddrX is a field macroblock), mbAddrXFrameFlag is set equal to 0.

Unspecified values (na) of the above flags in Table 6-4 indicate that the value of the corresponding flag is not relevant
for the current table rows.

 Rec. ITU-T H.264 (03/2009) 37

Table 6-4 – Specification of mbAddrN and yM
xN

yN

cu
rr

M
bF

ra
m

eF
la

g

m
bI

sT
op

M
bF

la
g

m
bA

dd
rX

m
bA

dd
rX

Fr
am

eF
la

g

ad
di

tio
na

l c
on

di
tio

n

m
bA

dd
rN

yM

1 mbAddrD mbAddrD + 1 yN
1 mbAddrA yN 1 0 mbAddrA
0 mbAddrA + 1 (yN + maxH) >> 1
1 mbAddrD + 1 2*yN 1 mbAddrD
0 mbAddrD yN

< 0 < 0

0
0 mbAddrD mbAddrD + 1 yN

1 mbAddrA yN
yN % 2 = = 0 mbAddrA yN >> 1 1 mbAddrA 0
yN % 2 != 0 mbAddrA + 1 yN >> 1

1 mbAddrA + 1 yN
yN % 2 = = 0 mbAddrA (yN + maxH) >> 1

1
0 mbAddrA

0 yN % 2 != 0 mbAddrA + 1 (yN + maxH) >> 1
yN < (maxH / 2) mbAddrA yN <<1 1
yN >= (maxH / 2) mbAddrA + 1 (yN <<1) − maxH 1 mbAddrA

0 mbAddrA yN
yN < (maxH / 2) mbAddrA (yN <<1) + 1

1 yN >= (maxH / 2) mbAddrA + 1 (yN <<1) + 1 − maxH

< 0 0..maxH − 1

0
0 mbAddrA

0 mbAddrA + 1 yN
1 mbAddrB mbAddrB + 1 yN

1 0 CurrMbAddr CurrMbAddr − 1 yN
1 mbAddrB + 1 2 * yN 1 mbAddrB
0 mbAddrB yN

0..maxW − 1 < 0
0

0 mbAddrB mbAddrB + 1 yN
0..maxW − 1 0..maxH − 1 CurrMbAddr CurrMbAddr yN

1 mbAddrC mbAddrC + 1 yN
1 0 not available not available na

1 mbAddrC + 1 2 * yN 1 mbAddrC
0 mbAddrC yN

> maxW − 1 <0
0

0 mbAddrC mbAddrC + 1 yN
> maxW − 1 0..maxH − 1 not available not available na
 > maxH − 1 not available not available na

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxW) % maxW (6-36)

yW = (yM + maxH) % maxH (6-37)

6.4.12 Derivation processes for block and partition indices

Subclause 6.4.12.1 specifies the derivation process for 4x4 luma block indices.

Subclause 6.4.12.2 specifies the derivation process for 4x4 chroma block indices.

Subclause 6.4.12.3 specifies the derivation process for 8x8 luma block indices.

38 Rec. ITU-T H.264 (03/2009)

Subclause 6.4.12.4 specifies the derivation process for macroblock and sub-macroblock partition indices.

6.4.12.1 Derivation process for 4x4 luma block indices

Input to this process is a luma location (xP, yP) relative to the upper-left luma sample of a macroblock.

Output of this process is a 4x4 luma block index luma4x4BlkIdx.

The 4x4 luma block index luma4x4BlkIdx is derived by

luma4x4BlkIdx = 8 * (y / 8) + 4 * (x / 8) + 2 * ((y % 8) / 4) + ((x % 8) / 4) (6-38)

6.4.12.2 Derivation process for 4x4 chroma block indices

This subclause is only invoked when ChromaArrayType is equal to 1 or 2.

Input to this process is a chroma location (xP, yP) relative to the upper-left chroma sample of a macroblock.

Output of this process is a 4x4 chroma block index chroma4x4BlkIdx.

The 4x4 chroma block index chroma4x4BlkIdx is derived by

chroma4x4BlkIdx = 2 * (y / 8) + (x / 8) (6-39)

6.4.12.3 Derivation process for 8x8 luma block indices

Input to this process is a luma location (xP, yP) relative to the upper-left chroma sample of a macroblock.

Outputs of this process is an 8x8 luma block index luma8x8BlkIdx.

The 8x8 luma block index luma8x8BlkIdx is derived by

luma8x8BlkIdx = 2 * (y / 8) + (x / 8) (6-40)

6.4.12.4 Derivation process for macroblock and sub-macroblock partition indices

Inputs to this process are

– a luma location (xP, yP) relative to the upper-left luma sample of a macroblock,

– a macroblock type mbType,

– when mbType is equal to P_8x8, P_8x8ref0, or B_8x8, a list of sub-macroblock types subMbType with 4 elements.

Outputs of this process are

– a macroblock partition index mbPartIdx,

– a sub-macroblock partition index subMbPartIdx.

The macroblock partition index mbPartIdx is derived as follows.

– If mbType specifies an I macroblock type, mbPartIdx is set equal to 0.

– Otherwise (mbType does not specify an I macroblock type), mbPartIdx is derived by

mbPartIdx = 2 * (yP / MbPartHeight(mbType)) + (xP / MbPartWidth(mbType)) (6-41)

The sub-macroblock partition index subMbPartIdx is derived as follows.

– If mbType is not equal to P_8x8, P_8x8ref0, B_8x8, B_Skip, or B_Direct_16x16, subMbPartIdx is set equal to 0.

– Otherwise, if mbType is equal to B_Skip or B_Direct_16x16, subMbPartIdx is derived by

subMbPartIdx = 2 * ((yP % 8) / 4) + ((xP % 8) / 4) (6-42)

 Rec. ITU-T H.264 (03/2009) 39

– Otherwise (mbType is equal to P_8x8, P_8x8ref0, or B_8x8), subMbPartIdx is derived by

subMbPartIdx = 2 * ((yP % 8) / SubMbPartHeight(subMbType[mbPartIdx])) +
 ((xP % 8) / SubMbPartWidth(subMbType[mbPartIdx])) (6-43)

7 Syntax and semantics

7.1 Method of specifying syntax in tabular form

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be
specified, either directly or indirectly, in other clauses.

NOTE – An actual decoder should implement means for identifying entry points into the bitstream and means to identify and
handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified
here.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it
specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position
beyond the syntax element in the bitstream parsing process.

 C Descriptor
/* A statement can be a syntax element with an associated syntax category and
descriptor or can be an expression used to specify conditions for the existence,
type, and quantity of syntax elements, as in the following two examples */

syntax_element 3 ue(v)
conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and
is treated functionally as a single statement. */

{
 Statement
 Statement
 …
}

/* A "while" structure specifies a test of whether a condition is true, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the
condition is no longer true */

while(condition)
 statement

/* A "do … while" structure specifies evaluation of a statement once, followed by
a test of whether a condition is true, and if true, specifies repeated evaluation of
the statement until the condition is no longer true */

do
 statement
while(condition)

/* An "if … else" structure specifies a test of whether a condition is true, and if
the condition is true, specifies evaluation of a primary statement, otherwise,
specifies evaluation of an alternative statement. The "else" part of the structure
and the associated alternative statement is omitted if no alternative statement
evaluation is needed */

if(condition)

40 Rec. ITU-T H.264 (03/2009)

 primary statement
else
 alternative statement

/* A "for" structure specifies evaluation of an initial statement, followed by a test
of a condition, and if the condition is true, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no
longer true. */

for(initial statement; condition; subsequent statement)
 primary statement

7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte_aligned() is specified as follows.

– If the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a
byte, the return value of byte_aligned() is equal to TRUE.

– Otherwise, the return value of byte_aligned() is equal to FALSE.

more_data_in_byte_stream(), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is
specified as follows.

– If more data follow in the byte stream, the return value of more_data_in_byte_stream() is equal to TRUE.

– Otherwise, the return value of more_data_in_byte_stream() is equal to FALSE.

more_rbsp_data() is specified as follows.

– If there is no more data in the RBSP, the return value of more_rbsp_data() is equal to FALSE.

– Otherwise, the RBSP data is searched for the last (least significant, right-most) bit equal to 1 that is present in
the RBSP. Given the position of this bit, which is the first bit (rbsp_stop_one_bit) of the rbsp_trailing_bits()
syntax structure, the following applies.

– If there is more data in an RBSP before the rbsp_trailing_bits() syntax structure, the return value of
more_rbsp_data() is equal to TRUE.

– Otherwise, the return value of more_rbsp_data() is equal to FALSE.

The method for enabling determination of whether there is more data in the RBSP is specified by the application
(or in Annex B for applications that use the byte stream format).

more_rbsp_trailing_data() is specified as follows.

– If there is more data in an RBSP, the return value of more_rbsp_trailing_data() is equal to TRUE.

– Otherwise, the return value of more_rbsp_trailing_data() is equal to FALSE.

next_bits(n) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream as
specified in Annex B, next_bits(n) returns a value of 0 if fewer than n bits remain within the byte stream.

read_bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is
equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.

Categories (labelled in the table as C) specify the partitioning of slice data into at most three slice data partitions. Slice
data partition A contains all syntax elements of category 2. Slice data partition B contains all syntax elements of
category 3. Slice data partition C contains all syntax elements of category 4. The meaning of other category values is
not specified. For some syntax elements, two category values, separated by a vertical bar, are used. In these cases, the
category value to be applied is further specified in the text. For syntax structures used within other syntax structures, the
categories of all syntax elements found within the included syntax structure are listed, separated by a vertical bar. A
syntax element or syntax structure with category marked as "All" is present within all syntax structures that include that
syntax element or syntax structure. For syntax structures used within other syntax structures, a numeric category value

 Rec. ITU-T H.264 (03/2009) 41

provided in a syntax table at the location of the inclusion of a syntax structure containing a syntax element with
category marked as "All" is considered to apply to the syntax elements with category "All".

The following descriptors specify the parsing process of each syntax element. For some syntax elements, two
descriptors, separated by a vertical bar, are used. In these cases, the left descriptors apply when
entropy_coding_mode_flag is equal to 0 and the right descriptor applies when entropy_coding_mode_flag is equal to 1.

– ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is
specified in subclause 9.3.

– b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the
return value of the function read_bits(8).

– ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process
for this descriptor is specified in subclause 9.2.

– f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process
for this descriptor is specified by the return value of the function read_bits(n).

– i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read_bits(n) interpreted as a two's complement integer representation with most
significant bit written first.

– me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor
is specified in subclause 9.1.

– se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

– te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is
specified in subclause 9.1.

– u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read_bits(n) interpreted as a binary representation of an unsigned integer with
most significant bit written first.

– ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

42 Rec. ITU-T H.264 (03/2009)

7.3 Syntax in tabular form

7.3.1 NAL unit syntax

nal_unit(NumBytesInNALunit) { C Descriptor
 forbidden_zero_bit All f(1)
 nal_ref_idc All u(2)
 nal_unit_type All u(5)
 NumBytesInRBSP = 0
 nalUnitHeaderBytes = 1
 if(nal_unit_type = = 14 | | nal_unit_type = = 20) {
 svc_extension_flag All u(1)
 if(svc_extension_flag)
 nal_unit_header_svc_extension() /* specified in Annex G */ All
 else
 nal_unit_header_mvc_extension() /* specified in Annex H */ All
 nalUnitHeaderBytes += 3
 }
 for(i = nalUnitHeaderBytes; i < NumBytesInNALunit; i++) {
 if(i + 2 < NumBytesInNALunit && next_bits(24) = = 0x000003) {
 rbsp_byte[NumBytesInRBSP++] All b(8)
 rbsp_byte[NumBytesInRBSP++] All b(8)
 i += 2
 emulation_prevention_three_byte /* equal to 0x03 */ All f(8)
 } else
 rbsp_byte[NumBytesInRBSP++] All b(8)
 }
}

7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

7.3.2.1 Sequence parameter set RBSP syntax

seq_parameter_set_rbsp() { C Descriptor
 seq_parameter_set_data() 0
 rbsp_trailing_bits() 0
}

 Rec. ITU-T H.264 (03/2009) 43

7.3.2.1.1 Sequence parameter set data syntax

seq_parameter_set_data() { C Descriptor
 profile_idc 0 u(8)
 constraint_set0_flag 0 u(1)
 constraint_set1_flag 0 u(1)
 constraint_set2_flag 0 u(1)
 constraint_set3_flag 0 u(1)
 constraint_set4_flag 0 u(1)
 reserved_zero_3bits /* equal to 0 */ 0 u(3)
 level_idc 0 u(8)
 seq_parameter_set_id 0 ue(v)
 if(profile_idc = = 100 | | profile_idc = = 110 | |
 profile_idc = = 122 | | profile_idc = = 244 | | profile_idc = = 44 | |
 profile_idc = = 83 | | profile_idc = = 86 | | profile_idc = = 118) {

 chroma_format_idc 0 ue(v)
 if(chroma_format_idc = = 3)
 separate_colour_plane_flag 0 u(1)
 bit_depth_luma_minus8 0 ue(v)
 bit_depth_chroma_minus8 0 ue(v)
 qpprime_y_zero_transform_bypass_flag 0 u(1)
 seq_scaling_matrix_present_flag 0 u(1)
 if(seq_scaling_matrix_present_flag)
 for(i = 0; i < ((chroma_format_idc != 3) ? 8 : 12); i++) {
 seq_scaling_list_present_flag[i] 0 u(1)
 if(seq_scaling_list_present_flag[i])
 if(i < 6)
 scaling_list(ScalingList4x4[i], 16,
 UseDefaultScalingMatrix4x4Flag[i])

0

 else
 scaling_list(ScalingList8x8[i − 6], 64,
 UseDefaultScalingMatrix8x8Flag[i − 6])

0

 }
 }
 log2_max_frame_num_minus4 0 ue(v)
 pic_order_cnt_type 0 ue(v)
 if(pic_order_cnt_type = = 0)
 log2_max_pic_order_cnt_lsb_minus4 0 ue(v)
 else if(pic_order_cnt_type = = 1) {
 delta_pic_order_always_zero_flag 0 u(1)
 offset_for_non_ref_pic 0 se(v)
 offset_for_top_to_bottom_field 0 se(v)
 num_ref_frames_in_pic_order_cnt_cycle 0 ue(v)
 for(i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++)
 offset_for_ref_frame[i] 0 se(v)
 }
 max_num_ref_frames 0 ue(v)
 gaps_in_frame_num_value_allowed_flag 0 u(1)
 pic_width_in_mbs_minus1 0 ue(v)
 pic_height_in_map_units_minus1 0 ue(v)

44 Rec. ITU-T H.264 (03/2009)

 frame_mbs_only_flag 0 u(1)
 if(!frame_mbs_only_flag)
 mb_adaptive_frame_field_flag 0 u(1)
 direct_8x8_inference_flag 0 u(1)
 frame_cropping_flag 0 u(1)
 if(frame_cropping_flag) {
 frame_crop_left_offset 0 ue(v)
 frame_crop_right_offset 0 ue(v)
 frame_crop_top_offset 0 ue(v)
 frame_crop_bottom_offset 0 ue(v)
 }
 vui_parameters_present_flag 0 u(1)
 if(vui_parameters_present_flag)
 vui_parameters() 0
}

7.3.2.1.1.1 Scaling list syntax

scaling_list(scalingList, sizeOfScalingList, useDefaultScalingMatrixFlag) { C Descriptor
 lastScale = 8
 nextScale = 8
 for(j = 0; j < sizeOfScalingList; j++) {
 if(nextScale != 0) {
 delta_scale 0 | 1 se(v)
 nextScale = (lastScale + delta_scale + 256) % 256
 useDefaultScalingMatrixFlag = (j = = 0 && nextScale = = 0)
 }
 scalingList[j] = (nextScale = = 0) ? lastScale : nextScale
 lastScale = scalingList[j]
 }
}

7.3.2.1.2 Sequence parameter set extension RBSP syntax

seq_parameter_set_extension_rbsp() { C Descriptor
 seq_parameter_set_id 10 ue(v)
 aux_format_idc 10 ue(v)
 if(aux_format_idc != 0) {
 bit_depth_aux_minus8 10 ue(v)
 alpha_incr_flag 10 u(1)
 alpha_opaque_value 10 u(v)
 alpha_transparent_value 10 u(v)
 }
 additional_extension_flag 10 u(1)
 rbsp_trailing_bits() 10
}

 Rec. ITU-T H.264 (03/2009) 45

7.3.2.1.3 Subset sequence parameter set RBSP syntax

subset_seq_parameter_set_rbsp() { C Descriptor
 seq_parameter_set_data() 0
 if(profile_idc = = 83 | | profile_idc = = 86) {
 seq_parameter_set_svc_extension() /* specified in Annex G */ 0
 svc_vui_parameters_present_flag 0 u(1)
 if(svc_vui_parameters_present_flag = = 1)
 svc_vui_parameters_extension() /* specified in Annex G */ 0
 } else if(profile_idc = = 118) {
 bit_equal_to_one /* equal to 1 */ 0 f(1)
 seq_parameter_set_mvc_extension() /* specified in Annex H */ 0
 mvc_vui_parameters_present_flag 0 u(1)
 if(mvc_vui_parameters_present_flag = = 1)
 mvc_vui_parameters_extension() /* specified in Annex H */ 0
 }
 additional_extension2_flag 0 u(1)
 if(additional_extension2_flag = = 1)
 while(more_rbsp_data())
 additional_extension2_data_flag 0 u(1)
 rbsp_trailing_bits() 0
}

46 Rec. ITU-T H.264 (03/2009)

7.3.2.2 Picture parameter set RBSP syntax

pic_parameter_set_rbsp() { C Descriptor
 pic_parameter_set_id 1 ue(v)
 seq_parameter_set_id 1 ue(v)
 entropy_coding_mode_flag 1 u(1)
 bottom_field_pic_order_in_frame_present_flag 1 u(1)
 num_slice_groups_minus1 1 ue(v)
 if(num_slice_groups_minus1 > 0) {
 slice_group_map_type 1 ue(v)
 if(slice_group_map_type = = 0)
 for(iGroup = 0; iGroup <= num_slice_groups_minus1; iGroup++)
 run_length_minus1[iGroup] 1 ue(v)
 else if(slice_group_map_type = = 2)
 for(iGroup = 0; iGroup < num_slice_groups_minus1; iGroup++) {
 top_left[iGroup] 1 ue(v)
 bottom_right[iGroup] 1 ue(v)
 }
 else if(slice_group_map_type = = 3 | |
 slice_group_map_type = = 4 | |
 slice_group_map_type = = 5) {

 slice_group_change_direction_flag 1 u(1)
 slice_group_change_rate_minus1 1 ue(v)
 } else if(slice_group_map_type = = 6) {
 pic_size_in_map_units_minus1 1 ue(v)
 for(i = 0; i <= pic_size_in_map_units_minus1; i++)
 slice_group_id[i] 1 u(v)
 }
 }
 num_ref_idx_l0_default_active_minus1 1 ue(v)
 num_ref_idx_l1_default_active_minus1 1 ue(v)
 weighted_pred_flag 1 u(1)
 weighted_bipred_idc 1 u(2)
 pic_init_qp_minus26 /* relative to 26 */ 1 se(v)
 pic_init_qs_minus26 /* relative to 26 */ 1 se(v)
 chroma_qp_index_offset 1 se(v)
 deblocking_filter_control_present_flag 1 u(1)
 constrained_intra_pred_flag 1 u(1)
 redundant_pic_cnt_present_flag 1 u(1)
 if(more_rbsp_data()) {
 transform_8x8_mode_flag 1 u(1)
 pic_scaling_matrix_present_flag 1 u(1)
 if(pic_scaling_matrix_present_flag)
 for(i = 0; i < 6 +
 ((chroma_format_idc != 3) ? 2 : 6) * transform_8x8_mode_flag;
 i++) {

 pic_scaling_list_present_flag[i] 1 u(1)
 if(pic_scaling_list_present_flag[i])
 if(i < 6)

 Rec. ITU-T H.264 (03/2009) 47

 scaling_list(ScalingList4x4[i], 16,
 UseDefaultScalingMatrix4x4Flag[i])

1

 else
 scaling_list(ScalingList8x8[i − 6], 64,
 UseDefaultScalingMatrix8x8Flag[i − 6])

1

 }
 second_chroma_qp_index_offset 1 se(v)
 }
 rbsp_trailing_bits() 1
}

7.3.2.3 Supplemental enhancement information RBSP syntax

sei_rbsp() { C Descriptor

do
sei_message() 5

while(more_rbsp_data())
rbsp_trailing_bits() 5

}

7.3.2.3.1 Supplemental enhancement information message syntax

sei_message() { C Descriptor

payloadType = 0
while(next_bits(8) = = 0xFF) {

ff_byte /* equal to 0xFF */ 5 f(8)
payloadType += 255

}
last_payload_type_byte 5 u(8)
payloadType += last_payload_type_byte
payloadSize = 0
while(next_bits(8) = = 0xFF) {

ff_byte /* equal to 0xFF */ 5 f(8)
payloadSize += 255

}
last_payload_size_byte 5 u(8)
payloadSize += last_payload_size_byte
sei_payload(payloadType, payloadSize) 5

}

7.3.2.4 Access unit delimiter RBSP syntax

access_unit_delimiter_rbsp() { C Descriptor
 primary_pic_type 6 u(3)
 rbsp_trailing_bits() 6
}

48 Rec. ITU-T H.264 (03/2009)

7.3.2.5 End of sequence RBSP syntax

end_of_seq_rbsp() { C Descriptor
}

7.3.2.6 End of stream RBSP syntax

end_of_stream_rbsp() { C Descriptor
}

7.3.2.7 Filler data RBSP syntax

filler_data_rbsp() { C Descriptor
 while(next_bits(8) = = 0xFF)
 ff_byte /* equal to 0xFF */ 9 f(8)
 rbsp_trailing_bits() 9
}

7.3.2.8 Slice layer without partitioning RBSP syntax

slice_layer_without_partitioning_rbsp() { C Descriptor
 slice_header() 2
 slice_data() /* all categories of slice_data() syntax */ 2 | 3 | 4
 rbsp_slice_trailing_bits() 2
}

7.3.2.9 Slice data partition RBSP syntax

7.3.2.9.1 Slice data partition A RBSP syntax

slice_data_partition_a_layer_rbsp() { C Descriptor
 slice_header() 2
 slice_id All ue(v)
 slice_data() /* only category 2 parts of slice_data() syntax */ 2
 rbsp_slice_trailing_bits() 2
}

 Rec. ITU-T H.264 (03/2009) 49

7.3.2.9.2 Slice data partition B RBSP syntax

slice_data_partition_b_layer_rbsp() { C Descriptor
 slice_id All ue(v)
 if(separate_colour_plane_flag = = 1)
 colour_plane_id All u(2)
 if(redundant_pic_cnt_present_flag)
 redundant_pic_cnt All ue(v)
 slice_data() /* only category 3 parts of slice_data() syntax */ 3
 rbsp_slice_trailing_bits() 3
}

7.3.2.9.3 Slice data partition C RBSP syntax

slice_data_partition_c_layer_rbsp() { C Descriptor
 slice_id All ue(v)
 if(separate_colour_plane_flag = = 1)
 colour_plane_id All u(2)
 if(redundant_pic_cnt_present_flag)
 redundant_pic_cnt All ue(v)
 slice_data() /* only category 4 parts of slice_data() syntax */ 4
 rbsp_slice_trailing_bits() 4
}

7.3.2.10 RBSP slice trailing bits syntax

rbsp_slice_trailing_bits() { C Descriptor
 rbsp_trailing_bits() All
 if(entropy_coding_mode_flag)
 while(more_rbsp_trailing_data())
 cabac_zero_word /* equal to 0x0000 */ All f(16)
}

7.3.2.11 RBSP trailing bits syntax

rbsp_trailing_bits() { C Descriptor
 rbsp_stop_one_bit /* equal to 1 */ All f(1)
 while(!byte_aligned())
 rbsp_alignment_zero_bit /* equal to 0 */ All f(1)
}

50 Rec. ITU-T H.264 (03/2009)

7.3.2.12 Prefix NAL unit RBSP syntax

prefix_nal_unit_rbsp() { C Descriptor
 if(svc_extension_flag)
 prefix_nal_unit_svc() /* specified in Annex G */ 2
}

7.3.2.13 Slice layer extension RBSP syntax

slice_layer_extension_rbsp() { C Descriptor
 if(svc_extension_flag) {
 slice_header_in_scalable_extension() /* specified in Annex G */ 2
 if(!slice_skip_flag)
 slice_data_in_scalable_extension() /* specified in Annex G */ 2 | 3 | 4
 } else {
 slice_header() 2
 slice_data() 2 | 3 | 4
 }
 rbsp_slice_trailing_bits() 2
}

 Rec. ITU-T H.264 (03/2009) 51

7.3.3 Slice header syntax

slice_header() { C Descriptor
 first_mb_in_slice 2 ue(v)
 slice_type 2 ue(v)
 pic_parameter_set_id 2 ue(v)
 if(separate_colour_plane_flag = = 1)
 colour_plane_id 2 u(2)
 frame_num 2 u(v)
 if(!frame_mbs_only_flag) {
 field_pic_flag 2 u(1)
 if(field_pic_flag)
 bottom_field_flag 2 u(1)
 }
 if(IdrPicFlag)
 idr_pic_id 2 ue(v)
 if(pic_order_cnt_type = = 0) {
 pic_order_cnt_lsb 2 u(v)
 if(bottom_field_pic_order_in_frame_present_flag && !field_pic_flag)
 delta_pic_order_cnt_bottom 2 se(v)
 }
 if(pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag) {
 delta_pic_order_cnt[0] 2 se(v)
 if(bottom_field_pic_order_in_frame_present_flag && !field_pic_flag)
 delta_pic_order_cnt[1] 2 se(v)
 }
 if(redundant_pic_cnt_present_flag)
 redundant_pic_cnt 2 ue(v)
 if(slice_type = = B)
 direct_spatial_mv_pred_flag 2 u(1)
 if(slice_type = = P | | slice_type = = SP | | slice_type = = B) {
 num_ref_idx_active_override_flag 2 u(1)
 if(num_ref_idx_active_override_flag) {
 num_ref_idx_l0_active_minus1 2 ue(v)
 if(slice_type = = B)
 num_ref_idx_l1_active_minus1 2 ue(v)
 }
 }
 if(nal_unit_type = = 20)
 ref_pic_list_mvc_modification() /* specified in Annex H */ 2
 else
 ref_pic_list_modification() 2
 if((weighted_pred_flag && (slice_type = = P | | slice_type = = SP)) | |
 (weighted_bipred_idc = = 1 && slice_type = = B))

 pred_weight_table() 2
 if(nal_ref_idc != 0)
 dec_ref_pic_marking() 2
 if(entropy_coding_mode_flag && slice_type != I && slice_type != SI)

52 Rec. ITU-T H.264 (03/2009)

 cabac_init_idc 2 ue(v)
 slice_qp_delta 2 se(v)
 if(slice_type = = SP | | slice_type = = SI) {
 if(slice_type = = SP)
 sp_for_switch_flag 2 u(1)
 slice_qs_delta 2 se(v)
 }
 if(deblocking_filter_control_present_flag) {
 disable_deblocking_filter_idc 2 ue(v)
 if(disable_deblocking_filter_idc != 1) {
 slice_alpha_c0_offset_div2 2 se(v)
 slice_beta_offset_div2 2 se(v)
 }
 }
 if(num_slice_groups_minus1 > 0 &&
 slice_group_map_type >= 3 && slice_group_map_type <= 5)

 slice_group_change_cycle 2 u(v)
}

7.3.3.1 Reference picture list modification syntax

ref_pic_list_modification() { C Descriptor
 if(slice_type % 5 != 2 && slice_type % 5 != 4) {
 ref_pic_list_modification_flag_l0 2 u(1)
 if(ref_pic_list_modification_flag_l0)
 do {
 modification_of_pic_nums_idc 2 ue(v)
 if(modification_of_pic_nums_idc = = 0 | |
 modification_of_pic_nums_idc = = 1)

 abs_diff_pic_num_minus1 2 ue(v)
 else if(modification_of_pic_nums_idc = = 2)
 long_term_pic_num 2 ue(v)
 } while(modification_of_pic_nums_idc != 3)
 }
 if(slice_type % 5 = = 1) {
 ref_pic_list_modification_flag_l1 2 u(1)
 if(ref_pic_list_modification_flag_l1)
 do {
 modification_of_pic_nums_idc 2 ue(v)
 if(modification_of_pic_nums_idc = = 0 | |
 modification_of_pic_nums_idc = = 1)

 abs_diff_pic_num_minus1 2 ue(v)
 else if(modification_of_pic_nums_idc = = 2)
 long_term_pic_num 2 ue(v)
 } while(modification_of_pic_nums_idc != 3)
 }
}

 Rec. ITU-T H.264 (03/2009) 53

7.3.3.2 Prediction weight table syntax

pred_weight_table() { C Descriptor
 luma_log2_weight_denom 2 ue(v)
 if(ChromaArrayType != 0)
 chroma_log2_weight_denom 2 ue(v)
 for(i = 0; i <= num_ref_idx_l0_active_minus1; i++) {
 luma_weight_l0_flag 2 u(1)
 if(luma_weight_l0_flag) {
 luma_weight_l0[i] 2 se(v)
 luma_offset_l0[i] 2 se(v)
 }
 if (ChromaArrayType != 0) {
 chroma_weight_l0_flag 2 u(1)
 if(chroma_weight_l0_flag)
 for(j =0; j < 2; j++) {
 chroma_weight_l0[i][j] 2 se(v)
 chroma_offset_l0[i][j] 2 se(v)
 }
 }
 }
 if(slice_type % 5 = = 1)
 for(i = 0; i <= num_ref_idx_l1_active_minus1; i++) {
 luma_weight_l1_flag 2 u(1)
 if(luma_weight_l1_flag) {
 luma_weight_l1[i] 2 se(v)
 luma_offset_l1[i] 2 se(v)
 }
 if(ChromaArrayType != 0) {
 chroma_weight_l1_flag 2 u(1)
 if(chroma_weight_l1_flag)
 for(j = 0; j < 2; j++) {
 chroma_weight_l1[i][j] 2 se(v)
 chroma_offset_l1[i][j] 2 se(v)
 }
 }
 }
}

54 Rec. ITU-T H.264 (03/2009)

7.3.3.3 Decoded reference picture marking syntax

dec_ref_pic_marking() { C Descriptor
 if(IdrPicFlag) {
 no_output_of_prior_pics_flag 2 | 5 u(1)
 long_term_reference_flag 2 | 5 u(1)
 } else {
 adaptive_ref_pic_marking_mode_flag 2 | 5 u(1)
 if(adaptive_ref_pic_marking_mode_flag)
 do {
 memory_management_control_operation 2 | 5 ue(v)
 if(memory_management_control_operation = = 1 | |
 memory_management_control_operation = = 3)

 difference_of_pic_nums_minus1 2 | 5 ue(v)
 if(memory_management_control_operation = = 2)
 long_term_pic_num 2 | 5 ue(v)
 if(memory_management_control_operation = = 3 | |
 memory_management_control_operation = = 6)

 long_term_frame_idx 2 | 5 ue(v)
 if(memory_management_control_operation = = 4)
 max_long_term_frame_idx_plus1 2 | 5 ue(v)
 } while(memory_management_control_operation != 0)
 }
}

 Rec. ITU-T H.264 (03/2009) 55

7.3.4 Slice data syntax

slice_data() { C Descriptor
 if(entropy_coding_mode_flag)
 while(!byte_aligned())
 cabac_alignment_one_bit 2 f(1)
 firstMbAddr = first_mb_in_slice * (1 + MbaffFrameFlag)
 CurrMbAddr = firstMbAddr
 moreDataFlag = 1
 prevMbSkipped = 0
 do {
 if(slice_type != I && slice_type != SI)
 if(!entropy_coding_mode_flag) {
 mb_skip_run 2 ue(v)
 prevMbSkipped = (mb_skip_run > 0)
 for(i=0; i<mb_skip_run; i++)
 CurrMbAddr = NextMbAddress(CurrMbAddr)
 if(CurrMbAddr != firstMbAddr | | mb_skip_run > 0)
 moreDataFlag = more_rbsp_data()
 } else {
 mb_skip_flag 2 ae(v)
 moreDataFlag = !mb_skip_flag
 }
 if(moreDataFlag) {
 if(MbaffFrameFlag && (CurrMbAddr % 2 = = 0 | |
 (CurrMbAddr % 2 = = 1 && prevMbSkipped)))

 mb_field_decoding_flag 2 u(1) | ae(v)
 macroblock_layer() 2 | 3 | 4
 }
 if(!entropy_coding_mode_flag)
 moreDataFlag = more_rbsp_data()
 else {
 if(slice_type != I && slice_type != SI)
 prevMbSkipped = mb_skip_flag
 if(MbaffFrameFlag && CurrMbAddr % 2 = = 0)
 moreDataFlag = 1
 else {
 end_of_slice_flag 2 ae(v)
 moreDataFlag = !end_of_slice_flag
 }
 }
 CurrMbAddr = NextMbAddress(CurrMbAddr)
 } while(moreDataFlag)
}

56 Rec. ITU-T H.264 (03/2009)

7.3.5 Macroblock layer syntax

macroblock_layer() { C Descriptor
 mb_type 2 ue(v) | ae(v)
 if(mb_type = = I_PCM) {
 while(!byte_aligned())
 pcm_alignment_zero_bit 3 f(1)
 for(i = 0; i < 256; i++)
 pcm_sample_luma[i] 3 u(v)
 for(i = 0; i < 2 * MbWidthC * MbHeightC; i++)
 pcm_sample_chroma[i] 3 u(v)
 } else {
 noSubMbPartSizeLessThan8x8Flag = 1
 if(mb_type != I_NxN &&
 MbPartPredMode(mb_type, 0) != Intra_16x16 &&
 NumMbPart(mb_type) = = 4) {

 sub_mb_pred(mb_type) 2
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if(sub_mb_type[mbPartIdx] != B_Direct_8x8) {
 if(NumSubMbPart(sub_mb_type[mbPartIdx]) > 1)
 noSubMbPartSizeLessThan8x8Flag = 0
 } else if(!direct_8x8_inference_flag)
 noSubMbPartSizeLessThan8x8Flag = 0
 } else {
 if(transform_8x8_mode_flag && mb_type = = I_NxN)
 transform_size_8x8_flag 2 u(1) | ae(v)
 mb_pred(mb_type) 2
 }
 if(MbPartPredMode(mb_type, 0) != Intra_16x16) {
 coded_block_pattern 2 me(v) | ae(v)
 if(CodedBlockPatternLuma > 0 &&
 transform_8x8_mode_flag && mb_type != I_NxN &&
 noSubMbPartSizeLessThan8x8Flag &&
 (mb_type != B_Direct_16x16 | | direct_8x8_inference_flag))

 transform_size_8x8_flag 2 u(1) | ae(v)
 }
 if(CodedBlockPatternLuma > 0 | | CodedBlockPatternChroma > 0 | |
 MbPartPredMode(mb_type, 0) = = Intra_16x16) {

 mb_qp_delta 2 se(v) | ae(v)
 residual(0, 15) 3 | 4
 }
 }
}

 Rec. ITU-T H.264 (03/2009) 57

7.3.5.1 Macroblock prediction syntax

mb_pred(mb_type) { C Descriptor
 if(MbPartPredMode(mb_type, 0) = = Intra_4x4 | |
 MbPartPredMode(mb_type, 0) = = Intra_8x8 | |
 MbPartPredMode(mb_type, 0) = = Intra_16x16) {

 if(MbPartPredMode(mb_type, 0) = = Intra_4x4)
 for(luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++) {
 prev_intra4x4_pred_mode_flag[luma4x4BlkIdx] 2 u(1) | ae(v)
 if(!prev_intra4x4_pred_mode_flag[luma4x4BlkIdx])
 rem_intra4x4_pred_mode[luma4x4BlkIdx] 2 u(3) | ae(v)
 }
 if(MbPartPredMode(mb_type, 0) = = Intra_8x8)
 for(luma8x8BlkIdx=0; luma8x8BlkIdx<4; luma8x8BlkIdx++) {
 prev_intra8x8_pred_mode_flag[luma8x8BlkIdx] 2 u(1) | ae(v)
 if(!prev_intra8x8_pred_mode_flag[luma8x8BlkIdx])
 rem_intra8x8_pred_mode[luma8x8BlkIdx] 2 u(3) | ae(v)
 }
 if(ChromaArrayType = = 1 | | ChromaArrayType = = 2)
 intra_chroma_pred_mode 2 ue(v) | ae(v)
 } else if(MbPartPredMode(mb_type, 0) != Direct) {
 for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
 if((num_ref_idx_l0_active_minus1 > 0 | |
 mb_field_decoding_flag != field_pic_flag) &&
 MbPartPredMode(mb_type, mbPartIdx) != Pred_L1)

 ref_idx_l0[mbPartIdx] 2 te(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
 if((num_ref_idx_l1_active_minus1 > 0 | |
 mb_field_decoding_flag != field_pic_flag) &&
 MbPartPredMode(mb_type, mbPartIdx) != Pred_L0)

 ref_idx_l1[mbPartIdx] 2 te(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
 if(MbPartPredMode (mb_type, mbPartIdx) != Pred_L1)
 for(compIdx = 0; compIdx < 2; compIdx++)
 mvd_l0[mbPartIdx][0][compIdx] 2 se(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
 if(MbPartPredMode(mb_type, mbPartIdx) != Pred_L0)
 for(compIdx = 0; compIdx < 2; compIdx++)
 mvd_l1[mbPartIdx][0][compIdx] 2 se(v) | ae(v)
 }
}

58 Rec. ITU-T H.264 (03/2009)

7.3.5.2 Sub-macroblock prediction syntax

sub_mb_pred(mb_type) { C Descriptor
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 sub_mb_type[mbPartIdx] 2 ue(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if((num_ref_idx_l0_active_minus1 > 0 | |
 mb_field_decoding_flag != field_pic_flag) &&
 mb_type != P_8x8ref0 &&
 sub_mb_type[mbPartIdx] != B_Direct_8x8 &&
 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L1)

 ref_idx_l0[mbPartIdx] 2 te(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if((num_ref_idx_l1_active_minus1 > 0 | |
 mb_field_decoding_flag != field_pic_flag) &&
 sub_mb_type[mbPartIdx] != B_Direct_8x8 &&
 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L0)

 ref_idx_l1[mbPartIdx] 2 te(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if(sub_mb_type[mbPartIdx] != B_Direct_8x8 &&
 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L1)

 for(subMbPartIdx = 0;
 subMbPartIdx < NumSubMbPart(sub_mb_type[mbPartIdx]);
 subMbPartIdx++)

 for(compIdx = 0; compIdx < 2; compIdx++)
 mvd_l0[mbPartIdx][subMbPartIdx][compIdx] 2 se(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if(sub_mb_type[mbPartIdx] != B_Direct_8x8 &&
 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L0)

 for(subMbPartIdx = 0;
 subMbPartIdx < NumSubMbPart(sub_mb_type[mbPartIdx]);
 subMbPartIdx++)

 for(compIdx = 0; compIdx < 2; compIdx++)
 mvd_l1[mbPartIdx][subMbPartIdx][compIdx] 2 se(v) | ae(v)
}

 Rec. ITU-T H.264 (03/2009) 59

7.3.5.3 Residual data syntax

residual(startIdx, endIdx) { C Descriptor
 if(!entropy_coding_mode_flag)
 residual_block = residual_block_cavlc
 else
 residual_block = residual_block_cabac
 residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8,
 startIdx, endIdx)

3 | 4

 Intra16x16DCLevel = i16x16DClevel
 Intra16x16ACLevel = i16x16AClevel
 LumaLevel = level
 LumaLevel8x8 = level8x8
 if(ChromaArrayType = = 1 | | ChromaArrayType = = 2) {
 NumC8x8 = 4 / (SubWidthC * SubHeightC)
 for(iCbCr = 0; iCbCr < 2; iCbCr++)
 if((CodedBlockPatternChroma & 3) && startIdx = = 0)
 /* chroma DC residual present */

 residual_block(ChromaDCLevel[iCbCr], 0, 4 * NumC8x8 − 1,
 4 * NumC8x8)

3 | 4

 else
 for(i = 0; i < 4 * NumC8x8; i++)
 ChromaDCLevel[iCbCr][i] = 0
 for(iCbCr = 0; iCbCr < 2; iCbCr++)
 for(i8x8 = 0; i8x8 < NumC8x8; i8x8++)
 for(i4x4 = 0; i4x4 < 4; i4x4++)
 if((CodedBlockPatternChroma & 2) && endIdx > 0)
 /* chroma AC residual present */

 residual_block(ChromaACLevel[iCbCr][i8x8*4+i4x4],
 max(0, startIdx − 1), endIdx − 1, 15)

3 | 4

 else
 for(i = 0; i < 15; i++)
 ChromaACLevel[iCbCr][i8x8*4+i4x4][i] = 0
 } else if(ChromaArrayType = = 3) {
 residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8,
 startIdx, endIdx)

3 | 4

 CbIntra16x16DCLevel = i16x16DClevel
 CbIntra16x16ACLevel = i16x16AClevel
 CbLevel = level
 CbLevel8x8 = level8x8
 residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8,
 startIdx, endIdx)

3 | 4

 CrIntra16x16DCLevel = i16x16DClevel
 CrIntra16x16ACLevel = i16x16AClevel
 CrLevel = level
 CrLevel8x8 = level8x8
 }

60 Rec. ITU-T H.264 (03/2009)

7.3.5.3.1 Residual luma syntax

residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8,
 startIdx, endIdx) {

C Descriptor

 if(!entropy_coding_mode_flag)
 residual_block = residual_block_cavlc
 else
 residual_block = residual_block_cabac
 if(startIdx = = 0 && MbPartPredMode(mb_type, 0) = = Intra_16x16)
 residual_block(i16x16DClevel, 0, 15, 16) 3
 for(i8x8 = 0; i8x8 < 4; i8x8++)
 if(!transform_size_8x8_flag | | !entropy_coding_mode_flag)
 for(i4x4 = 0; i4x4 < 4; i4x4++) {
 if(CodedBlockPatternLuma & (1 << i8x8))
 if(endIdx > 0 &&
 MbPartPredMode(mb_type, 0) = = Intra_16x16)

 residual_block(i16x16AClevel[i8x8*4+ i4x4],
 max(0, startIdx − 1), endIdx − 1, 15)

3

 else
 residual_block(level[i8x8 * 4 + i4x4], startIdx, endIdx, 16) 3 | 4
 else if(MbPartPredMode(mb_type, 0) = = Intra_16x16)
 for(i = 0; i < 15; i++)
 i16x16AClevel[i8x8 * 4 + i4x4][i] = 0
 else
 for(i = 0; i < 16; i++)
 level[i8x8 * 4 + i4x4][i] = 0
 if(!entropy_coding_mode_flag && transform_size_8x8_flag)
 for(i = 0; i < 16; i++)
 level8x8[i8x8][4 * i + i4x4] = level[i8x8 * 4 + i4x4][i]
 }
 else if(CodedBlockPatternLuma & (1 << i8x8))
 residual_block(level8x8[i8x8], 4 * startIdx, 4 * endIdx + 3, 64) 3 | 4
 else
 for(i = 0; i < 64; i++)
 level8x8[i8x8][i] = 0
}

 Rec. ITU-T H.264 (03/2009) 61

7.3.5.3.2 Residual block CAVLC syntax

residual_block_cavlc(coeffLevel, startIdx, endIdx, maxNumCoeff) { C Descriptor
 for(i = 0; i < maxNumCoeff; i++)
 coeffLevel[i] = 0
 coeff_token 3 | 4 ce(v)
 if(TotalCoeff(coeff_token) > 0) {
 if(TotalCoeff(coeff_token) > 10 && TrailingOnes(coeff_token) < 3)
 suffixLength = 1
 else
 suffixLength = 0
 for(i = 0; i < TotalCoeff(coeff_token); i++)
 if(i < TrailingOnes(coeff_token)) {
 trailing_ones_sign_flag 3 | 4 u(1)
 level[i] = 1 − 2 * trailing_ones_sign_flag
 } else {
 level_prefix 3 | 4 ce(v)
 levelCode = (Min(15, level_prefix) << suffixLength)
 if(suffixLength > 0 | | level_prefix >= 14) {
 level_suffix 3 | 4 u(v)
 levelCode += level_suffix
 }
 if(level_prefix > = 15 && suffixLength = = 0)
 levelCode += 15
 if(level_prefix > = 16)
 levelCode += (1 << (level_prefix − 3)) − 4096
 if(i = = TrailingOnes(coeff_token) &&
 TrailingOnes(coeff_token) < 3)

 levelCode += 2
 if(levelCode % 2 = = 0)
 level[i] = (levelCode + 2) >> 1
 else
 level[i] = (−levelCode − 1) >> 1
 if(suffixLength = = 0)
 suffixLength = 1
 if(Abs(level[i]) > (3 << (suffixLength − 1)) &&
 suffixLength < 6)

 suffixLength++
 }
 if(TotalCoeff(coeff_token) < endIdx − startIdx + 1) {
 total_zeros 3 | 4 ce(v)
 zerosLeft = total_zeros
 } else
 zerosLeft = 0
 for(i = 0; i < TotalCoeff(coeff_token) − 1; i++) {
 if(zerosLeft > 0) {
 run_before 3 | 4 ce(v)
 run[i] = run_before
 } else
 run[i] = 0

62 Rec. ITU-T H.264 (03/2009)

 zerosLeft = zerosLeft − run[i]
 }
 run[TotalCoeff(coeff_token) − 1] = zerosLeft
 coeffNum = −1
 for(i = TotalCoeff(coeff_token) − 1; i >= 0; i− −) {
 coeffNum += run[i] + 1
 coeffLevel[startIdx + coeffNum] = level[i]
 }
 }
}

7.3.5.3.3 Residual block CABAC syntax

residual_block_cabac(coeffLevel, startIdx, endIdx, maxNumCoeff) { C Descriptor
 if(maxNumCoeff != 64 | | ChromaArrayType = = 3)
 coded_block_flag 3 | 4 ae(v)
 for(i = 0; i < maxNumCoeff; i++)
 coeffLevel[i] = 0
 if(coded_block_flag) {
 numCoeff = endIdx + 1
 i = startIdx
 do {
 significant_coeff_flag[i] 3 | 4 ae(v)
 if(significant_coeff_flag[i]) {
 last_significant_coeff_flag[i] 3 | 4 ae(v)
 if(last_significant_coeff_flag[i])
 numCoeff = i + 1
 }
 i++
 } while(i < numCoeff − 1)
 coeff_abs_level_minus1[numCoeff − 1] 3 | 4 ae(v)
 coeff_sign_flag[numCoeff − 1] 3 | 4 ae(v)
 coeffLevel[numCoeff − 1] =
 (coeff_abs_level_minus1[numCoeff − 1] + 1) *
 (1 − 2 * coeff_sign_flag[numCoeff − 1])

 for(i = numCoeff − 2; i >= 0; i− −)
 if(significant_coeff_flag[i]) {
 coeff_abs_level_minus1[i] 3 | 4 ae(v)
 coeff_sign_flag[i] 3 | 4 ae(v)
 coeffLevel[i] = (coeff_abs_level_minus1[i] + 1) *
 (1 − 2 * coeff_sign_flag[i])

 }
 }
}

7.4 Semantics

Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this
subclause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not

 Rec. ITU-T H.264 (03/2009) 63

specified in the table(s) shall not be present in the bitstream unless otherwise specified in this Recommendation |
International Standard.

7.4.1 NAL unit semantics
NOTE 1 – The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data
and provide header information in a manner appropriate for conveyance on a variety of communication channels or storage
media. All data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic
format for use in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and
byte stream is identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte
stream format.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit.
Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be
specified outside of this Recommendation | International Standard.

forbidden_zero_bit shall be equal to 0.

nal_ref_idc not equal to 0 specifies that the content of the NAL unit contains a sequence parameter set, a sequence
parameter set extension, a subset sequence parameter set, a picture parameter set, a slice of a reference picture, a slice
data partition of a reference picture, or a prefix NAL unit preceding a slice of a reference picture.

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the
decoding process specified in clauses 2-9, nal_ref_idc equal to 0 for a NAL unit containing a slice or slice data partition
indicates that the slice or slice data partition is part of a non-reference picture.

nal_ref_idc shall not be equal to 0 for sequence parameter set or sequence parameter set extension or subset sequence
parameter set or picture parameter set NAL units. When nal_ref_idc is equal to 0 for one NAL unit with nal_unit_type
in the range of 1 to 4, inclusive, of a particular picture, it shall be equal to 0 for all NAL units with nal_unit_type in the
range of 1 to 4, inclusive, of the picture.

nal_ref_idc shall not be equal to 0 for NAL units with nal_unit_type equal to 5.

nal_ref_idc shall be equal to 0 for all NAL units having nal_unit_type equal to 6, 9, 10, 11, or 12.

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1.

The column marked "C" in Table 7-1 lists the categories of the syntax elements that may be present in the NAL unit. In
addition, syntax elements with syntax category "All" may be present, as determined by the syntax and semantics of the
RBSP data structure. The presence or absence of any syntax elements of a particular listed category is determined from
the syntax and semantics of the associated RBSP data structure. nal_unit_type shall not be equal to 3 or 4 unless at least
one syntax element is present in the RBSP data structure having a syntax element category value equal to the value of
nal_unit_type and not categorized as "All".

For coded video sequences conforming to one or more of the profiles specified in Annex A that are decoded using the
decoding process specified in clauses 2-9, VCL and non-VCL NAL units are specified in Table 7-1 in the column
labelled "Annex A NAL unit type class". For coded video sequences conforming to one or more of the profiles specified
in Annex G that are decoded using the decoding process specified in Annex G and for coded video sequences
conforming to one or more of the profiles specified in Annex H that are decoded using the decoding process specified in
Annex H, VCL and non-VCL NAL units are specified in Table 7-1 in the column labelled "Annex G and Annex H
NAL unit type class". The entry "suffix dependent" for nal_unit_type equal to 14 is specified as follows.
– If the NAL unit directly following in decoding order a NAL unit with nal_unit_type equal to 14 is a NAL unit with

nal_unit_type equal to 1 or 5, the NAL unit with nal_unit_type equal to 14 is a VCL NAL unit.
– Otherwise (the NAL unit directly following in decoding order a NAL unit with nal_unit_type equal to 14 is a NAL

unit with nal_unit_type not equal to 1 or 5), the NAL unit with nal_unit_type equal to 14 is a non-VCL NAL unit.
Decoders that conform to this Recommendation | International Standard shall ignore (remove from the bitstream
and discard) the NAL unit with nal_unit_type equal to 14 and the NAL unit directly following (in decoding order)
the NAL unit with nal_unit_type equal to 14.

64 Rec. ITU-T H.264 (03/2009)

Table 7-1 – NAL unit type codes, syntax element categories, and NAL unit type classes

nal_unit_type Content of NAL unit and RBSP syntax structure C Annex A
NAL unit
type class

Annex G
and

Annex H
NAL unit
type class

0 Unspecified non-VCL non-VCL

1 Coded slice of a non-IDR picture
slice_layer_without_partitioning_rbsp()

2, 3, 4 VCL VCL

2 Coded slice data partition A
slice_data_partition_a_layer_rbsp()

2 VCL not
applicable

3 Coded slice data partition B
slice_data_partition_b_layer_rbsp()

3 VCL not
applicable

4 Coded slice data partition C
slice_data_partition_c_layer_rbsp()

4 VCL not
applicable

5 Coded slice of an IDR picture
slice_layer_without_partitioning_rbsp()

2, 3 VCL VCL

6 Supplemental enhancement information (SEI)
sei_rbsp()

5 non-VCL non-VCL

7 Sequence parameter set
seq_parameter_set_rbsp()

0 non-VCL non-VCL

8 Picture parameter set
pic_parameter_set_rbsp()

1 non-VCL non-VCL

9 Access unit delimiter
access_unit_delimiter_rbsp()

6 non-VCL non-VCL

10 End of sequence
end_of_seq_rbsp()

7 non-VCL non-VCL

11 End of stream
end_of_stream_rbsp()

8 non-VCL non-VCL

12 Filler data
filler_data_rbsp()

9 non-VCL non-VCL

13 Sequence parameter set extension
seq_parameter_set_extension_rbsp()

10 non-VCL non-VCL

14 Prefix NAL unit
prefix_nal_unit_rbsp()

2 non-VCL suffix
dependent

15 Subset sequence parameter set
subset_seq_parameter_set_rbsp()

0 non-VCL non-VCL

16..18 Reserved non-VCL non-VCL

19 Coded slice of an auxiliary coded picture without partitioning
slice_layer_without_partitioning_rbsp()

2, 3, 4 non-VCL non-VCL

20 Coded slice extension
slice_layer_extension_rbsp()

2, 3, 4 non-VCL VCL

21..23 Reserved non-VCL non-VCL

24..31 Unspecified non-VCL non-VCL

NAL units having nal_unit_type equal to 13 or 19 may be discarded by decoders without affecting the decoding process
for NAL units having nal_unit_type not equal to 13 or 19 and without affecting conformance to this
Recommendation | International Standard.

 Rec. ITU-T H.264 (03/2009) 65

NAL units having nal_unit_type equal to 14, 15, or 20 may be discarded by decoders without affecting the decoding
process for NAL units having nal_unit_type not equal to 14, 15, or 20 and without affecting conformance to profiles
specified in Annex A.

NAL units that use nal_unit_type equal to 0 or in the range of 24..31, inclusive, shall not affect the decoding process
specified in this Recommendation | International Standard.

NOTE 2 – NAL unit types 0 and 24..31 may be used as determined by the application. No decoding process for these values of
nal_unit_type is specified in this Recommendation | International Standard. Since different applications might use NAL unit
types 0 and 24..31 for different purposes, particular care must be exercised in the design of encoders that generate NAL units
with nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, and in the design of decoders that interpret the content of
NAL units with nal_unit_type equal to 0 or in the range of 24 to 31, inclusive.

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of
nal_unit_type.

NOTE 3 – This requirement allows future definition of compatible extensions to this Recommendation | International Standard.
NOTE 4 – In previous editions of this Recommendation | International Standard, the NAL unit types 13..15 and 19..20 (or a
subset of these NAL unit types) were reserved and no decoding process for NAL units having these values of nal_unit_type was
specified. In later editions of this Recommendation | International Standard, currently reserved values of nal_unit_type might
become non-reserved and a decoding process for these values of nal_unit_type might be specified. Encoders should take into
consideration that the values of nal_unit_type that were reserved in previous editions of this Recommendation | International
Standard might be ignored by decoders.

In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice
of an IDR picture NAL unit. The variable IdrPicFlag is specified as

IdrPicFlag = ((nal_unit_type = = 5) ? 1 : 0) (7-1)

When the value of nal_unit_type is equal to 5 for a NAL unit containing a slice of a particular picture, the picture shall
not contain NAL units with nal_unit_type in the range of 1 to 4, inclusive. For coded video sequences conforming to
one or more of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9,
such a picture is referred to as an IDR picture.

NOTE 5 – Slice data partitioning cannot be used for IDR pictures.

svc_extension_flag indicates whether a nal_unit_header_svc_extension() or nal_unit_header_mvc_extension() will
follow next in the syntax structure.

The value of svc_extension_flag shall be equal to 1 for coded video sequences conforming to one or more profiles
specified in Annex G. Decoders conforming to one or more profiles specified in Annex G shall ignore (remove from the
bitstream and discard) NAL units for which nal_unit_type is equal to 14 or 20 and for which svc_extension_flag is
equal to 0.

The value of svc_extension_flag shall be equal to 0 for coded video sequences conforming to one or more profiles
specified in Annex H. Decoders conforming to one or more profiles specified in Annex H shall ignore (remove from the
bitstream and discard) NAL units for which nal_unit_type is equal to 14 or 20 and for which svc_extension_flag is
equal to 1.

rbsp_byte[i] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows.
– If the SODB is empty (i.e., zero bits in length), the RBSP is also empty.
– Otherwise, the RBSP contains the SODB as follows:

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of
the RBSP shall contain the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2) rbsp_trailing_bits() are present after the SODB as follows:
i) The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the

SODB (if any).
ii) The next bit consists of a single rbsp_stop_one_bit equal to 1.
iii) When the rbsp_stop_one_bit is not the last bit of a byte-aligned byte, one or more

rbsp_alignment_zero_bit is present to result in byte alignment.
3) One or more cabac_zero_word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after

the rbsp_trailing_bits() at the end of the RBSP.

66 Rec. ITU-T H.264 (03/2009)

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These
structures shall be carried within NAL units as the content of the rbsp_byte[i] data bytes. The association of the RBSP
syntax structures to the NAL units shall be as specified in Table 7-1.

NOTE 6 – When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the
bits of the bytes of the RBSP and discarding the rbsp_stop_one_bit, which is the last (least significant, right-most) bit equal to 1,
and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for
the decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three_byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the
NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
– 0x000000
– 0x000001
– 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not
occur at any byte-aligned position:
– 0x00000300
– 0x00000301
– 0x00000302
– 0x00000303

NOTE 7 – When nal_unit_type is equal to 0, particular care must be exercised in the design of encoders to avoid the presence of
the above-listed three-byte and four-byte patterns at the beginning of the NAL unit syntax structure, as the syntax element
emulation_prevention_three_byte cannot be the third byte of a NAL unit.

7.4.1.1 Encapsulation of an SODB within an RBSP (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation_prevention_three_byte for
encapsulation of an RBSP within a NAL unit is specified for the following purposes:
– to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented

within a NAL unit,
– to enable identification of the end of the SODB within the NAL unit by searching the RBSP for the

rbsp_stop_one_bit starting at the end of the RBSP,
– to enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more

cabac_zero_word).

The encoder can produce a NAL unit from an RBSP by the following procedure:
1. The RBSP data is searched for byte-aligned bits of the following binary patterns:

 '00000000 00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10, or 11),

and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns:

 '00000000 00000000 00000011 000000xx',

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends
in a cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data. The last zero byte of a
byte-aligned three-byte sequence 0x000000 in the RBSP (which is replaced by the four-byte sequence
0x00000300) is taken into account when searching the RBSP data for the next occurrence of byte-aligned bits
with the binary patterns specified above.

2. The resulting sequence of bytes is then prefixed as follows.
– If nal_unit_type is not equal to 14 or 20, the sequence of bytes is prefixed with the first byte of the NAL

unit containing the syntax elements forbidden_zero_bit, nal_ref_idc, and nal_unit_type, where
nal_unit_type indicates the type of RBSP data structure the NAL unit contains.

– Otherwise (nal_unit_type is equal to 14 or 20), the sequence of bytes is prefixed with the first four bytes
of the NAL unit, where the first byte contains the syntax elements forbidden_zero_bit, nal_ref_idc, and
nal_unit_type and the following three bytes contain the syntax structure
nal_unit_header_svc_extension(). The syntax element nal_unit_type in the first byte indicates the

 Rec. ITU-T H.264 (03/2009) 67

presence of the syntax structure nal_unit_header_svc_extension() in the following three bytes and the
type of RBSP data structure the NAL unit contains.

The process specified above results in the construction of the entire NAL unit.

This process can allow any SODB to be represented in a NAL unit while ensuring that
– no byte-aligned start code prefix is emulated within the NAL unit,
– no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within

the NAL unit.

7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences

This subclause specifies constraints on the order of NAL units in the bitstream.

Any order of NAL units in the bitstream obeying these constraints is referred to in the text as the decoding order of
NAL units. Within a NAL unit, the syntax in subclauses 7.3, D.1, and E.1 specifies the decoding order of syntax
elements. Decoders conforming to this Recommendation | International Standard shall be capable of receiving NAL
units and their syntax elements in decoding order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation

This subclause specifies the activation process of picture and sequence parameter sets for coded video sequences that
conform to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in
clauses 2-9.

NOTE 1 – The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information
from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed
"out-of-band" using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units or coded slice
data partition A NAL units of one or more coded pictures. Each picture parameter set RBSP is initially considered not
active at the start of the operation of the decoding process. At most one picture parameter set RBSP is considered active
at any given moment during the operation of the decoding process, and the activation of any particular picture
parameter set RBSP results in the deactivation of the previously-active picture parameter set RBSP (if any).

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) is not active and it is referred to
by a coded slice NAL unit or coded slice data partition A NAL unit (using that value of pic_parameter_set_id), it is
activated. This picture parameter set RBSP is called the active picture parameter set RBSP until it is deactivated by the
activation of another picture parameter set RBSP. A picture parameter set RBSP, with that particular value of
pic_parameter_set_id, shall be available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter_set_id for the active picture parameter set
RBSP for a coded picture shall have the same content as that of the active picture parameter set RBSP for the coded
picture unless it follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another
coded picture.

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set
RBSPs or one or more SEI NAL units containing a buffering period SEI message. Each sequence parameter set RBSP
is initially considered not active at the start of the operation of the decoding process. At most one sequence parameter
set RBSP is considered active at any given moment during the operation of the decoding process, and the activation of
any particular sequence parameter set RBSP results in the deactivation of the previously-active sequence parameter set
RBSP (if any).

When a sequence parameter set RBSP (with a particular value of seq_parameter_set_id) is not already active and it is
referred to by activation of a picture parameter set RBSP (using that value of seq_parameter_set_id) or is referred to by
an SEI NAL unit containing a buffering period SEI message (using that value of seq_parameter_set_id), it is activated.
This sequence parameter set RBSP is called the active sequence parameter set RBSP until it is deactivated by the
activation of another sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of
seq_parameter_set_id, shall be available to the decoding process prior to its activation. An activated sequence parameter
set RBSP shall remain active for the entire coded video sequence.

NOTE 2 – Because an IDR access unit begins a new coded video sequence and an activated sequence parameter set RBSP must
remain active for the entire coded video sequence, a sequence parameter set RBSP can only be activated by a buffering period
SEI message when the buffering period SEI message is part of an IDR access unit.

Any sequence parameter set NAL unit containing the value of seq_parameter_set_id for the active sequence parameter
set RBSP for a coded video sequence shall have the same content as that of the active sequence parameter set RBSP for
the coded video sequence unless it follows the last access unit of the coded video sequence and precedes the first VCL
NAL unit and the first SEI NAL unit containing a buffering period SEI message (when present) of another coded video
sequence.

68 Rec. ITU-T H.264 (03/2009)

NOTE 3 – If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints
impose an order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP,
respectively. Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified
in this Recommendation | International Standard), they must be available to the decoding process in a timely fashion such that
these constraints are obeyed.

When present, a sequence parameter set extension RBSP includes parameters having a similar function to those of a
sequence parameter set RBSP. For purposes of establishing constraints on the syntax elements of the sequence
parameter set extension RBSP and for purposes of determining activation of a sequence parameter set extension RBSP,
the sequence parameter set extension RBSP shall be considered part of the preceding sequence parameter set RBSP
with the same value of seq_parameter_set_id. When a sequence parameter set RBSP is present that is not followed by a
sequence parameter set extension RBSP with the same value of seq_parameter_set_id prior to the activation of the
sequence parameter set RBSP, the sequence parameter set extension RBSP and its syntax elements shall be considered
not present for the active sequence parameter set RBSP.

All constraints that are expressed on the relationship between the values of the syntax elements (and the values of
variables derived from those syntax elements) in sequence parameter sets and picture parameter sets and other syntax
elements are expressions of constraints that apply only to the active sequence parameter set and the active picture
parameter set. If any sequence parameter set RBSP is present that is not activated in the bitstream, its syntax elements
shall have values that would conform to the specified constraints if it were activated by reference in an
otherwise-conforming bitstream. If any picture parameter set RBSP is present that is not ever activated in the bitstream,
its syntax elements shall have values that would conform to the specified constraints if it were activated by reference in
an otherwise-conforming bitstream.

During operation of the decoding process (see clause 8), the values of parameters of the active picture parameter set and
the active sequence parameter set shall be considered in effect. For interpretation of SEI messages, the values of the
parameters of the picture parameter set and sequence parameter set that are active for the operation of the decoding
process for the VCL NAL units of the primary coded picture in the same access unit shall be considered in effect unless
otherwise specified in the SEI message semantics.

7.4.1.2.2 Order of access units and association to coded video sequences

A bitstream conforming to this Recommendation | International Standard consists of one or more coded video
sequences.

A coded video sequence consists of one or more access units. For coded video sequences that conform to one or more
of the profiles specified in Annex A that are decoded using the decoding process specified in clauses 2-9, the order of
NAL units and coded pictures and their association to access units is described in subclause 7.4.1.2.3.

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video
sequence are non-IDR access units.

The values of picture order count for the coded pictures in consecutive access units in decoding order containing
non-reference pictures shall be non-decreasing.

When present, an access unit following an access unit that contains an end of sequence NAL unit shall be an IDR access
unit.

When an SEI NAL unit contains data that pertain to more than one access unit (for example, when the SEI NAL unit
has a coded video sequence as its scope), it shall be contained in the first access unit to which it applies.

When an end of stream NAL unit is present in an access unit, this access unit shall be the last access unit in the
bitstream and the end of stream NAL unit shall be the last NAL unit in that access unit.

7.4.1.2.3 Order of NAL units and coded pictures and association to access units

This subclause specifies the order of NAL units and coded pictures and association to access unit for coded video
sequences that conform to one or more of the profiles specified in Annex A that are decoded using the decoding process
specified in clauses 2-9.

An access unit consists of one primary coded picture, zero or more corresponding redundant coded pictures, and zero or
more non-VCL NAL units. The association of VCL NAL units to primary or redundant coded pictures is described in
subclause 7.4.1.2.5.

The first access unit in the bitstream starts with the first NAL unit of the bitstream.

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of
a new access unit:

– access unit delimiter NAL unit (when present),

 Rec. ITU-T H.264 (03/2009) 69

– sequence parameter set NAL unit (when present),

– picture parameter set NAL unit (when present),

– SEI NAL unit (when present),

– NAL units with nal_unit_type in the range of 14 to 18, inclusive (when present),

– first VCL NAL unit of a primary coded picture (always present).

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in
subclause 7.4.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access
unit:

– When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access
unit delimiter NAL unit in any access unit.

– When any SEI NAL units are present, they shall precede the primary coded picture.

– When an SEI NAL unit containing a buffering period SEI message is present, the buffering period SEI message
shall be the first SEI message payload of the first SEI NAL unit in the access unit.

– The primary coded picture shall precede the corresponding redundant coded pictures.

– When redundant coded pictures are present, they shall be ordered in ascending order of the value of
redundant_pic_cnt.

– When a sequence parameter set extension NAL unit is present, it shall be the next NAL unit after a sequence
parameter set NAL unit having the same value of seq_parameter_set_id as in the sequence parameter set extension
NAL unit.

– When one or more coded slice of an auxiliary coded picture without partitioning NAL units is present, they shall
follow the primary coded picture and all redundant coded pictures (if any).

– When an end of sequence NAL unit is present, it shall follow the primary coded picture and all redundant coded
pictures (if any) and all coded slice of an auxiliary coded picture without partitioning NAL units (if any).

– When an end of stream NAL unit is present, it shall be the last NAL unit.

– NAL units having nal_unit_type equal to 0, 12, or in the range of 20 to 31, inclusive, shall not precede the first
VCL NAL unit of the primary coded picture.

NOTE 1 – Sequence parameter set NAL units or picture parameter set NAL units may be present in an access unit, but cannot
follow the last VCL NAL unit of the primary coded picture within the access unit, as this condition would specify the start of a
new access unit.
NOTE 2 – When a NAL unit having nal_unit_type equal to 7 or 8 is present in an access unit, it may or may not be referred to in
the coded pictures of the access unit in which it is present, and may be referred to in coded pictures of subsequent access units.

The structure of access units not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in the range of 12
to 18, inclusive, or in the range of 20 to 31, inclusive, is shown in Figure 7-1.

70 Rec. ITU-T H.264 (03/2009)

Access unit delimiter

SEI

Primary coded picture

Redundant coded picture

End of sequence

End of stream

end

start

Auxiliary coded picture

Figure 7-1 – Structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in
the range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive

7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

This subclause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL
NAL unit of each primary coded picture for coded video sequences that conform to one or more of the profiles specified
in Annex A that are decoded using the decoding process specified in clauses 2-9.

Any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded picture of the current access
unit shall be different from any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded
picture of the previous access unit in one or more of the following ways:

– frame_num differs in value. The value of frame_num used to test this condition is the value of frame_num that
appears in the syntax of the slice header, regardless of whether that value is inferred to have been equal to 0 for
subsequent use in the decoding process due to the presence of memory_management_control_operation equal to 5.

NOTE 1 – A consequence of the above statement is that a primary coded picture having frame_num equal to 1 cannot
contain a memory_management_control_operation equal to 5 unless some other condition listed below is fulfilled for
the next primary coded picture that follows after it (if any).

– pic_parameter_set_id differs in value.

– field_pic_flag differs in value.

– bottom_field_flag is present in both and differs in value.

– nal_ref_idc differs in value with one of the nal_ref_idc values being equal to 0.

– pic_order_cnt_type is equal to 0 for both and either pic_order_cnt_lsb differs in value, or
delta_pic_order_cnt_bottom differs in value.

 Rec. ITU-T H.264 (03/2009) 71

– pic_order_cnt_type is equal to 1 for both and either delta_pic_order_cnt[0] differs in value, or
delta_pic_order_cnt[1] differs in value.

– IdrPicFlag differs in value.

– IdrPicFlag is equal to 1 for both and idr_pic_id differs in value.

NOTE 2 – Some of the VCL NAL units in redundant coded pictures or some non-VCL NAL units (e.g., an access unit delimiter
NAL unit) may also be used for the detection of the boundary between access units, and may therefore aid in the detection of the
start of a new primary coded picture.

7.4.1.2.5 Order of VCL NAL units and association to coded pictures

This subclause specifies the order of VCL NAL units and association to coded pictures for coded video sequences that
conform to one or more of the profiles specified in Annex A that are decoded using the decoding process specified in
clauses 2-9.

Each VCL NAL unit is part of a coded picture.

The order of the VCL NAL units within a coded IDR picture is constrained as follows.

– If arbitrary slice order is allowed as specified in Annex A, coded slice of an IDR picture NAL units may have any
order relative to each other.

– Otherwise (arbitrary slice order is not allowed), the following applies.

– If separate_colour_plane_flag is equal to 0, coded slice of an IDR picture NAL units of a slice group shall not
be interleaved with coded slice of an IDR picture NAL units of another slice group and the order of coded
slice of an IDR picture NAL units within a slice group shall be in the order of increasing macroblock address
for the first macroblock of each coded slice of an IDR picture NAL unit of the particular slice group.

– Otherwise (separate_colour_plane_flag is equal to 1), coded slice of an IDR picture NAL units of a slice
group for a particular value of colour_plane_id shall not be interleaved with coded slice of an IDR picture
NAL units of another slice group with the same value of colour_plane_id and the order of coded slices of
IDR picture NAL units within a slice group for a particular value of colour_plane_id shall be in the order of
increasing macroblock address for the first macroblock of each coded slice of an IDR picture NAL unit of the
particular slice group having the particular value of colour_plane_id.

NOTE 1 – When separate_colour_plane_flag is equal to 1, the relative ordering of coded slices having different values
of colour_plane_id is not constrained.

The order of the VCL NAL units within a coded non-IDR picture is constrained as follows.

– If arbitrary slice order is allowed as specified in Annex A, coded slice of a non-IDR picture NAL units or coded
slice data partition A NAL units may have any order relative to each other. A coded slice data partition A NAL unit
with a particular value of slice_id shall precede any present coded slice data partition B NAL unit with the same
value of slice_id. A coded slice data partition A NAL unit with a particular value of slice_id shall precede any
present coded slice data partition C NAL unit with the same value of slice_id. When a coded slice data partition B
NAL unit with a particular value of slice_id is present, it shall precede any present coded slice data partition C
NAL unit with the same value of slice_id.

– Otherwise (arbitrary slice order is not allowed), the following applies.

– If separate_colour_plane_flag is equal to 0, coded slice of a non-IDR picture NAL units or coded slice data
partition NAL units of a slice group shall not be interleaved with coded slice of a non-IDR picture NAL units
or coded slice data partition NAL units of another slice group and the order of coded slice of a non-IDR
picture NAL units or coded slice data partition A NAL units within a slice group shall be in the order of
increasing macroblock address for the first macroblock of each coded slice of a non-IDR picture NAL unit or
coded slice data partition A NAL unit of the particular slice group. A coded slice data partition A NAL unit
with a particular value of slice_id shall immediately precede any present coded slice data partition B NAL
unit with the same value of slice_id. A coded slice data partition A NAL unit with a particular value of
slice_id shall immediately precede any present coded slice data partition C NAL unit with the same value of
slice_id, when a coded slice data partition B NAL unit with the same value of slice_id is not present. When a
coded slice data partition B NAL unit with a particular value of slice_id is present, it shall immediately
precede any present coded slice data partition C NAL unit with the same value of slice_id.

– Otherwise (separate_colour_plane_flag is equal to 1), coded slice of a non-IDR picture NAL units or coded
slice data partition NAL units of a slice group for a particular value of colour_plane_id shall not be
interleaved with coded slice of a non-IDR picture NAL units or coded slice data partition NAL units of

72 Rec. ITU-T H.264 (03/2009)

another slice group with the same value of colour_plane_id and the order of coded slice of a non-IDR picture
NAL units or coded slice data partition A NAL units within a slice group for particular value of
colour_plane_id shall be in the order of increasing macroblock address for the first macroblock of each coded
slice of a non-IDR picture NAL unit or coded slice data partition A NAL unit of the particular slice group
having the particular value of colour_plane_id. A coded slice data partition A NAL unit associated with a
particular value of slice_id and colour_plane_id shall immediately precede any present coded slice data
partition B NAL unit with the same value of slice_id and colour_plane_id. A coded slice data partition A
NAL unit associated with a particular value of slice_id and colour_plane_id shall immediately precede any
present coded slice data partition C NAL unit with the same value of slice_id and colour_plane_id, when a
coded slice data partition B NAL unit with the same value of slice_id and colour_plane_id is not present.
When a coded slice data partition B NAL unit with a particular value of slice_id and colour_plane_id is
present, it shall immediately precede any present coded slice data partition C NAL unit with the same value
of slice_id and colour_plane_id.

NOTE 2 – When separate_colour_plane_flag is equal to 1, the relative ordering of coded slices having different values
of colour_plane_id is not constrained.

NAL units having nal_unit_type equal to 12 may be present in the access unit but shall not precede the first VCL NAL
unit of the primary coded picture within the access unit.

NAL units having nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, which are unspecified, may be present
in the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal_unit_type in the range of 20 to 23, inclusive, shall not precede the first VCL NAL unit of the
primary coded picture within the access unit.

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

7.4.2.1 Sequence parameter set RBSP semantics

7.4.2.1.1 Sequence parameter set data semantics

profile_idc and level_idc indicate the profile and level to which the coded video sequence conforms.

constraint_set0_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in
subclause A.2.1. constraint_set0_flag equal to 0 indicates that the coded video sequence may or may not obey all
constraints specified in subclause A.2.1.

constraint_set1_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in
subclause A.2.2. constraint_set1_flag equal to 0 indicates that the coded video sequence may or may not obey all
constraints specified in subclause A.2.2.

constraint_set2_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in
subclause A.2.3. constraint_set2_flag equal to 0 indicates that the coded video sequence may or may not obey all
constraints specified in subclause A.2.3.

NOTE 1 – When one or more than one of constraint_set0_flag, constraint_set1_flag, or constraint_set2_flag are equal to 1, the
coded video sequence must obey the constraints of all of the indicated subclauses of subclause A.2. When profile_idc is equal to
44, 100, 110, 122, or 244, the values of constraint_set0_flag, constraint_set1_flag, and constraint_set2_flag must all be equal
to 0.

constraint_set3_flag is specified as follows.
– If profile_idc is equal to 66, 77, or 88 and level_idc is equal to 11, constraint_set3_flag equal to 1 indicates that the

coded video sequence obeys all constraints specified in Annex A for level 1b and constraint_set3_flag equal to 0
indicates that the coded video sequence may or may not obey all constraints specified in Annex A for level 1b.

– Otherwise, if profile_idc is equal to 100 or 110, constraint_set3_flag equal to 1 indicates that the coded video
sequence obeys all constraints specified in Annex A for the High 10 Intra profile, and constraint_set3_flag equal to
0 indicates that the coded video sequence may or may not obey these corresponding constraints.

– Otherwise, if profile_idc is equal to 122, constraint_set3_flag equal to 1 indicates that the coded video sequence
obeys all constraints specified in Annex A for the High 4:2:2 Intra profile, and constraint_set3_flag equal to 0
indicates that the coded video sequence may or may not obey these corresponding constraints.

– Otherwise, if profile_idc is equal to 44, constraint_set3_flag shall be equal to 1. When profile_idc is equal to 44,
the value of 0 for constraint_set3_flag is forbidden.

– Otherwise, if profile_idc is equal to 244, constraint_set3_flag equal to 1 indicates that the coded video sequence
obeys all constraints specified in Annex A for the High 4:4:4 Intra profile, and constraint_set3_flag equal to 0
indicates that the coded video sequence may or may not obey these corresponding constraints.

 Rec. ITU-T H.264 (03/2009) 73

– Otherwise (profile_idc is equal to 66, 77, or 88 and level_idc is not equal to 11), the value of 1 for
constraint_set3_flag is reserved for future use by ITU-T | ISO/IEC. constraint_set3_flag shall be equal to 0 for
coded video sequences with profile_idc equal to 66, 77, or 88 and level_idc not equal to 11 in bitstreams
conforming to this Recommendation | International Standard. Decoders conforming to this Recommendation |
International Standard shall ignore the value of constraint_set3_flag when profile_idc is equal to 66, 77, or 88 and
level_idc is not equal to 11.

constraint_set4_flag shall be equal to 0. Decoders shall ignore the value of constraint_set4_flag.

reserved_zero_3bits shall be equal to 0. Other values of reserved_zero_3bits may be specified in the future by ITU-T |
ISO/IEC. Decoders shall ignore the value of reserved_zero_3bits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value
of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

NOTE 2 – When feasible, encoders should use distinct values of seq_parameter_set_id when the values of other sequence
parameter set syntax elements differ rather than changing the values of the syntax elements associated with a specific value of
seq_parameter_set_id.

chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in subclause 6.2. The
value of chroma_format_idc shall be in the range of 0 to 3, inclusive. When chroma_format_idc is not present, it shall
be inferred to be equal to 1 (4:2:0 chroma format).

separate_colour_plane_flag equal to 1 specifies that the three colour components of the 4:4:4 chroma format are
coded separately. separate_colour_plane_flag equal to 0 specifies that the colour components are not coded separately.
When separate_colour_plane_flag is not present, it shall be inferred to be equal to 0. When separate_colour_plane_flag
is equal to 1, the primary coded picture consists of three separate components, each of which consists of coded samples
of one colour plane (Y, Cb or Cr) that each use the monochrome coding syntax. In this case, each colour plane is
associated with a specific colour_plane_id value.

NOTE 3 – There is no dependency in decoding processes between the colour planes having different colour_plane_id values. For
example, the decoding process of a monochrome picture with one value of colour_plane_id does not use any data from
monochrome pictures having different values of colour_plane_id for inter prediction.

Depending on the value of separate_colour_plane_flag, the value of the variable ChromaArrayType is assigned as
follows.
– If separate_colour_plane_flag is equal to 0, ChromaArrayType is set equal to chroma_format_idc.
– Otherwise (separate_colour_plane_flag is equal to 1), ChromaArrayType is set equal to 0.

bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array and the value of the luma quantisation
parameter range offset QpBdOffsetY, as specified by

BitDepthY = 8 + bit_depth_luma_minus8 (7-2)

QpBdOffsetY = 6 * bit_depth_luma_minus8 (7-3)

When bit_depth_luma_minus8 is not present, it shall be inferred to be equal to 0. bit_depth_luma_minus8 shall be in
the range of 0 to 6, inclusive.

bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays and the value of the chroma
quantisation parameter range offset QpBdOffsetC, as specified by

BitDepthC = 8 + bit_depth_chroma_minus8 (7-4)

QpBdOffsetC = 6 * bit_depth_chroma_minus8 (7-5)

When bit_depth_chroma_minus8 is not present, it shall be inferred to be equal to 0. bit_depth_chroma_minus8 shall be
in the range of 0 to 6, inclusive.

NOTE 4 – The value of bit_depth_chroma_minus8 is not used in the decoding process when ChromaArrayType is equal to 0. In
particular, when separate_colour_plane_flag is equal to 1, each colour plane is decoded as a distinct monochrome picture using
the luma component decoding process (except for the selection of scaling matrices) and the luma bit depth is used for all three
colour components.

The variable RawMbBits is derived as

RawMbBits = 256 * BitDepthY + 2 * MbWidthC * MbHeightC * BitDepthC (7-6)

74 Rec. ITU-T H.264 (03/2009)

qpprime_y_zero_transform_bypass_flag equal to 1 specifies that, when QP′Y is equal to 0, a transform bypass
operation for the transform coefficient decoding process and picture construction process prior to deblocking filter
process as specified in subclause 8.5 shall be applied. qpprime_y_zero_transform_bypass_flag equal to 0 specifies that
the transform coefficient decoding process and picture construction process prior to deblocking filter process shall not
use the transform bypass operation. When qpprime_y_zero_transform_bypass_flag is not present, it shall be inferred to
be equal to 0.

seq_scaling_matrix_present_flag equal to 1 specifies that the flags seq_scaling_list_present_flag[i] for i = 0..7 or
i = 0..11 are present. seq_scaling_matrix_present_flag equal to 0 specifies that these flags are not present and the
sequence-level scaling list specified by Flat_4x4_16 shall be inferred for i = 0..5 and the sequence-level scaling list
specified by Flat_8x8_16 shall be inferred for i = 6..11. When seq_scaling_matrix_present_flag is not present, it shall
be inferred to be equal to 0.

The scaling lists Flat_4x4_16 and Flat_8x8_16 are specified as follows:

Flat_4x4_16[k] = 16, with k = 0..15, (7-7)

Flat_8x8_16[k] = 16, with k = 0..63. (7-8)

seq_scaling_list_present_flag[i] equal to 1 specifies that the syntax structure for scaling list i is present in the
sequence parameter set. seq_scaling_list_present_flag[i] equal to 0 specifies that the syntax structure for scaling list i
is not present in the sequence parameter set and the scaling list fall-back rule set A specified in Table 7-2 shall be used
to infer the sequence-level scaling list for index i.

Table 7-2 – Assignment of mnemonic names to scaling list indices and specification of fall-back rule

Value of
scaling list

index

Mnemonic name Block
size

MB
prediction

type

Component Scaling list
fall-back rule

set A

Scaling list
fall-back rule

set B

Default
scaling list

0 Sl_4x4_Intra_Y 4x4 Intra Y default
scaling list

sequence-level
scaling list

Default_4x4_Intra

1 Sl_4x4_Intra_Cb 4x4 Intra Cb scaling list
for i = 0

scaling list
for i = 0

Default_4x4_Intra

2 Sl_4x4_Intra_Cr 4x4 Intra Cr scaling list
for i = 1

scaling list
for i = 1

Default_4x4_Intra

3 Sl_4x4_Inter_Y 4x4 Inter Y default
scaling list

sequence-level
scaling list

Default_4x4_Inter

4 Sl_4x4_Inter_Cb 4x4 Inter Cb scaling list
for i = 3

scaling list
for i = 3

Default_4x4_Inter

5 Sl_4x4_Inter_Cr 4x4 Inter Cr scaling list
for i = 4

scaling list
for i = 4

Default_4x4_Inter

6 Sl_8x8_Intra_Y 8x8 Intra Y default
scaling list

sequence-level
scaling list

Default_8x8_Intra

7 Sl_8x8_Inter_Y 8x8 Inter Y default
scaling list

sequence-level
scaling list

Default_8x8_Inter

8 Sl_8x8_Intra_Cb 8x8 Intra Cb scaling list
for i = 6

scaling list
for i = 6

Default_8x8_Intra

9 Sl_8x8_Inter_Cb 8x8 Inter Cb scaling list
for i = 7

scaling list
for i = 7

Default_8x8_Inter

10 Sl_8x8_Intra_Cr 8x8 Intra Cr scaling list
for i = 8

scaling list
for i = 8

Default_8x8_Intra

11 Sl_8x8_Inter_Cr 8x8 Inter Cr scaling list
for i = 9

scaling list
for i = 9

Default_8x8_Inter

 Rec. ITU-T H.264 (03/2009) 75

Table 7-3 specifies the default scaling lists Default_4x4_Intra and Default_4x4_Inter. Table 7-4 specifies the default
scaling lists Default_8x8_Intra and Default_8x8_Inter.

Table 7-3 – Specification of default scaling lists Default_4x4_Intra and Default_4x4_Inter

idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Default_4x4_Intra[idx] 6 13 13 20 20 20 28 28 28 28 32 32 32 37 37 42

Default_4x4_Inter[idx] 10 14 14 20 20 20 24 24 24 24 27 27 27 30 30 34

Table 7-4 – Specification of default scaling lists Default_8x8_Intra and Default_8x8_Inter

idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Default_8x8_Intra[idx] 6 10 10 13 11 13 16 16 16 16 18 18 18 18 18 23

Default_8x8_Inter[idx] 9 13 13 15 13 15 17 17 17 17 19 19 19 19 19 21

Table 7-4 (continued) – Specification of default scaling lists Default_8x8_Intra and Default_8x8_Inter

idx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Default_8x8_Intra[idx] 23 23 23 23 23 25 25 25 25 25 25 25 27 27 27 27

Default_8x8_Inter[idx] 21 21 21 21 21 22 22 22 22 22 22 22 24 24 24 24

Table 7-4 (continued) – Specification of default scaling lists Default_8x8_Intra and Default_8x8_Inter

idx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

Default_8x8_Intra[idx] 27 27 27 27 29 29 29 29 29 29 29 31 31 31 31 31

Default_8x8_Inter[idx] 24 24 24 24 25 25 25 25 25 25 25 27 27 27 27 27

Table 7-4 (concluded) – Specification of default scaling lists Default_8x8_Intra and Default_8x8_Inter

idx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Default_8x8_Intra[idx] 31 33 33 33 33 33 36 36 36 36 38 38 38 40 40 42

Default_8x8_Inter[idx] 27 28 28 28 28 28 30 30 30 30 32 32 32 33 33 35

log2_max_frame_num_minus4 specifies the value of the variable MaxFrameNum that is used in frame_num related
derivations as follows:

MaxFrameNum = 2(log2_max_frame_num_minus4 + 4) (7-9)

The value of log2_max_frame_num_minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to decode picture order count (as specified in subclause 8.2.1). The value of
pic_order_cnt_type shall be in the range of 0 to 2, inclusive.

pic_order_cnt_type shall not be equal to 2 in a coded video sequence that contains any of the following:

– an access unit containing a non-reference frame followed immediately by an access unit containing a non-
reference picture,

– two access units each containing a field with the two fields together forming a complementary non-reference field
pair followed immediately by an access unit containing a non-reference picture,

76 Rec. ITU-T H.264 (03/2009)

– an access unit containing a non-reference field followed immediately by an access unit containing another non-
reference picture that does not form a complementary non-reference field pair with the first of the two access
units.

log2_max_pic_order_cnt_lsb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the
decoding process for picture order count as specified in subclause 8.2.1 as follows:

MaxPicOrderCntLsb = 2(log2_max_pic_order_cnt_lsb_minus4 + 4) (7-10)

The value of log2_max_pic_order_cnt_lsb_minus4 shall be in the range of 0 to 12, inclusive.

delta_pic_order_always_zero_flag equal to 1 specifies that delta_pic_order_cnt[0] and delta_pic_order_cnt[1] are
not present in the slice headers of the sequence and shall be inferred to be equal to 0. delta_pic_order_always_zero_flag
equal to 0 specifies that delta_pic_order_cnt[0] is present in the slice headers of the sequence and
delta_pic_order_cnt[1] may be present in the slice headers of the sequence.

offset_for_non_ref_pic is used to calculate the picture order count of a non-reference picture as specified in
subclause 8.2.1. The value of offset_for_non_ref_pic shall be in the range of −231 to 231 − 1, inclusive.

offset_for_top_to_bottom_field is used to calculate the picture order count of a bottom field as specified in
subclause 8.2.1. The value of offset_for_top_to_bottom_field shall be in the range of −231 to 231 − 1, inclusive.

num_ref_frames_in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in
subclause 8.2.1. The value of num_ref_frames_in_pic_order_cnt_cycle shall be in the range of 0 to 255, inclusive.

offset_for_ref_frame[i] is an element of a list of num_ref_frames_in_pic_order_cnt_cycle values used in the
decoding process for picture order count as specified in subclause 8.2.1. The value of offset_for_ref_frame[i] shall be
in the range of −231 to 231 − 1, inclusive.

When pic_order_cnt_type is equal to 1, the variable ExpectedDeltaPerPicOrderCntCycle is derived by

ExpectedDeltaPerPicOrderCntCycle = 0
for(i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++)
 ExpectedDeltaPerPicOrderCntCycle += offset_for_ref_frame[i] (7-11)

max_num_ref_frames specifies the maximum number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields that may be used by the decoding process for inter prediction of
any picture in the sequence. max_num_ref_frames also determines the size of the sliding window operation as specified
in subclause 8.2.5.3. The value of max_num_ref_frames shall be in the range of 0 to MaxDpbFrames (as specified in
subclause A.3.1 or A.3.2), inclusive.

gaps_in_frame_num_value_allowed_flag specifies the allowed values of frame_num as specified in subclause 7.4.3
and the decoding process in case of an inferred gap between values of frame_num as specified in subclause 8.2.5.2.

pic_width_in_mbs_minus1 plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks is derived as

PicWidthInMbs = pic_width_in_mbs_minus1 + 1 (7-12)

The variable for picture width for the luma component is derived as

PicWidthInSamplesL = PicWidthInMbs * 16 (7-13)

The variable for picture width for the chroma components is derived as

PicWidthInSamplesC = PicWidthInMbs * MbWidthC (7-14)

pic_height_in_map_units_minus1 plus 1 specifies the height in slice group map units of a decoded frame or field.

The variables PicHeightInMapUnits and PicSizeInMapUnits are derived as

PicHeightInMapUnits = pic_height_in_map_units_minus1 + 1 (7-15)

 Rec. ITU-T H.264 (03/2009) 77

PicSizeInMapUnits = PicWidthInMbs * PicHeightInMapUnits (7-16)

frame_mbs_only_flag equal to 0 specifies that coded pictures of the coded video sequence may either be coded fields
or coded frames. frame_mbs_only_flag equal to 1 specifies that every coded picture of the coded video sequence is a
coded frame containing only frame macroblocks.

The allowed range of values for pic_width_in_mbs_minus1, pic_height_in_map_units_minus1, and
frame_mbs_only_flag is specified by constraints in Annex A.

Depending on frame_mbs_only_flag, semantics are assigned to pic_height_in_map_units_minus1 as follows.

– If frame_mbs_only_flag is equal to 0, pic_height_in_map_units_minus1 plus 1 is the height of a field in units of
macroblocks.

– Otherwise (frame_mbs_only_flag is equal to 1), pic_height_in_map_units_minus1 plus 1 is the height of a frame
in units of macroblocks.

The variable FrameHeightInMbs is derived as

FrameHeightInMbs = (2 − frame_mbs_only_flag) * PicHeightInMapUnits (7-17)

mb_adaptive_frame_field_flag equal to 0 specifies no switching between frame and field macroblocks within a
picture. mb_adaptive_frame_field_flag equal to 1 specifies the possible use of switching between frame and field
macroblocks within frames. When mb_adaptive_frame_field_flag is not present, it shall be inferred to be equal to 0.

direct_8x8_inference_flag specifies the method used in the derivation process for luma motion vectors for B_Skip,
B_Direct_16x16 and B_Direct_8x8 as specified in subclause 8.4.1.2. When frame_mbs_only_flag is equal to 0,
direct_8x8_inference_flag shall be equal to 1.

frame_cropping_flag equal to 1 specifies that the frame cropping offset parameters follow next in the sequence
parameter set. frame_cropping_flag equal to 0 specifies that the frame cropping offset parameters are not present.

frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset, frame_crop_bottom_offset specify the
samples of the pictures in the coded video sequence that are output from the decoding process, in terms of a rectangular
region specified in frame coordinates for output.

The variables CropUnitX and CropUnitY are derived as follows.
– If ChromaArrayType is equal to 0, CropUnitX and CropUnitY are derived as

CropUnitX = 1 (7-18)
CropUnitY = 2 − frame_mbs_only_flag (7-19)

– Otherwise (ChromaArrayType is equal to 1, 2, or 3), CropUnitX and CropUnitY are derived as

CropUnitX = SubWidthC (7-20)
CropUnitY = SubHeightC * (2 − frame_mbs_only_flag) (7-21)

The frame cropping rectangle contains luma samples with horizontal frame coordinates from
CropUnitX * frame_crop_left_offset to PicWidthInSamplesL − (CropUnitX * frame_crop_right_offset + 1) and
vertical frame coordinates from CropUnitY * frame_crop_top_offset to (16 * FrameHeightInMbs) −
(CropUnitY * frame_crop_bottom_offset + 1), inclusive. The value of frame_crop_left_offset shall be in the range of
0 to (PicWidthInSamplesL / CropUnitX) − (frame_crop_right_offset + 1), inclusive; and the value of
frame_crop_top_offset shall be in the range of 0 to (16 * FrameHeightInMbs / CropUnitY) −
(frame_crop_bottom_offset + 1), inclusive.

When frame_cropping_flag is equal to 0, the values of frame_crop_left_offset, frame_crop_right_offset,
frame_crop_top_offset, and frame_crop_bottom_offset shall be inferred to be equal to 0.

When ChromaArrayType is not equal to 0, the corresponding specified samples of the two chroma arrays are the
samples having frame coordinates (x / SubWidthC, y / SubHeightC), where (x, y) are the frame coordinates of the
specified luma samples.

For decoded fields, the specified samples of the decoded field are the samples that fall within the rectangle specified in
frame coordinates.

78 Rec. ITU-T H.264 (03/2009)

vui_parameters_present_flag equal to 1 specifies that the vui_parameters() syntax structure as specified in Annex E
is present. vui_parameters_present_flag equal to 0 specifies that the vui_parameters() syntax structure as specified in
Annex E is not present.

7.4.2.1.1 Scaling list semantics

delta_scale is used to derive the j-th element of the scaling list for j in the range of 0 to sizeOfScalingList − 1, inclusive.
The value of delta_scale shall be in the range of −128 to +127, inclusive.

When useDefaultScalingMatrixFlag is derived to be equal to 1, the scaling list shall be inferred to be equal to the
default scaling list as specified in Table 7-2.

7.4.2.1.2 Sequence parameter set extension RBSP semantics

seq_parameter_set_id identifies the sequence parameter set associated with the sequence parameter set extension. The
value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

aux_format_idc equal to 0 indicates that there are no auxiliary coded pictures in the coded video sequence.
aux_format_idc equal to 1 indicates that exactly one auxiliary coded picture is present in each access unit of the coded
video sequence, and that for alpha blending purposes the decoded samples of the associated primary coded picture in
each access unit should be multiplied by the interpretation sample values of the auxiliary coded picture in the access
unit in the display process after output from the decoding process. aux_format_idc equal to 2 indicates that exactly one
auxiliary coded picture exists in each access unit of the coded video sequence, and that for alpha blending purposes the
decoded samples of the associated primary coded picture in each access unit should not be multiplied by the
interpretation sample values of the auxiliary coded picture in the access unit in the display process after output from the
decoding process. aux_format_idc equal to 3 indicates that exactly one auxiliary coded picture exists in each access unit
of the coded video sequence, and that the usage of the auxiliary coded pictures is unspecified. The value of
aux_format_idc shall be in the range of 0 to 3, inclusive. Values greater than 3 for aux_format_idc are reserved to
indicate the presence of exactly one auxiliary coded picture in each access unit of the coded video sequence for
purposes to be specified in the future by ITU-T | ISO/IEC. When aux_format_idc is not present, it shall be inferred to be
equal to 0.

NOTE 1 – Decoders conforming to this Recommendation | International Standard are not required to decode auxiliary coded
pictures.

bit_depth_aux_minus8 specifies the bit depth of the samples of the sample array of the auxiliary coded picture.
bit_depth_aux_minus8 shall be in the range of 0 to 4, inclusive.

alpha_incr_flag equal to 0 indicates that the interpretation sample value for each decoded auxiliary coded picture
sample value is equal to the decoded auxiliary coded picture sample value for purposes of alpha blending.
alpha_incr_flag equal to 1 indicates that, for purposes of alpha blending, after decoding the auxiliary coded picture
samples, any auxiliary coded picture sample value that is greater than Min(alpha_opaque_value,
alpha_transparent_value) should be increased by one to obtain the interpretation sample value for the auxiliary coded
picture sample, and any auxiliary coded picture sample value that is less than or equal to Min(alpha_opaque_value,
alpha_transparent_value) should be used without alteration as the interpretation sample value for the decoded auxiliary
coded picture sample value.

alpha_opaque_value specifies the interpretation sample value of an auxiliary coded picture sample for which the
associated luma and chroma samples of the same access unit are considered opaque for purposes of alpha blending. The
number of bits used for the representation of the alpha_opaque_value syntax element is bit_depth_aux_minus8 + 9 bits.

alpha_transparent_value specifies the interpretation sample value of an auxiliary coded picture sample for which the
associated luma and chroma samples of the same access unit are considered transparent for purposes of alpha blending.
The number of bits used for the representation of the alpha_transparent_value syntax element is
bit_depth_aux_minus8 + 9 bits.

When alpha_incr_flag is equal to 1, alpha_transparent_value shall not be equal to alpha_opaque_value and
Log2(Abs(alpha_opaque_value − alpha_transparent_value)) shall have an integer value. A value of
alpha_transparent_value that is equal to alpha_opaque_value indicates that the auxiliary coded picture is not intended
for alpha blending purposes.

NOTE 2 – For alpha blending purposes, alpha_opaque_value may be greater than alpha_transparent_value, or it may be less than
alpha_transparent_value. Interpretation sample values should be clipped to the range of alpha_opaque_value to
alpha_transparent_value, inclusive.

The decoding of the sequence parameter set extension and the decoding of auxiliary coded pictures is not required for
conformance with this Recommendation | International Standard.

The syntax of each coded slice of an auxiliary coded picture shall obey the same constraints as a coded slice of a
redundant picture, with the following differences of constraints:

 Rec. ITU-T H.264 (03/2009) 79

a) In regard to whether the primary coded picture is an IDR picture, the following applies.

– If the primary coded picture is an IDR picture, the auxiliary coded slice syntax shall correspond to that of a
slice having nal_unit_type equal to 5 (a slice of an IDR picture).

– Otherwise (the primary coded picture is not an IDR picture), the auxiliary coded slice syntax shall
correspond to that of a slice having nal_unit_type equal to 1 (a slice of a non-IDR picture).

b) The slices of an auxiliary coded picture (when present) shall contain all macroblocks corresponding to those of
the primary coded picture.

c) redundant_pic_cnt shall be equal to 0 in all auxiliary coded slices.

The (optional) decoding process for the decoding of auxiliary coded pictures is the same as if the auxiliary coded
pictures were primary coded pictures in a separate coded video stream that differs from the primary coded pictures in
the current coded video stream in the following ways:

– The IDR or non-IDR status of each auxiliary coded picture shall be inferred to be the same as the IDR or non-IDR
status of the primary picture in the same access unit, rather than being inferred from the value of nal_unit_type.

– The value of chroma_format_idc and the value of ChromaArrayType shall be inferred to be equal to 0 for the
decoding of the auxiliary coded pictures.

– The value of bit_depth_luma_minus8 shall be inferred to be equal to bit_depth_aux_minus8 for the decoding of
the auxiliary coded pictures.

NOTE 3 – Alpha blending composition is normally performed with a background picture B, a foreground picture F, and a
decoded auxiliary coded picture A, all of the same size. Assume for purposes of example illustration that the chroma resolution
of B and F have been upsampled to the same resolution as the luma. Denote corresponding samples of B, F and A by b, f and a,
respectively. Denote luma and chroma samples by subscripts Y, Cb and Cr.
Define the variables alphaRange, alphaFwt and alphaBwt as follows:
 alphaRange = Abs(alpha_opaque_value − alpha_transparent_value)
 alphaFwt = Abs(a − alpha_transparent_value)
 alphaBwt = Abs(a − alpha_opaque_value)
Then, in alpha blending composition, samples d of the displayed picture D may be calculated as
 dY = (alphaFwt * fY + alphaBwt * bY + alphaRange / 2) / alphaRange
 dCb = (alphaFwt * fCb + alphaBwt * bCb + alphaRange / 2) / alphaRange
 dCr = (alphaFwt * fCr + alphaBwt * bCr + alphaRange / 2) / alphaRange
The samples of pictures D, F and B could also represent red, green, and blue component values (see subclause E.2.1). Here we
have assumed Y, Cb and Cr component values. Each component, e.g., Y, is assumed for purposes of example illustration above
to have the same bit depth in each of the pictures D, F and B. However, different components, e.g., Y and Cb, need not have the
same bit depth in this example.
When aux_format_idc is equal to 1, F would be the decoded picture obtained from the decoded luma and chroma, and A would
be the decoded picture obtained from the decoded auxiliary coded picture. In this case, the indicated example alpha blending
composition involves multiplying the samples of F by factors obtained from the samples of A.
A picture format that is useful for editing or direct viewing, and that is commonly used, is called pre-multiplied-black video. If
the foreground picture was F, then the pre-multiplied-black video S is given by
 sY = (alphaFwt * fY) / alphaRange
 sCb = (alphaFwt * fCb) / alphaRange
 sCr = (alphaFwt * fCr) / alphaRange
Pre-multiplied-black video has the characteristic that the picture S will appear correct if displayed against a black background.
For a non-black background B, the composition of the displayed picture D may be calculated as
 dY = sY + (alphaBwt * bY + alphaRange / 2) / alphaRange
 dCb = sCb + (alphaBwt * bCb + alphaRange / 2) / alphaRange
 dCr = sCr + (alphaBwt * bCr + alphaRange / 2) / alphaRange
When aux_format_idc is equal to 2, S would be the decoded picture obtained from the decoded luma and chroma, and A would
again be the decoded picture obtained from the decoded auxiliary coded picture. In this case, alpha blending composition does
not involve multiplication of the samples of S by factors obtained from the samples of A.

additional_extension_flag equal to 0 indicates that no additional data follows within the sequence parameter set
extension syntax structure prior to the RBSP trailing bits. The value of additional_extension_flag shall be equal to 0.
The value of 1 for additional_extension_flag is reserved for future use by ITU-T | ISO/IEC. Decoders that conform to
this Recommendation | International Standard shall ignore all data that follows the value of 1 for
additional_extension_flag in a sequence parameter set extension NAL unit.

80 Rec. ITU-T H.264 (03/2009)

7.4.2.1.3 Subset sequence parameter set RBSP semantics

svc_vui_parameters_present_flag equal to 0 specifies that the syntax structure svc_vui_parameters_extension() is not
present. svc_vui_parameters_present_flag equal to 1 specifies that the syntax structure svc_vui_parameters_extension()
is present.

bit_equal_to_one shall be equal to 1.

mvc_vui_parameters_present_flag equal to 0 specifies that the syntax structure mvc_vui_parameters_extension() is
not present. mvc_vui_parameters_present_flag equal to 1 specifies that the syntax structure
mvc_vui_parameters_extension() is present.

additional_extension2_flag equal to 0 specifies that no additional_extension2_data_flag syntax elements are present in
the subset sequence parameter set RBSP syntax structure. additional_extension2_flag shall be equal to 0 in bitstreams
conforming to this Recommendation | International Standard. The value of 1 for additional_extension2_flag is reserved
for future use by ITU-T | ISO/IEC. Decoders shall ignore all data that follow the value 1 for additional_extension2_flag
in a subset sequence parameter set NAL unit.

additional_extension2_data_flag may have any value. It shall not affect the conformance to profiles specified in
Annex A, G, or H.

7.4.2.2 Picture parameter set RBSP semantics

pic_parameter_set_id identifies the picture parameter set that is referred to in the slice header. The value of
pic_parameter_set_id shall be in the range of 0 to 255, inclusive.

seq_parameter_set_id refers to the active sequence parameter set. The value of seq_parameter_set_id shall be in the
range of 0 to 31, inclusive.

entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements for which two
descriptors appear in the syntax tables as follows.

– If entropy_coding_mode_flag is equal to 0, the method specified by the left descriptor in the syntax table is applied
(Exp-Golomb coded, see subclause 9.1 or CAVLC, see subclause 9.2).

– Otherwise (entropy_coding_mode_flag is equal to 1), the method specified by the right descriptor in the syntax
table is applied (CABAC, see subclause 9.3).

bottom_field_pic_order_in_frame_present_flag equal to 1 specifies that the syntax elements
delta_pic_order_cnt_bottom (when pic_order_cnt_type is equal to 0) or delta_pic_order_cnt[1] (when
pic_order_cnt_type is equal to 1), which are related to picture order counts for the bottom field of a coded frame, are
present in the slice headers for coded frames as specified in subclause 7.3.3.
bottom_field_pic_order_in_frame_present_flag equal to 0 specifies that the syntax elements
delta_pic_order_cnt_bottom and delta_pic_order_cnt[1] are not present in the slice headers.

num_slice_groups_minus1 plus 1 specifies the number of slice groups for a picture. When num_slice_groups_minus1
is equal to 0, all slices of the picture belong to the same slice group. The allowed range of num_slice_groups_minus1 is
specified in Annex A.

slice_group_map_type specifies how the mapping of slice group map units to slice groups is coded. The value of
slice_group_map_type shall be in the range of 0 to 6, inclusive.

slice_group_map_type equal to 0 specifies interleaved slice groups.

slice_group_map_type equal to 1 specifies a dispersed slice group mapping.

slice_group_map_type equal to 2 specifies one or more "foreground" slice groups and a "leftover" slice group.

slice_group_map_type values equal to 3, 4, and 5 specify changing slice groups. When num_slice_groups_minus1 is
not equal to 1, slice_group_map_type shall not be equal to 3, 4, or 5.

slice_group_map_type equal to 6 specifies an explicit assignment of a slice group to each slice group map unit.

Slice group map units are specified as follows.
– If frame_mbs_only_flag is equal to 0 and mb_adaptive_frame_field_flag is equal to 1 and the coded picture is a

frame, the slice group map units are macroblock pair units.
– Otherwise, if frame_mbs_only_flag is equal to 1 or the coded picture is a field, the slice group map units are units

of macroblocks.

 Rec. ITU-T H.264 (03/2009) 81

– Otherwise (frame_mbs_only_flag is equal to 0 and mb_adaptive_frame_field_flag is equal to 0 and the coded
picture is a frame), the slice group map units are units of two macroblocks that are vertically contiguous as in a
frame macroblock pair of an MBAFF frame.

run_length_minus1[i] is used to specify the number of consecutive slice group map units to be assigned to the i-th
slice group in raster scan order of slice group map units. The value of run_length_minus1[i] shall be in the range of 0
to PicSizeInMapUnits − 1, inclusive.

top_left[i] and bottom_right[i] specify the top-left and bottom-right corners of a rectangle, respectively. top_left[i]
and bottom_right[i] are slice group map unit positions in a raster scan of the picture for the slice group map units. For
each rectangle i, all of the following constraints shall be obeyed by the values of the syntax elements top_left[i] and
bottom_right[i]:
– top_left[i] shall be less than or equal to bottom_right[i] and bottom_right[i] shall be less than

PicSizeInMapUnits.
– (top_left[i] % PicWidthInMbs) shall be less than or equal to the value of (bottom_right[i] % PicWidthInMbs).

slice_group_change_direction_flag is used with slice_group_map_type to specify the refined map type when
slice_group_map_type is 3, 4, or 5.

slice_group_change_rate_minus1 is used to specify the variable SliceGroupChangeRate. SliceGroupChangeRate
specifies the multiple in number of slice group map units by which the size of a slice group can change from one picture
to the next. The value of slice_group_change_rate_minus1 shall be in the range of 0 to PicSizeInMapUnits − 1,
inclusive. The SliceGroupChangeRate variable is specified as follows:

SliceGroupChangeRate = slice_group_change_rate_minus1 + 1 (7-22)

pic_size_in_map_units_minus1 is used to specify the number of slice group map units in the picture.
pic_size_in_map_units_minus1 shall be equal to PicSizeInMapUnits − 1.

slice_group_id[i] identifies a slice group of the i-th slice group map unit in raster scan order. The length of the
slice_group_id[i] syntax element is Ceil(Log2(num_slice_groups_minus1 + 1)) bits. The value of slice_group_id[i]
shall be in the range of 0 to num_slice_groups_minus1, inclusive.

num_ref_idx_l0_default_active_minus1 specifies how num_ref_idx_l0_active_minus1 is inferred for P, SP, and B
slices with num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l0_default_active_minus1 shall be
in the range of 0 to 31, inclusive.

num_ref_idx_l1_default_active_minus1 specifies how num_ref_idx_l1_active_minus1 is inferred for B slices with
num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l1_default_active_minus1 shall be in the
range of 0 to 31, inclusive.

weighted_pred_flag equal to 0 specifies that the default weighted prediction shall be applied to P and SP slices.
weighted_pred_flag equal to 1 specifies that explicit weighted prediction shall be applied to P and SP slices.

weighted_bipred_idc equal to 0 specifies that the default weighted prediction shall be applied to B slices.
weighted_bipred_idc equal to 1 specifies that explicit weighted prediction shall be applied to B slices.
weighted_bipred_idc equal to 2 specifies that implicit weighted prediction shall be applied to B slices. The value of
weighted_bipred_idc shall be in the range of 0 to 2, inclusive.

pic_init_qp_minus26 specifies the initial value minus 26 of SliceQPY for each slice. The initial value is modified at the
slice layer when a non-zero value of slice_qp_delta is decoded, and is modified further when a non-zero value of
mb_qp_delta is decoded at the macroblock layer. The value of pic_init_qp_minus26 shall be in the range of
−(26 + QpBdOffsetY) to +25, inclusive.

pic_init_qs_minus26 specifies the initial value minus 26 of SliceQSY for all macroblocks in SP or SI slices. The initial
value is modified at the slice layer when a non-zero value of slice_qs_delta is decoded. The value of
pic_init_qs_minus26 shall be in the range of −26 to +25, inclusive.

chroma_qp_index_offset specifies the offset that shall be added to QPY and QSY for addressing the table of QPC
values for the Cb chroma component. The value of chroma_qp_index_offset shall be in the range of −12 to +12,
inclusive.

deblocking_filter_control_present_flag equal to 1 specifies that a set of syntax elements controlling the characteristics
of the deblocking filter is present in the slice header. deblocking_filter_control_present_flag equal to 0 specifies that the
set of syntax elements controlling the characteristics of the deblocking filter is not present in the slice headers and their
inferred values are in effect.

82 Rec. ITU-T H.264 (03/2009)

constrained_intra_pred_flag equal to 0 specifies that intra prediction allows usage of residual data and decoded
samples of neighbouring macroblocks coded using Inter macroblock prediction modes for the prediction of
macroblocks coded using Intra macroblock prediction modes. constrained_intra_pred_flag equal to 1 specifies
constrained intra prediction, in which case prediction of macroblocks coded using Intra macroblock prediction modes
only uses residual data and decoded samples from I or SI macroblock types.

redundant_pic_cnt_present_flag equal to 0 specifies that the redundant_pic_cnt syntax element is not present in slice
headers, coded slice data partition B NAL units, and coded slice data partition C NAL units that refer (either directly or
by association with a corresponding coded slice data partition A NAL unit) to the picture parameter set.
redundant_pic_cnt_present_flag equal to 1 specifies that the redundant_pic_cnt syntax element is present in all slice
headers, coded slice data partition B NAL units, and coded slice data partition C NAL units that refer (either directly or
by association with a corresponding coded slice data partition A NAL unit) to the picture parameter set.

transform_8x8_mode_flag equal to 1 specifies that the 8x8 transform decoding process may be in use (see
subclause 8.5). transform_8x8_mode_flag equal to 0 specifies that the 8x8 transform decoding process is not in use.
When transform_8x8_mode_flag is not present, it shall be inferred to be 0.

pic_scaling_matrix_present_flag equal to 1 specifies that parameters are present to modify the scaling lists specified
in the sequence parameter set. pic_scaling_matrix_present_flag equal to 0 specifies that the scaling lists used for the
picture shall be inferred to be equal to those specified by the sequence parameter set. When
pic_scaling_matrix_present_flag is not present, it shall be inferred to be equal to 0.

pic_scaling_list_present_flag[i] equal to 1 specifies that the scaling list syntax structure is present to specify the
scaling list for index i. pic_scaling_list_present_flag[i] equal to 0 specifies that the syntax structure for scaling list i is
not present in the picture parameter set and that depending on the value of seq_scaling_matrix_present_flag, the
following applies.

– If seq_scaling_matrix_present_flag is equal to 0, the scaling list fall-back rule set A as specified in Table 7-2 shall
be used to derive the picture-level scaling list for index i.

– Otherwise (seq_scaling_matrix_present_flag is equal to 1), the scaling list fall-back rule set B as specified
in Table 7-2 shall be used to derive the picture-level scaling list for index i.

second_chroma_qp_index_offset specifies the offset that shall be added to QPY and QSY for addressing the table of
QPC values for the Cr chroma component. The value of second_chroma_qp_index_offset shall be in the range of −12 to
+12, inclusive.

When second_chroma_qp_index_offset is not present, it shall be inferred to be equal to chroma_qp_index_offset.
NOTE – When ChromaArrayType is equal to 0, the values of bit_depth_chroma_minus8, chroma_qp_index_offset and
second_chroma_qp_index_offset are not used in the decoding process. In particular, when separate_colour_plane_flag is equal
to 1, each colour plane is decoded as a distinct monochrome picture using the luma component decoding process (except for the
selection of scaling matrices), including the application of the luma quantisation parameter derivation process without application
of an offset for the decoding of the pictures having colour_plane_id not equal to 0.

7.4.2.3 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of
coded pictures from VCL NAL units.

7.4.2.3.1 Supplemental enhancement information message semantics

An SEI RBSP contains one or more SEI messages. Each SEI message consists of the variables specifying the type
payloadType and size payloadSize of the SEI payload. SEI payloads are specified in Annex D. The derived SEI payload
size payloadSize is specified in bytes and shall be equal to the number of RBSP bytes in the SEI payload.

NOTE – The NAL unit byte sequence containing the SEI message might include one or more emulation prevention bytes
(represented by emulation_prevention_three_byte syntax elements). Since the payload size of an SEI message is specified in
RBSP bytes, the quantity of emulation prevention bytes is not included in the size payloadSize of an SEI payload.

ff_byte is a byte equal to 0xFF identifying a need for a longer representation of the syntax structure that it is used
within.

last_payload_type_byte is the last byte of the payload type of an SEI message.

last_payload_size_byte is the last byte of the payload size of an SEI message.

7.4.2.4 Access unit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify
the detection of the boundary between access units. There is no normative decoding process associated with the access
unit delimiter.

 Rec. ITU-T H.264 (03/2009) 83

primary_pic_type indicates that the slice_type values for all slices of the primary coded picture are members of the set
listed in Table 7-5 for the given value of primary_pic_type.

Table 7-5 – Meaning of primary_pic_type

primary_pic_type slice_type values that may be present in the primary coded picture

0 2, 7
1 0, 2, 5, 7
2 0, 1, 2, 5, 6, 7
3 4, 9
4 3, 4, 8, 9
5 2, 4, 7, 9
6 0, 2, 3, 4, 5, 7, 8, 9
7 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

7.4.2.5 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any)
shall be an IDR access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No
normative decoding process is specified for an end of sequence RBSP.

7.4.2.6 End of stream RBSP semantics

The end of stream RBSP indicates that no additional NAL units shall be present in the bitstream that are subsequent to
the end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are
empty. No normative decoding process is specified for an end of stream RBSP.

NOTE – When an end of stream NAL unit is present, the bitstream is considered to end (for purposes of the scope of this
Recommendation | International Standard). In some system environments, another bitstream may follow after the bitstream that
has ended, either immediately or at some time thereafter, possibly within the same communication channel. Under such
circumstances, the scope of this Recommendation | International Standard applies only to the processing of each of these
individual bitstreams. No requirements are specified herein regarding the transition between such bitstreams (e.g., in regard to
timing, buffering operation, etc.).

7.4.2.7 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to 0xFF. No normative decoding process is specified for
a filler data RBSP.

ff_byte is a byte equal to 0xFF.

7.4.2.8 Slice layer without partitioning RBSP semantics

The slice layer without partitioning RBSP consists of a slice header and slice data.

7.4.2.9 Slice data partition RBSP semantics

7.4.2.9.1 Slice data partition A RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition A contains all syntax elements of category 2.

Category 2 syntax elements include all syntax elements in the slice header and slice data syntax structures other than the
syntax elements in the residual() syntax structure.

slice_id identifies the slice associated with the slice data partition. The value of slice_id is constrained as follows.

– If separate_colour_plane_flag is equal to 0, the following applies.

– If arbitrary slice order is not allowed as specified in Annex A, the first slice of a coded picture, in decoding
order, shall have slice_id equal to 0 and the value of slice_id shall be incremented by one for each subsequent
slice of the coded picture in decoding order.

– Otherwise (arbitrary slice order is allowed), each slice shall have a unique slice_id value within the set of
slices of the coded picture.

84 Rec. ITU-T H.264 (03/2009)

– Otherwise (separate_colour_plane_flag is equal to 1), the following applies.

– If arbitrary slice order is not allowed as specified in Annex A, the first slice of a coded picture having each
value of colour_plane_id, in decoding order, shall have slice_id equal to 0 and the value of slice_id shall be
incremented by one for each subsequent slice of the coded picture having the same value of colour_plane_id,
in decoding order.

– Otherwise (arbitrary slice order is allowed) each slice shall have a unique slice_id value within each set of
slices of the coded picture that have the same value of colour_plane_id.

The range of slice_id is specified as follows.

– If MbaffFrameFlag is equal to 0, slice_id shall be in the range of 0 to PicSizeInMbs − 1, inclusive.

– Otherwise (MbaffFrameFlag is equal to 1), slice_id shall be in the range of 0 to PicSizeInMbs / 2 − 1, inclusive.

7.4.2.9.2 Slice data partition B RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into one to three separate partitions.
Slice data partition B contains all syntax elements of category 3.

Category 3 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types I and SI as specified in Table 7-10.

slice_id has the same semantics as specified in subclause 7.4.2.9.1.

colour_plane_id specifies the colour plane associated with the current slice RBSP when separate_colour_plane_flag is
equal to 1. The value of colour_plane_id shall be in the range of 0 to 2, inclusive. colour_plane_id equal to 0, 1, and 2
correspond to the Y, Cb, and Cr planes, respectively.

NOTE – There is no dependency between the decoding processes of pictures having different values of colour_plane_id.

redundant_pic_cnt shall be equal to 0 for coded slices and coded slice data partitions belonging to the primary coded
picture. The redundant_pic_cnt shall be greater than 0 for coded slices and coded slice data partitions in redundant
coded pictures. When redundant_pic_cnt is not present, its value shall be inferred to be equal to 0. The value of
redundant_pic_cnt shall be in the range of 0 to 127, inclusive.

The presence of a slice data partition B RBSP is specified as follows.

– If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 3
in the slice data for a slice, a slice data partition B RBSP shall be present having the same value of slice_id and
redundant_pic_cnt as in the slice data partition A RBSP.

– Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax
elements of category 3 in the slice data for a slice), no slice data partition B RBSP shall be present having the same
value of slice_id and redundant_pic_cnt as in the slice data partition A RBSP.

7.4.2.9.3 Slice data partition C RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition C contains all syntax elements of category 4.

Category 4 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types P and B as specified in Table 7-10.

slice_id has the same semantics as specified in subclause 7.4.2.9.1.

colour_plane_id has the same semantics as specified in subclause 7.4.2.9.2.

redundant_pic_cnt has the same semantics as specified in subclause 7.4.2.9.2.

The presence of a slice data partition C RBSP is specified as follows.

– If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 4
in the slice data for a slice, a slice data partition C RBSP shall be present having the same value of slice_id and
redundant_pic_cnt as in the slice data partition A RBSP.

– Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax
elements of category 4 in the slice data for a slice), no slice data partition C RBSP shall be present having the same
value of slice_id and redundant_pic_cnt as in the slice data partition A RBSP.

 Rec. ITU-T H.264 (03/2009) 85

7.4.2.10 RBSP slice trailing bits semantics

cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000.

Let NumBytesInVclNALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a coded
picture.

Let BinCountsInNALunits be the number of times that the parsing process function DecodeBin(), specified in
subclause 9.3.3.2, is invoked to decode the contents of all VCL NAL units of a coded picture. When
entropy_coding_mode_flag is equal to 1, BinCountsInNALunits shall not exceed (32 ÷ 3) * NumBytesInVclNALunits
+ (RawMbBits * PicSizeInMbs) ÷ 32.

NOTE – The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units can be
met by inserting a number of cabac_zero_word syntax elements to increase the value of NumBytesInVclNALunits. Each
cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit
contents that result in requiring inclusion of an emulation_prevention_three_byte for each cabac_zero_word).

7.4.2.11 RBSP trailing bits semantics

rbsp_stop_one_bit shall be equal to 1.

rbsp_alignment_zero_bit shall be equal to 0.

7.4.2.12 Prefix NAL unit RBSP semantics

The content of the prefix NAL unit RBSP is dependent on the value of svc_extension_flag.

7.4.2.13 Slice layer extension RBSP semantics

The content of the slice layer extension RBSP is dependent on the value of svc_extension_flag.

Coded slice extension NAL units with svc_extension_flag equal to 1 are also referred to as coded slice in scalable
extension NAL units and coded slice extension NAL units with svc_extension_flag equal to 0 are also referred to as
coded slice MVC extension NAL units.

7.4.3 Slice header semantics

When present, the value of the slice header syntax elements pic_parameter_set_id, frame_num, field_pic_flag,
bottom_field_flag, idr_pic_id, pic_order_cnt_lsb, delta_pic_order_cnt_bottom, delta_pic_order_cnt[0],
delta_pic_order_cnt[1], sp_for_switch_flag, and slice_group_change_cycle shall be the same in all slice headers of a
coded picture.

first_mb_in_slice specifies the address of the first macroblock in the slice. When arbitrary slice order is not allowed as
specified in Annex A, the value of first_mb_in_slice is constrained as follows.

– If separate_colour_plane_flag is equal to 0, the value of first_mb_in_slice shall not be less than the value of
first_mb_in_slice for any other slice of the current picture that precedes the current slice in decoding order.

– Otherwise (separate_colour_plane_flag is equal to 1), the value of first_mb_in_slice shall not be less than the value
of first_mb_in_slice for any other slice of the current picture that precedes the current slice in decoding order and
has the same value of colour_plane_id.

The first macroblock address of the slice is derived as follows.

– If MbaffFrameFlag is equal to 0, first_mb_in_slice is the macroblock address of the first macroblock in the slice,
and first_mb_in_slice shall be in the range of 0 to PicSizeInMbs − 1, inclusive.

– Otherwise (MbaffFrameFlag is equal to 1), first_mb_in_slice * 2 is the macroblock address of the first macroblock
in the slice, which is the top macroblock of the first macroblock pair in the slice, and first_mb_in_slice shall be in
the range of 0 to PicSizeInMbs / 2 − 1, inclusive.

slice_type specifies the coding type of the slice according to Table 7-6.

86 Rec. ITU-T H.264 (03/2009)

Table 7-6 – Name association to slice_type

slice_type Name of slice_type

0 P (P slice)
1 B (B slice)
2 I (I slice)
3 SP (SP slice)
4 SI (SI slice)
5 P (P slice)
6 B (B slice)
7 I (I slice)
8 SP (SP slice)
9 SI (SI slice)

slice_type values in the range 5..9 specify, in addition to the coding type of the current slice, that all other slices of the
current coded picture shall have a value of slice_type equal to the current value of slice_type or equal to the current
value of slice_type − 5.

When nal_unit_type is equal to 5 (IDR picture), slice_type shall be equal to 2, 4, 7, or 9.

When max_num_ref_frames is equal to 0, slice_type shall be equal to 2, 4, 7, or 9.

pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter_set_id shall be in the
range of 0 to 255, inclusive.

colour_plane_id specifies the colour plane associated with the current slice RBSP when separate_colour_plane_flag is
equal to 1. The value of colour_plane_id shall be in the range of 0 to 2, inclusive. colour_plane_id equal to 0, 1, and 2
correspond to the Y, Cb, and Cr planes, respectively.

NOTE 1 – There is no dependency between the decoding processes of pictures having different values of colour_plane_id.

frame_num is used as an identifier for pictures and shall be represented by log2_max_frame_num_minus4 + 4 bits in
the bitstream. frame_num is constrained as follows:

The variable PrevRefFrameNum is derived as follows.

– If the current picture is an IDR picture, PrevRefFrameNum is set equal to 0.

– Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set as follows.

– If the decoding process for gaps in frame_num specified in subclause 8.2.5.2 was invoked by the decoding
process for an access unit that contained a non-reference picture that followed the previous access unit in
decoding order that contained a reference picture, PrevRefFrameNum is set equal to the value of frame_num
for the last of the "non-existing" reference frames inferred by the decoding process for gaps in frame_num
specified in subclause 8.2.5.2.

– Otherwise, PrevRefFrameNum is set equal to the value of frame_num for the previous access unit in
decoding order that contained a reference picture.

The value of frame_num is constrained as follows.

– If the current picture is an IDR picture, frame_num shall be equal to 0.

– Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access
unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame_num
for the current picture shall not be equal to PrevRefFrameNum unless all of the following three conditions are true:

a) The current picture and the preceding reference picture belong to consecutive access units in decoding order.

b) The current picture and the preceding reference picture are reference fields having opposite parity.

c) One or more of the following conditions is true:
– The preceding reference picture is an IDR picture,
– The preceding reference picture includes a memory_management_control_operation syntax element

equal to 5,

 Rec. ITU-T H.264 (03/2009) 87

NOTE 2 – When the preceding reference picture includes a memory_management_control_operation syntax
element equal to 5, PrevRefFrameNum is equal to 0.

– There is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture does not have frame_num equal to
PrevRefFrameNum,

– There is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture is not a reference picture.

When the value of frame_num is not equal to PrevRefFrameNum, it is a requirement of bitstream conformance that the
following constraints shall be obeyed:

a) There shall not be any previous field or frame in decoding order that is currently marked as "used for short-
term reference" that has a value of frame_num equal to any value taken on by the variable
UnusedShortTermFrameNum in the following:

UnusedShortTermFrameNum = (PrevRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame_num) (7-23)
 UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

b) The value of frame_num is constrained as follows.
– If gaps_in_frame_num_value_allowed_flag is equal to 0, the value of frame_num for the current picture

shall be equal to (PrevRefFrameNum + 1) % MaxFrameNum.
– Otherwise (gaps_in_frame_num_value_allowed_flag is equal to 1), the following applies.

– If frame_num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the
bitstream that follow the previous reference picture and precede the current picture in decoding order
in which either of the following conditions is true:
– The value of frame_num for the non-reference picture is less than PrevRefFrameNum,
– The value of frame_num for the non-reference picture is greater than the value of frame_num

for the current picture.
– Otherwise (frame_num is less than PrevRefFrameNum), there shall not be any non-reference

pictures in the bitstream that follow the previous reference picture and precede the current picture in
decoding order in which both of the following conditions are true:
– The value of frame_num for the non-reference picture is less than PrevRefFrameNum,
– The value of frame_num for the non-reference picture is greater than the value of frame_num

for the current picture.

A picture including a memory_management_control_operation equal to 5 shall have frame_num constraints as
described above and, after the decoding of the current picture and the processing of the memory management control
operations, the picture shall be inferred to have had frame_num equal to 0 for all subsequent use in the decoding
process, except as specified in subclause 7.4.1.2.4.

NOTE 3 – When the primary coded picture is not an IDR picture and does not contain memory_management_control_operation
syntax element equal to 5, the value of frame_num of a corresponding redundant coded picture is the same as the value of
frame_num in the primary coded picture. Alternatively, the redundant coded picture includes a
memory_management_control_operation syntax element equal to 5 and the corresponding primary coded picture is an IDR
picture.

field_pic_flag equal to 1 specifies that the slice is a slice of a coded field. field_pic_flag equal to 0 specifies that the
slice is a slice of a coded frame. When field_pic_flag is not present it shall be inferred to be equal to 0.

The variable MbaffFrameFlag is derived as

MbaffFrameFlag = (mb_adaptive_frame_field_flag && !field_pic_flag) (7-24)

The variable for the picture height in units of macroblocks is derived as

PicHeightInMbs = FrameHeightInMbs / (1 + field_pic_flag) (7-25)

The variable for picture height for the luma component is derived as

PicHeightInSamplesL = PicHeightInMbs * 16 (7-26)

88 Rec. ITU-T H.264 (03/2009)

The variable for picture height for the chroma component is derived as

PicHeightInSamplesC = PicHeightInMbs * MbHeightC (7-27)

The variable PicSizeInMbs for the current picture is derived as

PicSizeInMbs = PicWidthInMbs * PicHeightInMbs (7-28)

The variable MaxPicNum is derived as follows.

– If field_pic_flag is equal to 0, MaxPicNum is set equal to MaxFrameNum.

– Otherwise (field_pic_flag is equal to 1), MaxPicNum is set equal to 2*MaxFrameNum.

The variable CurrPicNum is derived as follows.

– If field_pic_flag is equal to 0, CurrPicNum is set equal to frame_num.

– Otherwise (field_pic_flag is equal to 1), CurrPicNum is set equal to 2 * frame_num + 1.

bottom_field_flag equal to 1 specifies that the slice is part of a coded bottom field. bottom_field_flag equal to 0
specifies that the picture is a coded top field. When this syntax element is not present for the current slice, it shall be
inferred to be equal to 0.

idr_pic_id identifies an IDR picture. The values of idr_pic_id in all the slices of an IDR picture shall remain
unchanged. When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in
the slices of the first such IDR access unit shall differ from the idr_pic_id in the second such IDR access unit. The value
of idr_pic_id shall be in the range of 0 to 65535, inclusive.

pic_order_cnt_lsb specifies the picture order count modulo MaxPicOrderCntLsb for the top field of a coded frame or
for a coded field. The length of the pic_order_cnt_lsb syntax element is log2_max_pic_order_cnt_lsb_minus4 + 4 bits.
The value of the pic_order_cnt_lsb shall be in the range of 0 to MaxPicOrderCntLsb − 1, inclusive.

delta_pic_order_cnt_bottom specifies the picture order count difference between the bottom field and the top field of
a coded frame as follows.

– If the current picture includes a memory_management_control_operation equal to 5, the value of
delta_pic_order_cnt_bottom shall be in the range of (1 − MaxPicOrderCntLsb) to 231 − 1, inclusive.

– Otherwise (the current picture does not include a memory_management_control_operation equal to 5), the value of
delta_pic_order_cnt_bottom shall be in the range of −231 to 231 − 1, inclusive.

When this syntax element is not present in the bitstream for the current slice, it shall be inferred to be equal to 0.

delta_pic_order_cnt[0] specifies the picture order count difference from the expected picture order count for the top
field of a coded frame or for a coded field as specified in subclause 8.2.1. The value of delta_pic_order_cnt[0] shall be
in the range of −231 to 231 − 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it
shall be inferred to be equal to 0.

delta_pic_order_cnt[1] specifies the picture order count difference from the expected picture order count for the
bottom field of a coded frame specified in subclause 8.2.1. The value of delta_pic_order_cnt[1] shall be in the range of
−231 to 231 − 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall be
inferred to be equal to 0.

redundant_pic_cnt shall be equal to 0 for slices and slice data partitions belonging to the primary coded picture. The
value of redundant_pic_cnt shall be greater than 0 for coded slices or coded slice data partitions of a redundant coded
picture. When redundant_pic_cnt is not present in the bitstream, its value shall be inferred to be equal to 0. The value of
redundant_pic_cnt shall be in the range of 0 to 127, inclusive.

NOTE 4 – Any area of the decoded primary picture and the corresponding area that would result from application of the
decoding process specified in clause 8 for any redundant picture in the same access unit should be visually similar in appearance.

The value of pic_parameter_set_id in a coded slice or coded slice data partition of a redundant coded picture shall be
such that the value of bottom_field_pic_order_in_frame_present_flag in the picture parameter set in use in a redundant
coded picture is equal to the value of bottom_field_pic_order_in_frame_present_flag in the picture parameter set in use
in the corresponding primary coded picture.

When present in the primary coded picture and any redundant coded picture, the following syntax elements shall have
the same value: field_pic_flag, bottom_field_flag, and idr_pic_id.

 Rec. ITU-T H.264 (03/2009) 89

When the value of nal_ref_idc in one VCL NAL unit of an access unit is equal to 0, the value of nal_ref_idc in all other
VCL NAL units of the same access unit shall be equal to 0.

NOTE 5 – The above constraint also has the following implications. If the value of nal_ref_idc for the VCL NAL units of the
primary coded picture is equal to 0, the value of nal_ref_idc for the VCL NAL units of any corresponding redundant coded
picture are equal to 0; otherwise (the value of nal_ref_idc for the VCL NAL units of the primary coded picture is greater than 0),
the value of nal_ref_idc for the VCL NAL units of any corresponding redundant coded picture are also greater than 0.

The marking status of reference pictures and the value of frame_num after the decoded reference picture marking
process as specified in subclause 8.2.5 is invoked for the primary coded picture or any redundant coded picture of the
same access unit shall be identical regardless whether the primary coded picture or any redundant coded picture (instead
of the primary coded picture) of the access unit would be decoded.

NOTE 6 – The above constraint also has the following implications.
When the primary coded picture is an IDR picture and a redundant coded picture corresponding to the primary coded picture is
an IDR picture, the contents of the dec_ref_pic_marking() syntax structure must be identical in all slice headers of the primary
coded picture and the redundant coded picture corresponding to the primary coded picture.
When the primary coded picture is an IDR picture and a redundant coded picture corresponding to the primary coded picture is
not an IDR picture, all slice headers of the redundant picture must contain a dec_ref_pic_marking syntax() structure including a
memory_management_control_operation syntax element equal to 5, and the following applies.
– If the value of long_term_reference_flag in the primary coded picture is equal to 0, the dec_ref_pic_marking syntax structure

of the redundant coded picture must not include a memory_management_control_operation syntax element equal to 6.
– Otherwise (the value of long_term_reference_flag in the primary coded picture is equal to 1), the dec_ref_pic_marking

syntax structure of the redundant coded picture must include memory_management_control_operation syntax elements equal
to 5, 4, and 6 in decoding order, and the value of max_long_term_frame_idx_plus1 must be equal to 1, and the value of
long_term_frame_idx must be equal to 0.

The values of TopFieldOrderCnt and BottomFieldOrderCnt (if applicable) that result after completion of the decoding
process for any redundant coded picture or the primary coded picture of the same access unit shall be identical
regardless whether the primary coded picture or any redundant coded picture (instead of the primary coded picture) of
the access unit would be decoded.

There is no required decoding process for a coded slice or coded slice data partition of a redundant coded picture. When
the redundant_pic_cnt in the slice header of a coded slice is greater than 0, the decoder may discard the coded slice.
However, a coded slice or coded slice data partition of any redundant coded picture shall obey the same constraints as a
coded slice or coded slice data partition of a primary picture.

NOTE 7 – When some of the samples in the decoded primary picture cannot be correctly decoded due to errors or losses in
transmission of the sequence and a coded redundant slice can be correctly decoded, the decoder should replace the samples of the
decoded primary picture with the corresponding samples of the decoded redundant slice. When more than one redundant slice
covers the relevant region of the primary picture, the redundant slice having the lowest value of redundant_pic_cnt should be
used.

Redundant slices and slice data partitions having the same value of redundant_pic_cnt belong to the same redundant
picture. Decoded slices within the same redundant picture need not cover the entire picture area and shall not overlap.

direct_spatial_mv_pred_flag specifies the method used in the decoding process to derive motion vectors and reference
indices for inter prediction as follows.

– If direct_spatial_mv_pred_flag is equal to 1, the derivation process for luma motion vectors for B_Skip,
B_Direct_16x16, and B_Direct_8x8 in subclause 8.4.1.2 shall use spatial direct mode prediction as specified in
subclause 8.4.1.2.2.

– Otherwise (direct_spatial_mv_pred_flag is equal to 0), the derivation process for luma motion vectors for B_Skip,
B_Direct_16x16, and B_Direct_8x8 in subclause 8.4.1.2 shall use temporal direct mode prediction as specified in
subclause 8.4.1.2.3.

num_ref_idx_active_override_flag equal to 1 specifies that the syntax element num_ref_idx_l0_active_minus1 is
present for P, SP, and B slices and that the syntax element num_ref_idx_l1_active_minus1 is present for B slices.
num_ref_idx_active_override_flag equal to 0 specifies that the syntax elements num_ref_idx_l0_active_minus1 and
num_ref_idx_l1_active_minus1 are not present.

When the current slice is a P, SP, or B slice and field_pic_flag is equal to 0 and the value of
num_ref_idx_l0_default_active_minus1 in the picture parameter set exceeds 15, num_ref_idx_active_override_flag
shall be equal to 1.

When the current slice is a B slice and field_pic_flag is equal to 0 and the value of
num_ref_idx_l1_default_active_minus1 in the picture parameter set exceeds 15, num_ref_idx_active_override_flag
shall be equal to 1.

90 Rec. ITU-T H.264 (03/2009)

num_ref_idx_l0_active_minus1 specifies the maximum reference index for reference picture list 0 that shall be used to
decode the slice.

When the current slice is a P, SP, or B slice and num_ref_idx_l0_active_minus1 is not present,
num_ref_idx_l0_active_minus1 shall be inferred to be equal to num_ref_idx_l0_default_active_minus1.

The range of num_ref_idx_l0_active_minus1 is specified as follows.

– If field_pic_flag is equal to 0, num_ref_idx_l0_active_minus1 shall be in the range of 0 to 15, inclusive. When
MbaffFrameFlag is equal to 1, num_ref_idx_l0_active_minus1 is the maximum index value for the decoding of
frame macroblocks and 2 * num_ref_idx_l0_active_minus1 + 1 is the maximum index value for the decoding of
field macroblocks.

– Otherwise (field_pic_flag is equal to 1), num_ref_idx_l0_active_minus1 shall be in the range of 0 to 31, inclusive.

num_ref_idx_l1_active_minus1 specifies the maximum reference index for reference picture list 1 that shall be used to
decode the slice.

When the current slice is a B slice and num_ref_idx_l1_active_minus1 is not present, num_ref_idx_l1_active_minus1
shall be inferred to be equal to num_ref_idx_l1_default_active_minus1.

The range of num_ref_idx_l1_active_minus1 is constrained as specified in the semantics for
num_ref_idx_l0_active_minus1 with l0 and list 0 replaced by l1 and list 1, respectively.

cabac_init_idc specifies the index for determining the initialisation table used in the initialisation process for context
variables. The value of cabac_init_idc shall be in the range of 0 to 2, inclusive.

slice_qp_delta specifies the initial value of QPY to be used for all the macroblocks in the slice until modified by the
value of mb_qp_delta in the macroblock layer. The initial QPY quantisation parameter for the slice is computed as

SliceQPY = 26 + pic_init_qp_minus26 + slice_qp_delta (7-29)

The value of slice_qp_delta shall be limited such that SliceQPY is in the range of −QpBdOffsetY to +51, inclusive.

sp_for_switch_flag specifies the decoding process to be used to decode P macroblocks in an SP slice as follows.

– If sp_for_switch_flag is equal to 0, the P macroblocks in the SP slice shall be decoded using the SP decoding
process for non-switching pictures as specified in subclause 8.6.1.

– Otherwise (sp_for_switch_flag is equal to 1), the P macroblocks in the SP slice shall be decoded using the SP and
SI decoding process for switching pictures as specified in subclause 8.6.2.

slice_qs_delta specifies the value of QSY for all the macroblocks in SP and SI slices. The QSY quantisation parameter
for the slice is computed as

QSY = 26 + pic_init_qs_minus26 + slice_qs_delta (7-30)

The value of slice_qs_delta shall be limited such that QSY is in the range of 0 to 51, inclusive. This value of QSY is used
for the decoding of all macroblocks in SI slices with mb_type equal to SI and all macroblocks in SP slices that are
coded in an Inter macroblock prediction mode.

disable_deblocking_filter_idc specifies whether the operation of the deblocking filter shall be disabled across some
block edges of the slice and specifies for which edges the filtering is disabled. When disable_deblocking_filter_idc is
not present in the slice header, the value of disable_deblocking_filter_idc shall be inferred to be equal to 0.

The value of disable_deblocking_filter_idc shall be in the range of 0 to 2, inclusive.

slice_alpha_c0_offset_div2 specifies the offset used in accessing the α and tC0 deblocking filter tables for filtering
operations controlled by the macroblocks within the slice. From this value, the offset that shall be applied when
addressing these tables shall be computed as

FilterOffsetA = slice_alpha_c0_offset_div2 << 1 (7-31)

The value of slice_alpha_c0_offset_div2 shall be in the range of −6 to +6, inclusive. When slice_alpha_c0_offset_div2
is not present in the slice header, the value of slice_alpha_c0_offset_div2 shall be inferred to be equal to 0.

 Rec. ITU-T H.264 (03/2009) 91

slice_beta_offset_div2 specifies the offset used in accessing the β deblocking filter table for filtering operations
controlled by the macroblocks within the slice. From this value, the offset that is applied when addressing the β table of
the deblocking filter shall be computed as

FilterOffsetB = slice_beta_offset_div2 << 1 (7-32)

The value of slice_beta_offset_div2 shall be in the range of −6 to +6, inclusive. When slice_beta_offset_div2 is not
present in the slice header the value of slice_beta_offset_div2 shall be inferred to be equal to 0.

slice_group_change_cycle is used to derive the number of slice group map units in slice group 0 when
slice_group_map_type is equal to 3, 4, or 5, as specified by

MapUnitsInSliceGroup0 = Min(slice_group_change_cycle * SliceGroupChangeRate,
 PicSizeInMapUnits) (7-33)

The value of slice_group_change_cycle is represented in the bitstream by the following number of bits

Ceil(Log2(PicSizeInMapUnits ÷ SliceGroupChangeRate + 1)) (7-34)

The value of slice_group_change_cycle shall be in the range of 0
to Ceil(PicSizeInMapUnits÷SliceGroupChangeRate), inclusive.

7.4.3.1 Reference picture list modification semantics

The syntax elements modification_of_pic_nums_idc, abs_diff_pic_num_minus1, and long_term_pic_num specify the
change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref_pic_list_modification_flag_l0 equal to 1 specifies that the syntax element modification_of_pic_nums_idc is
present for specifying reference picture list 0. ref_pic_list_modification_flag_l0 equal to 0 specifies that this syntax
element is not present.

When ref_pic_list_modification_flag_l0 is equal to 1, the number of times that modification_of_pic_nums_idc is not
equal to 3 following ref_pic_list_modification_flag_l0 shall not exceed num_ref_idx_l0_active_minus1 + 1.

When RefPicList0[num_ref_idx_l0_active_minus1] in the initial reference picture list produced as specified in
subclause 8.2.4.2 is equal to "no reference picture", ref_pic_list_modification_flag_l0 shall be equal to 1 and
modification_of_pic_nums_idc shall not be equal to 3 until RefPicList0[num_ref_idx_l0_active_minus1] in the
modified list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture".

ref_pic_list_modification_flag_l1 equal to 1 specifies that the syntax element modification_of_pic_nums_idc is
present for specifying reference picture list 1. ref_pic_list_modification_flag_l1 equal to 0 specifies that this syntax
element is not present.

When ref_pic_list_modification_flag_l1 is equal to 1, the number of times that modification_of_pic_nums_idc is not
equal to 3 following ref_pic_list_modification_flag_l1 shall not exceed num_ref_idx_l1_active_minus1 + 1.

When decoding a slice with slice_type equal to 1 or 6 and RefPicList1[num_ref_idx_l1_active_minus1] in the initial
reference picture list produced as specified in subclause 8.2.4.2 is equal to "no reference picture",
ref_pic_list_modification_flag_l1 shall be equal to 1 and modification_of_pic_nums_idc shall not be equal to 3 until
RefPicList1[num_ref_idx_l1_active_minus1] in the modified list produced as specified in subclause 8.2.4.3 is not
equal to "no reference picture".

modification_of_pic_nums_idc together with abs_diff_pic_num_minus1 or long_term_pic_num specifies which of the
reference pictures are re-mapped. The values of modification_of_pic_nums_idc are specified in Table 7-7. The value of
the first modification_of_pic_nums_idc that follows immediately after ref_pic_list_modification_flag_l0 or
ref_pic_list_modification_flag_l1 shall not be equal to 3.

92 Rec. ITU-T H.264 (03/2009)

Table 7-7 – modification_of_pic_nums_idc operations for modification of reference picture lists

modification_of_pic_nums_idc modification specified

0 abs_diff_pic_num_minus1 is present and corresponds to a difference to
subtract from a picture number prediction value

1 abs_diff_pic_num_minus1 is present and corresponds to a difference to
add to a picture number prediction value

2 long_term_pic_num is present and specifies the long-term picture number
for a reference picture

3 End loop for modification of the initial reference picture list

abs_diff_pic_num_minus1 plus 1 specifies the absolute difference between the picture number of the picture being
moved to the current index in the list and the picture number prediction value. abs_diff_pic_num_minus1 shall be in the
range of 0 to MaxPicNum − 1. The allowed values of abs_diff_pic_num_minus1 are further restricted as specified in
subclause 8.2.4.3.1.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list.
When decoding a coded frame, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the
reference frames or complementary reference field pairs marked as "used for long-term reference". When decoding a
coded field, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference fields marked as
"used for long-term reference".

7.4.3.2 Prediction weight table semantics

luma_log2_weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of
luma_log2_weight_denom shall be in the range of 0 to 7, inclusive.

chroma_log2_weight_denom is the base 2 logarithm of the denominator for all chroma weighting factors. The value of
chroma_log2_weight_denom shall be in the range of 0 to 7, inclusive.

luma_weight_l0_flag equal to 1 specifies that weighting factors for the luma component of list 0 prediction are present.
luma_weight_l0_flag equal to 0 specifies that these weighting factors are not present.

luma_weight_l0[i] is the weighting factor applied to the luma prediction value for list 0 prediction using
RefPicList0[i]. When luma_weight_l0_flag is equal to 1, the value of luma_weight_l0[i] shall be in the range of
−128 to 127, inclusive. When luma_weight_l0_flag is equal to 0, luma_weight_l0[i] shall be inferred to be equal
to 2luma_log2_weight_denom for RefPicList0[i].

luma_offset_l0[i] is the additive offset applied to the luma prediction value for list 0 prediction using RefPicList0[i].
The value of luma_offset_l0[i] shall be in the range of −128 to 127, inclusive. When luma_weight_l0_flag is equal
to 0, luma_offset_l0[i] shall be inferred as equal to 0 for RefPicList0[i].

chroma_weight_l0_flag equal to 1 specifies that weighting factors for the chroma prediction values of list 0 prediction
are present. chroma_weight_l0_flag equal to 0 specifies that these weighting factors are not present.

chroma_weight_l0[i][j] is the weighting factor applied to the chroma prediction values for list 0 prediction using
RefPicList0[i] with j equal to 0 for Cb and j equal to 1 for Cr. When chroma_weight_l0_flag is equal to 1, the value of
chroma_weight_l0[i][j] shall be in the range of −128 to 127, inclusive. When chroma_weight_l0_flag is equal to 0,
chroma_weight_l0[i][j] shall be inferred to be equal to 2chroma_log2_weight_denom for RefPicList0[i].

chroma_offset_l0[i][j] is the additive offset applied to the chroma prediction values for list 0 prediction using
RefPicList0[i] with j equal to 0 for Cb and j equal to 1 for Cr. The value of chroma_offset_l0[i][j] shall be in the
range of −128 to 127, inclusive. When chroma_weight_l0_flag is equal to 0, chroma_offset_l0[i][j] shall be inferred
to be equal to 0 for RefPicList0[i].

luma_weight_l1_flag, luma_weight_l1, luma_offset_l1, chroma_weight_l1_flag, chroma_weight_l1,
chroma_offset_l1 have the same semantics as luma_weight_l0_flag, luma_weight_l0, luma_offset_l0,
chroma_weight_l0_flag, chroma_weight_l0, chroma_offset_l0, respectively, with l0, list 0, and List0 replaced by l1,
list 1, and List1, respectively.

 Rec. ITU-T H.264 (03/2009) 93

7.4.3.3 Decoded reference picture marking semantics

The syntax elements no_output_of_prior_pics_flag, long_term_reference_flag, adaptive_ref_pic_marking_mode_flag,
memory_management_control_operation, difference_of_pic_nums_minus1, long_term_frame_idx,
long_term_pic_num, and max_long_term_frame_idx_plus1 specify marking of the reference pictures.

The marking of a reference picture can be "unused for reference", "used for short-term reference", or "used for long-
term reference", but only one among these three. When a reference picture is referred to as being marked as "used for
reference", this collectively refers to the picture being marked as "used for short-term reference" or "used for long-term
reference" (but not both). A reference picture that is marked as "used for short-term reference" is referred to as a
short-term reference picture. A reference picture that is marked as "used for long-term reference" is referred to as a
long-term reference picture.

The content of the decoded reference picture marking syntax structure shall be the same in all slice headers of the
primary coded picture. When one or more redundant coded pictures are present, the content of the decoded reference
picture marking syntax structure shall be the same in all slice headers of a redundant coded picture with a particular
value of redundant_pic_cnt.

NOTE 1 – It is not required that the content of the decoded reference picture marking syntax structure in a redundant coded
picture with a particular value of redundant_pic_cnt is identical to the content of the decoded reference picture marking syntax
structure in the corresponding primary coded picture or a redundant coded picture with a different value of redundant_pic_cnt.
However, as specified in subclause 7.4.3, the content of the decoded reference picture marking syntax structure in a redundant
coded picture is constrained in the way that the marking status of reference pictures and the value of frame_num after the
decoded reference picture marking process in subclause 8.2.5 must be identical regardless whether the primary coded picture or
any redundant coded picture of the access unit would be decoded.

The syntax category of the decoded reference picture marking syntax structure shall be inferred as follows.

– If the decoded reference picture marking syntax structure is in a slice header, the syntax category of the decoded
reference picture marking syntax structure is inferred to be equal to 2.

– Otherwise (the decoded reference picture marking syntax structure is in a decoded reference picture marking
repetition SEI message as specified in Annex D), the syntax category of the decoded reference picture marking
syntax structure is inferred to be equal to 5.

no_output_of_prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated
after decoding of an IDR picture. See Annex C. When the IDR picture is the first IDR picture in the bitstream, the value
of no_output_of_prior_pics_flag has no effect on the decoding process. When the IDR picture is not the first IDR
picture in the bitstream and the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame_buffering derived
from the active sequence parameter set is different from the value of PicWidthInMbs, FrameHeightInMbs, or
max_dec_frame_buffering derived from the sequence parameter set active for the preceding picture,
no_output_of_prior_pics_flag equal to 1 may (but should not) be inferred by the decoder, regardless of the actual value
of no_output_of_prior_pics_flag.

long_term_reference_flag equal to 0 specifies that the MaxLongTermFrameIdx variable is set equal to "no long-term
frame indices" and that the IDR picture is marked as "used for short-term reference". long_term_reference_flag equal
to 1 specifies that the MaxLongTermFrameIdx variable is set equal to 0 and that the current IDR picture is marked
"used for long-term reference" and is assigned LongTermFrameIdx equal to 0. When max_num_ref_frames is equal
to 0, long_term_reference_flag shall be equal to 0.

adaptive_ref_pic_marking_mode_flag selects the reference picture marking mode of the currently decoded picture as
specified in Table 7-8. adaptive_ref_pic_marking_mode_flag shall be equal to 1 when the number of frames,
complementary field pairs, and non-paired fields that are currently marked as "used for long-term reference" is equal to
Max(max_num_ref_frames, 1).

Table 7-8 – Interpretation of adaptive_ref_pic_marking_mode_flag

adaptive_ref_pic_marking_mode_flag Reference picture marking mode specified

0 Sliding window reference picture marking mode: A marking mode
providing a first-in first-out mechanism for short-term reference
pictures.

1 Adaptive reference picture marking mode: A reference picture
marking mode providing syntax elements to specify marking of
reference pictures as "unused for reference" and to assign long-term
frame indices.

94 Rec. ITU-T H.264 (03/2009)

memory_management_control_operation specifies a control operation to be applied to affect the reference picture
marking. The memory_management_control_operation syntax element is followed by data necessary for the operation
specified by the value of memory_management_control_operation. The values and control operations associated with
memory_management_control_operation are specified in Table 7-9. The memory_management_control_operation
syntax elements are processed by the decoding process in the order in which they appear in the slice header, and the
semantics constraints expressed for each memory_management_control_operation apply at the specific position in that
order at which that individual memory_management_control_operation is processed.

For interpretation of memory_management_control_operation, the term reference picture is interpreted as follows.

– If the current picture is a frame, the term reference picture refers either to a reference frame or a complementary
reference field pair.

– Otherwise (the current picture is a field), the term reference picture refers either to a reference field or a field of a
reference frame.

memory_management_control_operation shall not be equal to 1 in a slice header unless the specified reference picture
is marked as "used for short-term reference" when the memory_management_control_operation is processed by the
decoding process.

memory_management_control_operation shall not be equal to 2 in a slice header unless the specified long-term picture
number refers to a reference picture that is marked as "used for long-term reference" when the
memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 3 in a slice header unless the specified reference picture
is marked as "used for short-term reference" when the memory_management_control_operation is processed by the
decoding process.

memory_management_control_operation shall not be equal to 3 or 6 if the value of the variable
MaxLongTermFrameIdx is equal to "no long-term frame indices" when the memory_management_control_operation is
processed by the decoding process.

Not more than one memory_management_control_operation equal to 4 shall be present in a slice header.

Not more than one memory_management_control_operation equal to 5 shall be present in a slice header.

Not more than one memory_management_control_operation equal to 6 shall be present in a slice header.

memory_management_control_operation shall not be equal to 5 in a slice header unless no
memory_management_control_operation in the range of 1 to 3 is present in the same decoded reference picture marking
syntax structure.

A memory_management_control_operation equal to 5 shall not follow a memory_management_control_operation equal
to 6 in the same slice header.

When a memory_management_control_operation equal to 6 is present, any memory_management_control_operation
equal to 2, 3, or 4 that follows the memory_management_control_operation equal to 6 within the same slice header
shall not specify the current picture to be marked as "unused for reference".

NOTE 2 – These constraints prohibit any combination of multiple memory_management_control_operation syntax elements that
would specify the current picture to be marked as "unused for reference". However, some other combinations of
memory_management_control_operation syntax elements are permitted that may affect the marking status of other reference
pictures more than once in the same slice header. In particular, it is permitted for a memory_management_control_operation
equal to 3 that specifies a long-term frame index to be assigned to a particular short-term reference picture to be followed in the
same slice header by a memory_management_control_operation equal to 2, 3, 4 or 6 that specifies the same reference picture to
subsequently be marked as "unused for reference".

 Rec. ITU-T H.264 (03/2009) 95

Table 7-9 – Memory management control operation (memory_management_control_operation) values

memory_management_control_operation Memory Management Control Operation
0 End memory_management_control_operation

syntax element loop
1 Mark a short-term reference picture as

"unused for reference"
2 Mark a long-term reference picture as

"unused for reference"
3 Mark a short-term reference picture as

"used for long-term reference" and assign a
long-term frame index to it

4 Specify the maximum long-term frame index
and mark all long-term reference pictures
having long-term frame indices greater than
the maximum value as "unused for reference"

5 Mark all reference pictures as
"unused for reference" and set the
MaxLongTermFrameIdx variable to
"no long-term frame indices"

6 Mark the current picture as
"used for long-term reference" and assign a
long-term frame index to it

When decoding a field and a memory_management_control_operation command equal to 3 is present that assigns a
long-term frame index to a field that is part of a short-term reference frame or part of a complementary reference field
pair, another memory_management_control_operation command (equal to 3 or 6) to assign the same long-term frame
index to the other field of the same frame or complementary reference field pair shall be present in the same decoded
reference picture marking syntax structure.

NOTE 3 – The above requirement must be fulfilled even when the field referred to by the
memory_management_control_operation equal to 3 is subsequently marked as "unused for reference" (for example when a
memory_management_control_operation equal to 2 is present in the same slice header that causes the field to be marked as
"unused for reference").
NOTE 4 – The above requirement has the following implications:
– When a memory_management_control_operation equal to 3 is present that assigns a long-term frame index to a field that is

part of a reference frame or complementary reference field pair with both fields marked as "used for short-term reference"
(when processing the memory_management_control_operation equal to 3), another memory_management_control_operation
equal to 3 must also be present in the same decoded reference picture marking syntax structure that assigns the same
long-term frame index to the other field of the reference frame or complementary reference field pair.

– When the current picture is the second field (in decoding order) of a complementary reference field pair and a
memory_management_control_operation equal to 3 is present in the decoded reference picture marking syntax structure of
the current picture that assigns a long-term frame index to the first field (in decoding order) of the complementary reference
field pair, a memory_management_control_operation equal to 6 must be present in the same decoded reference picture
marking syntax structure that assigns the same long-term frame index to the second field of the complementary reference
field pair.

When the first field (in decoding order) of a complementary reference field pair included a long_term_reference_flag
equal to 1 or a memory_management_control_operation command equal to 6, the decoded reference picture marking
syntax structure for the second field of the complementary reference field pair shall contain a
memory_management_control_operation command equal to 6 that assigns the same long-term frame index to the
second field.

NOTE 5 – The above requirement must be fulfilled even when the first field of the complementary reference field pair is
subsequently marked as "unused for reference" (for example, when a memory_management_control_operation equal to 2 is
present in the slice header of the second field that causes the first field to be marked as "unused for reference").

When the second field (in decoding order) of a complementary reference field pair includes a
memory_management_control_operation command equal to 6 that assigns a long-term frame index to this field and the
first field of the complementary reference field pair is marked as "used for short-term reference" when the
memory_management_control_operation command equal to 6 is processed by the decoding process, the decoded
reference picture marking syntax structure of that second field shall contain either a
memory_management_control_operation command equal to 1 that marks the first field of the complementary field pair
as "unused for reference" or a memory_management_control_operation command equal to 3 that marks the first field of

96 Rec. ITU-T H.264 (03/2009)

the complementary field pair as "used for long-term reference" and assigns the same long-term frame index to the first
field.

NOTE 6 – The above constraints specify that when both fields of a frame or a complementary field pair are marked as "used for
reference" after processing all memory_management_control_operation commands of the decoded reference picture marking
syntax structure, either both fields must be marked as "used for short-term reference" or both fields must be marked as "used for
long-term reference". When both fields are marked as "used for long-term reference", the same long-term frame index must be
assigned to both fields.

difference_of_pic_nums_minus1 is used (with memory_management_control_operation equal to 3 or 1) to assign a
long-term frame index to a short-term reference picture or to mark a short-term reference picture as "unused for
reference". When the associated memory_management_control_operation is processed by the decoding process, the
resulting picture number derived from difference_of_pic_nums_minus1 shall be a picture number assigned to one of the
reference pictures marked as "used for reference" and not previously assigned to a long-term frame index.

The resulting picture number is constrained as follows.

– If field_pic_flag is equal to 0, the resulting picture number shall be one of the set of picture numbers assigned to
reference frames or complementary reference field pairs.

NOTE 7 – When field_pic_flag is equal to 0, the resulting picture number must be a picture number assigned to a
complementary reference field pair in which both fields are marked as "used for reference" or a frame in which both
fields are marked as "used for reference". In particular, when field_pic_flag is equal to 0, the marking of a non-paired
field or a frame in which a single field is marked as "used for reference" cannot be affected by a
memory_management_control_operation equal to 1.

– Otherwise (field_pic_flag is equal to 1), the resulting picture number shall be one of the set of picture numbers
assigned to reference fields.

long_term_pic_num is used (with memory_management_control_operation equal to 2) to mark a long-term reference
picture as "unused for reference". When the associated memory_management_control_operation is processed by the
decoding process, long_term_pic_num shall be equal to a long-term picture number assigned to one of the reference
pictures that is currently marked as "used for long-term reference".

The resulting long-term picture number is constrained as follows.

– If field_pic_flag is equal to 0, the resulting long-term picture number shall be one of the set of long-term picture
numbers assigned to reference frames or complementary reference field pairs.

NOTE 8 – When field_pic_flag is equal to 0, the resulting long-term picture number must be a long-term picture
number assigned to a complementary reference field pair in which both fields are marked as "used for reference" or a
frame in which both fields are marked as "used for reference". In particular, when field_pic_flag is equal to 0, the
marking of a non-paired field or a frame in which a single field is marked as "used for reference" cannot be affected
by a memory_management_control_operation equal to 2.

– Otherwise (field_pic_flag is equal to 1), the resulting long-term picture number shall be one of the set of long-term
picture numbers assigned to reference fields.

long_term_frame_idx is used (with memory_management_control_operation equal to 3 or 6) to assign a long-term
frame index to a picture. When the associated memory_management_control_operation is processed by the decoding
process, the value of long_term_frame_idx shall be in the range of 0 to MaxLongTermFrameIdx, inclusive.

max_long_term_frame_idx_plus1 minus 1 specifies the maximum value of long-term frame index allowed for
long-term reference pictures (until receipt of another value of max_long_term_frame_idx_plus1). The value of
max_long_term_frame_idx_plus1 shall be in the range of 0 to max_num_ref_frames, inclusive.

7.4.4 Slice data semantics

cabac_alignment_one_bit is a bit equal to 1.

mb_skip_run specifies the number of consecutive skipped macroblocks for which, when decoding a P or SP slice,
mb_type shall be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type, or
for which, when decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively
referred to as a B macroblock type. The value of mb_skip_run shall be in the range of 0 to PicSizeInMbs −
CurrMbAddr, inclusive.

mb_skip_flag equal to 1 specifies that for the current macroblock, when decoding a P or SP slice, mb_type shall be
inferred to be P_Skip and the macroblock type is collectively referred to as P macroblock type, or for which, when
decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as B
macroblock type. mb_skip_flag equal to 0 specifies that the current macroblock is not skipped.

mb_field_decoding_flag equal to 0 specifies that the current macroblock pair is a frame macroblock pair.
mb_field_decoding_flag equal to 1 specifies that the macroblock pair is a field macroblock pair. Both macroblocks of a

 Rec. ITU-T H.264 (03/2009) 97

frame macroblock pair are referred to in the text as frame macroblocks, whereas both macroblocks of a field
macroblock pair are referred to in the text as field macroblocks.

When MbaffFrameFlag is equal to 0 (mb_field_decoding_flag is not present), mb_field_decoding_flag is inferred to be
equal to field_pic_flag.

When MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is not present for both the top and the bottom
macroblock of a macroblock pair, the value of mb_field_decoding_flag shall be inferred as follows.
– If there is a neighbouring macroblock pair immediately to the left of the current macroblock pair in the same slice,

the value of mb_field_decoding_flag is inferred to be equal to the value of mb_field_decoding_flag for the
neighbouring macroblock pair immediately to the left of the current macroblock pair,

– Otherwise, if there is no neighbouring macroblock pair immediately to the left of the current macroblock pair in
the same slice and there is a neighbouring macroblock pair immediately above the current macroblock pair in the
same slice, the value of mb_field_decoding_flag is inferred to be equal to the value of mb_field_decoding_flag for
the neighbouring macroblock pair immediately above the current macroblock pair,

– Otherwise (there is no neighbouring macroblock pair either immediately to the left or immediately above the
current macroblock pair in the same slice), the value of mb_field_decoding_flag is inferred to be equal to 0.

NOTE – When MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is not present for the top macroblock of a macroblock
pair (because the top macroblock is skipped), a decoder must wait until mb_field_decoding_flag for the bottom macroblock is
read (when the bottom macroblock is not skipped) or the value of mb_field_decoding_flag is inferred as specified above (when
the bottom macroblock is also skipped) before it starts the decoding process for the top macroblock.

end_of_slice_flag equal to 0 specifies that another macroblock is following in the slice. end_of_slice_flag equal to 1
specifies the end of the slice and that no further macroblock follows.

The function NextMbAddress() used in the slice data syntax table is specified in subclause 8.2.2.

7.4.5 Macroblock layer semantics

mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

Tables and semantics are specified for the various macroblock types for I, SI, P, SP, and B slices. Each table presents
the value of mb_type, the name of mb_type, the number of macroblock partitions used (given by the
NumMbPart(mb_type) function), the prediction mode of the macroblock (when it is not partitioned) or the first
partition (given by the MbPartPredMode(mb_type, 0) function) and the prediction mode of the second partition (given
by the MbPartPredMode(mb_type, 1) function). When a value is not applicable it is designated by "na". In the text, the
value of mb_type may be referred to as the macroblock type, the value of MbPartPredMode() may be referred to in the
text by "macroblock (partition) prediction mode", and a value X of MbPartPredMode() may be referred to in the text by
"X macroblock (partition) prediction mode" or as "X prediction macroblocks".

Table 7-10 shows the allowed collective macroblock types for each slice_type.
NOTE 1 – There are some macroblock types with Pred_L0 macroblock (partition) prediction mode(s) that are classified as B
macroblock types.

Table 7-10 – Allowed collective macroblock types for slice_type

slice_type allowed collective macroblock types

I (slice) I (see Table 7-11) (macroblock types)

P (slice) P (see Table 7-13) and I (see Table 7-11) (macroblock types)

B (slice) B (see Table 7-14) and I (see Table 7-11) (macroblock types)

SI (slice) SI (see Table 7-12) and I (see Table 7-11) (macroblock types)

SP (slice) P (see Table 7-13) and I (see Table 7-11) (macroblock types)

transform_size_8x8_flag equal to 1 specifies that for the current macroblock the transform coefficient decoding
process and picture construction process prior to deblocking filter process for residual 8x8 blocks shall be invoked for
luma samples, and when ChromaArrayType = = 3 also for Cb and Cr samples. transform_size_8x8_flag equal to 0
specifies that for the current macroblock the transform coefficient decoding process and picture construction process
prior to deblocking filter process for residual 4x4 blocks shall be invoked for luma samples, and when
ChromaArrayType = = 3 also for Cb and Cr samples. When transform_size_8x8_flag is not present in the bitstream, it
shall be inferred to be equal to 0.

98 Rec. ITU-T H.264 (03/2009)

NOTE 2 – When the current macroblock prediction mode MbPartPredMode(mb_type, 0) is equal to Intra_16x16,
transform_size_8x8_flag is not present in the bitstream and then inferred to be equal to 0.

When sub_mb_type[mbPartIdx] (see subclause 7.4.5.2) is present in the bitstream for all 8x8 blocks indexed by
mbPartIdx = 0..3, the variable noSubMbPartSizeLessThan8x8Flag indicates whether for each of the four 8x8 blocks the
corresponding SubMbPartWidth(sub_mb_type[mbPartIdx]) and SubMbPartHeight(sub_mb_type[mbPartIdx]) are
both equal to 8.

NOTE 3 – When noSubMbPartSizeLessThan8x8Flag is equal to 0 and the current macroblock type is not equal to I_NxN,
transform_size_8x8_flag is not present in the bitstream and then inferred to be equal to 0.

Macroblock types that may be collectively referred to as I macroblock types are specified in Table 7-11.

The macroblock types for I slices are all I macroblock types.

 Rec. ITU-T H.264 (03/2009) 99

Table 7-11 – Macroblock types for I slices

m
b_

ty
pe

N
am

e
of

 m
b_

ty
pe

tr
an

sf
or

m
_s

iz
e_

8x
8_

fla
g

M
bP

ar
tP

re
dM

od
e

(m
b_

ty
pe

, 0
)

In
tr

a1
6x

16
Pr

ed
M

od
e

C
od

ed
B

lo
ck

Pa
tt

er
nC

hr
om

a

C
od

ed
B

lo
ck

Pa
tt

er
nL

um
a

0 I_NxN 0 Intra_4x4 na Equation 7-35 Equation 7-35

0 I_NxN 1 Intra_8x8 na Equation 7-35 Equation 7-35

1 I_16x16_0_0_0 na Intra_16x16 0 0 0

2 I_16x16_1_0_0 na Intra_16x16 1 0 0

3 I_16x16_2_0_0 na Intra_16x16 2 0 0

4 I_16x16_3_0_0 na Intra_16x16 3 0 0

5 I_16x16_0_1_0 na Intra_16x16 0 1 0

6 I_16x16_1_1_0 na Intra_16x16 1 1 0

7 I_16x16_2_1_0 na Intra_16x16 2 1 0

8 I_16x16_3_1_0 na Intra_16x16 3 1 0

9 I_16x16_0_2_0 na Intra_16x16 0 2 0

10 I_16x16_1_2_0 na Intra_16x16 1 2 0

11 I_16x16_2_2_0 na Intra_16x16 2 2 0

12 I_16x16_3_2_0 na Intra_16x16 3 2 0

13 I_16x16_0_0_1 na Intra_16x16 0 0 15

14 I_16x16_1_0_1 na Intra_16x16 1 0 15

15 I_16x16_2_0_1 na Intra_16x16 2 0 15

16 I_16x16_3_0_1 na Intra_16x16 3 0 15

17 I_16x16_0_1_1 na Intra_16x16 0 1 15

18 I_16x16_1_1_1 na Intra_16x16 1 1 15

19 I_16x16_2_1_1 na Intra_16x16 2 1 15

20 I_16x16_3_1_1 na Intra_16x16 3 1 15

21 I_16x16_0_2_1 na Intra_16x16 0 2 15

22 I_16x16_1_2_1 na Intra_16x16 1 2 15

23 I_16x16_2_2_1 na Intra_16x16 2 2 15

24 I_16x16_3_2_1 na Intra_16x16 3 2 15

25 I_PCM na na na na na

100 Rec. ITU-T H.264 (03/2009)

The following semantics are assigned to the macroblock types in Table 7-11:

– I_NxN: A mnemonic name for mb_type equal to 0 with MbPartPredMode(mb_type, 0) equal to Intra_4x4 or
Intra_8x8.

– I_16x16_0_0_0, I_16x16_1_0_0, I_16x16_2_0_0, I_16x16_3_0_0, I_16x16_0_1_0, I_16x16_1_1_0,
I_16x16_2_1_0, I_16x16_3_1_0, I_16x16_0_2_0, I_16x16_1_2_0, I_16x16_2_2_0, I_16x16_3_2_0,
I_16x16_0_0_1, I_16x16_1_0_1, I_16x16_2_0_1, I_16x16_3_0_1, I_16x16_0_1_1, I_16x16_1_1_1,
I_16x16_2_1_1, I_16x16_3_1_1, I_16x16_0_2_1, I_16x16_1_2_1, I_16x16_2_2_1, I_16x16_3_2_1: the
macroblock is coded as an Intra_16x16 prediction mode macroblock.

To each Intra_16x16 prediction macroblock, an Intra16x16PredMode is assigned, which specifies the Intra_16x16
prediction mode, and values of CodedBlockPatternLuma and CodedBlockPatternChroma are assigned as specified in
Table 7-11.

Intra_4x4 specifies the macroblock prediction mode and specifies that the Intra_4x4 prediction process is invoked as
specified in subclause 8.3.1. Intra_4x4 is an Intra macroblock prediction mode.

Intra_8x8 specifies the macroblock prediction mode and specifies that the Intra_8x8 prediction process is invoked as
specified in subclause 8.3.2. Intra_8x8 is an Intra macroblock prediction mode.

Intra_16x16 specifies the macroblock prediction mode and specifies that the Intra_16x16 prediction process is invoked
as specified in subclause 8.3.3. Intra_16x16 is an Intra macroblock prediction mode.

For a macroblock coded with mb_type equal to I_PCM, the Intra macroblock prediction mode shall be inferred.

A macroblock type that may be referred to as SI macroblock type is specified in Table 7-12.

The macroblock types for SI slices are specified in Tables 7-12 and 7-11. The mb_type value 0 is specified in
Table 7-12 and the mb_type values 1 to 26 are specified in Table 7-11, indexed by subtracting 1 from the value of
mb_type.

Table 7-12 – Macroblock type with value 0 for SI slices

m
b_

ty
pe

N
am

e
of

 m
b_

ty
pe

M
bP

ar
tP

re
dM

od
e

(m
b_

ty
pe

, 0
)

In
tr

a1
6x

16
Pr

ed
M

od
e

C
od

ed
B

lo
ck

Pa
tt

er
nC

hr
om

a

C
od

ed
B

lo
ck

Pa
tt

er
nL

um
a

0 SI Intra_4x4 na Equation 7-35 Equation 7-35

The following semantics are assigned to the macroblock type in Table 7-12:

– The SI macroblock is coded as Intra_4x4 prediction macroblock.

Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7-13.

The macroblock types for P and SP slices are specified in Tables 7-13 and 7-11. mb_type values 0 to 4 are specified in
Table 7-13 and mb_type values 5 to 30 are specified in Table 7-11, indexed by subtracting 5 from the value of mb_type.

 Rec. ITU-T H.264 (03/2009) 101

Table 7-13 – Macroblock type values 0 to 4 for P and SP slices

m
b_

ty
pe

N
am

e
of

 m
b_

ty
pe

N
um

M
bP

ar
t

(m
b_

ty
pe

)

M
bP

ar
tP

re
dM

od
e

(m
b_

ty
pe

, 0
)

M
bP

ar
tP

re
dM

od
e

(m
b_

ty
pe

, 1
)

M
bP

ar
tW

id
th

(m

b_
ty

pe
)

M
bP

ar
tH

ei
gh

t
(m

b_
ty

pe
)

0 P_L0_16x16 1 Pred_L0 na 16 16

1 P_L0_L0_16x8 2 Pred_L0 Pred_L0 16 8

2 P_L0_L0_8x16 2 Pred_L0 Pred_L0 8 16

3 P_8x8 4 na na 8 8

4 P_8x8ref0 4 na na 8 8

inferred P_Skip 1 Pred_L0 na 16 16

The following semantics are assigned to the macroblock types in Table 7-13:

– P_L0_16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma
samples and associated chroma samples.

– P_L0_L0_MxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using
two luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated
chroma samples, respectively.

– P_8x8: for each sub-macroblock an additional syntax element (sub_mb_type[mbPartIdx] with mbPartIdx being
the macroblock partition index for the corresponding sub-macroblock) is present in the bitstream that specifies the
type of the corresponding sub-macroblock (see subclause 7.4.5.2).

– P_8x8ref0: has the same semantics as P_8x8 but no syntax element for the reference index
(ref_idx_l0[mbPartIdx] with mbPartIdx = 0..3) is present in the bitstream and ref_idx_l0[mbPartIdx] shall be
inferred to be equal to 0 for all sub-macroblocks of the macroblock (with indices mbPartIdx = 0..3).

– P_Skip: no further data is present for the macroblock in the bitstream.

The following semantics are assigned to the macroblock prediction modes (for macroblocks that are not partitioned) and
macroblock partition prediction modes (for macroblocks that are partitioned) specified by MbPartPredMode() in
Table 7-13:

– Pred_L0: specifies that the Inter prediction process is invoked using list 0 prediction. Pred_L0 is an Inter
macroblock prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction
mode (for macroblocks that are partitioned).

When mb_type is equal to any of the values specified in Table 7-13, the macroblock is coded in an Inter macroblock
prediction mode.

Macroblock types that may be collectively referred to as B macroblock types are specified in Table 7-14.

The macroblock types for B slices are specified in Tables 7-14 and 7-11. The mb_type values 0 to 22 are specified in
Table 7-14 and the mb_type values 23 to 48 are specified in Table 7-11, indexed by subtracting 23 from the value of
mb_type.

102 Rec. ITU-T H.264 (03/2009)

Table 7-14 – Macroblock type values 0 to 22 for B slices

m
b_

ty
pe

N
am

e
of

 m
b_

ty
pe

N
um

M
bP

ar
t

(m
b_

ty
pe

)

M
bP

ar
tP

re
dM

od
e

(m
b_

ty
pe

, 0
)

M
bP

ar
tP

re
dM

od
e

(m
b_

ty
pe

, 1
)

M
bP

ar
tW

id
th

(m

b_
ty

pe
)

M
bP

ar
tH

ei
gh

t
(m

b_
ty

pe
)

0 B_Direct_16x16 na Direct na 8 8

1 B_L0_16x16 1 Pred_L0 na 16 16

2 B_L1_16x16 1 Pred_L1 na 16 16

3 B_Bi_16x16 1 BiPred na 16 16

4 B_L0_L0_16x8 2 Pred_L0 Pred_L0 16 8

5 B_L0_L0_8x16 2 Pred_L0 Pred_L0 8 16

6 B_L1_L1_16x8 2 Pred_L1 Pred_L1 16 8

7 B_L1_L1_8x16 2 Pred_L1 Pred_L1 8 16

8 B_L0_L1_16x8 2 Pred_L0 Pred_L1 16 8

9 B_L0_L1_8x16 2 Pred_L0 Pred_L1 8 16

10 B_L1_L0_16x8 2 Pred_L1 Pred_L0 16 8

11 B_L1_L0_8x16 2 Pred_L1 Pred_L0 8 16

12 B_L0_Bi_16x8 2 Pred_L0 BiPred 16 8

13 B_L0_Bi_8x16 2 Pred_L0 BiPred 8 16

14 B_L1_Bi_16x8 2 Pred_L1 BiPred 16 8

15 B_L1_Bi_8x16 2 Pred_L1 BiPred 8 16

16 B_Bi_L0_16x8 2 BiPred Pred_L0 16 8

17 B_Bi_L0_8x16 2 BiPred Pred_L0 8 16

18 B_Bi_L1_16x8 2 BiPred Pred_L1 16 8

19 B_Bi_L1_8x16 2 BiPred Pred_L1 8 16

20 B_Bi_Bi_16x8 2 BiPred BiPred 16 8

21 B_Bi_Bi_8x16 2 BiPred BiPred 8 16

22 B_8x8 4 na na 8 8

inferred B_Skip na Direct na 8 8

The following semantics are assigned to the macroblock types in Table 7-14:

– B_Direct_16x16: no motion vector differences or reference indices are present for the macroblock in the bitstream.
The functions MbPartWidth(B_Direct_16x16), and MbPartHeight(B_Direct_16x16) are used in the derivation
process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

– B_X_16x16 with X being replaced by L0, L1, or Bi: the samples of the macroblock are predicted with one luma
macroblock partition of size 16x16 luma samples and associated chroma samples. For a macroblock with type
B_X_16x16 with X being replaced by either L0 or L1, one motion vector difference and one reference index is

 Rec. ITU-T H.264 (03/2009) 103

present in the bitstream for the macroblock. For a macroblock with type B_X_16x16 with X being replaced by Bi,
two motion vector differences and two reference indices are present in the bitstream for the macroblock.

– B_X0_X1_MxN, with X0, X1 referring to the first and second macroblock partition and being replaced by L0, L1,
or Bi, and MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two luma
partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated chroma
samples, respectively. For a macroblock partition X0 or X1 with X0 or X1 being replaced by either L0 or L1, one
motion vector difference and one reference index is present in the bitstream. For a macroblock partition X0 or X1
with X0 or X1 being replaced by Bi, two motion vector differences and two reference indices are present in the
bitstream for the macroblock partition.

– B_8x8: for each sub-macroblock an additional syntax element (sub_mb_type[mbPartIdx] with mbPartIdx being
the macroblock partition index for the corresponding sub-macroblock) is present in the bitstream that specifies the
type of the corresponding sub-macroblock (see subclause 7.4.5.2).

– B_Skip: no further data is present for the macroblock in the bitstream. The functions MbPartWidth(B_Skip), and
MbPartHeight(B_Skip) are used in the derivation process for motion vectors and reference frame indices in
subclause 8.4.1 for direct mode prediction.

The following semantics are assigned to the macroblock prediction modes (for macroblocks that are not partitioned) and
macroblock partition prediction modes (for macroblocks that are partitioned) specified by MbPartPredMode() in
Table 7-14:

– Direct: no motion vector differences or reference indices are present for the macroblock (in case of B_Skip or
B_Direct_16x16) in the bitstream. Direct is an Inter macroblock prediction mode (for macroblocks that are not
partitioned) and an Inter macroblock partition prediction mode (for macroblocks that are partitioned, see
Table 7-18).

– Pred_L0: the semantics specified for Table 7-13 apply.

– Pred_L1: specifies that the Inter prediction process is invoked using list 1 prediction. Pred_L1 is an Inter
macroblock prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction
mode (for macroblocks that are partitioned).

– BiPred: specifies that the Inter prediction process is invoked using list 0 and list 1 prediction. BiPred is an Inter
macroblock prediction mode (for macroblocks that are not partitioned) and an Inter macroblock partition prediction
mode (for macroblocks that are partitioned).

When mb_type is equal to any of the values specified in Table 7-14, the macroblock is coded in an Inter macroblock
prediction mode.

pcm_alignment_zero_bit is a bit equal to 0.

pcm_sample_luma[i] is a sample value. The pcm_sample_luma[i] values represent luma sample values in the raster
scan within the macroblock. The number of bits used to represent each of these samples is BitDepthY.

pcm_sample_chroma[i] is a sample value. The first MbWidthC * MbHeightC pcm_sample_chroma[i] values
represent Cb sample values in the raster scan within the macroblock and the remaining MbWidthC * MbHeightC
pcm_sample_chroma[i] values represent Cr sample values in the raster scan within the macroblock. The number of
bits used to represent each of these samples is BitDepthC.

coded_block_pattern specifies which of the four 8x8 luma blocks and associated chroma blocks of a macroblock may
contain non-zero transform coefficient levels. When coded_block_pattern is present in the bitstream, the variables
CodedBlockPatternLuma and CodedBlockPatternChroma are derived as

CodedBlockPatternLuma = coded_block_pattern % 16
CodedBlockPatternChroma = coded_block_pattern / 16 (7-35)

When the macroblock type is not equal to I_PCM, the following applies.

– If the macroblock prediction mode is equal Intra_16x16, the following applies.
– If ChromaArrayType is not equal to 3, the value of CodedBlockPatternLuma specifies the following.

– If CodedBlockPatternLuma is equal to 0, all AC transform coefficient levels of the luma component of
the macroblock are equal to 0 for all 16 of the 4x4 blocks in the 16x16 luma block.

104 Rec. ITU-T H.264 (03/2009)

– Otherwise (CodedBlockPatternLuma is not equal to 0), CodedBlockPatternLuma is equal to 15, at least
one of the AC transform coefficient levels of the luma component of the macroblock shall be non-zero,
and the AC transform coefficient levels are scanned for all 16 of the 4x4 blocks in the 16x16 block.

– Otherwise (ChromaArrayType is equal to 3), the value of CodedBlockPatternLuma specifies the following.
– If CodedBlockPatternLuma is equal to 0, all AC transform coefficient levels of the luma, Cb, and Cr

components of the macroblock are equal to 0 for all 16 of the 4x4 blocks in the luma, Cb, and Cr
components of the macroblock.

– Otherwise (CodedBlockPatternLuma is not equal to 0), CodedBlockPatternLuma is equal to 15, at least
one of the AC transform coefficient levels of the luma, Cb, or Cr components of the macroblock shall be
non-zero, and the AC transform coefficient levels are scanned for all 16 of the 4x4 blocks in the luma
Cb, and Cr components of the macroblock.

– Otherwise (the macroblock prediction mode is not equal to Intra_16x16), coded_block_pattern is present in the
bitstream, and the following applies.
– If ChromaArrayType is not equal to 3, each of the four LSBs of CodedBlockPatternLuma specifies, for one of

the four 8x8 luma blocks of the macroblock, the following.
– If the corresponding bit of CodedBlockPatternLuma is equal to 0, all transform coefficient levels of the

luma transform blocks in the 8x8 luma block are equal to zero.
– Otherwise (the corresponding bit of CodedBlockPatternLuma is equal to 1), one or more transform

coefficient levels of one or more of the luma transform blocks in the 8x8 luma block shall be non-zero
valued and the transform coefficient levels of the corresponding transform blocks are scanned.

– Otherwise (ChromaArrayType is equal to 3), each of the four LSBs of CodedBlockPatternLuma specifies, for
one of the four 8x8 luma blocks of the macroblock, the following.
– If the corresponding bit of CodedBlockPatternLuma is equal to 0, all transform coefficient levels of the

luma, Cb, and Cr transform blocks in the 8x8 luma block are equal to zero.
– Otherwise (the corresponding bit of CodedBlockPatternLuma is equal to 1), one or more transform

coefficient levels of one or more of the luma, Cb, or Cr transform blocks in the 8x8 luma block shall be
non-zero valued and the transform coefficient levels of the corresponding transform blocks are scanned.

When the macroblock type is not equal to I_PCM, CodedBlockPatternChroma is interpreted as follows.

– If ChromaArrayType is not equal to 0 or 3, CodedBlockPatternChroma is specified in Table 7-15.

– Otherwise (ChromaArrayType is equal to 0 or 3), the bitstream shall not contain data that result in a derived value
of CodedBlockPatternChroma that is not equal to 0.

Table 7-15 – Specification of CodedBlockPatternChroma values

CodedBlockPatternChroma Description

0 All chroma transform coefficient levels are equal to 0.

1 One or more chroma DC transform coefficient levels shall be non-zero valued.
All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels shall be non-zero valued.

mb_qp_delta can change the value of QPY in the macroblock layer. The decoded value of mb_qp_delta shall be in the
range of −(26 + QpBdOffsetY / 2) to +(25 + QpBdOffsetY / 2), inclusive. mb_qp_delta shall be inferred to be equal
to 0 when it is not present for any macroblock (including P_Skip and B_Skip macroblock types).

The value of QPY is derived as

QPY = ((QPY,PREV + mb_qp_delta + 52 + 2 * QpBdOffsetY) % (52 + QpBdOffsetY)) − QpBdOffsetY (7-36)

where QPY,PREV is the luma quantisation parameter, QPY, of the previous macroblock in decoding order in the current
slice. For the first macroblock in the slice QPY,PREV is initially set equal to SliceQPY derived in Equation 7-29 at the start
of each slice.

 Rec. ITU-T H.264 (03/2009) 105

The value of QP′Y is derived as

QP′Y = QPY + QpBdOffsetY (7-37)

The variable TransformBypassModeFlag is derived as follows.

– If qpprime_y_zero_transform_bypass_flag is equal to 1 and QP′Y is equal to 0, TransformBypassModeFlag is set
equal to 1.

– Otherwise (qpprime_y_zero_transform_bypass_flag is equal to 0 or QP′Y is not equal to 0),
TransformBypassModeFlag is set equal to 0.

7.4.5.1 Macroblock prediction semantics

All samples of the macroblock are predicted. The prediction modes are derived using the following syntax elements.

prev_intra4x4_pred_mode_flag[luma4x4BlkIdx] and rem_intra4x4_pred_mode[luma4x4BlkIdx] specify the
Intra_4x4 prediction of the 4x4 luma block with index luma4x4BlkIdx = 0..15. When ChromaArrayType is equal to 3,
prev_intra4x4_pred_mode_flag[luma4x4BlkIdx] and rem_intra4x4_pred_mode[luma4x4BlkIdx] also specify the
Intra_4x4 prediction of the 4x4 Cb block with luma4x4BlkIdx equal to cb4x4BlkIdx for cb4x4BlkIdx = 0..15 and the
Intra_4x4 prediction of the 4x4 Cr block with luma4x4BlkIdx equal to cr4x4BlkIdx for cr4x4BlkIdx = 0..15.

prev_intra8x8_pred_mode_flag[luma8x8BlkIdx] and rem_intra8x8_pred_mode[luma8x8BlkIdx] specify the
Intra_8x8 prediction of the 8x8 luma block with index luma8x8BlkIdx = 0..3. When ChromaArrayType is equal to 3,
prev_intra8x8_pred_mode_flag[luma8x8BlkIdx] and rem_intra8x8_pred_mode[luma8x8BlkIdx] also specify the
Intra_8x8 prediction of the 8x8 Cb block with luma8x8BlkIdx equal to cb8x8BlkIdx for cb8x8BlkIdx = 0..3 and the
Intra_8x8 prediction of the 8x8 Cr block with index luma8x8BlkIdx equal to cr8x8BlkIdx for cr8x8BlkIdx = 0..3.

intra_chroma_pred_mode specifies, when ChromaArrayType is equal to 1 or 2, the type of spatial prediction used for
chroma in macroblocks using Intra_4x4, Intra_8x8, or Intra_16x16 prediction, as shown in Table 7-16. The value of
intra_chroma_pred_mode shall be in the range of 0 to 3, inclusive.

Table 7-16 – Relationship between intra_chroma_pred_mode and spatial prediction modes

intra_chroma_pred_mode Intra Chroma Prediction Mode

0 DC

1 Horizontal

2 Vertical

3 Plane

ref_idx_l0[mbPartIdx] when present, specifies the index in reference picture list 0 of the reference picture to be used
for prediction.

The range of ref_idx_l0[mbPartIdx], the index in list 0 of the reference picture, and, if applicable, the parity of the
field within the reference picture used for prediction are specified as follows.

– If MbaffFrameFlag is equal to 0 or mb_field_decoding_flag is equal to 0, the value of ref_idx_l0[mbPartIdx] shall
be in the range of 0 to num_ref_idx_l0_active_minus1, inclusive.

– Otherwise (MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is equal to 1), the value of
ref_idx_l0[mbPartIdx] shall be in the range of 0 to 2 * num_ref_idx_l0_active_minus1 + 1, inclusive.

When only one reference picture is used for inter prediction, the values of ref_idx_l0[mbPartIdx] shall be inferred to
be equal to 0.

ref_idx_l1[mbPartIdx] has the same semantics as ref_idx_l0, with l0 and list 0 replaced by l1 and list 1, respectively.

mvd_l0[mbPartIdx][0][compIdx] specifies the difference between a vector component to be used and its prediction.
The index mbPartIdx specifies to which macroblock partition mvd_l0 is assigned. The partitioning of the macroblock is
specified by mb_type. The horizontal motion vector component difference is decoded first in decoding order and is
assigned compIdx = 0. The vertical motion vector component is decoded second in decoding order and is assigned
compIdx = 1. The range of the components of mvd_l0[mbPartIdx][0][compIdx] is specified by constraints on the
motion vector variable values derived from it as specified in Annex A.

106 Rec. ITU-T H.264 (03/2009)

mvd_l1[mbPartIdx][0][compIdx] has the same semantics as mvd_l0, with l0 and L0 replaced by l1 and L1,
respectively.

7.4.5.2 Sub-macroblock prediction semantics

sub_mb_type[mbPartIdx] specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P, and B macroblock types. Each table
presents the value of sub_mb_type[mbPartIdx], the name of sub_mb_type[mbPartIdx], the number of sub-
macroblock partitions used (given by the NumSubMbPart(sub_mb_type[mbPartIdx]) function), and the prediction
mode of the sub-macroblock (given by the SubMbPredMode(sub_mb_type[mbPartIdx]) function). In the text, the
value of sub_mb_type[mbPartIdx] may be referred to by "sub-macroblock type". In the text, the value of
SubMbPredMode() may be referred to by "sub-macroblock prediction mode" or "macroblock partition prediction
mode".

The interpretation of sub_mb_type[mbPartIdx] for P macroblock types is specified in Table 7-17, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartIdx] is not present.

Table 7-17 – Sub-macroblock types in P macroblocks

su
b_

m
b_

ty
pe

[m
bP

ar
tI

dx
]

N
am

e
of

su

b_
m

b_
ty

pe
[m

bP
ar

tI
dx

]

N
um

Su
bM

bP
ar

t
(s

ub
_m

b_
ty

pe
[m

bP
ar

tI
dx

]
)

Su
bM

bP
re

dM
od

e
(s

ub
_m

b_
ty

pe
[m

bP
ar

tI
dx

]
)

Su
bM

bP
ar

tW
id

th

(s
ub

_m
b_

ty
pe

[m
bP

ar
tI

dx
]

)

Su
bM

bP
ar

tH
ei

gh
t

(s
ub

_m
b_

ty
pe

[m
bP

ar
tI

dx
]

)

inferred na na na na na

0 P_L0_8x8 1 Pred_L0 8 8

1 P_L0_8x4 2 Pred_L0 8 4

2 P_L0_4x8 2 Pred_L0 4 8

3 P_L0_4x4 4 Pred_L0 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-17:

– P_L0_MxN, with MxN being replaced by 8x8, 8x4, 4x8, or 4x4: the samples of the sub-macroblock are predicted
using one luma partition of size MxN equal to 8x8, two luma partitions of size MxN equal to 8x4, or two luma
partitions of size MxN equal to 4x8, or four luma partitions of size MxN equal to 4x4, and associated chroma
samples, respectively.

The following semantics are assigned to the sub-macroblock prediction modes (or macroblock partition prediction
modes) specified by SubMbPredMode() in Table 7-17:

– Pred_L0: see semantics for Table 7-13.

 Rec. ITU-T H.264 (03/2009) 107

The interpretation of sub_mb_type[mbPartIdx] for B macroblock types is specified in Table 7-18, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartIdx] is not present, and the inferred value "mb_type"
specifies that the name of sub_mb_type[mbPartIdx] is the same as the name of mb_type for this case.

Table 7-18 – Sub-macroblock types in B macroblocks

su
b_

m
b_

ty
pe

[m
bP

ar
tI

dx
]

N
am

e
of

su

b_
m

b_
ty

pe
[m

bP
ar

tI
dx

]

N
um

Su
bM

bP
ar

t
(s

ub
_m

b_
ty

pe
[m

bP
ar

tI
dx

]
)

Su
bM

bP
re

dM
od

e
(s

ub
_m

b_
ty

pe
[m

bP
ar

tI
dx

]
)

Su
bM

bP
ar

tW
id

th

(s
ub

_m
b_

ty
pe

[m
bP

ar
tI

dx
]

)

Su
bM

bP
ar

tH
ei

gh
t

(s
ub

_m
b_

ty
pe

[m
bP

ar
tI

dx
]

)

inferred mb_type 4 Direct 4 4

0 B_Direct_8x8 4 Direct 4 4

1 B_L0_8x8 1 Pred_L0 8 8

2 B_L1_8x8 1 Pred_L1 8 8

3 B_Bi_8x8 1 BiPred 8 8

4 B_L0_8x4 2 Pred_L0 8 4

5 B_L0_4x8 2 Pred_L0 4 8

6 B_L1_8x4 2 Pred_L1 8 4

7 B_L1_4x8 2 Pred_L1 4 8

8 B_Bi_8x4 2 BiPred 8 4

9 B_Bi_4x8 2 BiPred 4 8

10 B_L0_4x4 4 Pred_L0 4 4

11 B_L1_4x4 4 Pred_L1 4 4

12 B_Bi_4x4 4 BiPred 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-18:

– B_Skip and B_Direct_16x16: no motion vector differences or reference indices are present for the sub-macroblock
in the bitstream. The functions SubMbPartWidth() and SubMbPartHeight() are used in the derivation process for
motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

– B_Direct_8x8: no motion vector differences or reference indices are present for the sub-macroblock in the
bitstream. The functions SubMbPartWidth(B_Direct_8x8) and SubMbPartHeight(B_Direct_8x8) are used in the
derivation process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

– B_X_MxN, with X being replaced by L0, L1, or Bi, and MxN being replaced by 8x8, 8x4, 4x8 or 4x4: the samples
of the sub-macroblock are predicted using one luma partition of size MxN equal to 8x8, or the samples of the sub-
macroblock are predicted using two luma partitions of size MxN equal to 8x4, or the samples of the sub-
macroblock are predicted using two luma partitions of size MxN equal to 4x8, or the samples of the sub-
macroblock are predicted using four luma partitions of size MxN equal to 4x4, and associated chroma samples,
respectively. All sub-macroblock partitions share the same reference index. For an MxN sub-macroblock partition
in a sub-macroblock with sub_mb_type[mbPartIdx] being B_X_MxN with X being replaced by either L0 or L1,
one motion vector difference is present in the bitstream. For an MxN sub-macroblock partition in a sub-
macroblock with sub_mb_type[mbPartIdx] being B_Bi_MxN, two motion vector difference are present in the
bitstream.

108 Rec. ITU-T H.264 (03/2009)

The following semantics are assigned to the sub-macroblock prediction modes (or macroblock partition prediction
modes) specified by SubMbPredMode() in Table 7-18:

– Direct: see semantics for Table 7-14.

– Pred_L0: see semantics for Table 7-13.

– Pred_L1: see semantics for Table 7-14.

– BiPred: see semantics for Table 7-14.

ref_idx_l0[mbPartIdx] has the same semantics as ref_idx_l0 in subclause 7.4.5.1.

ref_idx_l1[mbPartIdx] has the same semantics as ref_idx_l1 in subclause 7.4.5.1.

mvd_l0[mbPartIdx][subMbPartIdx][compIdx] has the same semantics as mvd_l0 in subclause 7.4.5.1, except that it
is applied to the sub-macroblock partition index with subMbPartIdx. The indices mbPartIdx and subMbPartIdx specify
to which macroblock partition and sub-macroblock partition mvd_l0 is assigned.

mvd_l1[mbPartIdx][subMbPartIdx][compIdx] has the same semantics as mvd_l1 in subclause 7.4.5.1.

7.4.5.3 Residual data semantics

The syntax structure residual_block(), which is used for parsing the transform coefficient levels, is assigned as follows.

– If entropy_coding_mode_flag is equal to 0, residual_block is set equal to residual_block_cavlc, which is used for
parsing the syntax elements for transform coefficient levels.

– Otherwise (entropy_coding_mode_flag is equal to 1), residual_block is set equal to residual_block_cabac, which is
used for parsing the syntax elements for transform coefficient levels.

The syntax structure residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8, startIdx, endIdx) is used with the
first four variables in brackets being its output and being assigned as follows.

Intra16x16DCLevel is set equal to i16x16DClevel, Intra16x16ACLevel is set equal to i16x16AClevel, LumaLevel is set
equal to level, and LumaLevel8x8 is set equal to level8x8.

When ChromaArrayType is equal to 1 or 2, the following applies:

– For each chroma component, indexed by iCbCr = 0..1, the DC transform coefficient levels of the 4 * NumC8x8
4x4 chroma blocks are parsed into the iCbCr-th list ChromaDCLevel[iCbCr].

– For each of the 4x4 chroma blocks, indexed by i4x4 = 0..3 and i8x8 = 0..NumC8x8 − 1, of each chroma
component, indexed by iCbCr = 0..1, the 15 AC transform coefficient levels are parsed into the (i8x8*4 + i4x4)-th
list of the iCbCr-th chroma component ChromaACLevel[iCbCr][i8x8*4 + i4x4].

When ChromaArrayType is equal to 3, the following applies:

– The syntax structure residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8, startIdx, endIdx) is used for
the Cb component with the first four variables in brackets being its output and being assigned as follows.
CbIntra16x16DCLevel is set equal to i16x16DClevel, CbIntra16x16ACLevel is set equal to i16x16AClevel,
CbLevel is set equal to level, and CbLevel8x8 is set equal to level8x8.

– The syntax structure residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8, startIdx, endIdx) is used for
the Cr component with the first four variables in brackets being its output and being assigned as follows.
CrIntra16x16DCLevel is set equal to i16x16DClevel, CrIntra16x16ACLevel is set equal to i16x16AClevel,
CrLevel is set equal to level, and CrLevel8x8 is set equal to level8x8.

7.4.5.3.1 Residual luma data semantics

Output of this syntax structure are the variables i16x16DClevel, i16x16AClevel, level, and level8x8.

The syntax structure residual_block(), which is used for parsing the transform coefficient levels, is assigned as follows.

– If entropy_coding_mode_flag is equal to 0, residual_block is set equal to residual_block_cavlc, which is used for
parsing the syntax elements for transform coefficient levels.

– Otherwise (entropy_coding_mode_flag is equal to 1), residual_block is set equal to residual_block_cabac, which is
used for parsing the syntax elements for transform coefficient levels.

 Rec. ITU-T H.264 (03/2009) 109

Depending on mb_type, the syntax structure residual_block(coeffLevel, startIdx, endIdx, maxNumCoeff) is used with
the arguments coeffLevel, which is a list containing the maxNumCoeff transform coefficient levels that are parsed in
residual_block(), startIdx, endIdx, and maxNumCoeff as follows.

Depending on MbPartPredMode(mb_type, 0), the following applies.

– If MbPartPredMode(mb_type, 0) is equal to Intra_16x16, the transform coefficient levels are parsed into the list
i16x16DClevel and into the 16 lists i16x16AClevel[i]. i16x16DClevel contains the 16 transform coefficient levels
of the DC transform coefficient levels for each 4x4 luma block. For each of the 16 4x4 luma blocks indexed by
i = 0..15, the 15 AC transform coefficients levels of the i-th block are parsed into the i-th list i16x16AClevel[i].

– Otherwise (MbPartPredMode(mb_type, 0) is not equal to Intra_16x16), the following applies.
– If transform_size_8x8_flag is equal to 0, for each of the 16 4x4 luma blocks indexed by i = 0..15, the 16

transform coefficient levels of the i-th block are parsed into the i-th list level[i].
– Otherwise (transform_size_8x8_flag is equal to 1), for each of the 4 8x8 luma blocks indexed by i8x8 = 0..3,

the following applies.
– If entropy_coding_mode_flag is equal to 0, first for each of the 4 4x4 luma blocks indexed by

i4x4 = 0..3, the 16 transform coefficient levels of the i4x4-th block are parsed into the (i8x8 * 4 + i4x4)-
th list level[i8x8 * 4 + i4x4]. Then, the 64 transform coefficient levels of the i8x8-th 8x8 luma block
which are indexed by 4 * i + i4x4, where i = 0..15 and i4x4 = 0..3, are derived as
level8x8[i8x8][4 * i + i4x4] = level[i8x8 * 4 + i4x4][i].
NOTE – The 4x4 luma blocks with luma4x4BlkIdx = i8x8 * 4 + i4x4 containing every fourth transform coefficient
level of the corresponding i8x8-th 8x8 luma block with offset i4x4 are assumed to represent spatial locations given
by the inverse 4x4 luma block scanning process in subclause 6.4.3.

– Otherwise (entropy_coding_mode_flag is equal to 1), the 64 transform coefficient levels of the i8x8-th
block are parsed into the i8x8-th list level8x8[i8x8].

7.4.5.3.2 Residual block CAVLC semantics

The function TotalCoeff(coeff_token) that is used in subclause 7.3.5.3.2 returns the number of non-zero transform
coefficient levels derived from coeff_token.

The function TrailingOnes(coeff_token) that is used in subclause 7.3.5.3.2 returns the trailing ones derived from
coeff_token.

coeff_token specifies the total number of non-zero transform coefficient levels and the number of trailing one transform
coefficient levels in a transform coefficient level scan. A trailing one transform coefficient level is one of up to three
consecutive non-zero transform coefficient levels having an absolute value equal to 1 at the end of a scan of non-zero
transform coefficient levels. The range of coeff_token is specified in subclause 9.2.1.

trailing_ones_sign_flag specifies the sign of a trailing one transform coefficient level as follows.

– If trailing_ones_sign_flag is equal to 0, the corresponding transform coefficient level is decoded as +1.

– Otherwise (trailing_ones_sign_flag equal to 1), the corresponding transform coefficient level is decoded as −1.

level_prefix and level_suffix specify the value of a non-zero transform coefficient level. The range of level_prefix and
level_suffix is specified in subclause 9.2.2.

total_zeros specifies the total number of zero-valued transform coefficient levels that are located before the position of
the last non-zero transform coefficient level in a scan of transform coefficient levels. The range of total_zeros is
specified in subclause 9.2.3.

run_before specifies the number of consecutive transform coefficient levels in the scan with zero value before a
non-zero valued transform coefficient level. The range of run_before is specified in subclause 9.2.3.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

7.4.5.3.3 Residual block CABAC semantics

coded_block_flag specifies whether the transform block contains non-zero transform coefficient levels as follows.

– If coded_block_flag is equal to 0, the transform block contains no non-zero transform coefficient levels.

– Otherwise (coded_block_flag is equal to 1), the transform block contains at least one non-zero transform
coefficient level.

110 Rec. ITU-T H.264 (03/2009)

When coded_block_flag is not present, it shall be inferred to be equal to 1.

significant_coeff_flag[i] specifies whether the transform coefficient level at scanning position i is non-zero as follows.

– If significant_coeff_flag[i] is equal to 0, the transform coefficient level at scanning position i is set equal to 0;

– Otherwise (significant_coeff_flag[i] is equal to 1), the transform coefficient level at scanning position i has a
non-zero value.

last_significant_coeff_flag[i] specifies for the scanning position i whether there are non-zero transform coefficient
levels for subsequent scanning positions i + 1 to maxNumCoeff − 1 as follows.

– If last_significant_coeff_flag[i] is equal to 1, all following transform coefficient levels (in scanning order) of the
block have value equal to 0.

– Otherwise (last_significant_coeff_flag[i] is equal to 0), there are further non-zero transform coefficient levels
along the scanning path.

coeff_abs_level_minus1[i] is the absolute value of a transform coefficient level minus 1. The value of
coeff_abs_level_minus1 is constrained by the limits in subclause 8.5.

coeff_sign_flag[i] specifies the sign of a transform coefficient level as follows.

– If coeff_sign_flag is equal to 0, the corresponding transform coefficient level has a positive value.

– Otherwise (coeff_sign_flag is equal to 1), the corresponding transform coefficient level has a negative value.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

8 Decoding process
Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).

Depending on the value of chroma_format_idc, the number of sample arrays of the current picture is as follows.

– If chroma_format_idc is equal to 0, the current picture consists of 1 sample array SL.

– Otherwise (chroma_format_idc is not equal to 0), the current picture consists of 3 sample arrays SL, SCb, SCr.

This clause describes the decoding process, given syntax elements and upper-case variables from clause 7.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding
process that produces identical results to the process described here conforms to the decoding process requirements of
this Recommendation | International Standard.

Each picture referred to in this clause is a complete primary coded picture or part of a primary coded picture. Each slice
referred to in this clause is a slice of a primary coded picture. Each slice data partition referred to in this clause is a slice
data partition of a primary coded picture.

Depending on the value of separate_colour_plane_flag, the decoding process is structured as follows.

– If separate_colour_plane_flag is equal to 0, the decoding process is invoked a single time with the current picture
being the output.

– Otherwise (separate_colour_plane_flag is equal to 1), the decoding process is invoked three times. Inputs to the
decoding process are all NAL units of the primary coded picture with identical value of colour_plane_id. The
decoding process of NAL units with a particular value of colour_plane_id is specified as if only a coded video
sequence with monochrome colour format with that particular value of colour_plane_id would be present in the
bitstream. The output of each of the three decoding processes is assigned to the 3 sample arrays of the current
picture with the NAL units with colour_plane_id equal to 0 being assigned to SL, the NAL units with
colour_plane_id equal to 1 being assigned to SCb, and the NAL units with colour_plane_id equal to 2 being
assigned to SCr.

NOTE – The variable ChromaArrayType is derived as 0 when separate_colour_plane_flag is equal to 1 and
chroma_format_idc is equal to 3. In the decoding process, the value of this variable is evaluated resulting in operations
identical to that of monochrome pictures with chroma_format_idc being equal to 0.

 Rec. ITU-T H.264 (03/2009) 111

An overview of the decoding process is given as follows:

1. The decoding of NAL units is specified in subclause 8.1.

2. The processes in subclause 8.2 specify decoding processes using syntax elements in the slice layer and above:

– Variables and functions relating to picture order count are derived in subclause 8.2.1. (only needed to be
invoked for one slice of a picture)

– Variables and functions relating to the macroblock to slice group map are derived in subclause 8.2.2.
(only needed to be invoked for one slice of a picture)

– The method of combining the various slice data partitions when slice data partitioning is used is
described in subclause 8.2.3.

– When the frame_num of the current picture is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum, the decoding process for gaps in frame_num is performed
according to subclause 8.2.5.2 prior to the decoding of any slices of the current picture.

– At the beginning of the decoding process for each P, SP, or B slice, the decoding process for reference
picture lists construction specified in subclause 8.2.4 is invoked for derivation of reference picture list 0
(RefPicList0), and when decoding a B slice, reference picture list 1 (RefPicList1).

– When the current picture is a reference picture and after all slices of the current picture have been
decoded, the decoded reference picture marking process in subclause 8.2.5 specifies how the current
picture is used in the decoding process of inter prediction in later decoded pictures.

3. The processes in subclauses 8.3, 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in the
macroblock layer and above.

– The intra prediction process for I and SI macroblocks, except for I_PCM macroblocks as specified in
subclause 8.3, has intra prediction samples as its output. For I_PCM macroblocks subclause 8.3 directly
specifies a picture construction process. The output are constructed samples prior to the deblocking filter
process.

– The inter prediction process for P and B macroblocks is specified in subclause 8.4 with inter prediction
samples being the output.

– The transform coefficient decoding process and picture construction process prior to deblocking filter
process are specified in subclause 8.5. That process derives samples for I and B macroblocks and for P
macroblocks in P slices. The output are constructed samples prior to the deblocking filter process.

– The decoding process for P macroblocks in SP slices or SI macroblocks is specified in subclause 8.6.
That process derives samples for P macroblocks in SP slices and for SI macroblocks. The output are
constructed samples prior to the deblocking filter process.

– The constructed samples prior to the deblocking filter process that are next to the edges of blocks and
macroblocks are processed by a deblocking filter as specified in subclause 8.7 with the output being the
decoded samples.

8.1 NAL unit decoding process

Inputs to this process are NAL units.

Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the
decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Subclause 8.2 describes the decoding process for NAL units with nal_unit_type equal to 1 through 5.

Subclauses 8.3 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1, 2, and 5.

Subclause 8.4 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1 and 2.

Subclause 8.5 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1 and 3 to 5.

112 Rec. ITU-T H.264 (03/2009)

Subclause 8.6 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1 and 3 to 5.

Subclause 8.7 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1 to 5.

NAL units with nal_unit_type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively.
Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture
parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of
other NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each
sequence.

No normative decoding process is specified for NAL units with nal_unit_type equal to 6, 9, 10, 11, and 12.

8.2 Slice decoding process

8.2.1 Decoding process for picture order count

Outputs of this process are TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if applicable).

Picture order counts are used to determine initial picture orderings for reference pictures in the decoding of B slices (see
subclauses 8.2.4.2.3 and 8.2.4.2.4), to determine co-located pictures (see subclause 8.4.1.2.1) for deriving motion
parameters in temporal or spatial direct mode, to represent picture order differences between frames or fields for motion
vector derivation in temporal direct mode (see subclause 8.4.1.2.3), for implicit mode weighted prediction in B slices
(see subclause 8.4.2.3.2), and for decoder conformance checking (see subclause C.4).

Picture order count information is derived for every frame, field (whether decoded from a coded field or as a part of a
decoded frame), or complementary field pair as follows:

– Each coded frame is associated with two picture order counts, called TopFieldOrderCnt and BottomFieldOrderCnt
for its top field and bottom field, respectively.

– Each coded field is associated with a picture order count, called TopFieldOrderCnt for a coded top field and
BottomFieldOrderCnt for a bottom field.

– Each complementary field pair is associated with two picture order counts, which are the TopFieldOrderCnt for its
coded top field and the BottomFieldOrderCnt for its coded bottom field, respectively.

TopFieldOrderCnt and BottomFieldOrderCnt indicate the picture order of the corresponding top field or bottom field
relative to the first output field of the previous IDR picture or the previous reference picture including a
memory_management_control_operation equal to 5 in decoding order.

TopFieldOrderCnt and BottomFieldOrderCnt are derived by invoking one of the decoding processes for picture order
count type 0, 1, and 2 in subclauses 8.2.1.1, 8.2.1.2, and 8.2.1.3, respectively. When the current picture includes a
memory_management_control_operation equal to 5, after the decoding of the current picture, tempPicOrderCnt is set
equal to PicOrderCnt(CurrPic), TopFieldOrderCnt of the current picture (if any) is set equal to
TopFieldOrderCnt − tempPicOrderCnt, and BottomFieldOrderCnt of the current picture (if any) is set equal to
BottomFieldOrderCnt − tempPicOrderCnt.

NOTE 1 – When the decoding process for a picture currPic that includes a memory_management_control_operation equal to 5
refers to the values of TopFieldOrderCnt (if applicable) or BottomFieldOrderCnt (if applicable) for the picture currPic (including
references to the function PicOrderCnt() with the picture currPic as the argument and references to the function
DiffPicOrderCnt() with one of the arguments being currPic), the values of TopFieldOrderCnt (if applicable) and
BottomFieldOrderCnt (if applicable) that are derived as specified in subclauses 8.2.1.1, 8.2.1.2, and 8.2.1.3 for the picture currPic
are used. When the decoding process for a picture refers to the values TopFieldOrderCnt (if applicable) or BottomFieldOrderCnt
(if applicable) of the previous picture prevMmco5Pic in decoding order that includes a memory_management_control_operation
equal to 5 (including references via the functions PicOrderCnt() or DiffPicOrderCnt()), the values of TopFieldOrderCnt (if
applicable) and BottomFieldOrderCnt (if applicable) that are used for the picture prevMmco5Pic are the values after the
modification specified in the paragraph above (resulting in TopFieldOrderCnt and/or BottomFieldOrderCnt equal to 0).

The bitstream shall not contain data that result in Min(TopFieldOrderCnt, BottomFieldOrderCnt) not equal to 0 for a
coded IDR frame, TopFieldOrderCnt not equal to 0 for a coded IDR top field, or BottomFieldOrderCnt not equal to 0
for a coded IDR bottom field. Thus, at least one of TopFieldOrderCnt and BottomFieldOrderCnt shall be equal to 0 for
the fields of a coded IDR frame.

When the current picture is not an IDR picture, the following applies.

1) Consider the list variable listD containing as elements the TopFieldOrderCnt and BottomFieldOrderCnt values
associated with the list of pictures including all of the following

a. The first picture in the list is the previous picture of any of the following types:

 Rec. ITU-T H.264 (03/2009) 113

– an IDR picture,
– a picture containing a memory_management_control_operation equal to 5.

b. The following additional pictures:
– If pic_order_cnt_type is equal to 0, all other pictures that follow in decoding order after the first

picture in the list and are not "non-existing" frames inferred by the decoding process for gaps in
frame_num specified in subclause 8.2.5.2 and either precede the current picture in decoding order or
are the current picture. When pic_order_cnt_type is equal to 0 and the current picture is not a
"non-existing" frame inferred by the decoding process for gaps in frame_num specified in
subclause 8.2.5.2, the current picture is included in listD prior to the invoking of the decoded
reference picture marking process.

– Otherwise (pic_order_cnt_type is not equal to 0), all other pictures that follow in decoding order
after the first picture in the list and either precede the current picture in decoding order or are the
current picture. When pic_order_cnt_type is not equal to 0, the current picture is included in listD
prior to the invoking of the decoded reference picture marking process.

2) Consider the list variable listO which contains the elements of listD sorted in ascending order. listO shall not
contain any of the following:

– a pair of TopFieldOrderCnt and BottomFieldOrderCnt for a frame or complementary field pair that are
not at consecutive positions in listO,

– a TopFieldOrderCnt that has a value equal to another TopFieldOrderCnt,
– a BottomFieldOrderCnt that has a value equal to another BottomFieldOrderCnt,
– a BottomFieldOrderCnt that has a value equal to a TopFieldOrderCnt unless the BottomFieldOrderCnt

and TopFieldOrderCnt belong to the same coded frame or complementary field pair.

The bitstream shall not contain data that result in values of TopFieldOrderCnt, BottomFieldOrderCnt, PicOrderCntMsb,
or FrameNumOffset used in the decoding process as specified in subclauses 8.2.1.1 to 8.2.1.3 that exceed the range of
values from −231 to 231 − 1, inclusive.

The function PicOrderCnt(picX) is specified as follows:

if(picX is a frame or a complementary field pair)
 PicOrderCnt(picX) = Min(TopFieldOrderCnt, BottomFieldOrderCnt) of the frame or complementary field
pair picX
else if(picX is a top field)
 PicOrderCnt(picX) = TopFieldOrderCnt of field picX (8-1)
else if(picX is a bottom field)
 PicOrderCnt(picX) = BottomFieldOrderCnt of field picX

Then DiffPicOrderCnt(picA, picB) is specified as follows:

DiffPicOrderCnt(picA, picB) = PicOrderCnt(picA) − PicOrderCnt(picB) (8-2)

The bitstream shall not contain data that result in values of DiffPicOrderCnt(picA, picB) used in the decoding process
that exceed the range of −215 to 215 − 1, inclusive.

NOTE 2 – Let X be the current picture and Y and Z be two other pictures in the same sequence, Y and Z are considered to be in
the same output order direction from X when both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are
negative.
NOTE 3 – Many encoders assign TopFieldOrderCnt and BottomFieldOrderCnt proportional to the sampling time of the
corresponding field (which is either a coded field or a field of a coded frame) relative to the sampling time of the first output field
of the previous IDR picture or the previous reference picture (in decoding order) that includes a
memory_management_control_operation equal to 5.

When the current picture includes a memory_management_control_operation equal to 5, PicOrderCnt(CurrPic) shall
be greater than PicOrderCnt(any other picture in listD).

8.2.1.1 Decoding process for picture order count type 0

This process is invoked when pic_order_cnt_type is equal to 0.

Input to this process is PicOrderCntMsb of the previous reference picture in decoding order as specified in this
subclause.

114 Rec. ITU-T H.264 (03/2009)

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

The variables prevPicOrderCntMsb and prevPicOrderCntLsb are derived as follows.

– If the current picture is an IDR picture, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal
to 0.

– Otherwise (the current picture is not an IDR picture), the following applies.

– If the previous reference picture in decoding order included a memory_management_control_operation equal
to 5, the following applies.

– If the previous reference picture in decoding order is not a bottom field, prevPicOrderCntMsb is set equal
to 0 and prevPicOrderCntLsb is set equal to the value of TopFieldOrderCnt for the previous reference
picture in decoding order.

– Otherwise (the previous reference picture in decoding order is a bottom field), prevPicOrderCntMsb is
set equal to 0 and prevPicOrderCntLsb is set equal to 0.

– Otherwise (the previous reference picture in decoding order did not include a
memory_management_control_operation equal to 5), prevPicOrderCntMsb is set equal to PicOrderCntMsb of
the previous reference picture in decoding order and prevPicOrderCntLsb is set equal to the value of
pic_order_cnt_lsb of the previous reference picture in decoding order.

PicOrderCntMsb of the current picture is derived as specified by the following pseudo-code:

if((pic_order_cnt_lsb < prevPicOrderCntLsb) &&
 ((prevPicOrderCntLsb − pic_order_cnt_lsb) >= (MaxPicOrderCntLsb / 2)))
 PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb (8-3)
else if((pic_order_cnt_lsb > prevPicOrderCntLsb) &&
 ((pic_order_cnt_lsb − prevPicOrderCntLsb) > (MaxPicOrderCntLsb / 2)))
 PicOrderCntMsb = prevPicOrderCntMsb − MaxPicOrderCntLsb
else
 PicOrderCntMsb = prevPicOrderCntMsb

When the current picture is not a bottom field, TopFieldOrderCnt is derived as

TopFieldOrderCnt = PicOrderCntMsb + pic_order_cnt_lsb (8-4)

When the current picture is not a top field, BottomFieldOrderCnt is derived as specified by the following pseudo-code:

if(!field_pic_flag)
 BottomFieldOrderCnt = TopFieldOrderCnt + delta_pic_order_cnt_bottom
else (8-5)
 BottomFieldOrderCnt = PicOrderCntMsb + pic_order_cnt_lsb

8.2.1.2 Decoding process for picture order count type 1

This process is invoked when pic_order_cnt_type is equal to 1.

Input to this process is FrameNumOffset of the previous picture in decoding order as specified in this subclause.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

The values of TopFieldOrderCnt and BottomFieldOrderCnt are derived as specified in this subclause. Let
prevFrameNum be equal to the frame_num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows.

– If the previous picture in decoding order included a memory_management_control_operation equal to 5,
prevFrameNumOffset is set equal to 0.

– Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE – When gaps_in_frame_num_value_allowed_flag is equal to 1, the previous picture in decoding order may be a
"non-existing" frame inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2.

 Rec. ITU-T H.264 (03/2009) 115

The variable FrameNumOffset is derived as specified by the following pseudo-code:

if(IdrPicFlag = = 1)
 FrameNumOffset = 0
else if(prevFrameNum > frame_num) (8-6)
 FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else
 FrameNumOffset = prevFrameNumOffset

The variable absFrameNum is derived as specified by the following pseudo-code:

if(num_ref_frames_in_pic_order_cnt_cycle != 0)
 absFrameNum = FrameNumOffset + frame_num
else (8-7)
 absFrameNum = 0
if(nal_ref_idc = = 0 && absFrameNum > 0)
 absFrameNum = absFrameNum − 1

When absFrameNum > 0, picOrderCntCycleCnt and frameNumInPicOrderCntCycle are derived as

picOrderCntCycleCnt = (absFrameNum − 1) / num_ref_frames_in_pic_order_cnt_cycle
frameNumInPicOrderCntCycle = (absFrameNum − 1) % num_ref_frames_in_pic_order_cnt_cycle (8-8)

The variable expectedPicOrderCnt is derived as specified by the following pseudo-code:

if(absFrameNum > 0){
 expectedPicOrderCnt = picOrderCntCycleCnt * ExpectedDeltaPerPicOrderCntCycle
 for(i = 0; i <= frameNumInPicOrderCntCycle; i++)
 expectedPicOrderCnt = expectedPicOrderCnt + offset_for_ref_frame[i]
} else
 expectedPicOrderCnt = 0
if(nal_ref_idc = = 0) (8-9)
 expectedPicOrderCnt = expectedPicOrderCnt + offset_for_non_ref_pic

The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as specified by the following pseudo-code:

if(!field_pic_flag) {
 TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order_cnt[0]
 BottomFieldOrderCnt = TopFieldOrderCnt +
 offset_for_top_to_bottom_field + delta_pic_order_cnt[1] (8-10)
} else if(!bottom_field_flag)
 TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order_cnt[0]
else
 BottomFieldOrderCnt = expectedPicOrderCnt + offset_for_top_to_bottom_field + delta_pic_order_cnt[0]

8.2.1.3 Decoding process for picture order count type 2

This process is invoked when pic_order_cnt_type is equal to 2.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

Let prevFrameNum be equal to the frame_num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows.

– If the previous picture in decoding order included a memory_management_control_operation equal to 5,
prevFrameNumOffset is set equal to 0.

– Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE 1 – When gaps_in_frame_num_value_allowed_flag is equal to 1, the previous picture in decoding order may be a
"non-existing" frame inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2.

116 Rec. ITU-T H.264 (03/2009)

The variable FrameNumOffset is derived as specified by the following pseudo-code:

if(IdrPicFlag = = 1)
 FrameNumOffset = 0
else if(prevFrameNum > frame_num) (8-11)
 FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else
 FrameNumOffset = prevFrameNumOffset

The variable tempPicOrderCnt is derived as specified by the following pseudo-code:

if(IdrPicFlag = = 1)
 tempPicOrderCnt = 0
else if(nal_ref_idc = = 0) (8-12)
 tempPicOrderCnt = 2 * (FrameNumOffset + frame_num) − 1
else
 tempPicOrderCnt = 2 * (FrameNumOffset + frame_num)

The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as specified by the following pseudo-code:

if(!field_pic_flag) {
 TopFieldOrderCnt = tempPicOrderCnt
 BottomFieldOrderCnt = tempPicOrderCnt (8-13)
} else if(bottom_field_flag)
 BottomFieldOrderCnt = tempPicOrderCnt
else
 TopFieldOrderCnt = tempPicOrderCnt

NOTE 2 – Picture order count type 2 cannot be used in a coded video sequence that contains consecutive non-reference pictures
that would result in more than one of these pictures having the same value of TopFieldOrderCnt or more than one of these
pictures having the same value of BottomFieldOrderCnt.
NOTE 3 – Picture order count type 2 results in an output order that is the same as the decoding order.

8.2.2 Decoding process for macroblock to slice group map

Inputs to this process are the active picture parameter set and the slice header of the slice to be decoded.

Output of this process is a macroblock to slice group map MbToSliceGroupMap.

This process is invoked at the start of every slice.
NOTE – The output of this process is equal for all slices of a picture.

When num_slice_groups_minus1 is equal to 1 and slice_group_map_type is equal to 3, 4, or 5, slice groups 0 and 1
have a size and shape determined by slice_group_change_direction_flag as shown in Table 8-1 and specified in
subclauses 8.2.2.4 to 8.2.2.6.

Table 8-1 – Refined slice group map type

slice_group_map_type slice_group_change_direction_flag refined slice group map type

3 0 Box-out clockwise
3 1 Box-out counter-clockwise
4 0 Raster scan
4 1 Reverse raster scan
5 0 Wipe right
5 1 Wipe left

In such a case, MapUnitsInSliceGroup0 slice group map units in the specified growth order are allocated for slice group
0 and the remaining PicSizeInMapUnits − MapUnitsInSliceGroup0 slice group map units of the picture are allocated for
slice group 1.

 Rec. ITU-T H.264 (03/2009) 117

When num_slice_groups_minus1 is equal to 1 and slice_group_map_type is equal to 4 or 5, the variable
sizeOfUpperLeftGroup is defined as follows:

sizeOfUpperLeftGroup = (slice_group_change_direction_flag ?
 (PicSizeInMapUnits − MapUnitsInSliceGroup0) : MapUnitsInSliceGroup0) (8-14)

The variable mapUnitToSliceGroupMap is derived as follows.

– If num_slice_groups_minus1 is equal to 0, the map unit to slice group map is generated for all i ranging from 0 to
PicSizeInMapUnits − 1, inclusive, as specified by

mapUnitToSliceGroupMap[i] = 0 (8-15)

– Otherwise (num_slice_groups_minus1 is not equal to 0), mapUnitToSliceGroupMap is derived as follows.
– If slice_group_map_type is equal to 0, the derivation of mapUnitToSliceGroupMap as specified in

subclause 8.2.2.1 applies.
– Otherwise, if slice_group_map_type is equal to 1, the derivation of mapUnitToSliceGroupMap as specified

in subclause 8.2.2.2 applies.
– Otherwise, if slice_group_map_type is equal to 2, the derivation of mapUnitToSliceGroupMap as specified

in subclause 8.2.2.3 applies.
– Otherwise, if slice_group_map_type is equal to 3, the derivation of mapUnitToSliceGroupMap as specified

in subclause 8.2.2.4 applies.
– Otherwise, if slice_group_map_type is equal to 4, the derivation of mapUnitToSliceGroupMap as specified

in subclause 8.2.2.5 applies.
– Otherwise, if slice_group_map_type is equal to 5, the derivation of mapUnitToSliceGroupMap as specified

in subclause 8.2.2.6 applies.
– Otherwise (slice_group_map_type is equal to 6), the derivation of mapUnitToSliceGroupMap as specified in

subclause 8.2.2.7 applies.

After derivation of the mapUnitToSliceGroupMap, the process specified in subclause 8.2.2.8 is invoked to convert the
map unit to slice group map mapUnitToSliceGroupMap to the macroblock to slice group map MbToSliceGroupMap.
After derivation of the macroblock to slice group map as specified in subclause 8.2.2.8, the function
NextMbAddress(n) is defined as the value of the variable nextMbAddress derived as specified by the following
pseudo-code:

i = n + 1
while(i < PicSizeInMbs && MbToSliceGroupMap[i] != MbToSliceGroupMap[n])
 i++;
nextMbAddress = i (8-16)

8.2.2.1 Specification for interleaved slice group map type

The specifications in this subclause apply when slice_group_map_type is equal to 0.

The map unit to slice group map is generated as specified by the following pseudo-code:

i = 0
do
 for(iGroup = 0; iGroup <= num_slice_groups_minus1 && i < PicSizeInMapUnits;
 i += run_length_minus1[iGroup++] + 1)
 for(j = 0; j <= run_length_minus1[iGroup] && i + j < PicSizeInMapUnits; j++)
 mapUnitToSliceGroupMap[i + j] = iGroup (8-17)
while(i < PicSizeInMapUnits)

8.2.2.2 Specification for dispersed slice group map type

The specifications in this subclause apply when slice_group_map_type is equal to 1.

118 Rec. ITU-T H.264 (03/2009)

The map unit to slice group map is generated as specified by the following pseudo-code:

for(i = 0; i < PicSizeInMapUnits; i++)
 mapUnitToSliceGroupMap[i] = ((i % PicWidthInMbs) +
 (((i / PicWidthInMbs) * (num_slice_groups_minus1 + 1)) / 2))
 % (num_slice_groups_minus1 + 1) (8-18)

8.2.2.3 Specification for foreground with left-over slice group map type

The specifications in this subclause apply when slice_group_map_type is equal to 2.

The map unit to slice group map is generated as specified by the following pseudo-code:

for(i = 0; i < PicSizeInMapUnits; i++)
 mapUnitToSliceGroupMap[i] = num_slice_groups_minus1
for(iGroup = num_slice_groups_minus1 − 1; iGroup >= 0; iGroup− −) {
 yTopLeft = top_left[iGroup] / PicWidthInMbs
 xTopLeft = top_left[iGroup] % PicWidthInMbs
 yBottomRight = bottom_right[iGroup] / PicWidthInMbs
 xBottomRight = bottom_right[iGroup] % PicWidthInMbs
 for(y = yTopLeft; y <= yBottomRight; y++)
 for(x = xTopLeft; x <= xBottomRight; x++)
 mapUnitToSliceGroupMap[y * PicWidthInMbs + x] = iGroup (8-19)
}

NOTE – The rectangles may overlap. Slice group 0 contains the macroblocks that are within the rectangle specified by
top_left[0] and bottom_right[0]. A slice group having slice group ID greater than 0 and less than num_slice_groups_minus1
contains the macroblocks that are within the specified rectangle for that slice group that are not within the rectangle specified for
any slice group having a smaller slice group ID. The slice group with slice group ID equal to num_slice_groups_minus1 contains
the macroblocks that are not in the other slice groups.

8.2.2.4 Specification for box-out slice group map types

The specifications in this subclause apply when slice_group_map_type is equal to 3.

The map unit to slice group map is generated as specified by

for(i = 0; i < PicSizeInMapUnits; i++)
 mapUnitToSliceGroupMap[i] = 1
x = (PicWidthInMbs − slice_group_change_direction_flag) / 2
y = (PicHeightInMapUnits − slice_group_change_direction_flag) / 2
(leftBound, topBound) = (x, y)
(rightBound, bottomBound) = (x, y)
(xDir, yDir) = (slice_group_change_direction_flag − 1, slice_group_change_direction_flag)
for(k = 0; k < MapUnitsInSliceGroup0; k += mapUnitVacant) {
 mapUnitVacant = (mapUnitToSliceGroupMap[y * PicWidthInMbs + x] = = 1)
 if(mapUnitVacant)
 mapUnitToSliceGroupMap[y * PicWidthInMbs + x] = 0 (8-20)
 if(xDir = = −1 && x = = leftBound) {
 leftBound = Max(leftBound − 1, 0)
 x = leftBound
 (xDir, yDir) = (0, 2 * slice_group_change_direction_flag − 1)
 } else if(xDir = = 1 && x = = rightBound) {
 rightBound = Min(rightBound + 1, PicWidthInMbs − 1)
 x = rightBound
 (xDir, yDir) = (0, 1 − 2 * slice_group_change_direction_flag)
 } else if(yDir = = −1 && y = = topBound) {
 topBound = Max(topBound − 1, 0)
 y = topBound
 (xDir, yDir) = (1 − 2 * slice_group_change_direction_flag, 0)
 } else if(yDir = = 1 && y = = bottomBound) {
 bottomBound = Min(bottomBound + 1, PicHeightInMapUnits − 1)
 y = bottomBound
 (xDir, yDir) = (2 * slice_group_change_direction_flag − 1, 0)
 } else

 Rec. ITU-T H.264 (03/2009) 119

 (x, y) = (x + xDir, y + yDir)
}

8.2.2.5 Specification for raster scan slice group map types

The specifications in this subclause apply when slice_group_map_type is equal to 4.

The map unit to slice group map is generated as specified by

for(i = 0; i < PicSizeInMapUnits; i++)
 if(i < sizeOfUpperLeftGroup)
 mapUnitToSliceGroupMap[i] = slice_group_change_direction_flag
 else (8-21)
 mapUnitToSliceGroupMap[i] = 1 − slice_group_change_direction_flag

8.2.2.6 Specification for wipe slice group map types

The specifications in this subclause apply when slice_group_map_type is equal to 5.

The map unit to slice group map is generated as specified by

k = 0;
for(j = 0; j < PicWidthInMbs; j++)
 for(i = 0; i < PicHeightInMapUnits; i++)
 if(k++ < sizeOfUpperLeftGroup)
 mapUnitToSliceGroupMap[i * PicWidthInMbs + j] = slice_group_change_direction_flag
 else (8-22)
 mapUnitToSliceGroupMap[i * PicWidthInMbs + j] = 1 − slice_group_change_direction_flag

8.2.2.7 Specification for explicit slice group map type

The specifications in this subclause apply when slice_group_map_type is equal to 6.

The map unit to slice group map is generated as specified by

mapUnitToSliceGroupMap[i] = slice_group_id[i] (8-23)

for all i ranging from 0 to PicSizeInMapUnits − 1, inclusive.

8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map

For each value of i ranging from 0 to PicSizeInMbs − 1, inclusive, the macroblock to slice group map is specified as
follows.
– If frame_mbs_only_flag is equal to 1 or field_pic_flag is equal to 1, the macroblock to slice group map is specified

by

MbToSliceGroupMap[i] = mapUnitToSliceGroupMap[i] (8-24)

– Otherwise, if MbaffFrameFlag is equal to 1, the macroblock to slice group map is specified by

MbToSliceGroupMap[i] = mapUnitToSliceGroupMap[i / 2] (8-25)

– Otherwise (frame_mbs_only_flag is equal to 0 and mb_adaptive_frame_field_flag is equal to 0 and field_pic_flag
is equal to 0), the macroblock to slice group map is specified by

MbToSliceGroupMap[i] = mapUnitToSliceGroupMap[(i / (2 * PicWidthInMbs)) * PicWidthInMbs
 + (i % PicWidthInMbs)] (8-26)

8.2.3 Decoding process for slice data partitions

Inputs to this process are
– a slice data partition A layer RBSP,

120 Rec. ITU-T H.264 (03/2009)

– when syntax elements of category 3 are present in the slice data, a slice data partition B layer RBSP having the
same slice_id as in the slice data partition A layer RBSP,

– when syntax elements of category 4 are present in the slice data, a slice data partition C layer RBSP having the
same slice_id as in the slice data partition A layer RBSP.

NOTE 1 – The slice data partition B layer RBSP and slice data partition C layer RBSP need not be present.

Output of this process is a coded slice.

When slice data partitioning is not used, coded slices are represented by a slice layer without partitioning RBSP that
contains a slice header followed by a slice data syntax structure that contains all the syntax elements of categories 2, 3,
and 4 (see category column in subclause 7.3) of the macroblock data for the macroblocks of the slice.

When slice data partitioning is used, the macroblock data of a slice is partitioned into one to three partitions contained
in separate NAL units. Partition A contains a slice data partition A header, and all syntax elements of category 2.
Partition B, when present, contains a slice data partition B header and all syntax elements of category 3. Partition C,
when present, contains a slice data partition C header and all syntax elements of category 4.

When slice data partitioning is used, the syntax elements of each category are parsed from a separate NAL unit, which
need not be present when no symbols of the respective category exist. The decoding process shall process the slice data
partitions of a coded slice in a manner equivalent to processing a corresponding slice layer without partitioning RBSP
by extracting each syntax element from the slice data partition in which the syntax element appears depending on the
slice data partition assignment in the syntax tables in subclause 7.3.

NOTE 2 – Syntax elements of category 3 are relevant to the decoding of residual data of I and SI macroblock types. Syntax
elements of category 4 are relevant to the decoding of residual data of P and B macroblock types. Category 2 encompasses all
other syntax elements related to the decoding of macroblocks, and their information is often denoted as header information. The
slice data partition A header contains all the syntax elements of the slice header, and additionally a slice_id that are used to
associate the slice data partitions B and C with the slice data partition A. The slice data partition B and C headers contain the
slice_id syntax element that establishes their association with the slice data partition A of the slice.

8.2.4 Decoding process for reference picture lists construction

This process is invoked at the beginning of the decoding process for each P, SP, or B slice.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified
by the bitstream and specified in subclause 8.2.5. Short-term reference pictures are identified by the value of
frame_num. Long-term reference pictures are assigned a long-term frame index as specified by the bitstream and
specified in subclause 8.2.5.

Subclause 8.2.4.1 is invoked to specify

– the assignment of variables FrameNum, FrameNumWrap, and PicNum to each of the short-term reference pictures,
and

– the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in subclause 8.4.2.1. A reference index is an
index into a reference picture list. When decoding a P or SP slice, there is a single reference picture list RefPicList0.
When decoding a B slice, there is a second independent reference picture list RefPicList1 in addition to RefPicList0.

At the beginning of the decoding process for each slice, reference picture list RefPicList0, and for B slices RefPicList1,
are derived as specified by the following ordered steps:

1. An initial reference picture list RefPicList0 and for B slices RefPicList1 are derived as specified in
subclause 8.2.4.2.

2. When ref_pic_list_modification_flag_l0 is equal to 1 or, when decoding a B slice,
ref_pic_list_modification_flag_l1 is equal to 1, the initial reference picture list RefPicList0 and, for B slices,
RefPicList1 are modified as specified in subclause 8.2.4.3.

NOTE – The modification process for reference picture lists specified in subclause 8.2.4.3 allows the contents of
RefPicList0 and for B slices RefPicList1 to be modified in a flexible fashion. In particular, it is possible for a picture
that is currently marked "used for reference" to be inserted into RefPicList0 and for B slices RefPicList1 even when
the picture is not in the initial reference picture list derived as specified in subclause 8.2.4.2.

The number of entries in the modified reference picture list RefPicList0 is num_ref_idx_l0_active_minus1 + 1, and for
B slices the number of entries in the modified reference picture list RefPicList1 is num_ref_idx_l1_active_minus1 + 1.
A reference picture may appear at more than one index in the modified reference picture lists RefPicList0 or
RefPicList1.

 Rec. ITU-T H.264 (03/2009) 121

8.2.4.1 Decoding process for picture numbers

This process is invoked when the decoding process for reference picture lists construction specified in subclause 8.2.4
or the decoded reference picture marking process specified in subclause 8.2.5 is invoked.

The variables FrameNum, FrameNumWrap, PicNum, LongTermFrameIdx, and LongTermPicNum are used for the
initialisation process for reference picture lists in subclause 8.2.4.2, the modification process for reference picture lists
in subclause 8.2.4.3, and for the decoded reference picture marking process in subclause 8.2.5.

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First,
FrameNum is set equal to the syntax element frame_num that has been decoded in the slice header(s) of the
corresponding short-term reference picture. Then the variable FrameNumWrap is derived as

if(FrameNum > frame_num)
 FrameNumWrap = FrameNum − MaxFrameNum (8-27)
else
 FrameNumWrap = FrameNum

where the value of frame_num used in Equation 8-27 is the frame_num in the slice header(s) for the current picture.

Each long-term reference picture has an associated value of LongTermFrameIdx (that was assigned to it as specified in
subclause 8.2.5).

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable
LongTermPicNum is assigned. The values of these variables depend on the value of field_pic_flag and
bottom_field_flag for the current picture and they are set as follows.

– If field_pic_flag is equal to 0, the following ordered steps are specified:

1. For each short-term reference frame or complementary reference field pair:

PicNum = FrameNumWrap (8-28)

2. For each long-term reference frame or long-term complementary reference field pair:

LongTermPicNum = LongTermFrameIdx (8-29)

NOTE – When decoding a frame the value of MbaffFrameFlag has no influence on the derivations in
subclauses 8.2.4.2, 8.2.4.3, and 8.2.5.

– Otherwise (field_pic_flag is equal to 1), the following ordered steps are specified:

1. For each short-term reference field the following applies.

– If the reference field has the same parity as the current field

PicNum = 2 * FrameNumWrap + 1 (8-30)

– Otherwise (the reference field has the opposite parity of the current field),

PicNum = 2 * FrameNumWrap (8-31)

2. For each long-term reference field the following applies.

– If the reference field has the same parity as the current field

LongTermPicNum = 2 * LongTermFrameIdx + 1 (8-32)

– Otherwise (the reference field has the opposite parity of the current field),

LongTermPicNum = 2 * LongTermFrameIdx (8-33)

8.2.4.2 Initialisation process for reference picture lists

This initialisation process is invoked when decoding a P, SP, or B slice header.

122 Rec. ITU-T H.264 (03/2009)

RefPicList0 and RefPicList1 have initial entries as specified in subclauses 8.2.4.2.1 through 8.2.4.2.5.

When the number of entries in the initial RefPicList0 or RefPicList1 produced as specified in subclauses 8.2.4.2.1
through 8.2.4.2.5 is greater than num_ref_idx_l0_active_minus1 + 1 or num_ref_idx_l1_active_minus1 + 1,
respectively, the extra entries past position num_ref_idx_l0_active_minus1 or num_ref_idx_l1_active_minus1 are
discarded from the initial reference picture list.

When the number of entries in the initial RefPicList0 or RefPicList1 produced as specified in subclauses 8.2.4.2.1
through 8.2.4.2.5 is less than num_ref_idx_l0_active_minus1 + 1 or num_ref_idx_l1_active_minus1 + 1, respectively,
the remaining entries in the initial reference picture list are set equal to "no reference picture".

8.2.4.2.1 Initialisation process for the reference picture list for P and SP slices in frames

This initialisation process is invoked when decoding a P or SP slice in a coded frame.

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is
currently marked as "used for reference" (i.e., as "used for short-term reference" or "used for long-term reference") and
is not marked as "non-existing".

The reference picture list RefPicList0 is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs.

The short-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the highest PicNum value and proceeding through in descending order to the frame or
complementary field pair with the lowest PicNum value.

The long-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the lowest LongTermPicNum value and proceeding through in ascending order to the
frame or complementary field pair with the highest LongTermPicNum value.

NOTE – A non-paired reference field is not used for inter prediction for decoding a frame, regardless of the value of
MbaffFrameFlag.

For example, when three reference frames are marked as "used for short-term reference" with PicNum equal to 300,
302, and 303 and two reference frames are marked as "used for long-term reference" with LongTermPicNum equal to 0
and 3, the initial index order is:

– RefPicList0[0] is set equal to the short-term reference picture with PicNum = 303,

– RefPicList0[1] is set equal to the short-term reference picture with PicNum = 302,

– RefPicList0[2] is set equal to the short-term reference picture with PicNum = 300,

– RefPicList0[3] is set equal to the long-term reference picture with LongTermPicNum = 0,

– RefPicList0[4] is set equal to the long-term reference picture with LongTermPicNum = 3.

8.2.4.2.2 Initialisation process for the reference picture list for P and SP slices in fields

This initialisation process is invoked when decoding a P or SP slice in a coded field.

When this process is invoked, there shall be at least one reference field (which can be a field of a reference frame) that
is currently marked as "used for reference" (i.e., as "used for short-term reference" or "used for long-term reference")
and is not marked as "non-existing".

Each field included in the reference picture list RefPicList0 has a separate index in the reference picture list
RefPicList0.

NOTE – When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Two ordered lists of reference frames, refFrameList0ShortTerm and refFrameList0LongTerm, are derived as follows.
For purposes of the formation of this list of frames, decoded reference frames, complementary reference field pairs,
non-paired reference fields and reference frames in which a single field is marked "used for short-term reference" or
"used for long-term reference" are all considered reference frames.

1. All frames having one or more fields marked "used for short-term reference" are included in the list of short-
term reference frames refFrameList0ShortTerm. When the current field is the second field (in decoding order)
of a complementary reference field pair and the first field is marked as "used for short-term reference", the first
field is included in the list of short-term reference frames refFrameList0ShortTerm. refFrameList0ShortTerm is
ordered starting with the reference frame with the highest FrameNumWrap value and proceeding through in
descending order to the reference frame with the lowest FrameNumWrap value.

 Rec. ITU-T H.264 (03/2009) 123

2. All frames having one or more fields marked "used for long-term reference" are included in the list of long-term
reference frames refFrameList0LongTerm. When the current field is the second field (in decoding order) of a
complementary reference field pair and the first field is marked as "used for long-term reference, the first field
is included in the list of long-term reference frames refFrameList0LongTerm. refFrameList0LongTerm is
ordered starting with the reference frame with the lowest LongTermFrameIdx value and proceeding through in
ascending order to the reference frame with the highest LongTermFrameIdx value.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameList0ShortTerm and refFrameList0LongTerm
given as input and the output is assigned to RefPicList0.

8.2.4.2.3 Initialisation process for reference picture lists for B slices in frames

This initialisation process is invoked when decoding a B slice in a coded frame.

For purposes of the formation of the reference picture lists RefPicList0 and RefPicList1 the term reference entry refers
in the following to decoded reference frames or complementary reference field pairs.

When this process is invoked, there shall be at least one reference entry that is currently marked as "used for reference"
(i.e., as "used for short-term reference" or "used for long-term reference") and is not marked as "non-existing".

For B slices, the order of short-term reference entries in the reference picture lists RefPicList0 and RefPicList1 depends
on output order, as given by PicOrderCnt(). When pic_order_cnt_type is equal to 0, reference pictures that are marked
as "non-existing" as specified in subclause 8.2.5.2 are not included in either RefPicList0 or RefPicList1.

NOTE 1 – When gaps_in_frame_num_value_allowed_flag is equal to 1, encoders should use reference picture list modification
to ensure proper operation of the decoding process (particularly when pic_order_cnt_type is equal to 0, in which case
PicOrderCnt() is not inferred for "non-existing" frames).

The reference picture list RefPicList0 is ordered such that short-term reference entries have lower indices than long-
term reference entries. It is ordered as follows:

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference". When some values of entryShortTerm are present having
PicOrderCnt(entryShortTerm) less than PicOrderCnt(CurrPic), these values of entryShortTerm are placed at
the beginning of refPicList0 in descending order of PicOrderCnt(entryShortTerm). All of the remaining
values of entryShortTerm (when present) are then appended to refPicList0 in ascending order of
PicOrderCnt(entryShortTerm).

2. The long-term reference entries are ordered starting with the long-term reference entry that has the lowest
LongTermPicNum value and proceeding through in ascending order to the long-term reference entry that has
the highest LongTermPicNum value.

The reference picture list RefPicList1 is ordered so that short-term reference entries have lower indices than long-term
reference entries. It is ordered as follows:

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference". When some values of entryShortTerm are present having
PicOrderCnt(entryShortTerm) greater than PicOrderCnt(CurrPic), these values of entryShortTerm are
placed at the beginning of refPicList1 in ascending order of PicOrderCnt(entryShortTerm). All of the
remaining values of entryShortTerm (when present) are then appended to refPicList1 in descending order of
PicOrderCnt(entryShortTerm).

2. Long-term reference entries are ordered starting with the long-term reference frame or complementary
reference field pair that has the lowest LongTermPicNum value and proceeding through in ascending order to
the long-term reference entry that has the highest LongTermPicNum value.

3. When the reference picture list RefPicList1 has more than one entry and RefPicList1 is identical to the
reference picture list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

NOTE 2 – A non-paired reference field is not used for inter prediction of frames (independent of the value of MbaffFrameFlag).

8.2.4.2.4 Initialisation process for reference picture lists for B slices in fields

This initialisation process is invoked when decoding a B slice in a coded field.

When this process is invoked, there shall be at least one reference field (which can be a field of a reference frame) that
is currently marked as "used for reference" (i.e., as "used for short-term reference" or "used for long-term reference")
and is not marked as "non-existing".

When decoding a field, each field of a stored reference frame is identified as a separate reference picture with a unique
index. The order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicList1 depend on

124 Rec. ITU-T H.264 (03/2009)

output order, as given by PicOrderCnt(). When pic_order_cnt_type is equal to 0, reference pictures that are marked as
"non-existing" as specified in subclause 8.2.5.2 are not included in either RefPicList0 or RefPicList1.

NOTE 1 – When gaps_in_frame_num_value_allowed_flag is equal to 1, encoders should use reference picture list modification
to ensure proper operation of the decoding process (particularly when pic_order_cnt_type is equal to 0, in which case
PicOrderCnt() is not inferred for "non-existing" frames).
NOTE 2 – When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Three ordered lists of reference frames, refFrameList0ShortTerm, refFrameList1ShortTerm and
refFrameListLongTerm, are derived as follows. For purposes of the formation of these lists of frames the term reference
entry refers in the following to decoded reference frames, complementary reference field pairs, or non-paired reference
fields. When pic_order_cnt_type is equal to 0, the term reference entry does not refer to frames that are marked as "non-
existing" as specified in subclause 8.2.5.2.

1. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference". When some values of entryShortTerm are present having
PicOrderCnt(entryShortTerm) less than or equal to PicOrderCnt(CurrPic), these values of entryShortTerm
are placed at the beginning of refFrameList0ShortTerm in descending order of PicOrderCnt(entryShortTerm).
All of the remaining values of entryShortTerm (when present) are then appended to refFrameList0ShortTerm
in ascending order of PicOrderCnt(entryShortTerm).

NOTE 3 – When the current field follows in decoding order a coded field fldPrev with which together it forms a
complementary reference field pair, fldPrev is included into the list refFrameList0ShortTerm using
PicOrderCnt(fldPrev) and the ordering method described in the previous sentence is applied.

2. Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for
short-term reference". When some values of entryShortTerm are present having
PicOrderCnt(entryShortTerm) greater than PicOrderCnt(CurrPic), these values of entryShortTerm are
placed at the beginning of refFrameList1ShortTerm in ascending order of PicOrderCnt(entryShortTerm). All
of the remaining values of entryShortTerm (when present) are then appended to refFrameList1ShortTerm in
descending order of PicOrderCnt(entryShortTerm).

NOTE 4 – When the current field follows in decoding order a coded field fldPrev with which together it forms a
complementary reference field pair, fldPrev is included into the list refFrameList1ShortTerm using
PicOrderCnt(fldPrev) and the ordering method described in the previous sentence is applied.

3. refFrameListLongTerm is ordered starting with the reference entry having the lowest LongTermFrameIdx
value and proceeding through in ascending order to the reference entry having highest LongTermFrameIdx
value.

NOTE 5 – When the current picture is the second field of a complementary field pair and the first field of the
complementary field pair is marked as "used for long-term reference", the first field is included into the list
refFrameListLongTerm. A reference entry in which only one field is marked as "used for long-term reference" is
included into the list refFrameListLongTerm.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameList0ShortTerm and refFrameListLongTerm
given as input and the output is assigned to RefPicList0.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameList1ShortTerm and refFrameListLongTerm
given as input and the output is assigned to RefPicList1.

When the reference picture list RefPicList1 has more than one entry and RefPicList1 is identical to the reference picture
list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

8.2.4.2.5 Initialisation process for reference picture lists in fields

Inputs of this process are the reference frame lists refFrameListXShortTerm (with X may be 0 or 1) and
refFrameListLongTerm.

The reference picture list RefPicListX is a list ordered such that short-term reference fields have lower indices than
long-term reference fields. Given the reference frame lists refFrameListXShortTerm and refFrameListLongTerm, it is
derived as specified by the following ordered steps:

1. Short-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListXShortTerm by alternating between fields of differing parity, starting with a field that has the
same parity as the current field (when present). When one field of a reference frame was not decoded or is not
marked as "used for short-term reference", the missing field is ignored and instead the next available stored
reference field of the chosen parity from the ordered list of frames refFrameListXShortTerm is inserted into
RefPicListX. When there are no more short-term reference fields of the alternate parity in the ordered list of
frames refFrameListXShortTerm, the next not yet indexed fields of the available parity are inserted into
RefPicListX in the order in which they occur in the ordered list of frames refFrameListXShortTerm.

 Rec. ITU-T H.264 (03/2009) 125

2. Long-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListLongTerm by alternating between fields of differing parity, starting with a field that has the same
parity as the current field (when present). When one field of a reference frame was not decoded or is not
marked as "used for long-term reference", the missing field is ignored and instead the next available stored
reference field of the chosen parity from the ordered list of frames refFrameListLongTerm is inserted into
RefPicListX. When there are no more long-term reference fields of the alternate parity in the ordered list of
frames refFrameListLongTerm, the next not yet indexed fields of the available parity are inserted into
RefPicListX in the order in which they occur in the ordered list of frames refFrameListLongTerm.

8.2.4.3 Modification process for reference picture lists

When ref_pic_list_modification_flag_l0 is equal to 1, the following applies:

1. Let refIdxL0 be an index into the reference picture list RefPicList0. It is initially set equal to 0.

2. The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

– If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.4.3.1
is invoked with refIdxL0 as input, and the output is assigned to refIdxL0.

– Otherwise, if modification_of_pic_nums_idc is equal to 2, the process specified in subclause 8.2.4.3.2 is
invoked with refIdxL0 as input, and the output is assigned to refIdxL0.

– Otherwise (modification_of_pic_nums_idc is equal to 3), the modification process for reference picture
list RefPicList0 is finished.

When the current slice is a B slice and ref_pic_list_modification_flag_l1 is equal to 1, the following applies:

1. Let refIdxL1 be an index into the reference picture list RefPicList1. It is initially set equal to 0.

2. The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

– If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.4.3.1
is invoked with refIdxL1 as input, and the output is assigned to refIdxL1.

– Otherwise, if modification_of_pic_nums_idc is equal to 2, the process specified in subclause 8.2.4.3.2 is
invoked with refIdxL1 as input, and the output is assigned to refIdxL1.

– Otherwise (modification_of_pic_nums_idc is equal to 3), the modification process for reference picture
list RefPicList1 is finished.

8.2.4.3.1 Modification process of reference picture lists for short-term reference pictures

Input to this process is an index refIdxLX (with X being 0 or 1).

Output of this process is an incremented index refIdxLX.

The variable picNumLXNoWrap is derived as follows.

– If modification_of_pic_nums_idc is equal to 0,

if(picNumLXPred − (abs_diff_pic_num_minus1 + 1) < 0)
 picNumLXNoWrap = picNumLXPred − (abs_diff_pic_num_minus1 + 1) + MaxPicNum (8-34)
else
 picNumLXNoWrap = picNumLXPred − (abs_diff_pic_num_minus1 + 1)

– Otherwise (modification_of_pic_nums_idc is equal to 1),

if(picNumLXPred + (abs_diff_pic_num_minus1 + 1) >= MaxPicNum)
 picNumLXNoWrap = picNumLXPred + (abs_diff_pic_num_minus1 + 1) − MaxPicNum (8-35)
else
 picNumLXNoWrap = picNumLXPred + (abs_diff_pic_num_minus1 + 1)

picNumLXPred is the prediction value for the variable picNumLXNoWrap. When the process specified in this
subclause is invoked the first time for a slice (that is, for the first occurrence of modification_of_pic_nums_idc equal
to 0 or 1 in the ref_pic_list_modification() syntax), picNumL0Pred and picNumL1Pred are initially set equal to

126 Rec. ITU-T H.264 (03/2009)

CurrPicNum. After each assignment of picNumLXNoWrap, the value of picNumLXNoWrap is assigned to
picNumLXPred.

The variable picNumLX is derived as specified by the following pseudo-code:

if(picNumLXNoWrap > CurrPicNum)
 picNumLX = picNumLXNoWrap − MaxPicNum (8-36)
else
 picNumLX = picNumLXNoWrap

picNumLX shall be equal to the PicNum of a reference picture that is marked as "used for short-term reference" and
shall not be equal to the PicNum of a short-term reference picture that is marked as "non-existing".

The following procedure is conducted to place the picture with short-term picture number picNumLX into the index
position refIdxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refIdxLX.

for(cIdx = num_ref_idx_lX_active_minus1 + 1; cIdx > refIdxLX; cIdx− −)
 RefPicListX[cIdx] = RefPicListX[cIdx − 1]
RefPicListX[refIdxLX++] = short-term reference picture with PicNum equal to picNumLX
nIdx = refIdxLX
for(cIdx = refIdxLX; cIdx <= num_ref_idx_lX_active_minus1 + 1; cIdx++) (8-37)
 if(PicNumF(RefPicListX[cIdx]) != picNumLX)
 RefPicListX[nIdx++] = RefPicListX[cIdx]

where the function PicNumF(RefPicListX[cIdx]) is derived as follows.
– If the picture RefPicListX[cIdx] is marked as "used for short-term reference", PicNumF(RefPicListX[cIdx]) is

the PicNum of the picture RefPicListX[cIdx].
– Otherwise (the picture RefPicListX[cIdx] is not marked as "used for short-term reference"),

PicNumF(RefPicListX[cIdx]) is equal to MaxPicNum.
NOTE 1 – A value of MaxPicNum can never be equal to picNumLX.

NOTE 2 – Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_lX_active_minus1 of
the list need to be retained.

8.2.4.3.2 Modification process of reference picture lists for long-term reference pictures

Input to this process is an index refIdxLX (with X being 0 or 1).

Output of this process is an incremented index refIdxLX.

The following procedure is conducted to place the picture with long-term picture number long_term_pic_num into the
index position refIdxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refIdxLX.

for(cIdx = num_ref_idx_lX_active_minus1 + 1; cIdx > refIdxLX; cIdx− −)
 RefPicListX[cIdx] = RefPicListX[cIdx − 1]
RefPicListX[refIdxLX++] = long-term reference picture with LongTermPicNum equal to long_term_pic_num
nIdx = refIdxLX
for(cIdx = refIdxLX; cIdx <= num_ref_idx_lX_active_minus1 + 1; cIdx++) (8-38)
 if(LongTermPicNumF(RefPicListX[cIdx]) != long_term_pic_num)
 RefPicListX[nIdx++] = RefPicListX[cIdx]

where the function LongTermPicNumF(RefPicListX[cIdx]) is derived as follows.
– If the picture RefPicListX[cIdx] is marked as "used for long-term reference",

LongTermPicNumF(RefPicListX[cIdx]) is the LongTermPicNum of the picture RefPicListX[cIdx].
– Otherwise (the picture RefPicListX[cIdx] is not marked as "used for long-term reference"),

LongTermPicNumF(RefPicListX[cIdx]) is equal to 2 * (MaxLongTermFrameIdx + 1).
NOTE 1 – A value of 2 * (MaxLongTermFrameIdx + 1) can never be equal to long_term_pic_num.

NOTE 2 – Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_lX_active_minus1 of
the list need to be retained.

 Rec. ITU-T H.264 (03/2009) 127

8.2.5 Decoded reference picture marking process

This process is invoked for decoded pictures when nal_ref_idc is not equal to 0.
NOTE – The decoding process for gaps in frame_num that is specified in subclause 8.2.5.2 may also be invoked when
nal_ref_idc is equal to 0, as specified in clause 8.

A decoded picture with nal_ref_idc not equal to 0, referred to as a reference picture, is marked as "used for short-term
reference" or "used for long-term reference". For a decoded reference frame, both of its fields are marked the same as
the frame. For a complementary reference field pair, the pair is marked the same as both of its fields. A picture that is
marked as "used for short-term reference" is identified by its FrameNum and, when it is a field, by its parity. A picture
that is marked as "used for long-term reference" is identified by its LongTermFrameIdx and, when it is a field, by its
parity.

Frames or complementary field pairs marked as "used for short-term reference" or as "used for long-term reference" can
be used as a reference for inter prediction when decoding a frame until the frame, the complementary field pair, or one
of its constituent fields is marked as "unused for reference". A field marked as "used for short-term reference" or as
"used for long-term reference" can be used as a reference for inter prediction when decoding a field until marked as
"unused for reference".

A picture can be marked as "unused for reference" by the sliding window reference picture marking process, a first-in,
first-out mechanism specified in subclause 8.2.5.3 or by the adaptive memory control reference picture marking
process, a customised adaptive marking operation specified in subclause 8.2.5.4.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and
FrameNumWrap and its picture number PicNum, and a long-term reference picture is identified for use in the decoding
process by its long-term picture number LongTermPicNum. When the current picture is not an IDR picture,
subclause 8.2.4.1 is invoked to specify the assignment of the variables FrameNum, FrameNumWrap, PicNum and
LongTermPicNum.

8.2.5.1 Sequence of operations for decoded reference picture marking process

Decoded reference picture marking proceeds in the following ordered steps:

1. All slices of the current picture are decoded.

2. Depending on whether the current picture is an IDR picture, the following applies.

– If the current picture is an IDR picture, the following ordered steps are specified:

a. All reference pictures are marked as "unused for reference"

b. Depending on long_term_reference_flag, the following applies.

– If long_term_reference_flag is equal to 0, the IDR picture is marked as "used for short-term
reference" and MaxLongTermFrameIdx is set equal to "no long-term frame indices".

– Otherwise (long_term_reference_flag is equal to 1), the IDR picture is marked as "used for
long-term reference", the LongTermFrameIdx for the IDR picture is set equal to 0, and
MaxLongTermFrameIdx is set equal to 0.

– Otherwise (the current picture is not an IDR picture), the following applies.

– If adaptive_ref_pic_marking_mode_flag is equal to 0, the process specified in subclause 8.2.5.3 is
invoked.

– Otherwise (adaptive_ref_pic_marking_mode_flag is equal to 1), the process specified in
subclause 8.2.5.4 is invoked.

3. When the current picture is not an IDR picture and it was not marked as "used for long-term reference" by
memory_management_control_operation equal to 6, it is marked as "used for short-term reference".

It is a requirement of bitstream conformance that, after marking the current decoded reference picture, the total number
of frames with at least one field marked as "used for reference", plus the number of complementary field pairs with at
least one field marked as "used for reference", plus the number of non-paired fields marked as "used for reference" shall
not be greater than Max(max_num_ref_frames, 1).

8.2.5.2 Decoding process for gaps in frame_num

This process is invoked when frame_num is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum.

128 Rec. ITU-T H.264 (03/2009)

NOTE 1 – Although this process is specified as a subclause within subclause 8.2.5 (which defines a process that is invoked only
when nal_ref_idc is not equal to 0), this process may also be invoked when nal_ref_idc is equal to 0 (as specified in clause 8).
The reasons for the location of this subclause within the structure of this Recommendation | International Standard are historical.
NOTE 2 – This process can only be invoked for a conforming bitstream when gaps_in_frame_num_value_allowed_flag is equal
to 1. When gaps_in_frame_num_value_allowed_flag is equal to 0 and frame_num is not equal to PrevRefFrameNum and is not
equal to (PrevRefFrameNum + 1) % MaxFrameNum, the decoding process should infer an unintentional loss of pictures.

When this process is invoked, a set of values of frame_num pertaining to "non-existing" pictures is derived as all values
taken on by UnusedShortTermFrameNum in Equation 7-23 except the value of frame_num for the current picture.

The decoding process generates and marks a frame for each of the values of frame_num pertaining to "non-existing"
pictures, in the order in which the values of UnusedShortTermFrameNum are generated by Equation 7-23, using the
"sliding window" picture marking process as specified in subclause 8.2.5.3. The generated frames are also marked as
"non-existing" and "used for short-term reference". The sample values of the generated frames may be set to any value.

The following constraints shall be obeyed:

a) The bitstream shall not contain data that result in the derivation of a co-located picture colPic that is marked as
"non-existing" in any invocation of the derivation process for the co-located 4x4 sub-macroblock partitions
specified in subclause 8.4.1.2.1.

b) The bitstream shall not contain data that result in the derivation of a reference picture that is marked as
"non-existing" in any invocation of the reference picture selection process specified in subclause 8.4.2.1.

c) The bitstream shall not contain data that result in a variable picNumLX that is equal to the PicNum of a
picture marked as "non-existing" in any invocation of the modification process for reference picture lists for
short-term reference pictures specified in subclause 8.2.4.3.1.

d) The bitstream shall not contain data that result in a variable picNumLX that is equal to the PicNum of a
picture marked as "non-existing" in any invocation of the assignment process of a LongTermFrameIdx to a
short-term reference picture specified in subclause 8.2.5.4.3.

NOTE 3 – The above constraints specify that frames that are marked as "non-existing" by the process specified in this
subclause must not be referenced in the inter prediction process (subclause 8.4, including the derivation process for co-located
4x4 sub-macroblock partitions in subclause 8.4.1.2.1), the modification commands for reference picture lists for short-term
reference pictures (subclause 8.2.4.3.1), or the assignment process of a LongTermFrameIdx to a short-term reference picture
(subclause 8.2.5.4.3).

When pic_order_cnt_type is not equal to 0, TopFieldOrderCnt and BottomFieldOrderCnt are derived for each of the
"non-existing" frames by invoking the decoding process for picture order count in subclause 8.2.1. When invoking the
process in subclause 8.2.1 for a particular "non-existing" frame, the current picture is considered to be a picture
considered having frame_num inferred to be equal to UnusedShortTermFrameNum, nal_ref_idc inferred to be not equal
to 0, nal_unit_type inferred to be not equal to 5, IdrPicFlag inferred to be equal to 0, field_pic_flag inferred to be equal
to 0, adaptive_ref_pic_marking_mode_flag inferred to be equal to 0, delta_pic_order_cnt[0] (if needed) inferred to be
equal to 0, and delta_pic_order_cnt[1] (if needed) inferred to be equal to 0.

NOTE 4 – The decoding process should infer an unintentional picture loss when any of these values of frame_num pertaining to
"non-existing" pictures is referred to in the inter prediction process (subclause 8.4, including the derivation process for the
co-located 4x4 sub-macroblock partitions in subclause 8.4.1.2.1), is referred to in the modification commands for reference
picture lists for short-term reference pictures (subclause 8.2.4.3.1), or is referred to in the assignment process of a
LongTermFrameIdx to a short-term reference picture (subclause 8.2.5.4.3). The decoding process should not infer an
unintentional picture loss when a memory management control operation not equal to 3 is applied to a frame marked as "non-
existing".

8.2.5.3 Sliding window decoded reference picture marking process

This process is invoked when adaptive_ref_pic_marking_mode_flag is equal to 0.

Depending on the properties of the current picture as specified below, the following applies.

– If the current picture is a coded field that is the second field in decoding order of a complementary reference field
pair, and the first field has been marked as "used for short-term reference", the current picture and the
complementary reference field pair are also marked as "used for short-term reference".

– Otherwise, the following applies:

1. Let numShortTerm be the total number of reference frames, complementary reference field pairs and
non-paired reference fields for which at least one field is marked as "used for short-term reference". Let
numLongTerm be the total number of reference frames, complementary reference field pairs and non-paired
reference fields for which at least one field is marked as "used for long-term reference".

 Rec. ITU-T H.264 (03/2009) 129

2. When numShortTerm + numLongTerm is equal to Max(max_num_ref_frames, 1), the condition that
numShortTerm is greater than 0 shall be fulfilled, and the short-term reference frame, complementary
reference field pair or non-paired reference field that has the smallest value of FrameNumWrap is marked as
"unused for reference". When it is a frame or a complementary field pair, both of its fields are also marked as
"unused for reference".

8.2.5.4 Adaptive memory control decoded reference picture marking process

This process is invoked when adaptive_ref_pic_marking_mode_flag is equal to 1.

The memory_management_control_operation commands with values of 1 to 6 are processed in the order they occur in
the bitstream after the current picture has been decoded. For each of these memory_management_control_operation
commands, one of the processes specified in subclauses 8.2.5.4.1 to 8.2.5.4.6 is invoked depending on the value of
memory_management_control_operation. The memory_management_control_operation command with value of 0
specifies the end of memory_management_control_operation commands.

Memory management control operations are applied to pictures as follows.

– If field_pic_flag is equal to 0, memory_management_control_operation commands are applied to the frames or
complementary reference field pairs specified.

– Otherwise (field_pic_flag is equal to 1), memory_management_control_operation commands are applied to the
individual reference fields specified.

8.2.5.4.1 Marking process of a short-term reference picture as "unused for reference"

This process is invoked when memory_management_control_operation is equal to 1.

Let picNumX be specified by

picNumX = CurrPicNum − (difference_of_pic_nums_minus1 + 1). (8-39)

Depending on field_pic_flag the value of picNumX is used to mark a short-term reference picture as "unused for
reference" as follows.

– If field_pic_flag is equal to 0, the short-term reference frame or short-term complementary reference field pair
specified by picNumX and both of its fields are marked as "unused for reference".

– Otherwise (field_pic_flag is equal to 1), the short-term reference field specified by picNumX is marked as "unused
for reference". When that reference field is part of a reference frame or a complementary reference field pair, the
frame or complementary field pair is also marked as "unused for reference", but the marking of the other field is
not changed.

8.2.5.4.2 Marking process of a long-term reference picture as "unused for reference"

This process is invoked when memory_management_control_operation is equal to 2.

Depending on field_pic_flag the value of LongTermPicNum is used to mark a long-term reference picture as "unused
for reference" as follows.

– If field_pic_flag is equal to 0, the long-term reference frame or long-term complementary reference field pair
having LongTermPicNum equal to long_term_pic_num and both of its fields are marked as "unused for reference".

– Otherwise (field_pic_flag is equal to 1), the long-term reference field specified by LongTermPicNum equal to
long_term_pic_num is marked as "unused for reference". When that reference field is part of a reference frame or a
complementary reference field pair, the frame or complementary field pair is also marked as "unused for
reference", but the marking of the other field is not changed.

8.2.5.4.3 Assignment process of a LongTermFrameIdx to a short-term reference picture

This process is invoked when memory_management_control_operation is equal to 3.

Given the syntax element difference_of_pic_nums_minus1, the variable picNumX is obtained as specified in
subclause 8.2.5.4.1. picNumX shall refer to a frame or complementary reference field pair or non-paired reference field
marked as "used for short-term reference" and not marked as "non-existing".

When LongTermFrameIdx equal to long_term_frame_idx is already assigned to a long-term reference frame or a
long-term complementary reference field pair, that frame or complementary field pair and both of its fields are marked
as "unused for reference". When LongTermFrameIdx is already assigned to a reference field, and that reference field is

130 Rec. ITU-T H.264 (03/2009)

not part of a complementary field pair that includes the picture specified by picNumX, that field is marked as "unused
for reference".

Depending on field_pic_flag the value of LongTermFrameIdx is used to mark a picture from "used for short-term
reference" to "used for long-term reference" as follows.

– If field_pic_flag is equal to 0, the marking of the short-term reference frame or short-term complementary
reference field pair specified by picNumX and both of its fields are changed from "used for short-term reference"
to "used for long-term reference" and assigned LongTermFrameIdx equal to long_term_frame_idx.

– Otherwise (field_pic_flag is equal to 1), the marking of the short-term reference field specified by picNumX is
changed from "used for short-term reference" to "used for long-term reference" and assigned LongTermFrameIdx
equal to long_term_frame_idx. When the field is part of a reference frame or a complementary reference field pair,
and the other field of the same reference frame or complementary reference field pair is also marked as "used for
long-term reference", the reference frame or complementary reference field pair is also marked as "used for
long-term reference" and assigned LongTermFrameIdx equal to long_term_frame_idx.

8.2.5.4.4 Decoding process for MaxLongTermFrameIdx

This process is invoked when memory_management_control_operation is equal to 4.

All pictures for which LongTermFrameIdx is greater than max_long_term_frame_idx_plus1 − 1 and that are marked as
"used for long-term reference" are marked as "unused for reference".

The variable MaxLongTermFrameIdx is derived as follows.

– If max_long_term_frame_idx_plus1 is equal to 0, MaxLongTermFrameIdx is set equal to "no long-term frame
indices".

– Otherwise (max_long_term_frame_idx_plus1 is greater than 0), MaxLongTermFrameIdx is set equal to
max_long_term_frame_idx_plus1 − 1.

NOTE – The memory_management_control_operation command equal to 4 can be used to mark long-term reference pictures as
"unused for reference". The frequency of transmitting max_long_term_frame_idx_plus1 is not specified by this
Recommendation | International Standard. However, the encoder should send a memory_management_control_operation
command equal to 4 upon receiving an error message, such as an intra refresh request message.

8.2.5.4.5 Marking process of all reference pictures as "unused for reference" and setting
MaxLongTermFrameIdx to "no long-term frame indices"

This process is invoked when memory_management_control_operation is equal to 5.

All reference pictures are marked as "unused for reference" and the variable MaxLongTermFrameIdx is set equal to "no
long-term frame indices".

8.2.5.4.6 Process for assigning a long-term frame index to the current picture

This process is invoked when memory_management_control_operation is equal to 6.

When a variable LongTermFrameIdx equal to long_term_frame_idx is already assigned to a long-term reference frame
or a long-term complementary reference field pair, that frame or complementary field pair and both of its fields are
marked as "unused for reference". When LongTermFrameIdx is already assigned to a reference field, and that reference
field is not part of a complementary field pair that includes the current picture, that field is marked as "unused for
reference".

The current picture is marked as "used for long-term reference" and assigned LongTermFrameIdx equal to
long_term_frame_idx.

When field_pic_flag is equal to 0, both its fields are also marked as "used for long-term reference" and assigned
LongTermFrameIdx equal to long_term_frame_idx.

When field_pic_flag is equal to 1 and the current picture is the second field (in decoding order) of a complementary
reference field pair, and the first field of the complementary reference field pair is also currently marked as "used for
long-term reference", the complementary reference field pair is also marked as "used for long-term reference" and
assigned LongTermFrameIdx equal to long_term_frame_idx.

After marking the current decoded reference picture, the total number of frames with at least one field marked as "used
for reference", plus the number of complementary field pairs with at least one field marked as "used for reference", plus
the number of non-paired fields marked as "used for reference" shall not be greater than
Max(max_num_ref_frames, 1).

 Rec. ITU-T H.264 (03/2009) 131

NOTE – Under some circumstances, the above statement may impose a constraint on the order in which a
memory_management_control_operation syntax element equal to 6 can appear in the decoded reference picture marking syntax
relative to a memory_management_control_operation syntax element equal to 1, 2, 3, or 4.

8.3 Intra prediction process

This process is invoked for I and SI macroblock types.

Inputs to this process are constructed samples prior to the deblocking filter process and, for Intra_NxN prediction
modes (where NxN is equal to 4x4 or 8x8), the values of IntraNxNPredMode from neighbouring macroblocks.

Outputs of this process are specified as follows.

– If the macroblock prediction mode is Intra_4x4 or Intra_8x8, the outputs are constructed luma samples prior to the
deblocking filter process and (when ChromaArrayType is not equal to 0) chroma prediction samples of the
macroblock predC, where C is equal to Cb and Cr.

– Otherwise, if mb_type is not equal to I_PCM, the outputs are luma prediction samples of the macroblock predL and
(when ChromaArrayType is not equal to 0) chroma prediction samples of the macroblock predC, where C is equal
to Cb and Cr.

– Otherwise (mb_type is equal to I_PCM), the outputs are constructed luma and (when ChromaArrayType is not
equal to 0) chroma samples prior to the deblocking filter process.

The variable MvCnt is set equal to 0.

Depending on the value of mb_type the following applies.

– If mb_type is equal to I_PCM, the sample construction process for I_PCM macroblocks as specified in
subclause 8.3.5 is invoked.

– Otherwise (mb_type is not equal to I_PCM), the following applies:

1. The decoding processes for Intra prediction modes are described for the luma component as follows.

– If the macroblock prediction mode is equal to Intra_4x4, the Intra_4x4 prediction process for luma
samples as specified in subclause 8.3.1 is invoked.

– Otherwise, if the macroblock prediction mode is equal to Intra_8x8, the Intra_8x8 prediction process as
specified in subclause 8.3.2 is invoked.

– Otherwise (the macroblock prediction mode is equal to Intra_16x16), the Intra_16x16 prediction
process as specified in subclause 8.3.3 is invoked with S′L as the input and the outputs are luma
prediction samples of the macroblock predL.

2. When ChromaArrayType is not equal to 0, the Intra prediction process for chroma samples as specified in
subclause 8.3.4 is invoked with S′Cb, and S′Cr as the inputs and the outputs are chroma prediction samples of
the macroblock predCb and predCr.

Samples used in the Intra prediction process are the sample values prior to alteration by any deblocking filter operation.

8.3.1 Intra_4x4 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra_4x4.

Inputs to this process are the values of Intra4x4PredMode (if available) or Intra8x8PredMode (if available) from
neighbouring macroblocks or macroblock pairs.

The luma component of a macroblock consists of 16 blocks of 4x4 luma samples. These blocks are inverse scanned
using the 4x4 luma block inverse scanning process as specified in subclause 6.4.3.

For all 4x4 luma blocks of the luma component of a macroblock with luma4x4BlkIdx = 0..15, the derivation process for
the Intra4x4PredMode as specified in subclause 8.3.1.1 is invoked with luma4x4BlkIdx as well as Intra4x4PredMode
and Intra8x8PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the
variable Intra4x4PredMode[luma4x4BlkIdx] as the output.

For each luma block of 4x4 samples indexed using luma4x4BlkIdx = 0..15, the following ordered steps are specified:

1. The Intra_4x4 sample prediction process in subclause 8.3.1.2 is invoked with luma4x4BlkIdx and the array S′L
containing constructed luma samples prior to the deblocking filter process from adjacent luma blocks as the
inputs and the outputs are the Intra_4x4 luma prediction samples pred4x4L[x, y] with x, y = 0..3.

132 Rec. ITU-T H.264 (03/2009)

2. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current
macroblock is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with
luma4x4BlkIdx as the input and the output being assigned to (xO, yO).

3. The values of the prediction samples predL[xO + x, yO + y] with x, y = 0..3 are derived by

predL[xO + x, yO + y] = pred4x4L[x, y] (8-40)

4. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
subclause 8.5 is invoked with predL and luma4x4BlkIdx as the input and the constructed samples for the current
4x4 luma block S′L as the output.

8.3.1.1 Derivation process for Intra4x4PredMode

Inputs to this process are the index of the 4x4 luma block luma4x4BlkIdx and variable arrays Intra4x4PredMode (if
available) and Intra8x8PredMode (if available) that are previously (in decoding order) derived for adjacent
macroblocks.

Output of this process is the variable Intra4x4PredMode[luma4x4BlkIdx].

Table 8-2 specifies the values for Intra4x4PredMode[luma4x4BlkIdx] and the associated names.

Table 8-2 – Specification of Intra4x4PredMode[luma4x4BlkIdx] and associated names

Intra4x4PredMode[luma4x4BlkIdx] Name of Intra4x4PredMode[luma4x4BlkIdx]

0 Intra_4x4_Vertical (prediction mode)

1 Intra_4x4_Horizontal (prediction mode)

2 Intra_4x4_DC (prediction mode)

3 Intra_4x4_Diagonal_Down_Left (prediction mode)

4 Intra_4x4_Diagonal_Down_Right (prediction mode)

5 Intra_4x4_Vertical_Right (prediction mode)

6 Intra_4x4_Horizontal_Down (prediction mode)

7 Intra_4x4_Vertical_Left (prediction mode)

8 Intra_4x4_Horizontal_Up (prediction mode)

Intra4x4PredMode[luma4x4BlkIdx] labelled 0, 1, 3, 4, 5, 6, 7, and 8 represent directions of predictions as illustrated in
Figure 8-1.

Figure 8-1 – Intra_4x4 prediction mode directions (informative)

 Rec. ITU-T H.264 (03/2009) 133

Intra4x4PredMode[luma4x4BlkIdx] is derived as specified by the following ordered steps:

1. The process specified in subclause 6.4.10.4 is invoked with luma4x4BlkIdx given as input and the output is
assigned to mbAddrA, luma4x4BlkIdxA, mbAddrB, and luma4x4BlkIdxB.

2. The variable dcPredModePredictedFlag is derived as follows.

– If any of the following conditions are true, dcPredModePredictedFlag is set equal to 1

– the macroblock with address mbAddrA is not available

– the macroblock with address mbAddrB is not available

– the macroblock with address mbAddrA is available and coded in an Inter macroblock prediction
mode and constrained_intra_pred_flag is equal to 1

– the macroblock with address mbAddrB is available and coded in an Inter macroblock prediction
mode and constrained_intra_pred_flag is equal to 1

– Otherwise, dcPredModePredictedFlag is set equal to 0.

3. For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows.

– If dcPredModePredictedFlag is equal to 1 or the macroblock with address mbAddrN is not coded in
Intra_4x4 or Intra_8x8 macroblock prediction mode, intraMxMPredModeN is set equal to 2
(Intra_4x4_DC prediction mode).

– Otherwise (dcPredModePredictedFlag is equal to 0 and the macroblock with address mbAddrN is coded
in Intra_4x4 or Intra_8x8 macroblock prediction mode), the following applies.

– If the macroblock with address mbAddrN is coded in Intra_4x4 macroblock prediction mode,
intraMxMPredModeN is set equal to Intra4x4PredMode[luma4x4BlkIdxN], where
Intra4x4PredMode is the variable array assigned to the macroblock mbAddrN.

– Otherwise (the macroblock with address mbAddrN is coded in Intra_8x8 macroblock prediction
mode), intraMxMPredModeN is set equal to Intra8x8PredMode[luma4x4BlkIdxN >> 2], where
Intra8x8PredMode is the variable array assigned to the macroblock mbAddrN.

4. Intra4x4PredMode[luma4x4BlkIdx] is derived by applying the following procedure:

predIntra4x4PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra4x4_pred_mode_flag[luma4x4BlkIdx])
 Intra4x4PredMode[luma4x4BlkIdx] = predIntra4x4PredMode
else (8-41)
 if(rem_intra4x4_pred_mode[luma4x4BlkIdx] < predIntra4x4PredMode)
 Intra4x4PredMode[luma4x4BlkIdx] = rem_intra4x4_pred_mode[luma4x4BlkIdx]
 else
 Intra4x4PredMode[luma4x4BlkIdx] = rem_intra4x4_pred_mode[luma4x4BlkIdx] + 1

8.3.1.2 Intra_4x4 sample prediction

This process is invoked for each 4x4 luma block of a macroblock with macroblock prediction mode equal to Intra_4x4
followed by the transform decoding process and picture construction process prior to deblocking for each 4x4 luma
block.

Inputs to this process are

– the index of a 4x4 luma block luma4x4BlkIdx,

– an (PicWidthInSamplesL)x(PicHeightInSamplesL) array cSL containing constructed luma samples prior to the
deblocking filter process of neighbouring macroblocks.

Output of this process are the prediction samples pred4x4L[x, y], with x, y = 0..3, for the 4x4 luma block with index
luma4x4BlkIdx.

The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input
and the output being assigned to (xO, yO).

The 13 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x = −1, y = −1..3 and x = 0..7, y = −1, are derived as specified by the following ordered steps:

134 Rec. ITU-T H.264 (03/2009)

1. The luma location (xN, yN) is specified by

xN = xO + x (8-42)

yN = yO + y (8-43)

2. The derivation process for neighbouring locations in subclause 6.4.11 is invoked for luma locations with
(xN, yN) as input and mbAddrN and (xW, yW) as output.

3. Each sample p[x, y] with x = −1, y = −1..3 and x = 0..7, y = −1 is derived as follows.

– If any of the following conditions is true, the sample p[x, y] is marked as "not available for Intra_4x4
prediction"

– mbAddrN is not available,

– the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred_flag is equal to 1,

– the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred_flag is equal to 1
and the current macroblock does not have mb_type equal to SI,

– x is greater than 3 and luma4x4BlkIdx is equal to 3 or 11.

– Otherwise, the sample p[x, y] is marked as "available for Intra_4x4 prediction" and the value of the
sample p[x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is
assigned to (xM, yM).

b. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value
p[x, y] is derived as follows.

– If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,

p[x, y] = cSL[xM + xW, yM + 2 * yW] (8-44)

– Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),

p[x, y] = cSL[xM + xW, yM + yW] (8-45)

When samples p[x, −1], with x = 4..7, are marked as "not available for Intra_4x4 prediction," and the sample p[3, −1]
is marked as "available for Intra_4x4 prediction," the sample value of p[3, −1] is substituted for sample values
p[x, −1], with x = 4..7, and samples p[x, −1], with x = 4..7, are marked as "available for Intra_4x4 prediction".

NOTE – Each block is assumed to be constructed into a picture array prior to decoding of the next block.

Depending on Intra4x4PredMode[luma4x4BlkIdx], one of the Intra_4x4 prediction modes specified in
subclauses 8.3.1.2.1 to 8.3.1.2.9 is invoked.

8.3.1.2.1 Specification of Intra_4x4_Vertical prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 0.

This mode shall be used only when the samples p[x, −1] with x = 0..3 are marked as "available for Intra_4x4
prediction".

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived by

 pred4x4L[x, y] = p[x, −1], with x, y = 0..3 (8-46)

8.3.1.2.2 Specification of Intra_4x4_Horizontal prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 1.

This mode shall be used only when the samples p[−1, y], with y = 0..3, are marked as "available for Intra_4x4
prediction".

 Rec. ITU-T H.264 (03/2009) 135

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived by

 pred4x4L[x, y] = p[−1, y], with x,y = 0..3 (8-47)

8.3.1.2.3 Specification of Intra_4x4_DC prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 2.

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows.

– If all samples p[x, −1], with x = 0..3, and p[−1, y], with y = 0..3, are marked as "available for Intra_4x4
prediction", the values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived by

pred4x4L[x, y] = (p[0, −1] + p[1, −1] + p[2, −1] + p[3, −1] +
 p[−1, 0] + p[−1, 1] + p[−1, 2] + p[−1, 3] + 4) >> 3 (8-48)

– Otherwise, if any samples p[x, −1], with x = 0..3, are marked as "not available for Intra_4x4 prediction" and all
samples p[−1, y], with y = 0..3, are marked as "available for Intra_4x4 prediction", the values of the prediction
samples pred4x4L[x, y], with x, y = 0..3, are derived by

pred4x4L[x, y] = (p[−1, 0] + p[−1, 1] + p[−1, 2] + p[−1, 3] + 2) >> 2 (8-49)

– Otherwise, if any samples p[−1, y], with y = 0..3, are marked as "not available for Intra_4x4 prediction" and all
samples p[x, −1], with x = 0 .. 3, are marked as "available for Intra_4x4 prediction", the values of the prediction
samples pred4x4L[x, y], with x, y = 0 .. 3, are derived by

pred4x4L[x, y] = (p[0, −1] + p[1, −1] + p[2, −1] + p[3, −1] + 2) >> 2 (8-50)

– Otherwise (some samples p[x, −1], with x = 0..3, and some samples p[−1, y], with y = 0..3, are marked as "not
available for Intra_4x4 prediction"), the values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are
derived by

pred4x4L[x, y] = (1 << (BitDepthY − 1)) (8-51)

NOTE – A 4x4 luma block can always be predicted using this mode.

8.3.1.2.4 Specification of Intra_4x4_Diagonal_Down_Left prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 3.

This mode shall be used only when the samples p[x, −1] with x = 0..7 are marked as "available for Intra_4x4
prediction".

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows.

– If x is equal to 3 and y is equal to 3,

pred4x4L[x, y] = (p[6, −1] + 3 * p[7, −1] + 2) >> 2 (8-52)

– Otherwise (x is not equal to 3 or y is not equal to 3),

pred4x4L[x, y] = (p[x + y, −1] + 2 * p[x + y + 1, −1] + p[x + y + 2, −1] + 2) >> 2 (8-53)

8.3.1.2.5 Specification of Intra_4x4_Diagonal_Down_Right prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 4.

This mode shall be used only when the samples p[x, −1] with x = 0..3 and p[−1, y] with y = −1..3 are marked as
"available for Intra_4x4 prediction".

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows.

– If x is greater than y,

136 Rec. ITU-T H.264 (03/2009)

pred4x4L[x, y] = (p[x − y − 2, −1] + 2 * p[x − y − 1, −1] + p[x − y, −1] + 2) >> 2 (8-54)

– Otherwise if x is less than y,

pred4x4L[x, y] = (p[−1, y − x − 2] + 2 * p[−1, y − x − 1] + p[−1, y − x] + 2) >> 2 (8-55)

– Otherwise (x is equal to y),

pred4x4L[x, y] = (p[0, −1] + 2 * p[−1, −1] + p[−1, 0] + 2) >> 2 (8-56)

8.3.1.2.6 Specification of Intra_4x4_Vertical_Right prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 5.

This mode shall be used only when the samples p[x, −1] with x = 0..3 and p[−1, y] with y = −1..3 are marked as
"available for Intra_4x4 prediction".

Let the variable zVR be set equal to 2 * x − y.

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows.

– If zVR is equal to 0, 2, 4, or 6,

pred4x4L[x, y] = (p[x − (y >> 1) − 1, −1] + p[x − (y >> 1), −1] + 1) >> 1 (8-57)

– Otherwise, if zVR is equal to 1, 3, or 5,

pred4x4L[x, y] = (p[x − (y >> 1) − 2, −1] + 2 * p[x − (y >> 1) − 1, −1] + p[x − (y >> 1), −1] + 2) >> 2
 (8-58)

– Otherwise, if zVR is equal to −1,

pred4x4L[x, y] = (p[−1, 0] + 2 * p[−1, −1] + p[0, −1] + 2) >> 2 (8-59)

– Otherwise (zVR is equal to −2 or −3),

pred4x4L[x, y] = (p[−1, y − 1] + 2 * p[−1, y − 2] + p[−1, y − 3] + 2) >> 2 (8-60)

8.3.1.2.7 Specification of Intra_4x4_Horizontal_Down prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 6.

This mode shall be used only when the samples p[x, −1] with x = 0..3 and p[−1, y] with y = −1..3 are marked as
"available for Intra_4x4 prediction".

Let the variable zHD be set equal to 2 * y − x.

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows.

– If zHD is equal to 0, 2, 4, or 6,

pred4x4L[x, y] = (p[−1, y − (x >> 1) − 1] + p[−1, y − (x >> 1)] + 1) >> 1 (8-61)

– Otherwise, if zHD is equal to 1, 3, or 5,

pred4x4L[x, y] = (p[−1, y − (x >> 1) − 2] + 2 * p[−1, y − (x >> 1) − 1] + p[−1, y − (x >> 1)] + 2) >> 2
 (8-62)

– Otherwise, if zHD is equal to −1,

pred4x4L[x, y] = (p[−1, 0] + 2 * p[−1, −1] + p[0, −1] + 2) >> 2 (8-63)

 Rec. ITU-T H.264 (03/2009) 137

– Otherwise (zHD is equal to −2 or −3),

pred4x4L[x, y] = (p[x − 1, −1] + 2 * p[x − 2, −1] + p[x − 3, −1] + 2) >> 2 (8-64)

8.3.1.2.8 Specification of Intra_4x4_Vertical_Left prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 7.

This mode shall be used only when the samples p[x, −1] with x = 0..7 are marked as "available for Intra_4x4
prediction".

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows.

– If y is equal to 0 or 2,

pred4x4L[x, y] = (p[x + (y >> 1), −1] + p[x + (y >> 1) + 1, −1] + 1) >> 1 (8-65)

– Otherwise (y is equal to 1 or 3),

pred4x4L[x, y] = (p[x + (y >> 1), −1] + 2 * p[x + (y >> 1) + 1, −1] + p[x + (y >> 1) + 2, −1] + 2) >> 2
 (8-66)

8.3.1.2.9 Specification of Intra_4x4_Horizontal_Up prediction mode

This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 8.

This mode shall be used only when the samples p[−1, y] with y = 0..3 are marked as "available for Intra_4x4
prediction".

Let the variable zHU be set equal to x + 2 * y.

The values of the prediction samples pred4x4L[x, y], with x, y = 0..3, are derived as follows.

– If zHU is equal to 0, 2, or 4

pred4x4L[x, y] = (p[−1, y + (x >> 1)] + p[−1, y + (x >> 1) + 1] + 1) >> 1 (8-67)

– Otherwise, if zHU is equal to 1 or 3

pred4x4L[x, y] = (p[−1, y + (x >> 1)] + 2 * p[−1, y + (x >> 1) + 1] + p[−1, y + (x >> 1) + 2] + 2) >> 2
 (8-68)

– Otherwise, if zHU is equal to 5,

pred4x4L[x, y] = (p[−1, 2] + 3 * p[−1, 3] + 2) >> 2 (8-69)

– Otherwise (zHU is greater than 5),

pred4x4L[x, y] = p[−1, 3] (8-70)

8.3.2 Intra_8x8 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra_8x8.

Inputs to this process are the values of Intra4x4PredMode (if available) or Intra8x8PredMode (if available) from the
neighbouring macroblocks or macroblock pairs.

Outputs of this process are 8x8 luma sample arrays as part of the 16x16 luma array of prediction samples of the
macroblock predL.

The luma component of a macroblock consists of 4 blocks of 8x8 luma samples. These blocks are inverse scanned using
the inverse 8x8 luma block scanning process as specified in subclause 6.4.5.

For all 8x8 luma blocks of the luma component of a macroblock with luma8x8BlkIdx = 0..3, the derivation process for
Intra8x8PredMode as specified in subclause 8.3.2.1 is invoked with luma8x8BlkIdx as well as Intra4x4PredMode and

138 Rec. ITU-T H.264 (03/2009)

Intra8x8PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the
variable Intra8x8PredMode[luma8x8BlkIdx] as the output.

For each luma block of 8x8 samples indexed using luma8x8BlkIdx = 0..3, the following ordered steps are specified:

1. The Intra_8x8 sample prediction process in subclause 8.3.2.2 is invoked with luma8x8BlkIdx and the array S′L
containing constructed samples prior to the deblocking filter process from adjacent luma blocks as the input and
the output are the Intra_8x8 luma prediction samples pred8x8L[x, y] with x, y = 0..7.

2. The position of the upper-left sample of an 8x8 luma block with index luma8x8BlkIdx inside the current
macroblock is derived by invoking the inverse 8x8 luma block scanning process in subclause 6.4.5 with
luma8x8BlkIdx as the input and the output being assigned to (xO, yO).

3. The values of the prediction samples predL[xO + x, yO + y] with x, y = 0..7 are derived by

predL[xO + x, yO + y] = pred8x8L[x, y] (8-71)

4. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
subclause 8.5 is invoked with predL and luma8x8BlkIdx as the input and the constructed samples for the current
8x8 luma block S′L as the output.

8.3.2.1 Derivation process for Intra8x8PredMode

Inputs to this process are the index of the 8x8 luma block luma8x8BlkIdx and variable arrays Intra4x4PredMode (if
available) and Intra8x8PredMode (if available) that are previously (in decoding order) derived for adjacent
macroblocks.

Output of this process is the variable Intra8x8PredMode[luma8x8BlkIdx].

Table 8-3 specifies the values for Intra8x8PredMode[luma8x8BlkIdx] and the associated mnemonic names.

Table 8-3 – Specification of Intra8x8PredMode[luma8x8BlkIdx] and associated names

Intra8x8PredMode[luma8x8BlkIdx] Name of Intra8x8PredMode[luma8x8BlkIdx]

0 Intra_8x8_Vertical (prediction mode)

1 Intra_8x8_Horizontal (prediction mode)

2 Intra_8x8_DC (prediction mode)

3 Intra_8x8_Diagonal_Down_Left (prediction mode)

4 Intra_8x8_Diagonal_Down_Right (prediction mode)

5 Intra_8x8_Vertical_Right (prediction mode)

6 Intra_8x8_Horizontal_Down (prediction mode)

7 Intra_8x8_Vertical_Left (prediction mode)

8 Intra_8x8_Horizontal_Up (prediction mode)

Intra8x8PredMode[luma8x8BlkIdx] is derived as specified by the following ordered steps:

1. The process specified in subclause 6.4.10.2 is invoked with luma8x8BlkIdx given as input and the output is
assigned to mbAddrA, luma8x8BlkIdxA, mbAddrB, and luma8x8BlkIdxB.

2. The variable dcPredModePredictedFlag is derived as follows.

– If any of the following conditions are true, dcPredModePredictedFlag is set equal to 1:

– the macroblock with address mbAddrA is not available,

– the macroblock with address mbAddrB is not available,

– the macroblock with address mbAddrA is available and coded in an Inter macroblock prediction mode
and constrained_intra_pred_flag is equal to 1,

 Rec. ITU-T H.264 (03/2009) 139

– the macroblock with address mbAddrB is available and coded in an Inter macroblock prediction mode
and constrained_intra_pred_flag is equal to 1.

– Otherwise, dcPredModePredictedFlag is set equal to 0.

3. For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows.

– If dcPredModePredictedFlag is equal to 1 or the macroblock with address mbAddrN is not coded in
Intra_4x4 or Intra_8x8 macroblock prediction mode, intraMxMPredModeN is set equal to 2 (Intra_8x8_DC
prediction mode).

– Otherwise (dcPredModePredictedFlag is equal to 0 and (the macroblock with address mbAddrN is coded in
Intra_4x4 macroblock prediction mode or the macroblock with address mbAddrN is coded in Intra_8x8
macroblock prediction mode)), the following applies.

– If the macroblock with address mbAddrN is coded in Intra_8x8 macroblock prediction mode,
intraMxMPredModeN is set equal to Intra8x8PredMode[luma8x8BlkIdxN], where
Intra8x8PredMode is the variable array assigned to the macroblock mbAddrN.

– Otherwise (the macroblock with address mbAddrN is coded in Intra_4x4 macroblock prediction
mode), intraMxMPredModeN is derived by the following procedure, where Intra4x4PredMode is the
variable array assigned to the macroblock mbAddrN.

intraMxMPredModeN = Intra4x4PredMode[luma8x8BlkIdxN * 4 + n] (8-72)

where the variable n is derived as follows

– If N is equal to A, depending on the variable MbaffFrameFlag, the variable luma8x8BlkIdx, the
current macroblock, and the macroblock mbAddrN, the following applies.

– If MbaffFrameFlag is equal to 1, the current macroblock is a frame coded macroblock, the
macroblock mbAddrN is a field coded macroblock, and luma8x8BlkIdx is equal to 2, n is set
equal to 3.

– Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a field coded
macroblock or the macroblock mbAddrN is a frame coded macroblock or luma8x8BlkIdx is
not equal to 2), n is set equal to 1.

– Otherwise (N is equal to B), n is set equal to 2.

4. Finally, given intraMxMPredModeA and intraMxMPredModeB, the variable
Intra8x8PredMode[luma8x8BlkIdx] is derived by applying the following procedure.

predIntra8x8PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra8x8_pred_mode_flag[luma8x8BlkIdx])
 Intra8x8PredMode[luma8x8BlkIdx] = predIntra8x8PredMode
else (8-73)
 if(rem_intra8x8_pred_mode[luma8x8BlkIdx] < predIntra8x8PredMode)
 Intra8x8PredMode[luma8x8BlkIdx] = rem_intra8x8_pred_mode[luma8x8BlkIdx]
 else
 Intra8x8PredMode[luma8x8BlkIdx] = rem_intra8x8_pred_mode[luma8x8BlkIdx] + 1

8.3.2.2 Intra_8x8 sample prediction

This process is invoked for each 8x8 luma block of a macroblock with macroblock prediction mode equal to Intra_8x8
followed by the transform decoding process and picture construction process prior to deblocking for each 8x8 luma
block.

Inputs to this process are

– the index of an 8x8 luma block luma8x8BlkIdx,

– an (PicWidthInSamplesL)x(PicHeightInSamplesL) array cSL containing constructed luma samples prior to the
deblocking filter process of neighbouring macroblocks.

Output of this process are the prediction samples pred8x8L[x, y], with x, y = 0..7, for the 8x8 luma block with index
luma8x8BlkIdx.

140 Rec. ITU-T H.264 (03/2009)

The position of the upper-left sample of an 8x8 luma block with index luma8x8BlkIdx inside the current macroblock is
derived by invoking the inverse 8x8 luma block scanning process in subclause 6.4.5 with luma8x8BlkIdx as the input
and the output being assigned to (xO, yO).

The 25 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x = −1, y = −1..7 and x = 0..15, y = −1, are derived as specified by the following ordered steps:

1. The luma location (xN, yN) is specified by

xN = xO + x (8-74)

yN = yO + y (8-75)

2. The derivation process for neighbouring locations in subclause 6.4.11 is invoked for luma locations with
(xN, yN) as input and mbAddrN and (xW, yW) as output.

3. Each sample p[x, y] with x = −1, y = −1..7 and x = 0..15, y = −1 is derived as follows.

– If any of the following conditions is true, the sample p[x, y] is marked as "not available for Intra_8x8
prediction":

– mbAddrN is not available,

– the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred_flag is equal to 1.

– Otherwise, the sample p[x, y] is marked as "available for Intra_8x8 prediction" and the sample value
p[x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is
assigned to (xM, yM).

b. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value
p[x, y] is derived as follows.

– If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,

p[x, y] = cSL[xM + xW, yM + 2 * yW] (8-76)

– Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),

p[x, y] = cSL[xM + xW, yM + yW] (8-77)

When samples p[x, −1], with x = 8..15, are marked as "not available for Intra_8x8 prediction," and the sample
p[7, −1] is marked as "available for Intra_8x8 prediction," the sample value of p[7, −1] is substituted for sample
values p[x, −1], with x = 8..15, and samples p[x, −1], with x = 8..15, are marked as "available for Intra_8x8
prediction".

NOTE – Each block is assumed to be constructed into a picture array prior to decoding of the next block.

The reference sample filtering process for Intra_8x8 sample prediction in subclause 8.3.2.2.1 is invoked with the
samples p[x, y] with x = −1, y = −1..7 and x = 0..15, y = −1 (if available) as input and p′[x, y] with x = −1, y = −1..7
and x = 0..15, y = −1 as output.

Depending on Intra8x8PredMode[luma8x8BlkIdx], one of the Intra_8x8 prediction modes specified in
subclauses 8.3.2.2.2 to 8.3.2.2.10 is invoked.

8.3.2.2.1 Reference sample filtering process for Intra_8x8 sample prediction

Inputs to this process are the reference samples p[x, y] with x = −1, y = −1..7 and x = 0..15, y = −1 (if available) for
Intra_8x8 sample prediction.

Outputs of this process are the filtered reference samples p′[x, y] with x = −1, y = −1..7 and x = 0..15, y = −1 for
Intra_8x8 sample prediction.

 Rec. ITU-T H.264 (03/2009) 141

When all samples p[x, −1] with x = 0..15 are marked as "available for Intra_8x8 prediction", the following applies:

1. The value of p′[0, −1] is derived as follows.

– If p[−1, −1] is marked as "available for Intra_8x8 prediction", p′[0, −1] is derived by

p′[0, −1] = (p[−1, −1] + 2 * p[0, −1] + p[1, −1] + 2) >> 2 (8-78)

– Otherwise (p[−1, −1] is marked as "not available for Intra_8x8 prediction"), p′[0, −1] is derived by

p′[0, −1] = (3 * p[0, −1] + p[1, −1] + 2) >> 2 (8-79)

2. The values of p′[x, −1], with x = 1..14, are derived by

p′[x, −1] = (p[x − 1, −1] + 2 * p[x, −1] + p[x+1, −1] + 2) >> 2 (8-80)

3. The value of p′[15, −1] is derived by

p′[15, −1] = (p[14, −1] + 3 * p[15, −1] + 2) >> 2 (8-81)

When the sample p[−1, −1] is marked as "available for Intra_8x8 prediction", the value of p′[−1, −1] is derived as
follows.

– If the sample p[0, −1] is marked as "not available for Intra_8x8 prediction" or the sample p[−1, 0] is marked as
"not available for Intra_8x8 prediction", the following applies.

– If the sample p[0, −1] is marked as "available for Intra_8x8 prediction", p′[−1, −1] is derived by

p′[−1, −1] = (3 * p[−1, −1] + p[0, −1] + 2) >> 2 (8-82)

– Otherwise, if the sample p[0, −1] is marked as "not available for Intra_8x8 prediction" and the sample
p[−1, 0] is marked as "available for Intra_8x8 prediction", p′[−1, −1] is derived by

p′[−1, −1] = (3 * p[−1, −1] + p[−1, 0] + 2) >> 2 (8-83)

– Otherwise (the sample p[0, −1] is marked as "not available for Intra_8x8 prediction" and the sample
p[−1, 0] is marked as "not available for Intra_8x8 prediction"), p′[−1, −1] is set equal to p[−1, −1].

NOTE – When both samples p[0, −1] and p[−1, 0] are marked as "not available for Intra_8x8 prediction", the
derived sample p′[−1, −1] is not used in the intra prediction process.

– Otherwise (the sample p[0, −1] is marked as "available for Intra_8x8 prediction" and the sample p[−1, 0] is
marked as "available for Intra_8x8 prediction"), p′[−1, −1] is derived by

p′[−1, −1] = (p[0, −1] + 2 * p[−1, −1] + p[−1, 0] + 2) >> 2 (8-84)

When all samples p[−1, y] with y = 0..7 are marked as "available for Intra_8x8 prediction", the following applies:

1. The value of p′[−1, 0] is derived as follows.

– If p[−1, −1] is marked as "available for Intra_8x8 prediction", p′[−1, 0] is derived by

p′[−1, 0] = (p[−1, −1] + 2 * p[−1, 0] + p[−1, 1] + 2) >> 2 (8-85)

– Otherwise (p[−1, −1] is marked as "not available for Intra_8x8 prediction"), p′[−1, 0] is derived by

p′[−1, 0] = (3 * p[−1, 0] + p[−1, 1] + 2) >> 2 (8-86)

2. The values of p′[−1, y], with y = 1..6, are derived by

p′[−1, y] = (p[−1, y − 1] + 2 * p[−1, y] + p[−1, y+1] + 2) >> 2 (8-87)

142 Rec. ITU-T H.264 (03/2009)

3. The value of p′[−1, 7] is derived by

p′[−1, 7] = (p[−1, 6] + 3 * p[−1, 7] + 2) >> 2 (8-88)

8.3.2.2.2 Specification of Intra_8x8_Vertical prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 0.

This mode shall be used only when the samples p[x, −1] with x = 0..7 are marked as "available for Intra_8x8
prediction".

The values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are derived by

pred8x8L[x, y] = p′[x, −1], with x, y = 0..7 (8-89)

8.3.2.2.3 Specification of Intra_8x8_Horizontal prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 1.

This mode shall be used only when the samples p[−1, y], with y = 0..7, are marked as "available for Intra_8x8
prediction".

The values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are derived by

pred8x8L[x, y] = p′[−1, y], with x, y = 0..7 (8-90)

8.3.2.2.4 Specification of Intra_8x8_DC prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 2.

The values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are derived as follows.

– If all samples p[x, −1], with x = 0..7, and p[−1, y], with y = 0..7, are marked as "available for Intra_8x8
prediction," the values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are derived by

4)8]',1['p]1,'['p(]y x,[pred8x8
7

0'

7

0'
L >>+−+−= ∑∑

== yx

yx (8-91)

– Otherwise, if any samples p[x, −1], with x = 0..7, are marked as "not available for Intra_8x8 prediction" and all
samples p[−1, y], with y = 0..7, are marked as "available for Intra_8x8 prediction", the values of the prediction
samples pred8x8L[x, y], with x, y = 0..7, are derived by

3)4]',1['p(]y x,[pred8x8
7

0'
L >>+−= ∑

=y

y (8-92)

– Otherwise, if any samples p[−1, y], with y = 0..7, are marked as "not available for Intra_8x8 prediction" and all
samples p[x, −1], with x = 0..7, are marked as "available for Intra_8x8 prediction", the values of the prediction
samples pred8x8L[x, y], with x, y = 0..7, are derived by

3)4]1,'['p(]y x,[pred8x8
7

0'
L >>+−= ∑

=x
x (8-93)

– Otherwise (some samples p[x, −1], with x = 0..7, and some samples p[−1, y], with y = 0..7, are marked as "not
available for Intra_8x8 prediction"), the values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are
derived by

pred8x8L[x, y] = (1 << (BitDepthY − 1)) (8-94)

NOTE – An 8x8 luma block can always be predicted using this mode.

 Rec. ITU-T H.264 (03/2009) 143

8.3.2.2.5 Specification of Intra_8x8_Diagonal_Down_Left prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 3.

This mode shall be used only when the samples p[x, −1] with x = 0..15 are marked as "available for Intra_8x8
prediction".

The values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are derived as follows.

– If x is equal to 7 and y is equal to 7,

pred8x8L[x, y] = (p′[14, −1] + 3 * p′[15, −1] + 2) >> 2 (8-95)

– Otherwise (x is not equal to 7 or y is not equal to 7),

pred8x8L[x, y] = (p′[x + y, −1] + 2 * p′[x + y + 1, −1] + p′[x + y + 2, −1] + 2) >> 2 (8-96)

8.3.2.2.6 Specification of Intra_8x8_Diagonal_Down_Right prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 4.

This mode shall be used only when the samples p[x, −1] with x = 0..7 and p[−1, y] with y = −1..7 are marked as
"available for Intra_8x8 prediction".

The values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are derived as follows.

– If x is greater than y,

pred8x8L[x, y] = (p′[x − y − 2, −1] + 2 * p′[x − y − 1, −1] + p′[x − y, −1] + 2) >> 2 (8-97)

– Otherwise if x is less than y,

pred8x8L[x, y] = (p′[−1, y − x − 2] + 2 * p′[−1, y − x − 1] + p′[−1, y − x] + 2) >> 2 (8-98)

– Otherwise (x is equal to y),

pred8x8L[x, y] = (p′[0, −1] + 2 * p′[−1, −1] + p′[−1, 0] + 2) >> 2 (8-99)

8.3.2.2.7 Specification of Intra_8x8_Vertical_Right prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 5.

This mode shall be used only when the samples p[x, −1] with x = 0..7 and p[−1, y] with y = −1..7 are marked as
"available for Intra_8x8 prediction".

Let the variable zVR be set equal to 2 * x − y.

The values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are derived as follows.

– If zVR is equal to 0, 2, 4, 6, 8, 10, 12, or 14

pred8x8L[x, y] = (p′[x − (y >> 1) − 1, −1] + p′[x − (y >> 1), −1] + 1) >> 1 (8-100)

– Otherwise, if zVR is equal to 1, 3, 5, 7, 9, 11, or 13

pred8x8L[x, y] = (p′[x − (y >> 1) − 2, −1] + 2 * p′[x − (y >> 1) − 1, −1] +
 p′[x − (y >> 1), −1] + 2) >> 2 (8-101)

– Otherwise, if zVR is equal to −1,

pred8x8L[x, y] = (p′[−1, 0] + 2 * p′[−1, −1] + p′[0, −1] + 2) >> 2 (8-102)

144 Rec. ITU-T H.264 (03/2009)

– Otherwise (zVR is equal to −2, −3, −4, −5, −6, or −7),

pred8x8L[x, y] = (p′[−1, y − 2*x − 1] + 2 * p′[−1, y − 2*x − 2] + p′[−1, y − 2*x − 3] + 2) >> 2 (8-103)

8.3.2.2.8 Specification of Intra_8x8_Horizontal_Down prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 6.

This mode shall be used only when the samples p[x, −1] with x = 0..7 and p[−1, y] with y = −1..7 are marked as
"available for Intra_8x8 prediction".

Let the variable zHD be set equal to 2 * y − x.

The values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are derived as follows.

– If zHD is equal to 0, 2, 4, 6, 8, 10, 12, or 14

pred8x8L[x, y] = (p′[−1, y − (x >> 1) − 1] + p′[−1, y − (x >> 1)] + 1) >> 1 (8-104)

– Otherwise, if zHD is equal to 1, 3, 5, 7, 9, 11, or 13

pred8x8L[x, y] = (p′[−1, y − (x >> 1) − 2] + 2 * p′[−1, y − (x >> 1) − 1] +
 p′[−1, y − (x >> 1)] + 2) >> 2 (8-105)

– Otherwise, if zHD is equal to −1,

pred8x8L[x, y] = (p′[−1, 0] + 2 * p′[−1, −1] + p′[0, −1] + 2) >> 2 (8-106)

– Otherwise (zHD is equal to −2, −3, −4, −5, −6, −7),

pred8x8L[x, y] = (p′[x − 2*y − 1, −1] + 2 * p′[x − 2*y − 2, −1] + p′[x − 2*y − 3, −1] + 2) >> 2 (8-107)

8.3.2.2.9 Specification of Intra_8x8_Vertical_Left prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 7.

This mode shall be used only when the samples p[x, −1] with x = 0..15 are marked as "available for Intra_8x8
prediction".

The values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are derived as follows.

– If y is equal to 0, 2, 4 or 6

pred8x8L[x, y] = (p′[x + (y >> 1), −1] + p′[x + (y >> 1) + 1, −1] + 1) >> 1 (8-108)

– Otherwise (y is equal to 1, 3, 5, 7),

pred8x8L[x, y] = (p′[x + (y >> 1), −1] + 2 * p′[x + (y >> 1) + 1, −1] +
 p′[x + (y >> 1) + 2, −1] + 2) >>2 (8-109)

8.3.2.2.10 Specification of Intra_8x8_Horizontal_Up prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 8.

This mode shall be used only when the samples p[−1, y] with y = 0..7 are marked as "available for Intra_8x8
prediction".

Let the variable zHU be set equal to x + 2 * y.

The values of the prediction samples pred8x8L[x, y], with x, y = 0..7, are derived as follows.

– If zHU is equal to 0, 2, 4, 6, 8, 10, or 12

pred8x8L[x, y] = (p′[−1, y + (x >> 1)] + p′[−1, y + (x >> 1) + 1] + 1) >> 1 (8-110)

 Rec. ITU-T H.264 (03/2009) 145

– Otherwise, if zHU is equal to 1, 3, 5, 7, 9, or 11

pred8x8L[x, y] = (p′[−1, y + (x >> 1)] + 2 * p′[−1, y + (x >> 1) + 1] +
 p′[−1, y + (x >> 1) + 2] + 2) >>2 (8-111)

– Otherwise, if zHU is equal to 13,

pred8x8L[x, y] = (p′[−1, 6] + 3 * p′[−1, 7] + 2) >> 2 (8-112)

– Otherwise (zHU is greater than 13),

pred8x8L[x, y] = p′[−1, 7] (8-113)

8.3.3 Intra_16x16 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra_16x16. It specifies how the Intra
prediction luma samples for the current macroblock are derived.

Input to this process is a (PicWidthInSamplesL)x(PicHeightInSamplesL) array cSL containing constructed luma samples
prior to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction luma samples for the current macroblock predL[x, y].

The 33 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x = −1, y = −1..15 and with x = 0..15, y = −1, are derived as specified by the following ordered steps:

1. The derivation process for neighbouring locations in subclause 6.4.11 is invoked for luma locations with (x, y)
assigned to (xN, yN) as input and mbAddrN and (xW, yW) as output.

2. Each sample p[x, y] with x = −1, y = −1..15 and with x = 0..15, y = −1 is derived as follows.

– If any of the following conditions is true, the sample p[x, y] is marked as "not available for Intra_16x16
prediction":

– mbAddrN is not available,

– the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred_flag is equal to 1,

– the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred_flag is equal to 1.

– Otherwise, the sample p[x, y] is marked as "available for Intra_16x16 prediction" and the value of the
sample p[x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is
assigned to (xM, yM).

b. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value
p[x, y] is derived as follows.

– If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,

p[x, y] = cSL[xM + xW, yM + 2 * yW] (8-114)

– Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),

p[x, y] = cSL[xM + xW, yM + yW] (8-115)

Let predL[x, y] with x, y = 0..15 denote the prediction samples for the 16x16 luma block samples.

Intra_16x16 prediction modes are specified in Table 8-4.

146 Rec. ITU-T H.264 (03/2009)

Table 8-4 – Specification of Intra16x16PredMode and associated names

Intra16x16PredMode Name of Intra16x16PredMode

0 Intra_16x16_Vertical (prediction mode)

1 Intra_16x16_Horizontal (prediction mode)

2 Intra_16x16_DC (prediction mode)

3 Intra_16x16_Plane (prediction mode)

Depending on Intra16x16PredMode, one of the Intra_16x16 prediction modes specified in subclauses 8.3.3.1 to 8.3.3.4
is invoked.

8.3.3.1 Specification of Intra_16x16_Vertical prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, −1] with x = 0..15 are marked as
"available for Intra_16x16 prediction".

The values of the prediction samples predL[x, y], with x, y = 0..15, are derived by

predL[x, y] = p[x, −1], with x, y = 0..15 (8-116)

8.3.3.2 Specification of Intra_16x16_Horizontal prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[−1, y] with y = 0..15 are marked as "available
for Intra_16x16 prediction".

The values of the prediction samples predL[x, y], with x, y = 0..15, are derived by

predL[x, y] = p[−1, y], with x, y = 0..15 (8-117)

8.3.3.3 Specification of Intra_16x16_DC prediction mode

This Intra_16x16 prediction mode operates, depending on whether the neighbouring samples are marked as "available
for Intra_16x16 prediction", as follows.

– If all neighbouring samples p[x, −1], with x = 0..15, and p[−1, y], with y = 0..15, are marked as "available for
Intra_16x16 prediction", the prediction for all luma samples in the macroblock is given by:

predL[x, y] = [] []∑ ∑
= =

>>+−+−
15

0x'

15

0y'
516)y'1,p1,x'p(, with x, y = 0..15 (8-118)

– Otherwise, if any of the neighbouring samples p[x, −1], with x = 0..15, are marked as "not available for
Intra_16x16 prediction" and all of the neighbouring samples p[−1, y], with y = 0..15, are marked as "available for
Intra_16x16 prediction", the prediction for all luma samples in the macroblock is given by:

predL[x, y] = [] 48)y'1,p(
15

0y'

>>+−∑
=

, with x, y = 0..15 (8-119)

– Otherwise, if any of the neighbouring samples p[−1, y], with y = 0..15, are marked as "not available for
Intra_16x16 prediction" and all of the neighbouring samples p[x, −1], with x = 0..15, are marked as "available for
Intra_16x16 prediction", the prediction for all luma samples in the macroblock is given by:

predL[x, y] = []∑
=

>>+−
15

0x'
48)1,x'p(, with x, y = 0..15 (8-120)

– Otherwise (some of the neighbouring samples p[x, −1], with x = 0..15, and some of the neighbouring samples
p[−1, y], with y = 0..15, are marked as "not available for Intra_16x16 prediction"), the prediction for all luma
samples in the macroblock is given by:

 Rec. ITU-T H.264 (03/2009) 147

predL[x, y] = (1 << (BitDepthY − 1)), with x, y = 0..15 (8-121)

8.3.3.4 Specification of Intra_16x16_Plane prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, −1] with x = −1..15 and p[−1, y] with
y = 0..15 are marked as "available for Intra_16x16 prediction".

The values of the prediction samples predL[x, y], with x, y = 0..15, are derived by

predL[x, y] = Clip1Y((a + b * (x − 7) + c * (y − 7) + 16) >> 5), with x, y = 0..15, (8-122)

where

a = 16 * (p[−1, 15] + p[15, −1]) (8-123)

b = (5 * H + 32) >> 6 (8-124)

c = (5 * V + 32) >> 6 (8-125)

and H and V are specified as

[] []∑
=

−++=
7

0x'
) 1- ,x'-6 p - 1 ,x'8 p (*) 1 x'(H (8-126)

[] []∑
=

++=
7

0y'
) y'-6 1,- p- y'8 1,- p (*) 1y' (V (8-127)

8.3.4 Intra prediction process for chroma samples

This process is invoked for I and SI macroblock types. It specifies how the Intra prediction chroma samples for the
current macroblock are derived.

Inputs to this process are two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays cSCb and cSCr containing
constructed chroma samples prior to the deblocking filter process of neighbouring macroblocks.

Outputs of this process are Intra prediction chroma samples for the current macroblock predCb[x, y] and predCr[x, y].

Depending on the value of ChromaArrayType, the following applies.

– If ChromaArrayType is equal to 3, the Intra prediction chroma samples for the current macroblock predCb[x, y]
and predCr[x, y] are derived using the Intra prediction process for chroma samples with ChromaArrayType equal
to 3 as specified in subclause 8.3.4.5.

– Otherwise (ChromaArrayType is equal to 1 or 2), the following text specifies the Intra prediction chroma samples
for the current macroblock predCb[x, y] and predCr[x, y].

Both chroma blocks (Cb and Cr) of the macroblock use the same prediction mode. The prediction mode is applied to
each of the chroma blocks separately. The process specified in this subclause is invoked for each chroma block. In the
remainder of this subclause, chroma block refers to one of the two chroma blocks and the subscript C is used as a
replacement of the subscript Cb or Cr.

The neighbouring samples p[x, y] that are constructed chroma samples prior to the deblocking filter process, with
x = −1, y = −1..MbHeightC − 1 and with x = 0..MbWidthC − 1, y = −1, are derived as specified by the following
ordered steps:

1. The derivation process for neighbouring locations in subclause 6.4.11 is invoked for chroma locations with
(x, y) assigned to (xN, yN) as input and mbAddrN and (xW, yW) as output.

2. Each sample p[x, y] is derived as follows.

– If any of the following conditions is true, the sample p[x, y] is marked as "not available for Intra chroma
prediction":

148 Rec. ITU-T H.264 (03/2009)

– mbAddrN is not available,

– the macroblock mbAddrN is coded in an Inter macroblock prediction mode and
constrained_intra_pred_flag is equal to 1,

– the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred_flag is equal to 1 and
the current macroblock does not have mb_type equal to SI.

– Otherwise, the sample p[x, y] is marked as "available for Intra chroma prediction" and the value of the
sample p[x, y] is derived as specified by the following ordered steps:

a. The location of the upper-left luma sample of the macroblock mbAddrN is derived by invoking the
inverse macroblock scanning process in subclause 6.4.1 with mbAddrN as the input and the output is
assigned to (xL, yL).

b. The location (xM, yM) of the upper-left chroma sample of the macroblock mbAddr is derived by

xM = (xL >> 4) * MbWidthC (8-128)
yM = ((yL >> 4)* MbHeightC) + (yL % 2) (8-129)

c. Depending on the variable MbaffFrameFlag and the macroblock mbAddrN, the sample value
p[x, y] is derived as follows.

– If MbaffFrameFlag is equal to 1 and the macroblock mbAddrN is a field macroblock,

p[x, y] = cSC[xM + xW, yM + 2 * yW] (8-130)

– Otherwise (MbaffFrameFlag is equal to 0 or the macroblock mbAddrN is a frame macroblock),

p[x, y] = cSC[xM + xW, yM + yW] (8-131)

Let predC[x, y] with x = 0..MbWidthC − 1, y = 0..MbHeightC − 1 denote the prediction samples for the chroma block
samples.

Intra chroma prediction modes are specified in Table 8-5.

Table 8-5 – Specification of Intra chroma prediction modes and associated names

intra_chroma_pred_mode Name of intra_chroma_pred_mode

0 Intra_Chroma_DC (prediction mode)

1 Intra_Chroma_Horizontal (prediction mode)

2 Intra_Chroma_Vertical (prediction mode)

3 Intra_Chroma_Plane (prediction mode)

Depending on intra_chroma_pred_mode, one of the Intra chroma prediction modes specified in subclauses 8.3.4.1
to 8.3.4.4 is invoked.

8.3.4.1 Specification of Intra_Chroma_DC prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 0.

For each chroma block of 4x4 samples indexed by chroma4x4BlkIdx = 0..(1 << (ChromaArrayType + 1)) − 1, the
following applies.

– The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx is derived as

xO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (8-132)

yO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (8-133)

 Rec. ITU-T H.264 (03/2009) 149

– Depending on the values of xO and yO, the following applies.

– If (xO, yO) is equal to (0, 0) or xO and yO are greater than 0, the values of the prediction samples
predC[x + xO, y + yO] with x, y = 0..3 are derived as follows.

– If all samples p[x + xO, −1], with x = 0..3, and p[−1, y +yO], with y = 0..3, are marked as "available
for Intra chroma prediction", the values of the prediction samples predC[x + xO, y + yO], with
x, y = 0..3, are derived as

34]yO'y,1[p]1,xO'x[p] yOy xO, x[pred
3

0'y

3

0'x
C >>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++−+−+=++ ∑∑

==
, with x, y = 0..3. (8-134)

– Otherwise, if any samples p[x + xO, −1], with x = 0..3, are marked as "not available for Intra chroma
prediction" and all samples p[−1, y +yO], with y = 0..3, are marked as "available for Intra chroma
prediction", the values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as

22]yO'y,1[p] yOy xO, x[pred
3

0'y
C >>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−=++ ∑

=
, with x, y = 0..3. (8-135)

– Otherwise, if any samples p[−1, y +yO], with y = 0..3, are marked as "not available for Intra chroma
prediction" and all samples p[x + xO, −1], with x = 0..3, are marked as "available for Intra chroma
prediction", the values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as

22]1,xO'x[p] yOy xO, x[pred
3

0x'
C >>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+=++ ∑

=
, with x, y = 0..3. (8-136)

– Otherwise (some samples p[x + xO, −1], with x = 0..3, and some samples p[−1, y +yO], with y = 0..3,
are marked as "not available for Intra chroma prediction"), the values of the prediction samples
predC[x + xO, y + yO], with x, y = 0..3, are derived as

predC[x + xO, y + yO] = (1 << (BitDepthC − 1)), with x, y = 0..3. (8-137)

– Otherwise, if xO is greater than 0 and yO is equal to 0, the values of the prediction samples
predC[x + xO, y + yO] with x, y = 0..3 are derived as follows.

– If all samples p[x + xO, −1], with x = 0..3, are marked as "available for Intra chroma prediction", the
values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as

22]1,xO'x[p] yOy xO, x[pred
3

0x'
C >>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+=++ ∑

=
, with x, y = 0..3. (8-138)

– Otherwise, if all samples p[−1, y +yO], with y = 0..3, are marked as "available for Intra chroma
prediction", the values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as

22]yO'y,1[p] yOy xO, x[pred
3

0'y
C >>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−=++ ∑

=
, with x, y = 0..3. (8-139)

– Otherwise (some samples p[x + xO, −1], with x = 0..3, and some samples p[−1, y +yO], with y = 0..3,
are marked as "not available for Intra chroma prediction"), the values of the prediction samples
predC[x + xO, y + yO], with x, y = 0..3, are derived as

predC[x + xO, y + yO] = (1 << (BitDepthC − 1)), with x, y = 0..3. (8-140)

– Otherwise (xO is equal to 0 and yO is greater than 0), the values of the prediction samples
predC[x + xO, y + yO] with x, y = 0..3 are derived as follows.

150 Rec. ITU-T H.264 (03/2009)

– If all samples p[−1, y +yO], with y = 0..3, are marked as "available for Intra chroma prediction", the
values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as

22]yO'y,1[p] yOy xO, x[pred
3

0'y
C >>⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−=++ ∑

=
, with x, y = 0..3. (8-141)

– Otherwise, if all samples p[x + xO, −1], with x = 0..3, are marked as "available for Intra chroma
prediction", the values of the prediction samples predC[x + xO, y + yO], with x, y = 0..3, are derived as

22]1,xO'x[p] yOy xO, x[pred
3

0x'
C >>⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−+=++ ∑

=
, with x, y = 0..3. (8-142)

– Otherwise (some samples p[x + xO, −1], with x = 0..3, and some samples p[−1, y +yO], with y = 0..3,
are marked as "not available for Intra chroma prediction"), the values of the prediction samples
predC[x + xO, y + yO], with x, y = 0..3, are derived as

predC[x + xO, y + yO] = (1 << (BitDepthC − 1)), with x, y = 0..3. (8-143)

8.3.4.2 Specification of Intra_Chroma_Horizontal prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 1.

This mode shall be used only when the samples p[−1, y] with y = 0..MbHeightC − 1 are marked as "available for Intra
chroma prediction".

The values of the prediction samples predC[x, y] are derived as

predC[x, y] = p[−1, y], with x = 0..MbWidthC − 1 and y = 0..MbHeightC − 1 (8-144)

8.3.4.3 Specification of Intra_Chroma_Vertical prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 2.

This mode shall be used only when the samples p[x, −1] with x = 0..MbWidthC − 1 are marked as "available for Intra
chroma prediction".

The values of the prediction samples predC[x, y] are derived as

predC[x, y] = p[x, −1], with x = 0..MbWidthC − 1 and y = 0..MbHeightC − 1 (8-145)

8.3.4.4 Specification of Intra_Chroma_Plane prediction mode

This Intra chroma prediction mode is invoked when intra_chroma_pred_mode is equal to 3.

This mode shall be used only when the samples p[x, −1], with x = 0..MbWidthC − 1 and p[−1, y], with
y = −1..MbHeightC − 1 are marked as "available for Intra chroma prediction".

Let the variable xCF be set equal to ((ChromaArrayType = = 3) ? 4 : 0) and let the variable yCF be set equal to
((ChromaArrayType != 1) ? 4 : 0).

The values of the prediction samples predC[x, y] are derived by

predC[x, y] = Clip1C((a + b * (x − 3 − xCF) + c * (y − 3 − yCF) + 16) >> 5),
 with x = 0..MbWidthC − 1 and y = 0..MbHeightC − 1 (8-146)

where

a = 16 * (p[−1, MbHeightC − 1] + p[MbWidthC − 1, −1]) (8-147)

b = ((34 − 29 * (ChromaArrayType = = 3)) * H + 32) >> 6 (8-148)

 Rec. ITU-T H.264 (03/2009) 151

c = ((34 − 29 * (ChromaArrayType != 1)) * V + 32) >> 6 (8-149)

and H and V are specified as

[] []∑
+

=
−−+−−+++=

 xCF 3

0'x
)1 ,'xxCF2p1 ,'xxCF4p(*)1'x(H

(8-150)

∑
+

=
−+−−++−+=

yCF3

0'y
])'yyCF2 ,1[p]'yyCF4 ,1[p(*)1'y(V (8-151)

8.3.4.5 Intra prediction for chroma samples with ChromaArrayType equal to 3

This process is invoked when ChromaArrayType is equal to 3. This process is invoked for I and SI macroblock types. It
specifies how the Intra prediction chroma samples for the current macroblock are derived when ChromaArrayType is
equal to 3.

Inputs to this process are constructed samples prior to the deblocking filter process from neighbouring Cb and Cr blocks
and for Intra_NxN (where NxN is equal to 4x4 or 8x8) prediction mode, the associated values of IntraNxNPredMode
from neighbouring macroblocks.

Outputs of this process are the Intra prediction samples of the Cb and Cr components of the macroblock or in case of
the Intra_NxN prediction process, the outputs are NxN Cb sample arrays as part of the 16x16 Cb array of prediction
samples of the macroblock, and NxN Cb sample arrays as part of the 16x16 Cb array of prediction samples of the
macroblock.

Each Cb, Cr, and luma block with the same block index of the macroblock use the same prediction mode. The
prediction mode is applied to each of the Cb and Cr blocks separately. The process specified in this subclause is
invoked for each Cb and Cr block.

Depending on the macroblock prediction mode, the following applies.

– If the macroblock prediction mode is equal to Intra_4x4, the following applies.

– The same process described in subclause 8.3.1 is also applied to Cb or Cr samples, substituting luma with Cb
or Cr, substituting luma4x4BlkIdx with cb4x4BlkIdx or cr4x4BlkIdx, substituting pred4x4L with pred4x4Cb or
pred4x4Cr, and substituting BitDepthY with BitDepthC.

– The output variable Intra4x4PredMode[luma4x4BlkIdx] from the process described in subclause 8.3.1.1 is
also used for the 4x4 Cb or 4x4 Cr blocks with index luma4x4BlkIdx equal to index cb4x4BlkIdx or
cr4x4BlkIdx.

– The process to derive prediction Cb or Cr samples is identical to the process described in subclause 8.3.1.2
and its subsequent subclauses when substituting luma with Cb or Cr, substituting pred4x4L with pred4x4Cb or
pred4x4Cr, and substituting BitDepthY with BitDepthC.

– Otherwise, if the macroblock prediction mode is equal to Intra_8x8, the following applies.

– The same process described in subclause 8.3.2 is also applied to Cb or Cr samples, substituting luma with Cb
or Cr, substituting luma8x8BlkIdx with cb8x8BlkIdx or cr8x8BlkIdx, substituting pred8x8L with pred8x8Cb or
pred8x8Cr, and substituting BitDepthY with BitDepthC.

– The output variable Intra8x8PredMode[luma8x8BlkIdx] from the process described in subclause 8.3.2.1 is
used for the 8x8 Cb or 8x8 Cr blocks with index luma8x8BlkIdx equal to index cb8x8BlkIdx or cr8x8BlkIdx.

– The process to derive prediction Cb or Cr samples is identical to the process described in subclause 8.3.2.2
and its subsequent subclauses when substituting luma with Cb or Cr, substituting pred8x8L with pred8x8Cb or
pred8x8Cr, and substituting BitDepthY with BitDepthC.

– Otherwise (the macroblock prediction mode is equal to Intra_16x16), the same process described in
subclause 8.3.3 and in the subsequent subclause 8.3.3.1 to 8.3.3.4 is also applied to Cb or Cr samples, substituting
luma with Cb or Cr, substituting predL with predCb or predCr, and substituting BitDepthY with BitDepthC.

8.3.5 Sample construction process for I_PCM macroblocks

This process is invoked when mb_type is equal to I_PCM.

152 Rec. ITU-T H.264 (03/2009)

The variable dy is derived as follows.

– If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock, dy is set equal to 2.

– Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock), dy is set equal to 1.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

The constructed luma samples prior to the deblocking process are generated as specified by

for(i = 0; i < 256; i++)
 S′L[xP + (i % 16), yP + dy * (i / 16))] = pcm_sample_luma[i] (8-152)

When ChromaArrayType is not equal to 0, the constructed chroma samples prior to the deblocking process are
generated as specified by

for(i = 0; i < MbWidthC * MbHeightC; i++) {
 S′Cb[(xP / SubWidthC) + (i % MbWidthC),
 ((yP + SubHeightC − 1) / SubHeightC) + dy * (i / MbWidthC)] =
 pcm_sample_chroma[i] (8-153)
 S′Cr[(xP / SubWidthC) + (i % MbWidthC),
 ((yP + SubHeightC − 1) / SubHeightC) + dy * (i / MbWidthC)] =
 pcm_sample_chroma[i + MbWidthC * MbHeightC]
}

8.4 Inter prediction process

This process is invoked when decoding P and B macroblock types.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array predL of luma
samples and when ChromaArrayType is not equal to 0 two (MbWidthC)x(MbHeightC) arrays predCb and predCr of
chroma samples, one for each of the chroma components Cb and Cr.

The partitioning of a macroblock is specified by mb_type. Each macroblock partition is referred to by mbPartIdx. When
the macroblock partitioning consists of partitions that are equal to sub-macroblocks, each sub-macroblock can be
further partitioned into sub-macroblock partitions as specified by sub_mb_type[mbPartIdx]. Each sub-macroblock
partition is referred to by subMbPartIdx. When the macroblock partitioning does not consist of sub-macroblocks,
subMbPartIdx is set equal to 0.

The following steps are specified for each macroblock partition or for each sub-macroblock partition.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width
and height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-13, 7-14, 7-17, and 7-18.

The range of the macroblock partition index mbPartIdx is derived as follows.

– If mb_type is equal to B_Skip or B_Direct_16x16, mbPartIdx proceeds over values 0..3.

– Otherwise (mb_type is not equal to B_Skip or B_Direct_16x16), mbPartIdx proceeds over values
0..NumMbPart(mb_type) − 1.

For each value of mbPartIdx, the variables partWidth and partHeight for each macroblock partition or sub-macroblock
partition in the macroblock are derived as follows.

– If mb_type is not equal to P_8x8, P_8x8ref0, B_Skip, B_Direct_16x16, or B_8x8, subMbPartIdx is set equal to 0,
and partWidth and partHeight are derived as

partWidth = MbPartWidth(mb_type) (8-154)

partHeight = MbPartHeight(mb_type) (8-155)

– Otherwise, if mb_type is equal to P_8x8 or P_8x8ref0, or mb_type is equal to B_8x8 and
sub_mb_type[mbPartIdx] is not equal to B_Direct_8x8, subMbPartIdx proceeds over values
0..NumSubMbPart(sub_mb_type[mbPartIdx]) − 1, and partWidth and partHeight are derived as

 Rec. ITU-T H.264 (03/2009) 153

partWidth = SubMbPartWidth(sub_mb_type[mbPartIdx]) (8-156)

partHeight = SubMbPartHeight(sub_mb_type[mbPartIdx]). (8-157)

– Otherwise (mb_type is equal to B_Skip or B_Direct_16x16, or mb_type is equal to B_8x8 and
sub_mb_type[mbPartIdx] is equal to B_Direct_8x8), subMbPartIdx proceeds over values 0..3, and partWidth and
partHeight are derived as

partWidth = 4 (8-158)

partHeight = 4 (8-159)

When ChromaArrayType is not equal to 0, the variables partWidthC and partHeightC are derived as

partWidthC = partWidth / SubWidthC (8-160)
partHeightC = partHeight / SubHeightC (8-161)

Let the variable MvCnt be initially set equal to 0 before any invocation of subclause 8.4.1 for the macroblock.

The Inter prediction process for a macroblock partition mbPartIdx and a sub-macroblock partition subMbPartIdx
consists of the following ordered steps

1. Derivation process for motion vector components and reference indices as specified in subclause 8.4.1.

Inputs to this process are

– a macroblock partition mbPartIdx,

– a sub-macroblock partition subMbPartIdx.

Outputs of this process are

– luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion
vectors mvCL0 and mvCL1

– reference indices refIdxL0 and refIdxL1

– prediction list utilization flags predFlagL0 and predFlagL1

– the sub-macroblock partition motion vector count subMvCnt.

2. The variable MvCnt is incremented by subMvCnt.

3. Derivation process for prediction weights as specified in subclause 8.4.3.

Inputs to this process are

– reference indices refIdxL0 and refIdxL1

– prediction list utilization flags predFlagL0 and predFlagL1

Outputs of this process are variables for weighted prediction logWDC, w0C, w1C, o0C, o1C with C being replaced by
L and, when ChromaArrayType is not equal to 0, Cb and Cr.

4. Decoding process for Inter prediction samples as specified in subclause 8.4.2.

Inputs to this process are

– a macroblock partition mbPartIdx,

– a sub-macroblock partition subMbPartIdx.

– variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight,
partWidthC (if available), and partHeightC (if available)

– luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion
vectors mvCL0 and mvCL1

– reference indices refIdxL0 and refIdxL1

154 Rec. ITU-T H.264 (03/2009)

– prediction list utilization flags predFlagL0 and predFlagL1

– variables for weighted prediction logWDC, w0C, w1C, o0C, o1C with C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr

Outputs of this process are inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPartL of
prediction luma samples and when ChromaArrayType is not equal to 0 two (partWidthC)x(partHeightC) arrays
predPartCr, and predPartCb of prediction chroma samples, one for each of the chroma components Cb and Cr.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

MvL0[mbPartIdx][subMbPartIdx] = mvL0 (8-162)

MvL1[mbPartIdx][subMbPartIdx] = mvL1 (8-163)

RefIdxL0[mbPartIdx] = refIdxL0 (8-164)

RefIdxL1[mbPartIdx] = refIdxL1 (8-165)

PredFlagL0[mbPartIdx] = predFlagL0 (8-166)

PredFlagL1[mbPartIdx] = predFlagL1 (8-167)

The location of the upper-left sample of the macroblock partition relative to the upper-left sample of the macroblock is
derived by invoking the inverse macroblock partition scanning process as described in subclause 6.4.2.1 with mbPartIdx
as the input and (xP, yP) as the output.

The location of the upper-left sample of the sub-macroblock partition relative to the upper-left sample of the
macroblock partition is derived by invoking the inverse sub-macroblock partition scanning process as described in
subclause 6.4.2.2 with subMbPartIdx as the input and (xS, yS) as the output.

The macroblock prediction is formed by placing the macroblock or sub-macroblock partition prediction samples in their
correct relative positions in the macroblock, as follows.

The variable predL[xP + xS + x, yP + yS + y] with x = 0..partWidth − 1, y = 0..partHeight − 1 is derived by

predL[xP + xS + x, yP + yS + y] = predPartL[x, y] (8-168)

When ChromaArrayType is not equal to 0, the variable predC with x = 0..partWidthC − 1, y = 0..partHeightC − 1, and C
in predC and predPartC being replaced by Cb or Cr is derived by

predC[xP / SubWidthC + xS / SubWidthC + x, yP / SubHeightC + yS / SubHeightC + y] = predPartC[x, y]
 (8-169)

8.4.1 Derivation process for motion vector components and reference indices

Inputs to this process are

– a macroblock partition mbPartIdx,

– a sub-macroblock partition subMbPartIdx.

Outputs of this process are

– luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion vectors
mvCL0 and mvCL1,

– reference indices refIdxL0 and refIdxL1,

– prediction list utilization flags predFlagL0 and predFlagL1,

– a motion vector count variable subMvCnt.

 Rec. ITU-T H.264 (03/2009) 155

For the derivation of the variables mvL0 and mvL1 as well as refIdxL0 and refIdxL1, the following applies.

– If mb_type is equal to P_Skip, the derivation process for luma motion vectors for skipped macroblocks in P and SP
slices in subclause 8.4.1.1 is invoked with the output being the luma motion vectors mvL0 and reference indices
refIdxL0, and predFlagL0 is set equal to 1. mvL1 and refIdxL1 are marked as not available and predFlagL1 is set
equal to 0. The motion vector count variable subMvCnt is set equal to 1.

– Otherwise, if mb_type is equal to B_Skip or B_Direct_16x16 or sub_mb_type[mbPartIdx] is equal to
B_Direct_8x8, the derivation process for luma motion vectors for B_Skip, B_Direct_16x16, and B_Direct_8x8 in
B slices in subclause 8.4.1.2 is invoked with mbPartIdx and subMbPartIdx as the input and the output being the
luma motion vectors mvL0, mvL1, the reference indices refIdxL0, refIdxL1, the motion vector count variable
subMvCnt, and the prediction utilization flags predFlagL0 and predFlagL1.

– Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refIdxLX, and in Pred_LX
and in the syntax elements ref_idx_lX and mvd_lX, the following applies.

1. The variables refIdxLX and predFlagLX are derived as follows.
– If MbPartPredMode(mb_type, mbPartIdx) or SubMbPredMode(sub_mb_type[mbPartIdx]) is equal

to Pred_LX or to BiPred,

refIdxLX = ref_idx_lX[mbPartIdx] (8-170)

predFlagLX = 1 (8-171)

– Otherwise, the variables refIdxLX and predFlagLX are specified by

refIdxLX = −1 (8-172)

predFlagLX = 0 (8-173)

2. The motion vector count variable subMvCnt is set equal to predFlagL0 + predFlagL1.

3. The variable currSubMbType is derived as follows.
– If the macroblock type is equal to B_8x8, currSubMbType is set equal to sub_mb_type[mbPartIdx].
– Otherwise (the macroblock type is not equal to B_8x8), currSubMbType is set equal to "na".

4. When predFlagLX is equal to 1, the derivation process for luma motion vector prediction in
subclause 8.4.1.3 is invoked with mbPartIdx subMbPartIdx, refIdxLX, and currSubMbType as the inputs
and the output being mvpLX. The luma motion vectors are derived by

mvLX[0] = mvpLX[0] + mvd_lX[mbPartIdx][subMbPartIdx][0] (8-174)

mvLX[1] = mvpLX[1] + mvd_lX[mbPartIdx][subMbPartIdx][1] (8-175)

When ChromaArrayType is not equal to 0 and predFlagLX (with X being either 0 or 1) is equal to 1, the derivation
process for chroma motion vectors in subclause 8.4.1.4 is invoked with mvLX and refIdxLX as input and the output
being mvCLX.

8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices

This process is invoked when mb_type is equal to P_Skip.

Outputs of this process are the motion vector mvL0 and the reference index refIdxL0.

The reference index refIdxL0 for a skipped macroblock is derived as

refIdxL0 = 0. (8-176)

For the derivation of the motion vector mvL0 of a P_Skip macroblock type, the following ordered steps are specified:

156 Rec. ITU-T H.264 (03/2009)

1. The process specified in subclause 8.4.1.3.2 is invoked with mbPartIdx set equal to 0, subMbPartIdx set equal
to 0, currSubMbType set equal to "na", and listSuffixFlag set equal to 0 as input and the output is assigned to
mbAddrA, mbAddrB, mvL0A, mvL0B, refIdxL0A, and refIdxL0B.

2. The variable mvL0 is specified as follows.

– If any of the following conditions are true, both components of the motion vector mvL0 are set equal
to 0:

– mbAddrA is not available,

– mbAddrB is not available,

– refIdxL0A is equal to 0 and both components of mvL0A are equal to 0,

– refIdxL0B is equal to 0 and both components of mvL0B are equal to 0.

– Otherwise, the derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is
invoked with mbPartIdx = 0, subMbPartIdx = 0, refIdxL0, and currSubMbType = "na" as inputs and the
output is assigned to mvL0.

NOTE – The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

8.4.1.2 Derivation process for luma motion vectors for B_Skip, B_Direct_16x16, and B_Direct_8x8

This process is invoked when mb_type is equal to B_Skip or B_Direct_16x16, or sub_mb_type[mbPartIdx] is equal to
B_Direct_8x8.

Inputs to this process are mbPartIdx and subMbPartIdx.

Outputs of this process are the reference indices refIdxL0, refIdxL1, the motion vectors mvL0 and mvL1, the motion
vector count variable subMvCnt, and the prediction list utilization flags, predFlagL0 and predFlagL1.
The derivation process depends on the value of direct_spatial_mv_pred_flag, which is present in the bitstream in the
slice header syntax as specified in subclause 7.3.3, and is specified as follows.

– If direct_spatial_mv_pred_flag is equal to 1, the mode in which the outputs of this process are derived is referred
to as spatial direct prediction mode.

– Otherwise (direct_spatial_mv_pred_flag is equal to 0), mode in which the outputs of this process are derived is
referred to as temporal direct prediction mode.

Both spatial and temporal direct prediction mode use the co-located motion vectors and reference indices as specified in
subclause 8.4.1.2.1.

The motion vectors and reference indices are derived as follows.

– If spatial direct prediction mode is used, the direct motion vector and reference index prediction mode specified in
subclause 8.4.1.2.2 is used, with subMvCnt being an output.

– Otherwise (temporal direct prediction mode is used), the direct motion vector and reference index prediction mode
specified in subclause 8.4.1.2.3 is used and the variable subMvCnt is derived as follows.

– If subMbPartIdx is equal to 0, subMvCnt is set equal to 2.

– Otherwise (subMbPartIdx is not equal to 0), subMvCnt is set equal to 0.

8.4.1.2.1 Derivation process for the co-located 4x4 sub-macroblock partitions

Inputs to this process are mbPartIdx and subMbPartIdx.

Outputs of this process are the picture colPic, the co-located macroblock mbAddrCol, the motion vector mvCol, the
reference index refIdxCol, and the variable vertMvScale (which can be One_To_One, Frm_To_Fld or Fld_To_Frm).

When RefPicList1[0] is a frame or a complementary field pair, let firstRefPicL1Top and firstRefPicL1Bottom be the
top and bottom fields of RefPicList1[0], respectively, and let the following variables be specified as

topAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Top, CurrPic)) (8-177)

bottomAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL1Bottom, CurrPic)) (8-178)

 Rec. ITU-T H.264 (03/2009) 157

The variable colPic specifies the picture that contains the co-located macroblock as specified in Table 8-6.

Table 8-6 – Specification of the variable colPic

field_pic_flag RefPicList1[0]
is …

mb_field_decoding_flag additional condition colPic

a field of a
decoded frame the frame containing

RefPicList1[0] 1
a decoded field RefPicList1[0]
a decoded frame RefPicList1[0]

topAbsDiffPOC <
bottomAbsDiffPOC firstRefPicL1Top

0
topAbsDiffPOC >=
bottomAbsDiffPOC firstRefPicL1Bottom

(CurrMbAddr & 1) = = 0 firstRefPicL1Top

0 a
complementary
field pair

1
(CurrMbAddr & 1) != 0 firstRefPicL1Bottom

NOTE – The picture order count values of a complementary field pair marked as "used for long-term reference" have an impact
on the decoding process when the current picture is a coded frame, the current macroblock is a frame macroblock, and the
complementary field pair marked as "used for long-term reference" is the first picture in reference list 1.

Let PicCodingStruct(X) be a function with the argument X being either CurrPic or colPic. It is specified in Table 8-7.

Table 8-7 – Specification of PicCodingStruct(X)

X is coded with field_pic_flag equal to … mb_adaptive_frame_field_flag PicCodingStruct(X)
1 FLD
0 0 FRM
0 1 AFRM

The variable luma4x4BlkIdx is derived as follows.
– If direct_8x8_inference_flag is equal to 0, luma4x4BlkIdx is set equal to (4 * mbPartIdx + subMbPartIdx).

– Otherwise (direct_8x8_inference_flag is equal to 1), luma4x4BlkIdx is set equal to (5 * mbPartIdx).

The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with luma4x4BlkIdx as the
input and (x, y) assigned to (xCol, yCol) as the output.

Table 8-8 specifies the co-located macroblock address mbAddrCol, yM, and the variable vertMvScale in two steps:

1. Specification of a macroblock address mbAddrX depending on PicCodingStruct(CurrPic), and
PicCodingStruct(colPic).

NOTE – It is not possible for CurrPic and colPic picture coding types to be either (FRM, AFRM) or (AFRM, FRM)
because these picture coding types must be separated by an IDR picture.

2. Specification of mbAddrCol, yM, and vertMvScale depending on mb_field_decoding_flag and the variable
fieldDecodingFlagX, which is derived as follows.

– If the macroblock mbAddrX in the picture colPic is a field macroblock, fieldDecodingFlagX is set equal
to 1

– Otherwise (the macroblock mbAddrX in the picture colPic is a frame macroblock), fieldDecodingFlagX is
set equal to 0.

Unspecified values in Table 8-8 indicate that the value of the corresponding variable is not relevant for the current table
row.

mbAddrCol is set equal to CurrMbAddr or to one of the following values.

mbAddrCol1 = 2 * PicWidthInMbs * (CurrMbAddr / PicWidthInMbs) +
 (CurrMbAddr % PicWidthInMbs) + PicWidthInMbs * (yCol / 8) (8-179)

158 Rec. ITU-T H.264 (03/2009)

mbAddrCol2 = 2 * CurrMbAddr + (yCol / 8) (8-180)

mbAddrCol3 = 2 * CurrMbAddr + bottom_field_flag (8-181)

mbAddrCol4 = PicWidthInMbs * (CurrMbAddr / (2 * PicWidthInMbs)) +
 (CurrMbAddr % PicWidthInMbs) (8-182)

mbAddrCol5 = CurrMbAddr / 2 (8-183)

mbAddrCol6 = 2 * (CurrMbAddr / 2) + ((topAbsDiffPOC < bottomAbsDiffPOC) ? 0 : 1) (8-184)

mbAddrCol7 = 2 * (CurrMbAddr / 2) + (yCol / 8) (8-185)

Table 8-8 – Specification of mbAddrCol, yM, and vertMvScale

Pi
cC

od
in

gS
tr

uc
t(

 C
ur

rP
ic

)

Pi
cC

od
in

gS
tr

uc
t(

 c
ol

Pi
c

)

m
bA

dd
rX

m
b_

fie
ld

_d
ec

od
in

g_
fla

g
fie

ld
D

ec
od

in
gF

la
gX

m
bA

dd
rC

ol

yM

ve
rt

M
vS

ca
le

FLD CurrMbAddr yCol One_To_One

FRM mbAddrCol1 (2 * yCol) % 16 Frm_To_Fld

 0 mbAddrCol2 (2 * yCol) % 16 Frm_To_Fld
FLD

AFRM 2*CurrMbAddr
 1 mbAddrCol3 yCol One_To_One

FLD mbAddrCol4 8 * ((CurrMbAddr / PicWidthInMbs) % 2)
+ 4 * (yCol / 8) Fld_To_Frm

FRM

FRM CurrMbAddr yCol One_To_One

 0 mbAddrCol5 8 * (CurrMbAddr % 2) +4 * (yCol / 8) Fld_To_Frm
FLD

 1 mbAddrCol5 yCol One_To_One

0 CurrMbAddr yCol One_To_One
CurrMbAddr 0

1 mbAddrCol6 8 * (CurrMbAddr % 2) + 4 * (yCol / 8) Fld_To_Frm

0 mbAddrCol7 (2 * yCol) % 16 Frm_To_Fld

AFRM

AFRM

CurrMbAddr 1
1 CurrMbAddr yCol One_To_One

Let mbTypeCol be the syntax element mb_type of the macroblock with address mbAddrCol inside the picture colPic
and, when mbTypeCol is equal to P_8x8, P_8x8ref0, or B_8x8, let subMbTypeCol be the syntax element list
sub_mb_type of the macroblock with address mbAddrCol inside the picture colPic.

 Rec. ITU-T H.264 (03/2009) 159

Let mbPartIdxCol be the macroblock partition index of the co-located partition and subMbPartIdxCol the
sub-macroblock partition index of the co-located sub-macroblock partition. The derivation process for macroblock and
sub-macroblock partition indices as specified in subclause 6.4.12.4 is invoked with the luma location (xCol, yM), the
macroblock type mbTypeCol, and, when mbTypeCol is equal to P_8x8, P_8x8ref0, or B_8x8, the list of sub-
macroblock types subMbTypeCol as the inputs and the outputs are the macroblock partition index mbPartIdxCol and
the sub-macroblock partition index subMbPartIdxCol.

The motion vector mvCol and the reference index refIdxCol are derived as follows.
– If the macroblock mbAddrCol is coded in an Intra macroblock prediction mode, both components of mvCol are set

equal to 0 and refIdxCol is set equal to −1.

– Otherwise (the macroblock mbAddrCol is not coded in an Intra macroblock prediction mode), the prediction
utilization flags predFlagL0Col and predFlagL1Col are set equal to PredFlagL0[mbPartIdxCol] and
PredFlagL1[mbPartIdxCol], respectively, which are the prediction utilization flags that have been assigned to the
macroblock partition mbAddrCol\mbPartIdxCol inside the picture colPic, and the following applies.

– If predFlagL0Col is equal to 1, the motion vector mvCol and the reference index refIdxCol are set equal to
MvL0[mbPartIdxCol][subMbPartIdxCol] and RefIdxL0[mbPartIdxCol], respectively, which are the
motion vector mvL0 and the reference index refIdxL0 that have been assigned to the (sub-)macroblock
partition mbAddrCol\mbPartIdxCol\subMbPartIdxCol inside the picture colPic.

– Otherwise (predFlagL0Col is equal to 0 and predFlagL1Col is equal to 1), the motion vector mvCol and the
reference index refIdxCol are set equal to MvL1[mbPartIdxCol][subMbPartIdxCol] and
RefIdxL1[mbPartIdxCol], respectively, which are the motion vector mvL1 and the reference index refIdxL1
that have been assigned to the (sub-)macroblock partition mbAddrCol\mbPartIdxCol\subMbPartIdxCol inside
the picture colPic.

8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode

This process is invoked when direct_spatial_mv_pred_flag is equal to 1 and any of the following conditions is true:
– mb_type is equal to B_Skip,

– mb_type is equal to B_Direct_16x16,

– sub_mb_type[mbPartIdx] is equal to B_Direct_8x8.

Inputs to this process are mbPartIdx, subMbPartIdx.

Outputs of this process are the reference indices refIdxL0, refIdxL1, the motion vectors mvL0 and mvL1, the motion
vector count variable subMvCnt, and the prediction list utilization flags, predFlagL0 and predFlagL1.

The reference indices refIdxL0 and refIdxL1 and the variable directZeroPredictionFlag are derived by applying the
following ordered steps.

1. Let the variable currSubMbType be set equal to sub_mb_type[mbPartIdx].

2. The process specified in subclause 8.4.1.3.2 is invoked with mbPartIdx = 0, subMbPartIdx = 0, currSubMbType,
and listSuffixFlag = 0 as inputs and the output is assigned to the motion vectors mvL0N and the reference
indices refIdxL0N with N being replaced by A, B, or C.

3. The process specified in subclause 8.4.1.3.2 is invoked with mbPartIdx = 0, subMbPartIdx = 0, currSubMbType,
and listSuffixFlag = 1 as inputs and the output is assigned to the motion vectors mvL1N and the reference
indices refIdxL1N with N being replaced by A, B, or C.

NOTE 1 – The motion vectors mvL0N, mvL1N and the reference indices refIdxL0N, refIdxL1N are identical for all 4x4
sub-macroblock partitions of a macroblock.

4. The reference indices refIdxL0, refIdxL1, and directZeroPredictionFlag are derived by

refIdxL0 = MinPositive(refIdxL0A, MinPositive(refIdxL0B, refIdxL0C)) (8-186)
refIdxL1 = MinPositive(refIdxL1A, MinPositive(refIdxL1B, refIdxL1C)) (8-187)
directZeroPredictionFlag = 0 (8-188)

where

⎩
⎨
⎧ >=>=

=
otherwise)yx,Max(

0yand0xif)yx,Min(
)y x,e(MinPositiv (8-189)

160 Rec. ITU-T H.264 (03/2009)

5. When both reference indices refIdxL0 and refIdxL1 are less than 0,

refIdxL0 = 0 (8-190)
refIdxL1 = 0 (8-191)
directZeroPredictionFlag = 1 (8-192)

The process specified in subclause 8.4.1.2.1 is invoked with mbPartIdx, subMbPartIdx given as input and the output is
assigned to refIdxCol and mvCol.

The variable colZeroFlag is derived as follows.

– If all of the following conditions are true, colZeroFlag is set equal to 1:

– RefPicList1[0] is currently marked as "used for short-term reference",

– refIdxCol is equal to 0,

– both motion vector components mvCol[0] and mvCol[1] lie in the range of −1 to 1 in units specified as
follows.

– If the co-located macroblock is a frame macroblock, the units of mvCol[0] and mvCol[1] are units of
quarter luma frame samples.

– Otherwise (the co-located macroblock is a field macroblock), the units of mvCol[0] and mvCol[1] are
units of quarter luma field samples.

NOTE 2 – For purposes of determining the condition above, the value mvCol[1] is not scaled to use the units of a motion vector
for the current macroblock in cases when the current macroblock is a frame macroblock and the co-located macroblock is a field
macroblock or when the current macroblock is a field macroblock and the co-located macroblock is a frame macroblock. This
aspect differs from the use of mvCol[1] in the temporal direct mode as specified in subclause 8.4.1.2.3, which applies scaling to
the motion vector of the co-located macroblock to use the same units as the units of a motion vector for the current macroblock,
using Equation 8-195 or Equation 8-196 in these cases.

– Otherwise, colZeroFlag is set equal to 0.

The motion vectors mvLX (with X being 0 or 1) are derived as follows.

– If any of the following conditions is true, both components of the motion vector mvLX are set equal to 0:

– directZeroPredictionFlag is equal to 1,

– refIdxLX is less than 0,

– refIdxLX is equal to 0 and colZeroFlag is equal to 1.

– Otherwise, the process specified in subclause 8.4.1.3 is invoked with mbPartIdx = 0, subMbPartIdx = 0, refIdxLX,
and currSubMbType as inputs and the output is assigned to mvLX.

NOTE 3 – The motion vector mvLX returned from subclause 8.4.1.3 is identical for all 4x4 sub-macroblock partitions
of a macroblock for which the process is invoked.

The prediction utilization flags predFlagL0 and predFlagL1 are derived as specified using Table 8-9.

Table 8-9 – Assignment of prediction utilization flags

refIdxL0 refIdxL1 predFlagL0 predFlagL1

>= 0 >= 0 1 1

>= 0 < 0 1 0

< 0 >= 0 0 1

The variable subMvCnt is derived as follows.

– If subMbPartIdx is not equal to 0, subMvCnt is set equal to 0.

– Otherwise (subMbPartIdx is equal to 0), subMvCnt is set equal to predFlagL0 + predFLagL1.

 Rec. ITU-T H.264 (03/2009) 161

8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction mode

This process is invoked when direct_spatial_mv_pred_flag is equal to 0 and any of the following conditions is true:

– mb_type is equal to B_Skip,

– mb_type is equal to B_Direct_16x16,

– sub_mb_type[mbPartIdx] is equal to B_Direct_8x8.

Inputs to this process are mbPartIdx and subMbPartIdx.

Outputs of this process are the motion vectors mvL0 and mvL1, the reference indices refIdxL0 and refIdxL1, and the
prediction list utilization flags, predFlagL0 and predFlagL1.
The process specified in subclause 8.4.1.2.1 is invoked with mbPartIdx, subMbPartIdx given as input and the output is
assigned to colPic, mbAddrCol, mvCol, refIdxCol, and vertMvScale.

The reference indices refIdxL0 and refIdxL1 are derived as

refIdxL0 = ((refIdxCol < 0) ? 0 : MapColToList0(refIdxCol)) (8-193)

refIdxL1 = 0 (8-194)

NOTE 1 – If the current macroblock is a field macroblock, refIdxL0 and refIdxL1 index a list of fields; otherwise (the current
macroblock is a frame macroblock), refIdxL0 and refIdxL1 index a list of frames or complementary reference field pairs.

Let refPicCol be a frame, a field, or a complementary field pair that was referred by the reference index refIdxCol when
decoding the co-located macroblock mbAddrCol inside the picture colPic. The function MapColToList0(refIdxCol) is
specified as follows.

– If vertMvScale is equal to One_To_One, the following applies.

– If field_pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies.

– Let refIdxL0Frm be the lowest valued reference index in the current reference picture list RefPicList0
that references the frame or complementary field pair that contains the field refPicCol. RefPicList0 shall
contain a frame or complementary field pair that contains the field refPicCol. The return value of
MapColToList0() is specified as follows.
– If the field referred to by refIdxCol has the same parity as the current macroblock,

MapColToList0(refIdxCol) returns the reference index (refIdxL0Frm << 1).
– Otherwise (the field referred by refIdxCol has the opposite parity of the current macroblock),

MapColToList0(refIdxCol) returns the reference index ((refIdxL0Frm << 1) + 1).

– Otherwise (field_pic_flag is equal to 1 or the current macroblock is a frame macroblock), MapColToList0(
refIdxCol) returns the lowest valued reference index refIdxL0 in the current reference picture list RefPicList0
that references refPicCol. RefPicList0 shall contain refPicCol.

– Otherwise, if vertMvScale is equal to Frm_To_Fld, the following applies.

– If field_pic_flag is equal to 0, let refIdxL0Frm be the lowest valued reference index in the current reference
picture list RefPicList0 that references refPicCol. MapColToList0(refIdxCol) returns the reference index
(refIdxL0Frm << 1). RefPicList0 shall contain refPicCol.

– Otherwise (field_pic_flag is equal to 1), MapColToList0(refIdxCol) returns the lowest valued reference
index refIdxL0 in the current reference picture list RefPicList0 that references the field of refPicCol with the
same parity as the current picture CurrPic. RefPicList0 shall contain the field of refPicCol with the same
parity as the current picture CurrPic.

– Otherwise (vertMvScale is equal to Fld_To_Frm), MapColToList0(refIdxCol) returns the lowest valued reference
index refIdxL0 in the current reference picture list RefPicList0 that references the frame or complementary field
pair that contains refPicCol. RefPicList0 shall contain a frame or complementary field pair that contains the field
refPicCol.

NOTE 2 – A decoded reference picture that was marked as "used for short-term reference" when it was referenced in
the decoding process of the picture containing the co-located macroblock may have been modified to be marked as
"used for long-term reference" before being used for reference for inter prediction using the direct prediction mode for
the current macroblock.

162 Rec. ITU-T H.264 (03/2009)

Depending on the value of vertMvScale the vertical component of mvCol is modified as follows.

– If vertMvScale is equal to Frm_To_Fld

mvCol[1] = mvCol[1] / 2 (8-195)

– Otherwise, if vertMvScale is equal to Fld_To_Frm

mvCol[1] = mvCol[1] * 2 (8-196)

– Otherwise (vertMvScale is equal to One_To_One), mvCol[1] remains unchanged.

The variables currPicOrField, pic0, and pic1, are derived as follows.

– If field_pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies:
1. currPicOrField is the field of the current picture CurrPic that has the same parity as the current macroblock.
2. pic1 is the field of RefPicList1[0] that has the same parity as the current macroblock.
3. The variable pic0 is derived as follows.

– If refIdxL0 % 2 is equal to 0, pic0 is the field of RefPicList0[refIdxL0 / 2] that has the same parity as
the current macroblock.

– Otherwise (refIdxL0 % 2 is not equal to 0), pic0 is the field of RefPicList0[refIdxL0 / 2] that has the
opposite parity of the current macroblock.

– Otherwise (field_pic_flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField is the
current picture CurrPic, pic1 is the decoded reference picture RefPicList1[0], and pic0 is the decoded reference
picture RefPicList0[refIdxL0].

The two motion vectors mvL0 and mvL1 for each 4x4 sub-macroblock partition of the current macroblock are derived
as follows.

NOTE 3 – It is often the case that many of the 4x4 sub-macroblock partitions share the same motion vectors and
reference pictures. In these cases, temporal direct mode motion compensation can calculate the inter prediction sample
values in larger units than 4x4 luma sample blocks. For example, when direct_8x8_inference_flag is equal to 1, at
least each 8x8 luma sample quadrant of the macroblock shares the same motion vectors and reference pictures.

– If the reference index refIdxL0 refers to a long-term reference picture, or DiffPicOrderCnt(pic1, pic0) is equal
to 0, the motion vectors mvL0, mvL1 for the direct mode partition are derived by

mvL0 = mvCol (8-197)

mvL1 = 0 (8-198)

– Otherwise, the motion vectors mvL0, mvL1 are derived as scaled versions of the motion vector mvCol of the
co-located sub-macroblock partition as specified below (see Figure 8-2)

tx = (16 384 + Abs(td / 2)) / td (8-199)

DistScaleFactor = Clip3(-1024, 1023, (tb * tx + 32) >> 6) (8-200)

mvL0 = (DistScaleFactor * mvCol + 128) >> 8 (8-201)

mvL1 = mvL0 − mvCol (8-202)

where tb and td are derived as

tb = Clip3(-128, 127, DiffPicOrderCnt(currPicOrField, pic0)) (8-203)

td = Clip3(-128, 127, DiffPicOrderCnt(pic1, pic0)) (8-204)

 Rec. ITU-T H.264 (03/2009) 163

NOTE 4 – mvL0 and mvL1 cannot exceed the ranges specified in Annex A.

The prediction utilization flags predFlagL0 and predFlagL1 are both set equal to 1.

Figure 8-2 illustrates the temporal direct-mode motion vector inference when the current picture is temporally between
the reference picture from reference picture list 0 and the reference picture from reference picture list 1.

List 0 reference Current B List 1 reference

Co-located partition

Direct-mode B partition

. . . .

td

tb

Figure 8-2 – Example for temporal direct-mode motion vector inference (informative)

8.4.1.3 Derivation process for luma motion vector prediction

Inputs to this process are

– the macroblock partition index mbPartIdx,

– the sub-macroblock partition index subMbPartIdx,

– the reference index of the current partition refIdxLX (with X being 0 or 1),

– the variable currSubMbType.

Output of this process is the prediction mvpLX of the motion vector mvLX (with X being 0 or 1).

The derivation process for the neighbouring blocks for motion data in subclause 8.4.1.3.2 is invoked with mbPartIdx,
subMbPartIdx, currSubMbType, and listSuffixFlag = X (with X being 0 or 1 for refIdxLX being refIdxL0 or refIdxL1,
respectively) as the input and with mbAddrN\mbPartIdxN\subMbPartIdxN, reference indices refIdxLXN and the
motion vectors mvLXN with N being replaced by A, B, or C as the output.

The motion vector predictor mvpLX is derived as follows.

– If MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartIdx is equal to 0, and
refIdxLXB is equal to refIdxLX, the motion vector predictor mvpLX is derived by

mvpLX = mvLXB (8-205)

– Otherwise, if MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb_type) is equal to 8, mbPartIdx is equal
to 1, and refIdxLXA is equal to refIdxLX, the motion vector predictor mvpLX is derived by

mvpLX = mvLXA (8-206)

– Otherwise, if MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartIdx is equal
to 0, and refIdxLXA is equal to refIdxLX, the motion vector predictor mvpLX is derived by

mvpLX = mvLXA (8-207)

164 Rec. ITU-T H.264 (03/2009)

– Otherwise, if MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartIdx is equal
to 1, and refIdxLXC is equal to refIdxLX, the motion vector predictor mvpLX is derived by

mvpLX = mvLXC (8-208)

– Otherwise, the derivation process for median luma motion vector prediction in subclause 8.4.1.3.1 is invoked with
mbAddrN\mbPartIdxN\subMbPartIdxN, mvLXN, refIdxLXN with N being replaced by A, B, or C, and refIdxLX
as the inputs and the output is assigned to the motion vector predictor mvpLX.

Figure 8-3 illustrates the non-median prediction as specified in equations 8-205 to 8-208.

8*16 16*8

Figure 8-3 – Directional segmentation prediction (informative)

8.4.1.3.1 Derivation process for median luma motion vector prediction

Inputs to this process are

– the neighbouring partitions mbAddrN\mbPartIdxN\subMbPartIdxN (with N being replaced by A, B, or C),

– the motion vectors mvLXN (with N being replaced by A, B, or C) of the neighbouring partitions,

– the reference indices refIdxLXN (with N being replaced by A, B, or C) of the neighbouring partitions,

– the reference index refIdxLX of the current partition.

Output of this process is the motion vector prediction mvpLX.

The variable mvpLX is derived as specified by the following ordered steps:

1. When both partitions mbAddrB\mbPartIdxB\subMbPartIdxB and mbAddrC\mbPartIdxC\subMbPartIdxC are
not available and mbAddrA\mbPartIdxA\subMbPartIdxA is available,

mvLXB = mvLXA (8-209)

mvLXC = mvLXA (8-210)

refIdxLXB = refIdxLXA (8-211)

refIdxLXC = refIdxLXA (8-212)

2. Depending on reference indices refIdxLXA, refIdxLXB, or refIdxLXC, the following applies.

– If one and only one of the reference indices refIdxLXA, refIdxLXB, or refIdxLXC is equal to the reference
index refIdxLX of the current partition, the following applies. Let refIdxLXN be the reference index that is
equal to refIdxLX, the motion vector mvLXN is assigned to the motion vector prediction mvpLX:

mvpLX = mvLXN (8-213)

 Rec. ITU-T H.264 (03/2009) 165

– Otherwise, each component of the motion vector prediction mvpLX is given by the median of the
corresponding vector components of the motion vector mvLXA, mvLXB, and mvLXC:

mvpLX[0] = Median(mvLXA[0], mvLXB[0], mvLXC[0]) (8-214)

mvpLX[1] = Median(mvLXA[1], mvLXB[1], mvLXC[1]) (8-215)

8.4.1.3.2 Derivation process for motion data of neighbouring partitions

Inputs to this process are

– the macroblock partition index mbPartIdx,

– the sub-macroblock partition index subMbPartIdx,

– the current sub-macroblock type currSubMbType,

– the list suffix flag listSuffixFlag.

Outputs of this process are (with N being replaced by A, B, or C)

– mbAddrN\mbPartIdxN\subMbPartIdxN specifying neighbouring partitions,

– the motion vectors mvLXN of the neighbouring partitions,

– the reference indices refIdxLXN of the neighbouring partitions.

Variable names that include the string "LX" are interpreted with the X being equal to listSuffixFlag.

The partitions mbAddrN\mbPartIdxN\subMbPartIdxN with N being either A, B, or C are derived in the following
ordered steps:

1. Let mbAddrD\mbPartIdxD\subMbPartIdxD be variables specifying an additional neighbouring partition.

2. The process in subclause 6.4.10.7 is invoked with mbPartIdx, currSubMbType, and subMbPartIdx as input and
the output is assigned to mbAddrN\mbPartIdxN\subMbPartIdxN with N being replaced by A, B, C, or D.

3. When the partition mbAddrC\mbPartIdxC\subMbPartIdxC is not available, the following applies

mbAddrC = mbAddrD (8-216)

mbPartIdxC = mbPartIdxD (8-217)

subMbPartIdxC = subMbPartIdxD (8-218)

The motion vectors mvLXN and reference indices refIdxLXN (with N being A, B, or C) are derived as follows.

– If the macroblock partition or sub-macroblock partition mbAddrN\mbPartIdxN\subMbPartIdxN is not available or
mbAddrN is coded in an Intra macroblock prediction mode or predFlagLX of
mbAddrN\mbPartIdxN\subMbPartIdxN is equal to 0, both components of mvLXN are set equal to 0 and
refIdxLXN is set equal to −1.

– Otherwise, the following ordered steps are specified:

1. The motion vector mvLXN and reference index refIdxLXN are set equal to
MvLX[mbPartIdxN][subMbPartIdxN] and RefIdxLX[mbPartIdxN], respectively, which are the motion
vector mvLX and reference index refIdxLX that have been assigned to the (sub-)macroblock partition
mbAddrN\mbPartIdxN\subMbPartIdxN.

2. The variables mvLXN[1] and refIdxLXN are further processed as follows.

– If the current macroblock is a field macroblock and the macroblock mbAddrN is a frame macroblock

mvLXN[1] = mvLXN[1] / 2 (8-219)

refIdxLXN = refIdxLXN * 2 (8-220)

166 Rec. ITU-T H.264 (03/2009)

– Otherwise, if the current macroblock is a frame macroblock and the macroblock mbAddrN is a field
macroblock

mvLXN[1] = mvLXN[1] * 2 (8-221)

refIdxLXN = refIdxLXN / 2 (8-222)

– Otherwise, the vertical motion vector component mvLXN[1] and the reference index refIdxLXN
remain unchanged.

8.4.1.4 Derivation process for chroma motion vectors

This process is only invoked when ChromaArrayType is not equal to 0.

Inputs to this process are a luma motion vector mvLX and a reference index refIdxLX.

Output of this process is a chroma motion vector mvCLX.

A chroma motion vector is derived from the corresponding luma motion vector.

The precision of the chroma motion vector components is 1 ÷ (4 * SubWidthC) horizontally and
1 ÷ (4 * SubHeightC) vertically.

NOTE – For example, when using the 4:2:0 chroma format, since the units of luma motion vectors are one-quarter luma sample
units and chroma has half horizontal and vertical resolution compared to luma, the units of chroma motion vectors are one-eighth
chroma sample units, i.e., a value of 1 for the chroma motion vector refers to a one-eighth chroma sample displacement. For
example, when the luma vector applies to 8x16 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies
to 4x8 chroma samples and when the luma vector applies to 4x4 luma samples, the corresponding chroma vector in 4:2:0 chroma
format applies to 2x2 chroma samples.

For the derivation of the motion vector mvCLX, the following applies.

– If ChromaArrayType is not equal to 1 or the current macroblock is a frame macroblock, the horizontal and vertical
components of the chroma motion vector mvCLX are derived as

mvCLX[0] = mvLX[0] (8-223)
mvCLX[1] = mvLX[1] (8-224)

– Otherwise (ChromaArrayType is equal to 1 and the current macroblock is a field macroblock), only the horizontal
component of the chroma motion vector mvCLX[0] is derived using Equation 8-223. The vertical component of
the chroma motion vector mvCLX[1] is dependent on the parity of the current field or the current macroblock and
the reference picture, which is referred by the reference index refIdxLX. mvCLX[1] is derived from mvLX[1]
according to Table 8-10.

Table 8-10 – Derivation of the vertical component of the chroma vector in field coding mode

Parity conditions

Reference picture (refIdxLX) Current field (picture/macroblock)
mvCLX[1]

Top field Bottom field mvLX[1] + 2

Bottom field Top field mvLX[1] − 2

Otherwise mvLX[1]

8.4.2 Decoding process for Inter prediction samples

Inputs to this process are

– a macroblock partition mbPartIdx,

– a sub-macroblock partition subMbPartIdx,

 Rec. ITU-T H.264 (03/2009) 167

– variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight,
partWidthC (if available) and partHeightC (if available),

– luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0 chroma motion vectors
mvCL0 and mvCL1,

– reference indices refIdxL0 and refIdxL1,

– prediction list utilization flags, predFlagL0 and predFlagL1,

– variables for weighted prediction logWDC, w0C, w1C, o0C, o1C with C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

Outputs of this process are the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPartL
of prediction luma samples, and when ChromaArrayType is not equal to 0 two (partWidthC)x(partHeightC) arrays
predPartCb, predPartCr of prediction chroma samples, one for each of the chroma components Cb and Cr.

Let predPartL0L and predPartL1L be (partWidth)x(partHeight) arrays of predicted luma sample values and when
ChromaArrayType is not equal to 0 predPartL0Cb, predPartL1Cb, predPartL0Cr, and predPartL1Cr be
(partWidthC)x(partHeightC) arrays of predicted chroma sample values.

For LX being replaced by either L0 or L1 in the variables predFlagLX, RefPicListX, refIdxLX, refPicLX, predPartLX,
the following is specified.

When predFlagLX is equal to 1, the following applies.

– The reference picture consisting of an ordered two-dimensional array refPicLXL of luma samples and when
ChromaArrayType is not equal to 0 two ordered two-dimensional arrays refPicLXCb and refPicLXCr of chroma
samples is derived by invoking the process specified in subclause 8.4.2.1 with refIdxLX and RefPicListX given as
input.

– The array predPartLXL and when ChromaArrayType is not equal to 0 the arrays predPartLXCb and predPartLXCr
are derived by invoking the process specified in subclause 8.4.2.2 with the current partition specified by
mbPartIdx\subMbPartIdx, the motion vectors mvLX, mvCLX (if available), and the reference arrays with
refPicLXL, refPicLXCb (if available), and refPicLXCr (if available) given as input.

For C being replaced by L, Cb (if available), or Cr (if available), the array predPartC of the prediction samples of
component C is derived by invoking the process specified in subclause 8.4.2.3 with the current partition specified by
mbPartIdx and subMbPartIdx, the prediction utilization flags predFlagL0 and predFlagL1, the arrays predPartL0C and
predPartL1C, and the variables for weighted prediction logWDC, w0C, w1C, o0C, o1C given as input.

8.4.2.1 Reference picture selection process

Input to this process is a reference index refIdxLX.

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicLXL and,
when ChromaArrayType is not equal to 0, two two-dimensional arrays of chroma samples refPicLXCb and refPicLXCr.

Depending on field_pic_flag, the reference picture list RefPicListX (which has been derived as specified in
subclause 8.2.4) consists of the following.

– If field_pic_flag is equal to 1, each entry of RefPicListX is a reference field or a field of a reference frame.

– Otherwise (field_pic_flag is equal to 0), each entry of RefPicListX is a reference frame or a complementary
reference field pair.

For the derivation of the reference picture, the following applies.

– If field_pic_flag is equal to 1, the reference field or field of a reference frame RefPicListX[refIdxLX] is the
output. The output reference field or field of a reference frame consists of a
(PicWidthInSamplesL)x(PicHeightInSamplesL) array of luma samples refPicLXL and, when ChromaArrayType is
not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays of chroma samples refPicLXCb and
refPicLXCr.

– Otherwise (field_pic_flag is equal to 0), the following applies.

– If the current macroblock is a frame macroblock, the reference frame or complementary reference field pair
RefPicListX[refIdxLX] is the output. The output reference frame or complementary reference field pair
consists of a (PicWidthInSamplesL)x(PicHeightInSamplesL) array of luma samples refPicLXL and, when
ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays of chroma
samples refPicLXCb and refPicLXCr.

168 Rec. ITU-T H.264 (03/2009)

– Otherwise (the current macroblock is a field macroblock), the following ordered steps are specified:

1. Let refFrame be the reference frame or complementary reference field pair RefPicListX[refIdxLX / 2].

2. The field of refFrame is selected as follows.

– If refIdxLX % 2 is equal to 0, the field of refFrame that has the same parity as the current
macroblock is the output.

– Otherwise (refIdxLX % 2 is equal to 1), the field of refFrame that has the opposite parity as the
current macroblock is the output.

3. The output reference field or field of a reference frame consists of a
(PicWidthInSamplesL)x(PicHeightInSamplesL / 2) array of luma samples refPicLXL and, when
ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC / 2) arrays of
chroma samples refPicLXCb and refPicLXCr.

Depending on separate_colour_plane_flag, the following applies.

– If separate_colour_plane_flag is equal to 0, the reference picture sample arrays refPicLXL, refPicLXCb (if
available), and refPicLXCr (if available) correspond to decoded sample arrays SL, SCb (if available), SCr (if
available) derived in subclause 8.7 for a previously-decoded reference field or reference frame or complementary
reference field pair or field of a reference frame.

– Otherwise (separate_colour_plane_flag is equal to 1), the following applies.

– If colour_plane_id is equal to 0, the reference picture sample array refPicLXL corresponds to the decoded
sample array SL derived in subclause 8.7 for a previously-decoded reference field or reference frame or
complementary reference field pair or field of a reference frame.

– Otherwise, if colour_plane_id is equal to 1, the reference picture sample array refPicLXL corresponds to the
decoded sample array SCb derived in subclause 8.7 for a previously-decoded reference field or reference frame
or complementary reference field pair or field of a reference frame.

– Otherwise (colour_plane_id is equal to 2), the reference picture sample array refPicLXL corresponds to the
decoded sample array SCr derived in subclause 8.7 for a previously-decoded reference field or reference frame
or complementary reference field pair or field of a reference frame.

8.4.2.2 Fractional sample interpolation process

Inputs to this process are

– the current partition given by its partition index mbPartIdx and its sub-macroblock partition index subMbPartIdx,

– the width and height partWidth, partHeight of this partition in luma-sample units,

– a luma motion vector mvLX given in quarter-luma-sample units,

– when ChromaArrayType is not equal to 0, a chroma motion vector mvCLX with a precision of
one-(4*SubWidthC)-th chroma-sample units horizontally and one-(4*SubHeightC)-th chroma-sample units
vertically,

– the selected reference picture sample arrays refPicLXL, and when ChromaArrayType is not equal to 0, refPicLXCb,
and refPicLXCr.

Outputs of this process are

– a (partWidth)x(partHeight) array predPartLXL of prediction luma sample values,

– when ChromaArrayType is not equal to 0, two (partWidthC)x(partHeightC) arrays predPartLXCb, and
predPartLXCr of prediction chroma sample values.

Let (xAL, yAL) be the location given in full-sample units of the upper-left luma sample of the current partition given
by mbPartIdx\subMbPartIdx relative to the upper-left luma sample location of the given two-dimensional array of luma
samples.

Let (xIntL, yIntL) be a luma location given in full-sample units and (xFracL, yFracL) be an offset given in
quarter-sample units. These variables are used only inside this subclause for specifying general fractional-sample
locations inside the reference sample arrays refPicLXL, refPicLXCb (if available), and refPicLXCr (if available).

 Rec. ITU-T H.264 (03/2009) 169

For each luma sample location (0 <= xL < partWidth, 0 <= yL < partHeight) inside the prediction luma sample array
predPartLXL, the corresponding prediction luma sample value predPartLXL[xL, yL] is derived as specified by the
following ordered steps:

1. The variables xIntL, yIntL, xFracL, and yFracL are derived by

xIntL = xAL + (mvLX[0] >> 2) + xL (8-225)
yIntL = yAL + (mvLX[1] >> 2) + yL (8-226)

xFracL = mvLX[0] & 3 (8-227)
yFracL = mvLX[1] & 3 (8-228)

2. The prediction luma sample value predPartLXL[xL, yL] is derived by invoking the process specified in
subclause 8.4.2.2.1 with (xIntL, yIntL), (xFracL, yFracL) and refPicLXL given as input.

When ChromaArrayType is not equal to 0, the following applies.

Let (xIntC, yIntC) be a chroma location given in full-sample units and (xFracC, yFracC) be an offset given in
one-(4*SubWidthC)-th chroma-sample units horizontally and one-(4*SubHeightC)-th chroma-sample units vertically.
These variables are used only inside this subclause for specifying general fractional-sample locations inside the
reference sample arrays refPicLXCb, and refPicLXCr.

For each chroma sample location (0 <= xC < partWidthC, 0 <= yC < partHeightC) inside the prediction chroma sample
arrays predPartLXCb and predPartLXCr, the corresponding prediction chroma sample values predPartLXCb[xC, yC] and
predPartLXCr[xC, yC] are derived as specified by the following ordered steps:

1. Depending on ChromaArrayType, the variables xIntC, yIntC, xFracC, and yFracC are derived as follows.

– If ChromaArrayType is equal to 1,

xIntC = (xAL / SubWidthC) + (mvCLX[0] >> 3) + xC (8-229)
yIntC = (yAL / SubHeightC) + (mvCLX[1] >> 3) + yC (8-230)

xFracC = mvCLX[0] & 7 (8-231)
yFracC = mvCLX[1] & 7 (8-232)

– Otherwise, if ChromaArrayType is equal to 2,

xIntC = (xAL / SubWidthC) + (mvCLX[0] >> 3) + xC (8-233)
yIntC = (yAL / SubHeightC) + (mvCLX[1] >> 2) + yC (8-234)

xFracC = mvCLX[0] & 7 (8-235)
yFracC = (mvCLX[1] & 3) << 1 (8-236)

– Otherwise (ChromaArrayType is equal to 3),

xIntC = xAL + (mvLX[0] >> 2) + xC (8-237)
yIntC = yAL + (mvLX[1] >> 2) + yC (8-238)

xFracC = (mvCX[0] & 3) (8-239)
yFracC = (mvCX[1] & 3) (8-240)

2. Depending on ChromaArrayType, the following applies.

– If ChromaArrayType is not equal to 3, the following applies.

– The prediction sample value predPartLXCb[xC, yC] is derived by invoking the process specified in
subclause 8.4.2.2.2 with (xIntC, yIntC), (xFracC, yFracC) and refPicLXCb given as input.

– The prediction sample value predPartLXCr[xC, yC] is derived by invoking the process specified in
subclause 8.4.2.2.2 with (xIntC, yIntC), (xFracC, yFracC) and refPicLXCr given as input.

170 Rec. ITU-T H.264 (03/2009)

– Otherwise (ChromaArrayType is equal to 3), the following applies.

– The prediction sample value predPartLXCb[xC, yC] is derived by invoking the process specified in
subclause 8.4.2.2.1 with (xIntC, yIntC), (xFracC, yFracC) and refPicLXCb given as input.

– The prediction sample value predPartLXCr[xC, yC] is derived by invoking the process specified in
subclause 8.4.2.2.1 with (xIntC, yIntC), (xFracC, yFracC) and refPicLXCr given as input.

8.4.2.2.1 Luma sample interpolation process

Inputs to this process are

– a luma location in full-sample units (xIntL, yIntL),

– a luma location offset in fractional-sample units (xFracL, yFracL),

– the luma sample array of the selected reference picture refPicLXL.

Output of this process is a predicted luma sample value predPartLXL[xL, yL].

bb

a cE F I JG

h

d

n

H

m

A

C

B

D

R

T

S

U

M s NK L P Q

fe g

ji k

qp r

aa

b

cc dd ee ff

hh

gg

Figure 8-4 – Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for quarter sample luma interpolation

The variable refPicHeightEffectiveL, which is the height of the effective reference picture luma array, is derived as
follows.
– If MbaffFrameFlag is equal to 0 or mb_field_decoding_flag is equal to 0, refPicHeightEffectiveL is set equal to

PicHeightInSamplesL.
– Otherwise (MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is equal to 1), refPicHeightEffectiveL is set

equal to PicHeightInSamplesL / 2.

In Figure 8-4, the positions labelled with upper-case letters within shaded blocks represent luma samples at full-sample
locations inside the given two-dimensional array refPicLXL of luma samples. These samples may be used for generating

 Rec. ITU-T H.264 (03/2009) 171

the predicted luma sample value predPartLXL[xL, yL]. The locations (xZL, yZL) for each of the corresponding luma
samples Z, where Z may be A, B, C, D, E, F, G, H, I, J, K, L, M, N, P, Q, R, S, T, or U, inside the given array
refPicLXL of luma samples are derived as

xZL = Clip3(0, PicWidthInSamplesL − 1, xIntL + xDZL) (8-241)
yZL = Clip3(0, refPicHeightEffectiveL − 1, yIntL + yDZL) (8-242)

Table 8-11 specifies (xDZL, yDZL) for different replacements of Z.

Table 8-11 – Differential full-sample luma locations

Z A B C D E F G H I J K L M N P Q R S T U

xDZL 0 1 0 1 −2 −1 0 1 2 3 −2 −1 0 1 2 3 0 1 0 1

yDZL −2 −2 −1 −1 0 0 0 0 0 0 1 1 1 1 1 1 2 2 3 3

Given the luma samples 'A' to 'U' at full-sample locations (xAL, yAL) to (xUL, yUL), the luma samples 'a' to 's' at
fractional sample positions are derived by the following rules. The luma prediction values at half sample positions are
derived by applying a 6-tap filter with tap values (1, −5, 20, 20, −5, 1). The luma prediction values at quarter sample
positions are derived by averaging samples at full and half sample positions. The process for each fractional position is
described below.
– The samples at half sample positions labelled b are derived by first calculating intermediate values denoted as b1

by applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half
sample positions labelled h are derived by first calculating intermediate values denoted as h1 by applying the 6-tap
filter to the nearest integer position samples in the vertical direction:

b1 = (E − 5 * F + 20 * G + 20 * H − 5 * I + J) (8-243)
h1 = (A − 5 * C + 20 * G + 20 * M − 5 * R + T) (8-244)

 The final prediction values b and h are derived using

b = Clip1Y((b1 + 16) >> 5) (8-245)
h = Clip1Y((h1 + 16) >> 5) (8-246)

– The samples at half sample position labelled as j are derived by first calculating intermediate value denoted as j1 by
applying the 6-tap filter to the intermediate values of the closest half sample positions in either the horizontal or
vertical direction because these yield an equal result:

j1 = cc − 5 * dd + 20 * h1 + 20 * m1 − 5 * ee + ff, or (8-247)
j1 = aa − 5 * bb + 20 * b1 + 20 * s1 − 5 * gg + hh (8-248)

 where intermediate values denoted as aa, bb, gg, s1 and hh are derived by applying the 6-tap filter horizontally in
the same manner as the derivation of b1 and intermediate values denoted as cc, dd, ee, m1 and ff are derived by
applying the 6-tap filter vertically in the same manner as the derivation of h1. The final prediction value j are
derived using

j = Clip1Y((j1 + 512) >> 10) (8-249)

– The final prediction values s and m are derived from s1 and m1 in the same manner as the derivation of b and h, as
given by

s = Clip1Y((s1 + 16) >> 5) (8-250)
m = Clip1Y((m1 + 16) >> 5) (8-251)

172 Rec. ITU-T H.264 (03/2009)

– The samples at quarter sample positions labelled as a, c, d, n, f, i, k, and q are derived by averaging with upward
rounding of the two nearest samples at integer and half sample positions using

a = (G + b + 1) >> 1 (8-252)
c = (H + b + 1) >> 1 (8-253)
d = (G + h + 1) >> 1 (8-254)
n = (M + h + 1) >> 1 (8-255)
f = (b + j + 1) >> 1 (8-256)
i = (h + j + 1) >> 1 (8-257)
k = (j + m + 1) >> 1 (8-258)
q = (j + s + 1) >> 1 (8-259)

– The samples at quarter sample positions labelled as e, g, p, and r are derived by averaging with upward rounding of
the two nearest samples at half sample positions in the diagonal direction using

e = (b + h + 1) >> 1 (8-260)
g = (b + m + 1) >> 1 (8-261)
p = (h + s + 1) >> 1 (8-262)
r = (m + s + 1) >> 1. (8-263)

The luma location offset in fractional-sample units (xFracL, yFracL) specifies which of the generated luma samples at
full-sample and fractional-sample locations is assigned to the predicted luma sample value predPartLXL[xL, yL]. This
assignment is done according to Table 8-12. The value of predPartLXL[xL, yL] is the output.

Table 8-12 – Assignment of the luma prediction sample predPartLXL[xL, yL]

xFracL 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

yFracL 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

predPartLXL[xL, yL] G d h n a e i p b f j q c g k r

8.4.2.2.2 Chroma sample interpolation process

This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are

– a chroma location in full-sample units (xIntC, yIntC),

– a chroma location offset in fractional-sample units (xFracC, yFracC),

– chroma component samples from the selected reference picture refPicLXC.

Output of this process is a predicted chroma sample value predPartLXC[xC, yC].

In Figure 8-5, the positions labelled with A, B, C, and D represent chroma samples at full-sample locations inside the
given two-dimensional array refPicLXC of chroma samples.

 Rec. ITU-T H.264 (03/2009) 173

Figure 8-5 – Fractional sample position dependent variables in chroma interpolation and surrounding integer
position samples A, B, C, and D

The variable refPicHeightEffectiveC, which is the height of the effective reference picture chroma array, is derived as
follows.
– If MbaffFrameFlag is equal to 0 or mb_field_decoding_flag is equal to 0, refPicHeightEffectiveC is set equal to

PicHeightInSamplesC.
– Otherwise (MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is equal to 1), refPicHeightEffectiveC is set

equal to PicHeightInSamplesC / 2.

The sample coordinates specified in Equations 8-264 through 8-271 are used for generating the predicted chroma
sample value predPartLXC[xC, yC].

xAC = Clip3(0, PicWidthInSamplesC − 1, xIntC) (8-264)
xBC = Clip3(0, PicWidthInSamplesC − 1, xIntC + 1) (8-265)
xCC = Clip3(0, PicWidthInSamplesC − 1, xIntC) (8-266)
xDC = Clip3(0, PicWidthInSamplesC − 1, xIntC + 1) (8-267)

yAC = Clip3(0, refPicHeightEffectiveC − 1, yIntC) (8-268)
yBC = Clip3(0, refPicHeightEffectiveC − 1, yIntC) (8-269)
yCC = Clip3(0, refPicHeightEffectiveC − 1, yIntC + 1) (8-270)
yDC = Clip3(0, refPicHeightEffectiveC − 1, yIntC + 1) (8-271)

Given the chroma samples A, B, C, and D at full-sample locations specified in Equations 8-264 through 8-271, the
predicted chroma sample value predPartLXC[xC, yC] is derived as

predPartLXC[xC, yC] = ((8 − xFracC) * (8 − yFracC) * A + xFracC * (8 − yFracC) * B +
 (8 − xFracC) * yFracC * C + xFracC * yFracC * D + 32) >> 6 (8-272)

8.4.2.3 Weighted sample prediction process

Inputs to this process are

– mbPartIdx: the current partition given by the partition index,

– subMbPartIdx: the sub-macroblock partition index,

– predFlagL0 and predFlagL1: prediction list utilization flags,

– predPartLXL: a (partWidth)x(partHeight) array of prediction luma samples (with LX being replaced by L0 or L1
depending on predFlagL0 and predFlagL1),

– when ChromaArrayType is not equal to 0, predPartLXCb and predPartLXCr: (partWidthC)x(partHeightC) arrays of
prediction chroma samples, one for each of the chroma components Cb and Cr (with LX being replaced by L0 or
L1 depending on predFlagL0 and predFlagL1),

174 Rec. ITU-T H.264 (03/2009)

– variables for weighted prediction logWDC, w0C, w1C, o0C, o1C with C being replaced by L and, when
ChromaArrayType is not equal to 0, Cb and Cr.

Outputs of this process are

– predPartL: a (partWidth)x(partHeight) array of prediction luma samples,

– when ChromaArrayType is not equal to 0, predPartCb, and predPartCr: (partWidthC)x(partHeightC) arrays of
prediction chroma samples, one for each of the chroma components Cb and Cr.

For macroblocks or partitions with predFlagL0 equal to 1 in P and SP slices, the following applies.

– If weighted_pred_flag is equal to 0, the default weighted sample prediction process as described in
subclause 8.4.2.3.1 is invoked with the same inputs and outputs as the process described in this subclause.

– Otherwise (weighted_pred_flag is equal to 1), the explicit weighted sample prediction process as described in
subclause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this subclause.

For macroblocks or partitions with predFlagL0 or predFlagL1 equal to 1 in B slices, the following applies.

– If weighted_bipred_idc is equal to 0, the default weighted sample prediction process as described in
subclause 8.4.2.3.1 is invoked with the same inputs and outputs as the process described in this subclause.

– Otherwise, if weighted_bipred_idc is equal to 1, the explicit weighted sample prediction process as described in
subclause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this subclause.

– Otherwise (weighted_bipred_idc is equal to 2), the following applies.

– If predFlagL0 is equal to 1 and predFlagL1 is equal to 1, the implicit weighted sample prediction process as
described in subclause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this
subclause.

– Otherwise (predFlagL0 or predFlagL1 are equal to 1 but not both), the default weighted sample prediction
process as described in subclause 8.4.2.3.1 is invoked with the same inputs and outputs as the process
described in this subclause.

8.4.2.3.1 Default weighted sample prediction process

Input to this process are the same as specified in subclause 8.4.2.3.

Output of this process are the same as specified in subclause 8.4.2.3.

Depending on the available component for which the prediction block is derived, the following applies.

– If the luma sample prediction values predPartL[x, y] are derived, the following applies with C set equal to L, x set
equal to 0..partWidth − 1, and y set equal to 0..partHeight − 1.

– Otherwise, if the chroma Cb component sample prediction values predPartCb[x, y] are derived, the following
applies with C set equal to Cb, x set equal to 0..partWidthC − 1, and y set equal to 0..partHeightC − 1.

– Otherwise (the chroma Cr component sample prediction values predPartCr[x, y] are derived), the following
applies with C set equal to Cr, x set equal to 0..partWidthC − 1, and y set equal to 0..partHeightC − 1.

The prediction sample values are derived as follows.

– If predFlagL0 is equal to 1 and predFlagL1 is equal to 0,

predPartC[x, y] = predPartL0C[x, y] (8-273)

– Otherwise, if predFlagL0 is equal to 0 and predFlagL1 is equal to 1,

predPartC[x, y]= predPartL1C[x, y] (8-274)

– Otherwise (predFlagL0 and predFlagL1 are equal to 1),

predPartC[x, y] = (predPartL0C[x, y] + predPartL1C[x, y] + 1) >> 1. (8-275)

8.4.2.3.2 Weighted sample prediction process

Inputs to this process are the same as specified in subclause 8.4.2.3.

 Rec. ITU-T H.264 (03/2009) 175

Outputs of this process are the same as specified in subclause 8.4.2.3.

Depending on the available component for which the prediction block is derived, the following applies.

– If the luma sample prediction values predPartL[x, y] are derived, the following applies with C set equal to L, x set
equal to 0..partWidth − 1, y set equal to 0..partHeight − 1, and Clip1() being substituted with Clip1Y().

– Otherwise, if the chroma Cb component sample prediction values predPartCb[x, y] are derived, the following
applies with C set equal to Cb, x set equal to 0..partWidthC − 1, y set equal to 0..partHeightC − 1, and Clip1()
being substituted with Clip1C().

– Otherwise (the chroma Cr component sample prediction values predPartCr[x, y] are derived), the following applies
with C set equal to Cr, x set equal to 0..partWidthC − 1, y set equal to 0..partHeightC − 1, and Clip1() being
substituted with Clip1C().

The prediction sample values are derived as follows.

– If the predFlagL0 is equal to 1 and predFlagL1 is equal to 0, the final predicted sample values predPartC[x, y] are
derived by

if(logWDC >= 1)
 predPartC[x, y] = Clip1(((predPartL0C[x, y] * w0C + 2logWDC − 1) >> logWDC) + o0C)
else (8-276)
 predPartC[x, y] = Clip1(predPartL0C[x, y] * w0C + o0C)

– Otherwise, if the predFlagL0 is equal to 0 and predFlagL1 is equal to 1, the final predicted sample values
predPartC[x, y] are derived by

if(logWDC >= 1)
 predPartC[x, y] = Clip1(((predPartL1C[x, y] * w1C + 2logWDC − 1) >> logWDC) + o1C)
else (8-277)
 predPartC[x, y] = Clip1(predPartL1C[x, y] * w1C + o1C)

– Otherwise (both predFlagL0 and predFlagL1 are equal to 1), the final predicted sample values predPartC[x, y] are
derived by

predPartC[x, y] = Clip1(((predPartL0C[x, y] * w0C + predPartL1C[x, y] * w1C + 2logWDC) >>
 (logWDC + 1)) + ((o0C + o1C + 1) >> 1)) (8-278)

8.4.3 Derivation process for prediction weights

Inputs to this process are

– the reference indices refIdxL0 and refIdxL1,

– the prediction utilization flags predFlagL0 and predFlagL1.

Outputs of this process are variables for weighted prediction logWDC, w0C, w1C, o0C, o1C with C being replaced by L
and, when ChromaArrayType is not equal to 0, Cb and Cr.
For C being replaced by L and, when ChromaArrayType is not equal to 0, Cb and Cr, the variables logWDC, w0C, w1C,
o0C, o1C are derived as follows.

– If weighted_bipred_idc is equal to 2 and the (slice_type % 5) is equal to 1, implicit mode weighted prediction is
used as follows:

logWDC = 5 (8-279)

o0C = 0 (8-280)

o1C = 0 (8-281)

and w0C and w1C are derived as specified in the following ordered steps:

176 Rec. ITU-T H.264 (03/2009)

1. The variables currPicOrField, pic0, and pic1 are derived as follows.
– If field_pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies:

a. currPicOrField is the field of the current picture CurrPic that has the same parity as the current
macroblock.

b. The variable pic0 is derived as follows.
– If refIdxL0 % 2 is equal to 0, pic0 is the field of RefPicList0[refIdxL0 / 2] that has the same

parity as the current macroblock.
– Otherwise (refIdxL0 % 2 is not equal to 0), pic0 is the field of RefPicList0[refIdxL0 / 2] that

has the opposite parity of the current macroblock.

c. The variable pic1 is derived as follows.
– If refIdxL1 % 2 is equal to 0, pic1 is the field of RefPicList1[refIdxL1 / 2] that has the same

parity as the current macroblock.
– Otherwise (refIdxL1 % 2 is not equal to 0), pic1 is the field of RefPicList1[refIdxL1 / 2] that

has the opposite parity of the current macroblock.

– Otherwise (field_pic_flag is equal to 1 or the current macroblock is a frame macroblock),
currPicOrField is the current picture CurrPic, pic1 is RefPicList1[refIdxL1], and pic0 is
RefPicList0[refIdxL0].

2. The variables tb, td, tx, and DistScaleFactor are derived from the values of currPicOrField, pic0, pic1 using
Equations 8-203, 8-204, 8-199, and 8-200, respectively.

3. The variables w0C and w1C are derived as follows.

– If DiffPicOrderCnt(pic1, pic0) is equal to 0 or one or both of pic1 and pic0 is marked as "used for
long-term reference" or (DistScaleFactor >> 2) < −64 or (DistScaleFactor >> 2) > 128, w0C and w1C
are derived as

w0C = 32 (8-282)

w1C = 32 (8-283)

– Otherwise, w0C and w1C are derived as

w0C = 64 − (DistScaleFactor >> 2) (8-284)

w1C = DistScaleFactor >> 2 (8-285)

– Otherwise (weighted_pred_flag is equal to 1 in slices with (slice_type % 5) equal to 0 or 3 or weighted_bipred_idc
equal to 1 in slices with (slice_type % 5) equal to 1), explicit mode weighted prediction is used as specified by the
following ordered steps:

1. The variables refIdxL0WP and refIdxL1WP are derived as follows.

– If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

refIdxL0WP = refIdxL0 >> 1 (8-286)

refIdxL1WP = refIdxL1 >> 1 (8-287)

– Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

refIdxL0WP = refIdxL0 (8-288)

refIdxL1WP = refIdxL1 (8-289)

 Rec. ITU-T H.264 (03/2009) 177

2. The variables logWDC, w0C, w1C, o0C, and o1C are derived as follows.

– If C is equal to L for luma samples

logWDC = luma_log2_weight_denom (8-290)

w0C = luma_weight_l0[refIdxL0WP] (8-291)

w1C = luma_weight_l1[refIdxL1WP] (8-292)

o0C = luma_offset_l0[refIdxL0WP] * (1 << (BitDepthY − 8)) (8-293)

o1C = luma_offset_l1[refIdxL1WP] * (1 << (BitDepthY − 8)) (8-294)

– Otherwise (C is equal to Cb or Cr for chroma samples, with iCbCr = 0 for Cb, iCbCr = 1 for Cr),

logWDC = chroma_log2_weight_denom (8-295)

w0C = chroma_weight_l0[refIdxL0WP][iCbCr] (8-296)

w1C = chroma_weight_l1[refIdxL1WP][iCbCr] (8-297)

o0C = chroma_offset_l0[refIdxL0WP][iCbCr] * (1 << (BitDepthC − 8)) (8-298)

o1C = chroma_offset_l1[refIdxL1WP][iCbCr] * (1 << (BitDepthC − 8)) (8-299)

When explicit mode weighted prediction is used and predFlagL0 and predFlagL1 are equal to 1, the following
constraint shall be obeyed for C equal to L and, when ChromaArrayType is not equal to 0, Cb and Cr

−128 <= w0C + w1C <= ((logWDC = = 7) ? 127 : 128) (8-300)

NOTE – For implicit mode weighted prediction, weights w0C and w1C are each guaranteed to be in the range of −64..128 and the
constraint expressed in Equation 8-300, although not explicitly imposed, will always be met. For explicit mode weighted
prediction with logWDC equal to 7, when one of the two weights w0C or w1C is inferred to be equal to 128 (as a consequence of
luma_weight_l0_flag, luma_weight_l1_flag, chroma_weight_l0_flag, or chroma_weight_l1_flag equal to 0), the other weight
(w1C or w0C) must have a negative value in order for the constraint expressed in Equation 8-300 to hold (and therefore the other
flag luma_weight_l0_flag, luma_weight_l1_flag, chroma_weight_l0_flag, or chroma_weight_l1_flag must be equal to 1).

8.5 Transform coefficient decoding process and picture construction process prior to deblocking
filter process

Inputs to this process are Intra16x16DCLevel (if available), Intra16x16ACLevel (if available), CbIntra16x16DCLevel
(if available), CbIntra16x16ACLevel (if available), CrIntra16x16DCLevel (if available), CrIntra16x16ACLevel (if
available), LumaLevel (if available), LumaLevel8x8 (if available), ChromaDCLevel (if available), ChromaACLevel (if
available), CbLevel (if available), CrLevel (if available), CbLevel8x8 (if available), CrLevel8x8 (if available), and
available Inter or Intra prediction sample arrays for the current macroblock for the applicable components predL, predCb,
or predCr.

NOTE 1 – When decoding a macroblock in Intra_4x4 (or Intra_8x8) macroblock prediction mode, the luma component of the
macroblock prediction array may not be complete, since for each 4x4 (or 8x8) luma block, the Intra_4x4 (or Intra_8x8)
prediction process for luma samples as specified in subclause 8.3.1 (or 8.3.2) and the process specified in this subclause are
iterated. When ChromaArrayType is equal to 3, the Cb and Cr component of the macroblock prediction array may not be
complete for the same reason.

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable
components S′L, S′Cb, or S′Cr.

178 Rec. ITU-T H.264 (03/2009)

NOTE 2 – When decoding a macroblock in Intra_4x4 (or Intra_8x8) macroblock prediction mode, the luma component of the
macroblock constructed sample arrays prior to the deblocking filter process may not be complete, since for each 4x4 (or 8x8)
luma block, the Intra_4x4 (or Intra_8x8) prediction process for luma samples as specified in subclause 8.3.1 (or 8.3.2) and the
process specified in this subclause are iterated. When ChromaArrayType is equal to 3, the Cb and Cr component of the
macroblock constructed sample arrays prior to the deblocking filter process may not be complete for the same reason.

This subclause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the current macroblock is coded as P_Skip or B_Skip, all values of LumaLevel, LumaLevel8x8, CbLevel,
CbLevel8x8, CrLevel, CrLevel8x8, ChromaDCLevel, ChromaACLevel are set equal to 0 for the current macroblock.

8.5.1 Specification of transform decoding process for 4x4 luma residual blocks

This specification applies when transform_size_8x8_flag is equal to 0.

When the current macroblock prediction mode is not equal to Intra_16x16, the variable LumaLevel contains the levels
for the luma transform coefficients. For a 4x4 luma block indexed by luma4x4BlkIdx = 0..15, the following ordered
steps are specified:

1. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is
invoked with LumaLevel[luma4x4BlkIdx] as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with c
as the input and r as the output.

3. When TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to Intra_4x4, and
Intra4x4PredMode[luma4x4BlkIdx] is equal to 0 or 1, the intra residual transform-bypass decoding process as
specified in subclause 8.5.15 is invoked with nW set equal to 4, nH set equal to 4, horPredFlag set equal to
Intra4x4PredMode[luma4x4BlkIdx], and the 4x4 array r as the inputs, and the output is a modified version of
the 4x4 array r.

4. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the
input and the output being assigned to (xO, yO).

5. The 4x4 array u with elements uij for i, j = 0..3 is derived as

uij = Clip1Y(predL[xO + j, yO + i] + rij) (8-301)

When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of uij as
computed by Equation 8-301 that is not equal to predL[xO + j, yO + i] + rij.

6. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with u and
luma4x4BlkIdx as the inputs.

8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
mode

When the current macroblock prediction mode is equal to Intra_16x16, the variables Intra16x16DCLevel and
Intra16x16ACLevel contain the levels for the luma transform coefficients. The transform coefficient decoding proceeds
in the following ordered steps:

1. The 4x4 luma DC transform coefficients of all 4x4 luma blocks of the macroblock are decoded.

a. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6
is invoked with Intra16x16DCLevel as the input and the two-dimensional array c as the output.

b. The scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock
type as specified in subclause 8.5.10 is invoked with BitDepthY, QP′Y, and c as the input and dcY as the
output.

2. The 16x16 array rMb is derived by processing the 4x4 luma blocks indexed by luma4x4BlkIdx = 0..15, and for
each 4x4 luma block, the following ordered steps are specified:

a. The variable lumaList, which is a list of 16 entries, is derived. The first entry of lumaList is the
corresponding value from the array dcY. Figure 8-6 shows the assignment of the indices of the array dcY to
the luma4x4BlkIdx. The two numbers in the small squares refer to indices i and j in dcYij, and the numbers
in large squares refer to luma4x4BlkIdx.

 Rec. ITU-T H.264 (03/2009) 179

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

Figure 8-6 – Assignment of the indices of dcY to luma4x4BlkIdx

The elements in lumaList with index k = 1..15 are specified as

lumaList[k] = Intra16x16ACLevel[luma4x4BlkIdx][k − 1] (8-302)

b. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6
is invoked with lumaList as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked
with c as the input and r as the output.

d. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the
macroblock is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with
luma4x4BlkIdx as the input and the output being assigned to (xO, yO).

e. The elements rMb[x, y] of the 16x16 array rMb with x = xO..xO + 3 and y = yO..yO + 3 are derived by

rMb[xO + j, yO + i] = rij (8-303)

3. When TransformBypassModeFlag is equal to 1 and Intra16x16PredMode is equal to 0 or 1, the intra residual
transform-bypass decoding process as specified in subclause 8.5.15 is invoked with nW set equal to 16, nH set
equal to 16, horPredFlag set equal to Intra16x16PredMode, and the 16x16 array rMb as the inputs, and the
output is a modified version of the 16x16 array rMb.

4. The 16x16 array u with elements uij for i, j = 0..15 is derived as

uij = Clip1Y(predL[j, i] + rMb[j, i]) (8-304)

When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of uij as
computed by Equation 8-304 that is not equal to predL[j, i] + rMb[j, i].

5. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with u as the
input.

8.5.3 Specification of transform decoding process for 8x8 luma residual blocks

This specification applies when transform_size_8x8_flag is equal to 1.

The variable LumaLevel8x8[luma8x8BlkIdx] with luma8x8BlkIdx = 0..3 contains the levels for the luma transform
coefficients for the luma 8x8 block with index luma8x8BlkIdx.

For an 8x8 luma block indexed by luma8x8BlkIdx = 0..3, the following ordered steps are specified:

1. The inverse scanning process for 8x8 transform coefficients and scaling lists as specified in subclause 8.5.7 is
invoked with LumaLevel8x8[luma8x8BlkIdx] as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for residual 8x8 blocks as specified in subclause 8.5.13 is invoked with c
as the input and r as the output.

180 Rec. ITU-T H.264 (03/2009)

3. When TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to Intra_8x8, and
Intra8x8PredMode[luma8x8BlkIdx] is equal to 0 or 1, the intra residual transform-bypass decoding process as
specified in subclause 8.5.15 is invoked with nW set equal to 8, nH set equal to 8, horPredFlag set equal to
Intra8x8PredMode[luma8x8BlkIdx], and the 8x8 array r as the inputs, and the output is a modified version of
the 8x8 array r.

4. The position of the upper-left sample of an 8x8 luma block with index luma8x8BlkIdx inside the macroblock is
derived by invoking the inverse 8x8 luma block scanning process in subclause 6.4.5 with luma8x8BlkIdx as the
input and the output being assigned to (xO, yO).

5. The 8x8 array u with elements uij for i, j = 0..7 is derived as

uij = Clip1Y(predL[xO + j, yO + i] + rij) (8-305)

When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of uij as
computed by Equation 8-305 that is not equal to predL[xO + j, yO + i] + rij.

6. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with u and
luma8x8BlkIdx as the inputs.

8.5.4 Specification of transform decoding process for chroma samples

This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is not equal to 0.

Depending on ChromaArrayType, the following applies.

– If ChromaArrayType is equal to 3, the transform decoding process for chroma samples with ChromaArrayType
equal to 3 as specified in subclause 8.5.5 is invoked.

– Otherwise (ChromaArrayType is not equal to 3), the following text specifies the transform decoding process for
chroma samples.

For each chroma component, the variables ChromaDCLevel[iCbCr] and ChromaACLevel[iCbCr], with iCbCr set
equal to 0 for Cb and iCbCr set equal to 1 for Cr, contain the levels for both components of the chroma transform
coefficients.

Let the variable numChroma4x4Blks be set equal to (MbWidthC / 4) * (MbHeightC / 4).

For each chroma component, the transform decoding proceeds separately in the following ordered steps:

1. The numChroma4x4Blks chroma DC transform coefficients of the 4x4 chroma blocks of the component indexed
by iCbCr of the macroblock are decoded as specified in the following ordered steps:

a. Depending on the variable ChromaArrayType, the following applies.

– If ChromaArrayType is equal to 1, the 2x2 array c is derived using the inverse raster scanning
process applied to ChromaDCLevel as follows

⎥
⎦

⎤
⎢
⎣

⎡
=

]3][iCbCr[velChromaDCLe]2][iCbCr[velChromaDCLe
]1][iCbCr[velChromaDCLe]0][iCbCr[velChromaDCLe

c (8-306)

– Otherwise (ChromaArrayType is equal to 2), the 2x4 array c is derived using the inverse raster
scanning process applied to ChromaDCLevel as follows

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

]7][iCbCr[velChromaDCLe]4][iCbCr[velChromaDCLe
]6][iCbCr[velChromaDCLe]3][iCbCr[velChromaDCLe
]5][iCbCr[velChromaDCLe]1][iCbCr[velChromaDCLe
]2][iCbCr[velChromaDCLe]0][iCbCr[velChromaDCLe

c (8-307)

b. The scaling and transformation process for chroma DC transform coefficients as specified in
subclause 8.5.11 is invoked with c as the input and dcC as the output.

2. The (MbWidthC)x(MbHeightC) array rMb is derived by processing the 4x4 chroma blocks indexed by
chroma4x4BlkIdx = 0..numChroma4x4Blks − 1 of the component indexed by iCbCr, and for each 4x4 chroma
block, the following ordered steps are specified:

 Rec. ITU-T H.264 (03/2009) 181

a. The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromaList is the
corresponding value from the array dcC. Figure 8-7 shows the assignment of the indices of the array dcC
to the chroma4x4BlkIdx. The two numbers in the small squares refer to indices i and j in dcCij, and the
numbers in large squares refer to chroma4x4BlkIdx.

00 01

10 11

20 21

30 31

00 01

10 11

a b

Figure 8-7 – Assignment of the indices of dcC to chroma4x4BlkIdx:
(a) ChromaArrayType equal to 1, (b) ChromaArrayType equal to 2

The elements in chromaList with index k = 1..15 are specified as

chromaList[k] = ChromaACLevel[chroma4x4BlkIdx][k − 1] (8-308)

b. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in
subclause 8.5.6 is invoked with chromaList as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked
with c as the input and r as the output.

d. The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the
macroblock is derived by

xO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (8-309)

yO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (8-310)

e. The elements rMb[x, y] of the (MbWidthC)x(MbHeightC) array rMb with x = xO..xO + 3 and
y = yO..yO + 3 are derived by

rMb[xO + j, yO + i] = rij (8-311)

3. When TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to Intra_4x4,
Intra_8x8, or Intra_16x16, and intra_chroma_pred_mode is equal to 1 or 2, the intra residual transform-bypass
decoding process as specified in subclause 8.5.15 is invoked with nW set equal to MbWidthC, nH set equal to
MbHeightC, horPredFlag set equal to (intra_chroma_pred_mode − 1), and the (MbWidthC)x(MbHeightC) array
rMb as the inputs, and the output is a modified version of the (MbWidthC)x(MbHeightC) array rMb.

4. The (MbWidthC)x(MbHeightC) array u with elements uij for i = 0..MbHeight − 1 and j = 0..MbWidth − 1 is
derived as

uij = Clip1C(predC[j, i] + rMb[j, i]) (8-312)

182 Rec. ITU-T H.264 (03/2009)

When TransformBypassModeFlag is equal to 1, the bitstream shall not contain data that result in a value of uij as
computed by Equation 8-312 that is not equal to predC[j, i] + rMb[j, i].

5. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with u as the
input.

8.5.5 Specification of transform decoding process for chroma samples with ChromaArrayType equal to 3

This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is equal to 3.

Depending on the macroblock prediction mode and transform_size_8x8_flag, the following applies.

– If the macroblock prediction mode is equal to Intra_16x16, the transform decoding process for Cb or Cr residual
blocks shall be identical to the process described in subclause 8.5.2 when substituting luma with Cb or Cr,
substituting Intra16x16DCLevel with CbIntra16x16DCLevel or CrIntra16x16DCLevel, substituting
Intra16x16ACLevel with CbIntra16x16ACLevel or CrIntra16x16ACLevel, and substituting predL with predCb or
predCr, substituting luma4x4BlkIdx with cb4x4BlkIdx or cr4x4BlkIdx, substituting lumaList with CbList or CrList,
substituting BitDepthY with BitDepthC, substituting QP′Y with QP′C, and substituting Clip1Y with Clip1C. During
the scaling of 4x4 block transform coefficient levels that is specified in subclause 8.5.12.1, which is invoked as part
of the process specified in subclause 8.5.2, the input 4x4 array c is treated as relating to a luma residual block coded
using an Intra_16x16 macroblock prediction mode.

– Otherwise, if transform_size_8x8_flag is equal to 1, the transform decoding process for 8x8 Cb or 8x8 Cr residual
blocks shall be identical to the process described in subclause 8.5.3 when substituting luma with Cb or Cr,
substituting LumaLevel8x8 with CbLevel8x8 or CrLevel8x8, substituting predL with predCb or predCr, substituting
luma8x8BlkIdx with cb8x8BlkIdx or cr8x8BlkIdx, and substituting Clip1Y with Clip1C.

– Otherwise (the macroblock prediction mode is not equal to Intra_16x16 and transform_size_8x8_flag is equal to 0),
the transform decoding process for 4x4 Cb or 4x4 Cr residual blocks shall be identical to the process described in
subclause 8.5.1 when substituting luma with Cb or Cr, substituting LumaLevel with CbLevel or CrLevel,
substituting predL with predCb or predCr, substituting luma4x4BlkIdx with cb4x4BlkIdx or cr4x4BlkIdx, and
substituting Clip1Y with Clip1C. During the scaling of 4x4 block transform coefficient levels that is specified in
subclause 8.5.12.1, which is invoked as part of the process specified in subclause 8.5.1, the input 4x4 array c is
treated as relating to a luma residual block not coded using an Intra_16x16 macroblock prediction mode.

8.5.6 Inverse scanning process for 4x4 transform coefficients and scaling lists

Input to this process is a list of 16 values.

Output of this process is a variable c containing a two-dimensional array of 4x4 values. In the case of transform
coefficients, these 4x4 values represent levels assigned to locations in the transform block. In the case of applying the
inverse scanning process to a scaling list, the output variable c contains a two-dimensional array representing a 4x4
scaling matrix.

When this subclause is invoked with a list of transform coefficient levels as the input, the sequence of transform
coefficient levels is mapped to the transform coefficient level positions. Table 8-13 specifies the two mappings: inverse
zig-zag scan and inverse field scan. The inverse zig-zag scan is used for transform coefficients in frame macroblocks
and the inverse field scan is used for transform coefficients in field macroblocks.

When this subclause is invoked with a scaling list as the input, the sequence of scaling list entries is mapped to the
positions in the corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-8 illustrates the scans.

 Rec. ITU-T H.264 (03/2009) 183

0 122 8

1 135 9

3 146 10

4 157 11

0 61 5

2 124 7

3 138 11

9 1510 14
a b

Figure 8-8 – 4x4 block scans. (a) Zig-zag scan. (b) Field scan (informative)

Table 8-13 provides the mapping from the index idx of input list of 16 elements to indices i and j of the two-
dimensional array c.

Table 8-13 – Specification of mapping of idx to cij for zig-zag and field scan

idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

zig-zag c00 c01 c10 c20 c11 c02 c03 c12 c21 c30 c31 c22 c13 c23 c32 c33

field c00 c10 c01 c20 c30 c11 c21 c31 c02 c12 c22 c32 c03 c13 c23 c33

8.5.7 Inverse scanning process for 8x8 transform coefficients and scaling lists

Input to this process is a list of 64 values.

Output of this process is a variable c containing a two-dimensional array of 8x8 values. In the case of transform
coefficients, these 8x8 values represent levels assigned to locations in the transform block. In the case of applying the
inverse scanning process to a scaling list, the output variable c contains a two-dimensional array representing an 8x8
scaling matrix.

When this subclause is invoked with a list of transform coefficient levels as the input, the sequence of transform
coefficient levels is mapped to the transform coefficient level positions. Table 8-14 specifies the two mappings: inverse
8x8 zig-zag scan and inverse 8x8 field scan. The inverse 8x8 zig-zag scan is used for transform coefficient levels in
frame macroblocks and the inverse 8x8 field scan is used for transform coefficient levels in field macroblocks.

When this subclause is invoked with a scaling list as the input, the sequence of scaling list entries is mapped to the
positions in the corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-9 illustrates the scans.

184 Rec. ITU-T H.264 (03/2009)

0

2

3

9

10

20

21

35

1

4

8

11

19

22

34

36

5

7

12

18 44

23 39

33 55

37 50 59

48

6

13

17

24

32

38

47

49

14

16

25

31

57

15

26

30

40

45

51

56

58

27

29

41

52

62

28

42

43

53

54

60

61

63

0

1

2

5

6

10

11

12

3

4

7

9

13

17

18

19

8

14

16

20

24

25

26

27

15

21

23

28

32

33

34

35

22

29

31

36

40

41

42

43

30

37

39

44

47

48

49

50

38

45

46

51

54

55

56

57

52

53

58

59

60

61

62

63
H.264(09)_F8-9

a b

Figure 8-9 – 8x8 block scans. (a) 8x8 zig-zag scan. (b) 8x8 field scan (informative)

Table 8-14 provides the mapping from the index idx of the input list of 64 elements to indices i and j of the
two-dimensional array c.

Table 8-14 – Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

zig-zag c00 c01 c10 c20 c11 c02 c03 c12 c21 c30 c40 c31 c22 c13 c04 c05

field c00 c10 c20 c01 c11 c30 c40 c21 c02 c31 c50 c60 c70 c41 c12 c03

Table 8-14 (continued) – Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

zig-zag c14 c23 c32 c41 c50 c60 c51 c42 c33 c24 c15 c06 c07 c16 c25 c34

field c22 c51 c61 c71 c32 c13 c04 c23 c42 c52 c62 c72 c33 c14 c05 c24

Table 8-14 (continued) – Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

zig-zag c43 c52 c61 c70 c71 c62 c53 c44 c35 c26 c17 c27 c36 c45 c54 c63

field c43 c53 c63 c73 c34 c15 c06 c25 c44 c54 c64 c74 c35 c16 c26 c45

Table 8-14 (concluded) – Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

zig-zag c72 c73 c64 c55 c46 c37 c47 c56 c65 c74 c75 c66 c57 c67 c76 c77

field c55 c65 c75 c36 c07 c17 c46 c56 c66 c76 c27 c37 c47 c57 c67 c77

 Rec. ITU-T H.264 (03/2009) 185

8.5.8 Derivation process for chroma quantisation parameters

Outputs of this process are
– QPC: the chroma quantisation parameter for each chroma component Cb and Cr,
– QSC: the additional chroma quantisation parameter for each chroma component Cb and Cr required for decoding

SP and SI slices (if applicable).
NOTE 1 – QP quantisation parameter values QPY and QSY are always in the range of −QpBdOffsetY to 51, inclusive. QP
quantisation parameter values QPC and QSC are always in the range of −QpBdOffsetC to 39, inclusive.

The value of QPC for a chroma component is determined from the current value of QPY and the value of
chroma_qp_index_offset (for Cb) or second_chroma_qp_index_offset (for Cr).

NOTE 2 – The scaling equations are specified such that the equivalent transform coefficient level scaling factor doubles for every
increment of 6 in QPY. Thus, there is an increase in the factor used for scaling of approximately 12 % for each increase of 1 in the
value of QPY.

The value of QPC for each chroma component is determined as specified in Table 8-15 based on the index denoted as
qPI.

The variable qPOffset for each chroma component is derived as follows.
– If the chroma component is the Cb component, qPOffset is specified as

qPOffset = chroma_qp_index_offset (8-313)

– Otherwise (the chroma component is the Cr component), qPOffset is specified as

qPOffset = second_chroma_qp_index_offset (8-314)

The value of qPI for each chroma component is derived as

qPI = Clip3(−QpBdOffsetC, 51, QPY + qPOffset) (8-315)

The value of QP′C for the chroma components is derived as

QP′C = QPC + QpBdOffsetC (8-316)

Table 8-15 – Specification of QPC as a function of qPI

qPI <30 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

QPC = qPI 29 30 31 32 32 33 34 34 35 35 36 36 37 37 37 38 38 38 39 39 39 39

When the current slice is an SP or SI slice, QSC is derived using the above process, substituting QPY with QSY and QPC
with QSC.

8.5.9 Derivation process for scaling functions

Outputs of this process are
– LevelScale4x4: the scaling factor for 4x4 block transform luma or chroma coefficient levels,
– LevelScale8x8: the scaling factor for 8x8 block transform luma or chroma coefficient levels.

The variable mbIsInterFlag is derived as follows.
– If the current macroblock is coded using Inter macroblock prediction modes, mbIsInterFlag is set equal to 1.
– Otherwise (the current macroblock is coded using Intra macroblock prediction modes), mbIsInterFlag is set equal

to 0.

The variable iYCbCr derived as follows.
– If separate_colour_plane_flag is equal to 1, iYCbCr is set equal to colour_plane_id.
– Otherwise (separate_colour_plane_flag is equal to 0), the following applies.

186 Rec. ITU-T H.264 (03/2009)

– If the scaling function LevelScale4x4 or LevelScale8x8 is derived for a luma residual block, iYCbCr is set
equal to 0.

– Otherwise, if the scaling function LevelScale4x4 or LevelScale8x8 is derived for a chroma residual block and
the chroma component is equal to Cb, iYCbCr is set equal to 1.

– Otherwise (the scaling function LevelScale4x4 or LevelScale8x8 is derived for a chroma residual block and
the chroma component is equal to Cr), iYCbCr is set equal to 2.

The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is invoked
with ScalingList4x4[iYCbCr + ((mbIsInterFlag = = 1) ? 3 : 0)] as the input and the output is assigned to the 4x4
matrix weightScale4x4.

LevelScale4x4(m, i, j) is specified by

LevelScale4x4(m, i, j) = weightScale4x4(i, j) * normAdjust4x4(m, i, j) (8-317)

where

()
⎪
⎩

⎪
⎨

⎧
=

otherwise;v
(1,1), toequal) 2 % j 2, % i (forv
(0,0), toequal) 2 % j 2, % i (forv

ji,m,4x4normAdjust

m2

m1

m0

 (8-318)

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

232918
202516
182314
162013
141811
131610

v . (8-319)

The inverse scanning process for 8x8 transform coefficients and scaling lists as specified in subclause 8.5.7 is invoked
with ScalingList8x8[mbIsInterFlag] as the input and the output is assigned to the 8x8 matrix weightScale8x8.

LevelScale8x8(m, i, j) is specified by

LevelScale8x8(m, i, j) = weightScale8x8(i, j) * normAdjust8x8(m, i, j) (8-320)

where

()

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=

otherwise;v
(2,0), toequal)4 % j,4 % i(or (0,2) toequal)4 % j,4 % i(for v
(1,0), toequal)4 % j,2 % i(or (0,1) toequal)2 % j,4 % i(for v

(2,2), toequal)4 % j,4 % i(for v
(1,1), toequal)2 % j,2 % i(for v
(0,0), toequal)4 % j,4 % i(for v

ji,m,x88normAdjust

5m

4m

3m

2m

1m

0m

 (8-321)

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

434634583236
384030512832
333526452528
313324422326
262821351922
242519321820

v . (8-322)

 Rec. ITU-T H.264 (03/2009) 187

8.5.10 Scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock type
Inputs to this process are

– the variables bitDepth and qP,

– transform coefficient level values for DC transform coefficients of Intra_16x16 macroblocks as a 4x4 array c with
elements cij, where i and j form a two-dimensional frequency index.

Outputs of this process are 16 scaled DC values for 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY with
elements dcYij.

Depending on the value of TransformBypassModeFlag, the following applies.

– If TransformBypassModeFlag is equal to 1, the output dcY is derived as

dcYij = cij with i, j = 0..3 (8-323)

– Otherwise (TransformBypassModeFlag is equal to 0), the following text of this process specifies the output.

The inverse transform for the 4x4 luma DC transform coefficients is specified by:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
∗
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

1111
1111
1111
1111

cccc
cccc
cccc
cccc

1111
1111
1111
1111

f

33323130

23222120

13121110

03020100

. (8-324)

The bitstream shall not contain data that result in any element fij of f with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

After the inverse transform, the scaling is performed as follows.

– If qP is greater than or equal to 36, the scaled result is derived as

dcYij = (fij * LevelScale4x4(qP % 6, 0, 0)) << (qP / 6 − 6), with i, j = 0...3 (8-325)

– Otherwise (qP is less than 36), the scaled result is derived as

dcYij = (fij * LevelScale4x4(qP % 6, 0, 0) + (1 << (5 − qP / 6))) >> (6 − qP / 6), with i, j = 0...3 (8-326)

The bitstream shall not contain data that result in any element dcYij of dcY with i, j = 0..3 that exceeds the range of
integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

NOTE 1 – When entropy_coding_mode_flag is equal to 0 and qP is less than 10 and profile_idc is equal to 66, 77, or 88, the
range of values that can be represented for the elements cij of c is not sufficient to represent the full range of values of the
elements dcYij of dcY that could be necessary to form a close approximation of the content of any possible source picture by use
of the Intra_16x16 macroblock type.
NOTE 2 – Since the range limit imposed on the elements dcYij of dcY is imposed after the right shift in Equation 8-326, a larger
range of values must be supported in the decoder prior to the right shift.

8.5.11 Scaling and transformation process for chroma DC transform coefficients

This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma
component of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array c with elements cij, where i and j form a
two-dimensional frequency index.

Outputs of this process are the scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCij.
The variables bitDepth and qP are set equal to BitDepthC and QP′C, respectively.

Depending on the value of TransformBypassModeFlag, the following applies.

– If TransformBypassModeFlag is equal to 1, the output dcC is derived as

dcCij = cij with i = 0..(MbWidthC / 4) − 1 and j = 0..(MbHeightC / 4) − 1. (8-327)

188 Rec. ITU-T H.264 (03/2009)

– Otherwise (TransformBypassModeFlag is equal to 0), the following ordered steps are specified:

1. The transformation process for chroma DC transform coefficients as specified in subclause 8.5.11.1 is
invoked with bitDepth and c as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4)
array f of chroma DC values with elements fij.

2. The scaling process for chroma DC transform coefficients as specified in subclause 8.5.11.2 is invoked with
bitDepth, qP, and f as the inputs and the output is assigned to the (MbWidthC / 4)x(MbHeightC / 4) array
dcY of scaled chroma DC values with elements dcYij.

8.5.11.1 Transformation process for chroma DC transform coefficients

Inputs of this process are transform coefficient level values for chroma DC transform coefficients of one chroma
component of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array c with elements cij, where i and j form a
two-dimensional frequency index.

Outputs of this process are the DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fij.
Depending on the variable ChromaArrayType, the inverse transform is specified as follows.

– If ChromaArrayType is equal to 1, the inverse transform for the 2x2 chroma DC transform coefficients is specified
as

⎥
⎦

⎤
⎢
⎣

⎡
−

∗⎥
⎦

⎤
⎢
⎣

⎡
∗⎥

⎦

⎤
⎢
⎣

⎡
−

=
11
11

cc
cc

11
11

f
1110

0100 (8-328)

– Otherwise, (ChromaArrayType is equal to 2), the inverse transform for the 2x4 chroma DC transform coefficients
is specified as

⎥
⎦

⎤
⎢
⎣

⎡
−

∗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

11
11

cc
cc
cc
cc

1111
1111
1111
1111

f

3130

2120

1110

0100

 (8-329)

8.5.11.2 Scaling process for chroma DC transform coefficients
Inputs of this process are

– the variables bitDepth and qP

– DC values as an (MbWidthC / 4)x(MbHeightC / 4) array f with elements fij

Outputs of this process are scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCij.
The bitstream shall not contain data that result in any element fij of f with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.
Scaling is performed depending on the variable ChromaArrayType as follows.

– If ChromaArrayType is equal to 1, the scaled result is derived as

1 0,ji,5,))6qP/ ()) 0 0, 6, % qP4x4(LevelScale *f ((dcC ijij =>><<= with (8-330)

– Otherwise (ChromaArrayType is equal to 2), the following ordered steps are specified:
1. The variable qPDC is derived as

qPDC = qP + 3 (8-331)

2. Depending on the value of qPDC, the following applies.
– If qPDC is greater than or equal to 36, the scaled result is derived as

 ,) 6 6 / qP ()) 0 0, %6,qP (4x4LevelScale*f (dcC DCDCijij −<<= with i = 0..3, j = 0, 1 (8-332)

 Rec. ITU-T H.264 (03/2009) 189

– Otherwise (qPDC is less than 36), the scaled result is derived as

0,1j0..3, i with), 6 / qP 6 () 2) 0 0, 6, % qP 4x4(LevelScale*f (dcC DC
/6qP5

DCijij
DC ==−>>+= −

 (8-333)

The bitstream shall not contain data that result in any element dcCij of dcC with i, j = 0..3 that exceeds the range of
integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

NOTE 1 – When entropy_coding_mode_flag is equal to 0 and qP is less than 4 and profile_idc is equal to 66, 77, or 88, the range
of values that can be represented for the elements cij of c in subclause 8.5.11.1 may not be sufficient to represent the full range of
values of the elements dcCij of dcC that could be necessary to form a close approximation of the content of any possible source
picture.
NOTE 2 – Since the range limit imposed on the elements dcCij of dcC is imposed after the right shift in Equation 8-330 or 8-333,
a larger range of values must be supported in the decoder prior to the right shift.

8.5.12 Scaling and transformation process for residual 4x4 blocks
Input to this process is a 4x4 array c with elements cij which is either an array relating to a residual block of the luma
component or an array relating to a residual block of a chroma component.

Outputs of this process are residual sample values as 4x4 array r with elements rij.

The variable bitDepth is derived as follows.

– If the input array c relates to a luma residual block, bitDepth is set equal to BitDepthY.

– Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthC.

The variable sMbFlag is derived as follows.

– If mb_type is equal to SI or the macroblock prediction mode is equal to Inter in an SP slice, sMbFlag is set equal
to 1,

– Otherwise (mb_type not equal to SI and the macroblock prediction mode is not equal to Inter in an SP slice),
sMbFlag is set equal to 0.

The variable qP is derived as follows.

– If the input array c relates to a luma residual block and sMbFlag is equal to 0

qP = QP′Y (8-334)

– Otherwise, if the input array c relates to a luma residual block and sMbFlag is equal to 1

qP = QSY (8-335)

– Otherwise, if the input array c relates to a chroma residual block and sMbFlag is equal to 0

qP = QP′C (8-336)

– Otherwise (the input array c relates to a chroma residual block and sMbFlag is equal to 1),

qP = QSC (8-337)

Depending on the value of TransformBypassModeFlag, the following applies.

– If TransformBypassModeFlag is equal to 1, the output r is derived as

rij = cij with i, j = 0..3 (8-338)

– Otherwise (TransformBypassModeFlag is equal to 0), the following ordered steps are specified:

1. The scaling process for residual 4x4 blocks as specified in subclause 8.5.12.1 is invoked with bitDepth, qP,
and c as the inputs and the output is assigned to the 4x4 array d of scaled transform coefficients with
elements dij.

190 Rec. ITU-T H.264 (03/2009)

2. The transformation process for residual 4x4 blocks as specified in subclause 8.5.12.2 is invoked with
bitDepth and d as the inputs and the output is assigned to the 4x4 array r of residual sample values with
elements rij.

8.5.12.1 Scaling process for residual 4x4 blocks
Inputs of this process are

– the variables bitDepth and qP,

– a 4x4 array c with elements cij which is either an array relating to a residual block of luma component or an array
relating to a residual block of a chroma component.

Output of this process is a 4x4 array of scaled transform coefficients d with elements dij.
The bitstream shall not contain data that result in any element cij of c with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

Scaling of 4x4 block transform coefficient levels cij proceeds as follows.

– If all of the following conditions are true:

– i is equal to 0,

– j is equal to 0,

– c relates to a luma residual block coded using Intra_16x16 macroblock prediction mode or c relates to a
chroma residual block.

the variable d00 is derived by

d00 = c00 (8-339)

– Otherwise, the following applies.

– If qP is greater than or equal to 24, the scaled result is derived as

dij = (cij * LevelScale4x4(qP % 6, i, j)) << (qP / 6 − 4), with i, j = 0..3 except as noted above (8-340)

– Otherwise (qP is less than 24), the scaled result is derived as

above noted asexcept 0..3ji, with), 6 / qP4 ()2) j i, 6, % qP 4x4(LevelScale *c (d qP/63
ijij =−>>+= − (8-341)

The bitstream shall not contain data that result in any element dij of d with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

8.5.12.2 Transformation process for residual 4x4 blocks
Inputs of this process are

– the variable bitDepth

– a 4x4 array of scaled transform coefficients d with elements dij

Outputs of this process are residual sample values as 4x4 array r with elements rij.

The bitstream shall not contain data that result in any element dij of d with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.
First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform
as follows.
A set of intermediate values is computed as follows.

ei0 = di0 + di2, with i = 0..3 (8-342)

ei1 = di0 − di2, with i = 0..3 (8-343)

 Rec. ITU-T H.264 (03/2009) 191

ei2 = (di1 >> 1) − di3, with i = 0..3 (8-344)

ei3 = di1 + (di3 >> 1), with i = 0..3 (8-345)

The bitstream shall not contain data that result in any element eij of e with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

Then, the transformed result is computed from these intermediate values as follows.

fi0 = ei0 + ei3, with i = 0..3 (8-346)

fi1 = ei1 + ei2, with i = 0..3 (8-347)

fi2 = ei1 − ei2, with i = 0..3 (8-348)

fi3 = ei0 − ei3, with i = 0..3 (8-349)

The bitstream shall not contain data that result in any element fij of f with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.
Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as
follows.
A set of intermediate values is computed as follows.

g0j = f0j + f2j, with j = 0..3 (8-350)

g1j = f0j − f2j, with j = 0..3 (8-351)

g2j = (f1j >> 1) − f3j, with j = 0..3 (8-352)

g3j = f1j + (f3j >> 1), with j = 0..3 (8-353)

The bitstream shall not contain data that result in any element gij of g with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

Then, the transformed result is computed from these intermediate values as follows.

h0j = g0j + g3j, with j = 0..3 (8-354)

h1j = g1j + g2j, with j = 0..3 (8-355)

h2j = g1j − g2j, with j = 0..3 (8-356)

h3j = g0j − g3j, with j = 0..3 (8-357)

The bitstream shall not contain data that result in any element hij of h with i, j = 0..3 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 33, inclusive.

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce
an array of transformed samples, the final constructed residual sample values is derived as

6) 2 h (r 5
ijij >>+= with i, j = 0..3 (8-358)

192 Rec. ITU-T H.264 (03/2009)

8.5.13 Scaling and transformation process for residual 8x8 blocks
Input to this process is an 8x8 array c with elements cij which is either an array relating to an 8x8 residual block of the
luma component or, when ChromaArrayType is equal to 3, an array relating to an 8x8 residual block of a chroma
component.

NOTE 1 – When separate_colour_plane_flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each coded picture (prior to the final assignment of the decoded picture to a
particular luma or chroma picture array according to the value of colour_plane_id).

Outputs of this process are residual sample values as 8x8 array r with elements rij.
The variables bitDepth and qP are derived as follows.

– If the input array c relates to a luma residual block, bitDepth is set equal to BitDepthY and QP is set equal to QP′Y.

– Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthC and QP is set
equal to QP′C.

NOTE 2 – When separate_colour_plane_flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each colour component of a picture.

Depending on the value of TransformBypassModeFlag, the following applies.

– If TransformBypassModeFlag is equal to 1, the output r is derived as

rij = cij with i, j = 0..7 (8-359)

– Otherwise (TransformBypassModeFlag is equal to 0), the following ordered steps are specified:

1. The scaling process for residual 8x8 blocks as specified in subclause 8.5.13.1 is invoked with bitDepth, qP,
and c as the inputs and the output is assigned to the 8x8 array d of scaled transform coefficients with
elements dij.

2. The transformation process for residual 8x8 blocks as specified in subclause 8.5.13.2 is invoked with
bitDepth and d as the inputs and the output is assigned to the 8x8 array r of residual sample values with
elements rij.

8.5.13.1 Scaling process for residual 8x8 blocks
Inputs of this process are

– the variables bitDepth and qP,

– an 8x8 array c with elements cij which is either an array relating to a residual block of luma component or an array
relating to a residual block of a chroma component.

Output of this process is an 8x8 array of scaled transform coefficients d with elements dij.
The bitstream shall not contain data that result in any element cij of c with i, j = 0..7 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

The scaling process for 8x8 block transform coefficient levels cij proceeds as follows.

– If qP is greater than or equal to 36, the scaled result is derived as

dij = (cij * LevelScale8x8(qP % 6, i, j)) << (qP / 6 − 6), with i, j = 0..7 (8-360)

– Otherwise (qP is less than 36), the scaled result is derived as

dij = (cij * LevelScale8x8(qP % 6, i, j)) + 25−QP′Y/6) >> (6 − qP /6), with i, j = 0..7 (8-361)

The bitstream shall not contain data that result in any element dij of d with i, j = 0..7 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

8.5.13.2 Transformation process for residual 8x8 blocks
Inputs of this process are

– the variable bitDepth,

– an 8x8 array of scaled transform coefficients d with elements dij.

 Rec. ITU-T H.264 (03/2009) 193

Outputs of this process are residual sample values as 8x8 array r with elements rij.

The bitstream shall not contain data that result in any element dij of d with i, j = 0..7 that exceeds the range of integer
values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.
First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform
as follows.
– A set of intermediate values eij is derived by

ei0 = di0 + di4, with i = 0..7 (8-362)

ei1 = − di3 + di5 − di7 − (di7 >> 1), with i = 0..7 (8-363)

ei2 = di0 − di4, with i = 0..7 (8-364)

ei3 = di1 + di7 − di3 − (di3 >> 1), with i = 0..7 (8-365)

ei4 = (di2 >> 1) − di6, with i = 0..7 (8-366)

ei5 = − di1 + di7 + di5 + (di5 >> 1), with i = 0..7 (8-367)

ei6 = di2 + (di6 >> 1), with i = 0..7 (8-368)

ei7 = di3 + di5 + di1 + (di1 >> 1), with i = 0..7 (8-369)

– A second set of intermediate results fij is computed from the intermediate values eij as

fi0 = ei0 + ei6, with i = 0..7 (8-370)

fi1 = ei1 + (ei7 >> 2), with i = 0..7 (8-371)

fi2 = ei2 + ei4, with i = 0..7 (8-372)

fi3 = ei3 + (ei5 >> 2), with i = 0..7 (8-373)

fi4 = ei2 − ei4, with i = 0..7 (8-374)

fi5 = (ei3 >> 2) − ei5, with i = 0..7 (8-375)

fi6 = ei0 − ei6, with i = 0..7 (8-376)

fi7 = ei7 − (ei1 >> 2), with i = 0..7 (8-377)

– Then, the transformed result gij is computed from these intermediate values fij as

gi0 = fi0 + fi7, with i = 0..7 (8-378)

194 Rec. ITU-T H.264 (03/2009)

gi1 = fi2 + fi5, with i = 0..7 (8-379)

gi2 = fi4 + fi3, with i = 0..7 (8-380)

gi3 = fi6 + fi1, with i = 0..7 (8-381)

gi4 = fi6 − fi1, with i = 0..7 (8-382)

gi5 = fi4 − fi3, with i = 0..7 (8-383)

gi6 = fi2 − fi5, with i = 0..7 (8-384)

gi7 = fi0 − fi7, with i = 0..7 (8-385)

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as
follows.
– A set of intermediate values hij is computed from the horizontally transformed value gij as

h0j = g0j + g4j, with j = 0..7 (8-386)

h1j = − g3j + g5j − g7j − (g7j >> 1), with j = 0..7 (8-387)

h2j = g0j − g4j, with j = 0..7 (8-388)

h3j = g1j + g7j − g3j − (g3j >> 1), with j = 0..7 (8-389)

h4j = (g2j >> 1) − g6j, with j = 0..7 (8-390)

h5j = − g1j + g7j + g5j + (g5j >> 1), with j = 0..7 (8-391)

h6j = g2j + (g6j >> 1), with j = 0..7 (8-392)

h7j = g3j + g5j + g1j + (g1j >> 1), with j = 0..7 (8-393)

– A second set of intermediate results kij is computed from the intermediate values hij as

k0j = h0j + h6j, with j = 0..7 (8-394)

k1j = h1j + (h7j >> 2), with j = 0..7 (8-395)

k2j = h2j + h4j, with j = 0..7 (8-396)

k3j = h3j + (h5j >> 2), with j = 0..7 (8-397)

k4j = h2j − h4j, with j = 0..7 (8-398)

 Rec. ITU-T H.264 (03/2009) 195

k5j = (h3j >> 2) − h5j, with j = 0..7 (8-399)

k6j = h0j − h6j, with j = 0..7 (8-400)

k7j = h7j − (h1j >> 2), with j = 0..7 (8-401)

– Then, the transformed result mij is computed from these intermediate values kij as

m0j = k0j + k7j, with j = 0..7 (8-402)

m1j = k2j + k5j, with j = 0..7 (8-403)

m2j = k4j + k3j, with j = 0..7 (8-404)

m3j = k6j + k1j, with j = 0..7 (8-405)

m4j = k6j − k1j, with j = 0..7 (8-406)

m5j = k4j − k3j, with j = 0..7 (8-407)

m6j = k2j − k5j, with j = 0..7 (8-408)

m7j = k0j − k7j, with j = 0..7 (8-409)

The bitstream shall not contain data that result in any element eij, fij, gij, hij, or kij for i and j in the range of 0..7,
inclusive, that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

The bitstream shall not contain data that result in any element mij for i and j in the range of 0..7, inclusive, that exceeds
the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 33, inclusive.

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce
an array of transformed samples, the final constructed residual sample values are derived as

rij = (mij + 25) >> 6 with i, j = 0..7 (8-410)

8.5.14 Picture construction process prior to deblocking filter process

Inputs to this process are
– a sample array u with elements uij which is a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block or

a 4x4 luma block or a 4x4 chroma block or an 8x8 luma block or, when ChromaArrayType is equal to 3, an 8x8
chroma block,

– when u is not a 16x16 luma block or an (MbWidthC)x(MbHeightC) chroma block, a block index luma4x4BlkIdx
or chroma4x4BlkIdx or luma8x8BlkIdx or cb4x4BlkIdx or cr4x4BlkIdx or cb8x8BlkIdx or cr8x8BlkIdx.

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

When u is a luma block, for each sample uij of the luma block, the following ordered steps are specified:

1. Depending on the size of the block u, the following applies.

– If u is a 16x16 luma block, the position (xO, yO) of the upper-left sample of the 16x16 luma block inside
the macroblock is set equal to (0, 0) and the variable nE is set equal to 16.

– Otherwise, if u is an 4x4 luma block, the position of the upper-left sample of the 4x4 luma block with
index luma4x4BlkIdx inside the macroblock is derived by invoking the inverse 4x4 luma block scanning

196 Rec. ITU-T H.264 (03/2009)

process in subclause 6.4.3 with luma4x4BlkIdx as the input and the output being assigned to (xO, yO),
and the variable nE is set equal to 4.

– Otherwise (u is an 8x8 luma block), the position of the upper-left sample of the 8x8 luma block with index
luma8x8BlkIdx inside the macroblock is derived by invoking the inverse 8x8 luma block scanning
process in subclause 6.4.5 with luma8x8BlkIdx as the input and the output being assigned to (xO, yO),
and the variable nE is set equal to 8.

2. Depending on the variable MbaffFrameFlag and the current macroblock, the following applies.

– If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

S′L[xP + xO + j, yP + 2 * (yO + i)] = uij with i, j = 0..nE − 1 (8-411)

– Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

S′L[xP + xO + j, yP + yO + i] = uij with i, j = 0..nE − 1 (8-412)

When u is a chroma block, for each sample uij of the chroma block, the following ordered steps are specified:

1. The subscript C in the variable S′C is replaced with Cb for the Cb chroma component and with Cr for the Cr
chroma component.

2. Depending on the size of the block u, the following applies.

– If u is an (MbWidthC)x(MbHeightC) Cb or Cr block, the variable nW is set equal to MbWidthC, the
variable nH is set equal to MbHeightC, and the position (xO, yO) of the upper-left sample of the
(nW)x(nH) Cb or Cr block inside the macroblock is set equal to (0, 0).

– Otherwise, if u is a 4x4 Cb or Cr block, the variables nW and nH are set equal to 4 and, depending on the
variable ChromaArrayType, the position of the upper-left sample of a 4x4 Cb or Cr block with index
chroma4x4BlkIdx inside the macroblock is derived as follows.

– If ChromaArrayType is equal to 1 or 2, the following applies.

xO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (8-413)

yO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (8-414)

– Otherwise (ChromaArrayType is equal to 3), the position of the upper-left sample of the 4x4 Cb
block with index cb4x4BlkIdx or the 4x4 Cr block with index cr4x4BlkIdx inside the macroblock is
derived by invoking the inverse 4x4 Cb or Cr block scanning process in subclause 6.4.4 with
cb4x4BlkIdx or cr4x4BlkIdx as the input and the output being assigned to (xO, yO).

– Otherwise (u is an 8x8 Cb or Cr block when ChromaArrayType is equal to 3), the variables nW and nH
are set equal to 8 and the position of the upper-left sample of the 8x8 Cb block with index cb8x8BlkIdx or
the Cr block with index cr8x8BlkIdx inside the macroblock is derived by invoking the inverse 8x8 Cb or
Cr block scanning process in subclause 6.4.6 with cb8x8BlkIdx or cr8x8BlkIdx as the input and the output
being assigned to (xO, yO).

3. Depending on the variable MbaffFrameFlag and the current macroblock, the following applies.

– If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

S′C[(xP / subWidthC) + xO + j, ((yP + SubHeightC − 1) / SubHeightC) + 2 * (yO + i)] = uij
 with i = 0..nH − 1 and j = 0..nW − 1 (8-415)

– Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

S′C[(xP/ subWidthC) + xO + j, (yP / SubHeightC) + yO + i] = uij
 with i = 0..nH − 1 and j = 0..nW − 1 (8-416)

 Rec. ITU-T H.264 (03/2009) 197

8.5.15 Intra residual transform-bypass decoding process

This process is invoked when TransformBypassModeFlag is equal to 1, the macroblock prediction mode is equal to
Intra_4x4, Intra_8x8, or Intra_16x16, and the applicable intra prediction mode is equal to the vertical or horizontal
mode. The process for the Cb and Cr components is applied in the same way as for the luma (L or Y) component.

Inputs to this process are
– two variables nW and nH,
– a variable horPredFlag,
– an (nW)x(nH) array r with elements rij which is either an array relating to a residual transform-bypass block of the

luma component or an array relating to a residual transform-bypass block of the Cb and Cr component.

Output of this process is a modified version of the (nW)x(nH) array r with elements rij containing the result of the intra
residual transform-bypass decoding process.

Let f be a temporary (nW)x(nH) array with elements fij, which are derived by

fij = rij with i = 0..nH − 1 and j = 0..nW − 1 (8-417)

Depending on horPredFlag, the following applies.
– If horPredFlag is equal to 0, the modified array r is derived by

∑
=

=
i

0k
kjij fr with i = 0..nH − 1 and j = 0..nW − 1 (8-418)

– Otherwise (horPredFlag is equal to 1), the modified array r is derived by

∑
=

=
j

0k
ikij fr with i = 0..nH − 1 and j = 0..nW − 1 (8-419)

8.6 Decoding process for P macroblocks in SP slices or SI macroblocks

This process is invoked when decoding P macroblock types in an SP slice type or an SI macroblock type in SI slices.

Inputs to this process are the prediction residual transform coefficient levels and the predicted samples for the current
macroblock.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This subclause specifies the transform coefficient decoding process and picture construction process for P macroblock
types in SP slices and SI macroblock type in SI slices.

NOTE – SP slices make use of Inter predictive coding to exploit temporal redundancy in the sequence, in a similar manner to P
slice coding. Unlike P slice coding, however, SP slice coding allows identical reconstruction of a slice even when different
reference pictures are being used. SI slices make use of spatial prediction, in a similar manner to I slices. SI slice coding allows
identical reconstruction to a corresponding SP slice. The properties of SP and SI slices aid in providing functionalities for
bitstream switching, splicing, random access, fast-forward, fast reverse, and error resilience/recovery.

An SP slice consists of macroblocks coded either as I macroblock types or P macroblock types.

An SI slice consists of macroblocks coded either as I macroblock types or SI macroblock type.

The transform coefficient decoding process and picture construction process prior to deblocking filter process for I
macroblock types in SI slices is invoked as specified in subclause 8.5. SI macroblock type is decoded as described
below.

When the current macroblock is coded as P_Skip, all values of LumaLevel, ChromaDCLevel, ChromaACLevel are set
equal to 0 for the current macroblock.

8.6.1 SP decoding process for non-switching pictures

This process is invoked, when decoding P macroblock types in SP slices in which sp_for_switch_flag is equal to 0.

198 Rec. ITU-T H.264 (03/2009)

Inputs to this process are Inter prediction samples for the current macroblock from subclause 8.4 and the prediction
residual transform coefficient levels.

Outputs of this process are the decoded samples of the current macroblock prior to the deblocking filter process.

This subclause applies to all macroblocks in SP slices in which sp_for_switch_flag is equal to 0, except those with
macroblock prediction mode equal to Intra_4x4 or Intra_16x16. It does not apply to SI slices.

8.6.1.1 Luma transform coefficient decoding process

Inputs to this process are Inter prediction luma samples for the current macroblock predL from subclause 8.4 and the
prediction residual transform coefficient levels, LumaLevel, and the index of the 4x4 luma block luma4x4BlkIdx.

The position of the upper-left sample of the 4x4 luma block with index luma4x4BlkIdx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input
and the output being assigned to (x, y).

Let the variable p be a 4x4 array of prediction samples with element pij being derived as

pij = predL[x + j, y + i] with i, j = 0..3 (8-420)

The variable p is transformed producing transform coefficients cp according to:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
∗
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

1121
2111
2111
1121

pppp
pppp
pppp
pppp

1221
1111
2112
1111

c

33323130

23222120

13121110

03020100

p (8-421)

The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is invoked
with LumaLevel[luma4x4BlkIdx] as the input and the two-dimensional array cr with elements cij

r as the output.

The prediction residual transform coefficients cr are scaled using quantisation parameter QPY, and added to the
transform coefficients of the prediction block cp with i, j = 0..3 as follows:

cij
s = cij

p + (((cij
r * LevelScale4x4(QPY % 6, i, j) * Aij) << (QPY / 6)) >> 10) (8-422)

where LevelScale4x4(m, i, j) is specified in Equation 8-317, and where Aij is specified as

⎪
⎩

⎪
⎨

⎧
∈
∈

=
otherwise;20

(3,3)},(3,1),(1,3),{(1,1),j)(i,for25
(2,2)},(2,0),(0,2),{(0,0),j)(i,for16

Aij
 (8-423)

The function LevelScale2(m, i, j), used in the formulas below, is specified as

⎪
⎩

⎪
⎨

⎧
∈
∈

=
otherwise;w

(3,3)},(3,1),(1,3),{(1,1),j)(i,forw
(2,2)},(2,0),(0,2),{(0,0),j)(i,forw

j)i,2(m,LevelScale

m2

m1

m0

 (8-424)

where the first and second subscripts of w are row and column indices, respectively, of the matrix specified as

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

455928937282
524333558192
582536479362
6554419410082
7490466011916
8066524313107

w (8-425)

 Rec. ITU-T H.264 (03/2009) 199

The resulting sum, cs, is quantised with a quantisation parameter QSY and with i, j = 0..3 as follows:

cij = Sign(cij
s) * ((Abs(cij

s) * LevelScale2(QSY % 6, i, j) + (1 << (14 + QSY / 6))) >> (15 + QSY / 6))
 (8-426)

The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with c as the
input and r as the output.

The 4x4 array u with elements uij is derived by

uij = Clip1Y(rij) with i, j = 0..3 (8-427)

The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with luma4x4BlkIdx
and u as the inputs.

8.6.1.2 Chroma transform coefficient decoding process

Inputs to this process are Inter prediction chroma samples for the current macroblock from subclause 8.4 and the
prediction residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4BlkIdx with chroma4x4BlkIdx equal
to 0..3, the following ordered steps are specified:

1. The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the
macroblock is derived as

x = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (8-428)

y = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (8-429)

2. Let p be a 4x4 array of prediction samples with elements pij being derived as

pij = predC[x + j, y + i] with i, j = 0..3 (8-430)

3. The 4x4 array p is transformed producing transform coefficients cp(chroma4x4BlkIdx) using Equation 8-421.

4. The variable chromaList, which is a list of 16 entries, is derived. chromaList[0] is set equal to 0.
chromaList[k] with index k = 1..15 are specified as follows:

chromaList[k] = ChromaACLevel[iCbCr][chroma4x4BlkIdx][k − 1] (8-431)

5. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is
invoked with chromaList as the input and the 4x4 array cr as the output.

6. The prediction residual transform coefficients cr are scaled using quantisation parameter QPC, and added to the
transform coefficients of the prediction block cp with i, j = 0..3 except for the combination i = 0, j = 0 as follows:

cij
s = cij

p(chroma4x4BlkIdx) + (((cij
r * LevelScale4x4(QPC % 6, i, j) * Aij) << (QPC / 6)) >> 10) (8-432)

7. The resulting sum, cs, is quantised with a quantisation parameter QSC and with i, j = 0..3 except for the
combination i = 0, j = 0 as follows. The derivation of c00(chroma4x4BlkIdx) is described below in this
subclause.

cij(chroma4x4BlkIdx) = (Sign(cij
s) * (Abs(cij

s) * LevelScale2(QSC % 6, i, j) +
 (1 << (14 + QSC / 6)))) >> (15 + QSC / 6) (8-433)

8. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with
c(chroma4x4BlkIdx) as the input and r as the output.

200 Rec. ITU-T H.264 (03/2009)

9. The 4x4 array u with elements uij is derived by

uij = Clip1C(rij) with i, j = 0..3 (8-434)

10. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with
chroma4x4BlkIdx and u as the inputs.

The derivation of the DC transform coefficient level c00(chroma4x4BlkIdx) is specified as follows. The DC transform
coefficients of the 4 prediction chroma 4x4 blocks of the current component of the macroblock are assembled into a 2x2
matrix with elements c00

p(chroma4x4BlkIdx) and a 2x2 transform is applied to the DC transform coefficients as
follows:

⎥
⎦

⎤
⎢
⎣

⎡
−

∗⎥
⎦

⎤
⎢
⎣

⎡
∗⎥

⎦

⎤
⎢
⎣

⎡
−

=
11

11
)3(c)2(c
)1(c)0(c

11
11

dc p
00

p
00

p
00

p
00p (8-435)

The chroma DC prediction residual transform coefficient levels, ChromaDCLevel[iCbCr][k] with k = 0..3 are scaled
using quantisation parameter QP, and added to the prediction DC transform coefficients as follows:

dcij
s = dcij

p + (((ChromaDCLevel[iCbCr][j * 2 + i] * LevelScale4x4(QPC % 6, 0, 0) * A00) << (QPC / 6))
 >> 9) with i, j = 0, 1 (8-436)

The 2x2 array dcs, is quantised using the quantisation parameter QSC as follows:

dcij
r = (Sign(dcij

s) * (Abs(dcij
s) * LevelScale2(QSC % 6, 0, 0) + (1 << (15 + QSC / 6)))) >> (16 + QSC / 6)

 with i, j = 0, 1 (8-437)

The 2x2 array f with elements fij and i, j = 0..1 is derived as

⎥
⎦

⎤
⎢
⎣

⎡
−

∗⎥
⎦

⎤
⎢
⎣

⎡
∗⎥

⎦

⎤
⎢
⎣

⎡
−

=
11
11

dcdc
dcdc

11
11

f r
11

r
10

r
01

r
00 (8-438)

Scaling of the elements fij of f is performed as follows:

c00(j * 2 + i) = ((fij * LevelScale4x4(QSC % 6, 0, 0)) << (QSC / 6)) >> 5 with i, j = 0, 1 (8-439)

8.6.2 SP and SI slice decoding process for switching pictures

This process is invoked, when decoding P macroblock types in SP slices in which sp_for_switch_flag is equal to 1 and
when decoding SI macroblock type in SI slices.

Inputs to this process are the prediction residual transform coefficient levels and the prediction sample arrays predL,
predCb and predCr for the current macroblock.

8.6.2.1 Luma transform coefficient decoding process

Inputs to this process are prediction luma samples predL and the luma prediction residual transform coefficient levels,
LumaLevel.

The 4x4 array p with elements pij with i, j = 0..3 is derived as in subclause 8.6.1.1, is transformed according to
Equation 8-421 to produce transform coefficients cp. These transform coefficients are then quantised with the
quantisation parameter QSY, as follows:

cij
s = Sign(cij

p) * ((Abs(cij
p) * LevelScale2(QSY % 6, i, j) + (1 << (14 + QSY / 6))) >> (15 + QSY / 6))

 with i, j = 0..3 (8-440)

The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is invoked
with LumaLevel[luma4x4BlkIdx] as the input and the two-dimensional array cr with elements cij

r as the output.

 Rec. ITU-T H.264 (03/2009) 201

The 4x4 array c with elements cij with i, j = 0..3 is derived by

cij = cij
r + cij

s with i, j = 0..3 (8-441)

The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with c as the
input and r as the output.

The 4x4 array u with elements uij is derived by

uij = Clip1Y(rij) with i, j = 0..3 (8-442)

The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with luma4x4BlkIdx
and u as the inputs.

8.6.2.2 Chroma transform coefficient decoding process

Inputs to this process are predicted chroma samples for the current macroblock from subclause 8.4 and the prediction
residual transform coefficient levels, ChromaDCLevel and ChromaACLevel.

This process is invoked twice: once for the Cb component and once for the Cr component. The component is referred to
by replacing C with Cb for the Cb component and C with Cr for the Cr component. Let iCbCr select the current chroma
component.

For each 4x4 block of the current chroma component indexed using chroma4x4BlkIdx with chroma4x4BlkIdx equal
to 0..3, the following ordered steps are specified:

1. The 4x4 array p with elements pij with i, j = 0..3 is derived as in subclause 8.6.1.2, is transformed according to
Equation 8-421 to produce transform coefficients cp(chroma4x4BlkIdx). These transform coefficients are then
quantised with the quantisation parameter QSC, with i, j = 0..3 except for the combination i = 0, j = 0 as follows.
The processing of c00

p(chroma4x4BlkIdx) is described below in this subclause.

cij
s = (Sign(cij

p(chroma4x4BlkIdx)) * (Abs(cij
p(chroma4x4BlkIdx)) *

 LevelScale2(QSC % 6, i, j) + (1 << (14 + QSC / 6)))) >> (15 + QSC / 6) (8-443)

2. The variable chromaList, which is a list of 16 entries, is derived. chromaList[0] is set equal to 0.
chromaList[k] with index k = 1..15 are specified as follows:

chromaList[k] = ChromaACLevel[iCbCr][chroma4x4BlkIdx][k − 1] (8-444)

3. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is
invoked with chromaList as the input and the two-dimensional array cr(chroma4x4BlkIdx) with elements
cij

r(chroma4x4BlkIdx) as the output.

4. The 4x4 array c(chroma4x4BlkIdx) with elements cij(chroma4x4BlkIdx) with i, j = 0..3 except for the
combination i = 0, j = 0 is derived as follows. The derivation of c00(chroma4x4BlkIdx) is described below.

cij(chroma4x4BlkIdx) = cij
r(chroma4x4BlkIdx) + cij

s (8-445)

5. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.12 is invoked with
c(chroma4x4BlkIdx) as the input and r as the output.

6. The 4x4 array u with elements uij is derived by

uij = Clip1C(rij) with i, j = 0..3 (8-446)

7. The picture construction process prior to deblocking filter process in subclause 8.5.14 is invoked with
chroma4x4BlkIdx and u as the inputs.

The derivation of the DC transform coefficient level c00(chroma4x4BlkIdx) is specified as follows. The DC transform
coefficients of the 4 prediction 4x4 chroma blocks of the current component of the macroblock,
c00

p(chroma4x4BlkIdx), are assembled into a 2x2 matrix, and a 2x2 transform is applied to the DC transform
coefficients of these blocks according to Equation 8-435 resulting in DC transform coefficients dcij

p.

202 Rec. ITU-T H.264 (03/2009)

These DC transform coefficients are then quantised with the quantisation parameter QSC, as given by

dcij
s = (Sign(dcij

p) * (Abs(dcij
p) * LevelScale2(QSC % 6, 0, 0) + (1 << (15 + QSC / 6)))) >>

 (16 + QSC / 6) with i, j = 0, 1 (8-447)

The parsed chroma DC prediction residual transform coefficients, ChromaDCLevel[iCbCr][k] with k = 0..3 are added
to these quantised DC transform coefficients of the prediction block, as given by

dcij
r = dcij

s + ChromaDCLevel[iCbCr][j * 2 + i] with i, j = 0, 1 (8-448)

The 2x2 array f with elements fij and i, j = 0..1 is derived using Equation 8-438.

The 2x2 array f with elements fij and i, j = 0..1 is copied as follows:

c00(j * 2 + i) = fij with i, j = 0, 1 (8-449)

8.7 Deblocking filter process

A conditional filtering process is specified in this subclause that is an integral part of the decoding process which shall
be applied by decoders conforming to the Baseline, Constrained Baseline, Main, Extended, High, High 10, High 4:2:2,
and High 4:4:4 Predictive profiles. For decoders conforming to the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and
CAVLC 4:4:4 Intra profiles, the filtering process specified in this subclause, or one similar to it, should be applied but is
not required.

The conditional filtering process is applied to all NxN (where N = 4 or N = 8 for luma, N = 4 for chroma when
ChromaArrayType is equal to 1 or 2, and N = 4 or N = 8 for chroma when ChromaArrayType is equal to 3) block edges
of a picture, except edges at the boundary of the picture and any edges for which the deblocking filter process is
disabled by disable_deblocking_filter_idc, as specified below. This filtering process is performed on a macroblock basis
after the completion of the picture construction process prior to deblocking filter process (as specified in subclauses 8.5
and 8.6) for the entire decoded picture, with all macroblocks in a picture processed in order of increasing macroblock
addresses.

NOTE 1 – Prior to the operation of the deblocking filter process for each macroblock, the deblocked samples of the macroblock
or macroblock pair above (if any) and the macroblock or macroblock pair to the left (if any) of the current macroblock are always
available because the deblocking filter process is performed after the completion of the picture construction process prior to
deblocking filter process for the entire decoded picture. However, for purposes of determining which edges are to be filtered
when disable_deblocking_filter_idc is equal to 2, macroblocks in different slices are considered not available during specified
steps of the operation of the deblocking filter process.

The deblocking filter process is invoked for the luma and chroma components separately. For each macroblock and
each component, vertical edges are filtered first, starting with the edge on the left-hand side of the macroblock
proceeding through the edges towards the right-hand side of the macroblock in their geometrical order, and then
horizontal edges are filtered, starting with the edge on the top of the macroblock proceeding through the edges towards
the bottom of the macroblock in their geometrical order. Figure 8-10 shows edges of a macroblock which can be
interpreted as luma or chroma edges.

When interpreting the edges in Figure 8-10 as luma edges, depending on the transform_size_8x8_flag, the following
applies.
– If transform_size_8x8_flag is equal to 0, both types, the solid bold and dashed bold luma edges are filtered.
– Otherwise (transform_size_8x8_flag is equal to 1), only the solid bold luma edges are filtered.

When interpreting the edges in Figure 8-10 as chroma edges, depending on ChromaArrayType, the following applies.
– If ChromaArrayType is equal to 1 (4:2:0 format), only the solid bold chroma edges are filtered.
– Otherwise, if ChromaArrayType is equal to 2 (4:2:2 format), the solid bold vertical chroma edges are filtered and

both types, the solid bold and dashed bold horizontal chroma edges are filtered.
– Otherwise, if ChromaArrayType is equal to 3 (4:4:4 format), the following applies.

– If transform_size_8x8_flag is equal to 0, both types, the solid bold and dashed bold chroma edges are
filtered.

– Otherwise (transform_size_8x8_flag is equal to 1), only the solid bold chroma edges are filtered.
– Otherwise (ChromaArrayType is equal to 0), no chroma edges are filtered.

 Rec. ITU-T H.264 (03/2009) 203

H.264(09)_F8-10

Vertical edges

H
or

iz
on

ta
l e

dg
es

Figure 8-10 – Boundaries in a macroblock to be filtered

For the current macroblock address CurrMbAddr proceeding over values 0..PicSizeInMbs − 1, the following ordered
steps are specified:

1. The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output
is assigned to mbAddrA and mbAddrB.

2. The variables fieldMbInFrameFlag, filterInternalEdgesFlag, filterLeftMbEdgeFlag and filterTopMbEdgeFlag
are derived as specified by the following ordered steps:

a. The variable fieldMbInFrameFlag is derived as follows.

– If MbaffFrameFlag is equal to 1 and mb_field_decoding_flag is equal to 1, fieldMbInFrameFlag is
set equal to 1.

– Otherwise (MbaffFrameFlag is equal to 0 or mb_field_decoding_flag is equal to 0),
fieldMbInFrameFlag is set equal to 0.

b. The variable filterInternalEdgesFlag is derived as follows.

– If disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal
to 1, the variable filterInternalEdgesFlag is set equal to 0.

– Otherwise (disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is
not equal to 1), the variable filterInternalEdgesFlag is set equal to 1.

c. The variable filterLeftMbEdgeFlag is derived as follows.

– If any of the following conditions is true, the variable filterLeftMbEdgeFlag is set equal to 0:

– MbaffFrameFlag is equal to 0 and CurrMbAddr % PicWidthInMbs is equal to 0,

– MbaffFrameFlag is equal to 1 and (CurrMbAddr >> 1) % PicWidthInMbs is equal to 0,

– disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal
to 1,

– disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal
to 2 and the macroblock mbAddrA is not available.

– Otherwise, the variable filterLeftMbEdgeFlag is set equal to 1.

d. The variable filterTopMbEdgeFlag is derived as follows.

– If any of the following conditions is true, the variable filterTopMbEdgeFlag is set equal to 0:

– MbaffFrameFlag is equal to 0 and CurrMbAddr is less than PicWidthInMbs,

– MbaffFrameFlag is equal to 1, (CurrMbAddr >> 1) is less than PicWidthInMbs, and the
macroblock CurrMbAddr is a field macroblock,

204 Rec. ITU-T H.264 (03/2009)

– MbaffFrameFlag is equal to 1, (CurrMbAddr >> 1) is less than PicWidthInMbs, the
macroblock CurrMbAddr is a frame macroblock, and CurrMbAddr % 2 is equal to 0,

– disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal
to 1,

– disable_deblocking_filter_idc for the slice that contains the macroblock CurrMbAddr is equal
to 2 and the macroblock mbAddrB is not available.

– Otherwise, the variable filterTopMbEdgeFlag is set equal to 1.

3. Given the variables fieldMbInFrameFlag, filterInternalEdgesFlag, filterLeftMbEdgeFlag and
filterTopMbEdgeFlag the deblocking filtering is controlled as follows.

a. When filterLeftMbEdgeFlag is equal to 1, the left vertical luma edge is filtered by invoking the process
specified in subclause 8.7.1 with chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEk, yEk) = (0, k) with k = 0..15 as the
inputs and S′L as the output.

b. When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical luma edges is specified by
the following ordered steps:

i. When transform_size_8x8_flag is equal to 0, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag = 1, fieldModeInFrameFilteringFlag = fieldMbInFrameFlag,
and (xEk, yEk) = (4, k) with k = 0..15 as the inputs and S′L as the output.

ii. The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 1,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEk, yEk) = (8, k) with k = 0..15 as the
inputs and S′L as the output.

iii. When transform_size_8x8_flag is equal to 0, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag = 1, fieldModeInFrameFilteringFlag = fieldMbInFrameFlag,
and (xEk, yEk) = (12, k) with k = 0..15 as the inputs and S′L as the output.

c. When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal luma edge is specified as
follows.

– If MbaffFrameFlag is equal to 1, (CurrMbAddr % 2) is equal to 0, CurrMbAddr is greater than or
equal to 2 * PicWidthInMbs, the macroblock CurrMbAddr is a frame macroblock, and the
macroblock (CurrMbAddr − 2 * PicWidthInMbs + 1) is a field macroblock, the following ordered
steps are specified:

i. The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0,
verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = 1, and (xEk, yEk) = (k, 0) with
k = 0..15 as the inputs and S′L as the output.

ii. The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0,
verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = 1, and (xEk, yEk) = (k, 1) with
k = 0..15 as the inputs and S′L as the output.

– Otherwise, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0,
verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEk, yEk) = (k, 0)
with k = 0..15 as the inputs and S′L as the output.

d. When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal luma edges is specified
by the following ordered steps:

i. When transform_size_8x8_flag is equal to 0, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = fieldMbInFrameFlag,
and (xEk, yEk) = (k, 4) with k = 0..15 as the inputs and S′L as the output.

ii. The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 0, verticalEdgeFlag = 0,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEk, yEk) = (k, 8) with k = 0..15 as the
inputs and S′L as the output.

iii. When transform_size_8x8_flag is equal to 0, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag = 0, verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = fieldMbInFrameFlag,
and (xEk, yEk) = (k, 12) with k = 0..15 as the inputs and S′L as the output.

e. When ChromaArrayType is not equal to 0, for the filtering of both chroma components, with iCbCr = 0
for Cb and iCbCr = 1 for Cr, the following ordered steps are specified:

 Rec. ITU-T H.264 (03/2009) 205

i. When filterLeftMbEdgeFlag is equal to 1, the left vertical chroma edge is filtered by invoking the
process specified in subclause 8.7.1 with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEk, yEk) = (0, k) with
k = 0..MbHeightC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbCr = 1 as the output.

ii. When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is
specified by the following ordered steps:

(1) When ChromaArrayType is not equal to 3 or transform_size_8x8_flag is equal to 0, the process
specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEk, yEk) = (4, k) with
k = 0..MbHeightC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and C
being replaced by Cr for iCbCr = 1 as the output.

(2) When ChromaArrayType is equal to 3, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1, fieldModeInFrameFilteringFlag =
fieldMbInFrameFlag, and (xEk, yEk) = (8, k) with k = 0..MbHeightC − 1 as the inputs and S′C
with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the
output.

(3) When ChromaArrayType is equal to 3 and transform_size_8x8_flag is equal to 0, the process
specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEk, yEk) = (12, k) with
k = 0..MbHeightC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and C
being replaced by Cr for iCbCr = 1 as the output.

iii. When filterTopMbEdgeFlag is equal to 1, the filtering of the top horizontal chroma edge is specified
as follows.

– If MbaffFrameFlag is equal to 1, (CurrMbAddr % 2) is equal to 0, CurrMbAddr is greater than
or equal to 2 * PicWidthInMbs, the macroblock CurrMbAddr is a frame macroblock, and the
macroblock (CurrMbAddr − 2 * PicWidthInMbs + 1) is a field macroblock, the following
ordered steps are specified:

(1) The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = 1, and (xEk, yEk) = (k, 0) with
k = 0..MbWidthC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and
C being replaced by Cr for iCbCr = 1 as the output.

(2) The process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = 1, and (xEk, yEk) = (k, 1) with
k = 0..MbWidthC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and
C being replaced by Cr for iCbCr = 1 as the output.

– Otherwise, the process specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1,
iCbCr, verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and
(xEk, yEk) = (k, 0) with k = 0..MbWidthC − 1 as the inputs and S′C with C being replaced by
Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the output.

iv. When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is
specified by the following ordered steps:

(1) When ChromaArrayType is not equal to 3 or transform_size_8x8_flag is equal to 0, the process
specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEk, yEk) = (k, 4) with
k = 0..MbWidthC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and C
being replaced by Cr for iCbCr = 1 as the output.

(2) When ChromaArrayType is not equal to 1, the process specified in subclause 8.7.1 is invoked
with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag =
fieldMbInFrameFlag, and (xEk, yEk) = (k, 8) with k = 0..MbWidthC − 1 as the inputs and S′C
with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the
output.

(3) When ChromaArrayType is equal to 2, the process specified in subclause 8.7.1 is invoked with
chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0, fieldModeInFrameFilteringFlag =
fieldMbInFrameFlag, and (xEk, yEk) = (k, 12) with k = 0..MbWidthC − 1 as the inputs and S′C

206 Rec. ITU-T H.264 (03/2009)

with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for iCbCr = 1 as the
output.

(4) When ChromaArrayType is equal to 3 and transform_size_8x8_flag is equal to 0, the process
specified in subclause 8.7.1 is invoked with chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0,
fieldModeInFrameFilteringFlag = fieldMbInFrameFlag, and (xEk, yEk) = (k, 12) with
k = 0..MbWidthC − 1 as the inputs and S′C with C being replaced by Cb for iCbCr = 0 and C
being replaced by Cr for iCbCr = 1 as the output.

NOTE 2 – When field mode filtering (fieldModeInFrameFilteringFlag is equal to 1) is applied across the top
horizontal edges of a frame macroblock, this vertical filtering across the top or bottom macroblock boundary
may involve some samples that extend across an internal block edge that is also filtered internally in frame
mode.
NOTE 3 – For example, in 4:2:0 chroma format when transform_size_8x8_flag is equal to 0, the following
applies. 3 horizontal luma edges, 1 horizontal chroma edge for Cb, and 1 horizontal chroma edge for Cr are
filtered that are internal to a macroblock. When field mode filtering (fieldModeInFrameFilteringFlag is equal
to 1) is applied to the top edges of a frame macroblock, 2 horizontal luma, 2 horizontal chroma edges for Cb, and
2 horizontal chroma edges for Cr between the frame macroblock and the above macroblock pair are filtered
using field mode filtering, for a total of up to 5 horizontal luma edges, 3 horizontal chroma edges for Cb, and 3
horizontal chroma edges for Cr filtered that are considered to be controlled by the frame macroblock. In all other
cases, at most 4 horizontal luma, 2 horizontal chroma edges for Cb, and 2 horizontal chroma edges for Cr are
filtered that are considered to be controlled by a particular macroblock.

Depending on separate_colour_plane_flag the following applies.
– If separate_colour_plane_flag is equal to 0, the arrays S′L, S′Cb, S′Cr are assigned to the arrays SL, SCb, SCr (which

represent the decoded picture), respectively.
– Otherwise (separate_colour_plane_flag is equal to 1), the following applies.

– If colour_plane_id is equal to 0, the arrays S′L is assigned to the array SL (which represent the luma
component of the decoded picture).

– Otherwise, if colour_plane_id is equal to 1, the arrays S′L is assigned to the array SCb (which represents the Cb
component of the decoded picture).

– Otherwise (colour_plane_id is equal to 2), the arrays S′L is assigned to the array SCr (which represents the Cr
component of the decoded picture).

8.7.1 Filtering process for block edges

Inputs to this process are chromaEdgeFlag, the chroma component index iCbCr (when chromaEdgeFlag is equal to 1),
verticalEdgeFlag, fieldModeInFrameFilteringFlag, and a set of nE sample locations (xEk, yEk), with k = 0..nE − 1,
expressed relative to the upper left corner of the macroblock CurrMbAddr. The set of sample locations (xEk, yEk)
represent the sample locations immediately to the right of a vertical edge (when verticalEdgeFlag is equal to 1) or
immediately below a horizontal edge (when verticalEdgeFlag is equal to 0).

The variable nE is derived as follows.
– If chromaEdgeFlag is equal to 0, nE is set equal to 16.
– Otherwise (chromaEdgeFlag is equal to 1), nE is set equal to (verticalEdgeFlag = = 1) ?

MbHeightC : MbWidthC.

Let s′ be a variable specifying a luma or chroma sample array. s′ is derived as follows.
– If chromaEdgeFlag is equal to 0, s′ represents the luma sample array S′L of the current picture.
– Otherwise, if chromaEdgeFlag is equal to 1 and iCbCr is equal to 0, s′ represents the chroma sample array S′Cb of

the chroma component Cb of the current picture.
– Otherwise (chromaEdgeFlag is equal to 1 and iCbCr is equal to 1), s′ represents the chroma sample array S′Cr of

the chroma component Cr of the current picture.

The variable dy is set equal to (1 + fieldModeInFrameFilteringFlag).

The position of the upper-left luma sample of the macroblock CurrMbAddr is derived by invoking the inverse
macroblock scanning process in subclause 6.4.1 with mbAddr = CurrMbAddr as input and the output being assigned to
(xI, yI).

The variables xP and yP are derived as follows.
– If chromaEdgeFlag is equal to 0, xP is set equal to xI and yP is set equal to yI.

 Rec. ITU-T H.264 (03/2009) 207

– Otherwise (chromaEdgeFlag is equal to 1), xP is set equal to xI / SubWidthC and yP is set equal to
(yI + SubHeightC − 1) / SubHeightC.

p3 p2 p1 p0 q0 q1 q2 q3

Figure 8-11 – Convention for describing samples across a 4x4 block horizontal or vertical boundary

For each sample location (xEk, yEk), k = 0..(nE − 1), the following ordered steps are specified:

1. The filtering process is applied to a set of eight samples across a 4x4 block horizontal or vertical edge denoted
as pi and qi with i = 0..3 as shown in Figure 8-11 with the edge lying between p0 and q0. pi and qi with i = 0..3 are
specified as follows.

– If verticalEdgeFlag is equal to 1,

qi = s′[xP + xEk + i, yP + dy * yEk] (8-450)

pi = s′[xP + xEk − i − 1, yP + dy * yEk] (8-451)

– Otherwise (verticalEdgeFlag is equal to 0),

qi = s′[xP + xEk, yP + dy * (yEk + i) − (yEk % 2)] (8-452)

pi = s′[xP + xEk, yP + dy * (yEk − i − 1) − (yEk % 2)] (8-453)

2. The process specified in subclause 8.7.2 is invoked with the sample values pi and qi (i = 0..3), chromaEdgeFlag,
and verticalEdgeFlag as the inputs, and the output is assigned to the filtered result sample values p′i and q′i with
i = 0..2.

3. The input sample values pi and qi with i = 0..2 are replaced by the corresponding filtered result sample values p′i
and q′i with i = 0..2 inside the sample array s′ as follows.

– If verticalEdgeFlag is equal to 1,

s′[xP + xEk + i, yP + dy * yEk] = q′i (8-454)

s′[xP + xEk − i − 1, yP + dy * yEk] = p′i (8-455)

– Otherwise (verticalEdgeFlag is equal to 0),

s′[xP + xEk, yP + dy * (yEk + i) − (yEk % 2)] = q′i (8-456)

s′[xP + xEk, yP + dy * (yEk − i − 1) − (yEk % 2)] = p′i (8-457)

8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge

Inputs to this process are the input sample values pi and qi with i in the range of 0..3 of a single set of samples across an
edge that is to be filtered, chromaEdgeFlag, and verticalEdgeFlag.

Outputs of this process are the filtered result sample values p′i and q′i with i in the range of 0..2.

208 Rec. ITU-T H.264 (03/2009)

The content dependent boundary filtering strength variable bS is derived as follows.

– If chromaEdgeFlag is equal to 0, the derivation process for the content dependent boundary filtering strength
specified in subclause 8.7.2.1 is invoked with p0, q0, and verticalEdgeFlag as input, and the output is assigned
to bS.

– Otherwise (chromaEdgeFlag is equal to 1), the bS used for filtering a set of samples of a horizontal or vertical
chroma edge is set equal to the value of bS for filtering the set of samples of a horizontal or vertical luma edge,
respectively, that contains the luma sample at location (SubWidthC * x, SubHeightC * y) inside the luma array of
the same field, where (x, y) is the location of the chroma sample q0 inside the chroma array for that field.

Let filterOffsetA and filterOffsetB be the values of FilterOffsetA and FilterOffsetB as specified in subclause 7.4.3 for
the slice that contains the macroblock containing sample q0.

Let qPp and qPq be variables specifying quantisation parameter values for the macroblocks containing the samples p0
and q0, respectively. The variables qPz (with z being replaced by p or q) are derived as follows.

– If chromaEdgeFlag is equal to 0, the following applies.

– If the macroblock containing the sample z0 is an I_PCM macroblock, qPz is set to 0.

– Otherwise (the macroblock containing the sample z0 is not an I_PCM macroblock), qPz is set to the value of
QPY of the macroblock containing the sample z0.

– Otherwise (chromaEdgeFlag is equal to 1), the following applies.

– If the macroblock containing the sample z0 is an I_PCM macroblock, qPz is set equal to the value of QPC that
corresponds to a value of 0 for QPY as specified in subclause 8.5.8.

– Otherwise (the macroblock containing the sample z0 is not an I_PCM macroblock), qPz is set equal to the
value of QPC that corresponds to the value QPY of the macroblock containing the sample z0 as specified in
subclause 8.5.8.

The process specified in subclause 8.7.2.2 is invoked with p0, q0, p1, q1, chromaEdgeFlag, bS, filterOffsetA,
filterOffsetB, qPp, and qPq as inputs, and the outputs are assigned to filterSamplesFlag, indexA, α, and β.

The variable chromaStyleFilteringFlag is set by

chromaStyleFilteringFlag = chromaEdgeFlag && (ChromaArrayType != 3) (8-458)

Depending on the variable filterSamplesFlag, the following applies.

– If filterSamplesFlag is equal to 1, the following applies.

– If bS is less than 4, the process specified in subclause 8.7.2.3 is invoked with pi and qi (i = 0..2),
chromaEdgeFlag, chromaStyleFilteringFlag, bS, β, and indexA given as input, and the output is assigned to
p′i and q′i (i = 0..2).

– Otherwise (bS is equal to 4), the process specified in subclause 8.7.2.4 is invoked with pi and qi (i = 0..3),
chromaEdgeFlag, chromaStyleFilteringFlag, α, and β given as input, and the output is assigned to p′i and q′i
(i = 0..2).

– Otherwise (filterSamplesFlag is equal to 0), the filtered result samples p′i and q′i (i = 0..2) are replaced by the
corresponding input samples pi and qi:

for i = 0..2, p′i = pi (8-459)

for i = 0..2, q′i = qi (8-460)

8.7.2.1 Derivation process for the luma content dependent boundary filtering strength

Inputs to this process are the input sample values p0 and q0 of a single set of samples across an edge that is to be filtered
and verticalEdgeFlag.

Output of this process is the variable bS.

 Rec. ITU-T H.264 (03/2009) 209

Let the variable mixedModeEdgeFlag be derived as follows.

– If MbaffFrameFlag is equal to 1 and the samples p0 and q0 are in different macroblock pairs, one of which is a
field macroblock pair and the other is a frame macroblock pair, mixedModeEdgeFlag is set equal to 1.

– Otherwise, mixedModeEdgeFlag is set equal to 0.

The variable bS is derived as follows.

– If the block edge is also a macroblock edge and any of the following conditions are true, a value of bS equal to 4 is
the output:

– the samples p0 and q0 are both in frame macroblocks and either or both of the samples p0 or q0 is in a
macroblock coded using an Intra macroblock prediction mode,

– the samples p0 and q0 are both in frame macroblocks and either or both of the samples p0 or q0 is in a
macroblock that is in a slice with slice_type equal to SP or SI,

– MbaffFrameFlag is equal to 1 or field_pic_flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both of the samples p0 or q0 is in a macroblock coded using an Intra macroblock prediction mode,

– MbaffFrameFlag is equal to 1 or field_pic_flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both of the samples p0 or q0 is in a macroblock that is in a slice with slice_type equal to SP or SI.

– Otherwise, if any of the following conditions are true, a value of bS equal to 3 is the output:

– mixedModeEdgeFlag is equal to 0 and either or both of the samples p0 or q0 is in a macroblock coded using an
Intra macroblock prediction mode,

– mixedModeEdgeFlag is equal to 0 and either or both of the samples p0 or q0 is in a macroblock that is in a
slice with slice_type equal to SP or SI,

– mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both of the samples p0 or q0 is
in a macroblock coded using an Intra macroblock prediction mode,

– mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both of the samples p0 or q0 is
in a macroblock that is in a slice with slice_type equal to SP or SI.

– Otherwise, if any of the following conditions is true, a value of bS equal to 2 is the output:

– transform_size_8x8_flag is equal to 1 for the macroblock containing the sample p0 and the 8x8 luma
transform block associated with the 8x8 luma block containing the sample p0 contains non-zero transform
coefficient levels,

– transform_size_8x8_flag is equal to 0 for the macroblock containing the sample p0 and the 4x4 luma
transform block associated with the 4x4 luma block containing the sample p0 contains non-zero transform
coefficient levels,

– transform_size_8x8_flag is equal to 1 for the macroblock containing the sample q0 and the 8x8 luma
transform block associated with the 8x8 luma block containing the sample q0 contains non-zero transform
coefficient levels,

– transform_size_8x8_flag is equal to 0 for the macroblock containing the sample q0 and the 4x4 luma
transform block associated with the 4x4 luma block containing the sample q0 contains non-zero transform
coefficient levels.

– Otherwise, if any of the following conditions are true, a value of bS equal to 1 is the output:

– mixedModeEdgeFlag is equal to 1,

– mixedModeEdgeFlag is equal to 0 and for the prediction of the macroblock/sub-macroblock partition
containing the sample p0 different reference pictures or a different number of motion vectors are used than for
the prediction of the macroblock/sub-macroblock partition containing the sample q0,

NOTE 1 – The determination of whether the reference pictures used for the two macroblock/sub-macroblock
partitions are the same or different is based only on which pictures are referenced, without regard to whether a
prediction is formed using an index into reference picture list 0 or an index into reference picture list 1, and also
without regard to whether the index position within a reference picture list is different.

– mixedModeEdgeFlag is equal to 0 and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample p0 and one motion vector is used to predict the macroblock/sub-macroblock
partition containing the sample q0 and the absolute difference between the horizontal or vertical component of
the motion vectors used is greater than or equal to 4 in units of quarter luma frame samples,

210 Rec. ITU-T H.264 (03/2009)

– mixedModeEdgeFlag is equal to 0 and two motion vectors and two different reference pictures are used to
predict the macroblock/sub-macroblock partition containing the sample p0 and two motion vectors for the
same two reference pictures are used to predict the macroblock/sub-macroblock partition containing the
sample q0 and the absolute difference between the horizontal or vertical component of the two motion vectors
used in the prediction of the two macroblock/sub-macroblock partitions for the same reference picture is
greater than or equal to 4 in units of quarter luma frame samples,

– mixedModeEdgeFlag is equal to 0 and two motion vectors for the same reference picture are used to predict
the macroblock/sub-macroblock partition containing the sample p0 and two motion vectors for the same
reference picture are used to predict the macroblock/sub-macroblock partition containing the sample q0 and
both of the following conditions are true:
– The absolute difference between the horizontal or vertical component of list 0 motion vectors used in the

prediction of the two macroblock/sub-macroblock partitions is greater than or equal to 4 in quarter luma
frame samples or the absolute difference between the horizontal or vertical component of the list 1
motion vectors used in the prediction of the two macroblock/sub-macroblock partitions is greater than or
equal to 4 in units of quarter luma frame samples,

– The absolute difference between the horizontal or vertical component of list 0 motion vector used in the
prediction of the macroblock/sub-macroblock partition containing the sample p0 and the list 1 motion
vector used in the prediction of the macroblock/sub-macroblock partition containing the sample q0 is
greater than or equal to 4 in units of quarter luma frame samples or the absolute difference between the
horizontal or vertical component of the list 1 motion vector used in the prediction of the
macroblock/sub-macroblock partition containing the sample p0 and list 0 motion vector used in the
prediction of the macroblock/sub-macroblock partition containing the sample q0 is greater than or equal
to 4 in units of quarter luma frame samples.

NOTE 2 – A vertical difference of 4 in units of quarter luma frame samples is a difference of 2 in units of quarter
luma field samples

– Otherwise, a value of bS equal to 0 is the output.

8.7.2.2 Derivation process for the thresholds for each block edge

Inputs to this process are

– the input sample values p0, q0, p1 and q1 of a single set of samples across an edge that is to be filtered,

– the variables chromaEdgeFlag and bS, for the set of input samples, as specified in 8.7.2,

– the variables filterOffsetA, filterOffsetB, qPp, and qPq.

Outputs of this process are the variable filterSamplesFlag, which indicates whether the input samples are filtered, the
value of indexA, and the values of the threshold variables α and β.

Let qPav be a variable specifying an average quantisation parameter. It is derived as

qPav = (qPp + qPq + 1) >> 1 (8-461)

NOTE – In SP and SI slices, qPav is derived in the same way as in other slice types. QSY from Equation 7-30 is not used in the
deblocking filter.

Let indexA be a variable that is used to access the α table (Table 8-16) as well as the tC0 table (Table 8-17), which is
used in filtering of edges with bS less than 4 as specified in subclause 8.7.2.3, and let indexB be a variable that is used
to access the β table (Table 8-16). The variables indexA and indexB are derived as

indexA = Clip3(0, 51, qPav + filterOffsetA) (8-462)

indexB = Clip3(0, 51, qPav + filterOffsetB) (8-463)

The variables α′ and β′ depending on the values of indexA and indexB are specified in Table 8-16. Depending on
chromaEdgeFlag, the corresponding threshold variables α and β are derived as follows.

– If chromaEdgeFlag is equal to 0,

α = α′ * (1 << (BitDepthY − 8)) (8-464)

 Rec. ITU-T H.264 (03/2009) 211

β = β′ * (1 << (BitDepthY − 8)) (8-465)

– Otherwise (chromaEdgeFlag is equal to 1),

α = α′ * (1 << (BitDepthC − 8)) (8-466)

β = β′ * (1 << (BitDepthC − 8)) (8-467)

The variable filterSamplesFlag is derived by

filterSamplesFlag = (bS != 0 && Abs(p0 − q0) < α && Abs(p1 − p0) < β && Abs(q1 − q0) < β) (8-468)

Table 8-16 – Derivation of offset dependent threshold variables α′ and β′ from indexA and indexB

 indexA (for α′) or indexB (for β′)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

α′ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 5 6 7 8 9 10 12 13

β′ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 3 3 3 3 4 4 4

Table 8-16 (concluded) – Derivation of indexA and indexB from offset dependent threshold variables α′ and β′

 indexA (for α′) or indexB (for β′)

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

α′ 15 17 20 22 25 28 32 36 40 45 50 56 63 71 80 90 101 113 127 144 162 182 203 226 255 255

β′ 6 6 7 7 8 8 9 9 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18

8.7.2.3 Filtering process for edges with bS less than 4

Inputs to this process are the input sample values pi and qi (i = 0..2) of a single set of samples across an edge that is to
be filtered, chromaEdgeFlag, chromaStyleFilteringFlag, bS, β, and indexA, for the set of input samples, as specified
in 8.7.2.

Outputs of this process are the filtered result sample values p′i and q′i (i = 0..2) for the set of input sample values.

Depending on the values of indexA and bS, the variable t′C0 is specified in Table 8-17. Depending on chromaEdgeFlag,
the corresponding threshold variable tC0 is derived as follows.

– If chromaEdgeFlag is equal to 0,

tC0 = t′C0 * (1 << (BitDepthY − 8)) (8-469)

– Otherwise (chromaEdgeFlag is equal to 1),

tC0 = t′C0 * (1 << (BitDepthC − 8)) (8-470)

212 Rec. ITU-T H.264 (03/2009)

Table 8-17 – Value of variable t′C0 as a function of indexA and bS

 indexA

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

bS = 1 0 1 1 1

bS = 2 0 1 1 1 1 1

bS = 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1

Table 8-17 (concluded) – Value of variable t′C0 as a function of indexA and bS

 indexA

 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

bS = 1 1 1 1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13

bS = 2 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5 5 6 7 8 8 10 11 12 13 15 17

bS = 3 1 2 2 2 2 3 3 3 4 4 4 5 6 6 7 8 9 10 11 13 14 16 18 20 23 25

The threshold variables ap and aq are derived by

ap = Abs(p2 − p0) (8-471)
aq = Abs(q2 − q0) (8-472)

The threshold variable tC is determined as follows.

– If chromaStyleFilteringFlag is equal to 0,

tC = tC0 + ((ap < β) ? 1 : 0) + ((aq < β) ? 1 : 0) (8-473)

– Otherwise (chromaStyleFilteringFlag is equal to 1),

tC = tC0 + 1 (8-474)

Let Clip1() be a function that is replaced by Clip1Y() when chromaEdgeFlag is equal to 0 and by Clip1C() when
chromaEdgeFlag is equal to 1.

The filtered result samples p′0 and q′0 are derived by

Δ = Clip3(−tC, tC, ((((q0 − p0) << 2) + (p1 − q1) + 4) >> 3)) (8-475)
p′0 = Clip1(p0 + Δ) (8-476)
q′0 = Clip1(q0 − Δ) (8-477)

The filtered result sample p′1 is derived as follows

– If chromaStyleFilteringFlag is equal to 0 and ap is less than β,

p′1 = p1 + Clip3(−tC0, tC0, (p2 + ((p0 + q0 + 1) >> 1) − (p1 << 1)) >> 1) (8-478)

– Otherwise (chromaStyleFilteringFlag is equal to 1 or ap is greater than or equal to β),

p′1 = p1 (8-479)

The filtered result sample q′1 is derived as follows

 Rec. ITU-T H.264 (03/2009) 213

– If chromaStyleFilteringFlag is equal to 0 and aq is less than β,

q′1 = q1 + Clip3(−tC0, tC0, (q2 + ((p0 + q0 + 1) >> 1) − (q1 << 1)) >> 1) (8-480)

– Otherwise (chromaStyleFilteringFlag is equal to 1 or aq is greater than or equal to β),

q′1 = q1 (8-481)

The filtered result samples p′2 and q′2 are always set equal to the input samples p2 and q2:

p′2 = p2 (8-482)
q′2 = q2 (8-483)

8.7.2.4 Filtering process for edges for bS equal to 4

Inputs to this process are the input sample values pi and qi (i = 0..3) of a single set of samples across an edge that is to
be filtered, chromaEdgeFlag, chromaStyleFilteringFlag, and the values of the threshold variables α and β for the set of
samples, as specified in subclause 8.7.2.

Outputs of this process are the filtered result sample values p′i and q′i (i = 0..2) for the set of input sample values.

Let ap and aq be two threshold variables as specified in Equations 8-471 and 8-472, respectively, in subclause 8.7.2.3.

The filtered result samples p′i (i = 0..2) are derived as follows.

– If chromaStyleFilteringFlag is equal to 0 and the following condition holds,

ap < β && Abs(p0 − q0) < ((α >> 2) + 2) (8-484)

then the variables p′0, p′1, and p′2 are derived by

p′0 = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3 (8-485)

p′1 = (p2 + p1 + p0 + q0 + 2) >> 2 (8-486)

p′2 = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3 (8-487)

– Otherwise (chromaStyleFilteringFlag is equal to 1 or the condition in Equation 8-484 does not hold), the variables
p′0, p′1, and p′2 are derived by

p′0 = (2*p1 + p0 + q1 + 2) >> 2 (8-488)

p′1 = p1 (8-489)

p′2 = p2 (8-490)

The filtered result samples q′i (i = 0..2) are derived as follows.

– If chromaStyleFilteringFlag is equal to 0 and the following condition holds,

aq < β && Abs(p0 − q0) < ((α >> 2) + 2) (8-491)

then the variables q′0, q′1, and q′2 are derived by

q′0 = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3 (8-492)

q′1 = (p0 + q0 + q1 + q2 + 2) >> 2 (8-493)

214 Rec. ITU-T H.264 (03/2009)

q′2 = (2*q3 + 3*q2 + q1 + q0 + p0 + 4) >> 3 (8-494)

– Otherwise (chromaStyleFilteringFlag is equal to 1 or the condition in Equation 8-491 does not hold), the variables
q′0, q′1, and q′2 are derived by

q′0 = (2*q1 + q0 + p1 + 2) >> 2 (8-495)

q′1 = q1 (8-496)

q′2 = q2 (8-497)

9 Parsing process
Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v),
me(v), se(v), te(v) (see subclause 9.1), ce(v) (see subclause 9.2), or ae(v) (see subclause 9.3).

9.1 Parsing process for Exp-Golomb codes

This process is invoked when the descriptor of a syntax element in the syntax tables in subclause 7.3 is equal to ue(v),
me(v), se(v), or te(v). For syntax elements in subclauses 7.3.4 and 7.3.5, this process is invoked only when
entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

Syntax elements coded as ue(v), me(v), or se(v) are Exp-Golomb-coded. Syntax elements coded as te(v) are truncated
Exp-Golomb-coded. The parsing process for these syntax elements begins with reading the bits starting at the current
location in the bitstream up to and including the first non-zero bit, and counting the number of leading bits that are
equal to 0. This process is specified as follows:

leadingZeroBits = −1
for(b = 0; !b; leadingZeroBits++) (9-1)
 b = read_bits(1)

The variable codeNum is then assigned as follows:
codeNum = 2leadingZeroBits − 1 + read_bits(leadingZeroBits) (9-2)

where the value returned from read_bits(leadingZeroBits) is interpreted as a binary representation of an unsigned
integer with most significant bit written first.

Table 9-1 illustrates the structure of the Exp-Golomb code by separating the bit string into "prefix" and "suffix" bits.
The "prefix" bits are those bits that are parsed in the above pseudo-code for the computation of leadingZeroBits, and are
shown as either 0 or 1 in the bit string column of Table 9-1. The "suffix" bits are those bits that are parsed in the
computation of codeNum and are shown as xi in Table 9-1, with i being in the range 0 to leadingZeroBits − 1, inclusive.
Each xi can take on values 0 or 1.

 Rec. ITU-T H.264 (03/2009) 215

Table 9-1 – Bit strings with "prefix" and "suffix" bits and assignment to codeNum ranges (informative)

Bit string form Range of codeNum

 1 0

 0 1 x0 1..2

 0 0 1 x1 x0 3..6

 0 0 0 1 x2 x1 x0 7..14

 0 0 0 0 1 x3 x2 x1 x0 15..30

0 0 0 0 0 1 x4 x3 x2 x1 x0 31..62

… …

Table 9-2 illustrates explicitly the assignment of bit strings to codeNum values.

Table 9-2 – Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)

Bit string codeNum

1 0

0 1 0 1

0 1 1 2

0 0 1 0 0 3

0 0 1 0 1 4

0 0 1 1 0 5

0 0 1 1 1 6

0 0 0 1 0 0 0 7

0 0 0 1 0 0 1 8

0 0 0 1 0 1 0 9

… …

Depending on the descriptor, the value of a syntax element is derived as follows.

– If the syntax element is coded as ue(v), the value of the syntax element is equal to codeNum.

– Otherwise, if the syntax element is coded as se(v), the value of the syntax element is derived by invoking the
mapping process for signed Exp-Golomb codes as specified in subclause 9.1.1 with codeNum as the input.

– Otherwise, if the syntax element is coded as me(v), the value of the syntax element is derived by invoking the
mapping process for coded block pattern as specified in subclause 9.1.2 with codeNum as the input.

– Otherwise (the syntax element is coded as te(v)), the range of possible values for the syntax element is determined
first. The range of this syntax element may be between 0 and x, with x being greater than or equal to 1 and the
range is used in the derivation of the value of the syntax element value as follows

– If x is greater than 1, codeNum and the value of the syntax element is derived in the same way as for syntax
elements coded as ue(v)

216 Rec. ITU-T H.264 (03/2009)

– Otherwise (x is equal to 1), the parsing process for codeNum which is equal to the value of the syntax element
is given by a process equivalent to:

b = read_bits(1) (9-3)
codeNum = !b

9.1.1 Mapping process for signed Exp-Golomb codes

Input to this process is codeNum as specified in subclause 9.1.

Output of this process is a value of a syntax element coded as se(v).

The syntax element is assigned to the codeNum by ordering the syntax element by its absolute value in increasing order
and representing the positive value for a given absolute value with the lower codeNum. Table 9-3 provides the
assignment rule.

Table 9-3 – Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v)

codeNum syntax element value

0 0

1 1

2 −1

3 2

4 −2

5 3

6 −3

k (−1)k+1 Ceil(k÷2)

9.1.2 Mapping process for coded block pattern

Input to this process is codeNum as specified in subclause 9.1.

Output of this process is a value of the syntax element coded_block_pattern coded as me(v).

Table 9-4 shows the assignment of coded_block_pattern to codeNum depending on whether the macroblock prediction
mode is equal to Intra_4x4, Intra_8x8 or Inter.

Table 9-4 – Assignment of codeNum to values of coded_block_pattern for macroblock prediction modes

(a) ChromaArrayType is equal to 1 or 2

codeNum coded_block_pattern

 Intra_4x4, Intra_8x8 Inter

0 47 0

1 31 16

2 15 1

3 0 2

4 23 4

5 27 8

6 29 32

 Rec. ITU-T H.264 (03/2009) 217

(a) ChromaArrayType is equal to 1 or 2

codeNum coded_block_pattern

 Intra_4x4, Intra_8x8 Inter

7 30 3

8 7 5

9 11 10

10 13 12

11 14 15

12 39 47

13 43 7

14 45 11

15 46 13

16 16 14

17 3 6

18 5 9

19 10 31

20 12 35

21 19 37

22 21 42

23 26 44

24 28 33

25 35 34

26 37 36

27 42 40

28 44 39

29 1 43

30 2 45

31 4 46

32 8 17

33 17 18

34 18 20

35 20 24

36 24 19

37 6 21

38 9 26

218 Rec. ITU-T H.264 (03/2009)

(a) ChromaArrayType is equal to 1 or 2

codeNum coded_block_pattern

 Intra_4x4, Intra_8x8 Inter

39 22 28

40 25 23

41 32 27

42 33 29

43 34 30

44 36 22

45 40 25

46 38 38

47 41 41

(b) ChromaArrayType is equal to 0 or 3

codeNum coded_block_pattern

 Intra_4x4, Intra_8x8 Inter

0 15 0

1 0 1

2 7 2

3 11 4

4 13 8

5 14 3

6 3 5

7 5 10

8 10 12

9 12 15

10 1 7

11 2 11

12 4 13

13 8 14

14 6 6

15 9 9

 Rec. ITU-T H.264 (03/2009) 219

9.2 CAVLC parsing process for transform coefficient levels

This process is invoked when parsing syntax elements with descriptor equal to ce(v) in subclause 7.3.5.3.2 and when
entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index luma4x4BlkIdx or the chroma block index chroma4x4BlkIdx, cb4x4BlkIdx or
cr4x4BlkIdx of the current block of transform coefficient levels.

Output of this process is the list coeffLevel containing transform coefficient levels of the luma block with block index
luma4x4BlkIdx or the chroma block with block index chroma4x4BlkIdx, cb4x4BlkIdx or cr4x4BlkIdx.

The process is specified in the following ordered steps:

1. All transform coefficient levels, with indices from 0 to maxNumCoeff − 1, in the list coeffLevel are set equal
to 0.

2. The total number of non-zero transform coefficient levels TotalCoeff(coeff_token) and the number of trailing
one transform coefficient levels TrailingOnes(coeff_token) are derived by parsing coeff_token (see
subclause 9.2.1) as follows.

– If the number of non-zero transform coefficient levels TotalCoeff(coeff_token) is equal to 0, the list
coeffLevel containing 0 values is returned and no further step is carried out.

– Otherwise, the following steps are carried out.

a. The non-zero transform coefficient levels are derived by parsing trailing_ones_sign_flag, level_prefix,
and level_suffix (see subclause 9.2.2).

b. The runs of zero transform coefficient levels before each non-zero transform coefficient level are
derived by parsing total_zeros and run_before (see subclause 9.2.3).

c. The level and run information are combined into the list coeffLevel (see subclause 9.2.4).

9.2.1 Parsing process for total number of transform coefficient levels and trailing ones

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index luma4x4BlkIdx or the chroma block index chroma4x4BlkIdx, cb4x4BlkIdx or
cr4x4BlkIdx of the current block of transform coefficient levels.

Outputs of this process are TotalCoeff(coeff_token), TrailingOnes(coeff_token), and the variable nC.

The syntax element coeff_token is decoded using one of the six VLCs specified in the six right-most columns of
Table 9-5. Each VLC specifies both TotalCoeff(coeff_token) and TrailingOnes(coeff_token) for a given codeword
coeff_token. VLC selection is dependent upon a variable nC that is derived as follows.

– If the CAVLC parsing process is invoked for ChromaDCLevel, nC is derived as follows.

– If ChromaArrayType is equal to 1, nC is set equal to −1,

– Otherwise (ChromaArrayType is equal to 2), nC is set equal to −2,

– Otherwise, the following ordered steps are specified:

1. When the CAVLC parsing process is invoked for Intra16x16DCLevel, luma4x4BlkIdx is set equal to 0.

2. When the CAVLC parsing process is invoked for CbIntra16x16DCLevel, cb4x4BlkIdx is set equal to 0.

3. When the CAVLC parsing process is invoked for CrIntra16x16DCLevel, cr4x4BlkIdx is set equal to 0.

4. The variables blkA and blkB are derived as follows.

– If the CAVLC parsing process is invoked for Intra16x16DCLevel, Intra16x16ACLevel, or
LumaLevel, the process specified in subclause 6.4.10.4 is invoked with luma4x4BlkIdx as the input,
and the output is assigned to mbAddrA, mbAddrB, luma4x4BlkIdxA, and luma4x4BlkIdxB. The 4x4
luma block specified by mbAddrA\luma4x4BlkIdxA is assigned to blkA, and the 4x4 luma block
specified by mbAddrB\luma4x4BlkIdxB is assigned to blkB.

– Otherwise, if the CAVLC parsing process is invoked for CbIntra16x16DCLevel,
CbIntra16x16ACLevel, or CbLevel, the process specified in subclause 6.4.10.6 is invoked with
cb4x4BlkIdx as the input, and the output is assigned to mbAddrA, mbAddrB, cb4x4BlkIdxA, and
cb4x4BlkIdxB. The 4x4 Cb block specified by mbAddrA\cb4x4BlkIdxA is assigned to blkA, and the
4x4 Cb block specified by mbAddrB\cb4x4BlkIdxB is assigned to blkB.

220 Rec. ITU-T H.264 (03/2009)

– Otherwise, if the CAVLC parsing process is invoked for CrIntra16x16DCLevel,
CrIntra16x16ACLevel, or CrLevel, the process specified in subclause 6.4.10.6 is invoked with
cr4x4BlkIdx as the input, and the output is assigned to mbAddrA, mbAddrB, cr4x4BlkIdxA, and
cr4x4BlkIdxB. The 4x4 Cr block specified by mbAddrA\cr4x4BlkIdxA is assigned to blkA, and the
4x4 Cr block specified by mbAddrB\cr4x4BlkIdxB is assigned to blkB.

– Otherwise (the CAVLC parsing process is invoked for ChromaACLevel), the process specified in
subclause 6.4.10.5 is invoked with chroma4x4BlkIdx as input, and the output is assigned to mbAddrA,
mbAddrB, chroma4x4BlkIdxA, and chroma4x4BlkIdxB. The 4x4 chroma block specified by
mbAddrA\iCbCr\chroma4x4BlkIdxA is assigned to blkA, and the 4x4 chroma block specified by
mbAddrB\iCbCr\chroma4x4BlkIdxB is assigned to blkB.

5. The variable availableFlagN with N being replaced by A and B is derived as follows.

– If any of the following conditions is true, availableFlagN is set equal to 0:

– mbAddrN is not available,

– the current macroblock is coded using an Intra macroblock prediction mode,
constrained_intra_pred_flag is equal to 1, mbAddrN is coded using an Inter macroblock
prediction mode, and slice data partitioning is in use (nal_unit_type is in the range of 2 to 4,
inclusive).

– Otherwise, availableFlagN is set equal to 1.

6. For N being replaced by A and B, when availableFlagN is equal to 1, the variable nN is derived as follows.

– If any of the following conditions is true, nN is set equal to 0:

– The macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

– All AC residual transform coefficient levels of the neighbouring block blkN are equal to 0 due to
the corresponding bit of CodedBlockPatternLuma or CodedBlockPatternChroma being equal
to 0.

– Otherwise, if mbAddrN is an I_PCM macroblock, nN is set equal to 16.

– Otherwise, nN is set equal to the value TotalCoeff(coeff_token) of the neighbouring block blkN.
NOTE 1 – The values nA and nB that are derived using TotalCoeff(coeff_token) do not include the DC
transform coefficient levels in Intra_16x16 macroblocks or DC transform coefficient levels in chroma blocks,
because these transform coefficient levels are decoded separately. When the block above or to the left belongs
to an Intra_16x16 macroblock, or is a chroma block, nA and nB is the number of decoded non-zero AC
transform coefficient levels.
NOTE 2 – When parsing for Intra16x16DCLevel, CbIntra16x16DCLevel, or CrIntra16x16DCLevel, the values
nA and nB are based on the number of non-zero transform coefficient levels in adjacent 4x4 blocks and not on
the number of non-zero DC transform coefficient levels in adjacent 16x16 blocks.

7. The variable nC is derived as follows.

– If availableFlagA is equal to 1 and availableFlagB is equal to 1, the variable nC is set equal to
(nA + nB + 1) >> 1.

– Otherwise, if availableFlagA is equal to 1 (and availableFlagB is equal to 0), the variable nC is set
equal to nA.

– Otherwise, if availableFlagB is equal to 1 (and availableFlagA is equal to 0), the variable nC is set
equal to nB.

– Otherwise (availableFlagA is equal to 0 and availableFlagB is equal to 0), the variable nC is set equal
to 0.

The value of TotalCoeff(coeff_token) resulting from decoding coeff_token shall be in the range of 0 to maxNumCoeff,
inclusive.

 Rec. ITU-T H.264 (03/2009) 221

Table 9-5 – coeff_token mapping to TotalCoeff(coeff_token) and TrailingOnes(coeff_token)
T

ra
ili

ng
O

ne
s

(c
oe

ff
_t

ok
en

)

T
ot

al
C

oe
ff

(c

oe
ff

_t
ok

en
)

0 <= nC < 2 2 <= nC < 4 4 <= nC < 8 8 <= nC nC = = −1 nC = = −2

0 0 1 11 1111 0000 11 01 1

0 1 0001 01 0010 11 0011 11 0000 00 0001 11 0001 111

1 1 01 10 1110 0000 01 1 01

0 2 0000 0111 0001 11 0010 11 0001 00 0001 00 0001 110

1 2 0001 00 0011 1 0111 1 0001 01 0001 10 0001 101

2 2 001 011 1101 0001 10 001 001

0 3 0000 0011 1 0000 111 0010 00 0010 00 0000 11 0000 0011 1

1 3 0000 0110 0010 10 0110 0 0010 01 0000 011 0001 100

2 3 0000 101 0010 01 0111 0 0010 10 0000 010 0001 011

3 3 0001 1 0101 1100 0010 11 0001 01 0000 1

0 4 0000 0001 11 0000 0111 0001 111 0011 00 0000 10 0000 0011 0

1 4 0000 0011 0 0001 10 0101 0 0011 01 0000 0011 0000 0010 1

2 4 0000 0101 0001 01 0101 1 0011 10 0000 0010 0001 010

3 4 0000 11 0100 1011 0011 11 0000 000 0000 01

0 5 0000 0000 111 0000 0100 0001 011 0100 00 - 0000 0001 11

1 5 0000 0001 10 0000 110 0100 0 0100 01 - 0000 0001 10

2 5 0000 0010 1 0000 101 0100 1 0100 10 - 0000 0010 0

3 5 0000 100 0011 0 1010 0100 11 - 0001 001

0 6 0000 0000 0111 1 0000 0011 1 0001 001 0101 00 - 0000 0000 111

1 6 0000 0000 110 0000 0110 0011 10 0101 01 - 0000 0000 110

2 6 0000 0001 01 0000 0101 0011 01 0101 10 - 0000 0001 01

3 6 0000 0100 0010 00 1001 0101 11 - 0001 000

0 7 0000 0000 0101 1 0000 0001 111 0001 000 0110 00 - 0000 0000 0111

1 7 0000 0000 0111 0 0000 0011 0 0010 10 0110 01 - 0000 0000 0110

2 7 0000 0000 101 0000 0010 1 0010 01 0110 10 - 0000 0000 101

3 7 0000 0010 0 0001 00 1000 0110 11 - 0000 0001 00

0 8 0000 0000 0100 0 0000 0001 011 0000 1111 0111 00 - 0000 0000 0011 1

1 8 0000 0000 0101 0 0000 0001 110 0001 110 0111 01 - 0000 0000 0101

2 8 0000 0000 0110 1 0000 0001 101 0001 101 0111 10 - 0000 0000 0100

3 8 0000 0001 00 0000 100 0110 1 0111 11 - 0000 0000 100

0 9 0000 0000 0011 11 0000 0000 1111 0000 1011 1000 00 - -

1 9 0000 0000 0011 10 0000 0001 010 0000 1110 1000 01 - -

2 9 0000 0000 0100 1 0000 0001 001 0001 010 1000 10 - -

3 9 0000 0000 100 0000 0010 0 0011 00 1000 11 - -

222 Rec. ITU-T H.264 (03/2009)

Table 9-5 – coeff_token mapping to TotalCoeff(coeff_token) and TrailingOnes(coeff_token)
T

ra
ili

ng
O

ne
s

(c
oe

ff
_t

ok
en

)

T
ot

al
C

oe
ff

(c

oe
ff

_t
ok

en
)

0 <= nC < 2 2 <= nC < 4 4 <= nC < 8 8 <= nC nC = = −1 nC = = −2

0 10 0000 0000 0010 11 0000 0000 1011 0000 0111 1 1001 00 - -

1 10 0000 0000 0010 10 0000 0000 1110 0000 1010 1001 01 - -

2 10 0000 0000 0011 01 0000 0000 1101 0000 1101 1001 10 - -

3 10 0000 0000 0110 0 0000 0001 100 0001 100 1001 11 - -

0 11 0000 0000 0001 111 0000 0000 1000 0000 0101 1 1010 00 - -

1 11 0000 0000 0001 110 0000 0000 1010 0000 0111 0 1010 01 - -

2 11 0000 0000 0010 01 0000 0000 1001 0000 1001 1010 10 - -

3 11 0000 0000 0011 00 0000 0001 000 0000 1100 1010 11 - -

0 12 0000 0000 0001 011 0000 0000 0111 1 0000 0100 0 1011 00 - -

1 12 0000 0000 0001 010 0000 0000 0111 0 0000 0101 0 1011 01 - -

2 12 0000 0000 0001 101 0000 0000 0110 1 0000 0110 1 1011 10 - -

3 12 0000 0000 0010 00 0000 0000 1100 0000 1000 1011 11 - -

0 13 0000 0000 0000 1111 0000 0000 0101 1 0000 0011 01 1100 00 - -

1 13 0000 0000 0000 001 0000 0000 0101 0 0000 0011 1 1100 01 - -

2 13 0000 0000 0001 001 0000 0000 0100 1 0000 0100 1 1100 10 - -

3 13 0000 0000 0001 100 0000 0000 0110 0 0000 0110 0 1100 11 - -

0 14 0000 0000 0000 1011 0000 0000 0011 1 0000 0010 01 1101 00 - -

1 14 0000 0000 0000 1110 0000 0000 0010 11 0000 0011 00 1101 01 - -

2 14 0000 0000 0000 1101 0000 0000 0011 0 0000 0010 11 1101 10 - -

3 14 0000 0000 0001 000 0000 0000 0100 0 0000 0010 10 1101 11 - -

0 15 0000 0000 0000 0111 0000 0000 0010 01 0000 0001 01 1110 00 - -

1 15 0000 0000 0000 1010 0000 0000 0010 00 0000 0010 00 1110 01 - -

2 15 0000 0000 0000 1001 0000 0000 0010 10 0000 0001 11 1110 10 - -

3 15 0000 0000 0000 1100 0000 0000 0000 1 0000 0001 10 1110 11 - -

0 16 0000 0000 0000 0100 0000 0000 0001 11 0000 0000 01 1111 00 - -

1 16 0000 0000 0000 0110 0000 0000 0001 10 0000 0001 00 1111 01 - -

2 16 0000 0000 0000 0101 0000 0000 0001 01 0000 0000 11 1111 10 - -

3 16 0000 0000 0000 1000 0000 0000 0001 00 0000 0000 10 1111 11 - -

9.2.2 Parsing process for level information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels
TotalCoeff(coeff_token), and the number of trailing one transform coefficient levels TrailingOnes(coeff_token).

Output of this process is a list with name level containing transform coefficient levels.

 Rec. ITU-T H.264 (03/2009) 223

Initially an index i is set equal to 0. Then the following procedure is iteratively applied TrailingOnes(coeff_token)
times to decode the trailing one transform coefficient levels (if any):

1. A 1-bit syntax element trailing_ones_sign_flag is decoded and evaluated as follows.

– If trailing_ones_sign_flag is equal to 0, the value +1 is assigned to level[i].

– Otherwise (trailing_ones_sign_flag is equal to 1), the value −1 is assigned to level[i].

2. The index i is incremented by 1.

Following the decoding of the trailing one transform coefficient levels, a variable suffixLength is initialised as follows.

– If TotalCoeff(coeff_token) is greater than 10 and TrailingOnes(coeff_token) is less than 3, suffixLength is set
equal to 1.

– Otherwise (TotalCoeff(coeff_token) is less than or equal to 10 or TrailingOnes(coeff_token) is equal to 3),
suffixLength is set equal to 0.

The following procedure is then applied iteratively (TotalCoeff(coeff_token) − TrailingOnes(coeff_token)) times to
decode the remaining levels (if any):

1. The syntax element level_prefix is decoded as specified in subclause 9.2.2.1.

2. The variable levelSuffixSize is set equal to the variable suffixLength with the exception of the following two
cases:

– When level_prefix is equal to 14 and suffixLength is equal to 0, levelSuffixSize is set equal to 4,

– When level_prefix is greater than or equal to 15, levelSuffixSize is set equal to level_prefix − 3.

3. The syntax element level_suffix is decoded as follows.

– If levelSuffixSize is greater than 0, the syntax element level_suffix is decoded as unsigned integer
representation u(v) with levelSuffixSize bits.

– Otherwise (levelSuffixSize is equal to 0), the syntax element level_suffix is inferred to be equal to 0.

4. A variable levelCode is set equal to (Min(15, level_prefix) << suffixLength) + level_suffix.

5. When level_prefix is greater than or equal to 15 and suffixLength is equal to 0, levelCode is incremented by 15.

6. When level_prefix is greater than or equal to 16, levelCode is incremented by (1<<(level_prefix − 3)) − 4096.

7. When the index i is equal to TrailingOnes(coeff_token) and TrailingOnes(coeff_token) is less than 3,
levelCode is incremented by 2.

8. The variable level[i] is derived as follows.

– If levelCode is an even number, the value (levelCode + 2) >> 1 is assigned to level[i].

– Otherwise (levelCode is an odd number), the value (−levelCode − 1) >> 1 is assigned to level[i].

9. When suffixLength is equal to 0, suffixLength is set equal to 1.

10. When the absolute value of level[i] is greater than (3 << (suffixLength − 1)) and suffixLength is less than 6,
suffixLength is incremented by 1.

11. The index i is incremented by 1.

9.2.2.1 Parsing process for level_prefix

Inputs to this process are bits from slice data.

Output of this process is level_prefix.

The parsing process for this syntax element consists in reading the bits starting at the current location in the bitstream
up to and including the first non-zero bit, and counting the number of leading bits that are equal to 0. This process is
specified as follows:

leadingZeroBits = −1
for(b = 0; !b; leadingZeroBits++) (9-4)
 b = read_bits(1)
level_prefix = leadingZeroBits

Table 9-6 illustrates the codeword table for level_prefix.

224 Rec. ITU-T H.264 (03/2009)

NOTE – The value of level_prefix is constrained to not exceed 15 in bitstreams conforming to the Baseline, Constrained
Baseline, Main, and Extended profiles, as specified in subclauses A.2.1, A.2.1.1, A.2.2, and A.2.3, respectively. In bitstreams
conforming to other profiles, it has been reported that the value of level_prefix cannot exceed (11 + bitDepth) with bitDepth
being the variable BitDepthY for transform coefficient blocks related to the luma component and being the variable BitDepthC for
transform coefficient blocks related to a chroma component.

Table 9-6 – Codeword table for level_prefix (informative)

level_prefix bit string

0 1

1 01

2 001

3 0001

4 0000 1

5 0000 01

6 0000 001

7 0000 0001

8 0000 0000 1

9 0000 0000 01

10 0000 0000 001

11 0000 0000 0001

12 0000 0000 0000 1

13 0000 0000 0000 01

14 0000 0000 0000 001

15 0000 0000 0000 0001

… …

9.2.3 Parsing process for run information

Inputs to this process are bits from slice data, the number of non-zero transform coefficient levels
TotalCoeff(coeff_token), and the maximum number of non-zero transform coefficient levels maxNumCoeff.

Output of this process is a list of runs of zero transform coefficient levels preceding non-zero transform coefficient
levels called run.

Initially, an index i is set equal to 0.

The variable zerosLeft is derived as follows.

– If the number of non-zero transform coefficient levels TotalCoeff(coeff_token) is equal to the maximum number
of non-zero transform coefficient levels maxNumCoeff, a variable zerosLeft is set equal to 0.

– Otherwise (the number of non-zero transform coefficient levels TotalCoeff(coeff_token) is less than the
maximum number of non-zero transform coefficient levels maxNumCoeff), total_zeros is decoded and zerosLeft is
set equal to its value.

Let the variable tzVlcIndex be equal to TotalCoeff(coeff_token).

The VLC used to decode total_zeros is derived as follows.

– If maxNumCoeff is equal to 4, one of the VLCs specified in Table 9-9 (a) is used.

– Otherwise, if maxNumCoeff is equal to 8, one of the VLCs specified in Table 9-9 (b) is used.

 Rec. ITU-T H.264 (03/2009) 225

– Otherwise (maxNumCoeff is not equal to 4 and not equal to 8), VLCs from Tables 9-7 and 9-8 are used.

The following procedure is then applied iteratively (TotalCoeff(coeff_token) − 1) times:

1. The variable run[i] is derived as follows.

– If zerosLeft is greater than zero, a value run_before is decoded based on Table 9-10 and zerosLeft. run[i]
is set equal to run_before.

– Otherwise (zerosLeft is equal to 0), run[i] is set equal to 0.

2. The value of run[i] is subtracted from zerosLeft and the result assigned to zerosLeft. The result of the
subtraction shall be greater than or equal to 0.

3. The index i is incremented by 1.

Finally the value of zerosLeft is assigned to run[i].

Table 9-7 – total_zeros tables for 4x4 blocks with tzVlcIndex 1 to 7

total_zeros tzVlcIndex

 1 2 3 4 5 6 7

0 1 111 0101 0001 1 0101 0000 01 0000 01

1 011 110 111 111 0100 0000 1 0000 1

2 010 101 110 0101 0011 111 101

3 0011 100 101 0100 111 110 100

4 0010 011 0100 110 110 101 011

5 0001 1 0101 0011 101 101 100 11

6 0001 0 0100 100 100 100 011 010

7 0000 11 0011 011 0011 011 010 0001

8 0000 10 0010 0010 011 0010 0001 001

9 0000 011 0001 1 0001 1 0010 0000 1 001 0000 00

10 0000 010 0001 0 0001 0 0001 0 0001 0000 00 -

11 0000 0011 0000 11 0000 01 0000 1 0000 0 - -

12 0000 0010 0000 10 0000 1 0000 0 - - -

13 0000 0001 1 0000 01 0000 00 - - - -

14 0000 0001 0 0000 00 - - - - -

15 0000 0000 1 - - - - - -

226 Rec. ITU-T H.264 (03/2009)

Table 9-8 – total_zeros tables for 4x4 blocks with tzVlcIndex 8 to 15

total_zeros tzVlcIndex

 8 9 10 11 12 13 14 15

0 0000 01 0000 01 0000 1 0000 0000 000 00 0

1 0001 0000 00 0000 0 0001 0001 001 01 1

2 0000 1 0001 001 001 01 1 1 -

3 011 11 11 010 1 01 - -

4 11 10 10 1 001 - - -

5 10 001 01 011 - - - -

6 010 01 0001 - - - - -

7 001 0000 1 - - - - - -

8 0000 00 - - - - - - -

Table 9-9 – total_zeros tables for chroma DC 2x2 and 2x4 blocks

(a) Chroma DC 2x2 block (4:2:0 chroma sampling)

tzVlcIndex
total_zeros

1 2 3

0 1 1 1

1 01 01 0

2 001 00 -

3 000 - -

(b) Chroma DC 2x4 block (4:2:2 chroma sampling)

tzVlcIndex
total_zeros

1 2 3 4 5 6 7

0 1 000 000 110 00 00 0

1 010 01 001 00 01 01 1

2 011 001 01 01 10 1 -

3 0010 100 10 10 11 - -

4 0011 101 110 111 - - -

5 0001 110 111 - - - -

6 0000 1 111 - - - - -

7 0000 0 - - - - - -

 Rec. ITU-T H.264 (03/2009) 227

Table 9-10 – Tables for run_before

zerosLeft run_before

 1 2 3 4 5 6 >6

0 1 1 11 11 11 11 111

1 0 01 10 10 10 000 110

2 - 00 01 01 011 001 101

3 - - 00 001 010 011 100

4 - - - 000 001 010 011

5 - - - - 000 101 010

6 - - - - - 100 001

7 - - - - - - 0001

8 - - - - - 00001

9 - - - - - - 000001

10 - - - - - - 0000001

11 - - - - - - 00000001

12 - - - - - - 000000001

13 - - - - - - 0000000001

14 - - - - - - 00000000001

9.2.4 Combining level and run information

Input to this process are a list of transform coefficient levels called level, a list of runs called run, and the number of
non-zero transform coefficient levels TotalCoeff(coeff_token).

Output of this process is an list coeffLevel of transform coefficient levels.

A variable coeffNum is set equal to −1 and an index i is set equal to (TotalCoeff(coeff_token) − 1). The following
procedure is iteratively applied TotalCoeff(coeff_token) times:

1. coeffNum is incremented by run[i] + 1.

2. coeffLevel[coeffNum] is set equal to level[i].

3. The index i is decremented by 1.

9.3 CABAC parsing process for slice data

This process is invoked when parsing syntax elements with descriptor ae(v) in subclauses 7.3.4 and 7.3.5 when
entropy_coding_mode_flag is equal to 1.

Inputs to this process are a request for a value of a syntax element and values of prior parsed syntax elements.

Output of this process is the value of the syntax element.

When starting the parsing of the slice data of a slice in subclause 7.3.4, the initialisation process of the CABAC parsing
process is invoked as specified in subclause 9.3.1.

The parsing of syntax elements proceeds as follows:

For each requested value of a syntax element a binarization is derived as described in subclause 9.3.2.

The binarization for the syntax element and the sequence of parsed bins determines the decoding process flow as
described in subclause 9.3.3.

228 Rec. ITU-T H.264 (03/2009)

For each bin of the binarization of the syntax element, which is indexed by the variable binIdx, a context index ctxIdx is
derived as specified in subclause 9.3.3.1.

For each ctxIdx the arithmetic decoding process is invoked as specified in subclause 9.3.3.2.

The resulting sequence (b0..bbinIdx) of parsed bins is compared to the set of bin strings given by the binarization process
after decoding of each bin. When the sequence matches a bin string in the given set, the corresponding value is assigned
to the syntax element.

In case the request for a value of a syntax element is processed for the syntax element mb_type and the decoded value
of mb_type is equal to I_PCM, the decoding engine is initialised after the decoding of any pcm_alignment_zero_bit and
all pcm_sample_luma and pcm_sample_chroma data as specified in subclause 9.3.1.2.

The whole CABAC parsing process is illustrated in the flowchart of Figure 9-1 with the abbreviation SE for syntax
element.

 Rec. ITU-T H.264 (03/2009) 229

Figure 9-1 – Illustration of CABAC parsing process for a syntax element SE (informative)

9.3.1 Initialisation process

Outputs of this process are initialised CABAC internal variables.

The processes in subclauses 9.3.1.1 and 9.3.1.2 are invoked when starting the parsing of the slice data of a slice in
subclause 7.3.4.

The process in subclause 9.3.1.2 is also invoked after decoding any pcm_alignment_zero_bit and all pcm_sample_luma
and pcm_sample_chroma data for a macroblock of type I_PCM.

230 Rec. ITU-T H.264 (03/2009)

9.3.1.1 Initialisation process for context variables

Outputs of this process are the initialised CABAC context variables indexed by ctxIdx.

Tables 9-12 to 9-33 contain the values of the variables n and m used in the initialisation of context variables that are
assigned to all syntax elements in subclauses 7.3.4 and 7.3.5 except for the end-of-slice flag.

For each context variable, the two variables pStateIdx and valMPS are initialised.
NOTE 1 – The variable pStateIdx corresponds to a probability state index and the variable valMPS corresponds to the value of
the most probable symbol as further described in subclause 9.3.3.2.

The two values assigned to pStateIdx and valMPS for the initialisation are derived from SliceQPY, which is derived in
Equation 7-29. Given the two table entries (m, n), the initialisation is specified by the following pseudo-code process:

preCtxState = Clip3(1, 126, ((m ∗ Clip3(0, 51, SliceQPY)) >> 4) + n)
if(preCtxState <= 63) {
 pStateIdx = 63 − preCtxState
 valMPS = 0 (9-5)
} else {
 pStateIdx = preCtxState − 64
 valMPS = 1
}

In Table 9-11, the ctxIdx for which initialisation is needed for each of the slice types are listed. Also listed is the table
number that includes the values of m and n needed for the initialisation. For P, SP and B slice type, the initialisation
depends also on the value of the cabac_init_idc syntax element. Note that the syntax element names do not affect the
initialisation process.

 Rec. ITU-T H.264 (03/2009) 231

Table 9-11 – Association of ctxIdx and syntax elements for each slice type in the initialisation process

Slice type
 Syntax element Table

SI I P, SP B

mb_skip_flag Table 9-13
Table 9-14 11..13 24..26

slice_data()

mb_field_decoding_flag Table 9-18 70..72 70..72 70..72 70..72

mb_type
Table 9-12
Table 9-13
Table 9-14

0..10 3..10 14..20 27..35

transform_size_8x8_flag Table 9-16 na 399..401 399..401 399..401

coded_block_pattern (luma) Table 9-18 73..76 73..76 73..76 73..76

coded_block_pattern (chroma) Table 9-18 77..84 77..84 77..84 77..84

macroblock_layer()

mb_qp_delta Table 9-17 60..63 60..63 60..63 60..63

prev_intra4x4_pred_mode_flag Table 9-17 68 68 68 68

rem_intra4x4_pred_mode Table 9-17 69 69 69 69

prev_intra8x8_pred_mode_flag Table 9-17 na 68 68 68

rem_intra8x8_pred_mode Table 9-17 na 69 69 69

mb_pred()

intra_chroma_pred_mode Table 9-17 64..67 64..67 64..67 64..67

ref_idx_l0 Table 9-16 54..59 54..59

ref_idx_l1 Table 9-16 54..59

mvd_l0[][][0] Table 9-15 40..46 40..46

mvd_l1[][][0] Table 9-15 40..46

mvd_l0[][][1] Table 9-15 47..53 47..53

mb_pred() and
sub_mb_pred()

mvd_l1[][][1] Table 9-15 47..53

sub_mb_pred() sub_mb_type[]
Table 9-13

Table 9-14
 21..23 36..39

232 Rec. ITU-T H.264 (03/2009)

Table 9-11 – Association of ctxIdx and syntax elements for each slice type in the initialisation process

Slice type
 Syntax element Table

SI I P, SP B

coded_block_flag
Table 9-18
Table 9-25
Table 9-33

85..104
460..483

85..104
460..483

1012..1023

85..104
460..483

1012..1023

85..104
460..483

1012..1023

significant_coeff_flag[]

Table 9-19
Table 9-22
Table 9-24
Table 9-24
Table 9-26
Table 9-30
Table 9-28
Table 9-29

105..165
277..337

105..165
277..337
402..416
436..450
484..571
776..863
660..689
718..747

105..165
277..337
402..416
436..450
484..571
776..863
660..689
718..747

105..165
277..337
402..416
436..450
484..571
776..863
660..689
718..747

last_significant_coeff_flag[]

Table 9-20
Table 9-23
Table 9-24
Table 9-24
Table 9-27
Table 9-31
Table 9-28
Table 9-29

166..226
338..398

166..226
338..398
417..425
451..459
572..659
864..951
690..707
748..765

166..226
338..398
417..425
451..459
572..659
864..951
690..707
748..765

166..226
338..398
417..425
451..459
572..659
864..951
690..707
748..765

residual_block_cabac()

coeff_abs_level_minus1[]

Table 9-21
Table 9-24
Table 9-32
Table 9-28
Table 9-29

227..275

227..275
426..435
952..1011
708..717
766..775

227..275
426..435
952..1011
708..717
766..775

227..275
426..435
952..1011
708..717
766..775

NOTE 2 – ctxIdx equal to 276 is associated with the end_of_slice_flag and the bin of mb_type, which specifies the I_PCM
macroblock type. The decoding process specified in subclause 9.3.3.2.4 applies to ctxIdx equal to 276. This decoding process,
however, may also be implemented by using the decoding process specified in subclause 9.3.3.2.1. In this case, the initial values
associated with ctxIdx equal to 276 are specified to be pStateIdx = 63 and valMPS = 0, where pStateIdx = 63 represents a
non-adapting probability state.

Table 9-12 – Values of variables m and n for ctxIdx from 0 to 10

ctxIdx Initialisation
variables

0 1 2 3 4 5 6 7 8 9 10

m 20 2 3 20 2 3 −28 −23 −6 −1 7

n −15 54 74 −15 54 74 127 104 53 54 51

 Rec. ITU-T H.264 (03/2009) 233

Table 9-13 – Values of variables m and n for ctxIdx from 11 to 23

ctxIdx Value of
cabac_init_idc

Initialisation
variables

11 12 13 14 15 16 17 18 19 20 21 22 23

m 23 23 21 1 0 −37 5 −13 −11 1 12 −4 17 0

n 33 2 0 9 49 118 57 78 65 62 49 73 50

m 22 34 16 −2 4 −29 2 −6 −13 5 9 −3 10 1

n 25 0 0 9 41 118 65 71 79 52 50 70 54

m 29 25 14 −10 −3 −27 26 −4 −24 5 6 −17 14 2

n 16 0 0 51 62 99 16 85 102 57 57 73 57

Table 9-14 – Values of variables m and n for ctxIdx from 24 to 39

ctxIdx Value of
cabac_init_idc

Initialisation
variables

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

m 18 9 29 26 16 9 −46 −20 1 −13 −11 1 −6 −17 −6 9 0

n 64 43 0 67 90 104 127 104 67 78 65 62 86 95 61 45

m 26 19 40 57 41 26 −45 −15 −4 −6 −13 5 6 −13 0 8 1

n 34 22 0 2 36 69 127 101 76 71 79 52 69 90 52 43

m 20 20 29 54 37 12 −32 −22 −2 −4 −24 5 −6 −14 −6 4 2

n 40 10 0 0 42 97 127 117 74 85 102 57 93 88 44 55

Table 9-15 – Values of variables m and n for ctxIdx from 40 to 53

ctxIdx Value of
cabac_init_idc

Initialisation
variables

40 41 42 43 44 45 46 47 48 49 50 51 52 53

m −3 −6 −11 6 7 −5 2 0 −3 −10 5 4 −3 0 0

n 69 81 96 55 67 86 88 58 76 94 54 69 81 88

m −2 −5 −10 2 2 −3 −3 1 −3 −6 0 −3 −7 −5 1

n 69 82 96 59 75 87 100 56 74 85 59 81 86 95

m −11 −15 −21 19 20 4 6 1 −5 −13 5 6 −3 −1 2

n 89 103 116 57 58 84 96 63 85 106 63 75 90 101

234 Rec. ITU-T H.264 (03/2009)

Table 9-16 – Values of variables m and n for ctxIdx from 54 to 59, and 399 to 401

ctxIdx
Value of cabac_init_idc Initialisation variables

54 55 56 57 58 59 399 400 401

m na na na na na na 31 31 25 I slices

n na na na na na na 21 31 50

m −7 −5 −4 −5 −7 1 12 11 14 0

n 67 74 74 80 72 58 40 51 59

m −1 −1 1 −2 −5 0 25 21 21 1

n 66 77 70 86 72 61 32 49 54

m 3 −4 −2 −12 −7 1 21 19 17 2

n 55 79 75 97 50 60 33 50 61

Table 9-17 – Values of variables m and n for ctxIdx from 60 to 69

ctxIdx Initialisation
variables

60 61 62 63 64 65 66 67 68 69

m 0 0 0 0 −9 4 0 −7 13 3

n 41 63 63 63 83 86 97 72 41 62

 Rec. ITU-T H.264 (03/2009) 235

Table 9-18 – Values of variables m and n for ctxIdx from 70 to 104

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

70 0 11 0 45 13 15 7 34 88 −11 115 −13 108 −4 92 5 78

71 1 55 −4 78 7 51 −9 88 89 −12 63 −3 46 0 39 −6 55

72 0 69 −3 96 2 80 −20 127 90 −2 68 −1 65 0 65 4 61

73 −17 127 −27 126 −39 127 −36 127 91 −15 84 −1 57 −15 84 −14 83

74 −13 102 −28 98 −18 91 −17 91 92 −13 104 −9 93 −35 127 −37 127

75 0 82 −25 101 −17 96 −14 95 93 −3 70 −3 74 −2 73 −5 79

76 −7 74 −23 67 −26 81 −25 84 94 −8 93 −9 92 −12 104 −11 104

77 −21 107 −28 82 −35 98 −25 86 95 −10 90 −8 87 −9 91 −11 91

78 −27 127 −20 94 −24 102 −12 89 96 −30 127 −23 126 −31 127 −30 127

79 −31 127 −16 83 −23 97 −17 91 97 −1 74 5 54 3 55 0 65

80 −24 127 −22 110 −27 119 −31 127 98 −6 97 6 60 7 56 −2 79

81 −18 95 −21 91 −24 99 −14 76 99 −7 91 6 59 7 55 0 72

82 −27 127 −18 102 −21 110 −18 103 100 −20 127 6 69 8 61 −4 92

83 −21 114 −13 93 −18 102 −13 90 101 −4 56 −1 48 −3 53 −6 56

84 −30 127 −29 127 −36 127 −37 127 102 −5 82 0 68 0 68 3 68

85 −17 123 −7 92 0 80 11 80 103 −7 76 −4 69 −7 74 −8 71

86 −12 115 −5 89 −5 89 5 76 104 −22 125 −8 88 −9 88 −13 98

87 −16 122 −7 96 −7 94 2 84

236 Rec. ITU-T H.264 (03/2009)

Table 9-19 – Values of variables m and n for ctxIdx from 105 to 165

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

105 −7 93 −2 85 −13 103 −4 86 136 −13 101 5 53 0 58 −5 75

106 −11 87 −6 78 −13 91 −12 88 137 −13 91 −2 61 −1 60 −8 80

107 −3 77 −1 75 −9 89 −5 82 138 −12 94 0 56 −3 61 −21 83

108 −5 71 −7 77 −14 92 −3 72 139 −10 88 0 56 −8 67 −21 64

109 −4 63 2 54 −8 76 −4 67 140 −16 84 −13 63 −25 84 −13 31

110 −4 68 5 50 −12 87 −8 72 141 −10 86 −5 60 −14 74 −25 64

111 −12 84 −3 68 −23 110 −16 89 142 −7 83 −1 62 −5 65 −29 94

112 −7 62 1 50 −24 105 −9 69 143 −13 87 4 57 5 52 9 75

113 −7 65 6 42 −10 78 −1 59 144 −19 94 −6 69 2 57 17 63

114 8 61 −4 81 −20 112 5 66 145 1 70 4 57 0 61 −8 74

115 5 56 1 63 −17 99 4 57 146 0 72 14 39 −9 69 −5 35

116 −2 66 −4 70 −78 127 −4 71 147 −5 74 4 51 −11 70 −2 27

117 1 64 0 67 −70 127 −2 71 148 18 59 13 68 18 55 13 91

118 0 61 2 57 −50 127 2 58 149 −8 102 3 64 −4 71 3 65

119 −2 78 −2 76 −46 127 −1 74 150 −15 100 1 61 0 58 −7 69

120 1 50 11 35 −4 66 −4 44 151 0 95 9 63 7 61 8 77

121 7 52 4 64 −5 78 −1 69 152 −4 75 7 50 9 41 −10 66

122 10 35 1 61 −4 71 0 62 153 2 72 16 39 18 25 3 62

123 0 44 11 35 −8 72 −7 51 154 −11 75 5 44 9 32 −3 68

124 11 38 18 25 2 59 −4 47 155 −3 71 4 52 5 43 −20 81

125 1 45 12 24 −1 55 −6 42 156 15 46 11 48 9 47 0 30

126 0 46 13 29 −7 70 −3 41 157 −13 69 −5 60 0 44 1 7

127 5 44 13 36 −6 75 −6 53 158 0 62 −1 59 0 51 −3 23

128 31 17 −10 93 −8 89 8 76 159 0 65 0 59 2 46 −21 74

129 1 51 −7 73 −34 119 −9 78 160 21 37 22 33 19 38 16 66

130 7 50 −2 73 −3 75 −11 83 161 −15 72 5 44 −4 66 −23 124

131 28 19 13 46 32 20 9 52 162 9 57 14 43 15 38 17 37

132 16 33 9 49 30 22 0 67 163 16 54 −1 78 12 42 44 −18

133 14 62 −7 100 −44 127 −5 90 164 0 62 0 60 9 34 50 −34

134 −13 108 9 53 0 54 1 67 165 12 72 9 69 0 89 −22 127

135 −15 100 2 53 −5 61 −15 72

 Rec. ITU-T H.264 (03/2009) 237

Table 9-20 – Values of variables m and n for ctxIdx from 166 to 226

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

166 24 0 11 28 4 45 4 39 197 26 −17 28 3 36 −28 28 −3

167 15 9 2 40 10 28 0 42 198 30 −25 28 4 38 −28 24 10

168 8 25 3 44 10 31 7 34 199 28 −20 32 0 38 −27 27 0

169 13 18 0 49 33 −11 11 29 200 33 −23 34 −1 34 −18 34 −14

170 15 9 0 46 52 −43 8 31 201 37 −27 30 6 35 −16 52 −44

171 13 19 2 44 18 15 6 37 202 33 −23 30 6 34 −14 39 −24

172 10 37 2 51 28 0 7 42 203 40 −28 32 9 32 −8 19 17

173 12 18 0 47 35 −22 3 40 204 38 −17 31 19 37 −6 31 25

174 6 29 4 39 38 −25 8 33 205 33 −11 26 27 35 0 36 29

175 20 33 2 62 34 0 13 43 206 40 −15 26 30 30 10 24 33

176 15 30 6 46 39 −18 13 36 207 41 −6 37 20 28 18 34 15

177 4 45 0 54 32 −12 4 47 208 38 1 28 34 26 25 30 20

178 1 58 3 54 102 −94 3 55 209 41 17 17 70 29 41 22 73

179 0 62 2 58 0 0 2 58 210 30 −6 1 67 0 75 20 34

180 7 61 4 63 56 −15 6 60 211 27 3 5 59 2 72 19 31

181 12 38 6 51 33 −4 8 44 212 26 22 9 67 8 77 27 44

182 11 45 6 57 29 10 11 44 213 37 −16 16 30 14 35 19 16

183 15 39 7 53 37 −5 14 42 214 35 −4 18 32 18 31 15 36

184 11 42 6 52 51 −29 7 48 215 38 −8 18 35 17 35 15 36

185 13 44 6 55 39 −9 4 56 216 38 −3 22 29 21 30 21 28

186 16 45 11 45 52 −34 4 52 217 37 3 24 31 17 45 25 21

187 12 41 14 36 69 −58 13 37 218 38 5 23 38 20 42 30 20

188 10 49 8 53 67 −63 9 49 219 42 0 18 43 18 45 31 12

189 30 34 −1 82 44 −5 19 58 220 35 16 20 41 27 26 27 16

190 18 42 7 55 32 7 10 48 221 39 22 11 63 16 54 24 42

191 10 55 −3 78 55 −29 12 45 222 14 48 9 59 7 66 0 93

192 17 51 15 46 32 1 0 69 223 27 37 9 64 16 56 14 56

193 17 46 22 31 0 0 20 33 224 21 60 −1 94 11 73 15 57

194 0 89 −1 84 27 36 8 63 225 12 68 −2 89 10 67 26 38

195 26 −19 25 7 33 −25 35 −18 226 2 97 −9 108 −10 116 −24 127

196 22 −17 30 −7 34 −30 33 −25

238 Rec. ITU-T H.264 (03/2009)

Table 9-21 – Values of variables m and n for ctxIdx from 227 to 275

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

227 −3 71 −6 76 −23 112 −24 115 252 −12 73 −6 55 −16 72 −14 75

228 −6 42 −2 44 −15 71 −22 82 253 −8 76 0 58 −7 69 −10 79

229 −5 50 0 45 −7 61 −9 62 254 −7 80 0 64 −4 69 −9 83

230 −3 54 0 52 0 53 0 53 255 −9 88 −3 74 −5 74 −12 92

231 −2 62 −3 64 −5 66 0 59 256 −17 110 −10 90 −9 86 −18 108

232 0 58 −2 59 −11 77 −14 85 257 −11 97 0 70 2 66 −4 79

233 1 63 −4 70 −9 80 −13 89 258 −20 84 −4 29 −9 34 −22 69

234 −2 72 −4 75 −9 84 −13 94 259 −11 79 5 31 1 32 −16 75

235 −1 74 −8 82 −10 87 −11 92 260 −6 73 7 42 11 31 −2 58

236 −9 91 −17 102 −34 127 −29 127 261 −4 74 1 59 5 52 1 58

237 −5 67 −9 77 −21 101 −21 100 262 −13 86 −2 58 −2 55 −13 78

238 −5 27 3 24 −3 39 −14 57 263 −13 96 −3 72 −2 67 −9 83

239 −3 39 0 42 −5 53 −12 67 264 −11 97 −3 81 0 73 −4 81

240 −2 44 0 48 −7 61 −11 71 265 −19 117 −11 97 −8 89 −13 99

241 0 46 0 55 −11 75 −10 77 266 −8 78 0 58 3 52 −13 81

242 −16 64 −6 59 −15 77 −21 85 267 −5 33 8 5 7 4 −6 38

243 −8 68 −7 71 −17 91 −16 88 268 −4 48 10 14 10 8 −13 62

244 −10 78 −12 83 −25 107 −23 104 269 −2 53 14 18 17 8 −6 58

245 −6 77 −11 87 −25 111 −15 98 270 −3 62 13 27 16 19 −2 59

246 −10 86 −30 119 −28 122 −37 127 271 −13 71 2 40 3 37 −16 73

247 −12 92 1 58 −11 76 −10 82 272 −10 79 0 58 −1 61 −10 76

248 −15 55 −3 29 −10 44 −8 48 273 −12 86 −3 70 −5 73 −13 86

249 −10 60 −1 36 −10 52 −8 61 274 −13 90 −6 79 −1 70 −9 83

250 −6 62 1 38 −10 57 −8 66 275 −14 97 −8 85 −4 78 −10 87

251 −4 65 2 43 −9 58 −7 70

 Rec. ITU-T H.264 (03/2009) 239

Table 9-22 – Values of variables m and n for ctxIdx from 277 to 337

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

277 −6 93 −13 106 −21 126 −22 127 308 −16 96 −1 51 −16 77 −10 67

278 −6 84 −16 106 −23 124 −25 127 309 −7 88 7 49 −2 64 1 68

279 −8 79 −10 87 −20 110 −25 120 310 −8 85 8 52 2 61 0 77

280 0 66 −21 114 −26 126 −27 127 311 −7 85 9 41 −6 67 2 64

281 −1 71 −18 110 −25 124 −19 114 312 −9 85 6 47 −3 64 0 68

282 0 62 −14 98 −17 105 −23 117 313 −13 88 2 55 2 57 −5 78

283 −2 60 −22 110 −27 121 −25 118 314 4 66 13 41 −3 65 7 55

284 −2 59 −21 106 −27 117 −26 117 315 −3 77 10 44 −3 66 5 59

285 −5 75 −18 103 −17 102 −24 113 316 −3 76 6 50 0 62 2 65

286 −3 62 −21 107 −26 117 −28 118 317 −6 76 5 53 9 51 14 54

287 −4 58 −23 108 −27 116 −31 120 318 10 58 13 49 −1 66 15 44

288 −9 66 −26 112 −33 122 −37 124 319 −1 76 4 63 −2 71 5 60

289 −1 79 −10 96 −10 95 −10 94 320 −1 83 6 64 −2 75 2 70

290 0 71 −12 95 −14 100 −15 102 321 −7 99 −2 69 −1 70 −2 76

291 3 68 −5 91 −8 95 −10 99 322 −14 95 −2 59 −9 72 −18 86

292 10 44 −9 93 −17 111 −13 106 323 2 95 6 70 14 60 12 70

293 −7 62 −22 94 −28 114 −50 127 324 0 76 10 44 16 37 5 64

294 15 36 −5 86 −6 89 −5 92 325 −5 74 9 31 0 47 −12 70

295 14 40 9 67 −2 80 17 57 326 0 70 12 43 18 35 11 55

296 16 27 −4 80 −4 82 −5 86 327 −11 75 3 53 11 37 5 56

297 12 29 −10 85 −9 85 −13 94 328 1 68 14 34 12 41 0 69

298 1 44 −1 70 −8 81 −12 91 329 0 65 10 38 10 41 2 65

299 20 36 7 60 −1 72 −2 77 330 −14 73 −3 52 2 48 −6 74

300 18 32 9 58 5 64 0 71 331 3 62 13 40 12 41 5 54

301 5 42 5 61 1 67 −1 73 332 4 62 17 32 13 41 7 54

302 1 48 12 50 9 56 4 64 333 −1 68 7 44 0 59 −6 76

303 10 62 15 50 0 69 −7 81 334 −13 75 7 38 3 50 −11 82

304 17 46 18 49 1 69 5 64 335 11 55 13 50 19 40 −2 77

305 9 64 17 54 7 69 15 57 336 5 64 10 57 3 66 −2 77

306 −12 104 10 41 −7 69 1 67 337 12 70 26 43 18 50 25 42

307 −11 97 7 46 −6 67 0 68

240 Rec. ITU-T H.264 (03/2009)

Table 9-23 – Values of variables m and n for ctxIdx from 338 to 398

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

338 15 6 14 11 19 −6 17 −13 369 32 −26 31 −4 40 −37 37 −17

339 6 19 11 14 18 −6 16 −9 370 37 −30 27 6 38 −30 32 1

340 7 16 9 11 14 0 17 −12 371 44 −32 34 8 46 −33 34 15

341 12 14 18 11 26 −12 27 −21 372 34 −18 30 10 42 −30 29 15

342 18 13 21 9 31 −16 37 −30 373 34 −15 24 22 40 −24 24 25

343 13 11 23 −2 33 −25 41 −40 374 40 −15 33 19 49 −29 34 22

344 13 15 32 −15 33 −22 42 −41 375 33 −7 22 32 38 −12 31 16

345 15 16 32 −15 37 −28 48 −47 376 35 −5 26 31 40 −10 35 18

346 12 23 34 −21 39 −30 39 −32 377 33 0 21 41 38 −3 31 28

347 13 23 39 −23 42 −30 46 −40 378 38 2 26 44 46 −5 33 41

348 15 20 42 −33 47 −42 52 −51 379 33 13 23 47 31 20 36 28

349 14 26 41 −31 45 −36 46 −41 380 23 35 16 65 29 30 27 47

350 14 44 46 −28 49 −34 52 −39 381 13 58 14 71 25 44 21 62

351 17 40 38 −12 41 −17 43 −19 382 29 −3 8 60 12 48 18 31

352 17 47 21 29 32 9 32 11 383 26 0 6 63 11 49 19 26

353 24 17 45 −24 69 −71 61 −55 384 22 30 17 65 26 45 36 24

354 21 21 53 −45 63 −63 56 −46 385 31 −7 21 24 22 22 24 23

355 25 22 48 −26 66 −64 62 −50 386 35 −15 23 20 23 22 27 16

356 31 27 65 −43 77 −74 81 −67 387 34 −3 26 23 27 21 24 30

357 22 29 43 −19 54 −39 45 −20 388 34 3 27 32 33 20 31 29

358 19 35 39 −10 52 −35 35 −2 389 36 −1 28 23 26 28 22 41

359 14 50 30 9 41 −10 28 15 390 34 5 28 24 30 24 22 42

360 10 57 18 26 36 0 34 1 391 32 11 23 40 27 34 16 60

361 7 63 20 27 40 −1 39 1 392 35 5 24 32 18 42 15 52

362 −2 77 0 57 30 14 30 17 393 34 12 28 29 25 39 14 60

363 −4 82 −14 82 28 26 20 38 394 39 11 23 42 18 50 3 78

364 −3 94 −5 75 23 37 18 45 395 30 29 19 57 12 70 −16 123

365 9 69 −19 97 12 55 15 54 396 34 26 22 53 21 54 21 53

366 −12 109 −35 125 11 65 0 79 397 29 39 22 61 14 71 22 56

367 36 −35 27 0 37 −33 36 −16 398 19 66 11 86 11 83 25 61

368 36 −34 28 0 39 −36 37 −14

 Rec. ITU-T H.264 (03/2009) 241

Table 9-24 – Values of variables m and n for ctxIdx from 402 to 459

Value of cabac_init_idc Value of cabac_init_idc I
slices

0 1 2

I
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

402 −17 120 −4 79 −5 85 −3 78 431 −2 55 −12 56 −9 57 −12 59

403 −20 112 −7 71 −6 81 −8 74 432 0 61 −6 60 −6 63 −8 63

404 −18 114 −5 69 −10 77 −9 72 433 1 64 −5 62 −4 65 −9 67

405 −11 85 −9 70 −7 81 −10 72 434 0 68 −8 66 −4 67 −6 68

406 −15 92 −8 66 −17 80 −18 75 435 −9 92 −8 76 −7 82 −10 79

407 −14 89 −10 68 −18 73 −12 71 436 −14 106 −5 85 −3 81 −3 78

408 −26 71 −19 73 −4 74 −11 63 437 −13 97 −6 81 −3 76 −8 74

409 −15 81 −12 69 −10 83 −5 70 438 −15 90 −10 77 −7 72 −9 72

410 −14 80 −16 70 −9 71 −17 75 439 −12 90 −7 81 −6 78 −10 72

411 0 68 −15 67 −9 67 −14 72 440 −18 88 −17 80 −12 72 −18 75

412 −14 70 −20 62 −1 61 −16 67 441 −10 73 −18 73 −14 68 −12 71

413 −24 56 −19 70 −8 66 −8 53 442 −9 79 −4 74 −3 70 −11 63

414 −23 68 −16 66 −14 66 −14 59 443 −14 86 −10 83 −6 76 −5 70

415 −24 50 −22 65 0 59 −9 52 444 −10 73 −9 71 −5 66 −17 75

416 −11 74 −20 63 2 59 −11 68 445 −10 70 −9 67 −5 62 −14 72

417 23 −13 9 −2 17 −10 9 −2 446 −10 69 −1 61 0 57 −16 67

418 26 −13 26 −9 32 −13 30 −10 447 −5 66 −8 66 −4 61 −8 53

419 40 −15 33 −9 42 −9 31 −4 448 −9 64 −14 66 −9 60 −14 59

420 49 −14 39 −7 49 −5 33 −1 449 −5 58 0 59 1 54 −9 52

421 44 3 41 −2 53 0 33 7 450 2 59 2 59 2 58 −11 68

422 45 6 45 3 64 3 31 12 451 21 −10 21 −13 17 −10 9 −2

423 44 34 49 9 68 10 37 23 452 24 −11 33 −14 32 −13 30 −10

424 33 54 45 27 66 27 31 38 453 28 −8 39 −7 42 −9 31 −4

425 19 82 36 59 47 57 20 64 454 28 −1 46 −2 49 −5 33 −1

426 −3 75 −6 66 −5 71 −9 71 455 29 3 51 2 53 0 33 7

427 −1 23 −7 35 0 24 −7 37 456 29 9 60 6 64 3 31 12

428 1 34 −7 42 −1 36 −8 44 457 35 20 61 17 68 10 37 23

429 1 43 −8 45 −2 42 −11 49 458 29 36 55 34 66 27 31 38

430 0 54 −5 48 −2 52 −10 56 459 14 67 42 62 47 57 20 64

242 Rec. ITU-T H.264 (03/2009)

Table 9-25 – Values of variables m and n for ctxIdx from 460 to 483

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

460 −17 123 −7 92 0 80 11 80 472 −17 123 −7 92 0 80 11 80

461 −12 115 −5 89 −5 89 5 76 473 −12 115 −5 89 −5 89 5 76

462 −16 122 −7 96 −7 94 2 84 474 −16 122 −7 96 −7 94 2 84

463 −11 115 −13 108 −4 92 5 78 475 −11 115 −13 108 −4 92 5 78

464 −12 63 −3 46 0 39 −6 55 476 −12 63 −3 46 0 39 −6 55

465 −2 68 −1 65 0 65 4 61 477 −2 68 −1 65 0 65 4 61

466 −15 84 −1 57 −15 84 −14 83 478 −15 84 −1 57 −15 84 −14 83

467 −13 104 −9 93 −35 127 −37 127 479 −13 104 −9 93 −35 127 −37 127

468 −3 70 −3 74 −2 73 −5 79 480 −3 70 −3 74 −2 73 −5 79

469 −8 93 −9 92 −12 104 −11 104 481 −8 93 −9 92 −12 104 −11 104

470 −10 90 −8 87 −9 91 −11 91 482 −10 90 −8 87 −9 91 −11 91

471 −30 127 −23 126 −31 127 −30 127 483 −30 127 −23 126 −31 127 −30 127

Table 9-26 – Values of variables m and n for ctxIdx from 484 to 571

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

484 −7 93 −2 85 −13 103 −4 86 528 −7 93 −2 85 −13 103 −4 86

485 −11 87 −6 78 −13 91 −12 88 529 −11 87 −6 78 −13 91 −12 88

486 −3 77 −1 75 −9 89 −5 82 530 −3 77 −1 75 −9 89 −5 82

487 −5 71 −7 77 −14 92 −3 72 531 −5 71 −7 77 −14 92 −3 72

488 −4 63 2 54 −8 76 −4 67 532 −4 63 2 54 −8 76 −4 67

489 −4 68 5 50 −12 87 −8 72 533 −4 68 5 50 −12 87 −8 72

490 −12 84 −3 68 −23 110 −16 89 534 −12 84 −3 68 −23 110 −16 89

491 −7 62 1 50 −24 105 −9 69 535 −7 62 1 50 −24 105 −9 69

492 −7 65 6 42 −10 78 −1 59 536 −7 65 6 42 −10 78 −1 59

493 8 61 −4 81 −20 112 5 66 537 8 61 −4 81 −20 112 5 66

494 5 56 1 63 −17 99 4 57 538 5 56 1 63 −17 99 4 57

495 −2 66 −4 70 −78 127 −4 71 539 −2 66 −4 70 −78 127 −4 71

496 1 64 0 67 −70 127 −2 71 540 1 64 0 67 −70 127 −2 71

497 0 61 2 57 −50 127 2 58 641 0 61 2 57 −50 127 2 58

498 −2 78 −2 76 −46 127 −1 74 542 −2 78 −2 76 −46 127 −1 74

 Rec. ITU-T H.264 (03/2009) 243

Table 9-26 – Values of variables m and n for ctxIdx from 484 to 571

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

499 1 50 11 35 −4 66 −4 44 543 1 50 11 35 −4 66 −4 44

500 7 52 4 64 −5 78 −1 69 544 7 52 4 64 −5 78 −1 69

501 10 35 1 61 −4 71 0 62 545 10 35 1 61 −4 71 0 62

502 0 44 11 35 −8 72 −7 51 546 0 44 11 35 −8 72 −7 51

503 11 38 18 25 2 59 −4 47 547 11 38 18 25 2 59 −4 47

504 1 45 12 24 −1 55 −6 42 548 1 45 12 24 −1 55 −6 42

505 0 46 13 29 −7 70 −3 41 549 0 46 13 29 −7 70 −3 41

506 5 44 13 36 −6 75 −6 53 550 5 44 13 36 −6 75 −6 53

507 31 17 −10 93 −8 89 8 76 551 31 17 −10 93 −8 89 8 76

508 1 51 −7 73 −34 119 −9 78 552 1 51 −7 73 −34 119 −9 78

509 7 50 −2 73 −3 75 −11 83 553 7 50 −2 73 −3 75 −11 83

510 28 19 13 46 32 20 9 52 554 28 19 13 46 32 20 9 52

511 16 33 9 49 30 22 0 67 555 16 33 9 49 30 22 0 67

512 14 62 −7 100 −44 127 −5 90 556 14 62 −7 100 −44 127 −5 90

513 −13 108 9 53 0 54 1 67 557 −13 108 9 53 0 54 1 67

514 −15 100 2 53 −5 61 −15 72 558 −15 100 2 53 −5 61 −15 72

515 −13 101 5 53 0 58 −5 75 559 −13 101 5 53 0 58 −5 75

516 −13 91 −2 61 −1 60 −8 80 560 −13 91 −2 61 −1 60 −8 80

517 −12 94 0 56 −3 61 −21 83 561 −12 94 0 56 −3 61 −21 83

518 −10 88 0 56 −8 67 −21 64 562 −10 88 0 56 −8 67 −21 64

519 −16 84 −13 63 −25 84 −13 31 563 −16 84 −13 63 −25 84 −13 31

520 −10 86 −5 60 −14 74 −25 64 564 −10 86 −5 60 −14 74 −25 64

521 −7 83 −1 62 −5 65 −29 94 565 −7 83 −1 62 −5 65 −29 94

522 −13 87 4 57 5 52 9 75 566 −13 87 4 57 5 52 9 75

523 −19 94 −6 69 2 57 17 63 567 −19 94 −6 69 2 57 17 63

524 1 70 4 57 0 61 −8 74 568 1 70 4 57 0 61 −8 74

525 0 72 14 39 −9 69 −5 35 569 0 72 14 39 −9 69 −5 35

526 −5 74 4 51 −11 70 −2 27 570 −5 74 4 51 −11 70 −2 27

527 18 59 13 68 18 55 13 91 571 18 59 13 68 18 55 13 91

244 Rec. ITU-T H.264 (03/2009)

Table 9-27 – Values of variables m and n for ctxIdx from 572 to 659

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

572 24 0 11 28 4 45 4 39 616 24 0 11 28 4 45 4 39

573 15 9 2 40 10 28 0 42 617 15 9 2 40 10 28 0 42

574 8 25 3 44 10 31 7 34 618 8 25 3 44 10 31 7 34

575 13 18 0 49 33 −11 11 29 619 13 18 0 49 33 −11 11 29

576 15 9 0 46 52 −43 8 31 620 15 9 0 46 52 −43 8 31

577 13 19 2 44 18 15 6 37 621 13 19 2 44 18 15 6 37

578 10 37 2 51 28 0 7 42 622 10 37 2 51 28 0 7 42

579 12 18 0 47 35 −22 3 40 623 12 18 0 47 35 −22 3 40

580 6 29 4 39 38 −25 8 33 624 6 29 4 39 38 −25 8 33

581 20 33 2 62 34 0 13 43 625 20 33 2 62 34 0 13 43

582 15 30 6 46 39 −18 13 36 626 15 30 6 46 39 −18 13 36

583 4 45 0 54 32 −12 4 47 627 4 45 0 54 32 −12 4 47

584 1 58 3 54 102 −94 3 55 628 1 58 3 54 102 −94 3 55

585 0 62 2 58 0 0 2 58 629 0 62 2 58 0 0 2 58

586 7 61 4 63 56 −15 6 60 630 7 61 4 63 56 −15 6 60

587 12 38 6 51 33 −4 8 44 631 12 38 6 51 33 −4 8 44

588 11 45 6 57 29 10 11 44 632 11 45 6 57 29 10 11 44

589 15 39 7 53 37 −5 14 42 633 15 39 7 53 37 −5 14 42

590 11 42 6 52 51 −29 7 48 634 11 42 6 52 51 −29 7 48

591 13 44 6 55 39 −9 4 56 635 13 44 6 55 39 −9 4 56

592 16 45 11 45 52 −34 4 52 636 16 45 11 45 52 −34 4 52

593 12 41 14 36 69 −58 13 37 637 12 41 14 36 69 −58 13 37

594 10 49 8 53 67 −63 9 49 638 10 49 8 53 67 −63 9 49

595 30 34 −1 82 44 −5 19 58 639 30 34 −1 82 44 −5 19 58

596 18 42 7 55 32 7 10 48 640 18 42 7 55 32 7 10 48

597 10 55 −3 78 55 −29 12 45 641 10 55 −3 78 55 −29 12 45

598 17 51 15 46 32 1 0 69 642 17 51 15 46 32 1 0 69

599 17 46 22 31 0 0 20 33 643 17 46 22 31 0 0 20 33

600 0 89 −1 84 27 36 8 63 644 0 89 −1 84 27 36 8 63

601 26 −19 25 7 33 −25 35 −18 645 26 −19 25 7 33 −25 35 −18

602 22 −17 30 −7 34 −30 33 −25 646 22 −17 30 −7 34 −30 33 −25

 Rec. ITU-T H.264 (03/2009) 245

Table 9-27 – Values of variables m and n for ctxIdx from 572 to 659

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

603 26 −17 28 3 36 −28 28 −3 647 26 −17 28 3 36 −28 28 −3

604 30 −25 28 4 38 −28 24 10 648 30 −25 28 4 38 −28 24 10

605 28 −20 32 0 38 −27 27 0 649 28 −20 32 0 38 −27 27 0

606 33 −23 34 −1 34 −18 34 −14 650 33 −23 34 −1 34 −18 34 −14

607 37 −27 30 6 35 −16 52 −44 651 37 −27 30 6 35 −16 52 −44

608 33 −23 30 6 34 −14 39 −24 652 33 −23 30 6 34 −14 39 −24

609 40 −28 32 9 32 −8 19 17 653 40 −28 32 9 32 −8 19 17

610 38 −17 31 19 37 −6 31 25 654 38 −17 31 19 37 −6 31 25

611 33 −11 26 27 35 0 36 29 655 33 −11 26 27 35 0 36 29

612 40 −15 26 30 30 10 24 33 656 40 −15 26 30 30 10 24 33

613 41 −6 37 20 28 18 34 15 657 41 −6 37 20 28 18 34 15

614 38 1 28 34 26 25 30 20 658 38 1 28 34 26 25 30 20

615 41 17 17 70 29 41 22 73 659 41 17 17 70 29 41 22 73

246 Rec. ITU-T H.264 (03/2009)

Table 9-28 – Values of variables m and n for ctxIdx from 660 to 717

Value of cabac_init_idc Value of cabac_init_idc I
slices

0 1 2

I
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

660 −17 120 −4 79 −5 85 −3 78 689 2 59 2 59 2 58 −11 68

661 −20 112 −7 71 −6 81 −8 74 690 23 −13 9 −2 17 −10 9 −2

662 −18 114 −5 69 −10 77 −9 72 691 26 −13 26 −9 32 −13 30 −10

663 −11 85 −9 70 −7 81 −10 72 692 40 −15 33 −9 42 −9 31 −4

664 −15 92 −8 66 −17 80 −18 75 693 49 −14 39 −7 49 −5 33 −1

665 −14 89 −10 68 −18 73 −12 71 694 44 3 41 −2 53 0 33 7

666 −26 71 −19 73 −4 74 −11 63 695 45 6 45 3 64 3 31 12

667 −15 81 −12 69 −10 83 −5 70 696 44 34 49 9 68 10 37 23

668 −14 80 −16 70 −9 71 −17 75 697 33 54 45 27 66 27 31 38

669 0 68 −15 67 −9 67 −14 72 698 19 82 36 59 47 57 20 64

670 −14 70 −20 62 −1 61 −16 67 699 21 −10 21 −13 17 −10 9 −2

671 −24 56 −19 70 −8 66 −8 53 700 24 −11 33 −14 32 −13 30 −10

672 −23 68 −16 66 −14 66 −14 59 701 28 −8 39 −7 42 −9 31 −4

673 −24 50 −22 65 0 59 −9 52 702 28 −1 46 −2 49 −5 33 −1

674 −11 74 −20 63 2 59 −11 68 703 29 3 51 2 53 0 33 7

675 −14 106 −5 85 −3 81 −3 78 704 29 9 60 6 64 3 31 12

676 −13 97 −6 81 −3 76 −8 74 705 35 20 61 17 68 10 37 23

677 −15 90 −10 77 −7 72 −9 72 706 29 36 55 34 66 27 31 38

678 −12 90 −7 81 −6 78 −10 72 707 14 67 42 62 47 57 20 64

679 −18 88 -17 80 −12 72 −18 75 708 −3 75 −6 66 −5 71 −9 71

680 −10 73 −18 73 −14 68 −12 71 709 −1 23 −7 35 0 24 −7 37

681 −9 79 −4 74 −3 70 −11 63 710 1 34 −7 42 −1 36 −8 44

682 −14 86 −10 83 −6 76 −5 70 711 1 43 −8 45 −2 42 −11 49

683 −10 73 −9 71 −5 66 −17 75 712 0 54 −5 48 −2 52 −10 56

684 −10 70 −9 67 −5 62 −14 72 713 −2 55 −12 56 −9 57 −12 59

685 −10 69 −1 61 0 57 −16 67 714 0 61 −6 60 −6 63 −8 63

686 −5 66 −8 66 −4 61 −8 53 715 1 64 −5 62 −4 65 −9 67

687 −9 64 −14 66 −9 60 −14 59 716 0 68 −8 66 −4 67 −6 68

688 −5 58 0 59 1 54 −9 52 717 −9 92 −8 76 −7 82 −10 79

 Rec. ITU-T H.264 (03/2009) 247

Table 9-29 – Values of variables m and n for ctxIdx from 718 to 775

Value of cabac_init_idc Value of cabac_init_idc I
slices

0 1 2

I
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

718 −17 120 −4 79 −5 85 −3 78 747 2 59 2 59 2 58 −11 68

719 −20 112 −7 71 −6 81 −8 74 748 23 −13 9 −2 17 −10 9 −2

720 −18 114 −5 69 −10 77 −9 72 749 26 −13 26 −9 32 −13 30 −10

721 −11 85 −9 70 −7 81 −10 72 750 40 −15 33 −9 42 −9 31 −4

722 −15 92 −8 66 −17 80 −18 75 751 49 −14 39 −7 49 −5 33 −1

723 −14 89 −10 68 −18 73 −12 71 752 44 3 41 −2 53 0 33 7

724 −26 71 −19 73 −4 74 −11 63 753 45 6 45 3 64 3 31 12

725 −15 81 −12 69 −10 83 −5 70 754 44 34 49 9 68 10 37 23

726 −14 80 −16 70 −9 71 −17 75 755 33 54 45 27 66 27 31 38

727 0 68 −15 67 −9 67 −14 72 756 19 82 36 59 47 57 20 64

728 −14 70 −20 62 −1 61 −16 67 757 21 −10 21 −13 17 −10 9 −2

729 −24 56 −19 70 −8 66 −8 53 758 24 −11 33 −14 32 −13 30 −10

730 −23 68 −16 66 −14 66 −14 59 759 28 −8 39 −7 42 −9 31 −4

731 −24 50 −22 65 0 59 −9 52 760 28 −1 46 −2 49 −5 33 −1

732 −11 74 −20 63 2 59 −11 68 761 29 3 51 2 53 0 33 7

733 −14 106 −5 85 −3 81 −3 78 762 29 9 60 6 64 3 31 12

734 −13 97 −6 81 −3 76 −8 74 763 35 20 61 17 68 10 37 23

735 −15 90 −10 77 −7 72 −9 72 764 29 36 55 34 66 27 31 38

736 −12 90 −7 81 −6 78 −10 72 765 14 67 42 62 47 57 20 64

737 −18 88 −17 80 −12 72 −18 75 766 −3 75 −6 66 −5 71 −9 71

738 −10 73 −18 73 −14 68 −12 71 767 −1 23 −7 35 0 24 −7 37

739 −9 79 −4 74 −3 70 −11 63 768 1 34 −7 42 −1 36 −8 44

740 −14 86 −10 83 −6 76 −5 70 769 1 43 −8 45 −2 42 −11 49

741 −10 73 −9 71 −5 66 −17 75 770 0 54 −5 48 −2 52 −10 56

742 −10 70 −9 67 −5 62 −14 72 771 −2 55 −12 56 −9 57 −12 59

743 −10 69 −1 61 0 57 −16 67 772 0 61 −6 60 −6 63 −8 63

744 −5 66 −8 66 −4 61 −8 53 773 1 64 −5 62 −4 65 −9 67

745 −9 64 −14 66 −9 60 −14 59 774 0 68 −8 66 −4 67 −6 68

746 −5 58 0 59 1 54 −9 52 775 −9 92 −8 76 −7 82 −10 79

248 Rec. ITU-T H.264 (03/2009)

Table 9-30 – Values of variables m and n for ctxIdx from 776 to 863

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

776 −6 93 −13 106 −21 126 −22 127 820 −6 93 −13 106 −21 126 −22 127

777 −6 84 −16 106 −23 124 −25 127 821 −6 84 −16 106 −23 124 −25 127

778 −8 79 −10 87 −20 110 −25 120 822 −8 79 −10 87 −20 110 −25 120

779 0 66 −21 114 −26 126 −27 127 823 0 66 −21 114 −26 126 −27 127

780 −1 71 −18 110 −25 124 −19 114 824 −1 71 −18 110 −25 124 −19 114

781 0 62 −14 98 −17 105 −23 117 825 0 62 −14 98 −17 105 −23 117

782 −2 60 −22 110 −27 121 −25 118 826 −2 60 −22 110 −27 121 −25 118

783 −2 59 −21 106 −27 117 −26 117 827 −2 59 −21 106 −27 117 −26 117

784 −5 75 −18 103 −17 102 −24 113 828 −5 75 −18 103 −17 102 −24 113

785 −3 62 −21 107 −26 117 −28 118 829 −3 62 −21 107 −26 117 −28 118

786 −4 58 −23 108 −27 116 −31 120 830 −4 58 −23 108 −27 116 −31 120

787 −9 66 −26 112 −33 122 −37 124 831 −9 66 −26 112 −33 122 −37 124

788 −1 79 −10 96 −10 95 −10 94 832 −1 79 −10 96 −10 95 −10 94

789 0 71 −12 95 −14 100 −15 102 833 0 71 −12 95 −14 100 −15 102

790 3 68 −5 91 −8 95 −10 99 834 3 68 −5 91 −8 95 −10 99

791 10 44 −9 93 −17 111 −13 106 835 10 44 −9 93 −17 111 −13 106

792 −7 62 −22 94 −28 114 −50 127 836 −7 62 −22 94 −28 114 −50 127

793 15 36 −5 86 −6 89 −5 92 837 15 36 −5 86 −6 89 −5 92

794 14 40 9 67 −2 80 17 57 838 14 40 9 67 −2 80 17 57

795 16 27 −4 80 −4 82 −5 86 839 16 27 −4 80 −4 82 −5 86

796 12 29 −10 85 −9 85 −13 94 840 12 29 −10 85 −9 85 −13 94

797 1 44 −1 70 −8 81 −12 91 841 1 44 −1 70 −8 81 −12 91

798 20 36 7 60 −1 72 −2 77 842 20 36 7 60 −1 72 −2 77

799 18 32 9 58 5 64 0 71 843 18 32 9 58 5 64 0 71

800 5 42 5 61 1 67 −1 73 844 5 42 5 61 1 67 −1 73

801 1 48 12 50 9 56 4 64 845 1 48 12 50 9 56 4 64

802 10 62 15 50 0 69 −7 81 846 10 62 15 50 0 69 −7 81

803 17 46 18 49 1 69 5 64 847 17 46 18 49 1 69 5 64

804 9 64 17 54 7 69 15 57 848 9 64 17 54 7 69 15 57

805 −12 104 10 41 −7 69 1 67 849 −12 104 10 41 −7 69 1 67

806 −11 97 7 46 −6 67 0 68 850 −11 97 7 46 −6 67 0 68

 Rec. ITU-T H.264 (03/2009) 249

Table 9-30 – Values of variables m and n for ctxIdx from 776 to 863

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

807 −16 96 −1 51 −16 77 −10 67 851 −16 96 −1 51 −16 77 −10 67

808 −7 88 7 49 −2 64 1 68 852 −7 88 7 49 −2 64 1 68

809 −8 85 8 52 2 61 0 77 853 −8 85 8 52 2 61 0 77

810 −7 85 9 41 −6 67 2 64 854 −7 85 9 41 −6 67 2 64

811 −9 85 6 47 −3 64 0 68 855 −9 85 6 47 −3 64 0 68

812 −13 88 2 55 2 57 −5 78 856 −13 88 2 55 2 57 −5 78

813 4 66 13 41 −3 65 7 55 857 4 66 13 41 −3 65 7 55

814 −3 77 10 44 −3 66 5 59 858 −3 77 10 44 −3 66 5 59

815 −3 76 6 50 0 62 2 65 859 −3 76 6 50 0 62 2 65

816 −6 76 5 53 9 51 14 54 860 −6 76 5 53 9 51 14 54

817 10 58 13 49 −1 66 15 44 861 10 58 13 49 −1 66 15 44

818 −1 76 4 63 −2 71 5 60 862 −1 76 4 63 −2 71 5 60

819 −1 83 6 64 −2 75 2 70 863 −1 83 6 64 −2 75 2 70

250 Rec. ITU-T H.264 (03/2009)

Table 9-31 – Values of variables m and n for ctxIdx from 864 to 951

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

864 15 6 14 11 19 −6 17 −13 908 15 6 14 11 19 −6 17 −13

865 6 19 11 14 18 −6 16 −9 909 6 19 11 14 18 −6 16 −9

866 7 16 9 11 14 0 17 −12 910 7 16 9 11 14 0 17 −12

867 12 14 18 11 26 −12 27 −21 911 12 14 18 11 26 −12 27 −21

868 18 13 21 9 31 −16 37 −30 912 18 13 21 9 31 −16 37 −30

869 13 11 23 −2 33 −25 41 −40 913 13 11 23 −2 33 −25 41 −40

870 13 15 32 −15 33 −22 42 −41 914 13 15 32 −15 33 −22 42 −41

871 15 16 32 −15 37 −28 48 −47 915 15 16 32 −15 37 −28 48 −47

872 12 23 34 −21 39 −30 39 −32 916 12 23 34 −21 39 −30 39 −32

873 13 23 39 −23 42 −30 46 −40 917 13 23 39 −23 42 −30 46 −40

874 15 20 42 −33 47 −42 52 −51 918 15 20 42 −33 47 −42 52 −51

875 14 26 41 −31 45 −36 46 −41 919 14 26 41 −31 45 −36 46 −41

876 14 44 46 −28 49 −34 52 −39 920 14 44 46 −28 49 −34 52 −39

877 17 40 38 −12 41 −17 43 −19 921 17 40 38 −12 41 −17 43 −19

878 17 47 21 29 32 9 32 11 922 17 47 21 29 32 9 32 11

879 24 17 45 −24 69 −71 61 −55 923 24 17 45 −24 69 −71 61 −55

880 21 21 53 −45 63 −63 56 −46 924 21 21 53 −45 63 −63 56 −46

881 25 22 48 −26 66 −64 62 −50 925 25 22 48 −26 66 −64 62 −50

882 31 27 65 −43 77 −74 81 −67 926 31 27 65 −43 77 −74 81 −67

883 22 29 43 −19 54 −39 45 −20 927 22 29 43 −19 54 −39 45 −20

884 19 35 39 −10 52 −35 35 −2 928 19 35 39 −10 52 −35 35 −2

885 14 50 30 9 41 −10 28 15 929 14 50 30 9 41 −10 28 15

886 10 57 18 26 36 0 34 1 930 10 57 18 26 36 0 34 1

887 7 63 20 27 40 −1 39 1 931 7 63 20 27 40 −1 39 1

888 −2 77 0 57 30 14 30 17 932 −2 77 0 57 30 14 30 17

889 −4 82 −14 82 28 26 20 38 933 −4 82 −14 82 28 26 20 38

890 −3 94 −5 75 23 37 18 45 934 −3 94 −5 75 23 37 18 45

891 9 69 −19 97 12 55 15 54 935 9 69 −19 97 12 55 15 54

892 −12 109 −35 125 11 65 0 79 936 −12 109 −35 125 11 65 0 79

893 36 −35 27 0 37 −33 36 −16 937 36 −35 27 0 37 −33 36 −16

894 36 −34 28 0 39 −36 37 −14 938 36 −34 28 0 39 −36 37 −14

 Rec. ITU-T H.264 (03/2009) 251

Table 9-31 – Values of variables m and n for ctxIdx from 864 to 951

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

895 32 −26 31 −4 40 −37 37 −17 939 32 −26 31 −4 40 −37 37 −17

896 37 −30 27 6 38 −30 32 1 940 37 −30 27 6 38 −30 32 1

897 44 −32 34 8 46 −33 34 15 941 44 −32 34 8 46 −33 34 15

898 34 −18 30 10 42 −30 29 15 942 34 −18 30 10 42 −30 29 15

899 34 −15 24 22 40 −24 24 25 943 34 −15 24 22 40 −24 24 25

900 40 −15 33 19 49 −29 34 22 944 40 −15 33 19 49 −29 34 22

901 33 −7 22 32 38 −12 31 16 945 33 −7 22 32 38 −12 31 16

902 35 −5 26 31 40 −10 35 18 946 35 −5 26 31 40 −10 35 18

903 33 0 21 41 38 −3 31 28 947 33 0 21 41 38 −3 31 28

904 38 2 26 44 46 −5 33 41 948 38 2 26 44 46 −5 33 41

905 33 13 23 47 31 20 36 28 949 33 13 23 47 31 20 36 28

906 23 35 16 65 29 30 27 47 950 23 35 16 65 29 30 27 47

907 13 58 14 71 25 44 21 62 951 13 58 14 71 25 44 21 62

252 Rec. ITU-T H.264 (03/2009)

Table 9-32 – Values of variables m and n for ctxIdx from 952 to 1011

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

952 −3 71 −6 76 −23 112 −24 115 982 −3 71 −6 76 −23 112 −24 115

953 −6 42 −2 44 −15 71 −22 82 983 −6 42 −2 44 −15 71 −22 82

954 −5 50 0 45 −7 61 −9 62 984 −5 50 0 45 −7 61 −9 62

955 −3 54 0 52 0 53 0 53 985 −3 54 0 52 0 53 0 53

956 −2 62 −3 64 −5 66 0 59 986 −2 62 −3 64 −5 66 0 59

957 0 58 −2 59 −11 77 −14 85 987 0 58 −2 59 −11 77 −14 85

958 1 63 −4 70 −9 80 −13 89 988 1 63 −4 70 −9 80 −13 89

959 −2 72 −4 75 −9 84 −13 94 989 −2 72 −4 75 −9 84 −13 94

960 −1 74 −8 82 −10 87 −11 92 990 −1 74 −8 82 −10 87 −11 92

961 −9 91 −17 102 −34 127 −29 127 991 −9 91 −17 102 −34 127 −29 127

962 −5 67 −9 77 −21 101 −21 100 992 −5 67 −9 77 −21 101 −21 100

963 −5 27 3 24 −3 39 −14 57 993 −5 27 3 24 −3 39 −14 57

964 −3 39 0 42 −5 53 −12 67 994 −3 39 0 42 −5 53 −12 67

965 −2 44 0 48 −7 61 −11 71 995 −2 44 0 48 −7 61 −11 71

966 0 46 0 55 −11 75 −10 77 996 0 46 0 55 −11 75 −10 77

967 −16 64 −6 59 −15 77 −21 85 997 −16 64 −6 59 −15 77 −21 85

968 −8 68 −7 71 −17 91 −16 88 998 −8 68 −7 71 −17 91 −16 88

969 −10 78 −12 83 −25 107 −23 104 999 −10 78 −12 83 −25 107 −23 104

970 −6 77 −11 87 −25 111 −15 98 1000 −6 77 −11 87 −25 111 −15 98

971 −10 86 −30 119 −28 122 −37 127 1001 −10 86 −30 119 −28 122 −37 127

972 −12 92 1 58 −11 76 −10 82 1002 −12 92 1 58 −11 76 −10 82

973 −15 55 −3 29 −10 44 −8 48 1003 −15 55 −3 29 −10 44 −8 48

974 −10 60 −1 36 −10 52 −8 61 1004 −10 60 −1 36 −10 52 −8 61

975 −6 62 1 38 −10 57 −8 66 1005 −6 62 1 38 −10 57 −8 66

976 −4 65 2 43 −9 58 −7 70 1006 −4 65 2 43 −9 58 −7 70

977 −12 73 −6 55 −16 72 −14 75 1007 −12 73 −6 55 −16 72 −14 75

978 −8 76 0 58 −7 69 −10 79 1008 −8 76 0 58 −7 69 −10 79

979 −7 80 0 64 −4 69 −9 83 1009 −7 80 0 64 −4 69 −9 83

980 −9 88 −3 74 −5 74 −12 92 1010 −9 88 −3 74 −5 74 −12 92

981 −17 110 −10 90 −9 86 −18 108 1011 −17 110 −10 90 −9 86 −18 108

 Rec. ITU-T H.264 (03/2009) 253

Table 9-33 – Values of variables m and n for ctxIdx from 1012 to 1023

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m N m n

1012 −3 70 −3 74 −2 73 −5 79 1018 −10 90 −8 87 −9 91 −11 91

1013 −8 93 −9 92 −12 104 −11 104 1019 −30 127 −23 126 −31 127 −30 127

1014 −10 90 −8 87 −9 91 −11 91 1020 −3 70 −3 74 −2 73 −5 79

1015 −30 127 −23 126 −31 127 −30 127 1021 −8 93 −9 92 −12 104 −11 104

1016 −3 70 −3 74 −2 73 −5 79 1022 −10 90 −8 87 −9 91 −11 91

1017 −8 93 −9 92 −12 104 −11 104 1023 −30 127 −23 126 −31 127 −30 127

9.3.1.2 Initialisation process for the arithmetic decoding engine

This process is invoked before decoding the first macroblock of a slice or after the decoding of any
pcm_alignment_zero_bit and all pcm_sample_luma and pcm_sample_chroma data for a macroblock of type I_PCM.

Outputs of this process are the initialised decoding engine registers codIRange and codIOffset both in 16 bit register
precision.

The status of the arithmetic decoding engine is represented by the variables codIRange and codIOffset. In the
initialisation procedure of the arithmetic decoding process, codIRange is set equal to 510 and codIOffset is set equal to
the value returned from read_bits(9) interpreted as a 9 bit binary representation of an unsigned integer with most
significant bit written first.

The bitstream shall not contain data that result in a value of codIOffset being equal to 510 or 511.
NOTE – The description of the arithmetic decoding engine in this Recommendation | International Standard utilizes 16 bit
register precision. However, a minimum register precision of 9 bits is required for storing the values of the variables codIRange
and codIOffset after invocation of the arithmetic decoding process (DecodeBin) as specified in subclause 9.3.3.2. The arithmetic
decoding process for a binary decision (DecodeDecision) as specified in subclause 9.3.3.2.1 and the decoding process for a
binary decision before termination (DecodeTerminate) as specified in subclause 9.3.3.2.4 require a minimum register precision of
9 bits for the variables codIRange and codIOffset. The bypass decoding process for binary decisions (DecodeBypass) as specified
in subclause 9.3.3.2.3 requires a minimum register precision of 10 bits for the variable codIOffset and a minimum register
precision of 9 bits for the variable codIRange.

9.3.2 Binarization process

Input to this process is a request for a syntax element.

Output of this process is the binarization of the syntax element, maxBinIdxCtx, ctxIdxOffset, and bypassFlag.

Table 9-34 specifies the type of binarization process, maxBinIdxCtx, and ctxIdxOffset associated with each syntax
element.

The specification of the unary (U) binarization process, the truncated unary (TU) binarization process, the concatenated
unary / k-th order Exp-Golomb (UEGk) binarization process, and the fixed-length (FL) binarization process are given in
subclauses 9.3.2.1 to 9.3.2.4, respectively. Other binarizations are specified in subclauses 9.3.2.5 to 9.3.2.7.

Except for I slices, the binarizations for the syntax element mb_type as specified in subclause 9.3.2.5 consist of bin
strings given by a concatenation of prefix and suffix bit strings. The UEGk binarization as specified in 9.3.2.3, which is
used for the binarization of the syntax elements mvd_lX (X = 0, 1) and coeff_abs_level_minus1, and the binarization of
the coded_block_pattern also consist of a concatenation of prefix and suffix bit strings. For these binarization processes,
the prefix and the suffix bit string are separately indexed using the binIdx variable as specified further in
subclause 9.3.3. The two sets of prefix bit strings and suffix bit strings are referred to as the binarization prefix part and
the binarization suffix part, respectively.

Associated with each binarization or binarization part of a syntax element is a specific value of the context index offset
(ctxIdxOffset) variable and a specific value of the maxBinIdxCtx variable as given in Table 9-34. When two values for
each of these variables are specified for one syntax element in Table 9-34, the value in the upper row is related to the
prefix part while the value in the lower row is related to the suffix part of the binarization of the corresponding syntax
element.

254 Rec. ITU-T H.264 (03/2009)

The use of the DecodeBypass process and the variable bypassFlag is derived as follows.

– If no value is assigned to ctxIdxOffset for the corresponding binarization or binarization part in Table 9-34 labelled
as "na", all bins of the bit strings of the corresponding binarization or of the binarization prefix/suffix part are
decoded by invoking the DecodeBypass process as specified in subclause 9.3.3.2.3. In such a case, bypassFlag is
set equal to 1, where bypassFlag is used to indicate that for parsing the value of the bin from the bitstream the
DecodeBypass process is applied.

– Otherwise, for each possible value of binIdx up to the specified value of maxBinIdxCtx given in Table 9-34, a
specific value of the variable ctxIdx is further specified in subclause 9.3.3. bypassFlag is set equal to 0.

The possible values of the context index ctxIdx are in the range 0 to 1023, inclusive. The value assigned to ctxIdxOffset
specifies the lower value of the range of ctxIdx assigned to the corresponding binarization or binarization part of a
syntax element.

ctxIdx = ctxIdxOffset = 276 is assigned to the syntax element end_of_slice_flag and the bin of mb_type, which
specifies the I_PCM macroblock type as further specified in subclause 9.3.3.1. For parsing the value of the
corresponding bin from the bitstream, the arithmetic decoding process for decisions before termination
(DecodeTerminate) as specified in subclause 9.3.3.2.4 is applied.

NOTE – The bins of mb_type in I slices and the bins of the suffix for mb_type in SI slices that correspond to the same value of
binIdx share the same ctxIdx. The last bin of the prefix of mb_type and the first bin of the suffix of mb_type in P, SP, and B
slices may share the same ctxIdx.

 Rec. ITU-T H.264 (03/2009) 255

Table 9-34 – Syntax elements and associated types of binarization, maxBinIdxCtx, and ctxIdxOffset

Syntax element Type of binarization maxBinIdxCtx ctxIdxOffset

mb_type
(SI slices only)

prefix and suffix
as specified in subclause 9.3.2.5

prefix: 0
suffix: 6

prefix: 0
suffix: 3

mb_type (I slices only) as specified in subclause 9.3.2.5 6 3

mb_skip_flag
(P, SP slices only) FL, cMax=1 0 11

mb_type (P, SP slices only) prefix and suffix
as specified in subclause 9.3.2.5

prefix: 2
suffix: 5

prefix: 14
suffix: 17

sub_mb_type[]
(P, SP slices only) as specified in subclause 9.3.2.5 2 21

mb_skip_flag
(B slices only) FL, cMax=1 0 24

mb_type (B slices only) prefix and suffix
as specified in subclause 9.3.2.5

prefix: 3
suffix: 5

prefix: 27
suffix: 32

sub_mb_type[] (B slices only) as specified in subclause 9.3.2.5 3 36

mvd_l0[][][0], mvd_l1[][][0] prefix: 4
suffix: na

prefix: 40
suffix: na (uses DecodeBypass)

mvd_l0[][][1], mvd_l1[][][1]

prefix and suffix as given by UEG3
with signedValFlag=1, uCoff=9

prefix: 4
suffix: na

prefix: 47
suffix: na (uses DecodeBypass)

ref_idx_l0, ref_idx_l1 U 2 54

mb_qp_delta as specified in subclause 9.3.2.7 2 60

intra_chroma_pred_mode TU, cMax=3 1 64

prev_intra4x4_pred_mode_flag,
prev_intra8x8_pred_mode_flag FL, cMax=1 0 68

rem_intra4x4_pred_mode,
rem_intra8x8_pred_mode FL, cMax=7 0 69

mb_field_decoding_flag FL, cMax=1 0 70

coded_block_pattern prefix and suffix
as specified in subclause 9.3.2.6

prefix: 3
suffix: 1

prefix: 73
suffix: 77

coded_block_flag FL, cMax=1 0 85

significant_coeff_flag
(frame coded blocks with ctxBlockCat < 5) FL, cMax=1 0 105

last_significant_coeff_flag
(frame coded blocks with ctxBlockCat < 5) FL, cMax=1 0 166

coeff_abs_level_minus1
(blocks with ctxBlockCat < 5)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 227
suffix: na, (uses DecodeBypass)

coeff_sign_flag FL, cMax=1 0 na, (uses DecodeBypass)

end_of_slice_flag FL, cMax=1 0 276

significant_coeff_flag
(field coded blocks with ctxBlockCat < 5) FL, cMax=1 0 277

256 Rec. ITU-T H.264 (03/2009)

Table 9-34 – Syntax elements and associated types of binarization, maxBinIdxCtx, and ctxIdxOffset

Syntax element Type of binarization maxBinIdxCtx ctxIdxOffset

last_significant_coeff_flag
(field coded blocks with ctxBlockCat < 5) FL, cMax=1 0 338

transform_size_8x8_flag FL, cMax=1 0 399

significant_coeff_flag
(frame coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 402

last_significant_coeff_flag
(frame coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 417

coeff_abs_level_minus1
(blocks with ctxBlockCat = = 5)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 426
suffix: na, (uses DecodeBypass)

significant_coeff_flag
(field coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 436

last_significant_coeff_flag
(field coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 451

coded_block_flag
(5 < ctxBlockCat < 9) FL, cMax=1 0 460

coded_block_flag
(9 < ctxBlockCat < 13) FL, cMax=1 0 472

coded_block_flag
(ctxBlockCat = = 5, 9, or 13) FL, cMax=1 0 1012

significant_coeff_flag
(frame coded blocks

with 5 < ctxBlockCat < 9)
FL, cMax=1 0 484

significant_coeff_flag
(frame coded blocks with

9 < ctxBlockCat < 13)
FL, cMax=1 0 528

last_significant_coeff_flag
(frame coded blocks with

5 < ctxBlockCat < 9)
FL, cMax=1 0 572

last_significant_coeff_flag
(frame coded blocks with

9 < ctxBlockCat < 13)
FL, cMax=1 0 616

coeff_abs_level_minus1
(blocks with 5 < ctxBlockCat < 9)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 952
suffix: na, (uses DecodeBypass)

coeff_abs_level_minus1
(blocks with 9 < ctxBlockCat < 13)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 982
suffix: na, (uses DecodeBypass)

significant_coeff_flag
(field coded blocks with 5 < ctxBlockCat < 9) FL, cMax=1 0 776

significant_coeff_flag
(field coded blocks with
9 < ctxBlockCat < 13)

FL, cMax=1 0 820

last_significant_coeff_flag
(field coded blocks with 5 < ctxBlockCat < 9) FL, cMax=1 0 864

last_significant_coeff_flag
(field coded blocks with
9 < ctxBlockCat < 13)

FL, cMax=1 0 908

 Rec. ITU-T H.264 (03/2009) 257

Table 9-34 – Syntax elements and associated types of binarization, maxBinIdxCtx, and ctxIdxOffset

Syntax element Type of binarization maxBinIdxCtx ctxIdxOffset

significant_coeff_flag
(frame coded blocks with ctxBlockCat = = 9) FL, cMax=1 0 660

significant_coeff_flag
(frame coded blocks with

ctxBlockCat = = 13)
FL, cMax=1 0 718

last_significant_coeff_flag
(frame coded blocks with ctxBlockCat = = 9) FL, cMax=1 0 690

last_significant_coeff_flag
(frame coded blocks with

ctxBlockCat = = 13)
FL, cMax=1 0 748

coeff_abs_level_minus1
(blocks with ctxBlockCat = = 9)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 708
suffix: na, (uses DecodeBypass)

coeff_abs_level_minus1
(blocks with ctxBlockCat = = 13)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 766
suffix: na, (uses DecodeBypass)

significant_coeff_flag
(field coded blocks with ctxBlockCat = = 9) FL, cMax=1 0 675

significant_coeff_flag
(field coded blocks with ctxBlockCat = = 13) FL, cMax=1 0 733

last_significant_coeff_flag
(field coded blocks with ctxBlockCat = = 9) FL, cMax=1 0 699

last_significant_coeff_flag
(field coded blocks with ctxBlockCat = = 13) FL, cMax=1 0 757

9.3.2.1 Unary (U) binarization process

Input to this process is a request for a U binarization for a syntax element.

Output of this process is the U binarization of the syntax element.

The bin string of a syntax element having (unsigned integer) value synElVal is a bit string of length synElVal + 1
indexed by binIdx. The bins for binIdx less than synElVal are equal to 1. The bin with binIdx equal to synElVal is equal
to 0.

Table 9-35 illustrates the bin strings of the unary binarization for a syntax element.

Table 9-35 – Bin string of the unary binarization (informative)

Value of syntax element Bin string

0 (I_NxN) 0

1 1 0

2 1 1 0

3 1 1 1 0

4 1 1 1 1 0

5 1 1 1 1 1 0

…

binIdx 0 1 2 3 4 5

258 Rec. ITU-T H.264 (03/2009)

9.3.2.2 Truncated unary (TU) binarization process

Input to this process is a request for a TU binarization for a syntax element and cMax.

Output of this process is the TU binarization of the syntax element.

For syntax element (unsigned integer) values less than cMax, the U binarization process as specified in
subclause 9.3.2.1 is invoked. For the syntax element value equal to cMax the bin string is a bit string of length cMax
with all bins being equal to 1.

NOTE – TU binarization is always invoked with a cMax value equal to the largest possible value of the syntax element being
decoded.

9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGk) binarization process

Input to this process is a request for a UEGk binarization for a syntax element, signedValFlag and uCoff.

Output of this process is the UEGk binarization of the syntax element.

A UEGk bin string is a concatenation of a prefix bit string and a suffix bit string. The prefix of the binarization is
specified by invoking the TU binarization process for the prefix part Min(uCoff, Abs(synElVal)) of a syntax element
value synElVal as specified in subclause 9.3.2.2 with cMax = uCoff, where uCoff > 0.

The variable k for a UEGk bin string is dependent on the syntax element for which a UEGk binarization is requested.
Table 9-34 specifies the associated types of binarization for syntax elements, including the value of k for syntax
elements that use UEGk binarization.

NOTE 1 – For the syntax elements mvd_l0[][][] and mvd_l1[][][] a UEG3 binarization is used (k is equal to 3). For the
syntax element coeff_abs_level_minus1 a UEG0 binarization is used (k is equal to 0).

The UEGk bin string is derived as follows.

– If one of the following is true, the bin string of a syntax element having value synElVal consists only of a prefix bit
string:

– signedValFlag is equal to 0 and the prefix bit string is not equal to the bit string of length uCoff with all bits
equal to 1,

– signedValFlag is equal to 1 and the prefix bit string is equal to the bit string that consists of a single bit with
value equal to 0.

– Otherwise, the bin string of the UEGk suffix part of a syntax element value synElVal is specified by a process
equivalent to the following pseudo-code with k being initialised to the value that is specified in Table 9-34 for the
requested UEGk binarization process:

if(Abs(synElVal) >= uCoff) {
 sufS = Abs(synElVal) − uCoff
 stopLoop = 0
 do {
 if(sufS >= (1 << k)) {
 put(1)
 sufS = sufS − (1<<k)
 k++
 } else {
 put(0) (9-6)
 while(k− −)
 put((sufS >> k) & 1)
 stopLoop = 1
 }
 } while(!stopLoop)
}
if(signedValFlag && synElVal ! = 0)
 if(synElVal > 0)
 put(0)
 else
 put(1)

NOTE 2 – The specification for the k-th order Exp-Golomb (EGk) code uses 1's and 0's in reverse meaning for the unary part of
the Exp-Golomb code of 0-th order as specified in subclause 9.1.

 Rec. ITU-T H.264 (03/2009) 259

9.3.2.4 Fixed-length (FL) binarization process

Input to this process is a request for a FL binarization for a syntax element and cMax.

Output of this process is the FL binarization of the syntax element.

FL binarization is constructed by using a fixedLength-bit unsigned integer bin string of the syntax element value, where
fixedLength = Ceil(Log2(cMax + 1)). The indexing of bins for the FL binarization is such that the binIdx = 0 relates
to the least significant bit with increasing values of binIdx towards the most significant bit.

9.3.2.5 Binarization process for macroblock type and sub-macroblock type

Input to this process is a request for a binarization for syntax elements mb_type or sub_mb_type[].

Output of this process is the binarization of the syntax element.

The binarization scheme for decoding of macroblock type in I slices is specified in Table 9-36.

For macroblock types in SI slices, the binarization consists of bin strings specified as a concatenation of a prefix and a
suffix bit string as follows.

The prefix bit string consists of a single bit, which is specified by b0 = ((mb_type = = SI) ? 0 : 1). For the syntax
element value for which b0 is equal to 0, the bin string only consists of the prefix bit string. For the syntax element value
for which b0 is equal to 1, the binarization is given by concatenating the prefix b0 and the suffix bit string as specified in
Table 9-36 for macroblock type in I slices indexed by subtracting 1 from the value of mb_type in SI slices.

260 Rec. ITU-T H.264 (03/2009)

Table 9-36 – Binarization for macroblock types in I slices

Value (name) of mb_type Bin string

0 (I_NxN) 0

1 (I_16x16_0_0_0) 1 0 0 0 0 0

2 (I_16x16_1_0_0) 1 0 0 0 0 1

3 (I_16x16_2_0_0) 1 0 0 0 1 0

4 (I_16x16_3_0_0) 1 0 0 0 1 1

5 (I_16x16_0_1_0) 1 0 0 1 0 0 0

6 (I_16x16_1_1_0) 1 0 0 1 0 0 1

7 (I_16x16_2_1_0) 1 0 0 1 0 1 0

8 (I_16x16_3_1_0) 1 0 0 1 0 1 1

9 (I_16x16_0_2_0) 1 0 0 1 1 0 0

10 (I_16x16_1_2_0) 1 0 0 1 1 0 1

11 (I_16x16_2_2_0) 1 0 0 1 1 1 0

12 (I_16x16_3_2_0) 1 0 0 1 1 1 1

13 (I_16x16_0_0_1) 1 0 1 0 0 0

14 (I_16x16_1_0_1) 1 0 1 0 0 1

15 (I_16x16_2_0_1) 1 0 1 0 1 0

16 (I_16x16_3_0_1) 1 0 1 0 1 1

17 (I_16x16_0_1_1) 1 0 1 1 0 0 0

18 (I_16x16_1_1_1) 1 0 1 1 0 0 1

19 (I_16x16_2_1_1) 1 0 1 1 0 1 0

20 (I_16x16_3_1_1) 1 0 1 1 0 1 1

21 (I_16x16_0_2_1) 1 0 1 1 1 0 0

22 (I_16x16_1_2_1) 1 0 1 1 1 0 1

23 (I_16x16_2_2_1) 1 0 1 1 1 1 0

24 (I_16x16_3_2_1) 1 0 1 1 1 1 1

25 (I_PCM) 1 1

binIdx 0 1 2 3 4 5 6

The binarization schemes for P macroblock types in P and SP slices and for B macroblocks in B slices are specified in
Table 9-37.

The bin string for I macroblock types in P and SP slices corresponding to mb_type values 5 to 30 consists of a
concatenation of a prefix, which consists of a single bit with value equal to 1 as specified in Table 9-37 and a suffix as
specified in Table 9-36, indexed by subtracting 5 from the value of mb_type.

mb_type equal to 4 (P_8x8ref0) is not allowed.

For I macroblock types in B slices (mb_type values 23 to 48) the binarization consists of bin strings specified as a
concatenation of a prefix bit string as specified in Table 9-37 and suffix bit strings as specified in Table 9-36, indexed
by subtracting 23 from the value of mb_type.

 Rec. ITU-T H.264 (03/2009) 261

Table 9-37 – Binarization for macroblock types in P, SP, and B slices

Slice type Value (name) of mb_type Bin string

0 (P_L0_16x16) 0 0 0

1 (P_L0_L0_16x8) 0 1 1

2 (P_L0_L0_8x16) 0 1 0

3 (P_8x8) 0 0 1

4 (P_8x8ref0) na

P, SP slice

5 to 30 (Intra, prefix only) 1

0 (B_Direct_16x16) 0

1 (B_L0_16x16) 1 0 0

2 (B_L1_16x16) 1 0 1

3 (B_Bi_16x16) 1 1 0 0 0 0

4 (B_L0_L0_16x8) 1 1 0 0 0 1

5 (B_L0_L0_8x16) 1 1 0 0 1 0

6 (B_L1_L1_16x8) 1 1 0 0 1 1

7 (B_L1_L1_8x16) 1 1 0 1 0 0

8 (B_L0_L1_16x8) 1 1 0 1 0 1

9 (B_L0_L1_8x16) 1 1 0 1 1 0

10 (B_L1_L0_16x8) 1 1 0 1 1 1

11 (B_L1_L0_8x16) 1 1 1 1 1 0

12 (B_L0_Bi_16x8) 1 1 1 0 0 0 0

13 (B_L0_Bi_8x16) 1 1 1 0 0 0 1

14 (B_L1_Bi_16x8) 1 1 1 0 0 1 0

15 (B_L1_Bi_8x16) 1 1 1 0 0 1 1

16 (B_Bi_L0_16x8) 1 1 1 0 1 0 0

17 (B_Bi_L0_8x16) 1 1 1 0 1 0 1

18 (B_Bi_L1_16x8) 1 1 1 0 1 1 0

19 (B_Bi_L1_8x16) 1 1 1 0 1 1 1

20 (B_Bi_Bi_16x8) 1 1 1 1 0 0 0

21 (B_Bi_Bi_8x16) 1 1 1 1 0 0 1

22 (B_8x8) 1 1 1 1 1 1

B slice

23 to 48 (Intra, prefix only) 1 1 1 1 0 1

binIdx 0 1 2 3 4 5 6

For P, SP, and B slices the specification of the binarization for sub_mb_type[] is given in Table 9-38.

262 Rec. ITU-T H.264 (03/2009)

Table 9-38 – Binarization for sub-macroblock types in P, SP, and B slices

Slice type Value (name) of sub_mb_type[] Bin string

0 (P_L0_8x8) 1

1 (P_L0_8x4) 0 0

2 (P_L0_4x8) 0 1 1
P, SP slice

3 (P_L0_4x4) 0 1 0

0 (B_Direct_8x8) 0

1 (B_L0_8x8) 1 0 0

2 (B_L1_8x8) 1 0 1

3 (B_Bi_8x8) 1 1 0 0 0

4 (B_L0_8x4) 1 1 0 0 1

5 (B_L0_4x8) 1 1 0 1 0

6 (B_L1_8x4) 1 1 0 1 1

7 (B_L1_4x8) 1 1 1 0 0 0

8 (B_Bi_8x4) 1 1 1 0 0 1

9 (B_Bi_4x8) 1 1 1 0 1 0

10 (B_L0_4x4) 1 1 1 0 1 1

11 (B_L1_4x4) 1 1 1 1 0

B slice

12 (B_Bi_4x4) 1 1 1 1 1

binIdx 0 1 2 3 4 5

9.3.2.6 Binarization process for coded block pattern

Input to this process is a request for a binarization for the syntax element coded_block_pattern.

Output of this process is the binarization of the syntax element.

The binarization of coded_block_pattern consists of a prefix part and (when present) a suffix part. The prefix part of the
binarization is given by the FL binarization of CodedBlockPatternLuma with cMax = 15. When ChromaArrayType is
not equal to 0 or 3, the suffix part is present and consists of the TU binarization of CodedBlockPatternChroma with
cMax = 2. The relationship between the value of the syntax element coded_block_pattern and the values of
CodedBlockPatternLuma and CodedBlockPatternChroma is given as specified in subclause 7.4.5.

9.3.2.7 Binarization process for mb_qp_delta

Input to this process is a request for a binarization for the syntax element mb_qp_delta.

Output of this process is the binarization of the syntax element.

The bin string of mb_qp_delta is derived by the U binarization of the mapped value of the syntax element mb_qp_delta,
where the assignment rule between the signed value of mb_qp_delta and its mapped value is given as specified in
Table 9-3.

9.3.3 Decoding process flow

Input to this process is a binarization of the requested syntax element, maxBinIdxCtx, bypassFlag and ctxIdxOffset as
specified in subclause 9.3.2.

Output of this process is the value of the syntax element.

This process specifies how each bit of a bit string is parsed for each syntax element.

 Rec. ITU-T H.264 (03/2009) 263

After parsing each bit, the resulting bit string is compared to all bin strings of the binarization of the syntax element and
the following applies.

– If the bit string is equal to one of the bin strings, the corresponding value of the syntax element is the output.

– Otherwise (the bit string is not equal to one of the bin strings), the next bit is parsed.

While parsing each bin, the variable binIdx is incremented by 1 starting with binIdx being set equal to 0 for the first bin.

When the binarization of the corresponding syntax element consists of a prefix and a suffix binarization part,, the
variable binIdx is set equal to 0 for the first bin of each part of the bin string (prefix part or suffix part). In this case,
after parsing the prefix bit string, the parsing process of the suffix bit string related to the binarizations specified in
subclauses 9.3.2.3 and 9.3.2.5 is invoked depending on the resulting prefix bit string as specified in subclauses 9.3.2.3
and 9.3.2.5. Note that for the binarization of the syntax element coded_block_pattern, the suffix bit string is present
regardless of the prefix bit string of length 4 as specified in subclause 9.3.2.6.

Depending on the variable bypassFlag, the following applies.

– If bypassFlag is equal to 1, the bypass decoding process as specified in subclause 9.3.3.2.3 is applied for parsing
the value of the bins from the bitstream.

– Otherwise (bypassFlag is equal to 0), the parsing of each bin is specified by the following two ordered steps:

1. Given binIdx, maxBinIdxCtx and ctxIdxOffset, ctxIdx is derived as specified in subclause 9.3.3.1.

2. Given ctxIdx, the value of the bin from the bitstream as specified in subclause 9.3.3.2 is decoded.

9.3.3.1 Derivation process for ctxIdx

Inputs to this process are binIdx, maxBinIdxCtx and ctxIdxOffset.

Output of this process is ctxIdx.

Table 9-39 shows the assignment of ctxIdx increments (ctxIdxInc) to binIdx for all ctxIdxOffset values except those
related to the syntax elements coded_block_flag, significant_coeff_flag, last_significant_coeff_flag, and
coeff_abs_level_minus1.

The ctxIdx to be used with a specific binIdx is specified by first determining the ctxIdxOffset associated with the given
bin string or part thereof. The ctxIdx is determined as follows.

– If the ctxIdxOffset is listed in Table 9-39, the ctxIdx for a binIdx is the sum of ctxIdxOffset and ctxIdxInc, which
is found in Table 9-39. When more than one value is listed in Table 9-39 for a binIdx, the assignment process for
ctxIdxInc for that binIdx is further specified in the subclauses given in parenthesis of the corresponding table entry.

– Otherwise (ctxIdxOffset is not listed in Table 9-39), the ctxIdx is specified to be the sum of the following terms:
ctxIdxOffset and ctxIdxBlockCatOffset(ctxBlockCat) as specified in Table 9-40 and ctxIdxInc(ctxBlockCat).
Subclause 9.3.3.1.3 specifies which ctxBlockCat is used. Subclause 9.3.3.1.1.9 specifies the assignment of
ctxIdxInc(ctxBlockCat) for coded_block_flag, and subclause 9.3.3.1.3 specifies the assignment of
ctxIdxInc(ctxBlockCat) for significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minus1.

All bins with binIdx greater than maxBinIdxCtx are parsed using the value of ctxIdx being assigned to binIdx equal to
maxBinIdxCtx.

All entries in Table 9-39 labelled with "na" correspond to values of binIdx that do not occur for the corresponding
ctxIdxOffset.

ctxIdx = 276 is assigned to the binIdx of mb_type indicating the I_PCM mode. For parsing the value of the
corresponding bins from the bitstream, the arithmetic decoding process for decisions before termination as specified in
subclause 9.3.3.2.4 is applied.

264 Rec. ITU-T H.264 (03/2009)

Table 9-39 – Assignment of ctxIdxInc to binIdx for all ctxIdxOffset values except those related to the syntax
elements coded_block_flag, significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minus1

binIdx
ctxIdxOffset

0 1 2 3 4 5 >= 6

0 0,1,2
(subclause 9.3.3.1.1.3) na na na na na na

3 0,1,2
(subclause 9.3.3.1.1.3) ctxIdx=276 3 4

5,6
(subclause
9.3.3.1.2)

6,7
(subclause
9.3.3.1.2)

7

11 0,1,2
(subclause 9.3.3.1.1.1) na na na na na na

14 0 1
2,3

(subclause
9.3.3.1.2)

na na na na

17 0 ctxIdx=276 1 2
2,3

(subclause
9.3.3.1.2)

3 3

21 0 1 2 na na na na

24 0,1,2
(subclause 9.3.3.1.1.1) na na na na na na

27 0,1,2
(subclause 9.3.3.1.1.3) 3

4,5
(subclause
9.3.3.1.2)

5 5 5 5

32 0 ctxIdx=276 1 2
2,3

(subclause
9.3.3.1.2)

3 3

36 0 1
2,3

(subclause
9.3.3.1.2)

3 3 3 na

40 0,1,2
(subclause 9.3.3.1.1.7) 3 4 5 6 6 6

47 0,1,2
(subclause 9.3.3.1.1.7) 3 4 5 6 6 6

54 0,1,2,3
(subclause 9.3.3.1.1.6) 4 5 5 5 5 5

60 0,1
(subclause 9.3.3.1.1.5) 2 3 3 3 3 3

64 0,1,2
(subclause 9.3.3.1.1.8) 3 3 na na na na

68 0 na na na na na na

69 0 0 0 na na na na

70 0,1,2
(subclause 9.3.3.1.1.2) na na na na na na

73 0,1,2,3
(subclause 9.3.3.1.1.4)

0,1,2,3
(subclause
9.3.3.1.1.4)

0,1,2,3
(subclause
9.3.3.1.1.4)

0,1,2,3
(subclause
9.3.3.1.1.4)

na na na

77 0,1,2,3
(subclause 9.3.3.1.1.4)

4,5,6,7
(subclause
9.3.3.1.1.4)

na na na na na

276 0 na na na na na na

399 0,1,2
(subclause 9.3.3.1.1.10) na na na na na na

 Rec. ITU-T H.264 (03/2009) 265

Table 9-40 shows the values of ctxIdxBlockCatOffset depending on ctxBlockCat for the syntax elements
coded_block_flag, significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minus1. The specification of
ctxBlockCat is given in Table 9-42.

Table 9-40 – Assignment of ctxIdxBlockCatOffset to ctxBlockCat for syntax elements coded_block_flag,
significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minus1

ctxBlockCat (as specified in Table 9-42)

Syntax element

0 1 2 3 4 5 6 7 8 9 10 11 12 13

coded_block_flag 0 4 8 12 16 0 0 4 8 4 0 4 8 8

significant_coeff_flag 0 15 29 44 47 0 0 15 29 0 0 15 29 0

last_significant_coeff_flag 0 15 29 44 47 0 0 15 29 0 0 15 29 0

Coeff_abs_level_minus1 0 10 20 30 39 0 0 10 20 0 0 10 20 0

9.3.3.1.1 Assignment process of ctxIdxInc using neighbouring syntax elements

Subclause 9.3.3.1.1.1 specifies the derivation process of ctxIdxInc for the syntax element mb_skip_flag.

Subclause 9.3.3.1.1.2 specifies the derivation process of ctxIdxInc for the syntax element mb_field_decoding_flag.

Subclause 9.3.3.1.1.3 specifies the derivation process of ctxIdxInc for the syntax element mb_type.

Subclause 9.3.3.1.1.4 specifies the derivation process of ctxIdxInc for the syntax element coded_block_pattern.

Subclause 9.3.3.1.1.5 specifies the derivation process of ctxIdxInc for the syntax element mb_qp_delta.

Subclause 9.3.3.1.1.6 specifies the derivation process of ctxIdxInc for the syntax elements ref_idx_l0 and ref_idx_l1.

Subclause 9.3.3.1.1.7 specifies the derivation process of ctxIdxInc for the syntax elements mvd_l0 and mvd_l1.

Subclause 9.3.3.1.1.8 specifies the derivation process of ctxIdxInc for the syntax element intra_chroma_pred_mode.

Subclause 9.3.3.1.1.9 specifies the derivation process of ctxIdxInc for the syntax element coded_block_flag.

Subclause 9.3.3.1.1.10 specifies the derivation process of ctxIdxInc for the syntax element transform_size_8x8_flag.

9.3.3.1.1.1 Derivation process of ctxIdxInc for the syntax element mb_skip_flag

Output of this process is ctxIdxInc.

When MbaffFrameFlag is equal to 1 and mb_field_decoding_flag has not been decoded (yet) for the current
macroblock pair with top macroblock address 2 * (CurrMbAddr / 2), the inference rule for the syntax element
mb_field_decoding_flag as specified in subclause 7.4.4 is applied.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

– If mbAddrN is not available or mb_skip_flag for the macroblock mbAddrN is equal to 1, condTermFlagN is set
equal to 0.

– Otherwise (mbAddrN is available and mb_skip_flag for the macroblock mbAddrN is equal to 0), condTermFlagN
is set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB (9-7)

9.3.3.1.1.2 Derivation process of ctxIdxInc for the syntax element mb_field_decoding_flag

Output of this process is ctxIdxInc.

266 Rec. ITU-T H.264 (03/2009)

The derivation process for neighbouring macroblock addresses and their availability in MBAFF frames as specified in
subclause 6.4.9 is invoked and the output is assigned to mbAddrA and mbAddrB.

When both macroblocks mbAddrN and mbAddrN + 1 have mb_type equal to P_Skip or B_Skip, the inference rule for
the syntax element mb_field_decoding_flag as specified in subclause 7.4.4 is applied for the macroblock mbAddrN.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

– If any of the following conditions is true, condTermFlagN is set equal to 0:

– mbAddrN is not available,

– the macroblock mbAddrN is a frame macroblock.

– Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB (9-8)

9.3.3.1.1.3 Derivation process of ctxIdxInc for the syntax element mb_type

Input to this process is ctxIdxOffset.

Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

– If any of the following conditions is true, condTermFlagN is set equal to 0:

– mbAddrN is not available,

– ctxIdxOffset is equal to 0 and mb_type for the macroblock mbAddrN is equal to SI,

– ctxIdxOffset is equal to 3 and mb_type for the macroblock mbAddrN is equal to I_NxN,

– ctxIdxOffset is equal to 27 and mb_type for the macroblock mbAddrN is equal to P_Skip, B_Skip, or
B_Direct_16x16.

– Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + condTermFlagB (9-9)

9.3.3.1.1.4 Derivation process of ctxIdxInc for the syntax element coded_block_pattern

Inputs to this process are ctxIdxOffset and binIdx.

Output of this process is ctxIdxInc.

Depending on the value of the variable ctxIdxOffset, the following ordered steps are specified:

– If ctxIdxOffset is equal to 73, the following applies

1. The derivation process for neighbouring 8x8 luma blocks specified in subclause 6.4.10.2 is invoked with
luma8x8BlkIdx = binIdx as input and the output is assigned to mbAddrA, mbAddrB, luma8x8BlkIdxA, and
luma8x8BlkIdxB.

2. Let the variable condTermFlagN (with N being either A or B) be derived as follows.

– If any of the following conditions are true, condTermFlagN is set equal to 0:

– mbAddrN is not available,

– mb_type for the macroblock mbAddrN is equal to I_PCM,

– the macroblock mbAddrN is not the current macroblock CurrMbAddr and the macroblock
mbAddrN does not have mb_type equal to P_Skip or B_Skip, and

 Rec. ITU-T H.264 (03/2009) 267

((CodedBlockPatternLuma >> luma8x8BlkIdxN) & 1) is not equal to 0 for the value of
CodedBlockPatternLuma for the macroblock mbAddrN,

– the macroblock mbAddrN is the current macroblock CurrMbAddr and the prior decoded bin value
bk of coded_block_pattern with k = luma8x8BlkIdxN is not equal to 0.

– Otherwise, condTermFlagN is set equal to 1.

3. The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + 2 * condTermFlagB (9-10)

– Otherwise (ctxIdxOffset is equal to 77), the following ordered steps are specified:

1. The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the
output is assigned to mbAddrA and mbAddrB.

2. Let the variable condTermFlagN (with N being either A or B) be derived as follows.

– If mbAddrN is available and mb_type for the macroblock mbAddrN is equal to I_PCM, condTermFlagN
is set equal to 1.

– Otherwise, if any of the following conditions is true, condTermFlagN is set equal to 0:

– mbAddrN is not available or the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

– binIdx is equal to 0 and CodedBlockPatternChroma for the macroblock mbAddrN is equal to 0,

– binIdx is equal to 1 and CodedBlockPatternChroma for the macroblock mbAddrN is not equal to 2.

– Otherwise, condTermFlagN is set equal to 1.

3. The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + 2 * condTermFlagB + ((binIdx = = 1) ? 4 : 0) (9-11)

NOTE – When a macroblock is coded in Intra_16x16 macroblock prediction mode, the values of CodedBlockPatternLuma and
CodedBlockPatternChroma for the macroblock are derived from mb_type as specified in Table 7-11.

9.3.3.1.1.5 Derivation process of ctxIdxInc for the syntax element mb_qp_delta

Output of this process is ctxIdxInc.

Let prevMbAddr be the macroblock address of the macroblock that precedes the current macroblock in decoding order.
When the current macroblock is the first macroblock of a slice, prevMbAddr is marked as not available.

Let the variable ctxIdxInc be derived as follows.

– If any of the following conditions is true, ctxIdxInc is set equal to 0:

– prevMbAddr is not available or the macroblock prevMbAddr has mb_type equal to P_Skip or B_Skip,

– mb_type of the macroblock prevMbAddr is equal to I_PCM,

– The macroblock prevMbAddr is not coded in Intra_16x16 macroblock prediction mode and both
CodedBlockPatternLuma and CodedBlockPatternChroma for the macroblock prevMbAddr are equal to 0,

– mb_qp_delta for the macroblock prevMbAddr is equal to 0.

– Otherwise, ctxIdxInc is set equal to 1.

9.3.3.1.1.6 Derivation process of ctxIdxInc for the syntax elements ref_idx_l0 and ref_idx_l1

Input to this process is mbPartIdx.

Output of this process is ctxIdxInc.

The interpretation of ref_idx_lX and Pred_LX within this subclause is specified as follows.

– If this process is invoked for the derivation of ref_idx_l0, ref_idx_lX is interpreted as ref_idx_l0 and Pred_LX is
interpreted as Pred_L0.

– Otherwise (this process is invoked for the derivation of ref_idx_l1), ref_idx_lX is interpreted as ref_idx_l1 and
Pred_LX is interpreted as Pred_L1.

268 Rec. ITU-T H.264 (03/2009)

The derivation process for neighbouring partitions specified in subclause 6.4.10.7 is invoked with mbPartIdx,
currSubMbType set equal to sub_mb_type[mbPartIdx], and subMbPartIdx = 0 as input and the output is assigned to
mbAddrA\mbPartIdxA and mbAddrB\mbPartIdxB.

With ref_idx_lX[mbPartIdxN] (with N being either A or B) specifying the syntax element for the macroblock
mbAddrN, let the variable refIdxZeroFlagN be derived as follows.

– If MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and the macroblock mbAddrN is a
field macroblock,

refIdxZeroFlagN = ((ref_idx_lX[mbPartIdxN] > 1) ? 0 : 1) (9-12)

– Otherwise,

refIdxZeroFlagN = ((ref_idx_lX[mbPartIdxN] > 0) ? 0 : 1) (9-13)

Let the variable predModeEqualFlagN be specified as follows.

– If the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies.

– If SubMbPredMode(sub_mb_type[mbPartIdxN]) is not equal to Pred_LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where sub_mb_type specifies the syntax element list for the
macroblock mbAddrN.

– Otherwise, predModeEqualFlagN is set equal to 1.

– Otherwise, the following applies.

– If MbPartPredMode(mb_type, mbPartIdxN) is not equal to Pred_LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where mb_type specifies the syntax element for the macroblock
mbAddrN.

– Otherwise, predModeEqualFlagN is set equal to 1.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

– If any of the following conditions is true, condTermFlagN is set equal to 0:

– mbAddrN is not available,

– the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

– the macroblock mbAddrN is coded in an Intra macroblock prediction mode,

– predModeEqualFlagN is equal to 0,

– refIdxZeroFlagN is equal to 1.

– Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived as

ctxIdxInc = condTermFlagA + 2 * condTermFlagB (9-14)

9.3.3.1.1.7 Derivation process of ctxIdxInc for the syntax elements mvd_l0 and mvd_l1

Inputs to this process are mbPartIdx, subMbPartIdx, and ctxIdxOffset.

Output of this process is ctxIdxInc.

The interpretation of mvd_lX and Pred_LX within this subclause is specified as follows.

– If this process is invoked for the derivation of mvd_l0, mvd_lX is interpreted as mvd_l0 and Pred_LX is
interpreted as Pred_L0.

– Otherwise (this process is invoked for the derivation of mvd_l1), mvd_lX is interpreted as mvd_l1 and Pred_LX is
interpreted as Pred_L1.

The derivation process for neighbouring partitions specified in subclause 6.4.10.7 is invoked with mbPartIdx,
currSubMbType set equal to sub_mb_type[mbPartIdx], and subMbPartIdx as input and the output is assigned to
mbAddrA\mbPartIdxA\subMbPartIdxA and mbAddrB\mbPartIdxB\subMbPartIdxB.

 Rec. ITU-T H.264 (03/2009) 269

Let the variable compIdx be derived as follows.

– If ctxIdxOffset is equal to 40, compIdx is set equal to 0.

– Otherwise (ctxIdxOffset is equal to 47), compIdx is set equal to 1.

Let the variable predModeEqualFlagN be specified as follows.

– If the macroblock mbAddrN has mb_type equal to P_8x8 or B_8x8, the following applies.

– If SubMbPredMode(sub_mb_type[mbPartIdxN]) is not equal to Pred_LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where sub_mb_type specifies the syntax element list for the
macroblock mbAddrN.

– Otherwise, predModeEqualFlagN is set equal to 1.

– Otherwise, the following applies.

– If MbPartPredMode(mb_type, mbPartIdxN) is not equal to Pred_LX and not equal to BiPred,
predModeEqualFlagN is set equal to 0, where mb_type specifies the syntax element for the macroblock
mbAddrN.

– Otherwise, predModeEqualFlagN is set equal to 1.

Let the variable absMvdCompN (with N being either A or B) be derived as follows.

– If any of the following conditions is true, absMvdCompN is set equal to 0:

– mbAddrN is not available,

– the macroblock mbAddrN has mb_type equal to P_Skip or B_Skip,

– the macroblock mbAddrN is coded in an Intra macroblock prediction mode,

– predModeEqualFlagN is equal to 0.

– Otherwise, the following applies

– If compIdx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a frame macroblock, and
the macroblock mbAddrN is a field macroblock,

absMvdCompN = Abs(mvd_lX[mbPartIdxN][subMbPartIdxN][compIdx]) * 2 (9-15)

– Otherwise, if compIdx is equal to 1, MbaffFrameFlag is equal to 1, the current macroblock is a field
macroblock, and the macroblock mbAddrN is a frame macroblock,

absMvdCompN = Abs(mvd_lX[mbPartIdxN][subMbPartIdxN][compIdx]) / 2 (9-16)

– Otherwise,

absMvdCompN = Abs(mvd_lX[mbPartIdxN][subMbPartIdxN][compIdx]) (9-17)

The variable ctxIdxInc is derived as follows

– If (absMvdCompA + absMvdCompB) is less than 3, ctxIdxInc is set equal to 0.

– Otherwise, if (absMvdCompA + absMvdCompB) is greater than 32, ctxIdxInc is set equal to 2.

– Otherwise ((absMvdCompA + absMvdCompB) is in the range of 3 to 32, inclusive), ctxIdxInc is set equal to 1.

9.3.3.1.1.8 Derivation process of ctxIdxInc for the syntax element intra_chroma_pred_mode

Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being replaced by either A or B) be derived as follows.

– If any of the following conditions is true, condTermFlagN is set equal to 0:

– mbAddrN is not available,

270 Rec. ITU-T H.264 (03/2009)

– The macroblock mbAddrN is coded in an Inter macroblock prediction mode,

– mb_type for the macroblock mbAddrN is equal to I_PCM,

– intra_chroma_pred_mode for the macroblock mbAddrN is equal to 0.

– Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB (9-18)

9.3.3.1.1.9 Derivation process of ctxIdxInc for the syntax element coded_block_flag

Input to this process is ctxBlockCat and additional input is specified as follows.

– If ctxBlockCat is equal to 0, 6, or 10, no additional input.

– Otherwise, if ctxBlockCat is equal to 1 or 2, luma4x4BlkIdx.

– Otherwise, if ctxBlockCat is equal to 3, the chroma component index iCbCr.

– Otherwise, if ctxBlockCat is equal to 4, chroma4x4BlkIdx and the chroma component index iCbCr.

– Otherwise, if ctxBlockCat is equal to 5, luma8x8BlkIdx.

– Otherwise, if ctxBlockCat is equal to 7 or 8, cb4x4BlkIdx.

– Otherwise, if ctxBlockCat is equal to 9, cb8x8BlkIdx.

– Otherwise, if ctxBlockCat is equal to 11 or 12, cr4x4BlkIdx.

– Otherwise (ctxBlockCat is equal to 13), cr8x8BlkIdx.

Output of this process is ctxIdxInc(ctxBlockCat).

Let the variable transBlockN (with N being either A or B) be derived as follows.

– If ctxBlockCat is equal to 0, 6, or 10, the following ordered steps are specified:

1. The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the
output is assigned to mbAddrN (with N being either A or B).

2. The variable transBlockN is derived as follows.

– If mbAddrN is available and the macroblock mbAddrN is coded in Intra_16x16 macroblock prediction
mode, the following applies.

– If ctxBlockCat is equal to 0, the luma DC block of macroblock mbAddrN is assigned to
transBlockN.

– Otherwise, if ctxBlockCat is equal to 6, the Cb DC block of macroblock mbAddrN is assigned to
transBlockN.

– Otherwise (ctxBlockCat is equal to 10), the Cr DC block of macroblock mbAddrN is assigned to
transBlockN.

– Otherwise, transBlockN is marked as not available.

– Otherwise, if ctxBlockCat is equal to 1 or 2, the following ordered steps are specified:

1. The derivation process for neighbouring 4x4 luma blocks specified in subclause 6.4.10.4 is invoked with
luma4x4BlkIdx as input and the output is assigned to mbAddrN, luma4x4BlkIdxN (with N being either A
or B).

2. The variable transBlockN is derived as follows.

– If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, ((CodedBlockPatternLuma >> (luma4x4BlkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size_8x8_flag is equal to 0 for the macroblock mbAddrN, the
4x4 luma block with index luma4x4BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

– Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip
or B_Skip, ((CodedBlockPatternLuma >> (luma4x4BlkIdxN >>2)) & 1) is not equal to 0 for the

 Rec. ITU-T H.264 (03/2009) 271

macroblock mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the
8x8 luma block with index (luma4x4BlkIdxN >> 2) of macroblock mbAddrN is assigned to
transBlockN.

– Otherwise, transBlockN is marked as not available.

– Otherwise, if ctxBlockCat is equal to 3, the following ordered steps are specified:

1. The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the
output is assigned to mbAddrN (with N being either A or B).

2. The variable transBlockN is derived as follows.

– If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, and CodedBlockPatternChroma is not equal to 0 for the macroblock mbAddrN, the chroma DC
block of chroma component iCbCr of macroblock mbAddrN is assigned to transBlockN.

– Otherwise, transBlockN is marked as not available.

– Otherwise, if ctxBlockCat is equal to 4, the following ordered steps are specified:

1. The derivation process for neighbouring 4x4 chroma blocks specified in subclause 6.4.10.5 is invoked with
chroma4x4BlkIdx as input and the output is assigned to mbAddrN, chroma4x4BlkIdxN (with N being either
A or B).

2. The variable transBlockN is derived as follows.

– If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, and CodedBlockPatternChroma is equal to 2 for the macroblock mbAddrN, the 4x4 chroma
block with chroma4x4BlkIdxN of the chroma component iCbCr of macroblock mbAddrN is assigned to
transBlockN.

– Otherwise, transBlockN is marked as not available.

– Otherwise, if ctxBlockCat is equal to 5, the following ordered steps are specified:

1. The derivation process for neighbouring 8x8 luma blocks specified in subclause 6.4.10.2 is invoked with
luma8x8BlkIdx as input and the output is assigned to mbAddrN, luma8x8BlkIdxN (with N being either A
or B).

2. The variable transBlockN is derived as follows.

– If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, ((CodedBlockPatternLuma >>luma8x8BlkIdx) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the 8x8 luma
block with index luma8x8BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

– Otherwise, transBlockN is marked as not available.

– Otherwise, if ctxBlockCat is equal to7 or 8, the following ordered steps are specified:

1. The derivation process for neighbouring 4x4 Cb blocks specified in subclause 6.4.10.5 is invoked with
cb4x4BlkIdx as input and the output is assigned to mbAddrN, cb4x4BlkIdxN (with N being either A or B).

2. The variable transBlockN is derived as follows.

– If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, ((CodedBlockPatternLuma >> (cb4x4BlkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size_8x8_flag is equal to 0 for the macroblock mbAddrN, the
4x4 Cb block with index cb4x4BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

– Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip
or B_Skip, ((CodedBlockPatternLuma >> (cb4x4BlkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the
8x8 Cb block with index (cb4x4BlkIdxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

– Otherwise, transBlockN is marked as not available.

– Otherwise, if ctxBlockCat is equal to 9, the following ordered steps are specified:

1. The derivation process for neighbouring 8x8 Cb blocks specified in subclause 6.4.10.3 is invoked with
cb8x8BlkIdx as input and the output is assigned to mbAddrN, cb8x8BlkIdxN (with N being either A or B).

272 Rec. ITU-T H.264 (03/2009)

2. The variable transBlockN is derived as follows.

– If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, ((CodedBlockPatternLuma >>cb8x8BlkIdx) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cb block
with index cb8x8BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

– Otherwise, transBlockN is marked as not available.

– Otherwise, if ctxBlockCat is equal to 11 or 12, the following ordered steps are specified:

1. The derivation process for neighbouring 4x4 Cr blocks specified in subclause 6.4.10.5 is invoked with
cr4x4BlkIdx as input and the output is assigned to mbAddrN, cr4x4BlkIdxN (with N being either A or B).

2. The variable transBlockN is derived as follows.

– If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM, ((CodedBlockPatternLuma >> (cr4x4BlkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size_8x8_flag is equal to 0 for the macroblock mbAddrN, the
4x4 Cr block with index cr4x4BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

– Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip
or B_Skip, ((CodedBlockPatternLuma >> (cr4x4BlkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the
8x8 Cr block with index (cr4x4BlkIdxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

– Otherwise, transBlockN is marked as not available.

– Otherwise (ctxBlockCat is equal to 13), the following ordered steps are specified:

1. The derivation process for neighbouring 8x8 Cr blocks specified in subclause 6.4.10.3 is invoked with
cr8x8BlkIdx as input and the output is assigned to mbAddrN, cr8x8BlkIdxN (with N being either A or B).

2. The variable transBlockN is derived as follows.

– If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip, or
I_PCM,, ((CodedBlockPatternLuma >>cr8x8BlkIdx) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cr block
with index cr8x8BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

– Otherwise, transBlockN is marked as not available.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

– If any of the following conditions is true, condTermFlagN is set equal to 0:

– mbAddrN is not available and the current macroblock is coded in an Inter macroblock prediction mode,

– mbAddrN is available and transBlockN is not available and mb_type for the macroblock mbAddrN is not
equal to I_PCM,

– The current macroblock is coded in an Intra macroblock prediction mode, constrained_intra_pred_flag is
equal to 1, the macroblock mbAddrN is available and coded in an Inter macroblock prediction mode, and
slice data partitioning is in use (nal_unit_type is in the range of 2 through 4, inclusive).

– Otherwise, if any of the following conditions is true, condTermFlagN is set equal to 1:

– mbAddrN is not available and the current macroblock is coded in an Intra macroblock prediction mode,

– mb_type for the macroblock mbAddrN is equal to I_PCM.

– Otherwise, condTermFlagN is set equal to the value of the coded_block_flag of the transform block transBlockN
that was decoded for the macroblock mbAddrN.

The variable ctxIdxInc(ctxBlockCat) is derived by

ctxIdxInc(ctxBlockCat) = condTermFlagA + 2 * condTermFlagB (9-19)

9.3.3.1.1.10 Derivation process of ctxIdxInc for the syntax element transform_size_8x8_flag

Output of this process is ctxIdxInc.

 Rec. ITU-T H.264 (03/2009) 273

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

– If any of the following conditions is true, condTermFlagN is set equal to 0:

– mbAddrN is not available,

– transform_size_8x8_flag for the macroblock mbAddrN is equal to 0.

– Otherwise, condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB (9-20)

9.3.3.1.2 Assignment process of ctxIdxInc using prior decoded bin values

Inputs to this process are ctxIdxOffset and binIdx.

Output of this process is ctxIdxInc.

Table 9-41 contains the specification of ctxIdxInc for the given values of ctxIdxOffset and binIdx.

For each value of ctxIdxOffset and binIdx, ctxIdxInc is derived by using some of the values of prior decoded bin values
(b0, b1, b2,…, bk), where the value of the index k is less than the value of binIdx.

Table 9-41 – Specification of ctxIdxInc for specific values of ctxIdxOffset and binIdx

Value (name) of ctxIdxOffset binIdx ctxIdxInc

4 (b3 != 0) ? 5: 6
3

5 (b3 != 0) ? 6: 7

14 2 (b1 != 1) ? 2: 3

17 4 (b3 != 0) ? 2: 3

27 2 (b1 != 0) ? 4: 5

32 4 (b3 != 0) ? 2: 3

36 2 (b1 != 0) ? 2: 3

9.3.3.1.3 Assignment process of ctxIdxInc for syntax elements significant_coeff_flag, last_significant_coeff_flag,
and coeff_abs_level_minus1

Inputs to this process are ctxIdxOffset and binIdx.

Output of this process is ctxIdxInc.

The assignment process of ctxIdxInc for syntax elements significant_coeff_flag, last_significant_coeff_flag, and
coeff_abs_level_minus1 as well as for coded_block_flag depends on categories of different blocks denoted by the
variable ctxBlockCat. The specification of these block categories is given in Table 9-42.

274 Rec. ITU-T H.264 (03/2009)

Table 9-42 – Specification of ctxBlockCat for the different blocks

Block description maxNumCoeff ctxBlockCat

block of luma DC transform coefficient levels
(i.e., list Intra16x16DCLevel as described in subclause 7.4.5.3) 16 0

block of luma AC transform coefficient levels
(i.e., list Intra16x16ACLevel[i] as described in subclause 7.4.5.3) 15 1

block of 16 luma transform coefficient levels
(i.e., list LumaLevel[i] as described in subclause 7.4.5.3) 16 2

block of chroma DC transform coefficient levels when ChromaArrayType is equal to 1 or 2
(i.e., list ChromaDCLevel as described in subclause 7.4.5.3) 4 * NumC8x8 3

block of chroma AC transform coefficient levels when ChromaArrayType is equal to 1 or 2
(i.e., list ChromaACLevel as described in subclause 7.4.5.3) 15 4

block of 64 luma transform coefficient levels
(i.e., list LumaLevel8x8[i] as described in subclause 7.4.5.3) 64 5

block of Cb DC transform coefficient levels when ChromaArrayType is equal to 3
(i.e., list CbIntra16x16DCLevel as described in subclause 7.4.5.3) 16 6

block of Cb AC transform coefficient levels when ChromaArrayType is equal to 3
(i.e., list CbIntra16x16ACLevel[i] as described in subclause 7.4.5.3) 15 7

block of 16 Cb transform coefficient levels when ChromaArrayType is equal to 3
(i.e., list CbLevel[i] as described in subclause 7.4.5.3) 16 8

block of 64 Cb transform coefficient levels when ChromaArrayType is equal to 3
(i.e., list CbLevel8x8[i] as described in subclause 7.4.5.3) 64 9

block of Cr DC transform coefficient levels when ChromaArrayType is equal to 3
(i.e., list CrIntra16x16DCLevel as described in subclause 7.4.5.3) 16 10

block of Cr AC transform coefficient levels when ChromaArrayType is equal to 3
(i.e., list CrIntra16x16ACLevel[i] as described in subclause 7.4.5.3) 15 11

block of 16 Cr transform coefficient levels when ChromaArrayType is equal to 3
(i.e., list CrLevel[i] as described in subclause 7.4.5.3) 16 12

block of 64 Cr transform coefficient levels when ChromaArrayType is equal to 3
(i.e., list CrLevel8x8[i] as described in subclause 7.4.5.3) 64 13

Let the variable levelListIdx be set equal to the index of the list of transform coefficient levels as specified in
subclause 7.4.5.3.

For the syntax elements significant_coeff_flag and last_significant_coeff_flag in blocks with ctxBlockCat not equal
to 3, 5, 9, and 13, the variable ctxIdxInc is derived by

ctxIdxInc = levelListIdx (9-21)

where levelListIdx ranges from 0 to maxNumCoeff − 2, inclusive.

For the syntax elements significant_coeff_flag and last_significant_coeff_flag in blocks with ctxBlockCat = = 3, the
variable ctxIdxInc is derived by

ctxIdxInc = Min(levelListIdx / NumC8x8, 2) (9-22)

where levelListIdx ranges from 0 to 4 * NumC8x8 − 2, inclusive.

For the syntax elements significant_coeff_flag and last_significant_coeff_flag in 8x8 luma, Cb, or Cr blocks with
ctxBlockCat = = 5, 9, or 13, Table 9-43 contains the specification of ctxIdxInc for the given values of levelListIdx,
where levelListIdx ranges from 0 to 62, inclusive.

 Rec. ITU-T H.264 (03/2009) 275

Table 9-43 – Mapping of scanning position to ctxIdxInc for ctxBlockCat = = 5, 9, or 13

le
ve

lL
is

tI
dx

ct
xI

dx
In

c
fo

r
si

gn
ifi

ca
nt

_c
oe

ff
_f

la
g

(f
ra

m
e

co
de

d
m

ac
ro

bl
oc

ks
)

ct
xI

dx
In

c
fo

r
si

gn
ifi

ca
nt

_c
oe

ff
_f

la
g

(f
ie

ld
 c

od
ed

 m
ac

ro
bl

oc
ks

)

ct
xI

dx
In

c
fo

r
la

st
_s

ig
ni

fic
an

t_
co

ef
f_

fla
g

le
ve

lL
is

tI
dx

ct
xI

dx
In

c
fo

r
si

gn
ifi

ca
nt

_c
oe

ff
_f

la
g

(f
ra

m
e

co
de

d
m

ac
ro

bl
oc

ks
)

ct
xI

dx
In

c
fo

r
si

gn
ifi

ca
nt

_c
oe

ff
_f

la
g

(f
ie

ld
 c

od
ed

 m
ac

ro
bl

oc
ks

)

ct
xI

dx
In

c
fo

r
la

st
_s

ig
ni

fic
an

t_
co

ef
f_

fla
g

0 0 0 0 32 7 9 3

1 1 1 1 33 6 9 3

2 2 1 1 34 11 10 3

3 3 2 1 35 12 10 3

4 4 2 1 36 13 8 3

5 5 3 1 37 11 11 3

6 5 3 1 38 6 12 3

7 4 4 1 39 7 11 3

8 4 5 1 40 8 9 4

9 3 6 1 41 9 9 4

10 3 7 1 42 14 10 4

11 4 7 1 43 10 10 4

12 4 7 1 44 9 8 4

13 4 8 1 45 8 13 4

14 5 4 1 46 6 13 4

15 5 5 1 47 11 9 4

16 4 6 2 48 12 9 5

17 4 9 2 49 13 10 5

18 4 10 2 50 11 10 5

19 4 10 2 51 6 8 5

20 3 8 2 52 9 13 6

21 3 11 2 53 14 13 6

22 6 12 2 54 10 9 6

23 7 11 2 55 9 9 6

24 7 9 2 56 11 10 7

25 7 9 2 57 12 10 7

26 8 10 2 58 13 14 7

27 9 10 2 59 11 14 7

276 Rec. ITU-T H.264 (03/2009)

Table 9-43 – Mapping of scanning position to ctxIdxInc for ctxBlockCat = = 5, 9, or 13

le
ve

lL
is

tI
dx

ct
xI

dx
In

c
fo

r
si

gn
ifi

ca
nt

_c
oe

ff
_f

la
g

(f
ra

m
e

co
de

d
m

ac
ro

bl
oc

ks
)

ct
xI

dx
In

c
fo

r
si

gn
ifi

ca
nt

_c
oe

ff
_f

la
g

(f
ie

ld
 c

od
ed

 m
ac

ro
bl

oc
ks

)

ct
xI

dx
In

c
fo

r
la

st
_s

ig
ni

fic
an

t_
co

ef
f_

fla
g

le
ve

lL
is

tI
dx

ct
xI

dx
In

c
fo

r
si

gn
ifi

ca
nt

_c
oe

ff
_f

la
g

(f
ra

m
e

co
de

d
m

ac
ro

bl
oc

ks
)

ct
xI

dx
In

c
fo

r
si

gn
ifi

ca
nt

_c
oe

ff
_f

la
g

(f
ie

ld
 c

od
ed

 m
ac

ro
bl

oc
ks

)

ct
xI

dx
In

c
fo

r
la

st
_s

ig
ni

fic
an

t_
co

ef
f_

fla
g

28 10 8 2 60 14 14 8

29 9 11 2 61 10 14 8

30 8 12 2 62 12 14 8

31 7 11 2

Let numDecodAbsLevelEq1 denote the accumulated number of decoded transform coefficient levels with absolute
value equal to 1, and let numDecodAbsLevelGt1 denote the accumulated number of decoded transform coefficient
levels with absolute value greater than 1. Both numbers are related to the same transform coefficient block, where the
current decoding process takes place. Then, for decoding of coeff_abs_level_minus1, ctxIdxInc for
coeff_abs_level_minus1 is specified depending on binIdx as follows.

– If binIdx is equal to 0, ctxIdxInc is derived by

ctxIdxInc = ((numDecodAbsLevelGt1 != 0) ? 0: Min(4, 1 + numDecodAbsLevelEq1)) (9-23)

– Otherwise (binIdx is greater than 0), ctxIdxInc is derived by

ctxIdxInc = 5 + Min(4 − ((ctxBlockCat = = 3) ? 1 : 0), numDecodAbsLevelGt1) (9-24)

9.3.3.2 Arithmetic decoding process

Inputs to this process are the bypassFlag, ctxIdx as derived in subclause 9.3.3.1, and the state variables codIRange and
codIOffset of the arithmetic decoding engine.

Output of this process is the value of the bin.

Figure 9-2 illustrates the whole arithmetic decoding process for a single bin. For decoding the value of a bin, the context
index ctxIdx is passed to the arithmetic decoding process DecodeBin(ctxIdx), which is specified as follows.

– If bypassFlag is equal to 1, DecodeBypass() as specified in subclause 9.3.3.2.3 is invoked.

– Otherwise, if bypassFlag is equal to 0 and ctxIdx is equal to 276, DecodeTerminate() as specified in
subclause 9.3.3.2.4 is invoked.

– Otherwise (bypassFlag is equal to 0 and ctxIdx is not equal to 276), DecodeDecision() as specified in
subclause 9.3.3.2.1 is applied.

 Rec. ITU-T H.264 (03/2009) 277

Done

DecodeBin(ctxIdx)

DecodeBypass

Yes

No

DecodeDecision(ctxIdx)

ctxIdx==276?
Yes

DecodeTerminateNo

bypassFlag
 == 1?

Figure 9-2 – Overview of the arithmetic decoding process for a single bin (informative)

NOTE – Arithmetic coding is based on the principle of recursive interval subdivision. Given a probability estimation p(0) and
p(1) = 1 − p(0) of a binary decision (0, 1), an initially given code sub-interval with the range codIRange will be subdivided
into two sub-intervals having range p(0) * codIRange and codIRange − p(0) * codIRange, respectively. Depending on the
decision, which has been observed, the corresponding sub-interval will be chosen as the new code interval, and a binary code
string pointing into that interval will represent the sequence of observed binary decisions. It is useful to distinguish between the
most probable symbol (MPS) and the least probable symbol (LPS), so that binary decisions have to be identified as either MPS or
LPS, rather than 0 or 1. Given this terminology, each context is specified by the probability pLPS of the LPS and the value of MPS
(valMPS), which is either 0 or 1.
The arithmetic core engine in this Recommendation | International Standard has three distinct properties:

– The probability estimation is performed by means of a finite-state machine with a table-based transition process between
64 different representative probability states { pLPS(pStateIdx) | 0 <= pStateIdx < 64 } for the LPS probability pLPS. The
numbering of the states is arranged in such a way that the probability state with index pStateIdx = 0 corresponds to an LPS
probability value of 0.5, with decreasing LPS probability towards higher state indices.

– The range codIRange representing the state of the coding engine is quantised to a small set {Q1,…,Q4} of pre-set
quantisation values prior to the calculation of the new interval range. Storing a table containing all 64x4 pre-computed
product values of Qi * pLPS(pStateIdx) allows a multiplication-free approximation of the product
codIRange * pLPS(pStateIdx).

– For syntax elements or parts thereof for which an approximately uniform probability distribution is assumed to be given a
separate simplified encoding and decoding bypass process is used.

9.3.3.2.1 Arithmetic decoding process for a binary decision

Inputs to this process are ctxIdx, codIRange, and codIOffset.

Outputs of this process are the decoded value binVal, and the updated variables codIRange and codIOffset.

Figure 9-3 shows the flowchart for decoding a single decision (DecodeDecision):

1. The value of the variable codIRangeLPS is derived as follows.

– Given the current value of codIRange, the variable qCodIRangeIdx is derived by

qCodIRangeIdx =(codIRange >> 6) & 3 (9-25)

– Given qCodIRangeIdx and pStateIdx associated with ctxIdx, the value of the variable rangeTabLPS as
specified in Table 9-44 is assigned to codIRangeLPS:

codIRangeLPS = rangeTabLPS[pStateIdx][qCodIRangeIdx] (9-26)

278 Rec. ITU-T H.264 (03/2009)

2. The variable codIRange is set equal to codIRange − codIRangeLPS and the following applies.

– If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 − valMPS,
codIOffset is decremented by codIRange, and codIRange is set equal to codIRangeLPS.

– Otherwise, the variable binVal is set equal to valMPS.

Given the value of binVal, the state transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the
current value of codIRange, renormalization is performed as specified in subclause 9.3.3.2.2.

9.3.3.2.1.1 State transition process

Inputs to this process are the current pStateIdx, the decoded value binVal and valMPS values of the context variable
associated with ctxIdx.

Outputs of this process are the updated pStateIdx and valMPS of the context variable associated with ctxIdx.

Depending on the decoded value binVal, the update of the two variables pStateIdx and valMPS associated with ctxIdx
is derived as specified by the following pseudo-code:

if(binVal = = valMPS)
 pStateIdx = transIdxMPS(pStateIdx)
else { (9-27)
 if(pStateIdx = = 0)
 valMPS = 1 − valMPS
 pStateIdx = transIdxLPS(pStateIdx)
}

Table 9-45 specifies the transition rules transIdxMPS() and transIdxLPS() after decoding the value of valMPS and
1 − valMPS, respectively.

 Rec. ITU-T H.264 (03/2009) 279

Figure 9-3 – Flowchart for decoding a decision

280 Rec. ITU-T H.264 (03/2009)

Table 9-44 – Specification of rangeTabLPS depending on pStateIdx and qCodIRangeIdx

qCodIRangeIdx qCodIRangeIdx
pStateIdx

0 1 2 3
pStateIdx

0 1 2 3

0 128 176 208 240 32 27 33 39 45

1 128 167 197 227 33 26 31 37 43

2 128 158 187 216 34 24 30 35 41

3 123 150 178 205 35 23 28 33 39

4 116 142 169 195 36 22 27 32 37

5 111 135 160 185 37 21 26 30 35

6 105 128 152 175 38 20 24 29 33

7 100 122 144 166 39 19 23 27 31

8 95 116 137 158 40 18 22 26 30

9 90 110 130 150 41 17 21 25 28

10 85 104 123 142 42 16 20 23 27

11 81 99 117 135 43 15 19 22 25

12 77 94 111 128 44 14 18 21 24

13 73 89 105 122 45 14 17 20 23

14 69 85 100 116 46 13 16 19 22

15 66 80 95 110 47 12 15 18 21

16 62 76 90 104 48 12 14 17 20

17 59 72 86 99 49 11 14 16 19

18 56 69 81 94 50 11 13 15 18

19 53 65 77 89 51 10 12 15 17

20 51 62 73 85 52 10 12 14 16

21 48 59 69 80 53 9 11 13 15

22 46 56 66 76 54 9 11 12 14

23 43 53 63 72 55 8 10 12 14

24 41 50 59 69 56 8 9 11 13

25 39 48 56 65 57 7 9 11 12

26 37 45 54 62 58 7 9 10 12

27 35 43 51 59 59 7 8 10 11

28 33 41 48 56 60 6 8 9 11

29 32 39 46 53 61 6 7 9 10

30 30 37 43 50 62 6 7 8 9

31 29 35 41 48 63 2 2 2 2

 Rec. ITU-T H.264 (03/2009) 281

Table 9-45 – State transition table

pStateIdx 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

transIdxLPS 0 0 1 2 2 4 4 5 6 7 8 9 9 11 11 12

transIdxMPS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

pStateIdx 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

transIdxLPS 13 13 15 15 16 16 18 18 19 19 21 21 22 22 23 24

transIdxMPS 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

pStateIdx 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

transIdxLPS 24 25 26 26 27 27 28 29 29 30 30 30 31 32 32 33

transIdxMPS 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

pStateIdx 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

transIdxLPS 33 33 34 34 35 35 35 36 36 36 37 37 37 38 38 63

transIdxMPS 49 50 51 52 53 54 55 56 57 58 59 60 61 62 62 63

9.3.3.2.2 Renormalization process in the arithmetic decoding engine

Inputs to this process are bits from slice data and the variables codIRange and codIOffset.

Outputs of this process are the updated variables codIRange and codIOffset.

A flowchart of the renormalization is shown in Figure 9-4. The current value of codIRange is first compared to 256 and
further steps are specified as follows.

– If codIRange is greater than or equal to 256, no renormalization is needed and the RenormD process is finished;

– Otherwise (codIRange is less than 256), the renormalization loop is entered. Within this loop, the value of
codIRange is doubled, i.e., left-shifted by 1 and a single bit is shifted into codIOffset by using read_bits(1).

The bitstream shall not contain data that result in a value of codIOffset being greater than or equal to codIRange upon
completion of this process.

codIRange < 256

Done

RenormD

Yes

NocodIRange = codIRange << 1
codIOffset = codIOffset << 1

codIOffset = codIOffset | read_bits(1)

Figure 9-4 – Flowchart of renormalization

282 Rec. ITU-T H.264 (03/2009)

9.3.3.2.3 Bypass decoding process for binary decisions

Inputs to this process are bits from slice data and the variables codIRange and codIOffset.

Outputs of this process are the updated variable codIOffset and the decoded value binVal.

The bypass decoding process is invoked when bypassFlag is equal to 1. Figure 9-5 shows a flowchart of the
corresponding process.

First, the value of codIOffset is doubled, i.e., left-shifted by 1 and a single bit is shifted into codIOffset by using
read_bits(1). Then, the value of codIOffset is compared to the value of codIRange and further steps are specified as
follows.

– If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 and codIOffset is
decremented by codIRange.

– Otherwise (codIOffset is less than codIRange), the variable binVal is set equal to 0.

The bitstream shall not contain data that result in a value of codIOffset being greater than or equal to codIRange upon
completion of this process.

Figure 9-5 – Flowchart of bypass decoding process

9.3.3.2.4 Decoding process for binary decisions before termination

Inputs to this process are bits from slice data and the variables codIRange and codIOffset.

Outputs of this process are the updated variables codIRange and codIOffset, and the decoded value binVal.

This special decoding routine applies to decoding of end_of_slice_flag and of the bin indicating the I_PCM mode
corresponding to ctxIdx equal to 276. Figure 9-6 shows the flowchart of the corresponding decoding process, which is
specified as follows.

First, the value of codIRange is decremented by 2. Then, the value of codIOffset is compared to the value of codIRange
and further steps are specified as follows.

– If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1, no renormalization is
carried out, and CABAC decoding is terminated. The last bit inserted in register codIOffset is equal to 1. When
decoding end_of_slice_flag, this last bit inserted in register codIOffset is interpreted as rbsp_stop_one_bit.

– Otherwise (codIOffset is less than codIRange), the variable binVal is set equal to 0 and renormalization is
performed as specified in subclause 9.3.3.2.2.

 Rec. ITU-T H.264 (03/2009) 283

NOTE – This procedure may also be implemented using DecodeDecision(ctxIdx) with ctxIdx = 276. In the case where
the decoded value is equal to 1, seven more bits would be read by DecodeDecision(ctxIdx) and a decoding process
would have to adjust its bitstream pointer accordingly to properly decode following syntax elements.

codIOffset >= codIRange

binVal = 1 binVal = 0

Yes No

Done

DecodeTerminate

RenormD

codIRange = codIRange-2

Figure 9-6 – Flowchart of decoding a decision before termination

9.3.4 Arithmetic encoding process (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are decisions that are to be encoded and written.

Outputs of this process are bits that are written to the RBSP.

This informative subclause describes an arithmetic encoding engine that matches the arithmetic decoding engine
described in subclause 9.3.3.2. The encoding engine is essentially symmetric with the decoding engine, i.e., procedures
are called in the same order. The following procedures are described in this section: InitEncoder, EncodeDecision,
EncodeBypass, EncodeTerminate, which correspond to InitDecoder, DecodeDecision, DecodeBypass, and
DecodeTerminate, respectively. The state of the arithmetic encoding engine is represented by a value of the variable
codILow pointing to the lower end of a sub-interval and a value of the variable codIRange specifying the corresponding
range of that sub-interval.

9.3.4.1 Initialisation process for the arithmetic encoding engine (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

This process is invoked before encoding the first macroblock of a slice, and after encoding any pcm_alignment_zero_bit
and all pcm_sample_luma and pcm_sample_chroma data for a macroblock of type I_PCM.

Outputs of this process are the values codILow, codIRange, firstBitFlag, bitsOutstanding, and BinCountsInNALunits of
the arithmetic encoding engine.

In the initialisation procedure of the encoder, codILow is set equal to 0, and codIRange is set equal to 510. Furthermore,
firstBitFlag is set equal to 1 and the counter bitsOutstanding is set equal to 0.

Depending on whether the current slice is the first slice of a coded picture, the following applies.

– If the current slice is the first slice of a coded picture, the counter BinCountsInNALunits is set equal to 0.

284 Rec. ITU-T H.264 (03/2009)

– Otherwise (the current slice is not the first slice of a coded picture), the counter BinCountsInNALunits is not
modified. The value of BinCountsInNALunits is the result of encoding all the slices of a coded picture that precede
the current slice in decoding order. After initialising for the first slice of a coded picture as specified in this
subclause, BinCountsInNALunits is incremented as specified in subclauses 9.3.4.2, 9.3.4.4, and 9.3.4.5.

NOTE – The minimum register precision required for storing the values of the variables codILow and codIRange after invocation
of any of the arithmetic encoding processes specified in subclauses 9.3.4.2, 9.3.4.4, and 9.3.4.5 is 10 bits and 9 bits, respectively.
The encoding process for a binary decision (EncodeDecision) as specified in subclause 9.3.4.2 and the encoding process for a
binary decision before termination (EncodeTerminate) as specified in subclause 9.3.4.5 require a minimum register precision of
10 bits for the variable codILow and a minimum register precision of 9 bits for the variable codIRange. The bypass encoding
process for binary decisions (EncodeBypass) as specified in subclause 9.3.4.4 requires a minimum register precision of 11 bits
for the variable codILow and a minimum register precision of 9 bits for the variable codIRange. The precision required for the
counters bitsOutstanding and BinCountsInNALunits should be sufficiently large to prevent overflow of the related registers.
When maxBinCountInSlice denotes the maximum total number of binary decisions to encode in one slice and maxBinCountInPic
denotes the maximum total number of binary decisions to encode a picture, the minimum register precision required for the
variables bitsOutstanding and BinCountsInNALunits is given by Ceil(Log2(maxBinCountInSlice + 1)) and
Ceil(Log2(maxBinCountInPic + 1)), respectively.

9.3.4.2 Encoding process for a binary decision (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the context index ctxIdx, the value of binVal to be encoded, and the variables codIRange,
codILow and BinCountsInNALunits.

Outputs of this process are the variables codIRange, codILow, and BinCountsInNALunits.

Figure 9-7 shows the flowchart for encoding a single decision. In a first step, the variable codIRangeLPS is derived as
follows.

Given the current value of codIRange, codIRange is mapped to the index qCodIRangeIdx of a quantised value of
codIRange by using Equation 9-25. The value of qCodIRangeIdx and the value of pStateIdx associated with ctxIdx are
used to determine the value of the variable rangeTabLPS as specified in Table 9-44, which is assigned to
codIRangeLPS. The value of codIRange − codIRangeLPS is assigned to codIRange.

In a second step, the value of binVal is compared to valMPS associated with ctxIdx. When binVal is different from
valMPS, codIRange is added to codILow and codIRange is set equal to the value codIRangeLPS. Given the encoded
decision, the state transition is performed as specified in subclause 9.3.3.2.1.1. Depending on the current value of
codIRange, renormalization is performed as specified in subclause 9.3.4.3. Finally, the variable BinCountsInNALunits
is incremented by 1.

 Rec. ITU-T H.264 (03/2009) 285

EncodeDecision(ctxIdx,binVal)

binVal !=
valMPS

pStateIdx != 0

valMPS = 1 – valMPS

pStateIdx = transIdxLPS[pStateIdx] pStateIdx = transIdxMPS[pStateIdx]

RenormE

Done

Yes No

Yes

No

qCodIRangeIdx = (codIRange >> 6) & 3
codIRangeLPS = rangeTabLPS[pStateIdx][qCodIRangeIdx]

codIRange = codIRange codIRangeLPS−

codILow = codILow + codIRange
codIRange = codIRangeLPS

BinCountsInNALunits = BinCountsInNALunits + 1

Figure 9-7 – Flowchart for encoding a decision

9.3.4.3 Renormalization process in the arithmetic encoding engine (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the variables codIRange, codILow, firstBitFlag, and bitsOutstanding.

Outputs of this process are zero or more bits written to the RBSP and the updated variables codIRange, codILow,
firstBitFlag, and bitsOutstanding.

286 Rec. ITU-T H.264 (03/2009)

Renormalization is illustrated in Figure 9-8.

RenormE

Done

codIRange < 256

codILow < 256

PutBit(0)

codILow >= 512

PutBit(1)

codILow = codILow 512−

Yes

Yes

No Yes

No

No

codILow = codILow 256
bitsOutstanding = bitsOutstanding + 1

−

codIRange = codIRange << 1
codILow = codILow << 1

Figure 9-8 – Flowchart of renormalization in the encoder

The PutBit() procedure described in Figure 9-9 provides carry over control. It uses the function WriteBits(B, N) that
writes N bits with value B to the bitstream and advances the bitstream pointer by N bit positions. This function assumes
the existence of a bitstream pointer with an indication of the position of the next bit to be written to the bitstream by the
encoding process.

 Rec. ITU-T H.264 (03/2009) 287

WriteBits(B, 1)

bitsOutstanding > 0
Yes

firstBitFlag = 0

Yes

WriteBits(1 B, 1)
bitsOutstanding = bitsOutstanding – 1

−

Figure 9-9 – Flowchart of PutBit(B)

9.3.4.4 Bypass encoding process for binary decisions (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the variables binVal, codILow, codIRange, bitsOutstanding, and BinCountsInNALunits.

Output of this process is a bit written to the RBSP and the updated variables codILow, bitsOutstanding, and
BinCountsInNALunits.

This encoding process applies to all binary decisions with bypassFlag equal to 1. Renormalization is included in the
specification of this process as given in Figure 9-10.

288 Rec. ITU-T H.264 (03/2009)

EncodeBypass(binVal)

binVal != 0

codILow = codILow + codIRange

codILow = codILow << 1

codILow = codILow 1024−

codILow < 512

Done

Yes No

No Yes

NoYes

codILow = codILow 512
bitsOutstanding = bitsOutstanding + 1

−

codILow >=
1024

Figure 9-10 – Flowchart of encoding bypass

9.3.4.5 Encoding process for a binary decision before termination (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Inputs to this process are the variables binVal, codIRange, codILow, bitsOutstanding, and BinCountsInNALunits.

Outputs of this process are zero or more bits written to the RBSP and the updated variables codILow, codIRange,
bitsOutstanding, and BinCountsInNALunits.

This encoding routine shown in Figure 9-11 applies to encoding of the end_of_slice_flag and of the bin indicating the
I_PCM mb_type both associated with ctxIdx equal to 276.

 Rec. ITU-T H.264 (03/2009) 289

Figure 9-11 – Flowchart of encoding a decision before termination

When the value of binVal to encode is equal to 1, CABAC encoding is terminated and the flushing procedure shown in
Figure 9-12 is applied. In this flushing procedure, the last bit written by WriteBits(B, N) is equal to 1. When encoding
end_of_slice_flag, this last bit is interpreted as the rbsp_stop_one_bit.

290 Rec. ITU-T H.264 (03/2009)

EncodeFlush

codIRange = 2

RenormE

PutBit((codILow >> 9) & 1)

WriteBits(((codILow >> 7) & 3) | 1, 2)

Done

Figure 9-12 – Flowchart of flushing at termination

9.3.4.6 Byte stuffing process (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

This process is invoked after encoding the last macroblock of the last slice of a picture and after encapsulation.

Inputs to this process are the number of bytes NumBytesInVclNALunits of all VCL NAL units of a picture, the number
of macroblocks PicSizeInMbs in the picture, and the number of binary symbols BinCountsInNALunits resulting from
encoding the contents of all VCL NAL units of the picture.

NOTE – The value of BinCountsInNALunits is the result of encoding all slices of a coded picture. After initialising for the first
slice of a coded picture as specified in subclause 9.3.4.1, BinCountsInNALunits is incremented as specified in subclauses 9.3.4.2,
9.3.4.4, and 9.3.4.5.

Outputs of this process are zero or more bytes appended to the NAL unit.

Let the variable k be set equal to Ceil((Ceil(3 * (32 * BinCountsInNALunits − RawMbBits * PicSizeInMbs) ÷
1024) − NumBytesInVclNALunits) ÷ 3). Depending on the variable k the following applies.

– If k is less than or equal to 0, no cabac_zero_word is appended to the NAL unit.

– Otherwise (k is greater than 0), the 3-byte sequence 0x000003 is appended k times to the NAL unit after
encapsulation, where the first two bytes 0x0000 represent a cabac_zero_word and the third byte 0x03 represents an
emulation_prevention_three_byte.

 Rec. ITU-T H.264 (03/2009) 291

Annex A

Profiles and levels

(This annex forms an integral part of this Recommendation | International Standard)

Profiles and levels specify restrictions on bitstreams and hence limits on the capabilities needed to decode the
bitstreams. Profiles and levels may also be used to indicate interoperability points between individual decoder
implementations.

NOTE 1 – This Recommendation | International Standard does not include individually selectable "options" at the decoder, as
this would increase interoperability difficulties.

Each profile specifies a subset of algorithmic features and limits that shall be supported by all decoders conforming to
that profile.

NOTE 2 – Encoders are not required to make use of any particular subset of features supported in a profile.

Each level specifies a set of limits on the values that may be taken by the syntax elements of this
Recommendation | International Standard. The same set of level definitions is used with all profiles, but individual
implementations may support a different level for each supported profile. For any given profile, levels generally
correspond to decoder processing load and memory capability.

The profiles that are specified in subclause A.2 are also referred to as the profiles specified in Annex A.

A.1 Requirements on video decoder capability

Capabilities of video decoders conforming to this Recommendation | International Standard are specified in terms of the
ability to decode video streams conforming to the constraints of profiles and levels specified in this annex. For each
such profile, the level supported for that profile shall also be expressed.

Specific values are specified in this annex for the syntax elements profile_idc and level_idc. All other values of
profile_idc and level_idc are reserved for future use by ITU-T | ISO/IEC.

NOTE – Decoders should not infer that when a reserved value of profile_idc or level_idc falls between the values specified in
this Recommendation | International Standard that this indicates intermediate capabilities between the specified profiles or levels,
as there are no restrictions on the method to be chosen by ITU-T | ISO/IEC for the use of such future reserved values.

A.2 Profiles

All constraints for picture parameter sets that are specified in subclauses A.2.1 to A.2.11 are constraints for picture
parameter sets that are activated in the bitstream. All constraints for sequence parameter sets that are specified in
subclauses A.2.1 to A.2.11 are constraints for sequence parameter sets that are activated in the bitstream.

A.2.1 Baseline profile

Bitstreams conforming to the Baseline profile shall obey the following constraints:
– Only I and P slice types may be present.
– NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
– Sequence parameter sets shall have frame_mbs_only_flag equal to 1.
– The syntax elements chroma_format_idc, bit_depth_luma_minus8, bit_depth_chroma_minus8,

qpprime_y_zero_transform_bypass_flag, and seq_scaling_matrix_present_flag shall not be present in sequence
parameter sets.

– Picture parameter sets shall have weighted_pred_flag and weighted_bipred_idc both equal to 0.
– Picture parameter sets shall have entropy_coding_mode_flag equal to 0.
– Picture parameter sets shall have num_slice_groups_minus1 in the range of 0 to 7, inclusive.
– The syntax elements transform_8x8_mode_flag, pic_scaling_matrix_present_flag, and

second_chroma_qp_index_offset shall not be present in picture parameter sets.
– The syntax element level_prefix shall not be greater than 15 (when present).
– The syntax elements pcm_sample_luma[i], with i = 0..255, and pcm_sample_chroma[i], with

i = 0..2 * MbWidthC * MbHeightC − 1, shall not be equal to 0 (when present).
– The level constraints specified for the Baseline profile in subclause A.3 shall be fulfilled.

292 Rec. ITU-T H.264 (03/2009)

Conformance of a bitstream to the Baseline profile is specified by profile_idc being equal to 66.

Decoders conforming to the Baseline profile at a specific level shall be capable of decoding all bitstreams in which
profile_idc is equal to 66 or constraint_set0_flag is equal to 1 and in which level_idc and constraint_set3_flag represent
a level less than or equal to the specified level.

A.2.1.1 Constrained Baseline profile

Bitstreams conforming to the Constrained Baseline profile shall obey all constraints specified in subclause A.2.1 for the
Baseline profile and all constraints specified in subclause A.2.2 for the Main profile.

Conformance of a bitstream to the Constrained Baseline profile is specified by profile_idc being equal to 66 with
constraint_set1_flag being equal to 1.

NOTE – This specification of the Constrained Baseline profile is technically identical to specification of the use of the Baseline
profile with constraint_set1_flag equal to 1. Thus, any existing specifications (in other documents that reference this
Recommendation | International Standard) that have referred to the use of the Baseline profile with constraint_set1_flag equal
to 1 should thus be interpreted as continuing in force as being technically identical to referring to the use of the Constrained
Baseline profile (without any need for revision of these existing specifications to instead refer explicitly to the use of the
Constrained Baseline profile).

Decoders conforming to the Constrained Baseline profile at a specific level shall be capable of decoding all bitstreams
in which all of the following are true:
– profile_idc is equal to 66 or constraint_set0_flag is equal to 1,
– constraint_set1_flag is equal to 1,
– level_idc and constraint_set3_flag represent a level less than or equal to the specified level.

A.2.2 Main profile

Bitstreams conforming to the Main profile shall obey the following constraints:
– Only I, P, and B slice types may be present.
– NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
– Arbitrary slice order is not allowed.
– The syntax elements chroma_format_idc, bit_depth_luma_minus8, bit_depth_chroma_minus8,

qpprime_y_zero_transform_bypass_flag, and seq_scaling_matrix_present_flag shall not be present in sequence
parameter sets.

– Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.
– Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.
– The syntax elements transform_8x8_mode_flag, pic_scaling_matrix_present_flag, and

second_chroma_qp_index_offset shall not be present in picture parameter sets.
– The syntax element level_prefix shall not be greater than 15 (when present).
– The syntax elements pcm_sample_luma[i], with i = 0..255, and pcm_sample_chroma[i], with

i = 0..2 * MbWidthC * MbHeightC − 1, shall not be equal to 0 (when present).
– The level constraints specified for the Main profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the Main profile is specified by profile_idc being equal to 77.

Decoders conforming to the Main profile at a specified level shall be capable of decoding all bitstreams in which
profile_idc is equal to 77 or constraint_set1_flag is equal to 1 and in which level_idc and constraint_set3_flag represent
a level less than or equal to the specified level.

A.2.3 Extended profile

Bitstreams conforming to the Extended profile shall obey the following constraints:
– Sequence parameter sets shall have direct_8x8_inference_flag equal to 1.
– The syntax elements chroma_format_idc, bit_depth_luma_minus8, bit_depth_chroma_minus8,

qpprime_y_zero_transform_bypass_flag, and seq_scaling_matrix_present_flag shall not be present in sequence
parameter sets.

– Picture parameter sets shall have entropy_coding_mode_flag equal to 0.
– Picture parameter sets shall have num_slice_groups_minus1 in the range of 0 to 7, inclusive.
– The syntax elements transform_8x8_mode_flag, pic_scaling_matrix_present_flag, and

second_chroma_qp_index_offset shall not be present in picture parameter sets.

 Rec. ITU-T H.264 (03/2009) 293

– The syntax element level_prefix shall not be greater than 15 (when present).
– The syntax elements pcm_sample_luma[i], with i = 0..255, and pcm_sample_chroma[i], with

i = 0..2 * MbWidthC * MbHeightC − 1, shall not be equal to 0 (when present).
– The level constraints specified for the Extended profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the Extended profile is specified by profile_idc being equal to 88.

Decoders conforming to the Extended profile at a specified level shall be capable of decoding all bitstreams in which
profile_idc is equal to 88 or constraint_set2_flag is equal to 1 and in which level_idc represents a level less than or
equal to specified level.

Decoders conforming to the Extended profile at a specified level shall also be capable of decoding all bitstreams in
which profile_idc is equal to 66 or constraint_set0_flag is equal to 1, in which level_idc and constraint_set3_flag
represent a level less than or equal to the specified level.

A.2.4 High profile

Bitstreams conforming to the High profile shall obey the following constraints:
– Only I, P, and B slice types may be present.
– NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
– Arbitrary slice order is not allowed.
– Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.
– Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.
– Sequence parameter sets shall have chroma_format_idc in the range of 0 to 1 inclusive.
– Sequence parameter sets shall have bit_depth_luma_minus8 equal to 0 only.
– Sequence parameter sets shall have bit_depth_chroma_minus8 equal to 0 only.
– Sequence parameter sets shall have qpprime_y_zero_transform_bypass_flag equal to 0 only.
– The level constraints specified for the High profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the High profile is specified by profile_idc being equal to 100. Decoders conforming to
the High profile at a specific level shall be capable of decoding all bitstreams in which either or both of the following
conditions are true:
– (profile_idc is equal to 77 or constraint_set1_flag is equal to 1) and the combination of level_idc and

constraint_set3_flag represent a level less than or equal to the specified level,
– profile_idc is equal to 100 and level_idc represents a level less than or equal to the specified level.

NOTE – The value 100 for profile_idc indicates that the bitstream conforms to the High profile as specified in this subclause.
When profile_idc is equal to 100 and constraint_set3_flag is equal to 1, this indicates that the bitstream conforms to the High
profile and additionally conforms to the constraints specified for the High 10 Intra profile in subclause A.2.8. For example, such
a bitstream must have bit_depth_luma_minus8 equal to 0, have bit_depth_chroma_minus8 equal to 0, obey the MinCR, MaxBR
and MaxCPB constraints of the High profile, contain only IDR pictures, have max_num_ref_frames equal to 0, have
dpb_output_delay equal to 0, and obey the maximum slice size constraint of the High 10 Intra profile.

A.2.5 High 10 profile

Bitstreams conforming to the High 10 profile shall obey the following constraints:
– Only I, P, and B slice types may be present.
– NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
– Arbitrary slice order is not allowed.
– Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.
– Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.
– Sequence parameter sets shall have chroma_format_idc in the range of 0 to 1 inclusive.
– Sequence parameter sets shall have bit_depth_luma_minus8 in the range of 0 to 2 inclusive.
– Sequence parameter sets shall have bit_depth_chroma_minus8 in the range of 0 to 2 inclusive.
– Sequence parameter sets shall have qpprime_y_zero_transform_bypass_flag equal to 0 only.
– The level constraints specified for the High 10 profile in subclause A.3 shall be fulfilled.

294 Rec. ITU-T H.264 (03/2009)

Conformance of a bitstream to the High 10 profile is specified by profile_idc being equal to 110. Decoders conforming
to the High 10 profile at a specific level shall be capable of decoding all bitstreams in which either or both of the
following conditions are true:
– (profile_idc is equal to 77 or constraint_set1_flag is equal to 1) and the combination of level_idc and

constraint_set3_flag represent a level less than or equal to the specified level,
– profile_idc is equal to 100 or 110 and level_idc represents a level less than or equal to the specified level.

A.2.6 High 4:2:2 profile

Bitstreams conforming to the High 4:2:2 profile shall obey the following constraints:
– Only I, P, and B slice types may be present.
– NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
– Arbitrary slice order is not allowed.
– Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.
– Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.
– Sequence parameter sets shall have chroma_format_idc in the range of 0 to 2 inclusive.
– Sequence parameter sets shall have bit_depth_luma_minus8 in the range of 0 to 2 inclusive.
– Sequence parameter sets shall have bit_depth_chroma_minus8 in the range of 0 to 2 inclusive.
– Sequence parameter sets shall have qpprime_y_zero_transform_bypass_flag equal to 0 only.
– The level constraints specified for the High 4:2:2 profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the High 4:2:2 profile is specified by profile_idc being equal to 122. Decoders
conforming to the High 4:2:2 profile at a specific level shall be capable of decoding all bitstreams in which either or
both of the following conditions are true:
– (profile_idc is equal to 77 or constraint_set1_flag is equal to 1) and the combination of level_idc and

constraint_set3_flag represent a level less than or equal to the specified level,
– profile_idc is equal to 100, 110, or 122 and level_idc represents a level less than or equal to the specified level.

A.2.7 High 4:4:4 Predictive profile

Bitstreams conforming to the High 4:4:4 Predictive profile shall obey the following constraints:
– Only I, P, B slice types may be present.
– NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
– Arbitrary slice order is not allowed.
– Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.
– Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.
– Sequence parameter sets shall have bit_depth_luma_minus8 in the range of 0 to 6 inclusive.
– Sequence parameter sets shall have bit_depth_chroma_minus8 in the range of 0 to 6 inclusive.
– The level constraints specified for the High 4:4:4 Predictive profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the High 4:4:4 Predictive profile is specified by profile_idc being equal to 244. Decoders
conforming to the High 4:4:4 Predictive profile at a specific level shall be capable of decoding all bitstreams in which
either or both of the following conditions are true:
– (profile_idc is equal to 77 or constraint_set1_flag is equal to 1) and the combination of level_idc and

constraint_set3_flag represent a level less than or equal to the specified level,
– profile_idc is equal to 44, 100, 110, 122, or 244 and the value of level_idc represents a level less than or equal to

the specified level.

A.2.8 High 10 Intra profile

Bitstreams conforming to the High 10 Intra profile shall obey the following constraints:
– All constraints specified in subclause A.2.5 for the High 10 profile shall be obeyed.
– All pictures shall be IDR pictures.
– Sequence parameter sets shall have max_num_ref_frames equal to 0.

 Rec. ITU-T H.264 (03/2009) 295

– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter
sets shall have num_reorder_frames equal to 0.

– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter
sets shall have max_dec_frame_buffering equal to 0.

– Picture timing SEI messages, whether present in the bitstream (by non-VCL NAL units) or conveyed equivalently
by other means not specified in this Recommendation | International Standard, shall have dpb_output_delay equal
to 0.

– The level constraints specified for the High 10 Intra profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the High 10 Intra profile is specified by constraint_set3_flag being equal to 1 with
profile_idc equal to 110. Decoders conforming to the High 10 Intra profile at a specific level shall be capable of
decoding all bitstreams in which all of the following conditions are true:
– profile_idc is equal to 100 or 110,
– constraint_set3_flag is equal to 1,
– level_idc represents a level less than or equal to the specified level.

NOTE 1 – The value 100 for profile_idc indicates that the bitstream conforms to the High profile as specified in subclause A.2.4.
When profile_idc is equal to 100 and constraint_set3_flag is equal to 1, this indicates that the bitstream conforms to the High
profile and additionally conforms to the constraints specified for the High 10 Intra profile in this subclause. For example, such a
bitstream must have bit_depth_luma_minus8 equal to 0, have bit_depth_chroma_minus8 equal to 0, obey the MinCR, MaxBR
and MaxCPB constraints of the High profile, contain only IDR pictures, have max_num_ref_frames equal to 0, have
dpb_output_delay equal to 0, and obey the maximum slice size constraint of the High 10 Intra profile.

The operation of the deblocking filter process specified in subclause 8.7 is not required for decoder conformance to the
High 10 Intra profile.

NOTE 2 – The deblocking filter process specified in subclause 8.7 or some similar post-processing filter should be performed,
although this is not a requirement for decoder conformance to the High 10 Intra profile. The syntax elements sent by an encoder
for control of the deblocking filter process specified in subclause 8.7 are considered only as advisory information for decoders
conformance to the High 10 Intra profile. However, the application of the deblocking filter process specified in subclause 8.7 is
required for decoder conformance to the High 10, High 4:2:2, and High 4:4:4 Predictive profiles when decoding bitstreams that
conform to the High 10 Intra profile.

A.2.9 High 4:2:2 Intra profile

Bitstreams conforming to the High 4:2:2 Intra profile shall obey the following constraints:
– All constraints specified in subclause A.2.6 for the High 4:2:2 profile shall be obeyed.
– All pictures shall be IDR pictures.
– Sequence parameter sets shall have max_num_ref_frames equal to 0.
– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter

sets shall have num_reorder_frames equal to 0.
– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter

sets shall have max_dec_frame_buffering equal to 0.
– Picture timing SEI messages, whether present in the bitstream (by non-VCL NAL units) or conveyed equivalently

by other means not specified in this Recommendation | International Standard, shall have dpb_output_delay equal
to 0.

– The level constraints specified for the High 4:2:2 Intra profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the High 4:2:2 Intra profile is specified by constraint_set3_flag being equal to 1 with
profile_idc equal to 122. Decoders conforming to the High 4:2:2 Intra profile at a specific level shall be capable of
decoding all bitstreams in which all of the following conditions are true:
– profile_idc is equal to 100, 110, or 122,
– constraint_set3_flag is equal to 1,
– level_idc represents a level less than or equal to the specified level.

The operation of the deblocking filter process specified in subclause 8.7 is not required for decoder conformance to the
High 4:2:2 Intra profile.

NOTE – The deblocking filter process specified in subclause 8.7 or some similar post-processing filter should be performed,
although this is not a requirement for decoder conformance to the High 4:2:2 Intra profile. The syntax elements sent by an
encoder for control of the deblocking filter process specified in subclause 8.7 are considered only as advisory information for
decoders conformance to the High 4:2:2 Intra profile. However, the application of the deblocking filter process specified in
subclause 8.7 is required for decoder conformance to the High 4:2:2, and High 4:4:4 Predictive profiles when decoding
bitstreams that conform to the High 4:2:2 Intra profile.

296 Rec. ITU-T H.264 (03/2009)

A.2.10 High 4:4:4 Intra profile

Bitstreams conforming to the High 4:4:4 Intra profile shall obey the following constraints:
– All constraints specified in subclause A.2.7 for the High 4:4:4 Predictive profile shall be obeyed.
– All pictures shall be IDR pictures.
– Sequence parameter sets shall have max_num_ref_frames equal to 0.
– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter

sets shall have num_reorder_frames equal to 0.
– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence parameter

sets shall have max_dec_frame_buffering equal to 0.
– Picture timing SEI messages, whether present in the bitstream (by non-VCL NAL units) or conveyed equivalently

by other means not specified in this Recommendation | International Standard, shall have dpb_output_delay equal
to 0.

– The level constraints specified for the High 4:4:4 Intra profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the High 4:4:4 Intra profile is specified by constraint_set3_flag being equal to 1 with
profile_idc equal to 244. Decoders conforming to the High 4:4:4 Intra profile at a specific level shall be capable of
decoding all bitstreams in which all of the following conditions are true:
– profile_idc is equal to 44, 100, 110, 122, or 244,
– constraint_set3_flag is equal to 1,
– level_idc represents a level less than or equal to the specified level.

The operation of the deblocking filter process specified in subclause 8.7 is not required for decoder conformance to the
High 4:4:4 Intra profile.

NOTE – The deblocking filter process specified in subclause 8.7 or some similar post-processing filter should be performed,
although this is not a requirement for decoder conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. The syntax
elements sent by an encoder for control of the deblocking filter process specified in subclause 8.7 are considered only as advisory
information for decoders conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. However, the application of the
deblocking filter process specified in subclause 8.7 is required for decoder conformance to the High 4:4:4 Predictive profile when
decoding bitstreams that conform to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles.

A.2.11 CAVLC 4:4:4 Intra profile

Bitstreams conforming to the CAVLC 4:4:4 Intra profile shall obey the following constraints:
– All constraints specified in subclause A.2.10 for the High 4:4:4 Intra profile shall be obeyed.
– Picture parameter sets shall have entropy_coding_mode_flag equal to 0.
– The level constraints specified for the CAVLC 4:4:4 Intra profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the CAVLC 4:4:4 Intra profile is specified by profile_idc being equal to 44. Decoders
conforming to the CAVLC 4:4:4 Intra profile at a specific level shall be capable of decoding all bitstreams in which all
of the following conditions are true:
– profile_idc is equal to 44,
– level_idc represents a level less than or equal to the specified level.

The operation of the deblocking filter process specified in subclause 8.7 is not required for decoder conformance to the
CAVLC 4:4:4 Intra profile.

NOTE – The deblocking filter process specified in subclause 8.7 or some similar post-processing filter should be performed,
although this is not a requirement for decoder conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. The syntax
elements sent by an encoder for control of the deblocking filter process specified in subclause 8.7 are considered only as advisory
information for decoders conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. However, the application of the
deblocking filter process specified in subclause 8.7 is required for decoder conformance to the High 4:4:4 Predictive profile when
decoding bitstreams that conform to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles.

A.3 Levels

The following is specified for expressing the constraints in this annex.
– Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.
– Let picture n be the primary coded picture or the corresponding decoded picture of access unit n.

 Rec. ITU-T H.264 (03/2009) 297

Let the variable fR be derived as follows.

– If picture n is a frame, fR is set equal to 1 ÷ 172.

– Otherwise (picture n is a field), fR is set equal to 1 ÷ (172 * 2).

A.3.1 Level limits common to the Baseline, Constrained Baseline, Main, and Extended profiles

Bitstreams conforming to the Baseline, Constrained Baseline, Main, or Extended profiles at a specified level shall obey
the following constraints:

a) The nominal removal time of access unit n with n > 0 from the CPB as specified in subclause C.1.2, satisfies
the constraint that tr,n(n) − tr(n − 1) is greater than or equal to Max(PicSizeInMbs ÷ MaxMBPS, fR), where
MaxMBPS is the value specified in Table A-1 that applies to picture n − 1 and PicSizeInMbs is the number of
macroblocks in picture n − 1.

b) The difference between consecutive output times of pictures from the DPB as specified in subclause C.2.2,
satisfies the constraint that Δto,dpb(n) >= Max(PicSizeInMbs ÷ MaxMBPS, fR), where MaxMBPS is the
value specified in Table A-1 for picture n and PicSizeInMbs is the number of macroblocks of picture n,
provided that picture n is a picture that is output and is not the last picture of the bitstream that is output.

c) The sum of the NumBytesInNALunit variables for access unit 0 is less than or equal to
384 *(Max(PicSizeInMbs, fR * MaxMBPS) + MaxMBPS * (tr(0) − tr,n(0))) ÷ MinCR, where MaxMBPS
and MinCR are the values specified in Table A-1 that apply to picture 0 and PicSizeInMbs is the number of
macroblocks in picture 0.

d) The sum of the NumBytesInNALunit variables for access unit n with n > 0 is less than or equal to
384 * MaxMBPS * (tr(n) − tr(n − 1)) ÷ MinCR, where MaxMBPS and MinCR are the values specified in
Table A-1 that apply to picture n.

e) PicWidthInMbs * FrameHeightInMbs <= MaxFS, where MaxFS is specified in Table A-1

f) PicWidthInMbs <= Sqrt(MaxFS * 8)

g) FrameHeightInMbs <= Sqrt(MaxFS * 8)

h) max_dec_frame_buffering <= MaxDpbFrames, where MaxDpbFrames is equal to
Min(MaxDpbMbs / (PicWidthInMbs * FrameHeightInMbs), 16) and MaxDpbMbs is given in Table A-1.

i) For the VCL HRD parameters, BitRate[SchedSelIdx] <= 1000 * MaxBR and CpbSize[SchedSelIdx] <=
1000 * MaxCPB for at least one value of SchedSelIdx, where BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are given as follows.

– If vcl_hrd_parameters_present_flag is equal to 1, BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are
given by Equations E-37 and E-38, respectively, using the syntax elements of the hrd_parameters()
syntax structure that immediately follows vcl_hrd_parameters_present_flag.

– Otherwise (vcl_hrd_parameters_present_flag is equal to 0), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.2 for VCL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of 1000 bits/s and 1000 bits, respectively. The
bitstream shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to cpb_cnt_minus1,
inclusive.

j) For the NAL HRD parameters, BitRate[SchedSelIdx] <= 1200 * MaxBR and CpbSize[SchedSelIdx] <=
1200 * MaxCPB for at least one value of SchedSelIdx, where BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are given as follows.

– If nal_hrd_parameters_present_flag is equal to 1, BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are
given by Equations E-37 and E-38, respectively, using the syntax elements of the hrd_parameters()
syntax structure that immediately follows nal_hrd_parameters_present_flag.

– Otherwise (nal_hrd_parameters_present_flag is equal to 0), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.2 for NAL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of 1200 bits/s and 1200 bits, respectively. The
bitstream shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to cpb_cnt_minus1.

k) Vertical motion vector component range for luma motion vectors does not exceed MaxVmvR in units of luma
frame samples, where MaxVmvR is specified in Table A-1

298 Rec. ITU-T H.264 (03/2009)

NOTE 1 – When chroma_format_idc is equal to 1 and the current macroblock is a field macroblock, the motion vector
component range for chroma motion vectors may exceed MaxVmvR in units of luma frame samples, due to the
method of deriving chroma motion vectors as specified in subclause 8.4.1.4.

l) Horizontal motion vector range does not exceed the range of −2048 to 2047.75, inclusive, in units of luma
samples

m) Let setOf2Mb be the set of unsorted pairs of macroblocks that contains the unsorted pairs of macroblocks
(mbA, mbB) of a coded video sequence for which any of the following conditions is true:

– mbA and mbB are macroblocks that belong to the same slice and are consecutive in decoding order,

– arbitrary slice order is not allowed, mbA is the last macroblock (in decoding order) of a slice, and mbB is
the first macroblock (in decoding order) of the next slice in decoding order,

NOTE 2 – The macroblocks mbA and mbB can belong to different pictures.

– arbitrary slice order is allowed, mbA is the last macroblock (in decoding order) of a slice of a particular
picture, and mbB is the first macroblock (in decoding order) of any other slice of the same picture,

– arbitrary slice order is allowed, mbA is the last macroblock (in decoding order) of a slice of a particular
picture, and mbB is the first macroblock (in decoding order) of any slice of the next picture in decoding
order.

For each unsorted pair of macroblocks (mbA, mbB) of the set setOf2Mb, the total number of motion vectors
(given by the sum of the number of motion vectors for macroblock mbA and the number of motion vectors for
macroblock mbB) does not exceed MaxMvsPer2Mb, where MaxMvsPer2Mb is specified in Table A-1. The
number of motion vectors for each macroblock is the value of the variable MvCnt after the completion of the
intra or inter prediction process for the macroblock.

NOTE 3 – The constraint specifies that the total number of motion vectors for two consecutive macroblocks in
decoding order must not exceed MaxMvsPer2Mb. When arbitrary slice order is allowed, it is specified that this
constraint must also be obeyed when slices of a picture are reordered, e.g., during transmission.

n) Number of bits of macroblock_layer() data for any macroblock is not greater than 3200. Depending on
entropy_coding_mode_flag, the bits of macroblock_layer() data are counted as follows.

– If entropy_coding_mode_flag is equal to 0, the number of bits of macroblock_layer() data is given by
the number of bits in the macroblock_layer() syntax structure for a macroblock.

– Otherwise (entropy_coding_mode_flag is equal to 1), the number of bits of macroblock_layer() data for
a macroblock is given by the number of times read_bits(1) is called in subclauses 9.3.3.2.2 and 9.3.3.2.3
when parsing the macroblock_layer() associated with the macroblock.

Table A-1 specifies the limits for each level. Entries marked "-" in Table A-1 denote the absence of a corresponding
limit. For purposes of comparison of level capabilities, a level shall be considered to be a lower (higher) level than some
other level if the level appears nearer to the top (bottom) row of Table A-1 than the other level.

A level to which the bitstream conforms shall be indicated by the syntax elements level_idc and constraint_set3_flag as
follows.

– If level_idc is equal to 11 and constraint_set3_flag is equal to 1, the indicated level is level 1b.

– Otherwise (level_idc is not equal to 11 or constraint_set3_flag is not equal to 1), level_idc shall be set equal to a
value of ten times the level number specified in Table A-1 and constraint_set3_flag shall be set equal to 0.

 Rec. ITU-T H.264 (03/2009) 299

Table A-1 – Level limits

Level
number

Max
macroblock
processing

rate
MaxMBPS

(MB/s)

Max
frame
size

MaxFS
(MBs)

Max
decoded
picture

buffer size
MaxDpbMbs

(MBs)

Max
video

bit rate MaxBR
(1000 bits/s,
1200 bits/s,

cpbBrVclFactor
bits/s, or

cpbBrNalFactor
bits/s)

Max
CPB size
MaxCPB
(1000 bits,
1200 bits,

cpbBrVclFactor
bits, or

cpbBrNalFactor
bits)

Vertical MV
component

range
MaxVmvR

(luma frame
samples)

Min
compression

ratio
MinCR

Max number of
motion vectors

per two
consecutive MBs
MaxMvsPer2Mb

1 1 485 99 396 64 175 [−64,+63.75] 2 -

1b 1 485 99 396 128 350 [−64,+63.75] 2 -

1.1 3 000 396 900 192 500 [−128,+127.75] 2 -

1.2 6 000 396 2 376 384 1 000 [−128,+127.75] 2 -

1.3 11 880 396 2 376 768 2 000 [−128,+127.75] 2 -

2 11 880 396 2 376 2 000 2 000 [−128,+127.75] 2 -

2.1 19 800 792 4 752 4 000 4 000 [−256,+255.75] 2 -

2.2 20 250 1 620 8 100 4 000 4 000 [−256,+255.75] 2 -

3 40 500 1 620 8 100 10 000 10 000 [−256,+255.75] 2 32

3.1 108 000 3 600 18 000 14 000 14 000 [−512,+511.75] 4 16

3.2 216 000 5 120 20 480 20 000 20 000 [−512,+511.75] 4 16

4 245 760 8 192 32 768 20 000 25 000 [−512,+511.75] 4 16

4.1 245 760 8 192 32 768 50 000 62 500 [−512,+511.75] 2 16

4.2 522 240 8 704 34 816 50 000 62 500 [−512,+511.75] 2 16

5 589 824 22 080 110 400 135 000 135 000 [−512,+511.75] 2 16

5.1 983 040 36 864 184 320 240 000 240 000 [−512,+511.75] 2 16

Levels with non-integer level numbers in Table A-1 are referred to as "intermediate levels".
NOTE 4 – All levels have the same status, but some applications may choose to use only the integer-numbered levels.

Informative subclause A.3.4 shows the effect of these limits on frame rates for several example picture formats.

A.3.2 Level limits common to the High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles

Bitstreams conforming to the High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,
High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles at a specified level shall obey the following constraints:

a) The nominal removal time of access unit n (with n > 0) from the CPB as specified in subclause C.1.2, satisfies
the constraint that tr,n(n) − tr(n − 1) is greater than or equal to Max(PicSizeInMbs ÷ MaxMBPS, fR), where
MaxMBPS is the value specified in Table A-1 that applies to picture n − 1, and PicSizeInMbs is the number of
macroblocks in picture n − 1.

b) The difference between consecutive output times of pictures from the DPB as specified in subclause C.2.2,
satisfies the constraint that Δto,dpb(n) >= Max(PicSizeInMbs ÷ MaxMBPS, fR), where MaxMBPS is the
value specified in Table A-1 for picture n, and PicSizeInMbs is the number of macroblocks of picture n,
provided that picture n is a picture that is output and is not the last picture of the bitstream that is output.

c) PicWidthInMbs * FrameHeightInMbs <= MaxFS, where MaxFS is specified in Table A-1

d) PicWidthInMbs <= Sqrt(MaxFS * 8)

e) FrameHeightInMbs <= Sqrt(MaxFS * 8)

300 Rec. ITU-T H.264 (03/2009)

f) max_dec_frame_buffering <= MaxDpbFrames, where MaxDpbFrames is equal to
Min(MaxDpbMbs / (PicWidthInMbs * FrameHeightInMbs), 16) and MaxDpbMbs is specified in
Table A-1.

g) Vertical motion vector component range does not exceed MaxVmvR in units of luma frame samples, where
MaxVmvR is specified in Table A-1.

h) Horizontal motion vector range does not exceed the range of −2048 to 2047.75, inclusive, in units of luma
samples.

i) Let setOf2Mb be the set of unsorted pairs of macroblocks that contains the unsorted pairs of macroblocks
(mbA, mbB) of a coded video sequence for which any of the following conditions is true:

– mbA and mbB are macroblocks that belong to the same slice and are consecutive in decoding order,

– separate_colour_plane_flag is equal to 0, mbA is the last macroblock (in decoding order) of a slice, and
mbB is the first macroblock (in decoding order) of the next slice in decoding order,

– separate_colour_plane_flag is equal to 1, mbA is the last macroblock (in decoding order) of a slice with a
particular value of colour_plane_id, and mbB is the first macroblock (in decoding order) of the next slice
with the same value of colour_plane_id in decoding order.

NOTE 1 – In the two above conditions, the macroblocks mbA and mbB can belong to different pictures.

For each unsorted pair of macroblocks (mbA, mbB) of the set setOf2Mb, the total number of motion vectors
(given by the sum of the number of motion vectors for macroblock mbA and the number of motion vectors for
macroblock mbB) does not exceed MaxMvsPer2Mb, where MaxMvsPer2Mb is specified in Table A-1. The
number of motion vectors for each macroblock is the value of the variable MvCnt after the completion of the
intra or inter prediction process for the macroblock.

NOTE 2 – When separate_colour_plane_flag is equal to 0, the constraint specifies that the total number of
motion vectors for two consecutive macroblocks in decoding order must not exceed MaxMvsPer2Mb. When
separate_colour_plane_flag is equal to 1, the constraint specifies that the total number of motion vectors for
two consecutive macroblocks (in decoding order) with the same value of colour_plane_id must not exceed
MaxMvsPer2Mb. For macroblocks that are consecutive in decoding order but are associated with a different
value of colour_plane_id, no constraint for the total number of motion vectors is specified.

j) Number of bits of macroblock_layer() data for any macroblock is not greater than 128 + RawMbBits.
Depending on entropy_coding_mode_flag, the bits of macroblock_layer() data are counted as follows.

– If entropy_coding_mode_flag is equal to 0, the number of bits of macroblock_layer() data is given by
the number of bits in the macroblock_layer() syntax structure for a macroblock.

– Otherwise (entropy_coding_mode_flag is equal to 1), the number of bits of macroblock_layer() data for
a macroblock is given by the number of times read_bits(1) is called in subclauses 9.3.3.2.2 and 9.3.3.2.3
when parsing the macroblock_layer() associated with the macroblock.

Table A-1 specifies the limits for each level. Entries marked "-" in Table A-1 denote the absence of a corresponding
limit. The use of the MinCR parameter column of Table A-1 for these profiles is specified in subclause A.3.3.

A level to which the bitstream conforms shall be indicated by the syntax element level_idc as follows.
– If level_idc is equal to 9, the indicated level is level 1b.
– Otherwise (level_idc is not equal to 9), level_idc shall be set equal to a value of ten times the level number

specified in Table A-1.

A.3.3 Profile-specific level limits

a) In bitstreams conforming to the Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles, the removal time of access unit 0 shall
satisfy the constraint that the number of slices in picture 0 is less than or equal to
(Max(PicSizeInMbs, fR * MaxMBPS) + MaxMBPS * (tr(0) − tr,n(0))) ÷ SliceRate, where MaxMBPS
and SliceRate are the values specified in Tables A-1 and A-4, respectively, that apply to picture 0 and
PicSizeInMbs is the number of macroblocks in picture 0.

b) In bitstreams conforming to the Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles, the difference between consecutive removal
time of access units n and n − 1 with n > 0 shall satisfy the constraint that the number of slices in picture n is
less than or equal to MaxMBPS * (tr(n) − tr(n − 1)) ÷ SliceRate, where MaxMBPS and SliceRate are the
values specified in Tables A-1 and A-4, respectively, that apply to picture n.

 Rec. ITU-T H.264 (03/2009) 301

c) In bitstreams conforming to the Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles, sequence parameter sets shall have
direct_8x8_inference_flag equal to 1 for the levels specified in Table A-4.

NOTE 1 – direct_8x8_inference_flag is not relevant to the Baseline or Constrained Baseline profiles (specified in
subclauses A.2.1 and A.2.1.1, respectively) as these profiles do not allow B slice types, and
direct_8x8_inference_flag is equal to 1 for all levels of the Extended profile (specified in subclause A.2.3).

d) In bitstreams conforming to the Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, CAVLC 4:4:4 Intra, or Extended profiles, sequence parameter sets shall
have frame_mbs_only_flag equal to 1 for the levels specified in Table A-4 for the Main, High, High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra
profiles and in Table A-5 for the Extended profile.

NOTE 2 – frame_mbs_only_flag is equal to 1 for all levels of the Baseline and Constrained Baseline profiles
(specified in subclauses A.2.1 and A.2.1.1, respectively).

e) In bitstreams conforming to the Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, CAVLC 4:4:4 Intra, or Extended profiles, the value of
sub_mb_type[mbPartIdx] with mbPartIdx = 0..3 in B macroblocks with mb_type equal to B_8x8 shall not be
equal to B_Bi_8x4, B_Bi_4x8, or B_Bi_4x4 for the levels in which MinLumaBiPredSize is shown as 8x8 in
Table A-4 for the Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,
High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles and in Table A-5 for the Extended profile.

f) In bitstreams conforming to the Baseline, Constrained Baseline, or Extended profiles, (xIntmax − xIntmin + 6) *
(yIntmax − yIntmin + 6) <= MaxSubMbRectSize in macroblocks coded with mb_type equal to P_8x8,
P_8x8ref0 or B_8x8 for all invocations of the process specified in subclause 8.4.2.2.1 used to generate the
predicted luma sample array for a single reference picture list (reference picture list 0 or reference picture list
1) for each 8x8 sub-macroblock with the macroblock partition index mbPartIdx, where
NumSubMbPart(sub_mb_type[mbPartIdx]) > 1, where MaxSubMbRectSize is specified in Table A-3 for
the Baseline and Constrained Baseline profiles and in Table A-5 for the Extended profile and
– xIntmin is the minimum value of xIntL among all luma sample predictions for the sub-macroblock
– xIntmax is the maximum value of xIntL among all luma sample predictions for the sub-macroblock
– yIntmin is the minimum value of yIntL among all luma sample predictions for the sub-macroblock
– yIntmax is the maximum value of yIntL among all luma sample predictions for the sub-macroblock

g) In bitstreams conforming to the High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles, for the VCL HRD parameters,
BitRate[SchedSelIdx] <= cpbBrVclFactor * MaxBR and CpbSize[SchedSelIdx] <= cpbBrVclFactor *
MaxCPB for at least one value of SchedSelIdx, where cpbBrVclFactor is specified in Table A-2 and
BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are given as follows.
– If vcl_hrd_parameters_present_flag is equal to 1, BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are

given by Equations E-37 and E-38, respectively, using the syntax elements of the hrd_parameters()
syntax structure that immediately follows vcl_hrd_parameters_present_flag.

– Otherwise (vcl_hrd_parameters_present_flag is equal to 0), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.2 for VCL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of cpbBrVclFactor bits/s and cpbBrVclFactor bits,
respectively. The bitstream shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to
cpb_cnt_minus1, inclusive.

h) In bitstreams conforming to the High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles, for the NAL HRD parameters,
BitRate[SchedSelIdx] <= cpbBrNalFactor * MaxBR and CpbSize[SchedSelIdx] <= cpbBrNalFactor *
MaxCPB for at least one value of SchedSelIdx, where cpbBrNalFactor is specified in Table A-2 and
BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are given as follows.
– If nal_hrd_parameters_present_flag is equal to 1, BitRate[SchedSelIdx] and CpbSize[SchedSelIdx] are

given by Equations E-37 and E-38, respectively, using the syntax elements of the hrd_parameters()
syntax structure that immediately follows nal_hrd_parameters_present_flag.

– Otherwise (nal_hrd_parameters_present_flag is equal to 0), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.2 for NAL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of cpbBrNalFactor bits/s and cpbBrNalFactor bits,
respectively. The bitstream shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to
cpb_cnt_minus1, inclusive.

302 Rec. ITU-T H.264 (03/2009)

i) In bitstreams conforming to the High profile, the sum of the NumBytesInNALunit variables for access unit 0 is
less than or equal to 384 * (Max(PicSizeInMbs, fR * MaxMBPS) + MaxMBPS * (tr(0) − tr,n(0)))
÷ MinCR, where MaxMBPS and MinCR are the values specified in Table A-1 that apply to picture 0 and
PicSizeInMbs is the number of macroblocks in picture 0.

NOTE 3 – Such a limit involving MinCR is not imposed for bitstream conformance to the High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles.

j) In bitstreams conforming to the High profile, the sum of the NumBytesInNALunit variables for access unit n
with n > 0 is less than or equal to 384 * MaxMBPS * (tr(n) − tr(n − 1)) ÷ MinCR, where MaxMBPS and
MinCR are the values specified in Table A-1 that apply to picture n.

NOTE 4 – Such a limit involving MinCR is not imposed for bitstream conformance to the High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles.

k) In bitstreams conforming to the High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,
High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles, when PicSizeInMbs is greater than 1620, the number of
macroblocks in any coded slice shall not exceed MaxFS / 4, where MaxFS is specified in Table A-1.

NOTE 5 – Items i), j) and k) above are included herein for purposes of specification of the High 4:4:4 Predictive,
High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles. The aspects of these items as
they relate to the High, High 10, and High 4:2:2 profiles are included herein for completeness, and reflect
corrections of the intended specification of these profiles.

Table A-2 – Specification of cpbBrVclFactor and cpbBrNalFactor

Profile cpbBrVclFactor cpbBrNalFactor

High 1 250 1 500

High 10
High 10 Intra 3 000 3 600

High 4:2:2
High 4:2:2 Intra 4 000 4 800

High 4:4:4 Predictive
High 4:4:4 Intra

CAVLC 4:4:4 Intra
4 000 4 800

A.3.3.1 Baseline and Constrained Baseline profile level limits

Table A-3 specifies limits for each level that are specific to bitstreams conforming to the Baseline or Constrained
Baseline profiles. Entries marked "-" in Table A-3 denote the absence of a corresponding limit.

 Rec. ITU-T H.264 (03/2009) 303

Table A-3 – Baseline and Constrained Baseline profile level limits

Level number MaxSubMbRectSize

1 576

1b 576

1.1 576

1.2 576

1.3 576

2 576

2.1 576

2.2 576

3 576

3.1 -

3.2 -

4 -

4.1 -

4.2 -

5 -

5.1 -

A.3.3.2 Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,
High 4:4:4 Intra, and CAVLC 4:4:4 Intra profile level limits

Table A-4 specifies limits for each level that are specific to bitstreams conforming to the Main, High, High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles.
Entries marked "-" in Table A-4 denote the absence of a corresponding limit.

304 Rec. ITU-T H.264 (03/2009)

Table A-4 – Main, High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,
High 4:4:4 Intra, and CAVLC 4:4:4 Intra profile level limits

Level number SliceRate MinLumaBiPredSize direct_8x8_inference_flag frame_mbs_only_flag

1 - - - 1

1b - - - 1

1.1 - - - 1

1.2 - - - 1

1.3 - - - 1

2 - - - 1

2.1 - - - -

2.2 - - - -

3 22 - 1 -

3.1 60 8x8 1 -

3.2 60 8x8 1 -

4 60 8x8 1 -

4.1 24 8x8 1 -

4.2 24 8x8 1 1

5 24 8x8 1 1

5.1 24 8x8 1 1

A.3.3.3 Extended Profile level limits

Table A-5 specifies limits for each level that are specific to bitstreams conforming to the Extended profile. Entries
marked "-" in Table A-5 denote the absence of a corresponding limit.

 Rec. ITU-T H.264 (03/2009) 305

Table A-5 – Extended profile level limits

Level number MaxSubMbRectSize MinLumaBiPredSize frame_mbs_only_flag

1 576 - 1

1b 576 - 1

1.1 576 - 1

1.2 576 - 1

1.3 576 - 1

2 576 - 1

2.1 576 - -

2.2 576 - -

3 576 - -

3.1 - 8x8 -

3.2 - 8x8 -

4 - 8x8 -

4.1 - 8x8 -

4.2 - 8x8 1

5 - 8x8 1

5.1 - 8x8 1

306 Rec. ITU-T H.264 (03/2009)

A.3.4 Effect of level limits on frame rate (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Table A-6 – Maximum frame rates (frames per second) for some example frame sizes

Level: 1 1b 1.1 1.2 1.3 2 2.1
Max frame size (macroblocks): 99 99 396 396 396 396 792
Max macroblocks/second: 1 485 1 485 3 000 6 000 11 880 11 880 19 800

Max frame size (samples): 25 344 25 344 101 376 101 376 101 376 101 376 202 752
Max samples/second: 380 160 380 160 768 000 1 536 000 3 041 280 3 041 280 5 068 800

Format
Luma
Width

Luma
Height

MBs
Total

Luma
Samples

SQCIF 128 96 48 12 288 30.9 30.9 62.5 125.0 172.0 172.0 172.0
QCIF 176 144 99 25 344 15.0 15.0 30.3 60.6 120.0 120.0 172.0
QVGA 320 240 300 76 800 - - 10.0 20.0 39.6 39.6 66.0
525 SIF 352 240 330 84 480 - - 9.1 18.2 36.0 36.0 60.0
CIF 352 288 396 101 376 - - 7.6 15.2 30.0 30.0 50.0
525 HHR 352 480 660 168 960 - - - - - - 30.0
625 HHR 352 576 792 202 752 - - - - - - 25.0
VGA 640 480 1 200 307 200 - - - - - - -
525 4SIF 704 480 1 320 337 920 - - - - - - -
525 SD 720 480 1 350 345 600 - - - - - - -
4CIF 704 576 1 584 405 504 - - - - - - -
625 SD 720 576 1 620 414 720 - - - - - - -
SVGA 800 600 1 900 486 400 - - - - - - -
XGA 1024 768 3 072 786 432 - - - - - - -
720p HD 1280 720 3 600 921 600 - - - - - - -
4VGA 1280 960 4 800 1 228 800 - - - - - - -
SXGA 1280 1024 5 120 1 310 720 - - - - - - -
525 16SIF 1408 960 5 280 1 351 680 - - - - - - -
16CIF 1408 1152 6 336 1 622 016 - - - - - - -
4SVGA 1600 1200 7 500 1 920 000 - - - - - - -
1080 HD 1920 1088 8 160 2 088 960 - - - - - - -
2Kx1K 2048 1024 8 192 2 097 152 - - - - - - -
2Kx1080 2048 1088 8 704 2 228 224 - - - - - - -
4XGA 2048 1536 12 288 3 145 728 - - - - - - -
16VGA 2560 1920 19 200 4 915 200 - - - - - - -
3616x1536 (2.35:1) 3616 1536 21 696 5 554 176 - - - - - - -
3672x1536 (2.39:1) 3680 1536 22 080 5 652 480 - - - - - - -
4Kx2K 4096 2048 32 768 8 388 608 - - - - - - -
4096x2304 (16:9) 4096 2304 36 864 9 437 184 - - - - - - -

 Rec. ITU-T H.264 (03/2009) 307

Table A-6 (continued) – Maximum frame rates (frames per second) for some example frame sizes

Level: 2.2 3 3.1 3.2 4 4.1 4.2
Max frame size (macroblocks): 1 620 1 620 3 600 5 120 8 192 8 192 8 704
Max macroblocks/second: 20 250 40 500 108 000 216 000 245 760 245 760 522 240

Max frame size (samples): 414 720 414 720 921 600 1 310 720 2 097 152 2 097 152 2 228 224
Max samples/second: 5 184 000 10 368 000 27 648 000 55 296 000 62 914 560 62 914 560 133 693 440

Format
Luma
Width

Luma
Height

MBs
Total

Luma
Samples

SQCIF 128 96 48 12 288 172.0 172.0 172.0 172.0 172.0 172.0 172.0
QCIF 176 144 99 25 344 172.0 172.0 172.0 172.0 172.0 172.0 172.0
QVGA 320 240 300 76 800 67.5 135.0 172.0 172.0 172.0 172.0 172.0
525 SIF 352 240 330 84 480 61.4 122.7 172.0 172.0 172.0 172.0 172.0
CIF 352 288 396 101 376 51.1 102.3 172.0 172.0 172.0 172.0 172.0
525 HHR 352 480 660 168 960 30.7 61.4 163.6 172.0 172.0 172.0 172.0
625 HHR 352 576 792 202 752 25.6 51.1 136.4 172.0 172.0 172.0 172.0
VGA 640 480 1 200 307 200 16.9 33.8 90.0 172.0 172.0 172.0 172.0
525 4SIF 704 480 1 320 337 920 15.3 30.7 81.8 163.6 172.0 172.0 172.0
525 SD 720 480 1 350 345 600 15.0 30.0 80.0 160.0 172.0 172.0 172.0
4CIF 704 576 1 584 405 504 12.8 25.6 68.2 136.4 155.2 155.2 172.0
625 SD 720 576 1 620 414 720 12.5 25.0 66.7 133.3 151.7 151.7 172.0
SVGA 800 600 1 900 486 400 - - 56.8 113.7 129.3 129.3 172.0
XGA 1024 768 3 072 786 432 - - 35.2 70.3 80.0 80.0 172.0
720p HD 1280 720 3 600 921 600 - - 30.0 60.0 68.3 68.3 145.1
4VGA 1280 960 4 800 1 228 800 - - - 45.0 51.2 51.2 108.8
SXGA 1280 1024 5 120 1 310 720 - - - 42.2 48.0 48.0 102.0
525 16SIF 1408 960 5 280 1 351 680 - - - - 46.5 46.5 98.9
16CIF 1408 1152 6 336 1 622 016 - - - - 38.8 38.8 82.4
4SVGA 1600 1200 7 500 1 920 000 - - - - 32.8 32.8 69.6
1080 HD 1920 1088 8 160 2 088 960 - - - - 30.1 30.1 64.0
2Kx1K 2048 1024 8 192 2 097 152 - - - - 30.0 30.0 63.8
2Kx1080 2048 1088 8 704 2 228 224 - - - - - - 60.0
4XGA 2048 1536 12 288 3 145 728 - - - - - - -
16VGA 2560 1920 19 200 4 915 200 - - - - - - -
3616x1536 (2.35:1) 3616 1536 21 696 5 554 176 - - - - - - -
3672x1536 (2.39:1) 3680 1536 22 080 5 652 480 - - - - - - -
4Kx2K 4096 2048 32 768 8 388 608 - - - - - - -
4096x2304 (16:9) 4096 2304 36 864 9 437 184 - - - - - - -

Table A-6 (concluded) – Maximum frame rates (frames per second) for some example frame sizes

Level: 5 5.1
Max frame size (macroblocks): 22 080 36 864
Max macroblocks/second: 589 824 983 040

Max frame size (samples): 5 652 480 9 437 184
Max samples/second: 150 994 944 251 658 240

Format
Luma
Width

Luma
Height

MBs
Total

Luma
Samples

SQCIF 128 96 48 12 288 172.0 172.0
QCIF 176 144 99 25 344 172.0 172.0
QVGA 320 240 300 76 800 172.0 172.0
525 SIF 352 240 330 84 480 172.0 172.0
CIF 352 288 396 101 376 172.0 172.0
525 HHR 352 480 660 168 960 172.0 172.0
625 HHR 352 576 792 202 752 172.0 172.0
VGA 640 480 1 200 307 200 172.0 172.0
525 4SIF 704 480 1 320 337 920 172.0 172.0
525 SD 720 480 1 350 345 600 172.0 172.0
4CIF 704 576 1 584 405 504 172.0 172.0
625 SD 720 576 1 620 414 720 172.0 172.0
SVGA 800 600 1 900 486 400 172.0 172.0
XGA 1024 768 3 072 786 432 172.0 172.0
720p HD 1280 720 3 600 921 600 163.8 172.0
4VGA 1280 960 4 800 1 228 800 122.9 172.0
SXGA 1280 1024 5 120 1 310 720 115.2 172.0
525 16SIF 1408 960 5 280 1 351 680 111.7 172.0
16CIF 1408 1152 6 336 1 622 016 93.1 155.2
4SVGA 1600 1200 7 500 1 920 000 78.6 131.1
1080 HD 1920 1088 8 160 2 088 960 72.3 120.5
2Kx1K 2048 1024 8 192 2 097 152 72.0 120.0
2Kx1080 2048 1088 8 704 2 228 224 67.8 112.9
4XGA 2048 1536 12 288 3 145 728 48.0 80.0
16VGA 2560 1920 19 200 4 915 200 30.7 51.2
3616x1536 (2.35:1) 3616 1536 21 696 5 554 176 27.2 45.3
3672x1536 (2.39:1) 3680 1536 22 080 5 652 480 26.7 44.5
4Kx2K 4096 2048 32 768 8 388 608 - 30.0
4096x2304 (16:9) 4096 2304 36 864 9 437 184 - 26.7

308 Rec. ITU-T H.264 (03/2009)

The following should be noted:
– This Recommendation | International Standard is a variable-frame-size specification. The specific frame sizes in

Table A-6 are illustrative examples only.
– As used in Table A-6, "525" refers to typical use for environments using 525 analogue scan lines (of which

approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 analogue
scan lines (of which approximately 576 lines contain the visible picture region).

– XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka
2CIF aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625
D-1 aka 625 ITU-R BT.601.

– Frame rates given are correct for progressive scan modes. The frame rates are also correct for interlaced video
coding for the cases of frame height divisible by 32.

A.3.5 Effect of level limits on maximum DPB size in units of frames (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Table A-7 – Maximum DPB size (frames) for some example frame sizes

Level: 1 1b 1.1 1.2 1.3 2 2.1 2.2
Max frame size (macroblocks): 99 99 396 396 396 396 792 1 620
Max DPB size (macroblocks): 396 396 900 2 376 2 376 2 376 4 752 8 100
Format Luma Width Luma Height MBs Total
SQCIF 128 96 48 8 8 16 16 16 16 16 16
QCIF 176 144 99 4 4 9 16 16 16 16 16
QVGA 320 240 300 - - 3 7 7 7 15 16
525 SIF 352 240 330 - - 2 7 7 7 14 16
CIF 352 288 396 - - 2 6 6 6 12 16
525 HHR 352 480 660 - - - - - - 7 12
625 HHR 352 576 792 - - - - - - 6 10
VGA 640 480 1 200 - - - - - - - 6
525 4SIF 704 480 1 320 - - - - - - - 6
525 SD 720 480 1 350 - - - - - - - 6
4CIF 704 576 1 584 - - - - - - - 5
625 SD 720 576 1 620 - - - - - - - 5
SVGA 800 600 1 900 - - - - - - - -
XGA 1024 768 3 072 - - - - - - - -
720p HD 1280 720 3 600 - - - - - - - -
4VGA 1280 960 4 800 - - - - - - - -
SXGA 1280 1024 5 120 - - - - - - - -
525 16SIF 1408 960 5 280 - - - - - - - -
16CIF 1408 1152 6 336 - - - - - - - -
4SVGA 1600 1200 7 500 - - - - - - - -
1080 HD 1920 1088 8 160 - - - - - - - -
2Kx1K 2048 1024 8 192 - - - - - - - -
2Kx1080 2048 1088 8 704 - - - - - - - -
4XGA 2048 1536 12 288 - - - - - - - -
16VGA 2560 1920 19 200 - - - - - - - -
3616x1536 (2.35:1) 3616 1536 21 696 - - - - - - - -
3672x1536 (2.39:1) 3680 1536 22 080 - - - - - - - -
4Kx2K 4096 2048 32 768 - - - - - - - -
4096x2304 (16:9) 4096 2304 36 864 - - - - - - - -

 Rec. ITU-T H.264 (03/2009) 309

Table A-7 (continued) – Maximum DPB size (frames) for some example frame sizes
Level: 3 3.1 3.2 4 4.1 4.2 5 5.1
Max frame size (macroblocks): 1 620 3 600 5 120 8 192 8 192 8 704 22 080 36 864
Max DPB size (macroblocks): 8 100 18 000 20 480 32 768 32 768 34 816 110 400 184 320
Format Luma Width Luma Height MBs Total
SQCIF 128 96 48 16 16 16 16 16 16 16 16
QCIF 176 144 99 16 16 16 16 16 16 16 16
QVGA 320 240 300 16 16 16 16 16 16 16 16
525 SIF 352 240 330 16 16 16 16 16 16 16 16
CIF 352 288 396 16 16 16 16 16 16 16 16
525 HHR 352 480 660 12 16 16 16 16 16 16 16
625 HHR 352 576 792 10 16 16 16 16 16 16 16
VGA 640 480 1 200 6 15 16 16 16 16 16 16
525 4SIF 704 480 1 320 6 13 15 16 16 16 16 16
525 SD 720 480 1 350 6 13 15 16 16 16 16 16
4CIF 704 576 1 584 5 11 12 16 16 16 16 16
625 SD 720 576 1 620 5 11 12 16 16 16 16 16
SVGA 800 600 1 900 - 9 10 16 16 16 16 16
XGA 1024 768 3 072 - 5 6 10 10 11 16 16
720p HD 1280 720 3 600 - 5 5 9 9 9 16 16
4VGA 1280 960 4 800 - - 4 6 6 7 16 16
SXGA 1280 1024 5 120 - - 4 6 6 6 16 16
525 16SIF 1408 960 5 280 - - - 6 6 6 16 16
16CIF 1408 1152 6 336 - - - 5 5 5 16 16
4SVGA 1600 1200 7 500 - - - 4 4 4 14 16
1080 HD 1920 1088 8 160 - - - 4 4 4 13 16
2Kx1K 2048 1024 8 192 - - - 4 4 4 13 16
2Kx1080 2048 1088 8 704 - - - - - 4 12 16
4XGA 2048 1536 12 288 - - - - - - 8 15
16VGA 2560 1920 19 200 - - - - - - 5 9
3616x1536 (2.35:1) 3616 1536 21 696 - - - - - - 5 8
3672x1536 (2.39:1) 3680 1536 22 080 - - - - - - 5 8
4Kx2K 4096 2048 32 768 - - - - - - - 5
4096x2304 (16:9) 4096 2304 36 864 - - - - - - - 5

The following should be noted:
– As used in Table A-7, "525" refers to typical use for environments using 525 analogue scan lines (of which

approximately 480 lines contain the visible picture region), and "625" refers to environments using 625 analogue
scan lines (of which approximately 576 lines contain the visible picture region).

– XGA is also known as (aka) XVGA, 4SVGA aka UXGA, 16XGA aka 4Kx3K, CIF aka 625 SIF, 625 HHR aka
2CIF aka half 625 D-1, aka half 625 ITU-R BT.601, 525 SD aka 525 D-1 aka 525 ITU-R BT.601, 625 SD aka 625
D-1 aka 625 ITU-R BT.601.

310 Rec. ITU-T H.264 (03/2009)

Annex B

Byte stream format

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or
all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need
to be identifiable from patterns in the data, such as ITU-T Rec. H.222.0 | ISO/IEC 13818-1 systems or ITU-T
Rec. H.320 systems. For bit-oriented delivery, the bit order for the byte stream format is specified to start with the MSB
of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit
syntax structure contains one start code prefix followed by one nal_unit(NumBytesInNALunit) syntax structure. It
may (and under some circumstances, it shall) also contain an additional zero_byte syntax element. It may also contain
one or more additional trailing_zero_8bits syntax elements. When it is the first byte stream NAL unit in the bitstream, it
may also contain one or more additional leading_zero_8bits syntax elements.

B.1 Byte stream NAL unit syntax and semantics

B.1.1 Byte stream NAL unit syntax

byte_stream_nal_unit(NumBytesInNALunit) { C Descriptor
 while(next_bits(24) != 0x000001 &&
 next_bits(32) != 0x00000001)

 leading_zero_8bits /* equal to 0x00 */ f(8)
 if(next_bits(24) != 0x000001)
 zero_byte /* equal to 0x00 */ f(8)
 start_code_prefix_one_3bytes /* equal to 0x000001 */ f(24)
 nal_unit(NumBytesInNALunit)
 while(more_data_in_byte_stream() &&
 next_bits(24) != 0x000001 &&
 next_bits(32) != 0x00000001)

 trailing_zero_8bits /* equal to 0x00 */ f(8)
}

B.1.2 Byte stream NAL unit semantics

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in
the byte stream NAL units (see subclause 7.4.1.2). The content of each byte stream NAL unit is associated with the
same access unit as the NAL unit contained in the byte stream NAL unit (see subclause 7.4.1.2.3).

leading_zero_8bits is a byte equal to 0x00.
NOTE – The leading_zero_8bits syntax element can only be present in the first byte stream NAL unit of the bitstream, because
(as shown in the syntax diagram of subclause B.1.1) any bytes equal to 0x00 that follow a NAL unit syntax structure and precede
the four-byte sequence 0x00000001 (which is to be interpreted as a zero_byte followed by a start_code_prefix_one_3bytes) will
be considered to be trailing_zero_8bits syntax elements that are part of the preceding byte stream NAL unit.

zero_byte is a single byte equal to 0x00.

When any of the following conditions are fulfilled, the zero_byte syntax element shall be present:
– the nal_unit_type within the nal_unit() is equal to 7 (sequence parameter set) or 8 (picture parameter set),
– the byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order, as

specified by subclause 7.4.1.2.3.
start_code_prefix_one_3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a
start code prefix.

trailing_zero_8bits is a byte equal to 0x00.

 Rec. ITU-T H.264 (03/2009) 311

B.2 Byte stream NAL unit decoding process

Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax
structures.

Output of this process consists of a sequence of NAL unit syntax structures.

At the beginning of the decoding process, the decoder initialises its current position in the byte stream to the beginning
of the byte stream. It then extracts and discards each leading_zero_8bits syntax element (if present), moving the current
position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next
four bytes in the bitstream form the four-byte sequence 0x00000001.

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax
structure in the byte stream until the end of the byte stream has been encountered (as determined by unspecified means)
and the last NAL unit in the byte stream has been decoded:

1. When the next four bytes in the bitstream form the four-byte sequence 0x00000001, the next byte in the byte
stream (which is a zero_byte syntax element) is extracted and discarded and the current position in the byte
stream is set equal to the position of the byte following this discarded byte.

2. The next three-byte sequence in the byte stream (which is a start_code_prefix_one_3bytes) is extracted and
discarded and the current position in the byte stream is set equal to the position of the byte following this
three-byte sequence.

3. NumBytesInNALunit is set equal to the number of bytes starting with the byte at the current position in the
byte stream up to and including the last byte that precedes the location of any of the following conditions:
– A subsequent byte-aligned three-byte sequence equal to 0x000000,
– A subsequent byte-aligned three-byte sequence equal to 0x000001,
– The end of the byte stream, as determined by unspecified means.

4. NumBytesInNALunit bytes are removed from the bitstream and the current position in the byte stream is
advanced by NumBytesInNALunit bytes. This sequence of bytes is nal_unit(NumBytesInNALunit) and is
decoded using the NAL unit decoding process.

5. When the current position in the byte stream is not at the end of the byte stream (as determined by unspecified
means) and the next bytes in the byte stream do not start with a three-byte sequence equal to 0x000001 and the
next bytes in the byte stream do not start with a four byte sequence equal to 0x00000001, the decoder extracts
and discards each trailing_zero_8bits syntax element, moving the current position in the byte stream forward
one byte at a time, until the current position in the byte stream is such that the next bytes in the byte stream
form the four-byte sequence 0x00000001 or the end of the byte stream has been encountered (as determined by
unspecified means).

B.3 Decoder byte-alignment recovery (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the
bit-oriented byte alignment detection procedure described in this subclause.

A decoder is said to have byte-alignment with a bitstream when the decoder is able to determine whether or not the
positions of data in the bitstream are byte-aligned. When a decoder does not have byte alignment with the encoder's
byte stream, the decoder may examine the incoming bitstream for the binary pattern '00000000 00000000 00000000
00000001' (31 consecutive bits equal to 0 followed by a bit equal to 1). The bit immediately following this pattern is the
first bit of an aligned byte following a start code prefix. Upon detecting this pattern, the decoder will be byte aligned
with the encoder and positioned at the start of a NAL unit in the byte stream.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for subsequent three-byte
sequences 0x000001 and 0x000003.

When the three-byte sequence 0x000001 is detected, this is a start code prefix.

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three_byte to be
discarded as specified in subclause 7.4.1.

When an error in the bitstream syntax is detected (e.g., a non-zero value of the forbidden_zero_bit or one of the
three-byte or four-byte sequences that are prohibited in subclause 7.4.1), the decoder may consider the detected
condition as an indication that byte alignment may have been lost and may discard all bitstream data until the detection
of byte alignment at a later position in the bitstream as described in this subclause.

312 Rec. ITU-T H.264 (03/2009)

Annex C

Hypothetical reference decoder

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance.

Two types of bitstreams are subject to HRD conformance checking for this Recommendation | International Standard.
The first such type of bitstream, called Type I bitstream, is a NAL unit stream containing only the VCL NAL units and
filler data NAL units for all access units in the bitstream. The second type of bitstream, called a Type II bitstream,
contains, in addition to the VCL NAL units and filler data NAL units for all access units in the bitstream, at least one of
the following:
– additional non-VCL NAL units other than filler data NAL units,
– all leading_zero_8bits, zero_byte, start_code_prefix_one_3bytes, and trailing_zero_8bits syntax elements that form

a byte stream from the NAL unit stream (as specified in Annex B).

Figure C-1 shows the types of bitstream conformance points checked by the HRD.

H.264(09)_FC-1

VCL NAL units
Non-VCL NAL units other
than filter data NAL units

Byte stream format
encapsulation
(see Annex B)

Filter data NAL units

Figure C-1 – Structure of byte streams and NAL unit streams for HRD conformance checks

The syntax elements of non-VCL NAL units (or their default values for some of the syntax elements), required for the
HRD, are specified in the semantic subclauses of clause 7, Annexes D and E, and subclauses G.7, G.13, G.14, H.7,
H.13, and H.14.

Two types of HRD parameter sets (NAL HRD parameters and VCL HRD parameters) are used. The HRD parameter
sets are signalled as follows.
– If the coded video sequence conforms to one or more of the profiles specified in Annex A and the decoding

process specified in clauses 2-9 is used, the HRD parameter sets are signalled through video usability information
as specified in subclauses E.1 and E.2, which is part of the sequence parameter set syntax structure.

– Otherwise, if the coded video sequence conforms to one or more of the profiles specified in Annex G and the
decoding process specified in Annex G is used, the HRD parameter sets are signalled through the SVC video
usability information extension as specified in subclauses G.14.1 and G.14.2, which is part of the subset sequence
parameter set syntax structure.

NOTE 1 – For coded video sequences that conform to both, one or more of the profiles specified in Annex A and one or more of
the profiles specified in Annex G, the signalling of the applicable HRD parameter sets is depending on whether the decoding
process specified in clauses 2-9 or the decoding process specified in Annex G is used.

– Otherwise, if the coded video sequence conforms to one or more of the profiles specified in Annex H and the
decoding process specified in Annex H is used, the HRD parameter sets are signalled through the MVC video

 Rec. ITU-T H.264 (03/2009) 313

usability information extension as specified in subclauses H.14.1 and H.14.2, which is part of the subset sequence
parameter set syntax structure.

NOTE 2 – For coded video sequences that conform to both, one or more of the profiles specified in Annex A and one or more of
the profiles specified in Annex H, the signalling of the applicable HRD parameter sets is depending on whether the decoding
process specified in clauses 2-9 or the decoding process specified in Annex H is used.

All sequence parameter sets and picture parameters sets referred to in the VCL NAL units, and corresponding buffering
period and picture timing SEI messages shall be conveyed to the HRD, in a timely manner, either in the bitstream (by
non-VCL NAL units), or by other means not specified in this Recommendation | International Standard.

In Annexes C, D, and E and subclauses G.12, G.13, G.14, H.12, H.13, and H.14, the specification for "presence" of
non-VCL NAL units is also satisfied when those NAL units (or just some of them) are conveyed to decoders (or to the
HRD) by other means not specified by this Recommendation | International Standard. For the purpose of counting bits,
only the appropriate bits that are actually present in the bitstream are counted.

NOTE 3 – As an example, synchronization of a non-VCL NAL unit, conveyed by means other than presence in the bitstream,
with the NAL units that are present in the bitstream, can be achieved by indicating two points in the bitstream, between which the
non-VCL NAL unit would have been present in the bitstream, had the encoder decided to convey it in the bitstream.

When the content of a non-VCL NAL unit is conveyed for the application by some means other than presence within
the bitstream, the representation of the content of the non-VCL NAL unit is not required to use the same syntax
specified in this annex.

NOTE 4 – When HRD information is contained within the bitstream, it is possible to verify the conformance of a bitstream to the
requirements of this subclause based solely on information contained in the bitstream. When the HRD information is not present
in the bitstream, as is the case for all "stand-alone" Type I bitstreams, conformance can only be verified when the HRD data is
supplied by some other means not specified in this Recommendation | International Standard.

The HRD contains a coded picture buffer (CPB), an instantaneous decoding process, a decoded picture buffer (DPB),
and output cropping as shown in Figure C-2.

314 Rec. ITU-T H.264 (03/2009)

Output cropping

Coded picture
buffer (CPB)

Decoding process
(instantaneous)

Reference
fields or frames

Decoded picture
buffer (DPB)

Fields of frames

Fields of frames

Access units

Type I or type II bitstream

Output cropped fields of frames

Figure C-2 – HRD buffer model

The CPB size (number of bits) is CpbSize[SchedSelIdx]. The DPB size (number of frame buffers) is
Max(1, max_dec_frame_buffering).

The HRD operates as follows. Data associated with access units that flow into the CPB according to a specified arrival
schedule are delivered by the HSS. The data associated with each access unit are removed and decoded instantaneously
by the instantaneous decoding process at CPB removal times. Each decoded picture is placed in the DPB at its CPB
removal time unless it is output at its CPB removal time and is a non-reference picture. When a picture is placed in the
DPB it is removed from the DPB at the later of the DPB output time or the time that it is marked as "unused for
reference".

For each picture in the bitstream, the variable OutputFlag for the decoded picture and, when applicable, the reference
base picture is set as follows.
– If the coded video sequence containing the picture conforms to one or more of the profiles specified in Annex A

and the decoding process specified in clauses 2-9 is used, OutputFlag is set equal to 1.
– Otherwise, if the coded video sequence containing the picture conforms to one or more of the profiles specified in

Annex G and the decoding process specified in Annex G is used, the following applies:
– For a reference base picture, OutputFlag is set equal to 0.
– For a decoded picture, OutputFlag is set equal to the value of the output_flag syntax element of the target

layer representation.
– Otherwise (the coded video sequence containing the picture conforms to one or more of the profiles specified in

Annex H and the decoding process specified in Annex H is used), the following applies:
– For the decoded view components of the target output views, OutputFlag is set equal to 1.
– For the decoded view components of other views, OutputFlag is set equal to 0.

The operation of the CPB is specified in subclause C.1. The instantaneous decoder operation is specified in clauses 2-9
(for coded video sequences conforming to one or more of the profiles specified in Annex A) and in Annex G (for coded
video sequences conforming to one or more of the profiles specified in Annex G) and in Annex H (for coded video

 Rec. ITU-T H.264 (03/2009) 315

sequences conforming to one or more of the profiles specified in Annex H). The operation of the DPB is specified in
subclause C.2. The output cropping is specified in subclause C.2.2.

NOTE 5 – Coded video sequences that conform to both, one or more of the profiles specified in Annex A and one or more of the
profiles specified in Annex G, can be decoded either by the decoding process specified in clauses 2-9 or by the decoding process
specified in Annex G. The decoding result and the HRD operation may be depending on which of the decoding processes is used.
NOTE 6 – Coded video sequences that conform to both, one or more of the profiles specified in Annex A and one or more of the
profiles specified in Annex H, can be decoded either by the decoding process specified in clauses 2-9 or by the decoding process
specified in Annex H. The decoding result and the HRD operation may be depending on which of the decoding processes is used.

HSS and HRD information concerning the number of enumerated delivery schedules and their associated bit rates and
buffer sizes is specified in subclauses E.1.1, E.1.2, E.2.1, E.2.2, G.14.1, G.14.2, H.14.1, and H.14.2. The HRD is
initialised as specified by the buffering period SEI message as specified in subclauses D.1.1 and D.2.1. The removal
timing of access units from the CPB and output timing from the DPB are specified in the picture timing SEI message as
specified in subclauses D.1.2 and D.2.2. All timing information relating to a specific access unit shall arrive prior to the
CPB removal time of the access unit.

When the coded video sequence conforms to one or more of the profiles specified in Annex G and the decoding process
specified in Annex G is used, the following is specified:

(a) When an access unit contains one or more buffering period SEI messages that are included in scalable nesting
SEI messages and are associated with values of DQId in the range of ((DQIdMax >> 4) << 4) to
(((DQIdMax >> 4) << 4) + 15), inclusive, the last of these buffering period SEI messages in decoding
order is the buffering period SEI message that initialises the HRD. Let hrdDQId be the largest value of
16 * sei_dependency_id[i] + sei_quality_id[i] that is associated with the scalable nesting SEI message
containing the buffering period SEI message that initialises the HRD, let hrdDId and hrdQId be equal to
hrdDQId >> 4 and hrdDQId & 15, respectively, and let hrdTId be the value of sei_temporal_id that is
associated with the scalable nesting SEI message containing the buffering period SEI message that initialises
the HRD.

(b) The picture timing SEI messages that specify the removal timing of access units from the CPB and output
timing from the DPB are the picture timing SEI messages that are included in scalable nesting SEI messages
associated with values of sei_dependency_id[i], sei_quality_id[i], and sei_temporal_id equal to hrdDId,
hrdQId, and hrdTId, respectively.

(c) The HRD parameter sets that are used for conformance checking are the HRD parameter sets, included in the
SVC video usability information extension of the active SVC sequence parameter set, that are associated with
values of vui_ext_dependency_id[i], vui_ext_quality_id[i], and vui_ext_temporal_id[i] equal to hrdDId,
hrdQId, and hrdTId, respectively. For the specification in this annex, num_units_in_tick, time_scale,
fixed_frame_rate_flag, nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag,
low_delay_hrd_flag, and pic_struct_present_flag are substituted with the values of
vui_ext_num_units_in_tick[i], vui_ext_time_scale[i], vui_ext_fixed_frame_rate_flag[i],
vui_ext_nal_hrd_parameters_present_flag[i], vui_ext_vcl_hrd_parameters_present_flag[i],
vui_ext_low_delay_hrd_flag[i], and vui_ext_pic_struct_present_flag[i], respectively, with i being the value
for which vui_ext_dependency_id[i], vui_ext_quality_id[i], and vui_ext_temporal_id[i] are equal to
hrdDId, hrdQId, and hrdTId, respectively.

When the coded video sequence conforms to one or more of the profiles specified in Annex H and the decoding process
specified in Annex H is used, the following is specified:

(a) When an access unit contains one or more buffering period SEI messages that are included in MVC scalable
nesting SEI messages, the buffering period SEI message that is associated with the operation point being
decoded is the buffering period SEI message that initialises the HRD. Let hrdVId[i] be equal to
sei_op_view_id[i] for all i in the range of 0 to num_view_components_op_minus1, inclusive, and let hrdTId
be the value of sei_op_temporal_id, that are associated with the MVC scalable nesting SEI message
containing the buffering period SEI message that initialises the HRD.

(b) The picture timing SEI messages that specify the removal timing of access units from the CPB and output
timing from the DPB are the picture timing SEI messages that are included in MVC scalable nesting SEI
messages associated with values of sei_op_view_id[i] equal to hrdVId[i] for all i in the range of 0 to
num_view_components_op_minus1, inclusive, and sei_temporal_id equal to hrdTId.

(c) The HRD parameter sets that are used for conformance checking are the HRD parameter sets, included in the
MVC video usability information extension of the active MVC sequence parameter set, that are associated
with values of vui_mvc_view_id[i][j] for all j in the range of 0 to
vui_mvc_num_target_output_views_minus1[i], inclusive, equal to hrdVId[j], and the value of
vui_mvc_temporal_id[i] equal to hrdTId. For the specification in this annex, num_units_in_tick, time_scale,
fixed_frame_rate_flag, nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag,

316 Rec. ITU-T H.264 (03/2009)

low_delay_hrd_flag, and pic_struct_present_flag are substituted with the values of
vui_mvc_num_units_in_tick[i], vui_mvc_time_scale[i], vui_mvc_fixed_frame_rate_flag[i],
vui_mvc_nal_hrd_parameters_present_flag[i], vui_mvc_vcl_hrd_parameters_present_flag[i],
vui_mvc_low_delay_hrd_flag[i], and vui_mvc_pic_struct_present_flag[i], respectively, with i being the
value for which vui_mvc_view_id[i] is equal to hrdVId[j] for all j in the range of 0 to
vui_mvc_num_traget_output_views_minus1[i], inclusive, and vui_mvc_temporal_id[i] equal to hrdTId.

The HRD is used to check conformance of bitstreams and decoders as specified in subclauses C.3 and C.4, respectively.
NOTE 7 – While conformance is guaranteed under the assumption that all frame-rates and clocks used to generate the bitstream
match exactly the values signalled in the bitstream, in a real system each of these may vary from the signalled or specified value.

All the arithmetic in this annex is done with real values, so that no rounding errors can propagate. For example, the
number of bits in a CPB just prior to or after removal of an access unit is not necessarily an integer.

The variable tc is derived as follows and is called a clock tick:

tc = num_units_in_tick ÷ time_scale (C-1)

The following is specified for expressing the constraints in this annex:

– Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.

– Let picture n be the primary coded picture or the decoded primary picture of access unit n.

C.1 Operation of coded picture buffer (CPB)

The specifications in this subclause apply independently to each set of CPB parameters that is present and to both the
Type I and Type II conformance points shown in Figure C-1.

C.1.1 Timing of bitstream arrival

The HRD may be initialised at any one of the buffering period SEI messages. Prior to initialisation, the CPB is empty.
NOTE – After initialisation, the HRD is not initialised again by subsequent buffering period SEI messages.

Each access unit is referred to as access unit n, where the number n identifies the particular access unit. The access unit
that is associated with the buffering period SEI message that initialises the CPB is referred to as access unit 0. The value
of n is incremented by 1 for each subsequent access unit in decoding order.

The time at which the first bit of access unit n begins to enter the CPB is referred to as the initial arrival time tai(n).

The initial arrival time of access units is derived as follows.

– If the access unit is access unit 0, tai(0) = 0,

– Otherwise (the access unit is access unit n with n > 0), the following applies.

– If cbr_flag[SchedSelIdx] is equal to 1, the initial arrival time for access unit n, is equal to the final arrival
time (which is derived below) of access unit n − 1, i.e.,

tai(n) = taf(n − 1) (C-2)

– Otherwise (cbr_flag[SchedSelIdx] is equal to 0), the initial arrival time for access unit n is derived by

tai(n) = Max(taf(n − 1), tai,earliest(n)) (C-3)

where tai,earliest(n) is derived as follows.

– If access unit n is not the first access unit of a subsequent buffering period, tai,earliest(n) is derived as

tai,earliest(n) = tr,n(n) − (initial_cpb_removal_delay[SchedSelIdx] +
 initial_cpb_removal_delay_offset[SchedSelIdx]) ÷ 90000 (C-4)

with tr,n(n) being the nominal removal time of access unit n from the CPB as specified in
subclause C.1.2 and initial_cpb_removal_delay[SchedSelIdx] and
initial_cpb_removal_delay_offset[SchedSelIdx] being specified in the previous buffering period SEI
message.

 Rec. ITU-T H.264 (03/2009) 317

– Otherwise (access unit n is the first access unit of a subsequent buffering period), tai,earliest(n) is derived
as

tai,earliest(n) = tr,n(n) − (initial_cpb_removal_delay[SchedSelIdx] ÷ 90000) (C-5)

with initial_cpb_removal_delay[SchedSelIdx] being specified in the buffering period SEI message
associated with access unit n.

The final arrival time for access unit n is derived by

taf(n) = tai(n) + b(n) ÷ BitRate[SchedSelIdx] (C-6)

where b(n) is the size in bits of access unit n, counting the bits of the VCL NAL units and the filler data NAL units for
the Type I conformance point or all bits of the Type II bitstream for the Type II conformance point, where the Type I
and Type II conformance points are as shown in Figure C-1.

The values of SchedSelIdx, BitRate[SchedSelIdx], and CpbSize[SchedSelIdx] are constrained as follows.

– If the content of the active sequence parameter sets for access unit n and access unit n − 1 differ, the HSS selects a
value SchedSelIdx1 of SchedSelIdx from among the values of SchedSelIdx provided in the active sequence
parameter set for access unit n that results in a BitRate[SchedSelIdx1] or CpbSize[SchedSelIdx1] for access
unit n. The value of BitRate[SchedSelIdx1] or CpbSize[SchedSelIdx1] may differ from the value of
BitRate[SchedSelIdx0] or CpbSize[SchedSelIdx0] for the value SchedSelIdx0 of SchedSelIdx that was in use
for access unit n − 1.

– Otherwise, the HSS continues to operate with the previous values of SchedSelIdx, BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx].

When the HSS selects values of BitRate[SchedSelIdx] or CpbSize[SchedSelIdx] that differ from those of the
previous access unit, the following applies.

– the variable BitRate[SchedSelIdx] comes into effect at time tai(n)

– the variable CpbSize[SchedSelIdx] comes into effect as follows.

– If the new value of CpbSize[SchedSelIdx] exceeds the old CPB size, it comes into effect at time tai(n),

– Otherwise, the new value of CpbSize[SchedSelIdx] comes into effect at the time tr(n).

C.1.2 Timing of coded picture removal

When an access unit n is the access unit with n equal to 0 (the access unit that initialises the HRD), the nominal removal
time of the access unit from the CPB is specified by

tr,n(0) = initial_cpb_removal_delay[SchedSelIdx] ÷ 90000 (C-7)

When an access unit n is the first access unit of a buffering period that does not initialise the HRD, the nominal removal
time of the access unit from the CPB is specified by

tr,n(n) = tr,n(nb) + tc * cpb_removal_delay(n) (C-8)

where tr,n(nb) is the nominal removal time of the first access unit of the previous buffering period and
cpb_removal_delay(n) is the value of cpb_removal_delay specified in the picture timing SEI message associated with
access unit n.

When an access unit n is the first access unit of a buffering period, nb is set equal to n at the removal time tr,n(n) of the
access unit n.

The nominal removal time tr,n(n) of an access unit n that is not the first access unit of a buffering period is given by

tr,n(n) = tr,n(nb) + tc * cpb_removal_delay(n) (C-9)

where tr,n(nb) is the nominal removal time of the first access unit of the current buffering period and
cpb_removal_delay(n) is the value of cpb_removal_delay specified in the picture timing SEI message associated with
access unit n.

318 Rec. ITU-T H.264 (03/2009)

The removal time of access unit n is specified as follows.

– If low_delay_hrd_flag is equal to 0 or tr,n(n) >= taf(n), the removal time of access unit n is specified by

tr(n) = tr,n(n) (C-10)

– Otherwise (low_delay_hrd_flag is equal to 1 and tr,n(n) < taf(n)), the removal time of access unit n is specified by

tr(n) = tr,n(n) + tc * Ceil((taf(n) − tr,n(n)) ÷ tc) (C-11)

NOTE – The latter case indicates that the size of access unit n, b(n), is so large that it prevents removal at the nominal removal
time.

C.2 Operation of the decoded picture buffer (DPB)

The decoded picture buffer contains frame buffers. When decoding a coded video sequence conforming to one or more
of the profiles specified in Annex A using the decoding process specified in clauses 2-9, each of the frame buffers may
contain a decoded frame, a decoded complementary field pair or a single (non-paired) decoded field that is marked as
"used for reference" (reference pictures) or is held for future output (reordered or delayed pictures). When decoding a
coded video sequence conforming to one or more of the profiles specified in Annex G using the decoding process
specified in Annex G, each frame buffer may contain a decoded frame, a decoded complementary field pair, a single
(non-paired) decoded field, a decoded reference base frame, a decoded reference base complementary field pair or a
single (non-paired) decoded reference base field that is marked as "used for reference" (reference pictures) or is held for
future output (reordered or delayed pictures). When decoding a coded video sequence conforming to one or more of the
profiles specified in Annex H using the decoding process specified in Annex H, each of the frame buffers may contain a
decoded frame view component, a decoded complementary field view component pair, or a single (non-paired) decoded
field view component that is marked as "used for reference" (reference pictures) or is held for future output (reordered
or delayed pictures). Prior to initialisation, the DPB is empty (the DPB fullness is set to zero). The following steps of
the subclauses of this subclause all happen instantaneously at tr(n) and in the sequence listed.

NOTE – When the decoding process specified in Annex G is used, the DPB is only operated for decoded pictures and reference
base pictures associated with decoded pictures. The DPB is not operated for layer pictures with dependency_id less than
DependencyIdMax (and associated reference base pictures). All decoded pictures and associated reference base pictures are
decoded pictures and associated reference base pictures for dependency_id equal to DependencyIdMax, which represent the
results of the decoding process specified in subclause G.8.

C.2.1 Decoding of gaps in frame_num and storage of "non-existing" frames

When decoding a coded video sequence conforming to a profile specified in Annex H using the decoding process
specified in Annex H, the following process in this subclause is repeatedly invoked for each view in increasing order of
view order index, with "picture" being replaced by "view component", "frame" being replaced by "frame view
component", and "field" being replaced by "field view component". During the invocation of the process for a particular
view, only view components of the particular view may be removed from the DPB.

When applicable, gaps in frame_num are detected by the decoding process and the generated frames are marked and
inserted into the DPB as specified below.

Gaps in frame_num are detected by the decoding process and the generated frames are marked as specified in
subclauses 8.2.5.2 and G.8.2.5.

After the marking of each generated frame, each picture m marked by the "sliding window" process as "unused for
reference" is removed from the DPB when it is also marked as "non-existing" or its DPB output time is less than or
equal to the CPB removal time of the current picture n; i.e., to,dpb(m) <= tr(n), or it has OutputFlag equal to 0. When a
frame or the last field in a frame buffer is removed from the DPB, the DPB fullness is decremented by one. The "non-
existing" generated frame is inserted into the DPB and the DPB fullness is incremented by one.

C.2.2 Picture decoding and output

When the coded video sequence containing the picture conforms to a profile specified in Annex H and the decoding
process specified in Annex H is used, the following applies:

– When at least one view component of picture n has OutputFlag equal to 1, it is considered that picture n has
OutputFlag equal to 1.

– When at least one view component of picture n is output, it is considered that picture n is output.

– When at least one view component of picture n is stored in DPB, it is considered that picture n is stored in the
DPB.

 Rec. ITU-T H.264 (03/2009) 319

Picture n is decoded. When it has OutputFlag equal to 1, its DPB output time to,dpb(n) is derived by

to,dpb(n) = tr(n) + tc * dpb_output_delay(n) (C-12)

where dpb_output_delay(n) is the value of dpb_output_delay specified in the picture timing SEI message associated
with access unit n.

The output of the current picture is specified as follows.

– If OutputFlag is equal to 1 and to,dpb(n) = tr(n), the current picture is output.
NOTE – When the current picture or a view component of the current picture has nal_ref_idc greater than 0 (when using
the decoding process specified in Annex G, nal_ref_idc is the syntax element of the target layer representation), it will be
stored in the DPB.

– Otherwise, if OutputFlag is equal to 0, the current picture is not output, but it may be stored in the DPB as
specified in subclause C.2.4.

– Otherwise (OutputFlag is equal to 1 and to,dpb(n) > tr(n)), the current picture is output later and will be stored in
the DPB (as specified in subclause C.2.4) and is output at time to,dpb(n) unless indicated not to be output by the
decoding or inference of no_output_of_prior_pics_flag equal to 1 at a time that precedes to,dpb(n).

When the coded video sequence containing the picture conforms to a profile specified in Annex H and the decoding
process specified in Annex H is used, and picture n is output, the view components of all the target output views in
picture n are output at the same time instant and in increasing order of VOIdx.

When output, the picture or a view component of the picture shall be cropped, using the cropping rectangle specified in
the active sequence parameter set for the picture or the view component.

When picture n is a picture that is output and is not the last picture of the bitstream that is output, the value of Δto,dpb(n)
is defined as:

Δto,dpb(n) = to,dpb(nn) − to,dpb(n) (C-13)

where nn indicates the picture that follows after picture n in output order and has OutputFlag equal to 1.

The decoded picture is temporarily stored (not in the DPB).

C.2.3 Removal of pictures from the DPB before possible insertion of the current picture

When decoding a coded video sequence conforming to a profile specified in Annex H using the decoding process
specified in Annex H, the following process in this subclause is repeatedly invoked for each view in view decoding
order, with "picture" being replaced by "view component", "frame" being replaced by "frame view component", and
"field" being replaced by "field view component". During the invocation of the process for a particular view, only view
components of the particular view may be removed from the DPB.

The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows.

– If the decoded picture is an IDR picture the following applies:
1. All reference pictures in the DPB are marked as "unused for reference" as specified in subclause 8.2.5.1

when decoding a coded video sequence conforming to one or more of the profiles specified in Annex A
using the decoding process specified in clauses 2-9, or as specified in subclause G.8.2.4 when decoding a
coded video sequence conforming to one or more of the profiles specified in Annex G using the decoding
process specified in Annex G, or as specified in subclause H.8.3 when decoding a coded video sequence
conforming to one or more of the profiles specified in Annex H using the decoding process specified in
Annex H.

2. When the IDR picture is not the first IDR picture decoded and the value of PicWidthInMbs or
FrameHeightInMbs or max_dec_frame_buffering derived from the active sequence parameter set is different
from the value of PicWidthInMbs or FrameHeightInMbs or max_dec_frame_buffering derived from the
sequence parameter set that was active for the preceding picture, respectively, no_output_of_prior_pics_flag
is inferred to be equal to 1 by the HRD, regardless of the actual value of no_output_of_prior_pics_flag.

NOTE – Decoder implementations should try to handle frame or DPB size changes more gracefully than the HRD in
regard to changes in PicWidthInMbs or FrameHeightInMbs.

3. When no_output_of_prior_pics_flag is equal to 1 or is inferred to be equal to 1, all frame buffers in the DPB
are emptied without output of the pictures they contain, and DPB fullness is set to 0.

– Otherwise (the decoded picture is not an IDR picture), the following applies.

320 Rec. ITU-T H.264 (03/2009)

– If the slice header of the current picture includes memory_management_control_operation equal to 5, all
reference pictures in the DPB are marked as "unused for reference".

– Otherwise (the slice header of the current picture does not include memory_management_control_operation
equal to 5), the decoded reference picture marking process specified in subclause 8.2.5 is invoked when
decoding a coded video sequence conforming to one or more of the profiles specified in Annex A using the
decoding process specified in clauses 2-9, or the decoded reference picture marking process specified in
subclause G.8.2.4 is invoked when decoding a coded video sequence conforming to one or more of the
profiles specified in Annex G using the decoding process specified in Annex G, or the decoded reference
picture marking process specified in subclause H.8.3 is invoked when decoding a coded video sequence
conforming to one or more of the profiles specified in Annex H using the decoding process specified in
Annex H.

All pictures m in the DPB, for which all of the following conditions are true, are removed from the DPB:

– picture m is marked as "unused for reference" or picture m is a non-reference picture. When a picture is a reference
frame, it is considered to be marked as "unused for reference" only when both of its fields have been marked as
"unused for reference",

– picture m is marked as "non-existing" or it has OutputFlag equal to 0 or its DPB output time is less than or equal to
the CPB removal time of the current picture n; i.e., to,dpb(m) <= tr(n)

When a frame or the last field in a frame buffer is removed from the DPB, the DPB fullness is decremented by one.

C.2.4 Current decoded picture marking and storage

When decoding a coded video sequence conforming to a profile specified in Annex H using the decoding process
specified in Annex H, the following process in this subclause is repeatedly invoked for each view in increasing order of
view order index, with "picture" being replaced by "view component", "frame" being replaced by "frame view
component", and "field" being replaced by "field view component". During the invocation of the process for a particular
view, only view components of the particular view may be removed from the DPB.

C.2.4.1 Marking and storage of a reference decoded picture into the DPB

When the current picture is a reference picture, it is stored in the DPB as follows.

– If the current decoded picture is a second field (in decoding order) of a complementary reference field pair, and the
first field of the pair is still in the DPB, the current decoded picture is stored in the same frame buffer as the first
field of the pair.

– Otherwise, the current decoded picture is stored in an empty frame buffer, and the DPB fullness is incremented by
one.

When the coded video sequence conforms to one or more of the profiles specified in Annex G and the decoding process
specified in Annex G is used and the current picture has store_ref_base_pic_flag equal to 1 (i.e., the current picture is
associated with a reference base picture), the associated reference base picture is stored in the DPB as follows.

– If the reference base picture is a second field (in decoding order) of a complementary reference base field pair, and
the first field of the pair is still in the DPB, the reference base picture is stored in the same frame buffer as the first
field of the pair.

– Otherwise, the reference base picture is stored in an empty frame buffer, and the DPB fullness is incremented by
one.

C.2.4.2 Storage of a non-reference picture into the DPB

When the current picture is a non-reference picture and current picture n has to,dpb(n) > tr(n), it is stored in the DPB as
follows.

– If the current decoded picture is a second field (in decoding order) of a complementary non-reference field pair,
and the first field of the pair is still in the DPB, the current decoded picture is stored in the same frame buffer as
the first field of the pair.

– Otherwise, the current decoded picture is stored in an empty frame buffer, and the DPB fullness is incremented by
one.

C.3 Bitstream conformance

A bitstream of coded data conforming to this Recommendation | International Standard fulfils the following
requirements.

 Rec. ITU-T H.264 (03/2009) 321

The bitstream is constructed according to the syntax, semantics, and constraints specified in this
Recommendation | International Standard outside of this annex.

The bitstream is tested by the HRD as specified below:

For Type I bitstreams, the number of tests carried out is equal to cpb_cnt_minus1 + 1 where cpb_cnt_minus1 is either
the syntax element of hrd_parameters() following the vcl_hrd_parameters_present_flag or is determined by the
application by other means not specified in this Recommendation | International Standard. One test is carried out for
each bit rate and CPB size combination specified by hrd_parameters() following the vcl_hrd_parameters_present_flag.
Each of these tests is conducted at the Type I conformance point shown in Figure C-1.

For Type II bitstreams there are two sets of tests. The number of tests of the first set is equal to cpb_cnt_minus1 + 1
where cpb_cnt_minus1 is either the syntax element of hrd_parameters() following the
vcl_hrd_parameters_present_flag or is determined by the application by other means not specified in this
Recommendation | International Standard. One test is carried out for each bit rate and CPB size combination. Each of
these tests is conducted at the Type I conformance point shown in Figure C-1. For these tests, only VCL and filler data
NAL units are counted for the input bit rate and CPB storage.

The number of tests of the second set, for Type II bitstreams, is equal to cpb_cnt_minus1 + 1 where cpb_cnt_minus1 is
either the syntax element of hrd_parameters() following the nal_hrd_parameters_present_flag or is determined by the
application by other means not specified in this Recommendation | International Standard. One test is carried out for
each bit rate and CPB size combination specified by hrd_parameters() following the nal_hrd_parameters_present_flag.
Each of these tests is conducted at the Type II conformance point shown in Figure C-1. For these tests, all NAL units
(of a Type II NAL unit stream) or all bytes (of a byte stream) are counted for the input bit rate and CPB storage.

NOTE 1 – NAL HRD parameters established by a value of SchedSelIdx for the Type II conformance point shown in Figure C-1
are sufficient to also establish VCL HRD conformance for the Type I conformance point shown in Figure C-1 for the same
values of initial_cpb_removal_delay[SchedSelIdx], BitRate[SchedSelIdx], and CpbSize[SchedSelIdx] for the VBR case
(cbr_flag[SchedSelIdx] equal to 0). This is because the data flow into the Type I conformance point is a subset of the data flow
into the Type II conformance point and because, for the VBR case, the CPB is allowed to become empty and stay empty until the
time a next picture is scheduled to begin to arrive. For example, when decoding a coded video sequence conforming to one or
more of the profiles specified in Annex A using the decoding process specified in clauses 2-9, when NAL HRD parameters are
provided for the Type II conformance point that not only fall within the bounds set for NAL HRD parameters for profile
conformance in item j) of subclause A.3.1 or item h) of subclause A.3.3 (depending on the profile in use) but also fall within the
bounds set for VCL HRD parameters for profile conformance in item i) of subclause A.3.1 or item g) of subclause A.3.3
(depending on the profile in use), conformance of the VCL HRD for the Type I conformance point is also assured to fall within
the bounds of item i of subclause A.3.1.

For conforming bitstreams, all of the following conditions shall be fulfilled for each of the tests:

1. For each access unit n, with n>0, associated with a buffering period SEI message, with Δtg,90(n) specified by

Δtg,90(n) = 90000 * (tr,n(n) − taf(n − 1)) (C-14)

the value of initial_cpb_removal_delay[SchedSelIdx] shall be constrained as follows.
– If cbr_flag[SchedSelIdx] is equal to 0,

initial_cpb_removal_delay[SchedSelIdx] <= Ceil(Δtg,90(n)) (C-15)

– Otherwise (cbr_flag[SchedSelIdx] is equal to 1),

Floor(Δtg,90(n)) <= initial_cpb_removal_delay[SchedSelIdx] <= Ceil(Δtg,90(n)) (C-16)

NOTE 2 – The exact number of bits in the CPB at the removal time of each picture may depend on which buffering
period SEI message is selected to initialise the HRD. Encoders must take this into account to ensure that all specified
constraints must be obeyed regardless of which buffering period SEI message is selected to initialise the HRD, as the
HRD may be initialised at any one of the buffering period SEI messages.

2. A CPB overflow is specified as the condition in which the total number of bits in the CPB is larger than the CPB
size. The CPB shall never overflow.

3. A CPB underflow is specified as the condition in which tr,n(n) is less than taf(n). When low_delay_hrd_flag is
equal to 0, the CPB shall never underflow.

4. The nominal removal times of pictures from the CPB (starting from the second picture in decoding order), shall
satisfy the constraints on tr,n(n) and tr(n) expressed in subclauses A.3.1 through A.3.3 for the profile and level
specified in the bitstream when decoding a coded video sequence conforming to one or more of the profiles
specified in Annex A using the decoding process specified in clauses 2-9, and they shall satisfy the constraints

322 Rec. ITU-T H.264 (03/2009)

on tr,n(n) and tr(n) expressed in subclauses G.10.2.1 and G.10.2.2 for profile and level specified in the
bitstream when decoding a coded video sequence conforming to one or more of the profiles specified in
Annex G using the decoding process specified in Annex G, and they shall satisfy the constraints on tr,n(n) and
tr(n) expressed in subclause H.10.2 for the profile and level specified in the bitstream when decoding a coded
video sequence conforming to one or more of the profiles specified in Annex H using the decoding process
specified in Annex H.

5. Immediately after any decoded picture is added to the DPB, the fullness of the DPB shall be less than or equal to
the DPB size as constrained by Annexes A, D, and E and subclauses G.10, G.13, G.14, H.10, H.13, and H.14 for
the profile and level specified in the bitstream.

6. All reference pictures shall be present in the DPB when needed for prediction. Each picture shall be present in
the DPB at its DPB output time unless it is not stored in the DPB at all, or is removed from the DPB before its
output time by one of the processes specified in subclause C.2.

7. The value of Δto,dpb(n) as given by Equation C-13, which is the difference between the output time of a picture
and that of the first picture following it in output order and having OutputFlag equal to 1, shall satisfy the
constraint expressed in subclause A.3.1 for the profile and level specified in the bitstream when decoding a
coded video sequence conforming to one or more of the profiles specified in Annex A using the decoding
process specified in clauses 2-9, and it shall satisfy the constraint expressed in subclause G.10.2.1 for profile and
level specified in the bitstream when decoding a coded video sequence conforming to one or more of the
profiles specified in Annex G using the decoding process specified in Annex G, and it shall satisfy the
constraints expressed in subclause H.10.2 for the profile and level specified in the bitstream when decoding a
coded video sequence conforming to one or more of the profiles specified in Annex H using the decoding
process specified in Annex H.

C.4 Decoder conformance

A decoder conforming to this Recommendation | International Standard fulfils the following requirements.

A decoder claiming conformance to a specific profile and level shall be able to decode successfully all conforming
bitstreams specified for decoder conformance in subclause C.3, provided that all sequence parameter sets and picture
parameters sets referred to in the VCL NAL units, and appropriate buffering period and picture timing SEI messages are
conveyed to the decoder, in a timely manner, either in the bitstream (by non-VCL NAL units), or by external means not
specified by this Recommendation | International Standard.

There are two types of conformance that can be claimed by a decoder: output timing conformance and output order
conformance.

To check conformance of a decoder, test bitstreams conforming to the claimed profile and level, as specified by
subclause C.3 are delivered by a hypothetical stream scheduler (HSS) both to the HRD and to the decoder under test
(DUT). All pictures output by the HRD shall also be output by the DUT and, for each picture output by the HRD, the
values of all samples that are output by the DUT for the corresponding picture shall be equal to the values of the
samples output by the HRD.

For output timing decoder conformance, the HSS operates as described above, with delivery schedules selected only
from the subset of values of SchedSelIdx for which the bit rate and CPB size are restricted as specified in Annex A,
Annex G, and Annex H for the specified profile and level, or with "interpolated" delivery schedules as specified below
for which the bit rate and CPB size are restricted as specified in Annex A, Annex G, and Annex H. The same delivery
schedule is used for both the HRD and DUT.

When the HRD parameters and the buffering period SEI messages are present with cpb_cnt_minus1 greater than 0, the
decoder shall be capable of decoding the bitstream as delivered from the HSS operating using an "interpolated" delivery
schedule specified as having peak bit rate r, CPB size c(r), and initial CPB removal delay (f(r) ÷ r) as follows:

α = (r − BitRate[SchedSelIdx − 1]) ÷ (BitRate[SchedSelIdx] − BitRate[SchedSelIdx − 1]), (C-17)

c(r) = α * CpbSize[SchedSelIdx] + (1 − α) * CpbSize[SchedSelIdx−1], (C-18)

f(r) = α ∗ initial_cpb_removal_delay[SchedSelIdx] * BitRate[SchedSelIdx] +
 (1 − α) ∗ initial_cpb_removal_delay[SchedSelIdx − 1] * BitRate[SchedSelIdx − 1] (C-19)

 Rec. ITU-T H.264 (03/2009) 323

for any SchedSelIdx > 0 and r such that BitRate[SchedSelIdx − 1] <= r <= BitRate[SchedSelIdx] such that r and c(r)
are within the limits as specified in Annex A, Annex G, and Annex H for the maximum bit rate and buffer size for the
specified profile and level.

NOTE 1 – initial_cpb_removal_delay[SchedSelIdx] can be different from one buffering period to another and have to be
re-calculated.

For output timing decoder conformance, an HRD as described above is used and the timing (relative to the delivery
time of the first bit) of picture output is the same for both HRD and the DUT up to a fixed delay.

For output order decoder conformance, the HSS delivers the bitstream to the DUT "by demand" from the DUT,
meaning that the HSS delivers bits (in decoding order) only when the DUT requires more bits to proceed with its
processing.

NOTE 2 – This means that for this test, the coded picture buffer of the DUT could be as small as the size of the largest access
unit.

A modified HRD as described below is used, and the HSS delivers the bitstream to the HRD by one of the schedules
specified in the bitstream such that the bit rate and CPB size are restricted as specified in Annex A, Annex G, and
Annex H. The order of pictures output shall be the same for both HRD and the DUT.

For output order decoder conformance, the HRD CPB size is equal to CpbSize[SchedSelIdx] for the selected schedule
and the DPB size is equal to MaxDpbFrames. Removal time from the CPB for the HRD is equal to final bit arrival time
and decoding is immediate. The operation of the DPB of this HRD is described below.

C.4.1 Operation of the output order DPB

The decoded picture buffer contains frame buffers. When decoding a coded video sequence conforming to one or more
of the profiles specified in Annex A using the decoding process specified in clauses 2-9, each of the frame buffers may
contain a decoded frame, a decoded complementary field pair or a single (non-paired) decoded field that is marked as
"used for reference" or is held for future output (reordered pictures). When decoding a coded video sequence
conforming to one or more of the profiles specified in Annex G using the decoding process specified in Annex G, each
frame buffer may contain a decoded frame, a decoded complementary field pair, a single (non-paired) decoded field, a
decoded reference base frame, a decoded reference base complementary field pair or a single (non-paired) decoded
reference base field that is marked as "used for reference" (reference pictures) or is held for future output (reordered or
delayed pictures). When decoding a coded video sequence conforming to one or more of the profiles specified in
Annex H using the decoding process specified in Annex H, each of the frame buffers may contain a decoded frame
view component, a decoded complementary field view component pair, or a single (non-paired) decoded field view
component that is marked as "used for reference" (reference pictures) or is held for future output (reordered or delayed
pictures). At HRD initialisation, the DPB fullness, measured in frames, is set to 0. The following steps all happen
instantaneously when an access unit is removed from the CPB, and in the order listed.

C.4.2 Decoding of gaps in frame_num and storage of "non-existing" pictures

When decoding a coded video sequence conforming to a profile specified in Annex H using the decoding process
specified in Annex H, the following process in this subclause is repeatedly invoked for each view in increasing order of
view order index, with "picture" being replaced by "view component", "frame" being replaced by "frame view
component", and "field" being replaced by "field view component". During the invocation of the process for a particular
view, only view components of the particular view may be removed from the DPB.

When applicable, gaps in frame_num are detected by the decoding process and the necessary number of "non-existing"
frames are inferred in the order specified by the generation of values of UnusedShortTermFrameNum in Equation 7-23
and are marked as specified in subclauses 8.2.5.2 and G.8.2.5. Frame buffers containing a frame or a complementary
field pair or a non-paired field which are marked as "not needed for output" and "unused for reference" are emptied
(without output), and the DPB fullness is decremented by the number of frame buffers emptied. Each "non-existing"
frame is stored in the DPB as follows.

– When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process specified in
subclause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store the "non-existing"
frame.

– The "non-existing" frame is stored in an empty frame buffer and is marked as "not needed for output", and the
DPB fullness is incremented by one.

C.4.3 Picture decoding

Primary coded picture n is decoded and is temporarily stored (not in the DPB).

324 Rec. ITU-T H.264 (03/2009)

C.4.4 Removal of pictures from the DPB before possible insertion of the current picture

When decoding a coded video sequence conforming to a profile specified in Annex H using the decoding process
specified in Annex H, the following process in this subclause is repeatedly invoked for each view in inreasing order of
view order index, with "picture" being replaced by "view component", "frame" being replaced by "frame view
component", and "field" being replaced by "field view component". During the invocation of the process for a particular
view, only view components of the particular view may be removed from the DPB.

The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows.

– If the decoded picture is an IDR picture the following applies.
1. All reference pictures in the DPB are marked as "unused for reference" as specified in subclause 8.2.5 when

decoding a coded video sequence conforming to one or more of the profiles specified in Annex A using the
decoding process specified in clauses 2-9, or as specified in subclause G.8.2.4 when decoding a coded video
sequence conforming to one or more of the profiles specified in Annex G using the decoding process
specified in Annex G, or as specified in subclause H.8.3 when decoding a coded video sequence conforming
to one or more of the profiles specified in Annex H using the decoding process specified in Annex H.

2. When the IDR picture is not the first IDR picture decoded and the value of PicWidthInMbs or
FrameHeightInMbs or max_dec_frame_buffering derived from the active sequence parameter set is different
from the value of PicWidthInMbs or FrameHeightInMbs or max_dec_frame_buffering derived from the
sequence parameter set that was active for the preceding picture, respectively, no_output_of_prior_pics_flag
is inferred to be equal to 1 by the HRD, regardless of the actual value of no_output_of_prior_pics_flag.

NOTE – Decoder implementations should try to handle changes in the value of PicWidthInMbs or
FrameHeightInMbs or max_dec_frame_buffering more gracefully than the HRD.

3. When no_output_of_prior_pics_flag is equal to 1 or is inferred to be equal to 1, all frame buffers in the DPB
are emptied without output of the pictures they contain, and DPB fullness is set to 0.

– Otherwise (the decoded picture is not an IDR picture), the decoded reference picture marking process is invoked as
specified in subclause 8.2.5 when decoding a coded video sequence conforming to one or more of the profiles
specified in Annex A using the decoding process specified in clauses 2-9, or as specified in subclause G.8.2.4
when decoding a coded video sequence conforming to one or more of the profiles specified in Annex G using the
decoding process specified in Annex G, or as specified in subclause H.8.3 when decoding a coded video sequence
conforming to one or more of the profiles specified in Annex H using the decoding process specified in Annex H.
Frame buffers containing a frame or a complementary field pair or a non-paired field which are marked as "not
needed for output" and "unused for reference" are emptied (without output), and the DPB fullness is decremented
by the number of frame buffers emptied.

When the current picture has a memory_management_control_operation equal to 5 or is an IDR picture for which
no_output_of_prior_pics_flag is not equal to 1 and is not inferred to be equal to 1, the following two steps are
performed.

1. Frame buffers containing a frame or a complementary field pair or a non-paired field which are marked as "not
needed for output" and "unused for reference" are emptied (without output), and the DPB fullness is
decremented by the number of frame buffers emptied.

2. All non-empty frame buffers in the DPB are emptied by repeatedly invoking the "bumping" process specified in
subclause C.4.5.3, and the DPB fullness is set to 0.

C.4.5 Current decoded picture marking and storage

When decoding a coded video sequence conforming to a profile specified in Annex H using the decoding process
specified in Annex H, the following process in this subclause is repeatedly invoked for each view in increasing order of
view order index, with "picture" being replaced by "view component", "frame" being replaced by "frame view
component", and "field" being replaced by "field view component". During the invocation of the process for a particular
view, only view components of the particular view may be removed from the DPB.

C.4.5.1 Storage and marking of a reference decoded picture into the DPB

When the current picture is a reference picture, it is stored in the DPB as follows.

– If the current decoded picture is the second field (in decoding order) of a complementary reference field pair, and
the first field of the pair is still in the DPB, the current picture is stored in the same frame buffer as the first field of
the pair and the following applies.
– If the current decoded picture has OutputFlag equal to 1, it is marked as "needed for output".
– Otherwise (the current decoded picture has OutputFlag equal to 0), it is marked as "not needed for output".

 Rec. ITU-T H.264 (03/2009) 325

– Otherwise, the following operations are performed:
1. When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process

specified in subclause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store the
current decoded picture.

2. The current decoded picture is stored in an empty frame buffer, the DPB fullness is incremented by one, and
the following applies.
– If the current decoded picture has OutputFlag equal to 1, it is marked as "needed for output".
– Otherwise (the current decoded picture has OutputFlag equal to 0), it is marked as "not needed for

output".

When the coded video sequence conforms to one or more of the profiles specified in Annex G and the decoding process
specified in Annex G is used and the current picture has store_ref_base_pic_flag equal to 1 (i.e., the current picture is
associated with a reference base picture), the associated reference base picture is stored in the DPB as follows.

– If the reference base picture is a second field (in decoding order) of a complementary reference base field pair, and
the first field of the pair is still in the DPB, the reference base picture is stored in the same frame buffer as the first
field of the pair and marked as "not needed for output".

– Otherwise, the following operations are performed:
1. When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process

specified in subclause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store
the reference base picture.

2. The reference base picture is stored in an empty frame buffer and marked as "not needed for output" and
the DPB fullness is incremented by one.

C.4.5.2 Storage and marking of a non-reference decoded picture into the DPB

When the current picture is a non-reference picture, the following applies.
– If the current decoded picture is the second field (in decoding order) of a complementary non-reference field pair

and the first field of the pair is still in the DPB, the current picture is stored in the same frame buffer as the first
field of the pair and the following applies.

– If the current decoded picture has OutputFlag equal to 1, it is marked as "needed for output".

– Otherwise (the current decoded picture has OutputFlag equal to 0), it is marked as "not needed for output".
– Otherwise, if the current picture has OutputFlag equal to 0, the DPB is not modified and the current picture is not

output.
– Otherwise, the following operations are performed repeatedly until the current decoded picture has been cropped

and output or has been stored in the DPB:

– If there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the following applies.
– If the current picture does not have a lower value of PicOrderCnt() than all pictures in the DPB that are

marked as "needed for output", the "bumping" process described in subclause C.4.5.3 is performed.
– Otherwise (the current picture has a lower value of PicOrderCnt() than all pictures in the DPB that are

marked as "needed for output"), the current picture is cropped, using the cropping rectangle specified in
the active sequence parameter set for the picture and the cropped picture is output.

– Otherwise (there is an empty frame buffer, i.e., DPB fullness is less than DPB size) the current decoded
picture is stored in an empty frame buffer and is marked as "needed for output", and the DPB fullness is
incremented by one.

C.4.5.3 "Bumping" process

The "bumping" process is invoked in the following cases.
– There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and an empty frame buffer is needed for

storage of an inferred "non-existing" frame, as specified in subclause C.4.2.
– The current picture is an IDR picture and no_output_of_prior_pics_flag is not equal to 1 and is not inferred to be

equal to 1, as specified in subclause C.4.4.
– The current picture has memory_management_control_operation equal to 5, as specified in subclause C.4.4.
– There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and an empty frame buffer is needed for

storage of a decoded (non-IDR) reference picture or a reference base picture, as specified in subclause C.4.5.1.

326 Rec. ITU-T H.264 (03/2009)

– There is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and the current picture is a non-reference
picture that is not the second field of a complementary non-reference field pair and the current picture has
OutputFlag equal to 1 and there are pictures in the DPB that are marked as "needed for output" that precede the
current non-reference picture in output order, as specified in subclause C.4.5.2, so an empty buffer is needed for
storage of the current picture.

The "bumping" process consists of the following ordered steps:
1. The picture or complementary reference field pair that is first for output is selected as follows:

a. The frame buffer is selected that contains the picture having the smallest value of PicOrderCnt() of all
pictures in the DPB marked as "needed for output".

b. Depending on the frame buffer, the following applies:
– If this frame buffer contains a complementary non-reference field pair with both fields marked as

"needed for output" and both fields have the same PicOrderCnt(), the first of these two fields in
decoding order is considered first for output.

– Otherwise, if this frame buffer contains a complementary reference field pair with both fields marked
as "needed for output" and both fields have the same PicOrderCnt(), the entire complementary
reference field pair is considered first for output.
NOTE – When the two fields of a complementary reference field pair have the same value of PicOrderCnt(),
this "bumping" process will output these pictures together, although the two fields have different output times
from a decoder that satisfies output timing conformance criteria (as specified in subclause C.2.2).

– Otherwise, the picture in this frame buffer that has the smallest value of PicOrderCnt() is considered
first for output.

2. Depending on whether a single picture or a complementary reference field pair is considered for output, the
following applies.
– If a single picture is considered first for output, this picture is cropped, using the cropping rectangle

specified in the active sequence parameter set for the picture, the cropped picture is output, and the picture
is marked as "not needed for output".

– Otherwise (a complementary reference field pair is considered first for output), the two fields of the
complementary reference field pair are both cropped, using the cropping rectangle specified in the active
sequence parameter set for the pictures, the two fields of the complementary reference field pair are output
together, and both fields of the complementary reference field pair are marked as "not needed for output".

3. The frame buffer that included the picture or complementary reference field pair that was cropped and output is
checked, and when any of the following conditions is satisfied, the frame buffer is emptied and the DPB fullness
is decremented by 1:
– The frame buffer contains a non-reference non-paired field.
– The frame buffer contains a non-reference frame.
– The frame buffer contains a complementary non-reference field pair with both fields marked as "not needed

for output".
– The frame buffer contains a non-paired reference field marked as "unused for reference".
– The frame buffer contains a reference frame with both fields marked as "unused for reference".
– The frame buffer contains a complementary reference field pair with both fields marked as "unused for

reference" and "not needed for output".

 Rec. ITU-T H.264 (03/2009) 327

Annex D

Supplemental enhancement information

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics for SEI message payloads.

SEI messages assist in processes related to decoding, display or other purposes. However, SEI messages are not
required for constructing the luma or chroma samples by the decoding process. Conforming decoders are not required to
process this information for output order conformance to this Recommendation | International Standard (see Annex C
for the specification of conformance). Some SEI message information is required to check bitstream conformance and
for output timing decoder conformance.

In Annex D, specification for presence of SEI messages are also satisfied when those messages (or some subset of
them) are conveyed to decoders (or to the HRD) by other means not specified by this Recommendation | International
Standard. When present in the bitstream, SEI messages shall obey the syntax and semantics specified in
subclauses 7.3.2.3 and 7.4.2.3 and this annex. When the content of an SEI message is conveyed for the application by
some means other than presence within the bitstream, the representation of the content of the SEI message is not
required to use the same syntax specified in this annex. For the purpose of counting bits, only the appropriate bits that
are actually present in the bitstream are counted.

D.1 SEI payload syntax

sei_payload(payloadType, payloadSize) { C Descriptor

if(payloadType = = 0)
buffering_period(payloadSize) 5

else if(payloadType = = 1)
pic_timing(payloadSize) 5

else if(payloadType = = 2)
pan_scan_rect(payloadSize) 5

else if(payloadType = = 3)
 filler_payload(payloadSize) 5
else if(payloadType = = 4)
 user_data_registered_itu_t_t35(payloadSize) 5
else if(payloadType = = 5)
 user_data_unregistered(payloadSize) 5
else if(payloadType = = 6)
 recovery_point(payloadSize) 5
else if(payloadType = = 7)
 dec_ref_pic_marking_repetition(payloadSize) 5
else if(payloadType = = 8)
 spare_pic(payloadSize) 5
else if(payloadType = = 9)
 scene_info(payloadSize) 5
else if(payloadType = = 10)
 sub_seq_info(payloadSize) 5
else if(payloadType = = 11)
 sub_seq_layer_characteristics(payloadSize) 5
else if(payloadType = = 12)
 sub_seq_characteristics(payloadSize) 5
else if(payloadType = = 13)

328 Rec. ITU-T H.264 (03/2009)

 full_frame_freeze(payloadSize) 5
else if(payloadType = = 14)
 full_frame_freeze_release(payloadSize) 5
else if(payloadType = = 15)
 full_frame_snapshot(payloadSize) 5
else if(payloadType = = 16)
 progressive_refinement_segment_start(payloadSize) 5
else if(payloadType = = 17)
 progressive_refinement_segment_end(payloadSize) 5
else if(payloadType = = 18)
 motion_constrained_slice_group_set(payloadSize) 5
else if(payloadType = = 19)
 film_grain_characteristics(payloadSize) 5
else if(payloadType = = 20)
 deblocking_filter_display_preference(payloadSize) 5
else if(payloadType = = 21)
 stereo_video_info(payloadSize) 5
else if(payloadType = = 22)
 post_filter_hint(payloadSize) 5
else if(payloadType = = 23)
 tone_mapping_info(payloadSize) 5
else if(payloadType = = 24)
 scalability_info(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 25)
 sub_pic_scalable_layer(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 26)
 non_required_layer_rep(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 27)
 priority_layer_info(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 28)
 layers_not_present(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 29)
 layer_dependency_change(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 30)
 scalable_nesting(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 31)
 base_layer_temporal_hrd(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 32)
 quality_layer_integrity_check(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 33)
 redundant_pic_property(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 34)
 tl0_dep_rep_index(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 35)
 tl_switching_point(payloadSize) /* specified in Annex G */ 5
else if(payloadType = = 36)
 parallel_decoding_info(payloadSize) /* specified in Annex H */ 5
else if(payloadType = = 37)
 mvc_scalable_nesting(payloadSize) /* specified in Annex H */ 5

 Rec. ITU-T H.264 (03/2009) 329

else if(payloadType = = 38)
 view_scalability_info(payloadSize) /* specified in Annex H */ 5
else if(payloadType = = 39)
 multiview_scene_info(payloadSize) /* specified in Annex H */ 5
else if(payloadType = = 40)
 multiview_acquisition_info(payloadSize) /* specified in Annex H */ 5
else if(payloadType = = 41)
 non_required_view_component(payloadSize) /* specified in Annex H */ 5
else if(payloadType = = 42)
 view_dependency_change(payloadSize) /* specified in Annex H */ 5
else if(payloadType = = 43)
 operation_points_not_present(payloadSize) /* specified in Annex H */ 5
else if(payloadType = = 44)
 base_view_temporal_hrd(payloadSize) /* specified in Annex H */ 5
else
 reserved_sei_message(payloadSize) 5
if(!byte_aligned()) {

bit_equal_to_one /* equal to 1 */ 5 f(1)
while(!byte_aligned())

bit_equal_to_zero /* equal to 0 */ 5 f(1)
}

}

D.1.1 Buffering period SEI message syntax

buffering_period(payloadSize) { C Descriptor
 seq_parameter_set_id 5 ue(v)
 if(NalHrdBpPresentFlag) {
 for(SchedSelIdx = 0; SchedSelIdx <= cpb_cnt_minus1; SchedSelIdx++) {
 initial_cpb_removal_delay[SchedSelIdx] 5 u(v)
 initial_cpb_removal_delay_offset[SchedSelIdx] 5 u(v)
 }
 }
 if(VclHrdBpPresentFlag) {
 for(SchedSelIdx = 0; SchedSelIdx <= cpb_cnt_minus1; SchedSelIdx++) {
 initial_cpb_removal_delay[SchedSelIdx] 5 u(v)
 initial_cpb_removal_delay_offset[SchedSelIdx] 5 u(v)
 }
 }
}

D.1.2 Picture timing SEI message syntax

pic_timing(payloadSize) { C Descriptor
 if(CpbDpbDelaysPresentFlag) {
 cpb_removal_delay 5 u(v)

330 Rec. ITU-T H.264 (03/2009)

 dpb_output_delay 5 u(v)
 }
 if(pic_struct_present_flag) {
 pic_struct 5 u(4)
 for(i = 0; i < NumClockTS ; i++) {
 clock_timestamp_flag[i] 5 u(1)
 if(clock_timestamp_flag[i]) {

 ct_type 5 u(2)
 nuit_field_based_flag 5 u(1)
 counting_type 5 u(5)
 full_timestamp_flag 5 u(1)
 discontinuity_flag 5 u(1)
 cnt_dropped_flag 5 u(1)
 n_frames 5 u(8)
 if(full_timestamp_flag) {

 seconds_value /* 0..59 */ 5 u(6)
 minutes_value /* 0..59 */ 5 u(6)
 hours_value /* 0..23 */ 5 u(5)

 } else {
 seconds_flag 5 u(1)
 if(seconds_flag) {

 seconds_value /* range 0..59 */ 5 u(6)
 minutes_flag 5 u(1)
 if(minutes_flag) {
 minutes_value /* 0..59 */ 5 u(6)
 hours_flag 5 u(1)
 if(hours_flag)
 hours_value /* 0..23 */ 5 u(5)
 }
 }
 }
 if(time_offset_length > 0)
 time_offset 5 i(v)
 }
 }
 }
}

 Rec. ITU-T H.264 (03/2009) 331

D.1.3 Pan-scan rectangle SEI message syntax

pan_scan_rect(payloadSize) { C Descriptor

pan_scan_rect_id 5 ue(v)
pan_scan_rect_cancel_flag 5 u(1)
if(!pan_scan_rect_cancel_flag) {
 pan_scan_cnt_minus1 5 ue(v)
 for(i = 0; i <= pan_scan_cnt_minus1; i++) {
 pan_scan_rect_left_offset[i] 5 se(v)
 pan_scan_rect_right_offset[i] 5 se(v)
 pan_scan_rect_top_offset[i] 5 se(v)
 pan_scan_rect_bottom_offset[i] 5 se(v)
 }
 pan_scan_rect_repetition_period 5 ue(v)
}

}

D.1.4 Filler payload SEI message syntax

filler_payload(payloadSize) { C Descriptor
 for(k = 0; k < payloadSize; k++)
 ff_byte /* equal to 0xFF */ 5 f(8)
}

D.1.5 User data registered by ITU-T Rec. T.35 SEI message syntax

user_data_registered_itu_t_t35(payloadSize) { C Descriptor
 itu_t_t35_country_code 5 b(8)
 if(itu_t_t35_country_code != 0xFF)
 i = 1
 else {
 itu_t_t35_country_code_extension_byte 5 b(8)
 i = 2
 }
 do {
 itu_t_t35_payload_byte 5 b(8)
 i++
 } while(i < payloadSize)
}

332 Rec. ITU-T H.264 (03/2009)

D.1.6 User data unregistered SEI message syntax

user_data_unregistered(payloadSize) { C Descriptor
 uuid_iso_iec_11578 5 u(128)
 for(i = 16; i < payloadSize; i++)
 user_data_payload_byte 5 b(8)
}

D.1.7 Recovery point SEI message syntax

recovery_point(payloadSize) { C Descriptor
 recovery_frame_cnt 5 ue(v)
 exact_match_flag 5 u(1)
 broken_link_flag 5 u(1)
 changing_slice_group_idc 5 u(2)
}

D.1.8 Decoded reference picture marking repetition SEI message syntax

dec_ref_pic_marking_repetition(payloadSize) { C Descriptor
 original_idr_flag 5 u(1)
 original_frame_num 5 ue(v)
 if(!frame_mbs_only_flag) {
 original_field_pic_flag 5 u(1)
 if(original_field_pic_flag)
 original_bottom_field_flag 5 u(1)
 }
 dec_ref_pic_marking() 5
}

 Rec. ITU-T H.264 (03/2009) 333

D.1.9 Spare picture SEI message syntax

spare_pic(payloadSize) { C Descriptor
 target_frame_num 5 ue(v)
 spare_field_flag 5 u(1)
 if(spare_field_flag)
 target_bottom_field_flag 5 u(1)
 num_spare_pics_minus1 5 ue(v)
 for(i = 0; i < num_spare_pics_minus1 + 1; i++) {
 delta_spare_frame_num[i] 5 ue(v)
 if(spare_field_flag)
 spare_bottom_field_flag[i] 5 u(1)
 spare_area_idc[i] 5 ue(v)
 if(spare_area_idc[i] = = 1)
 for(j = 0; j < PicSizeInMapUnits; j++)
 spare_unit_flag[i][j] 5 u(1)
 else if(spare_area_idc[i] = = 2) {
 mapUnitCnt = 0
 for(j=0; mapUnitCnt < PicSizeInMapUnits; j++) {
 zero_run_length[i][j] 5 ue(v)
 mapUnitCnt += zero_run_length[i][j] + 1
 }
 }
 }
}

D.1.10 Scene information SEI message syntax

scene_info(payloadSize) { C Descriptor
 scene_info_present_flag 5 u(1)
 if(scene_info_present_flag) {
 scene_id 5 ue(v)
 scene_transition_type 5 ue(v)
 if(scene_transition_type > 3)
 second_scene_id 5 ue(v)
 }
}

334 Rec. ITU-T H.264 (03/2009)

D.1.11 Sub-sequence information SEI message syntax

sub_seq_info(payloadSize) { C Descriptor
 sub_seq_layer_num 5 ue(v)
 sub_seq_id 5 ue(v)
 first_ref_pic_flag 5 u(1)
 leading_non_ref_pic_flag 5 u(1)
 last_pic_flag 5 u(1)
 sub_seq_frame_num_flag 5 u(1)
 if(sub_seq_frame_num_flag)
 sub_seq_frame_num 5 ue(v)
}

D.1.12 Sub-sequence layer characteristics SEI message syntax

sub_seq_layer_characteristics(payloadSize) { C Descriptor
 num_sub_seq_layers_minus1 5 ue(v)
 for(layer = 0; layer <= num_sub_seq_layers_minus1; layer++) {
 accurate_statistics_flag 5 u(1)
 average_bit_rate 5 u(16)
 average_frame_rate 5 u(16)
 }
}

D.1.13 Sub-sequence characteristics SEI message syntax

sub_seq_characteristics(payloadSize) { C Descriptor
 sub_seq_layer_num 5 ue(v)
 sub_seq_id 5 ue(v)
 duration_flag 5 u(1)
 if(duration_flag)
 sub_seq_duration 5 u(32)
 average_rate_flag 5 u(1)
 if(average_rate_flag) {
 accurate_statistics_flag 5 u(1)
 average_bit_rate 5 u(16)
 average_frame_rate 5 u(16)
 }
 num_referenced_subseqs 5 ue(v)
 for(n = 0; n < num_referenced_subseqs; n++) {
 ref_sub_seq_layer_num 5 ue(v)
 ref_sub_seq_id 5 ue(v)
 ref_sub_seq_direction 5 u(1)
 }
}

 Rec. ITU-T H.264 (03/2009) 335

D.1.14 Full-frame freeze SEI message syntax

full_frame_freeze(payloadSize) { C Descriptor
 full_frame_freeze_repetition_period 5 ue(v)
}

D.1.15 Full-frame freeze release SEI message syntax

full_frame_freeze_release(payloadSize) { C Descriptor
}

D.1.16 Full-frame snapshot SEI message syntax

full_frame_snapshot(payloadSize) { C Descriptor
 snapshot_id 5 ue(v)
}

D.1.17 Progressive refinement segment start SEI message syntax

progressive_refinement_segment_start(payloadSize) { C Descriptor
 progressive_refinement_id 5 ue(v)
 num_refinement_steps_minus1 5 ue(v)
}

D.1.18 Progressive refinement segment end SEI message syntax

progressive_refinement_segment_end(payloadSize) { C Descriptor
 progressive_refinement_id 5 ue(v)
}

D.1.19 Motion-constrained slice group set SEI message syntax

motion_constrained_slice_group_set(payloadSize) { C Descriptor
 num_slice_groups_in_set_minus1 5 ue(v)
 if(num_slice_groups_minus1 > 0)
 for(i = 0; i <= num_slice_groups_in_set_minus1; i++)
 slice_group_id[i] 5 u(v)
 exact_sample_value_match_flag 5 u(1)
 pan_scan_rect_flag 5 u(1)
 if(pan_scan_rect_flag)
 pan_scan_rect_id 5 ue(v)
}

336 Rec. ITU-T H.264 (03/2009)

D.1.20 Film grain characteristics SEI message syntax

film_grain_characteristics(payloadSize) { C Descriptor
 film_grain_characteristics_cancel_flag 5 u(1)
 if(!film_grain_characteristics_cancel_flag) {
 model_id 5 u(2)
 separate_colour_description_present_flag 5 u(1)
 if(separate_colour_description_present_flag) {
 film_grain_bit_depth_luma_minus8 5 u(3)
 film_grain_bit_depth_chroma_minus8 5 u(3)
 film_grain_full_range_flag 5 u(1)
 film_grain_colour_primaries 5 u(8)
 film_grain_transfer_characteristics 5 u(8)
 film_grain_matrix_coefficients 5 u(8)
 }
 blending_mode_id 5 u(2)
 log2_scale_factor 5 u(4)
 for(c = 0; c < 3; c++)
 comp_model_present_flag[c] 5 u(1)
 for(c = 0; c < 3; c++)
 if(comp_model_present_flag[c]) {
 num_intensity_intervals_minus1[c] 5 u(8)
 num_model_values_minus1[c] 5 u(3)
 for(i = 0; i <= num_intensity_intervals_minus1[c]; i++) {
 intensity_interval_lower_bound[c][i] 5 u(8)
 intensity_interval_upper_bound[c][i] 5 u(8)
 for(j = 0; j <= num_model_values_minus1[c]; j++)
 comp_model_value[c][i][j] 5 se(v)
 }
 }

 film_grain_characteristics_repetition_period 5 ue(v)
 }
}

D.1.21 Deblocking filter display preference SEI message syntax

deblocking_filter_display_preference(payloadSize) { C Descriptor
 deblocking_display_preference_cancel_flag 5 u(1)
 if(!deblocking_display_preference_cancel_flag) {
 display_prior_to_deblocking_preferred_flag 5 u(1)
 dec_frame_buffering_constraint_flag 5 u(1)
 deblocking_display_preference_repetition_period 5 ue(v)
 }
}

 Rec. ITU-T H.264 (03/2009) 337

D.1.22 Stereo video information SEI message syntax

stereo_video_info(payloadSize) { C Descriptor
 field_views_flag 5 u(1)
 if(field_views_flag)
 top_field_is_left_view_flag 5 u(1)
 else {
 current_frame_is_left_view_flag 5 u(1)
 next_frame_is_second_view_flag 5 u(1)
 }
 left_view_self_contained_flag 5 u(1)
 right_view_self_contained_flag 5 u(1)
}

D.1.23 Post-filter hint SEI message syntax

post_filter_hint(payloadSize) { C Descriptor
 filter_hint_size_y 5 ue(v)
 filter_hint_size_x 5 ue(v)
 filter_hint_type 5 u(2)
 for(colour_component = 0; colour_component < 3; colour_component ++)
 for(cy = 0; cy < filter_hint_size_y; cy ++)
 for(cx = 0; cx < filter_hint_size_x; cx ++)
 filter_hint[colour_component][cy][cx] 5 se(v)
 additional_extension_flag 5 u(1)
}

338 Rec. ITU-T H.264 (03/2009)

D.1.24 Tone mapping information SEI message syntax

tone_mapping_info(payloadSize) { C Descriptor
 tone_map_id 5 ue(v)
 tone_map_cancel_flag 5 u(1)
 if(!tone_map_cancel_flag) {
 tone_map_repetition_period 5 ue(v)
 coded_data_bit_depth 5 u(8)
 target_bit_depth 5 u(8)
 model_id 5 ue(v)
 if(model_id = = 0) {
 min_value 5 u(32)
 max_value 5 u(32)
 }
 if(model_id = = 1) {
 sigmoid_midpoint 5 u(32)
 sigmoid_width 5 u(32)
 }
 if(model_id = = 2)
 for(i = 0; i < (1 << target_bit_depth); i++)
 start_of_coded_interval[i] 5 u(v)
 if(model_id = = 3) {
 num_pivots 5 u(16)
 for(i=0; i < num_pivots; i++) {
 coded_pivot_value[i] 5 u(v)
 target_pivot_value[i] 5 u(v)
 }
 }
 }
}

D.1.25 Reserved SEI message syntax

reserved_sei_message(payloadSize) { C Descriptor
 for(i = 0; i < payloadSize; i++)
 reserved_sei_message_payload_byte 5 b(8)
}

D.2 SEI payload semantics

D.2.1 Buffering period SEI message semantics

When NalHrdBpPresentFlag or VclHrdBpPresentFlag are equal to 1, a buffering period SEI message can be associated
with any access unit in the bitstream, and a buffering period SEI message shall be associated with each IDR access unit
and with each access unit associated with a recovery point SEI message.

NOTE – For some applications, the frequent presence of a buffering period SEI message may be desirable.

A buffering period is specified as the set of access units between two instances of the buffering period SEI message in
decoding order.

 Rec. ITU-T H.264 (03/2009) 339

seq_parameter_set_id specifies the sequence parameter set that contains the sequence HRD attributes. The value of
seq_parameter_set_id shall be equal to the value of seq_parameter_set_id in the picture parameter set referenced by the
primary coded picture associated with the buffering period SEI message. The value of seq_parameter_set_id shall be in
the range of 0 to 31, inclusive.

initial_cpb_removal_delay[SchedSelIdx] specifies the delay for the SchedSelIdx-th CPB between the time of arrival
in the CPB of the first bit of the coded data associated with the access unit associated with the buffering period SEI
message and the time of removal from the CPB of the coded data associated with the same access unit, for the first
buffering period after HRD initialisation. The syntax element has a length in bits given by
initial_cpb_removal_delay_length_minus1 + 1. It is in units of a 90 kHz clock.
initial_cpb_removal_delay[SchedSelIdx] shall not be equal to 0 and shall not exceed 90000 *
(CpbSize[SchedSelIdx] ÷ BitRate[SchedSelIdx]), the time-equivalent of the CPB size in 90 kHz clock units.

initial_cpb_removal_delay_offset[SchedSelIdx] is used for the SchedSelIdx-th CPB in combination with the
cpb_removal_delay to specify the initial delivery time of coded access units to the CPB.
initial_cpb_removal_delay_offset[SchedSelIdx] is in units of a 90 kHz clock. The
initial_cpb_removal_delay_offset[SchedSelIdx] syntax element is a fixed length code whose length in bits is given by
initial_cpb_removal_delay_length_minus1 + 1. This syntax element is not used by decoders and is needed only for the
delivery scheduler (HSS) specified in Annex C.

Over the entire coded video sequence, the sum of initial_cpb_removal_delay[SchedSelIdx] and
initial_cpb_removal_delay_offset[SchedSelIdx] shall be constant for each value of SchedSelIdx.

D.2.2 Picture timing SEI message semantics
NOTE 1 – The syntax of the picture timing SEI message is dependent on the content of the sequence parameter set that is active
for the primary coded picture associated with the picture timing SEI message. However, unless the picture timing SEI message of
an IDR access unit is preceded by a buffering period SEI message within the same access unit, the activation of the associated
sequence parameter set (and, for IDR pictures that are not the first picture in the bitstream, the determination that the primary
coded picture is an IDR picture) does not occur until the decoding of the first coded slice NAL unit of the primary coded picture.
Since the coded slice NAL unit of the primary coded picture follows the picture timing SEI message in NAL unit order, there
may be cases in which it is necessary for a decoder to store the RBSP containing the picture timing SEI message until
determining the parameters of the sequence parameter that will be active for the primary coded picture, and then perform the
parsing of the picture timing SEI message.

The presence of picture timing SEI message in the bitstream is specified as follows.
– If CpbDpbDelaysPresentFlag is equal to 1 or pic_struct_present_flag is equal to 1, one picture timing SEI message

shall be present in every access unit of the coded video sequence.
– Otherwise (CpbDpbDelaysPresentFlag is equal to 0 and pic_struct_present_flag is equal to 0), no picture timing

SEI messages shall be present in any access unit of the coded video sequence.

cpb_removal_delay specifies how many clock ticks (see subclause E.2.1) to wait after removal from the CPB of the
access unit associated with the most recent buffering period SEI message in a preceding access unit before removing
from the buffer the access unit data associated with the picture timing SEI message. This value is also used to calculate
an earliest possible time of arrival of access unit data into the CPB for the HSS, as specified in Annex C. The syntax
element is a fixed length code whose length in bits is given by cpb_removal_delay_length_minus1 + 1. The
cpb_removal_delay is the remainder of a modulo 2(cpb_removal_delay_length_minus1 + 1) counter.

NOTE 2 – The value of cpb_removal_delay_length_minus1 that determines the length (in bits) of the syntax element
cpb_removal_delay is the value of cpb_removal_delay_length_minus1 coded in the sequence parameter set that is active for the
primary coded picture associated with the picture timing SEI message, although cpb_removal_delay specifies a number of clock
ticks relative to the removal time of the preceding access unit containing a buffering period SEI message, which may be an
access unit of a different coded video sequence.

dpb_output_delay is used to compute the DPB output time of the picture. It specifies how many clock ticks to wait
after removal of an access unit from the CPB before the decoded picture can be output from the DPB (see
subclause C.2).

NOTE 3 – A picture is not removed from the DPB at its output time when it is still marked as "used for short-term reference" or
"used for long-term reference".
NOTE 4 – Only one dpb_output_delay is specified for a decoded picture.

The length of the syntax element dpb_output_delay is given in bits by dpb_output_delay_length_minus1 + 1. When
max_dec_frame_buffering is equal to 0, dpb_output_delay shall be equal to 0.

The output time derived from the dpb_output_delay of any picture that is output from an output timing conforming
decoder as specified in subclause C.2 shall precede the output time derived from the dpb_output_delay of all pictures in
any subsequent coded video sequence in decoding order.

340 Rec. ITU-T H.264 (03/2009)

The output time derived from the dpb_output_delay of the second field, in decoding order, of a complementary
non-reference field pair shall exceed the output time derived from the dpb_output_delay of the first field of the same
complementary non-reference field pair.

The picture output order established by the values of this syntax element shall be the same order as established by the
values of PicOrderCnt() as specified by subclauses C.4.1 to C.4.5, except that when the two fields of a complementary
reference field pair have the same value of PicOrderCnt(), the two fields have different output times.

For pictures that are not output by the "bumping" process of subclause C.4.5 because they precede, in decoding order,
an IDR picture with no_output_of_prior_pics_flag equal to 1 or inferred to be equal to 1, the output times derived from
dpb_output_delay shall be increasing with increasing value of PicOrderCnt() relative to all pictures within the same
coded video sequence subsequent to any picture having a memory_management_control_operation equal to 5.

pic_struct indicates whether a picture should be displayed as a frame or one or more fields, according to Table D-1.
Frame doubling (pic_struct equal to 7) indicates that the frame should be displayed two times consecutively, and frame
tripling (pic_struct equal to 8) indicates that the frame should be displayed three times consecutively.

NOTE 5 – Frame doubling can facilitate the display, for example, of 25p video on a 50p display and 29.97p video on a 59.94p
display. Using frame doubling and frame tripling in combination on every other frame can facilitate the display of 23.98p video
on a 59.94p display.

When pic_struct is present (pic_struct_present_flag is equal to 1), the constraints specified in the third column of
Table D-1 shall be obeyed.

NOTE 6 – When pic_struct_present_flag is equal to 0, then in many cases default values may be inferred. In the absence of other
indications of the intended display type of a picture, the decoder should infer the value of pic_struct as follows.

– If field_pic_flag is equal to 1, pic_struct should be inferred to be equal to (1 + bottom_field_flag).
– Otherwise, if TopFieldOrderCnt is equal to BottomFieldOrderCnt, pic_struct should be inferred to be equal to 0.
– Otherwise, if TopFieldOrderCnt is less than BottomFieldOrderCnt, pic_struct should be inferred to be equal to 3.
– Otherwise (field_pic_flag is equal to 0 and TopFieldOrderCnt is greater than BottomFieldOrderCnt), pic_struct should be

inferred to be equal to 4.
pic_struct is only a hint as to how the decoded video should be displayed on an assumed display type (e.g., interlaced or
progressive) at an assumed display rate. When another display type or display rate is used by the decoder, then pic_struct does
not indicate the display method, but may aid in processing the decoded video for the alternative display. When it is desired for
pic_struct to have an effective value in the range of 5 to 8, inclusive, pic_struct_present_flag should be equal to 1, as the above
inference rule will not produce these values.

 Rec. ITU-T H.264 (03/2009) 341

Table D-1 – Interpretation of pic_struct

Value Indicated display of picture Restrictions NumClockTS

0 (progressive) frame field_pic_flag shall be 0,
TopFieldOrderCnt shall be equal to
BottomFieldOrderCnt

1

1 top field field_pic_flag shall be 1,
bottom_field_flag shall be 0

1

2 bottom field field_pic_flag shall be 1,
bottom_field_flag shall be 1

1

3 top field, bottom field, in that order field_pic_flag shall be 0,
TopFieldOrderCnt shall be less than or
equal to BottomFieldOrderCnt

2

4 bottom field, top field, in that order field_pic_flag shall be 0,
BottomFieldOrderCnt shall be less than
or equal to TopFieldOrderCnt

2

5 top field, bottom field, top field repeated,
in that order

field_pic_flag shall be 0,
TopFieldOrderCnt shall be less than or
equal to BottomFieldOrderCnt

3

6 bottom field, top field, bottom field
repeated, in that order

field_pic_flag shall be 0,
BottomFieldOrderCnt shall be less than
or equal to TopFieldOrderCnt

3

7 frame doubling field_pic_flag shall be 0,
fixed_frame_rate_flag shall be 1,
TopFieldOrderCnt shall be equal to
BottomFieldOrderCnt

2

8 frame tripling field_pic_flag shall be 0,
fixed_frame_rate_flag shall be 1,
TopFieldOrderCnt shall be equal to
BottomFieldOrderCnt

3

9..15 reserved

When fixed_frame_rate_flag is equal to 1, it is a requirement of bitstream conformance that the constraints specified as
follows are obeyed throughout the operation of the following process, which is operated in output order.

1. Prior to output of the first picture of the bitstream (in output order) and prior to the output of the first picture (in
output order) of each subsequent coded video sequence for which the content of the active sequence parameter
set differs from that of the previously-active sequence parameter set, the variable lastFieldBottom is set equal to
"not determined".

2. After the output of each picture, the value of lastFieldBottom is checked and set as follows, using the values of
field_pic_flag, bottom_field_flag, pic_struct, TopFieldOrderCnt and BottomFieldOrderCnt (when applicable)
for the picture that was output.
– If field_pic_flag is equal to 1, it is a requirement of bitstream conformance that the value of

lastFieldBottom is not equal to bottom_field_flag. The value of lastFieldBottom is then set equal to
bottom_field_flag.

– Otherwise (field_pic_flag is equal to 0), the following applies.
– If pic_struct is present and is equal to 3 or 5, it is a requirement of bitstream conformance that the

value of lastFieldBottom is not equal to 0. The value of lastFieldBottom is then set equal to
1 − ((pic_struct − 1) >> 2).

– Otherwise, if pic_struct is present and is equal to 4 or 6, it is a requirement of bitstream conformance
that the value of lastFieldBottom is not equal to 1. The value of lastFieldBottom is then set equal to
((pic_struct − 1) >> 2).

342 Rec. ITU-T H.264 (03/2009)

– Otherwise, if TopFieldOrderCnt is less than BottomFieldOrderCnt, it is a requirement of bitstream
conformance that the value of lastFieldBottom is not equal to 0. The value of lastFieldBottom is then
set equal to 1.

– Otherwise, if TopFieldOrderCnt is greater than BottomFieldOrderCnt, it is a requirement of
bitstream conformance that the value of lastFieldBottom is not equal to 1. The value of
lastFieldBottom is then set equal to 0.

– Otherwise (TopFieldOrderCnt is equal to BottomFieldOrderCnt and pic_struct is not present or is not
in the range of 3 to 6, inclusive), lastFieldBottom may have any value, and its value is not changed.

NumClockTS is determined by pic_struct as specified in Table D-1. There are up to NumClockTS sets of clock
timestamp information for a picture, as specified by clock_timestamp_flag[i] for each set. The sets of clock timestamp
information apply to the field(s) or the frame(s) associated with the picture by pic_struct.

The contents of the clock timestamp syntax elements indicate a time of origin, capture, or alternative ideal display. This
indicated time is computed as

clockTimestamp = ((hH * 60 + mM) * 60 + sS) * time_scale +
 nFrames * (num_units_in_tick * (1 + nuit_field_based_flag)) + tOffset, (D-1)

in units of clock ticks of a clock with clock frequency equal to time_scale Hz, relative to some unspecified point in time
for which clockTimestamp is equal to 0. Output order and DPB output timing are not affected by the value of
clockTimestamp. When two or more frames with pic_struct equal to 0 are consecutive in output order and have equal
values of clockTimestamp, the indication is that the frames represent the same content and that the last such frame in
output order is the preferred representation.

NOTE 7 – clockTimestamp time indications may aid display on devices with refresh rates other than those well-matched to DPB
output times.

clock_timestamp_flag[i] equal to 1 indicates that a number of clock timestamp syntax elements are present and
follow immediately. clock_timestamp_flag[i] equal to 0 indicates that the associated clock timestamp syntax elements
are not present. When NumClockTS is greater than 1 and clock_timestamp_flag[i] is equal to 1 for more than one
value of i, the value of clockTimestamp shall be non-decreasing with increasing value of i.

ct_type indicates the scan type (interlaced or progressive) of the source material as specified in Table D-2.

Two fields of a coded frame may have different values of ct_type.

When clockTimestamp is equal for two fields of opposite parity that are consecutive in output order, both with ct_type
equal to 0 (progressive) or ct_type equal to 2 (unknown), the two fields are indicated to have come from the same
original progressive frame. Two consecutive fields in output order shall have different values of clockTimestamp when
the value of ct_type for either field is 1 (interlaced).

Table D-2 – Mapping of ct_type to source picture scan

Value Original
picture scan

0 progressive

1 interlaced

2 unknown

3 reserved

nuit_field_based_flag is used in calculating clockTimestamp, as specified in Equation D-1.

counting_type specifies the method of dropping values of the n_frames as specified in Table D-3.

 Rec. ITU-T H.264 (03/2009) 343

Table D-3 – Definition of counting_type values

Value Interpretation

0 no dropping of n_frames count values and no use of
time_offset

1 no dropping of n_frames count values

2 dropping of individual zero values of n_frames count

3 dropping of individual MaxFPS − 1 values of n_frames
count

4 dropping of the two lowest (value 0 and 1) n_frames
counts when seconds_value is equal to 0 and
minutes_value is not an integer multiple of 10

5 dropping of unspecified individual n_frames count
values

6 dropping of unspecified numbers of unspecified
n_frames count values

7..31 reserved

full_timestamp_flag equal to 1 specifies that the n_frames syntax element is followed by seconds_value,
minutes_value, and hours_value. full_timestamp_flag equal to 0 specifies that the n_frames syntax element is followed
by seconds_flag.

discontinuity_flag equal to 0 indicates that the difference between the current value of clockTimestamp and the value
of clockTimestamp computed from the previous clock timestamp in output order can be interpreted as the time
difference between the times of origin or capture of the associated frames or fields. discontinuity_flag equal to 1
indicates that the difference between the current value of clockTimestamp and the value of clockTimestamp computed
from the previous clock timestamp in output order should not be interpreted as the time difference between the times of
origin or capture of the associated frames or fields. When discontinuity_flag is equal to 0, the value of clockTimestamp
shall be greater than or equal to all values of clockTimestamp present for the preceding picture in DPB output order.

cnt_dropped_flag specifies the skipping of one or more values of n_frames using the counting method specified by
counting_type.

n_frames specifies the value of nFrames used to compute clockTimestamp. n_frames shall be less than

MaxFPS = Ceil(time_scale ÷ (2 * num_units_in_tick)) (D-2)

NOTE 8 – n_frames is a frame-based counter. For field-specific timing indications, time_offset should be used to indicate a
distinct clockTimestamp for each field.

When counting_type is equal to 2 and cnt_dropped_flag is equal to 1, n_frames shall be equal to 1 and the value of
n_frames for the previous picture in output order shall not be equal to 0 unless discontinuity_flag is equal to 1.

NOTE 9 – When counting_type is equal to 2, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 12.5 frames per second with time_scale equal to 50 and num_units_in_tick equal to 2 and
nuit_field_based_flag equal to 0) can be avoided by occasionally skipping over the value n_frames equal to 0 when counting
(e.g., counting n_frames from 0 to 12, then incrementing seconds_value and counting n_frames from 1 to 12, then incrementing
seconds_value and counting n_frames from 0 to 12, etc.).

When counting_type is equal to 3 and cnt_dropped_flag is equal to 1, n_frames shall be equal to 0 and the value of
n_frames for the previous picture in output order shall not be equal to MaxFPS − 1 unless discontinuity_flag is equal
to 1.

NOTE 10 – When counting_type is equal to 3, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 12.5 frames per second with time_scale equal to 50 and num_units_in_tick equal to 2 and
nuit_field_based_flag equal to 0) can be avoided by occasionally skipping over the value n_frames equal to MaxFPS − 1 when
counting (e.g., counting n_frames from 0 to 12, then incrementing seconds_value and counting n_frames from 0 to 11, then
incrementing seconds_value and counting n_frames from 0 to 12, etc.).

When counting_type is equal to 4 and cnt_dropped_flag is equal to 1, n_frames shall be equal to 2 and the specified
value of sS shall be zero and the specified value of mM shall not be an integer multiple of ten and n_frames for the
previous picture in output order shall not be equal to 0 or 1 unless discontinuity_flag is equal to 1.

344 Rec. ITU-T H.264 (03/2009)

NOTE 11 – When counting_type is equal to 4, the need for increasingly large magnitudes of tOffset in Equation D-1 when using
fixed non-integer frame rates (e.g., 30000÷1001 frames per second with time_scale equal to 60000 and num_units_in_tick equal
to 1 001 and nuit_field_based_flag equal to 1) can be reduced by occasionally skipping over the values of n_frames equal to 0
and 1 when counting (e.g., counting n_frames from 0 to 29, then incrementing seconds_value and counting n_frames from 0
to 29, etc., until the seconds_value is zero and minutes_value is not an integer multiple of ten, then counting n_frames from 2
to 29, then incrementing seconds_value and counting n_frames from 0 to 29, etc.). This counting method is well known in
industry and is often referred to as "NTSC drop-frame" counting.

When counting_type is equal to 5 or 6 and cnt_dropped_flag is equal to 1, n_frames shall not be equal to 1 plus the
value of n_frames for the previous picture in output order modulo MaxFPS unless discontinuity_flag is equal to 1.

NOTE 12 – When counting_type is equal to 5 or 6, the need for increasingly large magnitudes of tOffset in Equation D-1 when
using fixed non-integer frame rates can be avoided by occasionally skipping over some values of n_frames when counting. The
specific values of n_frames that are skipped are not specified when counting_type is equal to 5 or 6.

seconds_flag equal to 1 specifies that seconds_value and minutes_flag are present when full_timestamp_flag is equal
to 0. seconds_flag equal to 0 specifies that seconds_value and minutes_flag are not present.

seconds_value specifies the value of sS used to compute clockTimestamp. The value of seconds_value shall be in the
range of 0 to 59, inclusive. When seconds_value is not present, the previous seconds_value in decoding order shall be
used as sS to compute clockTimestamp.

minutes_flag equal to 1 specifies that minutes_value and hours_flag are present when full_timestamp_flag is equal to 0
and seconds_flag is equal to 1. minutes_flag equal to 0 specifies that minutes_value and hours_flag are not present.

minutes_value specifies the value of mM used to compute clockTimestamp. The value of minutes_value shall be in the
range of 0 to 59, inclusive. When minutes_value is not present, the previous minutes_value in decoding order shall be
used as mM to compute clockTimestamp.

hours_flag equal to 1 specifies that hours_value is present when full_timestamp_flag is equal to 0 and seconds_flag is
equal to 1 and minutes_flag is equal to 1.

hours_value specifies the value of hH used to compute clockTimestamp. The value of hours_value shall be in the range
of 0 to 23, inclusive. When hours_value is not present, the previous hours_value in decoding order shall be used as hH
to compute clockTimestamp.

time_offset specifies the value of tOffset used to compute clockTimestamp. The number of bits used to represent
time_offset shall be equal to time_offset_length. When time_offset is not present, the value 0 shall be used as tOffset to
compute clockTimestamp.

D.2.3 Pan-scan rectangle SEI message semantics

The pan-scan rectangle SEI message syntax elements specify the coordinates of a rectangle relative to the cropping
rectangle of the sequence parameter set. Each coordinate of this rectangle is specified in units of one-sixteenth sample
spacing relative to the luma sampling grid.

pan_scan_rect_id contains an identifying number that may be used to identify the purpose of the pan-scan rectangle
(for example, to identify the rectangle as the area to be shown on a particular display device or as the area that contains
a particular actor in the scene). The value of pan_scan_rect_id shall be in the range of 0 to 232 − 2, inclusive.

Values of pan_scan_rect_id from 0 to 255 and from 512 to 231 − 1 may be used as determined by the application.
Values of pan_scan_rect_id from 256 to 511 and from 231 to 232 − 2 are reserved for future use by ITU-T | ISO/IEC.
Decoders encountering a value of pan_scan_rect_id in the range of 256 to 511 or in the range of 231 to 232 − 2 shall
ignore (remove from the bitstream and discard) it.

pan_scan_rect_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any previous pan-scan
rectangle SEI message in output order. pan_scan_rect_cancel_flag equal to 0 indicates that pan-scan rectangle
information follows.

pan_scan_cnt_minus1 specifies the number of pan-scan rectangles that are present in the SEI message.
pan_scan_cnt_minus1 shall be in the range of 0 to 2, inclusive. pan_scan_cnt_minus1 equal to 0 indicates that a single
pan-scan rectangle is present that applies to all fields of the decoded picture. pan_scan_cnt_minus1 shall be equal to 0
when the current picture is a field. pan_scan_cnt_minus1 equal to 1 indicates that two pan-scan rectangles are present,
the first of which applies to the first field of the picture in output order and the second of which applies to the second
field of the picture in output order. pan_scan_cnt_minus1 equal to 2 indicates that three pan-scan rectangles are present,
the first of which applies to the first field of the picture in output order, the second of which applies to the second field
of the picture in output order, and the third of which applies to a repetition of the first field as a third field in output
order.

pan_scan_rect_left_offset[i], pan_scan_rect_right_offset[i], pan_scan_rect_top_offset[i], and
pan_scan_rect_bottom_offset[i], specify, as signed integer quantities in units of one-sixteenth sample spacing

 Rec. ITU-T H.264 (03/2009) 345

relative to the luma sampling grid, the location of the pan-scan rectangle. The values of each of these four syntax
elements shall be in the range of −231 to 231 − 1, inclusive.

The pan-scan rectangle is specified, in units of one-sixteenth sample spacing relative to a luma frame sampling grid, as
the region with frame horizontal coordinates from 16*CropUnitX * frame_crop_left_offset +
pan_scan_rect_left_offset[i] to 16 * (16 * PicWidthInMbs − CropUnitX * frame_crop_right_offset) +
pan_scan_rect_right_offset[i] − 1 and with vertical coordinates from 16 *CropUnitY * frame_crop_top_offset +
pan_scan_rect_top_offset[i] to 16 * (16 * PicHeightInMbs − CropUnitY * frame_crop_bottom_offset) +
pan_scan_rect_bottom_offset[i] − 1, inclusive. The value of 16 * CropUnitX * frame_crop_left_offset +
pan_scan_rect_left_offset[i] shall be less than or equal to
16 * (16 * PicWidthInMbs − CropUnitX * frame_crop_right_offset) + pan_scan_rect_right_offset[i] − 1; and the
value of 16 * CropUnitY * frame_crop_top_offset + pan_scan_rect_top_offset[i] shall be less than or equal to
16 * (16 * PicHeightInMbs − CropUnitY * frame_crop_bottom_offset) + pan_scan_rect_bottom_offset[i] − 1.

When the pan-scan rectangular area includes samples outside of the cropping rectangle, the region outside of the
cropping rectangle may be filled with synthesized content (such as black video content or neutral grey video content)
for display.

pan_scan_rect_repetition_period specifies the persistence of the pan-scan rectangle SEI message and may specify a
picture order count interval within which another pan-scan rectangle SEI message with the same value of
pan_scan_rect_id or the end of the coded video sequence shall be present in the bitstream. The value of
pan_scan_rect_repetition_period shall be in the range of 0 to 16 384, inclusive. When pan_scan_cnt_minus1 is greater
than 0, pan_scan_rect_repetition_period shall not be greater than 1.

pan_scan_rect_repetition_period equal to 0 specifies that the pan-scan rectangle information applies to the current
decoded picture only.

pan_scan_rect_repetition_period equal to 1 specifies that the pan-scan rectangle information persists in output order
until any of the following conditions are true:
– A new coded video sequence begins.
– A picture in an access unit containing a pan-scan rectangle SEI message with the same value of pan_scan_rect_id

is output having PicOrderCnt() greater than PicOrderCnt(CurrPic).

pan_scan_rect_repetition_period equal to 0 or equal to 1 indicates that another pan-scan rectangle SEI message with the
same value of pan_scan_rect_id may or may not be present.

pan_scan_rect_repetition_period greater than 1 specifies that the pan-scan rectangle information persists until any of the
following conditions are true:
– A new coded video sequence begins.
– A picture in an access unit containing a pan-scan rectangle SEI message with the same value of pan_scan_rect_id

is output having PicOrderCnt() greater than PicOrderCnt(CurrPic) and less than or equal to
PicOrderCnt(CurrPic) + pan_scan_rect_repetition_period.

pan_scan_rect_repetition_period greater than 1 indicates that another pan-scan rectangle SEI message with the same
value of pan_scan_rect_id shall be present for a picture in an access unit that is output having PicOrderCnt() greater
than PicOrderCnt(CurrPic) and less than or equal to PicOrderCnt(CurrPic) + pan_scan_rect_repetition_period; unless
the bitstream ends or a new coded video sequence begins without output of such a picture.

D.2.4 Filler payload SEI message semantics

This message contains a series of payloadSize bytes of value 0xFF, which can be discarded.

ff_byte shall be a byte having the value 0xFF.

D.2.5 User data registered by ITU-T Rec. T.35 SEI message semantics

This message contains user data registered as specified by ITU-T Rec. T.35, the contents of which are not specified by
this Recommendation | International Standard.

itu_t_t35_country_code shall be a byte having a value specified as a country code by ITU-T Rec. T.35 Annex A.

itu_t_t35_country_code_extension_byte shall be a byte having a value specified as a country code by ITU-T
Rec. T.35 Annex B.

itu_t_t35_payload_byte shall be a byte containing data registered as specified by ITU-T Rec. T.35.

The ITU-T T.35 terminal provider code and terminal provider oriented code shall be contained in the first one or more
bytes of the itu_t_t35_payload_byte, in the format specified by the Administration that issued the terminal provider

346 Rec. ITU-T H.264 (03/2009)

code. Any remaining itu_t_t35_payload_byte data shall be data having syntax and semantics as specified by the entity
identified by the ITU-T T.35 country code and terminal provider code.

D.2.6 User data unregistered SEI message semantics

This message contains unregistered user data identified by a UUID, the contents of which are not specified by this
Recommendation | International Standard.

uuid_iso_iec_11578 shall have a value specified as a UUID according to the procedures of ISO/IEC 11578:1996
Annex A.

user_data_payload_byte shall be a byte containing data having syntax and semantics as specified by the UUID
generator.

D.2.7 Recovery point SEI message semantics

The recovery point SEI message assists a decoder in determining when the decoding process will produce acceptable
pictures for display after the decoder initiates random access or after the encoder indicates a broken link in the coded
video sequence. When the decoding process is started with the access unit in decoding order associated with the
recovery point SEI message, all decoded pictures at or subsequent to the recovery point in output order specified in this
SEI message are indicated to be correct or approximately correct in content. Decoded pictures produced by random
access at or before the picture associated with the recovery point SEI message need not be correct in content until the
indicated recovery point, and the operation of the decoding process starting at the picture associated with the recovery
point SEI message may contain references to pictures not available in the decoded picture buffer.

In addition, by use of the broken_link_flag, the recovery point SEI message can indicate to the decoder the location of
some pictures in the bitstream that can result in serious visual artefacts when displayed, even when the decoding process
was begun at the location of a previous IDR access unit in decoding order.

NOTE 1 – The broken_link_flag can be used by encoders to indicate the location of a point after which the decoding process for
the decoding of some pictures may cause references to pictures that, though available for use in the decoding process, are not the
pictures that were used for reference when the bitstream was originally encoded (e.g., due to a splicing operation performed
during the generation of the bitstream).

The recovery point is specified as a count in units of frame_num increments subsequent to the frame_num of the current
access unit at the position of the SEI message.

NOTE 2 – When HRD information is present in the bitstream, a buffering period SEI message should be associated with the
access unit associated with the recovery point SEI message in order to establish initialisation of the HRD buffer model after a
random access.

recovery_frame_cnt specifies the recovery point of output pictures in output order. All decoded pictures in output
order are indicated to be correct or approximately correct in content starting at the output order position of the reference
picture having the frame_num equal to the frame_num of the VCL NAL units for the current access unit incremented by
recovery_frame_cnt in modulo MaxFrameNum arithmetic. recovery_frame_cnt shall be in the range of 0 to
MaxFrameNum − 1, inclusive.

exact_match_flag indicates whether decoded pictures at and subsequent to the specified recovery point in output order
derived by starting the decoding process at the access unit associated with the recovery point SEI message shall be an
exact match to the pictures that would be produced by starting the decoding process at the location of a previous IDR
access unit in the NAL unit stream. The value 0 indicates that the match need not be exact and the value 1 indicates that
the match shall be exact.

When decoding starts from the location of the recovery point SEI message, all references to not available reference
pictures shall be inferred as references to pictures containing only macroblocks coded using Intra macroblock prediction
modes and having sample values given by Y samples equal to (1 << (BitDepthY − 1)), Cb samples equal to
(1 << (BitDepthC − 1)), and Cr samples equal to (1 << (BitDepthC − 1)) (mid-level grey) for purposes of
determining the conformance of the value of exact_match_flag.

NOTE 3 – When performing random access, decoders should infer all references to not available reference pictures as references
to pictures containing only intra macroblocks and having sample values given by Y equal to (1 << (BitDepthY − 1)), Cb equal
to (1 << (BitDepthC − 1)), and Cr equal to (1 << (BitDepthC − 1)) (mid-level grey), regardless of the value of
exact_match_flag.

When exact_match_flag is equal to 0, the quality of the approximation at the recovery point is chosen by the encoding
process and is not specified by this Recommendation | International Standard.

NOTE 4 – Under some circumstances, the decoding process of pictures depends on the difference DiffPicOrderCnt(picA, picB)
between the PicOrderCnt() values for two pictures picA and picB. However, no particular values of TopFieldOrderCnt and
BottomFieldOrderCnt (as applicable) are specified to be assigned to the reference pictures that are not available due to the
initiation of random access at the location of a picture associated with a recovery point SEI message. Also, no particular value
has been specified for initialization (for random access purposes) of the related variables prevPicOrderCntMsb,
previPicOrderCntLsb, prevFraneNumOffset, and prevFrameNum. Thus, any values for these variables may be assigned that

 Rec. ITU-T H.264 (03/2009) 347

could hypothetically have resulted from operation of the decoding process starting with a hypothetical preceding IDR picture in
decoding order, although such values may not be the same as the values that would have been obtained if the decoding process
had started with the actual preceding IDR picture in the bitstream. When performing random access at a picture associated with a
recovery point SEI message, it is suggested that decoders should derive the picture order count variables TopFieldOrderCnt and
BottomFieldOrderCnt according to the following method:
– A bit range greater than 32 bits should be allocated for the variables TopFieldOrderCnt and BottomFieldOrderCnt for each

current picture to be decoded, as well as for the intermediate variables used for deriving these variables as specified in
subclause 8.2.1. (Due to the lack of assurance of correspondence of the values used for initialization of the related variables
when random access is performed to the values that would be obtained if the decoding process had begun with the
preceding IDR picture in decoding order, the calculations involving these variables in the decoding process of subsequent
pictures may result in violation of the 32 bit range.)

– Any value within in the range of −231 to 231 − 1, inclusive, may be assigned to the values of the variables TopFieldOrderCnt
and BottomFieldOrderCnt of the reference pictures that are not available due to the random access operation. For example,
the value 0 may be assigned to these variables.

– For the derivation of the picture order count variables for the picture at which random access is performed,
prevPicOrderCntMsb may be set equal to any integer multiple of MaxPicOrderCntLsb in the range of −231 to 231 − 1,
inclusive, prevPicOrderCntLsb may be set equal to any value in the range of 0 to MaxPicOrderCntLsb − 1, inclusive,
prevFrameNumOffset may be set equal to any integer multiple of MaxFrameNum in the range of 0 to 231 − 1, inclusive, and
prevFrameNum may be set equal to any value in the range of 0 to MaxFrameNum − 1, inclusive. For example, the value 0
may be assigned to all of the variables prevPicOrderCntMsb, prevPicOrderCntLsb, prevFrameNumOffset, and
prevFrameNum.

When exact_match_flag is equal to 1, it is a requirement of bitstream conformance that the values of the samples in the
decoded pictures at or subsequent to the recovery point in output order shall be independent of the values that a decoder
assigns to the variables prevPicOrderCntMsb, prevPicOrderCntLsb, prevFrameNumOffset, and prevFrameNum used in
subclause 8.2.1 for deriving the picture order count variables for the initialization of the decoding process at the picture
associated with the recovery point SEI message, and of the values that are assigned to the TopFieldOrderCnt and
BottomFieldOrderCnt variables of the reference pictures that are not available due to the random access operation.

broken_link_flag indicates the presence or absence of a broken link in the NAL unit stream at the location of the
recovery point SEI message and is assigned further semantics as follows.
– If broken_link_flag is equal to 1, pictures produced by starting the decoding process at the location of a previous

IDR access unit may contain undesirable visual artefacts to the extent that decoded pictures at and subsequent to
the access unit associated with the recovery point SEI message in decoding order should not be displayed until the
specified recovery point in output order.

– Otherwise (broken_link_flag is equal to 0), no indication is given regarding any potential presence of visual
artefacts.

Regardless of the value of the broken_link_flag, pictures subsequent to the specified recovery point in output order are
specified to be correct or approximately correct in content.

NOTE 5 – When a sub-sequence information SEI message is present in conjunction with a recovery point SEI message in which
broken_link_flag is equal to 1 and when sub_seq_layer_num is equal to 0, sub_seq_id should be different from the latest
sub_seq_id for sub_seq_layer_num equal to 0 that was decoded prior to the location of the recovery point SEI message. When
broken_link_flag is equal to 0, the sub_seq_id in sub-sequence layer 0 should remain unchanged.

changing_slice_group_idc equal to 0 indicates that decoded pictures are correct or approximately correct in content at
and subsequent to the recovery point in output order when all macroblocks of the primary coded pictures are decoded
within the changing slice group period, i.e., the period between the access unit associated with the recovery point SEI
message (inclusive) and the specified recovery point (inclusive) in decoding order. changing_slice_group_idc shall be
equal to 0 when num_slice_groups_minus1 is equal to 0 in any primary coded picture within the changing slice group
period.

When changing_slice_group_idc is equal to 1 or 2, num_slice_groups_minus1 shall be equal to 1 and the
macroblock-to-slice-group map type 3, 4, or 5 shall be applied in each primary coded picture in the changing slice
group period.

changing_slice_group_idc equal to 1 indicates that within the changing slice group period no sample values outside the
decoded macroblocks covered by slice group 0 are used for inter prediction of any macroblock within slice group 0. In
addition, changing_slice_group_idc equal to 1 indicates that when all macroblocks in slice group 0 within the changing
slice group period are decoded, decoded pictures will be correct or approximately correct in content at and subsequent
to the specified recovery point in output order regardless of whether any macroblock in slice group 1 within the
changing slice group period is decoded.

changing_slice_group_idc equal to 2 indicates that within the changing slice group period no sample values outside the
decoded macroblocks covered by slice group 1 are used for inter prediction of any macroblock within slice group 1. In
addition, changing_slice_group_idc equal to 2 indicates that when all macroblocks in slice group 1 within the changing
slice group period are decoded, decoded pictures will be correct or approximately correct in content at and subsequent

348 Rec. ITU-T H.264 (03/2009)

to the specified recovery point in output order regardless of whether any macroblock in slice group 0 within the
changing slice group period is decoded.

changing_slice_group_idc shall be in the range of 0 to 2, inclusive.

D.2.8 Decoded reference picture marking repetition SEI message semantics

The decoded reference picture marking repetition SEI message is used to repeat the decoded reference picture marking
syntax structure that was located in the slice headers of an earlier picture in the same coded video sequence in decoding
order.

original_idr_flag shall be equal to 1 when the decoded reference picture marking syntax structure occurred originally
in an IDR picture. original_idr_flag shall be equal to 0 when the repeated decoded reference picture marking syntax
structure did not occur in an IDR picture originally.

original_frame_num shall be equal to the frame_num of the picture where the repeated decoded reference picture
marking syntax structure originally occurred. The picture indicated by original_frame_num is the previous coded
picture having the specified value of frame_num. The value of original_frame_num used to refer to a picture having a
memory_management_control_operation equal to 5 shall be 0.

original_field_pic_flag shall be equal to the field_pic_flag of the picture where the repeated decoded reference picture
marking syntax structure originally occurred.

original_bottom_field_flag shall be equal to the bottom_field_flag of the picture where the repeated decoded reference
picture marking syntax structure originally occurred.

dec_ref_pic_marking() shall contain a copy of the decoded reference picture marking syntax structure of the picture
whose frame_num was original_frame_num. The IdrPicFlag used for specification of the repeated
dec_ref_pic_marking() syntax structure shall be the IdrPicFlag of the slice header(s) of the picture whose frame_num
was original_frame_num (i.e., IdrPicFlag as used in subclause 7.3.3.3 shall be considered equal to original_idr_flag).

D.2.9 Spare picture SEI message semantics

This SEI message indicates that certain slice group map units, called spare slice group map units, in one or more
decoded reference pictures resemble the co-located slice group map units in a specified decoded picture called the target
picture. A spare slice group map unit may be used to replace a co-located, incorrectly decoded slice group map unit, in
the target picture. A decoded picture containing spare slice group map units is called a spare picture.

A spare picture SEI message shall not be present in an IDR access unit. The value of the PicSizeInMapUnits variable
for the target picture (as specified later in this subclause) shall be equal to the value of the PicSizeInMapUnits variable
for the sequence parameter set that is active when processing the spare picture SEI message.

For all spare pictures identified in a spare picture SEI message, the value of frame_mbs_only_flag shall be equal to the
value of frame_mbs_only_flag of the target picture in the same SEI message. The spare pictures in the SEI message are
constrained as follows.
– If the target picture is a decoded field, all spare pictures identified in the same SEI message shall be decoded fields.
– Otherwise (the target picture is a decoded frame), all spare pictures identified in the same SEI message shall be

decoded frames.

For all spare pictures identified in a spare picture SEI message, the values of pic_width_in_mbs_minus1 and
pic_height_in_map_units_minus1 shall be equal to the values of pic_width_in_mbs_minus1 and
pic_height_in_map_units_minus1, respectively, of the target picture in the same SEI message. The picture associated
(as specified in subclause 7.4.1.2.3) with this SEI message shall appear after the target picture, in decoding order.

target_frame_num indicates the frame_num of the target picture.

spare_field_flag equal to 0 indicates that the target picture and the spare pictures are decoded frames. spare_field_flag
equal to 1 indicates that the target picture and the spare pictures are decoded fields.

target_bottom_field_flag equal to 0 indicates that the target picture is a top field. target_bottom_field_flag equal to 1
indicates that the target picture is a bottom field.

A target picture is a decoded reference picture whose corresponding primary coded picture precedes the current picture,
in decoding order, and in which the values of frame_num, field_pic_flag (when present) and bottom_field_flag (when
present) are equal to target_frame_num, spare_field_flag and target_bottom_field_flag, respectively.

num_spare_pics_minus1 indicates the number of spare pictures for the specified target picture. The number of spare
pictures is equal to num_spare_pics_minus1 + 1. The value of num_spare_pics_minus1 shall be in the range of 0 to 15,
inclusive.

 Rec. ITU-T H.264 (03/2009) 349

delta_spare_frame_num[i] is used to identify the spare picture that contains the i-th set of spare slice group map
units, hereafter called the i-th spare picture, as specified below. The value of delta_spare_frame_num[i] shall be in the
range of 0 to MaxFrameNum − 2 + spare_field_flag, inclusive.

The frame_num of the i-th spare picture, spareFrameNum[i], is derived as follows for all values of i from 0 to
num_spare_pics_minus1, inclusive:

candidateSpareFrameNum = target_frame_num − 1 + spare_field_flag
for (i = 0; i <= num_spare_pics_minus1; i++) {
 if(candidateSpareFrameNum < 0)
 candidateSpareFrameNum = MaxFrameNum − 1
 spareFrameNum[i] = candidateSpareFrameNum − delta_spare_frame_num[i] (D-3)
 if(spareFrameNum[i] < 0)
 spareFrameNum[i] = MaxFrameNum + spareFrameNum[i]
 candidateSpareFrameNum = spareFrameNum[i] − 1 + spare_field_flag
}

spare_bottom_field_flag[i] equal to 0 indicates that the i-th spare picture is a top field. spare_bottom_field_flag[i]
equal to 1 indicates that the i-th spare picture is a bottom field.

The 0-th spare picture is a decoded reference picture whose corresponding primary coded picture precedes the target
picture, in decoding order, and in which the values of frame_num, field_pic_flag (when present) and bottom_field_flag
(when present) are equal to spareFrameNum[0], spare_field_flag and spare_bottom_field_flag[0], respectively. The
i-th spare picture is a decoded reference picture whose corresponding primary coded picture precedes the (i − 1)-th
spare picture, in decoding order, and in which the values of frame_num, field_pic_flag (when present) and
bottom_field_flag (when present) are equal to spareFrameNum[i], spare_field_flag and spare_bottom_field_flag[i],
respectively.

spare_area_idc[i] indicates the method used to identify the spare slice group map units in the i-th spare picture.
spare_area_idc[i] shall be in the range of 0 to 2, inclusive. spare_area_idc[i] equal to 0 indicates that all slice group
map units in the i-th spare picture are spare units. spare_area_idc[i] equal to 1 indicates that the value of the syntax
element spare_unit_flag[i][j] is used to identify the spare slice group map units. spare_area_idc[i] equal to 2
indicates that the zero_run_length[i][j] syntax element is used to derive the values of
spareUnitFlagInBoxOutOrder[i][j], as described below.

spare_unit_flag[i][j] equal to 0 indicates that the j-th slice group map unit in raster scan order in the i-th spare
picture is a spare unit. spare_unit_flag[i][j] equal to 1 indicates that the j-th slice group map unit in raster scan order
in the i-th spare picture is not a spare unit.

zero_run_length[i][j] is used to derive the values of spareUnitFlagInBoxOutOrder[i][j] when spare_area_idc[i]
is equal to 2. In this case, the spare slice group map units identified in spareUnitFlagInBoxOutOrder[i][j] appear in
counter-clockwise box-out order, as specified in subclause 8.2.2.4, for each spare picture.
spareUnitFlagInBoxOutOrder[i][j] equal to 0 indicates that the j-th slice group map unit in counter-clockwise box-out
order in the i-th spare picture is a spare unit. spareUnitFlagInBoxOutOrder[i][j] equal to 1 indicates that the j-th slice
group map unit in counter-clockwise box-out order in the i-th spare picture is not a spare unit.

When spare_area_idc[0] is equal to 2, spareUnitFlagInBoxOutOrder[0][j] is derived as specified by the following
pseudo-code:

for(j = 0, loop = 0; j < PicSizeInMapUnits; loop++) {
 for(k = 0; k < zero_run_length[0][loop]; k++)
 spareUnitFlagInBoxOutOrder[0][j++] = 0 (D-4)
 spareUnitFlagInBoxOutOrder[0][j++] = 1
}

When spare_area_idc[i] is equal to 2 and the value of i is greater than 0, spareUnitFlagInBoxOutOrder[i][j] is
derived as specified by the following pseudo-code:

for(j = 0, loop = 0; j < PicSizeInMapUnits; loop++) {
 for(k = 0; k < zero_run_length[i][loop]; k++)
 spareUnitFlagInBoxOutOrder[i][j] = spareUnitFlagInBoxOutOrder[i − 1][j++] (D-5)
 spareUnitFlagInBoxOutOrder[i][j] = !spareUnitFlagInBoxOutOrder[i − 1][j++]
}

350 Rec. ITU-T H.264 (03/2009)

D.2.10 Scene information SEI message semantics

A scene and a scene transition are herein defined as a set of consecutive pictures in output order.
NOTE 1 – Decoded pictures within one scene generally have similar content. The scene information SEI message is used to label
pictures with scene identifiers and to indicate scene changes. The message specifies how the source pictures for the labelled
pictures were created. The decoder may use the information to select an appropriate algorithm to conceal transmission errors. For
example, a specific algorithm may be used to conceal transmission errors that occurred in pictures belonging to a gradual scene
transition. Furthermore, the scene information SEI message may be used in a manner determined by the application, such as for
indexing the scenes of a coded sequence.

A scene information SEI message labels all pictures, in decoding order, from the primary coded picture to which the
SEI message is associated (inclusive), as specified in subclause 7.4.1.2.3, to the primary coded picture to which the next
scene information SEI message (if present) in decoding order is associated (exclusive) or (otherwise) to the last access
unit in the bitstream (inclusive). These pictures are herein referred to as the target pictures.

scene_info_present_flag equal to 0 indicates that the scene or scene transition to which the target pictures belong is
unspecified. scene_info_present_flag equal to 1 indicates that the target pictures belong to the same scene or scene
transition.

scene_id identifies the scene to which the target pictures belong. When the value of scene_transition_type of the target
pictures is less than 4, and the previous picture in output order is marked with a value of scene_transition_type less
than 4, and the value of scene_id is the same as the value of scene_id of the previous picture in output order, this
indicates that the source scene for the target pictures and the source scene for the previous picture (in output order) are
considered by the encoder to have been the same scene. When the value of scene_transition_type of the target pictures
is greater than 3, and the previous picture in output order is marked with a value of scene_transition_type less than 4,
and the value of scene_id is the same as the value of scene_id of the previous picture in output order, this indicates that
one of the source scenes for the target pictures and the source scene for the previous picture (in output order) are
considered by the encoder to have been the same scene. When the value of scene_id is not equal to the value of
scene_id of the previous picture in output order, this indicates that the target pictures and the previous picture (in output
order) are considered by the encoder to have been from different source scenes.

The value of scene_id shall be in the range of 0 to 232 − 2, inclusive.

Values of scene_id in the range of 0 to 255, inclusive, and in the range of 512 to 231 − 1, inclusive, may be used as
determined by the application. Values of scene_id in the range of 256 to 511, inclusive, and in the range of 231
to 232 − 2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of scene_id in the
range of 256 to 511, inclusive, or in the range of 231 to 232 − 2, inclusive, shall ignore (remove from the bitstream and
discard) it.

scene_transition_type specifies in which type of a scene transition (if any) the target pictures are involved. The valid
values of scene_transition_type are specified in Table D-4.

Table D-4 – scene_transition_type values

Value Description
0 No transition
1 Fade to black
2 Fade from black
3 Unspecified transition from or to constant colour
4 Dissolve
5 Wipe
6 Unspecified mixture of two scenes

When scene_transition_type is greater than 3, the target pictures include contents both from the scene labelled by its
scene_id and the next scene, in output order, which is labelled by second_scene_id (see below). The term "the current
scene" is used to indicate the scene labelled by scene_id. The term "the next scene" is used to indicate the scene labelled
by second_scene_id. It is not required for any following picture, in output order, to be labelled with scene_id equal to
second_scene_id of the current SEI message.

Scene transition types are specified as follows.

"No transition" specifies that the target pictures are not involved in a gradual scene transition.

 Rec. ITU-T H.264 (03/2009) 351

NOTE 2 – When two consecutive pictures in output order have scene_transition_type equal to 0 and different values of scene_id,
a scene cut occurred between the two pictures.

"Fade to black" indicates that the target pictures are part of a sequence of pictures, in output order, involved in a fade to
black scene transition, i.e., the luma samples of the scene gradually approach zero and the chroma samples of the scene
gradually approach 128.

NOTE 3 – When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade to
black", the later one, in output order, is darker than the previous one.

"Fade from black" indicates that the target pictures are part of a sequence of pictures, in output order, involved in a fade
from black scene transition, i.e., the luma samples of the scene gradually diverge from zero and the chroma samples of
the scene may gradually diverge from 128.

NOTE 4 – When two pictures are labelled to belong to the same scene transition and their scene_transition_type is "Fade from
black", the later one in output order is lighter than the previous one.

"Dissolve" indicates that the sample values of each target picture (before encoding) were generated by calculating a sum
of co-located weighted sample values of a picture from the current scene and a picture from the next scene. The weight
of the current scene gradually decreases from full level to zero level, whereas the weight of the next scene gradually
increases from zero level to full level. When two pictures are labelled to belong to the same scene transition and their
scene_transition_type is "Dissolve", the weight of the current scene for the later one, in output order, is less than the
weight of the current scene for the previous one, and the weight of the next scene for the later one, in output order, is
greater than the weight of the next scene for the previous one.

"Wipe" indicates that some of the sample values of each target picture (before encoding) were generated by copying
co-located sample values of a picture in the current scene and the remaining sample values of each target picture (before
encoding) were generated by copying co-located sample values of a picture in the next scene. When two pictures are
labelled to belong to the same scene transition and their scene_transition_type is "Wipe", the number of samples copied
from the next scene to the later picture in output order is greater than the number of samples copied from the next scene
to the previous picture.

second_scene_id identifies the next scene in the gradual scene transition in which the target pictures are involved. The
value of second_scene_id shall not be equal to the value of scene_id. The value of second_scene_id shall not be equal to
the value of scene_id in the previous picture in output order. When the next picture in output order is marked with a
value of scene_transition_type less than 4, and the value of second_scene_id is the same as the value of scene_id of the
next picture in output order, this indicates that the encoder considers one of the source scenes for the target pictures and
the source scene for the next picture (in output order) to have been the same scene. When the value of second_scene_id
is not equal to the value of scene_id or second_scene_id (if present) of the next picture in output order, this indicates
that the encoder considers the target pictures and the next picture (in output order) to have been from different source
scenes.

When the value of scene_id of a picture is equal to the value of scene_id of the following picture in output order and the
value of scene_transition_type in both of these pictures is less than 4, this indicates that the encoder considers the two
pictures to have been from the same source scene. When the values of scene_id, scene_transition_type and
second_scene_id (if present) of a picture are equal to the values of scene_id, scene_transition_type and
second_scene_id (respectively) of the following picture in output order and the value of scene_transition_type is greater
than 0, this indicates that the encoder considers the two pictures to have been from the same source gradual scene
transition.

The value of second_scene_id shall be in the range of 0 to 232 − 2, inclusive.

Values of second_scene_id in the range of 0 to 255, inclusive, and in the range of 512 to 231 − 1, inclusive, may be used
as determined by the application. Values of second_scene_id in the range of 256 to 511, inclusive, and in the range of
231 to 232 − 1, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of
second_scene_id in the range of 256 to 511, inclusive, or in the range of 231 to 232 − 2, inclusive, shall ignore (remove
from the bitstream and discard) it.

D.2.11 Sub-sequence information SEI message semantics

The sub-sequence information SEI message is used to indicate the position of a picture in data dependency hierarchy
that consists of sub-sequence layers and sub-sequences.

A sub-sequence layer contains a subset of the coded pictures in a sequence. Sub-sequence layers are numbered with
non-negative integers. A layer having a larger layer number is a higher layer than a layer having a smaller layer number.
The layers are ordered hierarchically based on their dependency on each other so that any picture in a layer shall not be
predicted from any picture on any higher layer.

NOTE 1 – In other words, any picture in layer 0 must not be predicted from any picture in layer 1 or above, pictures in layer 1
may be predicted from layer 0, pictures in layer 2 may be predicted from layers 0 and 1, etc.

352 Rec. ITU-T H.264 (03/2009)

NOTE 2 – The subjective quality is expected to increase along with the number of decoded layers.

A sub-sequence is a set of coded pictures within a sub-sequence layer. A picture shall reside in one sub-sequence layer
and in one sub-sequence only. Any picture in a sub-sequence shall not be predicted from any picture in another
sub-sequence in the same or in a higher sub-sequence layer. A sub-sequence in layer 0 can be decoded independently of
any picture that does not belong to the sub-sequence.

The sub-sequence information SEI message concerns the current access unit. The primary coded picture in the access
unit is herein referred to as the current picture.

The sub-sequence information SEI message shall not be present unless gaps_in_frame_num_value_allowed_flag in the
sequence parameter set referenced by the picture associated with the sub-sequence SEI message is equal to 1.

sub_seq_layer_num specifies the sub-sequence layer number of the current picture. When sub_seq_layer_num is
greater than 0, memory management control operations shall not be used in any slice header of the current picture.
When the current picture resides in a sub-sequence whose first picture in decoding order is an IDR picture, the value of
sub_seq_layer_num shall be equal to 0. For a non-paired reference field, the value of sub_seq_layer_num shall be equal
to 0. sub_seq_layer_num shall be in the range of 0 to 255, inclusive.

sub_seq_id identifies the sub-sequence within a layer. When the current picture resides in a sub-sequence whose first
picture in decoding order is an IDR picture, the value of sub_seq_id shall be the same as the value of idr_pic_id of the
IDR picture. sub_seq_id shall be in the range of 0 to 65535, inclusive.

first_ref_pic_flag equal to 1 specifies that the current picture is the first reference picture of the sub-sequence in
decoding order. When the current picture is not the first picture of the sub-sequence in decoding order, the
first_ref_pic_flag shall be equal to 0.

leading_non_ref_pic_flag equal to 1 specifies that the current picture is a non-reference picture preceding any
reference picture in decoding order within the sub-sequence or that the sub-sequence contains no reference pictures.
When the current picture is a reference picture or the current picture is a non-reference picture succeeding at least one
reference picture in decoding order within the sub-sequence, the leading_non_ref_pic_flag shall be equal to 0.

last_pic_flag equal to 1 indicates that the current picture is the last picture of the sub-sequence (in decoding order),
including all reference and non-reference pictures of the sub-sequence. When the current picture is not the last picture
of the sub-sequence (in decoding order), last_pic_flag shall be equal to 0.

The current picture is assigned to a sub-sequence as follows.
– If one or more of the following conditions is true, the current picture is the first picture of a sub-sequence in

decoding order:

– no earlier picture in decoding order is labelled with the same values of sub_seq_id and sub_seq_layer_num as
the current picture,

– the value of leading_non_ref_pic_flag is equal to 1 and the value of leading_non_ref_pic_flag is equal to 0 in
the previous picture in decoding order having the same values of sub_seq_id and sub_seq_layer_num as the
current picture,

– the value of first_ref_pic_flag is equal to 1 and the value of leading_non_ref_pic_flag is equal to 0 in the
previous picture in decoding order having the same values of sub_seq_id and sub_seq_layer_num as the
current picture,

– the value of last_pic_flag is equal to 1 in the previous picture in decoding order having the same values of
sub_seq_id and sub_seq_layer_num as the current picture.

– Otherwise, the current picture belongs to the same sub-sequence as the previous picture in decoding order having
the same values of sub_seq_id and sub_seq_layer_num as the current picture.

sub_seq_frame_num_flag equal to 0 specifies that sub_seq_frame_num is not present. sub_seq_frame_num_flag equal
to 1 specifies that sub_seq_frame_num is present.

sub_seq_frame_num shall be equal to 0 for the first reference picture of the sub-sequence and for any non-reference
picture preceding the first reference picture of the sub-sequence in decoding order. sub_seq_frame_num is further
constrained as follows.
– If the current picture is not the second field of a complementary field pair, sub_seq_frame_num shall be

incremented by 1, in modulo MaxFrameNum operation, relative to the previous reference picture, in decoding
order, that belongs to the sub-sequence.

– Otherwise (the current picture is the second field of a complementary field pair), the value of sub_seq_frame_num
shall be the same as the value of sub_seq_frame_num for the first field of the complementary field pair.

 Rec. ITU-T H.264 (03/2009) 353

sub_seq_frame_num shall be in the range of 0 to MaxFrameNum − 1, inclusive.

When the current picture is an IDR picture, it shall start a new sub-sequence in sub-sequence layer 0. Thus, the
sub_seq_layer_num shall be 0, the sub_seq_id shall be different from the previous sub-sequence in sub-sequence layer
0, first_ref_pic_flag shall be 1, and leading_non_ref_pic_flag shall be equal to 0.

When the sub-sequence information SEI message is present for both coded fields of a complementary field pair, the
values of sub_seq_layer_num, sub_seq_id, leading_non_ref_pic_flag and sub_seq_frame_num, when present, shall be
the same for both of these pictures.

When the sub-sequence information SEI message is present only for one coded field of a complementary field pair, the
values of sub_seq_layer_num, sub_seq_id, leading_non_ref_pic_flag and sub_seq_frame_num, when present, are also
applicable to the other coded field of the complementary field pair.

D.2.12 Sub-sequence layer characteristics SEI message semantics

The sub-sequence layer characteristics SEI message specifies the characteristics of sub-sequence layers.

num_sub_seq_layers_minus1 plus 1 specifies the number of sub-sequence layers in the sequence.
num_sub_seq_layers_minus1 shall be in the range of 0 to 255, inclusive.

A pair of average_bit_rate and average_frame_rate characterizes each sub-sequence layer. The first pair of
average_bit_rate and average_frame_rate specifies the characteristics of sub-sequence layer 0. When present, the
second pair specifies the characteristics of sub-sequence layers 0 and 1 jointly. Each pair in decoding order specifies the
characteristics for a range of sub-sequence layers from layer number 0 to the layer number specified by the layer loop
counter. The values are in effect from the point they are decoded until an update of the values is decoded.

accurate_statistics_flag equal to 1 indicates that the values of average_bit_rate and average_frame_rate are rounded
from statistically correct values. accurate_statistics_flag equal to 0 indicates that the average_bit_rate and the
average_frame_rate are estimates and may deviate somewhat from the correct values.

When accurate_statistics_flag is equal to 0, the quality of the approximation used in the computation of the values of
average_bit_rate and the average_frame_rate is chosen by the encoding process and is not specified by this
Recommendation | International Standard.

average_bit_rate indicates the average bit rate in units of 1000 bits per second. All NAL units in the range of
sub-sequence layers specified above are taken into account in the calculation. The average bit rate is derived according
to the access unit removal time specified in Annex C of the Recommendation | International Standard. In the following,
bTotal is the number of bits in all NAL units succeeding a sub-sequence layer characteristics SEI message (including
the bits of the NAL units of the current access unit) and preceding the next access unit (in decoding order) including a
sub-sequence layer characteristics SEI message (if present) or the end of the stream (otherwise). t1 is the removal time
(in seconds) of the current access unit, and t2 is the removal time (in seconds) of the latest access unit (in decoding
order) before the next sub-sequence layer characteristics SEI message (if present) or the end of the stream (otherwise).

When accurate_statistics_flag is equal to 1, the following conditions shall be fulfilled as follows.

– If t1 is not equal to t2, the following condition shall be true:

average_bit_rate = = Round(bTotal ÷ ((t2 − t1) * 1000))) (D-6)

– Otherwise (t1 is equal to t2), the following condition shall be true:

average_bit_rate = = 0 (D-7)

average_frame_rate indicates the average frame rate in units of frames/(256 seconds). All NAL units in the range of
sub-sequence layers specified above are taken into account in the calculation. In the following, fTotal is the number of
frames, complementary field pairs and non-paired fields between the current picture (inclusive) and the next
sub-sequence layer characteristics SEI message (if present) or the end of the stream (otherwise). t1 is the removal time
(in seconds) of the current access unit, and t2 is the removal time (in seconds) of the latest access unit (in decoding
order) before the next sub-sequence layer characteristics SEI message (if present) or the end of the stream (otherwise).

When accurate_statistics_flag is equal to 1, the following conditions shall be fulfilled as follows.

– If t1 is not equal to t2, the following condition shall be true:

average_frame_rate = = Round(fTotal * 256 ÷ (t2 − t1)) (D-8)

354 Rec. ITU-T H.264 (03/2009)

– Otherwise (t1 is equal to t2), the following condition shall be true:

average_frame_rate = = 0 (D-9)

D.2.13 Sub-sequence characteristics SEI message semantics

The sub-sequence characteristics SEI message indicates the characteristics of a sub-sequence. It also indicates inter
prediction dependencies between sub-sequences. This message shall be contained in the first access unit in decoding
order of the sub-sequence to which the sub-sequence characteristics SEI message applies. This sub-sequence is herein
called the target sub-sequence.

sub_seq_layer_num identifies the sub-sequence layer number of the target sub-sequence. sub_seq_layer_num shall be
in the range of 0 to 255, inclusive.

sub_seq_id identifies the target sub-sequence. sub_seq_id shall be in the range of 0 to 65535, inclusive.

duration_flag equal to 0 indicates that the duration of the target sub-sequence is not specified.

sub_seq_duration specifies the duration of the target sub-sequence in clock ticks of a 90-kHz clock.

average_rate_flag equal to 0 indicates that the average bit rate and the average frame rate of the target sub-sequence
are unspecified.

accurate_statistics_flag indicates how reliable the values of average_bit_rate and average_frame_rate are.
accurate_statistics_flag equal to 1, indicates that the average_bit_rate and the average_frame_rate are rounded from
statistically correct values. accurate_statistics_flag equal to 0 indicates that the average_bit_rate and the
average_frame_rate are estimates and may deviate from the statistically correct values.

average_bit_rate indicates the average bit rate in (1000 bits)/second of the target sub-sequence. All NAL units of the
target sub-sequence are taken into account in the calculation. The average bit rate is derived according to the access unit
removal time specified in subclause C.1.2. In the following, nB is the number of bits in all NAL units in the
sub-sequence. t1 is the removal time (in seconds) of the first access unit of the sub-sequence (in decoding order), and t2
is the removal time (in seconds) of the last access unit of the sub-sequence (in decoding order).

When accurate_statistics_flag is equal to 1, the following conditions shall be fulfilled as follows.

– If t1 is not equal to t2, the following condition shall be true:

average_bit_rate = = Round(nB ÷ ((t2 − t1) * 1000)) (D-10)

– Otherwise (t1 is equal to t2), the following condition shall be true:

average_bit_rate = = 0 (D-11)

average_frame_rate indicates the average frame rate in units of frames/(256 seconds) of the target sub-sequence. All
NAL units of the target sub-sequence are taken into account in the calculation. The average frame rate is derived
according to the access unit removal time specified in subclause C.1.2. In the following, fC is the number of frames,
complementary field pairs and non-paired fields in the sub-sequence. t1 is the removal time (in seconds) of the first
access unit of the sub-sequence (in decoding order), and t2 is the removal time (in seconds) of the last access unit of the
sub-sequence (in decoding order).

When accurate_statistics_flag is equal to 1, the following conditions shall be fulfilled as follows.

– If t1 is not equal to t2, the following condition shall be true:

average_frame_rate = = Round(fC * 256 ÷ (t2 − t1)) (D-12)

– Otherwise (t1 is equal to t2), the following condition shall be true:

average_frame_rate = = 0 (D-13)

num_referenced_subseqs specifies the number of sub-sequences that contain pictures that are used as reference
pictures for inter prediction in the pictures of the target sub-sequence. num_referenced_subseqs shall be in the range of
0 to 255, inclusive.

 Rec. ITU-T H.264 (03/2009) 355

ref_sub_seq_layer_num, ref_sub_seq_id, and ref_sub_seq_direction identify the sub-sequence that contains pictures
that are used as reference pictures for inter prediction in the pictures of the target sub-sequence. Depending on
ref_sub_seq_direction, the following applies.

– If ref_sub_seq_direction is equal to 0, a set of candidate sub-sequences consists of the sub-sequences whose
sub_seq_id is equal to ref_sub_seq_id, which reside in the sub-sequence layer having sub_seq_layer_num equal to
ref_sub_seq_layer_num, and whose first picture in decoding order precedes the first picture of the target
sub-sequence in decoding order.

– Otherwise (ref_sub_seq_direction is equal to 1), a set of candidate sub-sequences consists of the sub-sequences
whose sub_seq_id is equal to ref_sub_seq_id, which reside in the sub-sequence layer having sub_seq_layer_num
equal to ref_sub_seq_layer_num, and whose first picture in decoding order succeeds the first picture of the target
sub-sequence in decoding order.

The sub-sequence used as a reference for the target sub-sequence is the sub-sequence among the set of candidate
sub-sequences whose first picture is the closest to the first picture of the target sub-sequence in decoding order.

D.2.14 Full-frame freeze SEI message semantics

The full-frame freeze SEI message indicates that the current picture and any subsequent pictures in output order that
meet specified conditions should not affect the content of the display. No more than one full-frame freeze SEI message
shall be present in any access unit.

full_frame_freeze_repetition_period specifies the persistence of the full-frame freeze SEI message and may specify a
picture order count interval within which another full-frame freeze SEI message or a full-frame freeze release SEI
message or the end of the coded video sequence shall be present in the bitstream. The value of
full_frame_freeze_repetition_period shall be in the range of 0 to 16 384, inclusive.

full_frame_freeze_repetition_period equal to 0 specifies that the full-frame freeze SEI message applies to the current
decoded picture only.

full_frame_freeze_repetition_period equal to 1 specifies that the full-frame freeze SEI message persists in output order
until any of the following conditions are true:
– A new coded video sequence begins.
– A picture in an access unit containing a full-frame freeze SEI message or a full-frame freeze release SEI message

is output having PicOrderCnt() greater than PicOrderCnt(CurrPic).

full_frame_freeze_repetition_period greater than 1 specifies that the full-frame freeze SEI message persists until any of
the following conditions are true:.
– A new coded video sequence begins.
– A picture in an access unit containing a full-frame freeze SEI message or a full-frame freeze release SEI message

is output having PicOrderCnt() greater than PicOrderCnt(CurrPic) and less than or equal to
PicOrderCnt(CurrPic) + full_frame_freeze_repetition_period.

full_frame_freeze_repetition_period greater than 1 indicates that another full-frame freeze SEI message or a full-frame
freeze release SEI message shall be present for a picture in an access unit that is output having PicOrderCnt() greater
than PicOrderCnt(CurrPic) and less than or equal to PicOrderCnt(CurrPic) + full_frame_freeze_repetition_period;
unless the bitstream ends or a new coded video sequence begins without output of such a picture.

D.2.15 Full-frame freeze release SEI message semantics

The full-frame freeze release SEI message cancels the effect of any full-frame freeze SEI message sent with pictures
that precede the current picture in output order. The full-frame freeze release SEI message indicates that the current
picture and subsequent pictures in output order should affect the contents of the display.

No more than one full-frame freeze release SEI message shall be present in any access unit. A full-frame freeze release
SEI message shall not be present in an access unit containing a full-frame freeze SEI message. When a full-frame freeze
SEI message is present in an access unit containing a field of a complementary field pair in which the values of
PicOrderCnt(CurrPic) for the two fields of the complementary field pair are equal to each other, a full-frame freeze
release SEI message shall not be present in either of the two access units.

D.2.16 Full-frame snapshot SEI message semantics

The full-frame snapshot SEI message indicates that the current frame is labelled for use as determined by the
application as a still-image snapshot of the video content.

snapshot_id specifies a snapshot identification number. snapshot_id shall be in the range of 0 to 232 − 2, inclusive.

356 Rec. ITU-T H.264 (03/2009)

Values of snapshot_id in the range of 0 to 255, inclusive, and in the range of 512 to 231 − 1, inclusive, may be used as
determined by the application. Values of snapshot_id in the range of 256 to 511, inclusive, and in the range of 231
to 232 − 2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders encountering a value of snapshot_id in
the range of 256 to 511, inclusive, or in the range of 231 to 232 − 2, inclusive, shall ignore (remove from the bitstream
and discard) it.

D.2.17 Progressive refinement segment start SEI message semantics

The progressive refinement segment start SEI message specifies the beginning of a set of consecutive coded pictures
that is labelled as the current picture followed by a sequence of one or more pictures of refinement of the quality of the
current picture, rather than as a representation of a continually moving scene.

The tagged set of consecutive coded pictures shall continue until one of the following conditions is true. When a
condition below becomes true, the next slice to be decoded does not belong to the tagged set of consecutive coded
pictures:
– The next slice to be decoded belongs to an IDR picture.
– num_refinement_steps_minus1 is greater than 0 and the frame_num of the next slice to be decoded is

(currFrameNum + num_refinement_steps_minus1 + 1) % MaxFrameNum, where currFrameNum is the value of
frame_num of the picture in the access unit containing the SEI message.

– num_refinement_steps_minus1 is 0 and a progressive refinement segment end SEI message with the same
progressive_refinement_id as the one in this SEI message is decoded.

The decoding order of pictures within the tagged set of consecutive pictures should be the same as their output order.

progressive_refinement_id specifies an identification number for the progressive refinement operation.
progressive_refinement_id shall be in the range of 0 to 232 − 2, inclusive.

Values of progressive_refinement_id in the range of 0 to 255, inclusive, and in the range of 512 to 231 − 1, inclusive,
may be used as determined by the application. Values of progressive_refinement_id in the range of 256 to 511,
inclusive, and in the range of 231 to 232 − 2, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders
encountering a value of progressive_refinement_id in the range of 256 to 511, inclusive, or in the range of 231 to 232 − 2,
inclusive, shall ignore (remove from the bitstream and discard) it.

num_refinement_steps_minus1 specifies the number of reference frames in the tagged set of consecutive coded
pictures as follows.
– If num_refinement_steps_minus1 is equal to 0, the number of reference frames in the tagged set of consecutive

coded pictures is unknown.
– Otherwise, the number of reference frames in the tagged set of consecutive coded pictures is equal to

num_refinement_steps_minus1 + 1.

num_refinement_steps_minus1 shall be in the range of 0 to MaxFrameNum − 1, inclusive.

D.2.18 Progressive refinement segment end SEI message semantics

The progressive refinement segment end SEI message specifies the end of a set of consecutive coded pictures that has
been labelled by use of a progressive refinement segment start SEI message as an initial picture followed by a sequence
of one or more pictures of the refinement of the quality of the initial picture, and ending with the current picture.

progressive_refinement_id specifies an identification number for the progressive refinement operation.
progressive_refinement_id shall be in the range of 0 to 232 − 1, inclusive.

The progressive refinement segment end SEI message specifies the end of any progressive refinement segment
previously started using a progressive refinement segment start SEI message with the same value of
progressive_refinement_id.

Values of progressive_refinement_id in the range of 0 to 255, inclusive, and in the range of 512 to 231 − 1, inclusive,
may be used as determined by the application. Values of progressive_refinement_id in the range of 256 to 511,
inclusive, and in the range of 231 to 232 − 1, inclusive, are reserved for future use by ITU-T | ISO/IEC. Decoders
encountering a value of progressive_refinement_id in the range of 256 to 511, inclusive, or in the range of 231 to 232 − 1,
inclusive, shall ignore (remove from the bitstream and discard) it.

D.2.19 Motion-constrained slice group set SEI message semantics
NOTE 1 – The syntax of the motion-constrained slice group set SEI message is dependent on the content of the picture parameter
set that is active for the primary coded picture associated with the motion-constrained slice group set SEI message. However, the
activation of the associated picture parameter set does not occur until the decoding of the first coded slice NAL unit of the
primary coded picture. Since the coded slice NAL units of the primary coded picture follow the motion-constrained slice group
set SEI message in NAL unit order, it may be necessary for a decoder to store the RBSP containing the motion-constrained slice

 Rec. ITU-T H.264 (03/2009) 357

group set SEI message until determining the parameters of the picture parameter set that will be active for the primary coded
picture, and then perform the parsing of the motion-constrained slice group set SEI message.

This SEI message indicates that inter prediction over slice group boundaries is constrained as specified below. When
present, the message shall only appear where it is associated, as specified in subclause 7.4.1.2.3, with an IDR access
unit.

The target picture set for this SEI message contains all consecutive primary coded pictures in decoding order starting
with the associated primary coded IDR picture (inclusive) and ending with the following primary coded IDR picture
(exclusive) or with the very last primary coded picture in the bitstream (inclusive) in decoding order when there is no
following primary coded IDR picture. The slice group set is a collection of one or more slice groups, identified by the
slice_group_id[i] syntax element. When separate_colour_plane_flag is equal to 1, the term "primary coded pictures"
represents the parts of the corresponding primary coded pictures that correspond to the NAL units having the same
colour_plane_id.

This SEI message indicates that, for each picture in the target picture set, the inter prediction process is constrained as
follows: No sample value outside the slice group set, and no sample value at a fractional sample position that is derived
using one or more sample values outside the slice group set is used to inter predict any sample within the slice group
set.

num_slice_groups_in_set_minus1 + 1 specifies the number of slice groups in the slice group set. The allowed range of
num_slice_groups_in_set_minus1 is 0 to num_slice_groups_minus1, inclusive. The allowed range of
num_slice_groups_minus1 is specified in Annex A and subclauses G.10 and H.10.

slice_group_id[i] with i = 0.. num_slice_groups_in_set_minus1 identifies the slice group(s) contained within the slice
group set. The allowed range for slice_group_id[i] is from 0 to num_slice_groups_minus1, inclusive. The length of the
slice_group_id[i] syntax element is Ceil(Log2(num_slice_groups_minus1 + 1)) bits.

When num_slice_groups_minus1 is equal to 0 (i.e., num_slice_groups_in_set_minus1 is equal to 0 and
slice_group_id[0] is not present), the value of slice_group_id[0] shall be inferred to be equal to 0.

exact_sample_value_match_flag equal to 0 indicates that, within the target picture set, when the macroblocks that do
not belong to the slice group set are not decoded, the value of each sample in the slice group set need not be exactly the
same as the value of the same sample when all the macroblocks are decoded. exact_sample_value_match_flag equal
to 1 indicates that, within the target picture set, when the macroblocks that do not belong to the slice group set are not
decoded, the value of each sample in the slice group set shall be exactly the same as the value of the same sample when
all the macroblocks in the target picture set are decoded.

NOTE 2 – When disable_deblocking_filter_idc is equal to 1 or 2 in all slices in the target picture set,
exact_sample_value_match_flag should be 1.

pan_scan_rect_flag equal to 0 specifies that pan_scan_rect_id is not present. pan_scan_rect_flag equal to 1 specifies
that pan_scan_rect_id is present.

pan_scan_rect_id indicates that the specified slice group set covers at least the pan-scan rectangle identified by
pan_scan_rect_id within the target picture set.

NOTE 3 – Multiple motion_constrained_slice_group_set SEI messages may be associated with the same IDR picture.
Consequently, more than one slice group set may be active within a target picture set.
NOTE 4 – The size, shape, and location of the slice groups in the slice group set may change within the target picture set.

D.2.20 Film grain characteristics SEI message semantics

This SEI message provides the decoder with a parameterised model for film grain synthesis. For example, an encoder
may use the film grain characteristics SEI message to characterise film grain that was present in the original source
video material and was removed by pre-processing filtering techniques. Synthesis of simulated film grain on the
decoded images for the display process is optional and does not affect the decoding process specified in this
Recommendation | International Standard. If synthesis of simulated film grain on the decoded images for the display
process is performed, there is no requirement that the method by which the synthesis is performed be the same as the
parameterised model for the film grain as provided in the film grain characteristics SEI message.

NOTE 1 – The display process is not specified in this Recommendation | International Standard.
NOTE 2 – The SMPTE specification "SMPTE RDD 5-2006. Film Grain Technology – Specifications for H.264/MPEG-4 AVC
Bitstreams." specifies a film grain simulator based on the information provided in the film grain characteristics SEI message.

film_grain_characteristics_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any
previous film grain characteristics SEI message in output order. film_grain_characteristics_cancel_flag equal to 0
indicates that film grain modelling information follows.

model_id identifies the film grain simulation model as specified in Table D-5. The value of model_id shall be in the
range of 0 to 1, inclusive. The values of 2 and 3 for model_id are reserved for future use by ITU-T | ISO/IEC. Decoders

358 Rec. ITU-T H.264 (03/2009)

that conform to this Recommendation | International Standard shall ignore film grain characteristic SEI messages with
model_id equal to 2 or 3.

Table D-5 – model_id values

Value Description
0 frequency filtering
1 auto-regression
2 reserved
3 reserved

separate_colour_description_present_flag equal to 1 indicates that a distinct colour space description for the film
grain characteristics specified in the SEI message is present in the film grain characteristics SEI message syntax.
separate_colour_description_present_flag equal to 0 indicates that the colour description for the film grain
characteristics specified in the SEI message is the same as for the coded video sequence as specified in subclause E.2.1.

NOTE 3 – When separate_colour_description_present_flag is equal to 1, the colour space specified for the film grain
characteristics specified in the SEI message may differ from the colour space specified for the coded video as specified in
subclause E.2.1.

film_grain_bit_depth_luma_minus8 plus 8 specifies the bit depth used for the luma component of the film grain
characteristics specified in the SEI message. When film_grain_bit_depth_luma_minus8 is not present in the film grain
characteristics SEI message, the value of film_grain_bit_depth_luma_minus8 shall be inferred to be equal
to bit_depth_luma_minus8.

The value of filmGrainBitDepth[0] is derived as

filmGrainBitDepth[0] = film_grain_bit_depth_luma_minus8 + 8 (D-14)

film_grain_bit_depth_chroma_minus8 plus 8 specifies the bit depth used for the Cb and Cr components of the film
grain characteristics specified in the SEI message. When film_grain_bit_depth_chroma_minus8 is not present in the
film grain characteristics SEI message, the value of film_grain_bit_depth_chroma_minus8 shall be inferred to be equal
to bit_depth_chroma_minus8.

The value of filmGrainBitDepth[c] for c = 1 and 2 is derived as

filmGrainBitDepth[c] = film_grain_bit_depth_chroma_minus8 + 8 with c = 1, 2 (D-15)

film_grain_full_range_flag has the same semantics as specified in subclause E.2.1 for the video_full_range_flag
syntax element, except as follows.
– film_grain_full_range_flag specifies the colour space of the film grain characteristics specified in the SEI message,

rather than the colour space used for the coded video sequence.
– When film_grain_full_range_flag is not present in the film grain characteristics SEI message, the value of

film_grain_full_range_flag shall be inferred to be equal to video_full_range_flag.

film_grain_colour_primaries has the same semantics as specified in subclause E.2.1 for the colour_primaries syntax
element, except as follows.
– film_grain_colour_primaries specifies the colour space of the film grain characteristics specified in the SEI

message, rather than the colour space used for the coded video sequence.
– When film_grain_colour_primaries is not present in the film grain characteristics SEI message, the value of

film_grain_colour_primaries shall be inferred to be equal to colour_primaries.

film_grain_transfer_characteristics has the same semantics as specified in subclause E.2.1 for the
transfer_characteristics syntax element, except as follows.
– film_grain_transfer_characteristics specifies the colour space of the film grain characteristics specified in the SEI

message, rather than the colour space used for the coded video sequence.
– When film_grain_transfer_characteristics is not present in the film grain characteristics SEI message, the value of

film_grain_transfer_characteristics shall be inferred to be equal to transfer_characteristics.

 Rec. ITU-T H.264 (03/2009) 359

film_grain_matrix_coefficients has the same semantics as specified in subclause E.2.1 for the matrix_coefficients
syntax element, except as follows.
– film_grain_matrix_coefficients specifies the colour space of the film grain characteristics specified in the SEI

message, rather than the colour space used for the coded video sequence.
– When film_grain_matrix_coefficients is not present in the film grain characteristics SEI message, the value of

film_grain_matrix_coefficients shall be inferred to be equal to matrix_coefficients.
– The values allowed for film_grain_matrix_coefficients are not constrained by the value of chroma_format_idc.

The chroma_format_idc of the film grain characteristics specified in the film grain characteristics SEI message shall be
inferred to be equal to 3 (4:4:4).

NOTE 4 – Because the use of a specific method is not required for performing film grain generation function used by the display
process, a decoder may, if desired, down-convert the model information for chroma in order to simulate film grain for other
chroma formats (4:2:0 or 4:2:2) rather than up-converting the decoded video (using a method not specified by this
Recommendation | International Standard) before performing film grain generation.

blending_mode_id identifies the blending mode used to blend the simulated film grain with the decoded images as
specified in Table D-6. blending_mode_id shall be in the range of 0 to 1, inclusive.

Table D-6 – blending_mode_id values

Value Description
0 additive
1 multiplicative
2 reserved
3 reserved

Depending on blending_mode_id, the blending mode is specified as follows
– If blending_mode_id is equal to 0 the blending mode is additive as specified by

Igrain[x, y, c] = Clip3(0, (1 << filmGrainBitDepth[c]) − 1, Idecoded[x, y, c] + G[x, y, c]) (D-16)

– Otherwise (blending_mode_id is equal to 1), the blending mode is multiplicative as specified by

Igrain[x, y, c] = Clip3(0, (1 << filmGrainBitDepth[c]) − 1, Idecoded[x, y, c] (D-17)
 + Round((Idecoded[x, y, c] * G[x, y, c]) ÷ ((1 << bitDepth[c]) − 1)))

where Idecoded[x, y, c] represents the sample value at coordinates x, y of the colour component c of the decoded image
Idecoded, G[x, y, c] is the simulated film grain value at the same position and colour component, filmGrainBitDepth[c]
is the number of bits used for each sample in a fixed-length unsigned binary representation of the array Igrain[x, y, c],
and bitDepth[c] is specified by

bitDepth[c] =
⎩
⎨
⎧

=
=

21,c;BitDepth
0c;BitDepth

C

Y (D-18)

log2_scale_factor specifies a scale factor used in the film grain characterization equations.

comp_model_present_flag[c] equal to 0 indicates that film grain is not modelled on the c-th colour component, where
c equal to 0 refers to the luma component, c equal to 1 refers to the Cb component, and c equal to 2 refers to the Cr
component. comp_model_present_flag[c] equal to 1 indicates that syntax elements specifying modelling of film grain
on colour component c are present in the SEI message.

num_intensity_intervals_minus1[c] plus 1 specifies the number of intensity intervals for which a specific set of
model values has been estimated.

NOTE 5 – The intensity intervals may overlap in order to simulate multi-generational film grain.

num_model_values_minus1[c] plus 1 specifies the number of model values present for each intensity interval in
which the film grain has been modelled. The value of num_model_values_minus1[c] shall be in the range of 0 to 5,
inclusive.

360 Rec. ITU-T H.264 (03/2009)

intensity_interval_lower_bound[c][i] specifies the lower bound of the interval i of intensity levels for which the set
of model values applies.

intensity_interval_upper_bound[c][i] specifies the upper bound of the interval i of intensity levels for which the set
of model values applies.

Depending on model_id, the selection of the sets of model values is specified as follows.
– If model_id is equal to 0, the average value of each block b of 8x8 samples in Idecoded, referred as bavg, is used to

select the sets of model values with index s[j] that apply to all the samples in the block:

for(i = 0, j = 0; i <= num_intensity_intervals_minus1[c]; i++)
 if(bavg >= intensity_interval_lower_bound[c][i] && bavg <= intensity_interval_upper_bound[c][i]) {
 s[j] = i (D-19)
 j++
 }

– Otherwise (model_id is equal to 1), the sets of model values used to generate the film grain are selected for each
sample value in Idecoded as follows:

for(i = 0, j = 0; i <= num_intensity_intervals_minus1[c]; i++)
 if(Idecoded[x, y, c] >= intensity_interval_lower_bound[c][i] &&
 Idecoded[x, y, c] <= intensity_interval_upper_bound[c][i]) { (D-20)
 s[j] = i
 j++
 }

Samples that do not fall into any of the defined intervals are not modified by the grain generation function. Samples that
fall into more than one interval will originate multi-generation grain. Multi-generation grain results from adding the
grain computed independently for each intensity interval.

comp_model_value[c][i][j] represents each one of the model values present for the colour component c and the
intensity interval i. The set of model values has different meaning depending on the value of model_id. The value of
comp_model_value[c][i][j] shall be constrained as follows, and may be additionally constrained as specified
elsewhere in this subclause.
– If model_id is equal to 0, comp_model_value[c][i][j] shall be in the range of 0 to 2filmGrainBitDepth[c] − 1,

inclusive.
– Otherwise (model_id is equal to 1), comp_model_value[c][i][j] shall be in the range of −2(filmGrainBitDepth[c] − 1)

to 2(filmGrainBitDepth[c] − 1) − 1, inclusive.

Depending on model_id, the synthesis of the film grain is modelled as follows.
– If model_id is equal to 0, a frequency filtering model enables simulating the original film grain for c = 0..2,

x = 0..PicWidthInSamplesL, and y = 0..PicHeightInSamplesL as specified by:

G[x, y, c] = (comp_model_value[c][s][0] * Q[c][x, y] + comp_model_value[c][s][5] *
 G[x, y, c − 1]) >> log2_scale_factor (D-21)

 where Q[c] is a two-dimensional random process generated by filtering 16x16 blocks gaussRv with random-value
elements gaussRvij generated with a normalized Gaussian distribution (independent and identically distributed
Gaussian random variable samples with zero mean and unity variance) and where the value of an element
G[x, y, c −1] used in the right-hand side of the equation is inferred to be equal to 0 when c − 1 is less than 0.

NOTE 6 – A normalized Gaussian random value can be generated from two independent, uniformly distributed
random values over the interval from 0 to 1 (and not equal to 0), denoted as uRv0 and uRv1, using the Box-Muller
transformation specified by

) uRv* π* 2 Cos(*)uRv Ln(*2gaussRv 10ij −= (D-22)

where Ln(x) is the natural logarithm of x (the base-e logarithm, where e is natural logarithm base constant
2.718 281 828...), Cos(x) is the trigonometric cosine function operating on an argument x in units of radians, and π is
Archimedes' constant 3.141 592 653....

 Rec. ITU-T H.264 (03/2009) 361

 The band-pass filtering of blocks gaussRv may be performed in the discrete cosine transform (DCT) domain as
follows:

for(y = 0; y < 16; y++)
 for(x = 0; x < 16; x++)
 if((x < comp_model_value[c][s][3] && y < comp_model_value[c][s][4]) | | (D-23)
 x > comp_model_value[c][s][1] | | y > comp_model_value[c][s][2])
 gaussRv[x, y] = 0
filteredRv = IDCT16x16(gaussRv)

 where IDCT16x16(z) refers to a unitary inverse discrete cosine transformation (IDCT) operating on a 16x16
matrix argument z as specified by

IDCT16x16(z) = r * z * rT (D-24)

 where the superscript T indicates a matrix transposition and r is the 16x16 matrix with elements rij specified by

32

 *) 1 j*2 (* i Cos
4

) 2 : 1 ?) 0 i ((rij ⎟
⎠
⎞

⎜
⎝
⎛ +=== π (D-25)

 where Cos(x) is the trigonometric cosine function operating on an argument x in units of radians and π is
Archimedes' constant 3.141 592 653.

 Q[c] is formed by the frequency-filtered blocks filteredRv.
NOTE 7 – Coded model values are based on blocks of 16x16, but a decoder implementation may use other block
sizes. For example, decoders implementing the IDCT on 8x8 blocks, should down-convert by a factor of two the set of
coded model values comp_model_value[c][s][i] for i equal to 1..4.
NOTE 8 – To reduce the degree of visible blocks that can result from mosaicing the frequency-filtered blocks
filteredRv, decoders may apply a low-pass filter to the boundaries between frequency-filtered blocks.

– Otherwise (model_id is equal to 1), an auto-regression model enables simulating the original film grain for
c = 0..2, x = 0..PicWidthInSamplesL, and y = 0..PicHeightInSamplesL as specified by

G[x, y, c] = (comp_model_value[c][s][0] * n[x, y, c] +
comp_model_value[c][s][1] * (G[x − 1, y, c] + ((comp_model_value[c][s][4] * G[x, y − 1, c])
>>
 log2_scale_factor)) +
comp_model_value[c][s][3] * (((comp_model_value[c][s][4] * G[x − 1, y − 1, c]) >>
 log2_scale_factor) + G[x+1, y − 1, c]) +
comp_model_value[c][s][5] * (G[x − 2, y, c] +
 ((comp_model_value[c][s][4] * comp_model_value[c][s][4] * G[x, y − 2, c]) >>
 (2 * log2_scale_factor))) +
 comp_model_value[c][s][2] * G[x, y, c − 1]) >> log2_scale_factor (D-26)

 where n[x, y, c] is a random value with normalized Gaussian distribution (independent and identically distributed
Gaussian random variable samples with zero mean and unity variance for each value of x, y, and c) and where the
value of an element G[x, y, c] used in the right-hand side of the equation is inferred to be equal to 0 when any of
the following conditions are true:
– x is less than 0,
– y is less than 0,
– x is greater than or equal to PicWidthInSamplesL,
– c is less than 0.

comp_model_value[c][i][0] provides the first model value for the model as specified by model_id.
comp_model_value[c][i][0] corresponds to the standard deviation of the Gaussian noise term in the generation
functions specified in Equations D-21 through D-26.

comp_model_value[c][i][1] provides the second model value for the model as specified by model_id. When
model_id is equal to 0, comp_model_value[c][i][1] shall be greater than or equal to 0 and less than 16.

362 Rec. ITU-T H.264 (03/2009)

When not present in the film grain characteristics SEI message, comp_model_value[c][i][1] shall be inferred as
follows.
– If model_id is equal to 0, comp_model_value[c][i][1] shall be inferred to be equal to 8.
– Otherwise (model_id is equal to 1), comp_model_value[c][i][1] shall be inferred to be equal to 0.

comp_model_value[c][i][1] is interpreted as follows.
– If model_id is equal to 0, comp_model_value[c][i][1] indicates the horizontal high cut frequency to be used to

filter the DCT of a block of 16x16 random values.
– Otherwise (model_id is equal to 1), comp_model_value[c][i][1] indicates the first order spatial correlation for

neighbouring samples (x − 1, y) and (x, y − 1).

comp_model_value[c][i][2] provides the third model value for the model as specified by model_id. When model_id
is equal to 0, comp_model_value[c][i][2] shall be greater than or equal to 0 and less than 16.

When not present in the film grain characteristics SEI message, comp_model_value[c][i][2] shall be inferred as
follows.
– If model_id is equal to 0, comp_model_value[c][i][2] shall be inferred to be equal

to comp_model_value[c][i][1]
– Otherwise (model_id is equal to 1), comp_model_value[c][i][2] shall be inferred to be equal to 0.

comp_model_value[c][i][2] is interpreted as follows.
– If model_id is equal to 0, comp_model_value[c][i][2] indicates the vertical high cut frequency to be used to

filter the DCT of a block of 16x16 random values.
– Otherwise (model_id is equal to 1), comp_model_value[c][i][2] indicates the colour correlation between

consecutive colour components.

comp_model_value[c][i][3] provides the fourth model value for the model as specified by model_id. When
model_id is equal to 0, comp_model_value[c][i][3] shall be greater than or equal to 0 and less than or equal to
comp_model_value[c][i][1].

When not present in the film grain characteristics SEI message, comp_model_value[c][i][3] shall be inferred to be
equal to 0.

comp_model_value[c][i][3] is interpreted as follows.
– If model_id is equal to 0, comp_model_value[c][i][3] indicates the horizontal low cut frequency to be used to

filter the DCT of a block of 16x16 random values.
– Otherwise (model_id is equal to 1), comp_model_value[c][i][3] indicates the first order spatial correlation for

neighbouring samples (x − 1, y − 1) and (x + 1, y − 1).

comp_model_value[c][i][4] provides the fifth model value for the model as specified by model_id. When model_id
is equal to 0, comp_model_value[c][i][4] shall be greater than or equal to 0 and less than or equal to
comp_model_value[c][i][2].

When not present in the film grain characteristics SEI message, comp_model_value[c][i][4] shall be inferred to be
equal to model_id.

comp_model_value[c][i][4] is interpreted as follows.
– If model_id is equal to 0, comp_model_value[c][i][4] indicates the vertical low cut frequency to be used to

filter the DCT of a block of 16x16 random values.
– Otherwise (model_id is equal to 1), comp_model_value[c][i][4] indicates the aspect ratio of the modelled grain.

comp_model_value[c][i][5] provides the sixth model value for the model as specified by model_id.

When not present in the film grain characteristics SEI message, comp_model_value[c][i][5] shall be inferred to be
equal to 0.

comp_model_value[c][i][5] is interpreted as follows.
– If model_id is equal to 0, comp_model_value[c][i][5] indicates the colour correlation between consecutive

colour components.
– Otherwise (model_id is equal to 1), comp_model_value[c][i][5] indicates the second order spatial correlation

for neighbouring samples (x, y − 2) and (x − 2, y).

 Rec. ITU-T H.264 (03/2009) 363

film_grain_characteristics_repetition_period specifies the persistence of the film grain characteristics SEI message
and may specify a picture order count interval within which another film grain characteristics SEI message or the end of
the coded video sequence shall be present in the bitstream. The value of film_grain_characteristics_repetition_period
shall be in the range 0 to 16 384, inclusive.

film_grain_characteristics_repetition_period equal to 0 specifies that the film grain characteristics SEI message applies
to the current decoded picture only.

film_grain_characteristics_repetition_period equal to 1 specifies that the film grain characteristics SEI message persists
in output order until any of the following conditions are true:
– A new coded video sequence begins.
– A picture in an access unit containing a film grain characteristics SEI message is output having PicOrderCnt()

greater than PicOrderCnt(CurrPic).

film_grain_characteristics_repetition_period greater than 1 specifies that the film grain characteristics SEI message
persists until any of the following conditions are true:
– A new coded video sequence begins.
– A picture in an access unit containing a film grain characteristics SEI message is output having PicOrderCnt()

greater than PicOrderCnt(CurrPic) and less than or equal to PicOrderCnt(CurrPic) +
film_grain_characteristics_repetition_period.

film_grain_characteristics_repetition_period greater than 1 indicates that another film grain characteristics SEI message
shall be present for a picture in an access unit that is output having PicOrderCnt() greater than PicOrderCnt(CurrPic)
and less than or equal to PicOrderCnt(CurrPic) + film_grain_characteristics_repetition_period; unless the bitstream
ends or a new coded video sequence begins without output of such a picture.

D.2.21 Deblocking filter display preference SEI message semantics

This SEI message provides the decoder with an indication of whether the display of the cropped result of the deblocking
filter process specified in subclause 8.7 or of the cropped result of the picture construction process prior to the
deblocking filter process specified in subclause 8.5.14 is preferred by the encoder for the display of each decoded
picture that is output.

NOTE 1 – The display process is not specified in this Recommendation | International Standard. The means by which an encoder
determines what to indicate as its preference expressed in a deblocking filter display preference SEI message is also not specified
in this Recommendation | International Standard, and the expression of an expressed preference in a deblocking filter display
preference SEI message does not impose any requirement on the display process.

deblocking_display_preference_cancel_flag equal to 1 indicates that the SEI message cancels the persistence of any
previous deblocking filter display preference SEI message in output order. deblocking_display_preference_cancel_flag
equal to 0 indicates that a display_prior_to_deblocking_preferred_flag and
deblocking_display_preference_repetition_period follow.

NOTE 2 – In the absence of the deblocking filter display preference SEI message, or after the receipt of a deblocking filter
display preference SEI message in which deblocking_display_preference_cancel_flag is equal to 1, the decoder should infer that
the display of the cropped result of the deblocking filter process specified in subclause 8.7 is preferred over the display of the
cropped result of the picture construction process prior to the deblocking filter process specified in subclause 8.5.14 for the
display of each decoded picture that is output.

display_prior_to_deblocking_preferred_flag equal to 1 indicates that the encoder preference is for the display
process (which is not specified in this Recommendation | International Standard) to display the cropped result of the
picture construction process prior to the deblocking filter process specified in subclause 8.5.14 rather than the cropped
result of the deblocking filter process specified in subclause 8.7 for each picture that is cropped and output as specified
in Annex C. display_prior_to_deblocking_preferred_flag equal to 0 indicates that the encoder preference is for the
display process (which is not specified in this Recommendation | International Standard) to display the cropped result of
the deblocking filter process specified in subclause 8.7 rather than the cropped result of the picture construction process
prior to the deblocking filter process specified in subclause 8.5.14 for each picture that is cropped and output as
specified in Annex C.

NOTE 3 – The presence or absence of the deblocking filter display preference SEI message and the value of
display_prior_to_deblocking_preferred_flag does not affect the requirements of the decoding process specified in this
Recommendation | International Standard. Rather, it only provides an indication of when, in addition to fulfilling the
requirements of this Recommendation | International Standard for the decoding process, enhanced visual quality might be
obtained by performing the display process (which is not specified in this Recommendation | International Standard) in an
alternative fashion. Encoders that use the deblocking filter display preference SEI message should be designed with an awareness
that unless the encoder restricts its use of the DPB capacity specified in Annex A and subclauses G.10 and H.10 for the profile
and level in use, some decoders may not have sufficient memory capacity for the storage of the result of the picture construction
process prior to the deblocking filter process specified in subclause 8.5.14 in addition to the storage of the result of the
deblocking filter process specified in subclause 8.7 when reordering and delaying pictures for display, and such decoders would

364 Rec. ITU-T H.264 (03/2009)

therefore not be able to benefit from the preference indication. By restricting its use of the DPB capacity, an encoder can be able
to use at least half of the DPB capacity specified in Annex A and subclauses G.10 and H.10 while allowing the decoder to use the
remaining capacity for storage of unfiltered pictures that have been indicated as preferable for display until the output time
arrives for those pictures.

dec_frame_buffering_constraint_flag equal to 1 indicates that the use of the frame buffering capacity of the HRD
decoded picture buffer (DPB) as specified by max_dec_frame_buffering has been constrained such that the coded video
sequence will not require a decoded picture buffer with more than Max(1, max_dec_frame_buffering) frame buffers to
enable the output of the decoded filtered or unfiltered pictures, as indicated by the deblocking filter display preference
SEI messages, at the output times specified by the dpb_output_delay of the picture timing SEI messages.
dec_frame_buffering_constraint_flag equal to 0 indicates that the use of the frame buffering capacity in the HRD may
or may not be constrained in the manner that would be indicated by dec_frame_buffering_constraint_flag equal to 1.

For purposes of determining the constraint imposed when dec_frame_buffering_constraint_flag is equal to 1, the
quantity of frame buffering capacity used at any given point in time by each frame buffer of the DPB that contains a
picture shall be derived as follows.
– If both of the following criteria are satisfied for the frame buffer, the frame buffer is considered to use two frame

buffers of capacity for its storage.
– The frame buffer contains a frame or one or more fields that is marked as "used for reference", and
– The frame buffer contains a picture for which both of the following criteria are fulfilled:

– The HRD output time of the picture is greater than the given point in time.
– It has been indicated in a deblocking filter display preference SEI message that the encoder preference

for the picture is for the display process to display the cropped result of the picture construction process
prior to the deblocking filter process specified in subclause 8.5.14 rather than the cropped result of the
deblocking filter process specified in subclause 8.7.

– Otherwise, the frame buffer is considered to use one frame buffer of DPB capacity for its storage.

When dec_frame_buffering_constraint_flag is equal to 1, the frame buffering capacity used by all of the frame buffers
in the DPB that contain pictures, as derived in this manner, shall not be greater than
Max(1, max_dec_frame_buffering) during the operation of the HRD for the coded video sequence.

The value of dec_frame_buffering_constraint_flag shall be the same in all deblocking filter display preference SEI
messages of the coded video sequence.

deblocking_display_preference_repetition_period specifies the persistence of the deblocking filter display preference
SEI message and may specify a picture order count interval within which another deblocking filter display preference
message or the end of the coded video sequence shall be present in the bitstream. The value of
deblocking_display_preference_repetition_period shall be in the range 0 to 16 384, inclusive.

deblocking_display_preference_repetition_period equal to 0 specifies that the deblocking filter display preference SEI
message applies to the current decoded picture only.

deblocking_display_preference_repetition_period equal to 1 specifies that the deblocking filter display preference SEI
message persists in output order until any of the following conditions are true:
– A new coded video sequence begins.
– A picture in an access unit containing a deblocking filter display preference SEI message is output having

PicOrderCnt() greater than PicOrderCnt(CurrPic).

deblocking_display_preference_repetition_period greater than 1 specifies that the deblocking filter display preference
SEI message persists until any of the following conditions are true:
– A new coded video sequence begins.
– A picture in an access unit containing a deblocking filter display preference SEI message is output having

PicOrderCnt() greater than PicOrderCnt(CurrPic) and less than or equal to PicOrderCnt(CurrPic) +
deblocking_display_preference_repetition_period.

deblocking_display_preference_repetition_period greater than 1 indicates that another deblocking filter display
preference SEI message shall be present for a picture in an access unit that is output having PicOrderCnt() greater than
PicOrderCnt(CurrPic) and less than or equal to PicOrderCnt(CurrPic) +
deblocking_display_preference_repetition_period; unless the bitstream ends or a new coded video sequence begins
without output of such a picture.

 Rec. ITU-T H.264 (03/2009) 365

D.2.22 Stereo video information SEI message semantics

This SEI message provides the decoder with an indication that the entire coded video sequence consists of pairs of
pictures forming stereo-view content.

The stereo video information SEI message shall not be present in any access unit of a coded video sequence unless a
stereo video information SEI message is present in the first access unit of the coded video sequence.

field_views_flag equal to 1 indicates that all pictures in the current coded video sequence are fields and all fields of a
particular parity are considered a left view and all fields of the opposite parity are considered a right view for stereo-
view content. field_views_flag equal to 0 indicates that all pictures in the current coded video sequence are frames and
alternating frames in output order represent a view of a stereo view. The value of field_views_flag shall be the same in
all stereo video information SEI messages within a coded video sequence.

When the stereo video information SEI message is present and field_views_flag is equal to 1, the left view and right
view of a stereo video pair shall be coded as a complementary field pair, the display time of the first field of the field
pair in output order should be delayed to coincide with the display time of the second field of the field pair in output
order, and the spatial locations of the samples in each individual field should be interpreted for display purposes as
representing complete pictures as shown in Figure 6-1 rather than as spatially-distinct fields within a frame as shown in
Figure 6-2.

NOTE – The display process is not specified in this Recommendation | International Standard.

top_field_is_left_view_flag equal to 1 indicates that the top fields in the coded video sequence represent a left view
and the bottom fields in the coded video sequence represent a right view. top_field_is_left_view_flag equal to 0
indicates that the bottom fields in the coded video sequence represent a left view and the top fields in the coded video
sequence represent a right view. When present, the value of top_field_is_left_view_flag shall be the same in all stereo
video information SEI messages within a coded video sequence.

current_frame_is_left_view_flag equal to 1 indicates that the current picture is the left view of a stereo-view pair.
current_frame_is_left_view_flag equal to 0 indicates that the current picture is the right view of a stereo-view pair.

next_frame_is_second_view_flag equal to 1 indicates that the current picture and the next picture in output order form
a stereo-view pair, and the display time of the current picture should be delayed to coincide with the display time of the
next picture in output order. next_frame_is_second_view_flag equal to 0 indicates that the current picture and the
previous picture in output order form a stereo-view pair, and the display time of the current picture should not be
delayed for purposes of stereo-view pairing.

left_view_self_contained_flag equal to 1 indicates that no inter prediction operations within the decoding process for
the left-view pictures of the coded video sequence refer to reference pictures that are right-view pictures.
left_view_self_contained_flag equal to 0 indicates that some inter prediction operations within the decoding process for
the left-view pictures of the coded video sequence may or may not refer to reference pictures that are right-view
pictures. Within a coded video sequence, the value of left_view_self_contained_flag in all stereo video information SEI
messages shall be the same.

right_view_self_contained_flag equal to 1 indicates that no inter prediction operations within the decoding process for
the right-view pictures of the coded video sequence refer to reference pictures that are left-view pictures.
right_view_self_contained_flag equal to 0 indicates that some inter prediction operations within the decoding process
for the right-view pictures of the coded video sequence may or may not refer to reference pictures that are left-view
pictures. Within a coded video sequence, the value of right_view_self_contained_flag in all stereo video information
SEI messages shall be the same.

D.2.23 Post-filter hint SEI message semantics

This SEI message provides the coefficients of a post-filter or correlation information for the design of a post-filter for
potential use in post-processing of the output decoded pictures to obtain improved displayed quality.

filter_hint_size_y specifies the vertical size of the filter coefficient or correlation array. The value of filter_hint_size_y
shall be in the range of 1 to 15, inclusive.

filter_hint_size_x specifies the horizontal size of the filter coefficient or correlation array. The value of
filter_hint_size_x shall be in the range of 1 to 15, inclusive.

filter_hint_type identifies the type of the transmitted filter hints as specified in Table D-7. The value of filter_hint_type
shall be in the range of 0 to 2, inclusive. Decoders that conform to this Recommendation | International Standard shall
ignore post-filter hint SEI messages having filter_hint_type equal to the reserved value 3.

366 Rec. ITU-T H.264 (03/2009)

Table D-7 – filter_hint_type values

Value Description

0 coefficients of a 2D FIRfilter

1 coefficients of two 1D FIR filters

2 cross-correlation matrix

3 Reserved

filter_hint[colour_component][cy][cx] specifies a filter coefficient or an element of a cross-correlation matrix
between original and decoded signal with 16-bit precision. colour_component specifies the related colour component.
cy represents a counter in vertical direction, cx represents a counter in horizontal direction. Depending on
filter_hint_type, the following applies.

– If filter_hint_type is equal to 0, the coefficients of a 2-dimensional FIR filter with the size of filter_hint_size_y *
filter_hint_size_x are transmitted.

– Otherwise, if filter_hint_type is equal to 1, the filter coefficients of two 1-dimensional FIR filters are transmitted. In
this case, filter_hint_size_y shall be equal to 2. The index cy = 0 specifies the filter coefficients of the horizontal
filter and cy = 1 specifies the filter coefficients of the vertical filter. In the filtering process, the horizontal filter
shall be applied first and the result shall be filtered by the vertical filter.

– Otherwise (filter_hint_type is equal to 2), the transmitted hints specify a cross-correlation matrix between the
original signal s and the decoded signal s′.

NOTE 1 – The cross-correlation matrix for a related colour component with the size of filter_hint_size_y *
filter_hint_size_x is defined as follows:

∑ ∑
−

=

−

=
−+−+′⋅

⋅
=

1h

0m

1w

0n
xoffsetnyoffsetmsnms

wh
1)_cx,_cy(),()cxcy,(t filter_hin (D-27)

where s denotes the original frame, s′ denotes the decoded frame, h denotes the vertical height of the related colour
component, w denotes the horizontal width of the related colour component, offset_y is equal to (filter_hint_size_y >> 1),
offset_x is equal to (filter_hint_size_x >> 1), 0 <= cy < filter_hint_size_y and 0 <= cx < filter_hint_size_x.
NOTE 2 – A decoder can derive a Wiener post-filter from the cross-correlation matrix of original and decoded signal and
the auto-correlation matrix of the decoded signal.

additional_extension_flag equal to 0 indicates that no additional data follows within the post-filter hint SEI message.
The value of additional_extension_flag shall be equal to 0. The value of 1 for additional_extension_flag is reserved for
future use by ITU-T | ISO/IEC. Decoders that conform to this Recommendation | International Standard shall ignore all
data that follows the value of 1 for additional_extension_flag in a post-filter hint SEI message.

D.2.24 Tone mapping information SEI message semantics

This SEI message provides information to enable remapping of the colour samples of the output decoded pictures for
customization to particular display environments. The remapping process maps coded sample values in the RGB colour
space (specified in Annex E) to target sample values. All mappings are expressed in the RGB colour space and should
be applied to each RGB component separately.

tone_map_id contains an identifying number that may be used to identify the purpose of the tone mapping model. The
value of tone_map_id shall be in the range of 0 to 232 − 2, inclusive.

Values of tone_map_id from 0 to 255 and from 512 to 231 − 1 may be used as determined by the application. Values of
tone_map_id from 256 to 511 and from 231 to 232 − 2 are reserved for future use by ITU-T | ISO/IEC. Decoders shall
ignore (remove from the bitstream and discard) all tone mapping information SEI messages containing a value of
tone_map_id in the range of 256 to 511 or in the range of 231 to 232 − 2, and bitstreams shall not contain such values.

NOTE 1 – The tone_map_id can be used to support tone mapping operations that are suitable for different display scenarios. For
example, different values of tone_map_id may correspond to different display bit depths.

tone_map_cancel_flag equal to 1 indicates that the tone mapping information SEI message cancels the persistence of
any previous tone mapping information SEI message in output order. tone_map_cancel_flag equal to 0 indicates that
tone mapping information follows.

 Rec. ITU-T H.264 (03/2009) 367

tone_map_repetition_period specifies the persistence of the tone mapping information SEI message and may specify
a picture order count interval within which another tone mapping information SEI message with the same value of
tone_map_id or the end of the coded video sequence shall be present in the bitstream. The value of
tone_map_repetition_period shall be in the range of 0 to 16 384, inclusive.

tone_map_repetition_period equal to 0 specifies that the tone map information applies to the current decoded picture
only.

tone_map_repetition_period equal to 1 specifies that the tone map information persists in output order until any of the
following conditions are true:
– A new coded video sequence begins.
– A picture in an access unit containing a tone mapping information SEI message with the same value of

tone_map_id is output having PicOrderCnt() greater than PicOrderCnt(CurrPic).

tone_map_repetition_period equal to 0 or equal to 1 indicates that another tone mapping information SEI message with
the same value of tone_map_id may or may not be present.

tone_map_repetition_period greater than 1 specifies that the tone map information persists until any of the following
conditions are true:
– A new coded video sequence begins.
– A picture in an access unit containing a tone mapping information SEI message with the same value of

tone_map_id is output having PicOrderCnt() greater than PicOrderCnt(CurrPic) and less than or equal to
PicOrderCnt(CurrPic) + tone_map_repetition_period.

tone_map_repetition_period greater than 1 indicates that another tone mapping information SEI message with the same
value of tone_map_id shall be present for a picture in an access unit that is output having PicOrderCnt() greater than
PicOrderCnt(CurrPic) and less than or equal to PicOrderCnt(CurrPic) + tone_map_repetition_period; unless the
bitstream ends or a new coded video sequence begins without output of such a picture.

coded_data_bit_depth specifies the BitDepthY of the luma component of the coded video sequence. It is used to
identify the tone mapping information SEI message that is intended for use with the coded video sequence. If tone
mapping information SEI messages are present that have coded_data_bit_depth that is not equal to BitDepthY, these
refer to the hypothetical result of a transcoding operation performed to convert the coded video to the BitDepthY
corresponding to the value of coded_data_bit_depth.

The value of coded_data_bit_depth shall be in the range of 8 to 14, inclusive. Values of coded_data_bit_depth from 0 to
7 and from 15 to 255 are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore (remove from the bitstream
and discard) all tone mapping SEI messages that contain a coded_data_bit_depth in the range of 0 to 7 or in the range of
15 to 255, and bitstreams shall not contain such values.

target_bit_depth specifies the bit depth of the output of the dynamic range mapping function (or tone mapping
function) described by the tone mapping information SEI message. The tone mapping function specified with a
particular target_bit_depth is suggested to be reasonable for all display bit depths that are equal to or less than the
target_bit_depth.

The value of target_bit_depth shall be in the range of 1 to 16, inclusive. Values of target_bit_depth equal to 0 and in the
range of 17 to 255 are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore (remove from the bitstream
and discard) all tone mapping SEI messages that contain a value of target_bit_depth equal to 0 or in the range of 17 to
255, and bitstreams shall not contain such values.

model_id specifies the model utilized for mapping the coded data into the target_bit_depth range. Values greater than 3
are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore (remove from the bitstream and discard) all tone
mapping SEI messages that contain a value of model_id greater than 3, and bitstreams shall not contain such values.

NOTE 2 – A model_id of 0 corresponds to a linear mapping with clipping; a model_id of 1 corresponds to a sigmoidal mapping;
a model_id of 2 corresponds to a user-defined table mapping, and a model_id of 3 corresponds to a piece-wise linear mapping.

min_value specifies the RGB sample value in the coded data that maps to the minimum value in the signalled
target_bit_depth. It is used in combination with the max_value parameter. All values in the coded data that are less than
or equal to min_value are mapped to this minimum value in the target_bit_depth representation.

max_value specifies the RGB sample value in the coded data that maps to the maximum value in the signalled
target_bit_depth. It is used in combination with the min_value parameter. All values in the coded data that are larger
than or equal to max_value are mapped to this maximum value in the target_bit_depth representation.

sigmoid_midpoint specifies the RGB sample value of the coded data that is mapped to the centre point of the
target_bit_depth representation. It is used in combination with the sigmoid_width parameter.

368 Rec. ITU-T H.264 (03/2009)

sigmoid_width specifies the distance between two coded data values that approximately correspond to the 5% and 95%
values of the target_bit_depth representation, respectively. It is used in combination with the sigmoid_midpoint
parameter and is interpreted according to the following function:

())12(,,0
*6exp1

12)(__
__arg

−=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−+

−= depthbitcoded
depthbitett

ifor

dthsigmoid_wi
dpointsigmoid_mii

Roundif L (D-

28)

where f(i) denotes the function that maps an RGB sample value i from the coded data to a resulting RGB sample value
in the target_bit_depth representation.

start_of_coded_interval[i] specifies the beginning point of an interval in the coded data such that all RGB sample
values that are greater than or equal to start_of_coded_interval[i] and less than start_of_coded_interval[i + 1] are
mapped to i in the target bit depth representation. The value of start_of_coded_interval[2target_bit_depth] is equal to
2coded_bit_depth. The number of bits used for the representation of the start_of_coded_interval is
((coded_data_bit_depth + 7) >> 3) << 3.

num_pivots specifies the number of pivot points in the piece-wise linear mapping function without counting the two
default end points, (0, 0) and (2coded_data_bit_depth − 1, 2target_bit_depth − 1) .

coded_pivot_value[i] specifies the value in the coded_data_bit_depth corresponding to the i-th pivot point. The
number of bits used for the representation of the coded_pivot_value is ((coded_data_bit_depth + 7) >> 3) << 3.

target_pivot_value[i] specifies the value in the reference target_bit_depth corresponding to the i-th pivot point. The
number of bits used for the representation of the target_pivot_value is ((target_bit_depth + 7) >> 3) << 3.

D.2.25 Reserved SEI message semantics

This message consists of data reserved for future backward-compatible use by ITU-T | ISO/IEC. Encoders conforming
to this Recommendation | International Standard shall not send reserved SEI messages until and unless the use of such
messages has been specified by ITU-T | ISO/IEC. Decoders conforming to this
Recommendation | International Standard that encounter reserved SEI messages shall discard their content without
effect on the decoding process, except as specified in future Recommendations | International Standards specified by
ITU-T | ISO/IEC.

reserved_sei_message_payload_byte is a byte reserved for future use by ITU-T | ISO/IEC.

 Rec. ITU-T H.264 (03/2009) 369

Annex E

Video usability information

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics of the VUI parameters of the sequence parameter sets.

VUI parameters are not required for constructing the luma or chroma samples by the decoding process. Conforming
decoders are not required to process this information for output order conformance to this
Recommendation | International Standard (see Annex C for the specification of conformance). Some VUI parameters
are required to check bitstream conformance and for output timing decoder conformance.

In Annex E, specification for presence of VUI parameters is also satisfied when those parameters (or some subset of
them) are conveyed to decoders (or to the HRD) by other means not specified by this Recommendation | International
Standard. When present in the bitstream, VUI parameters shall follow the syntax and semantics specified in
subclauses 7.3.2.1 and 7.4.2.1 and this annex. When the content of VUI parameters is conveyed for the application by
some means other than presence within the bitstream, the representation of the content of the VUI parameters is not
required to use the same syntax specified in this annex. For the purpose of counting bits, only the appropriate bits that
are actually present in the bitstream are counted.

E.1 VUI syntax

E.1.1 VUI parameters syntax

vui_parameters() { C Descriptor
 aspect_ratio_info_present_flag 0 u(1)
 if(aspect_ratio_info_present_flag) {
 aspect_ratio_idc 0 u(8)
 if(aspect_ratio_idc = = Extended_SAR) {
 sar_width 0 u(16)
 sar_height 0 u(16)
 }
 }
 overscan_info_present_flag 0 u(1)
 if(overscan_info_present_flag)
 overscan_appropriate_flag 0 u(1)
 video_signal_type_present_flag 0 u(1)
 if(video_signal_type_present_flag) {
 video_format 0 u(3)
 video_full_range_flag 0 u(1)
 colour_description_present_flag 0 u(1)
 if(colour_description_present_flag) {
 colour_primaries 0 u(8)
 transfer_characteristics 0 u(8)
 matrix_coefficients 0 u(8)
 }
 }
 chroma_loc_info_present_flag 0 u(1)
 if(chroma_loc_info_present_flag) {
 chroma_sample_loc_type_top_field 0 ue(v)
 chroma_sample_loc_type_bottom_field 0 ue(v)

370 Rec. ITU-T H.264 (03/2009)

 }
 timing_info_present_flag 0 u(1)
 if(timing_info_present_flag) {
 num_units_in_tick 0 u(32)
 time_scale 0 u(32)
 fixed_frame_rate_flag 0 u(1)
 }
 nal_hrd_parameters_present_flag 0 u(1)
 if(nal_hrd_parameters_present_flag)
 hrd_parameters() 0
 vcl_hrd_parameters_present_flag 0 u(1)
 if(vcl_hrd_parameters_present_flag)
 hrd_parameters() 0
 if(nal_hrd_parameters_present_flag | | vcl_hrd_parameters_present_flag)
 low_delay_hrd_flag 0 u(1)
 pic_struct_present_flag 0 u(1)
 bitstream_restriction_flag 0 u(1)
 if(bitstream_restriction_flag) {
 motion_vectors_over_pic_boundaries_flag 0 u(1)
 max_bytes_per_pic_denom 0 ue(v)
 max_bits_per_mb_denom 0 ue(v)
 log2_max_mv_length_horizontal 0 ue(v)
 log2_max_mv_length_vertical 0 ue(v)
 num_reorder_frames 0 ue(v)
 max_dec_frame_buffering 0 ue(v)
 }
}

E.1.2 HRD parameters syntax

hrd_parameters() { C Descriptor
 cpb_cnt_minus1 0 | 5 ue(v)
 bit_rate_scale 0 | 5 u(4)
 cpb_size_scale 0 | 5 u(4)
 for(SchedSelIdx = 0; SchedSelIdx <= cpb_cnt_minus1; SchedSelIdx++) {
 bit_rate_value_minus1[SchedSelIdx] 0 | 5 ue(v)
 cpb_size_value_minus1[SchedSelIdx] 0 | 5 ue(v)
 cbr_flag[SchedSelIdx] 0 | 5 u(1)
 }
 initial_cpb_removal_delay_length_minus1 0 | 5 u(5)
 cpb_removal_delay_length_minus1 0 | 5 u(5)
 dpb_output_delay_length_minus1 0 | 5 u(5)
 time_offset_length 0 | 5 u(5)
}

 Rec. ITU-T H.264 (03/2009) 371

E.2 VUI semantics

E.2.1 VUI parameters semantics

aspect_ratio_info_present_flag equal to 1 specifies that aspect_ratio_idc is present. aspect_ratio_info_present_flag
equal to 0 specifies that aspect_ratio_idc is not present.

aspect_ratio_idc specifies the value of the sample aspect ratio of the luma samples. Table E-1 shows the meaning of
the code. When aspect_ratio_idc indicates Extended_SAR, the sample aspect ratio is represented by
sar_width : sar_height. When the aspect_ratio_idc syntax element is not present, aspect_ratio_idc value shall be inferred
to be equal to 0.

Table E-1 – Meaning of sample aspect ratio indicator

aspect_ratio_idc Sample aspect
ratio

(informative)
Examples of use

0 Unspecified

1 1:1
("square")

1280x720 16:9 frame without horizontal overscan
1920x1080 16:9 frame without horizontal overscan (cropped from 1920x1088)
640x480 4:3 frame without horizontal overscan

2 12:11 720x576 4:3 frame with horizontal overscan
352x288 4:3 frame without horizontal overscan

3 10:11 720x480 4:3 frame with horizontal overscan
352x240 4:3 frame without horizontal overscan

4 16:11 720x576 16:9 frame with horizontal overscan
528x576 4:3 frame without horizontal overscan

5 40:33 720x480 16:9 frame with horizontal overscan
528x480 4:3 frame without horizontal overscan

6 24:11 352x576 4:3 frame without horizontal overscan
480x576 16:9 frame with horizontal overscan

7 20:11 352x480 4:3 frame without horizontal overscan
480x480 16:9 frame with horizontal overscan

8 32:11 352x576 16:9 frame without horizontal overscan
9 80:33 352x480 16:9 frame without horizontal overscan

10 18:11 480x576 4:3 frame with horizontal overscan
11 15:11 480x480 4:3 frame with horizontal overscan
12 64:33 528x576 16:9 frame without horizontal overscan
13 160:99 528x480 16:9 frame without horizontal overscan
14 4:3 1440x1080 16:9 frame without horizontal overscan
15 3:2 1280x1080 16:9 frame without horizontal overscan
16 2:1 960x1080 16:9 frame without horizontal overscan

17..254 Reserved
255 Extended_SAR

NOTE 1 – For the examples in Table E-1, the term "without horizontal overscan" refers to display processes in which the display
area matches the area of the cropped decoded pictures and the term "with horizontal overscan" refers to display processes in
which some parts near the left and/or right border of the cropped decoded pictures are not visible in the display area. As an
example, the entry "720x576 4:3 frame with horizontal overscan" for aspect_ratio_idc equal to 2 refers to having an area of
704x576 luma samples (which has an aspect ratio of 4:3) of the cropped decoded frame (720x576 luma samples) that is visible in
the display area.

sar_width indicates the horizontal size of the sample aspect ratio (in arbitrary units).

sar_height indicates the vertical size of the sample aspect ratio (in the same arbitrary units as sar_width).

sar_width and sar_height shall be relatively prime or equal to 0. When aspect_ratio_idc is equal to 0 or sar_width is
equal to 0 or sar_height is equal to 0, the sample aspect ratio shall be considered unspecified by this Recommendation |
International Standard.

372 Rec. ITU-T H.264 (03/2009)

overscan_info_present_flag equal to 1 specifies that the overscan_appropriate_flag is present. When
overscan_info_present_flag is equal to 0 or is not present, the preferred display method for the video signal is
unspecified.

overscan_appropriate_flag equal to 1 indicates that the cropped decoded pictures output are suitable for display using
overscan. overscan_appropriate_flag equal to 0 indicates that the cropped decoded pictures output contain visually
important information in the entire region out to the edges of the cropping rectangle of the picture, such that the cropped
decoded pictures output should not be displayed using overscan. Instead, they should be displayed using either an exact
match between the display area and the cropping rectangle, or using underscan. As used in this paragraph, the term
"overscan" refers to display processes in which some parts near the borders of the cropped decoded pictures are not
visible in the display area. The term "underscan" describes display processes in which the entire cropped decoded
pictures are visible in the display area, but they do not cover the entire display area. For display processes that neither
use overscan nor underscan, the display area exactly matches the area of the cropped decoded pictures.

NOTE 2 – For example, overscan_appropriate_flag equal to 1 might be used for entertainment television programming, or for a
live view of people in a videoconference, and overscan_appropriate_flag equal to 0 might be used for computer screen capture or
security camera content.

video_signal_type_present_flag equal to 1 specifies that video_format, video_full_range_flag and
colour_description_present_flag are present. video_signal_type_present_flag equal to 0, specify that video_format,
video_full_range_flag and colour_description_present_flag are not present.

video_format indicates the representation of the pictures as specified in Table E-2, before being coded in accordance
with this Recommendation | International Standard. When the video_format syntax element is not present, video_format
value shall be inferred to be equal to 5.

Table E-2 – Meaning of video_format

video_format Meaning

0 Component
1 PAL
2 NTSC
3 SECAM
4 MAC
5 Unspecified video format
6 Reserved
7 Reserved

video_full_range_flag indicates the black level and range of the luma and chroma signals as derived from E′Y, E′PB,
and E′PR or E′R, E′G, and E′B analogue component signals.

When the video_full_range_flag syntax element is not present, the value of video_full_range_flag shall be inferred to be
equal to 0.

colour_description_present_flag equal to 1 specifies that colour_primaries, transfer_characteristics and
matrix_coefficients are present. colour_description_present_flag equal to 0 specifies that colour_primaries,
transfer_characteristics and matrix_coefficients are not present.

colour_primaries indicates the chromaticity coordinates of the source primaries as specified in Table E-3 in terms of
the CIE 1931 definition of x and y as specified by ISO/CIE 10527.

When the colour_primaries syntax element is not present, the value of colour_primaries shall be inferred to be equal
to 2 (the chromaticity is unspecified or is determined by the application).

 Rec. ITU-T H.264 (03/2009) 373

Table E-3 – Colour primaries

Value Primaries Informative Remark

0 Reserved For future use by ITU-T | ISO/IEC
1 primary x y

green 0.300 0.600
blue 0.150 0.060
red 0.640 0.330
white D65 0.3127 0.3290

ITU-R Rec. BT.709-5
ITU-R Rec. BT.1361 conventional colour gamut
system and extended colour gamut system
IEC 61966-2-4
Society of Motion Picture and Television
Engineers RP 177 (1993) Annex B

2 Unspecified Image characteristics are unknown or are
determined by the application.

3 Reserved For future use by ITU-T | ISO/IEC
4 primary x y

green 0.21 0.71
blue 0.14 0.08
red 0.67 0.33
white C 0.310 0.316

ITU-R Rec. BT.470-6 System M (historical)
United States National Television System
Committee 1953 Recommendation for
transmission standards for colour television
United States Federal Communications
Commission Title 47 Code of Federal Regulations
(2003) 73.682 (a) (20)

5 primary x y
green 0.29 0.60
blue 0.15 0.06
red 0.64 0.33
white D65 0.3127 0.3290

ITU-R Rec. BT.470-6 System B, G (historical)
ITU-R Rec. BT.601-6 625
ITU-R Rec. BT.1358 625
ITU-R Rec. BT.1700 625 PAL and 625 SECAM

6 primary x y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white D65 0.3127 0.3290

ITU-R Rec. BT.601-6 525
ITU-R Rec. BT.1358 525
ITU-R Rec. BT.1700 NTSC
Society of Motion Picture and Television
Engineers 170M (2004)
(functionally the same as the value 7)

7 primary x y
green 0.310 0.595
blue 0.155 0.070
red 0.630 0.340
white D65 0.3127 0.3290

Society of Motion Picture and Television
Engineers 240M (1999)
(functionally the same as the value 6)

8 primary x y
green 0.243 0.692 (Wratten 58)
blue 0.145 0.049 (Wratten 47)
red 0.681 0.319 (Wratten 25)
white C 0.310 0.316

Generic film (colour filters using Illuminant C)

9..255 Reserved For future use by ITU-T | ISO/IEC

transfer_characteristics indicates the opto-electronic transfer characteristic of the source picture as specified in
Table E-4 as a function of a linear optical intensity input Lc with an analogue range of 0 to 1.

When the transfer_characteristics syntax element is not present, the value of transfer_characteristics shall be inferred to
be equal to 2 (the transfer characteristics are unspecified or are determined by the application).

374 Rec. ITU-T H.264 (03/2009)

Table E-4 – Transfer characteristics

Value Transfer Characteristic Informative Remark

0 Reserved For future use by ITU-T | ISO/IEC
1 V = 1.099 * Lc

0.45 − 0.099 for 1 >= Lc >= 0.018
V = 4.500 * Lc for 0.018 > Lc >= 0

ITU-R Rec. BT.709-5
ITU-R Rec. BT.1361 conventional
colour gamut system
(functionally the same as the value 6)

2 Unspecified Image characteristics are unknown or
are determined by the application.

3 Reserved For future use by ITU-T | ISO/IEC
4 Assumed display gamma 2.2 ITU-R Rec. BT.470-6 System M

(historical)
United States National Television
System Committee 1953
Recommendation for transmission
standards for colour television
United States Federal
Communications Commission Title 47
Code of Federal Regulations (2003)
73.682 (a) (20)
ITU-R Rec. BT.1700 (2007 revision)
625 PAL and 625 SECAM

5 Assumed display gamma 2.8 ITU-R Rec. BT.470-6 System B, G
(historical)

6 V = 1.099 * Lc
0.45 − 0.099 for 1 >= Lc >= 0.018

V = 4.500 * Lc for 0.018 > Lc >= 0
ITU-R Rec. BT.601-6 525 or 625
ITU-R Rec. BT.1358 525 or 625
ITU-R Rec. BT.1700 NTSC
Society of Motion Picture and
Television Engineers 170M (2004)
(functionally the same as the value 1)

7 V = 1.1115 * Lc
0.45 − 0.1115 for 1 >= Lc >= 0.0228

V = 4.0 * Lc for 0.0228 > Lc >= 0
Society of Motion Picture and
Television Engineers 240M (1999)

8 V = Lc for 1 > Lc >= 0 Linear transfer characteristics
9 V = 1.0 + Log10(Lc) ÷ 2 for 1 >= Lc >= 0.01

V = 0.0 for 0.01 > Lc >= 0
Logarithmic transfer characteristic
(100:1 range)

10 V = 1.0 + Log10(Lc) ÷ 2.5 for 1 >= Lc >= Sqrt(10) / 1000
V = 0.0 for Sqrt(10) / 1000 > Lc >= 0

Logarithmic transfer characteristic
(100 * Sqrt(10) : 1 range)

11 V = 1.099 * Lc
0.45 − 0.099 for Lc >= 0.018

V = 4.500 * Lc for 0.018 > Lc > −0.018
V = −1.099 * (−Lc)0.45 + 0.099 for −0.018 >= Lc

IEC 61966-2-4

12 V = 1.099 * Lc
0.45 − 0.099 for 1.33 > Lc >= 0.018

V = 4.500 * Lc for 0.018 > Lc >= −0.0045
V = −(1.099 * (−4 * Lc)0.45 − 0.099) ÷ 4 for −0.0045 > Lc >= −0.25

ITU-R Rec. BT.1361 extended colour
gamut system

13..255 Reserved For future use by ITU-T | ISO/IEC

matrix_coefficients describes the matrix coefficients used in deriving luma and chroma signals from the green, blue,
and red primaries, as specified in Table E-5.

matrix_coefficients shall not be equal to 0 unless both of the following conditions are true:

– BitDepthC is equal to BitDepthY,

– chroma_format_idc is equal to 3 (4:4:4).

The specification of the use of matrix_coefficients equal to 0 under all other conditions is reserved for future use by
ITU-T | ISO/IEC.

 Rec. ITU-T H.264 (03/2009) 375

matrix_coefficients shall not be equal to 8 unless one of the following conditions is true:

– BitDepthC is equal to BitDepthY,

– BitDepthC is equal to BitDepthY + 1 and chroma_format_idc is equal to 3 (4:4:4).

The specification of the use of matrix_coefficients equal to 8 under all other conditions is reserved for future use by
ITU-T | ISO/IEC.

When the matrix_coefficients syntax element is not present, the value of matrix_coefficients shall be inferred to be
equal to 2 (unspecified).

For the interpretation of matrix_coefficients, the following is specified:
1. The range of E′R, E′G, and E′B is specified as follows.

– If transfer_characteristics is not equal to 11 or 12, E′R, E′G, and E′B are real numbers with values in the
range of 0 to 1.

– Otherwise (transfer_characteristics is equal to 11 (IEC 61966-2-4) or 12 (ITU-R BT.1361 extended colour
gamut system)), E′R, E′G and E′B are real numbers with a larger range not specified in this
Recommendation.

2. Nominal white is specified as having E′R equal to 1, E′G equal to 1, and E′B equal to 1.
3. Nominal black is specified as having E′R equal to 0, E′G equal to 0, and E′B equal to 0.

The interpretation of matrix_coefficients is specified as follows.
– If video_full_range_flag is equal to 0, the following applies.

– If matrix_coefficients is equal to 1, 4, 5, 6, or 7, the following equations apply:

Y = Clip1Y(Round((1 << (BitDepthY − 8)) * (219 * E′Y + 16))) (E-1)

Cb = Clip1C(Round((1 << (BitDepthC − 8)) * (224 * E′PB + 128))) (E-2)

Cr = Clip1C(Round((1 << (BitDepthC − 8)) * (224 * E′PR + 128))) (E-3)

– Otherwise, if matrix_coefficients is equal to 0 or 8, the following equations apply:

R = Clip1Y((1 << (BitDepthY − 8)) * (219 * E′R + 16)) (E-4)

G = Clip1Y((1 << (BitDepthY − 8)) * (219 * E′G + 16)) (E-5)

B = Clip1Y((1 << (BitDepthY − 8)) * (219 * E′B + 16)) (E-6)

– Otherwise, if matrix_coefficients is equal to 2, the interpretation of the matrix_coefficients syntax element is
unknown or is determined by the application.

– Otherwise (matrix_coefficients is not equal to 0, 1, 2, 4, 5, 6, 7, or 8), the interpretation of the
matrix_coefficients syntax element is reserved for future definition by ITU-T | ISO/IEC.

– Otherwise (video_full_range_flag is equal to 1), the following equations apply.
– If matrix_coefficients is equal to 1, 4, 5, 6, or 7, the following equations apply:

Y = Clip1Y(Round(((1 << BitDepthY) − 1) * E′Y)) (E-7)

Cb = Clip1C(Round(((1 << BitDepthC) − 1) * E′PB + (1 << (BitDepthC − 1)))) (E-8)

Cr = Clip1C(Round(((1 << BitDepthC) − 1) * E′PR + (1 << (BitDepthC − 1)))) (E-9)

376 Rec. ITU-T H.264 (03/2009)

– Otherwise, if matrix_coefficients is equal to 0 or 8, the following equations apply:

R = Clip1Y(((1 << BitDepthY) − 1) * E′R) (E-10)

G = Clip1Y(((1 << BitDepthY) − 1) * E′G) (E-11)

B = Clip1Y(((1 << BitDepthY) − 1) * E′B) (E-12)

– Otherwise, if matrix_coefficients is equal to 2, the interpretation of the matrix_coefficients syntax element is
unknown or is determined by the application.

– Otherwise (matrix_coefficients is not equal to 0, 1, 2, 4, 5, 6, 7, or 8), the interpretation of the
matrix_coefficients syntax element is reserved for future definition by ITU-T | ISO/IEC.

The variables E′Y, E′PB, and E′PR (for matrix_coefficients not equal to 0 or 8) or Y, Cb, and Cr (for matrix_coefficients
equal to 0 or 8) are specified as follows.
– If matrix_coefficients is not equal to 0 or 8, the following equations apply:

E′Y = KR * E′R + (1 − KR − KB) * E′G + KB * E′B (E-13)

E′PB = 0.5 * (E′B − E′Y) ÷ (1 − KB) (E-14)

E′PR = 0.5 * (E′R − E′Y) ÷ (1 − KR) (E-15)

NOTE 3 – E′Y is a real number with the value 0 associated with nominal black and the value 1 associated with nominal white.
E′PB and E′PR are real numbers with the value 0 associated with both nominal black and nominal white. When
transfer_characteristics is not equal to 11 or 12, E′Y is a real number with values in the range of 0 to 1. When
transfer_characteristics is not equal to 11 or 12, E′PB and E′PR are real numbers with values in the range of −0.5 to 0.5. When
transfer_characteristics is equal to 11 (IEC 61966-2-4), or 12 (ITU-R BT.1361 extended colour gamut system), E′Y, E′PB and E′PR
are real numbers with a larger range not specified in this Recommendation.

– Otherwise, if matrix_coefficients is equal to 0, the following equations apply:

Y = Round(G) (E-16)

Cb = Round(B) (E-17)

Cr = Round(R) (E-18)

– Otherwise (matrix_coefficients is equal to 8), the following applies.
– If BitDepthC is equal to BitDepthY, the following equations apply:

Y = Round(0.5 * G + 0.25 * (R + B)) (E-19)

Cb = Round(0.5 * G − 0.25 * (R + B)) + (1 << (BitDepthC − 1)) (E-20)

Cr = Round(0.5 * (R − B)) + (1 << (BitDepthC − 1)) (E-21)

NOTE 4 – For purposes of the YCgCo nomenclature used in Table E-5, Cb and Cr of Equations E-20 and E-21 may be
referred to as Cg and Co, respectively. The inverse conversion for the above three equations should be computed as:

t = Y − (Cb − (1 << (BitDepthC − 1))) (E-22)

G = Clip1Y(Y + (Cb − (1 << (BitDepthC − 1)))) (E-23)

B = Clip1Y(t − (Cr − (1 << (BitDepthC − 1)))) (E-24)

R = Clip1Y(t + (Cr − (1 << (BitDepthC − 1)))) (E-25)

 Rec. ITU-T H.264 (03/2009) 377

– Otherwise (BitDepthC is not equal to BitDepthY), the following equations apply:

Cr = Round(R) − Round(B) + (1 << (BitDepthC − 1)) (E-26)

t = Round(B) + ((Cr − (1 << (BitDepthC − 1))) >> 1) (E-27)

Cb = Round(G) − t + (1 << (BitDepthC − 1)) (E-28)

Y = t + ((Cb − (1 << (BitDepthC − 1))) >> 1) (E-29)

NOTE 5 – For purposes of the YCgCo nomenclature used in Table E-5, Cb and Cr of Equations E-28 and E-26 may be
referred to as Cg and Co, respectively. The inverse conversion for the above four equations should be computed as.

t = Y − ((Cb − (1 << (BitDepthC − 1))) >> 1) (E-30)

G = Clip1Y(t + (Cb − (1 << (BitDepthC − 1)))) (E-31)

B = Clip1Y(t − ((Cr − (1 << (BitDepthC − 1))) >> 1)) (E-32)

R = Clip1Y(B + (Cr − (1 << (BitDepthC − 1)))) (E-33)

Table E-5 – Matrix coefficients

Value Matrix Informative remark

0 GBR Typically referred to as RGB; see Equations E-16 to E-18
1 KR = 0.2126; KB = 0.0722 ITU-R Rec. BT.709-5

ITU-R Rec. BT.1361 conventional colour gamut system and extended
colour gamut system
IEC 61966-2-4 xvYCC709
Society of Motion Picture and Television Engineers RP 177 (1993)
Annex B

2 Unspecified Image characteristics are unknown or are determined by the application.
3 Reserved For future use by ITU-T | ISO/IEC
4 KR = 0.30; KB = 0.11 United States Federal Communications Commission Title 47 Code of

Federal Regulations (2003) 73.682 (a) (20)
5 KR = 0.299; KB = 0.114 ITU-R Rec. BT.470-6 System B, G (historical)

ITU-R Rec. BT.601-6 625
ITU-R Rec. BT.1358 625
ITU-R Rec. BT.1700 625 PAL and 625 SECAM
IEC 61966-2-4 xvYCC601
(functionally the same as the value 6)

6 KR = 0.299; KB = 0.114 ITU-R Rec. BT.601-6 525
ITU-R Rec. BT.1358 525
ITU-R Rec. BT.1700 NTSC
Society of Motion Picture and Television Engineers 170M (2004)
(functionally the same as the value 5)

7 KR = 0.212; KB = 0.087 Society of Motion Picture and Television Engineers 240M (1999)
8 YCgCo See Equations E-19 to E-33

9..255 Reserved For future use by ITU-T | ISO/IEC

chroma_loc_info_present_flag equal to 1 specifies that chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field are present. chroma_loc_info_present_flag equal to 0 specifies that
chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are not present.

When chroma_format_idc is not equal to 1, chroma_loc_info_present_flag should be equal to 0.

378 Rec. ITU-T H.264 (03/2009)

chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field specify the location of chroma
samples as follows.

– If chroma_format_idc is equal to 1 (4:2:0 chroma format), chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field specify the location of chroma samples for the top field and the bottom
field, respectively, as shown in Figure E-1.

– Otherwise (chroma_format_idc is not equal to 1), the values of the syntax elements
chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field shall be ignored. When
chroma_format_idc is equal to 2 (4:2:2 chroma format) or 3 (4:4:4 chroma format), the location of chroma samples
is specified in subclause 6.2. When chroma_format_idc is equal to 0, there is no chroma sample array.

The value of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field shall be in the range of 0
to 5, inclusive. When the chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field are not
present, the values of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field shall be inferred
to be equal to 0.

NOTE 6 – When coding progressive source material, chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field should have the same value.

H.264(09)_FE-1

Interpretation of symbols
Luma sample position indications:

Luma sample top field Luma sample bottom field

Chroma sample position indications, where grey fill indicates a bottom field
sample type and no fill indicates a top field sample type:

Chroma sample type 2 Chroma sample type 3

Chroma sample type 0 Chroma sample type 1

Chroma sample type 4 Chroma sample type 5

Figure E-1 – Location of chroma samples for top and bottom fields for chroma_format_idc equal to 1 (4:2:0
chroma format) as a function of chroma_sample_loc_type_top_field and chroma_sample_loc_type_bottom_field

 Rec. ITU-T H.264 (03/2009) 379

timing_info_present_flag equal to 1 specifies that num_units_in_tick, time_scale and fixed_frame_rate_flag are
present in the bitstream. timing_info_present_flag equal to 0 specifies that num_units_in_tick, time_scale and
fixed_frame_rate_flag are not present in the bitstream.

num_units_in_tick is the number of time units of a clock operating at the frequency time_scale Hz that corresponds to
one increment (called a clock tick) of a clock tick counter. num_units_in_tick shall be greater than 0. A clock tick is the
minimum interval of time that can be represented in the coded data. For example, when the frame rate of a video signal
is 30 000 ÷ 1001 Hz, time_scale may be equal to 60 000 and num_units_in_tick may be equal to 1001. See
Equation C-1.

time_scale is the number of time units that pass in one second. For example, a time coordinate system that measures
time using a 27 MHz clock has a time_scale of 27 000 000. time_scale shall be greater than 0.

fixed_frame_rate_flag equal to 1 indicates that the temporal distance between the HRD output times of any two
consecutive pictures in output order is constrained as follows. fixed_frame_rate_flag equal to 0 indicates that no such
constraints apply to the temporal distance between the HRD output times of any two consecutive pictures in output
order.

When fixed_frame_rate_flag is not present, it shall be inferred to be equal to 0.

For each picture n where n indicates the n-th picture (in output order) that is output and picture n is not the last picture
in the bitstream (in output order) that is output, the value of Δtfi,dpb(n) is specified by

Δtfi,dpb(n) = Δto,dpb(n) ÷ DeltaTfiDivisor (E-34)

where Δto,dpb(n) is specified in Equation C-13 and DeltaTfiDivisor is specified by Table E-6 based on the value of
pic_struct_present_flag, field_pic_flag, and pic_struct for the coded video sequence containing picture n. Entries
marked "-" in Table E-6 indicate a lack of dependence of DeltaTfiDivisor on the corresponding syntax element.

When fixed_frame_rate_flag is equal to 1 for a coded video sequence containing picture n, the value computed for
Δtfi,dpb(n) shall be equal to tc as specified in Equation C-1 (using the value of tc for the coded video sequence containing
picture n) when either or both of the following conditions are true for the following picture nn that is specified for use in
Equation C-13:

– picture nn is in the same coded video sequence as picture n.

– picture nn is in a different coded video sequence and fixed_frame_rate_flag is equal to 1 in the coded video
sequence containing picture nn and the value of num_units_in_tick ÷ time_scale is the same for both coded video
sequences.

Table E-6 – Divisor for computation of Δtfi,dpb(n)

pic_struct_present_flag field_pic_flag pic_struct DeltaTfiDivisor

0 1 - 1
1 - 1 1
1 - 2 1
0 0 - 2
1 - 0 2
1 - 3 2
1 - 4 2
1 - 5 3
1 - 6 3
1 - 7 4
1 - 8 6

NOTE 7 – In order to produce a DeltaTfiDivisor other than 2 for a picture with field_pic_flag equal to 0, pic_struct_present_flag
must be equal to 1.

nal_hrd_parameters_present_flag equal to 1 specifies that NAL HRD parameters (pertaining to Type II bitstream
conformance) are present. nal_hrd_parameters_present_flag equal to 0 specifies that NAL HRD parameters are not
present.

380 Rec. ITU-T H.264 (03/2009)

NOTE 8 – When nal_hrd_parameters_present_flag is equal to 0, the conformance of the bitstream cannot be verified without
provision of the NAL HRD parameters, including the NAL sequence HRD parameter information and all buffering period and
picture timing SEI messages, by some means not specified in this Recommendation | International Standard.

When nal_hrd_parameters_present_flag is equal to 1, NAL HRD parameters (subclauses E.1.2 and E.2.2) immediately
follow the flag.

The variable NalHrdBpPresentFlag is derived as follows.

– If any of the following is true, the value of NalHrdBpPresentFlag shall be set equal to 1:
– nal_hrd_parameters_present_flag is present in the bitstream and is equal to 1,
– the need for presence of buffering periods for NAL HRD operation to be present in the bitstream in buffering

period SEI messages is determined by the application, by some means not specified in this Recommendation |
International Standard.

– Otherwise, the value of NalHrdBpPresentFlag shall be set equal to 0.

vcl_hrd_parameters_present_flag equal to 1 specifies that VCL HRD parameters (pertaining to all bitstream
conformance) are present. vcl_hrd_parameters_present_flag equal to 0 specifies that VCL HRD parameters are not
present.

NOTE 9 – When vcl_hrd_parameters_present_flag is equal to 0, the conformance of the bitstream cannot be verified without
provision of the VCL HRD parameters and all buffering period and picture timing SEI messages, by some means not specified in
this Recommendation | International Standard.

When vcl_hrd_parameters_present_flag is equal to 1, VCL HRD parameters (subclauses E.1.2 and E.2.2) immediately
follow the flag.

The variable VclHrdBpPresentFlag is derived as follows.

– If any of the following is true, the value of VclHrdBpPresentFlag shall be set equal to 1:
– vcl_hrd_parameters_present_flag is present in the bitstream and is equal to 1,
– the need for presence of buffering periods for VCL HRD operation to be present in the bitstream in buffering

period SEI messages is determined by the application, by some means not specified in this Recommendation |
International Standard.

– Otherwise, the value of VclHrdBpPresentFlag shall be set equal to 0.

The variable CpbDpbDelaysPresentFlag is derived as follows.

– If any of the following is true, the value of CpbDpbDelaysPresentFlag shall be set equal to 1:
– nal_hrd_parameters_present_flag is present in the bitstream and is equal to 1,
– vcl_hrd_parameters_present_flag is present in the bitstream and is equal to 1,
– the need for presence of CPB and DPB output delays to be present in the bitstream in picture timing SEI

messages is determined by the application, by some means not specified in this Recommendation |
International Standard.

– Otherwise, the value of CpbDpbDelaysPresentFlag shall be set equal to 0.

low_delay_hrd_flag specifies the HRD operational mode as specified in Annex C. When fixed_frame_rate_flag is
equal to 1, low_delay_hrd_flag shall be equal to 0. When low_delay_hrd_flag is not present, its value shall be inferred
to be equal to 1 − fixed_frame_rate_flag.

NOTE 10 – When low_delay_hrd_flag is equal to 1, "big pictures" that violate the nominal CPB removal times due to the
number of bits used by an access unit are permitted. It is expected, but not required, that such "big pictures" occur only
occasionally.

pic_struct_present_flag equal to 1 specifies that picture timing SEI messages (subclause D.2.2) are present that
include the pic_struct syntax element. pic_struct_present_flag equal to 0 specifies that the pic_struct syntax element is
not present in picture timing SEI messages. When pic_struct_present_flag is not present, its value shall be inferred to be
equal to 0.

bitstream_restriction_flag equal to 1, specifies that the following coded video sequence bitstream restriction
parameters are present. bitstream_restriction_flag equal to 0, specifies that the following coded video sequence
bitstream restriction parameters are not present.

motion_vectors_over_pic_boundaries_flag equal to 0 indicates that no sample outside the picture boundaries and no
sample at a fractional sample position whose value is derived using one or more samples outside the picture boundaries
is used to inter predict any sample. motion_vectors_over_pic_boundaries_flag equal to 1 indicates that one or more

 Rec. ITU-T H.264 (03/2009) 381

samples outside picture boundaries may be used in inter prediction. When the
motion_vectors_over_pic_boundaries_flag syntax element is not present, motion_vectors_over_pic_boundaries_flag
value shall be inferred to be equal to 1.

max_bytes_per_pic_denom indicates a number of bytes not exceeded by the sum of the sizes of the VCL NAL units
associated with any coded picture in the coded video sequence.

The number of bytes that represent a picture in the NAL unit stream is specified for this purpose as the total number of
bytes of VCL NAL unit data (i.e., the total of the NumBytesInNALunit variables for the VCL NAL units) for the
picture. The value of max_bytes_per_pic_denom shall be in the range of 0 to 16, inclusive.

Depending on max_bytes_per_pic_denom the following applies.

– If max_bytes_per_pic_denom is equal to 0, no limits are indicated.

– Otherwise (max_bytes_per_pic_denom is not equal to 0), no coded picture shall be represented in the coded video
sequence by more than the following number of bytes.

(PicSizeInMbs * RawMbBits) ÷ (8 * max_bytes_per_pic_denom) (E-35)

When the max_bytes_per_pic_denom syntax element is not present, the value of max_bytes_per_pic_denom shall be
inferred to be equal to 2.

max_bits_per_mb_denom indicates an upper bound for the number of coded bits of macroblock_layer() data for any
macroblock in any picture of the coded video sequence. The value of max_bits_per_mb_denom shall be in the range of
0 to 16, inclusive.

Depending on max_bits_per_mb_denom the following applies.

– If max_bits_per_mb_denom is equal to 0, no limit is specified by this syntax element.

– Otherwise (max_bits_per_mb_denom is not equal to 0), no coded macroblock_layer() shall be represented in the
bitstream by more than the following number of bits.

(128 + RawMbBits) ÷ max_bits_per_mb_denom (E-36)

Depending on entropy_coding_mode_flag, the bits of macroblock_layer() data are counted as follows.

– If entropy_coding_mode_flag is equal to 0, the number of bits of macroblock_layer() data is given by the number
of bits in the macroblock_layer() syntax structure for a macroblock.

– Otherwise (entropy_coding_mode_flag is equal to 1), the number of bits of macroblock_layer() data for a
macroblock is given by the number of times read_bits(1) is called in subclauses 9.3.3.2.2 and 9.3.3.2.3 when
parsing the macroblock_layer() associated with the macroblock.

When the max_bits_per_mb_denom is not present, the value of max_bits_per_mb_denom shall be inferred to be equal
to 1.

log2_max_mv_length_horizontal and log2_max_mv_length_vertical indicate the maximum absolute value of a
decoded horizontal and vertical motion vector component, respectively, in ¼ luma sample units, for all pictures in the
coded video sequence. A value of n asserts that no value of a motion vector component shall exceed the range from −2n
to 2n − 1, inclusive, in units of ¼ luma sample displacement. The value of log2_max_mv_length_horizontal shall be in
the range of 0 to 16, inclusive. The value of log2_max_mv_length_vertical shall be in the range of 0 to 16, inclusive.
When log2_max_mv_length_horizontal is not present, the values of log2_max_mv_length_horizontal and
log2_max_mv_length_vertical shall be inferred to be equal to 16.

NOTE 11 – The maximum absolute value of a decoded vertical or horizontal motion vector component is also constrained by
profile and level limits as specified in Annex A and subclauses G.10 and H.10.

num_reorder_frames indicates the maximum number of frames, complementary field pairs, or non-paired fields that
precede any frame, complementary field pair, or non-paired field in the coded video sequence in decoding order and
follow it in output order. The value of num_reorder_frames shall be in the range of 0 to max_dec_frame_buffering,
inclusive. When the num_reorder_frames syntax element is not present, the value of num_reorder_frames value shall be
inferred as follows.

– If profile_idc is equal to 44, 86, 100, 110, 122, or 244 and constraint_set3_flag is equal to 1, the value of
num_reorder_frames shall be inferred to be equal to 0.

382 Rec. ITU-T H.264 (03/2009)

– Otherwise (profile_idc is not equal to 44, 86, 100, 110, 122, or 244 or constraint_set3_flag is equal to 0), the value
of num_reorder_frames shall be inferred to be equal to MaxDpbFrames.

max_dec_frame_buffering specifies the required size of the HRD decoded picture buffer (DPB) in units of frame
buffers. The coded video sequence shall not require a decoded picture buffer with size of more than
Max(1, max_dec_frame_buffering) frame buffers to enable the output of decoded pictures at the output times specified
by dpb_output_delay of the picture timing SEI messages. The value of max_dec_frame_buffering shall be in the range
of max_num_ref_frames to 16, inclusive.

NOTE 12 – The value of max_dec_frame_buffering is also constrained by the level limits specified in subclauses A.3.1, A.3.2,
G.10.2.1, and H.10.2.

When the max_dec_frame_buffering syntax element is not present, the value of max_dec_frame_buffering shall be
inferred as follows.

– If profile_idc is equal to 44, 86, 100, 110, 122, or 244 and constraint_set3_flag is equal to 1, the value of
max_dec_frame_buffering shall be inferred to be equal to 0.

– Otherwise (profile_idc is not equal to 44, 86, 100, 110, 122, or 244 or constraint_set3_flag is equal to 0), the value
of max_dec_frame_buffering shall be inferred to be equal to MaxDpbFrames.

E.2.2 HRD parameters semantics

The syntax category of the HRD parameters syntax structure shall be inferred as follows.

– If the HRD parameters syntax structure is not part of an SEI message, the syntax category of the HRD parameters
syntax structure is inferred to be equal to 0.

– Otherwise (the HRD parameters syntax structure is part of the base layer temporal HRD SEI message as specified
in subclause G.13 or the base view temporal HRD SEI message as specified in subclause H.13), the syntax
category of the HRD parameters syntax structure is inferred to be equal to 5.

cpb_cnt_minus1 plus 1 specifies the number of alternative CPB specifications in the bitstream. The value of
cpb_cnt_minus1 shall be in the range of 0 to 31, inclusive. When low_delay_hrd_flag is equal to 1, cpb_cnt_minus1
shall be equal to 0. When cpb_cnt_minus1 is not present, it shall be inferred to be equal to 0.

bit_rate_scale (together with bit_rate_value_minus1[SchedSelIdx]) specifies the maximum input bit rate of the
SchedSelIdx-th CPB.

cpb_size_scale (together with cpb_size_value_minus1[SchedSelIdx]) specifies the CPB size of the SchedSelIdx-th
CPB.

bit_rate_value_minus1[SchedSelIdx] (together with bit_rate_scale) specifies the maximum input bit rate for the
SchedSelIdx-th CPB. bit_rate_value_minus1[SchedSelIdx] shall be in the range of 0 to 232 − 2, inclusive. For any
SchedSelIdx > 0, bit_rate_value_minus1[SchedSelIdx] shall be greater than
bit_rate_value_minus1[SchedSelIdx − 1]. The bit rate in bits per second is given by

BitRate[SchedSelIdx] = (bit_rate_value_minus1[SchedSelIdx] + 1) * 2(6 + bit_rate_scale) (E-37)

When the bit_rate_value_minus1[SchedSelIdx] syntax element is not present, the value of BitRate[SchedSelIdx]
shall be inferred as follows.

– If profile_idc is equal to 66, 77, or 88, BitRate[SchedSelIdx] shall be inferred to be equal to 1000 * MaxBR for
VCL HRD parameters and to be equal to 1200 * MaxBR for NAL HRD parameters, where MaxBR is specified in
subclause A.3.1.

– Otherwise, BitRate[SchedSelIdx] shall be inferred to be equal to cpbBrVclFactor * MaxBR for VCL HRD
parameters and to be equal to cpbBrNalFactor * MaxBR for NAL HRD parameters, where MaxBR is specified in
subclause A.3.1 and cpbBrVclFactor and cpbBrNalFactor are specified in subclause A.3.3 (for profiles specified in
Annex A) or subclause G.10.2.2 (for profiles specified in Annex G) or subclause H.10.2 (for profiles specified in
Annex H).

cpb_size_value_minus1[SchedSelIdx] is used together with cpb_size_scale to specify the SchedSelIdx-th CPB size.
cpb_size_value_minus1[SchedSelIdx] shall be in the range of 0 to 232 − 2, inclusive. For any SchedSelIdx greater than
0, cpb_size_value_minus1[SchedSelIdx] shall be less than or equal to cpb_size_value_minus1[SchedSelIdx −1].

The CPB size in bits is given by

CpbSize[SchedSelIdx] = (cpb_size_value_minus1[SchedSelIdx] + 1) * 2(4 + cpb_size_scale) (E-38)

 Rec. ITU-T H.264 (03/2009) 383

When the cpb_size_value_minus1[SchedSelIdx] syntax element is not present, the value of CpbSize[SchedSelIdx]
shall be inferred as follows.

– If profile_idc is equal to 66, 77, or 88, CpbSize[SchedSelIdx] shall be inferred to be equal to 1000 * MaxCPB for
VCL HRD parameters and to be equal to 1200 * MaxCPB for NAL HRD parameters, where MaxCPB is specified
in subclause A.3.1.

– Otherwise, CpbSize[SchedSelIdx] shall be inferred to be equal to cpbBrVclFactor * MaxCPB for VCL HRD
parameters and to be equal to cpbBrNalFactor * MaxCPB for NAL HRD parameters, where MaxCPB is specified
in subclause A.3.1 and cpbBrVclFactor and cpbBrNalFactor are specified in subclause A.3.3 (for profiles specified
in Annex A) or subclause G.10.2.2 (for profiles specified in Annex G) or subclause H.10.2 (for profiles specified in
Annex H).

cbr_flag[SchedSelIdx] equal to 0 specifies that to decode this bitstream by the HRD using the SchedSelIdx-th CPB
specification, the hypothetical stream delivery scheduler (HSS) operates in an intermittent bit rate mode.
cbr_flag[SchedSelIdx] equal to 1 specifies that the HSS operates in a constant bit rate (CBR) mode. When the
cbr_flag[SchedSelIdx] syntax element is not present, the value of cbr_flag shall be inferred to be equal to 0.

initial_cpb_removal_delay_length_minus1 specifies the length in bits of the
initial_cpb_removal_delay[SchedSelIdx] and initial_cpb_removal_delay_offset[SchedSelIdx] syntax elements of the
buffering period SEI message. The length of initial_cpb_removal_delay[SchedSelIdx] and of
initial_cpb_removal_delay_offset[SchedSelIdx] is initial_cpb_removal_delay_length_minus1 + 1. When the
initial_cpb_removal_delay_length_minus1 syntax element is present in more than one hrd_parameters() syntax
structure within the VUI parameters syntax structure, the value of the initial_cpb_removal_delay_length_minus1
parameters shall be equal in both hrd_parameters() syntax structures. When the
initial_cpb_removal_delay_length_minus1 syntax element is not present, it shall be inferred to be equal to 23.

cpb_removal_delay_length_minus1 specifies the length in bits of the cpb_removal_delay syntax element. The length
of the cpb_removal_delay syntax element of the picture timing SEI message is cpb_removal_delay_length_minus1 + 1.
When the cpb_removal_delay_length_minus1 syntax element is present in more than one hrd_parameters() syntax
structure within the VUI parameters syntax structure, the value of the cpb_removal_delay_length_minus1 parameters
shall be equal in both hrd_parameters() syntax structures. When the cpb_removal_delay_length_minus1 syntax element
is not present, it shall be inferred to be equal to 23.

dpb_output_delay_length_minus1 specifies the length in bits of the dpb_output_delay syntax element. The length of
the dpb_output_delay syntax element of the picture timing SEI message is dpb_output_delay_length_minus1 + 1. When
the dpb_output_delay_length_minus1 syntax element is present in more than one hrd_parameters() syntax structure
within the VUI parameters syntax structure, the value of the dpb_output_delay_length_minus1 parameters shall be
equal in both hrd_parameters() syntax structures. When the dpb_output_delay_length_minus1 syntax element is not
present, it shall be inferred to be equal to 23.

time_offset_length greater than 0 specifies the length in bits of the time_offset syntax element. time_offset_length
equal to 0 specifies that the time_offset syntax element is not present. When the time_offset_length syntax element is
present in more than one hrd_parameters() syntax structure within the VUI parameters syntax structure, the value of the
time_offset_length parameters shall be equal in both hrd_parameters() syntax structures. When the time_offset_length
syntax element is not present, it shall be inferred to be equal to 24.

384 Rec. ITU-T H.264 (03/2009)

Annex G

Scalable video coding

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies scalable video coding, referred to as SVC.

G.1 Scope

Bitstreams and decoders conforming to one or more of the profiles specified in this annex are completely specified in
this annex with reference made to clauses 2-9 and Annexes A-E.

G.2 Normative references

The specifications in clause 2 apply with the following additions.
– ISO/IEC 10646:2003, Information technology − Universal Multiple-Octet Coded Character Set (UCS).
– IETF RFC 3986 (2005), Uniform Resource Identifiers (URI): Generic Syntax.

G.3 Definitions

For the purpose of this annex, the following definitions apply in addition to the definitions in clause 3. These definitions
are either not present in clause 3 or replace definitions in clause 3.

G.3.1 arbitrary slice order (ASO): A decoding order of slices in which the macroblock address of the first
macroblock of some slice of a slice group within a layer representation may be less than the macroblock
address of the first macroblock of some other preceding slice of the same slice group within the same layer
representation or in which the slices of a slice group within a layer representation may be interleaved with the
slices of one or more other slices groups within the same layer representation.

G.3.2 associated NAL unit: A NAL unit that directly succeeds a prefix NAL unit in decoding order.

G.3.3 B slice: A slice that may be decoded using intra-layer intra prediction or inter prediction using at most two
motion vectors and reference indices to predict the sample values of each block.

G.3.4 base layer: A bitstream subset that contains all NAL units with the nal_unit_type syntax element equal to 1
and 5 of the bitstream and does not contain any NAL unit with the nal_unit_type syntax element equal to 14,
15, or 20 and conforms to one or more of the profiles specified in Annex A.

G.3.5 base quality layer representation: The layer representation of the target dependency representation of an
access unit that is associated with the quality_id syntax element equal to 0.

G.3.6 bitstream subset: A bitstream that is derived as a subset from a bitstream by discarding zero or more NAL
units. A bitstream subset is also referred to as sub-bitstream.

G.3.7 bottom macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the bottom row of samples for the macroblock pair. For a field macroblock pair, the bottom
macroblock represents the samples from the region of the bottom field or layer bottom field of the frame or
layer frame, respectively, that lie within the spatial region of the macroblock pair. For a frame macroblock
pair, the bottom macroblock represents the samples of the frame or layer frame that lie within the bottom half
of the spatial region of the macroblock pair.

G.3.8 coded slice in scalable extension NAL unit: A coded slice NAL unit that contains an EI slice, EP slice, or an
EB slice.

G.3.9 complementary reference field pair: A collective term for two reference fields that are in consecutive access
units in decoding order as two coded fields, where the target dependency representations of the fields share the
same value of the frame_num syntax element and where the second field in decoding order is not an IDR
picture and the target dependency representation of the second field does not include a
memory_management_control_operation syntax element equal to 5, or a complementary reference base field
pair.

G.3.10 complementary reference base field pair: Two reference base fields that are associated with two coded fields
that are in consecutive access units in decoding order, where the target dependency representations of the

 Rec. ITU-T H.264 (03/2009) 385

coded fields share the same value of the frame_num syntax element and where the second coded field in
decoding order is not an IDR picture and the target dependency representation of the second coded field does
not include a memory_management_control_operation syntax element equal to 5. A complementary reference
base field pair is a complementary reference field pair.

G.3.11 dependency representation: A subset of VCL NAL units within an access unit that are associated with the
same value of the dependency_id syntax element, which is provided as part of the NAL unit header or by an
associated prefix NAL unit, and the same value of the redundant_pic_cnt syntax element. A dependency
representation consists of one or more layer representations.

G.3.12 EB slice: A slice that may be decoded using intra prediction or inter prediction or inter-layer prediction from
syntax elements and derived variables of the reference layer representation. For inter-prediction of EB slices
at most two motion vectors and reference indices are used to predict the sample values of each block.

G.3.13 EI slice: A slice that is not an I slice or SI slice that is decoded using intra prediction only.

G.3.14 EP slice: A slice that may be decoded using intra prediction or inter prediction or inter-layer prediction from
syntax elements and derived variables of the reference layer representation. For inter-prediction of EP slices at
most one motion vector and reference index is used to predict the sample values of each block.

G.3.15 field macroblock: A macroblock containing samples from a single field or layer field.

G.3.16 frame macroblock: A macroblock containing samples from the two fields or layer fields of a frame or layer
frame, respectively.

G.3.17 I slice: A slice that is decoded using intra-layer intra prediction only.

G.3.18 instantaneous decoding refresh (IDR) picture: A coded picture in which all slices of the target dependency
representation are I or EI slices that causes the decoding process to mark all reference pictures as "unused for
reference" immediately after decoding the IDR picture. After the decoding of an IDR picture all following
coded pictures in decoding order can be decoded without inter prediction from any picture decoded prior to
the IDR picture. The first picture of each coded video sequence is an IDR picture.

G.3.19 inter-layer intra prediction: An inter-layer prediction derived from decoded samples of intra-coded
macroblocks of the reference layer representation.

G.3.20 inter-layer prediction: A prediction derived from syntax elements, derived variables, or decoded samples of
the reference layer representation.

G.3.21 intra-layer intra prediction: A prediction derived from decoded samples of the same decoded slice.

G.3.22 intra prediction: A collective term for intra-layer intra prediction or inter-layer intra prediction or a
combination of intra-layer intra prediction together with inter-layer prediction from syntax elements and
derived variables of the reference layer representation.

G.3.23 intra slice: A collective term for I slice or EI slice.

G.3.24 layer bottom field: One of two layer fields that comprise a layer frame. Each row of a layer bottom field is
spatially located immediately below a corresponding row of a layer top field.

G.3.25 layer field: An assembly of alternate rows of a layer frame. A layer frame is composed of two layer fields, a
layer top field and a layer bottom field.

G.3.26 layer frame: A layer frame contains an array of luma samples that represents an intermediate decoding result
for a field or a frame in monochrome format or an array of luma samples and two corresponding arrays of
chroma samples that represent an intermediate decoding result for a field or a frame in 4:2:0, 4:2:2, and 4:4:4
colour format. A layer frame consists of two layer fields, a layer top field and a layer bottom field.

G.3.27 layer picture: A collective term for a layer field or a layer frame.

G.3.28 layer top field: One of two layer fields that comprise a layer frame. Each row of a layer top field is spatially
located immediately above a corresponding row of a layer bottom field.

G.3.29 layer representation: A subset of VCL NAL units within an access unit that are associated with the same
values of the dependency_id and quality_id syntax elements, which are provided as part of the VCL NAL unit
header or by an associated prefix NAL unit, and the same value of the redundant_pic_cnt syntax element. One
or more layer representations represent a dependency representation.

G.3.30 layer representation identifier: An integer value by which a particular layer representation inside a coded
picture is uniquely identified.

386 Rec. ITU-T H.264 (03/2009)

G.3.31 macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples of a picture or
layer picture that has three sample arrays, or a 16x16 block of samples of a monochrome picture or layer
picture. The division of a slice or a macroblock pair into macroblocks is a partitioning.

G.3.32 macroblock-adaptive frame/field decoding: A decoding process for coded frames or layer representations in
which some macroblocks may be decoded as frame macroblocks and others may be decoded as field
macroblocks.

G.3.33 macroblock address: When macroblock-adaptive frame/field decoding is not in use, a macroblock address is
the index of a macroblock in a macroblock raster scan of the picture or layer picture starting with zero for the
top-left macroblock in a picture or layer picture. When macroblock-adaptive frame/field decoding is in use,
the macroblock address of the top macroblock of a macroblock pair is two times the index of the macroblock
pair in a macroblock pair raster scan of the picture or layer picture, and the macroblock address of the bottom
macroblock of a macroblock pair is the macroblock address of the corresponding top macroblock plus 1. The
macroblock address of the top macroblock of each macroblock pair is an even number and the macroblock
address of the bottom macroblock of each macroblock pair is an odd number.

G.3.34 macroblock location: The two-dimensional coordinates of a macroblock in a picture or layer picture denoted
by (x, y). For the top left macroblock of the picture or layer picture (x, y) is equal to (0, 0). x is
incremented by 1 for each macroblock column from left to right. When macroblock-adaptive frame/field
decoding is not in use, y is incremented by 1 for each macroblock row from top to bottom. When macroblock-
adaptive frame/field decoding is in use, y is incremented by 2 for each macroblock pair row from top to
bottom, and is incremented by an additional 1 when a macroblock is a bottom macroblock.

G.3.35 macroblock pair: A pair of vertically contiguous macroblocks in a frame or layer frame that is coupled for
use in macroblock-adaptive frame/field decoding. The division of a slice into macroblock pairs is a
partitioning.

G.3.36 macroblock to slice group map: A means of mapping macroblocks of a picture or layer picture into slice
groups. The macroblock to slice group map consists of a list of numbers, one for each coded macroblock,
specifying the slice group to which each coded macroblock belongs.

G.3.37 map unit to slice group map: A means of mapping slice group map units of a picture or layer picture into
slice groups. The map unit to slice group map consists of a list of numbers, one for each slice group map unit,
specifying the slice group to which each coded slice group map unit belongs to.

G.3.38 non-paired reference base field: A reference base field that is not part of a complementary reference base
field pair. A non-paired reference base field is a non-paired reference field.

G.3.39 P slice: A slice that may be decoded using intra-layer intra prediction or inter prediction using at most one
motion vector and reference index to predict the sample values of each block.

G.3.40 parameter: A syntax element of an SVC sequence parameter set or a picture parameter set. Parameter is also
used as part of the defined term quantisation parameter.

G.3.41 picture parameter set: A syntax structure containing syntax elements that apply to zero or more layer
representations as determined by the pic_parameter_set_id syntax element found in each slice header.

G.3.42 prefix NAL unit: A NAL unit with nal_unit_type equal to 14 that immediately precedes in decoding order a
NAL unit with nal_unit_type equal to 1 or 5. The NAL unit that immediately succeeds in decoding order the
prefix NAL unit is referred to as the associated NAL unit. The prefix NAL unit contains data associated with
the associated NAL unit, which are considered to be part of the associated NAL unit.

G.3.43 reference base field: A reference field that is obtained by decoding a base quality layer representation with
the nal_ref_idc syntax element not equal to 0, the store_ref_base_pic_flag syntax element equal to 1, and the
field_pic_flag syntax element equal to 1 of a coded picture and all layer representations of the coded picture
that are referred to by inter-layer prediction in the base quality layer representation. A reference base field is
not a decoded picture and it is not an output of the decoding process, but may be used for inter prediction
when P, B, EP, and EB slices of a coded field or a field macroblock of a coded frame are decoded. See also
reference base picture.

G.3.44 reference base frame: A reference frame that is obtained by decoding a base quality layer representation with
the nal_ref_idc syntax element not equal to 0, the store_ref_base_pic_flag syntax element equal to 1, and the
field_pic_flag syntax element equal to 0 of a coded picture and all layer representations of the coded picture
that are referred to by inter-layer prediction of the base quality layer representation. A reference base frame is
not a decoded picture and it is not an output of the decoding process, but may be used for inter prediction
when P, B, EP, and EB slices of a coded frame are decoded. See also reference base picture.

G.3.45 reference base picture: A collective term for a reference base field or a reference base frame.

 Rec. ITU-T H.264 (03/2009) 387

G.3.46 reference field: A reference field may be used for inter prediction when P, B, EP, or EB slices of a coded field
or field macroblocks of a coded frame are decoded. See also reference picture.

G.3.47 reference frame: A reference frame may be used for inter prediction when P, B, EP, or EB slices of a coded
frame are decoded. See also reference picture.

G.3.48 reference layer macroblock: A macroblock of a reference layer representation.

G.3.49 reference layer representation: A reference layer representation for a particular layer representation of a
coded picture is the layer representation that is used for inter-layer prediction of the particular layer
representation. The reference layer representation belongs to the same access unit as the layer representation
that uses the reference layer representation for inter-layer prediction.

G.3.50 reference picture: A collective term for a decoded picture that is obtained by decoding a coded picture for
which the nal_ref_idc syntax element that is associated with the target dependency representation is not equal
to 0 or a reference base picture. A reference picture contains samples that may be used for inter prediction in
the decoding process of subsequent pictures in decoding order.

G.3.51 reference picture list: A list of reference pictures that is used for inter prediction of a P, B, EP, or EB slice.
For the decoding process of a P or EP slice, there is one reference picture list. For the decoding process of a B
or EB slice, there are two reference picture lists.

G.3.52 reference picture list 0: A reference picture list used for inter prediction of a P, B, EP, or EB slice. All inter
prediction used for P and EP slices uses reference picture list 0. Reference picture list 0 is one of two reference
picture lists used for inter prediction for a B or EB slice, with the other being reference picture list 1.

G.3.53 reference picture list 1: A reference picture list used for inter prediction of a B or EB slice. Reference picture
list 1 is one of two reference picture lists used for inter prediction for a B or EB slice, with the other being
reference picture list 0.

G.3.54 scalable bitstream: A bitstream with the property that one or more bitstream subsets that are not identical to
the scalable bitstream form another bitstream that conforms to this specification.

G.3.55 sequence parameter set: A syntax structure containing syntax elements that apply to zero or more layer
representations with the dependency_id syntax element equal to 0 and the quality_id syntax element equal to 0
as determined by the content of a seq_parameter_set_id syntax element found in the picture parameter set
referred to by the pic_parameter_set_id syntax element found in each slice header of I, P, and B slices.

G.3.56 slice: An integer number of macroblocks or macroblock pairs ordered consecutively in the raster scan within a
particular slice group. For a picture or layer picture, the division of each slice group into slices is a
partitioning. Although a slice contains macroblocks or macroblock pairs that are consecutive in the raster scan
within a slice group, these macroblocks or macroblock pairs are not necessarily consecutive in the raster scan
within the picture or layer picture. The macroblock addresses are derived from the first macroblock address in
a slice (as represented in the slice header) and the macroblock to slice group map.

G.3.57 slice group: A subset of the macroblocks or macroblock pairs of a picture or layer picture. The division of the
picture or layer picture into slice groups is a partitioning of the picture or layer picture. The partitioning is
specified by the macroblock to slice group map.

G.3.58 spatial intra prediction: See intra-layer intra prediction.

G.3.59 sub-bitstream: A subset of a bitstream. A sub-bitstream is also referred to as bitstream subset.

G.3.60 subset: A subset contains only elements that are also contained in the set from which the subset is derived. The
subset may be identical to the set from which it is derived.

G.3.61 subset sequence parameter set: A syntax structure containing syntax elements that apply to zero or more
layer representations with the dependency_id syntax element not equal to 0 or the quality_id syntax element
not equal to 0 as determined by the content of a seq_parameter_set_id syntax element found in the picture
parameter set referred to by the pic_parameter_set_id syntax element found in each slice header of EI, EP, and
EB slices.

G.3.62 SVC sequence parameter set: A collective term for sequence parameter set or subset sequence parameter
set.

G.3.63 SVC sequence parameter set RBSP: A collective term for sequence parameter set RBSP or subset sequence
parameter set RBSP.

G.3.64 target dependency representation: The dependency representation of a coded picture that is associated with
the largest value of the dependency_id syntax element for all dependency representations of the coded picture.

388 Rec. ITU-T H.264 (03/2009)

G.3.65 target layer representation: The layer representation of the target dependency representation of a coded
picture that is associated with the largest value of the quality_id syntax element for all layer representations of
the target dependency representation of the coded picture.

G.3.66 top macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the samples
in the top row of samples for the macroblock pair. For a field macroblock pair, the top macroblock represents
the samples from the region of the top field or layer top field of the frame or layer frame that lie within the
spatial region of the macroblock pair. For a frame macroblock pair, the top macroblock represents the samples
of the frame or layer frame that lie within the top half of the spatial region of the macroblock pair.

G.3.67 VCL NAL unit: A collective term for coded slice NAL units and prefix NAL units.

G.4 Abbreviations

The specifications in clause 4 apply.

G.5 Conventions

The specifications in clause 5 apply.

G.6 Source, coded, decoded and output data formats, scanning processes, neighbouring and
reference layer relationships

The specifications in clause 6 apply with substituting SVC sequence parameter set for sequence parameter set. The
specification in subclause 6.3 also applies to layer pictures. Additionally, the following processes are specified.

G.6.1 Derivation process for reference layer macroblocks

This process is only invoked when no_inter_layer_pred_flag is equal to 0.

Inputs to this process are

– a luma location (xP, yP) relative to the upper-left luma sample of the current macroblock,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying macroblock types for
the macroblocks of the reference layer representation.

Outputs of this process are

– the macroblock address mbAddrRefLayer specifying the reference layer macroblock,

– a luma location (xB, yB) relative to the upper-left luma sample of the reference layer macroblock.

Let currDQId be the current value of DQId and let levelIdc be the value of level_idc in the SVC sequence parameter set
that is referred to in coded slice NAL units with DQId equal to ((currDQId >> 4) << 4).

The variables shiftX, shiftY, scaleX, scaleY, offsetX, and offsetY are derived as specified in the following ordered
steps:

1. The variables refW, refH, scaledW, scaledH, offsetX, and offsetY are derived by

refW = RefLayerPicWidthInSamplesL (G-1)
refH = RefLayerPicHeightInSamplesL (G-2)
scaledW = ScaledRefLayerPicWidthInSamplesL (G-3)
scaledH = ScaledRefLayerPicHeightInSamplesL (G-4)
offsetX = ScaledRefLayerLeftOffset (G-5)
offsetY = ScaledRefLayerTopOffset / (1 + field_pic_flag) (G-6)

2. The variables shiftX and shiftY are derived by

shiftX = ((levelIdc <= 30) ? 16 : (31 − Ceil(Log2(refW)))) (G-7)
shiftY = ((levelIdc <= 30) ? 16 : (31 − Ceil(Log2(refH)))) (G-8)

 Rec. ITU-T H.264 (03/2009) 389

3. The variables scaleX and scaleY are derived by

scaleX = ((refW << shiftX) + (scaledW >> 1)) / scaledW (G-9)
scaleY = ((refH << shiftY) + (scaledH >> 1)) / scaledH (G-10)

NOTE 1 – The variables shiftX, shiftY, scaleX, scaleY, offsetX, and offsetY do not depend on the luma location (xP, yP), the
variable fieldMbFlag, or the current macroblock.

The reference layer luma location (xRef, yRef) relative to the upper-left sample of the reference layer picture is
derived as specified by the following ordered steps:

1. The inverse macroblock scanning process as specified in subclause 6.4.1 is invoked with CurrMbAddr as the
input and the output is assigned to (xM, yM). For this invocation of the process in subclause 6.4.1, the
current macroblock is treated as field macroblock when fieldMbFlag is equal to 1, and it is treated as frame
macroblock when fieldMbFlag is equal to 0.

2. The luma location (xC, yC) is derived by

xC = xM + xP (G-11)
yC = yM + yP * (1 + fieldMbFlag − field_pic_flag) (G-12)

3. The reference layer luma location is derived by

xRef = ((xC − offsetX) * scaleX + (1 << (shiftX − 1))) >> shiftX (G-13)
yRef = ((yC − offsetY) * scaleY + (1 << (shiftY − 1))) >> shiftY (G-14)

The reference layer macroblock address mbAddrRefLayer and a luma location (xB, yB) relative to the upper-left
sample of the reference layer macroblock mbAddrRefLayer are derived as follows.

– If MbaffFrameFlag is equal to 0 and RefLayerMbaffFrameFlag is equal to 0, the following ordered steps are
specified:

1. The reference layer macroblock address mbAddrRefLayer is derived as follows.

– If any of the following conditions is true, mbAddrRefLayer is marked as not available:

– xRef is less than 0 or xRef is greater than or equal to RefLayerPicWidthInSamplesL,

– yRef is less than 0 or yRef is greater than or equal to RefLayerPicHeightInSamplesL.

– Otherwise, the macroblock address mbAddrRefLayer is derived by

mbAddrRefLayer = (yRef / 16) * RefLayerPicWidthInMbs + (xRef / 16) (G-15)

2. The luma location (xB, yB) is derived as follows.

– If mbAddrRefLayer is not available, (xB, yB) is marked as not available.

– Otherwise (mbAddrRefLayer is available), (xB, yB) is set equal to (xRef % 16, yRef % 16).

– Otherwise (MbaffFrameFlag is equal to 1 or RefLayerMbaffFrameFlag is equal to 1), the following ordered steps
are specified:

NOTE 2 – When MbaffFrameFlag is equal to 1 or RefLayerMbaffFrameFlag is equal to 1, field_pic_flag and
RefLayerFieldPicFlag are both equal to 0 (see subclause G.7.4.3.4).

1. A virtual reference layer macroblock address virtMbAddrRefLayer is derived as follows.

– If any of the following conditions is true, virtMbAddrRefLayer is marked as not available:

– xRef is less than 0 or xRef is greater than or equal to RefLayerPicWidthInSamplesL,

– yRef is less than 0 or yRef is greater than or equal to RefLayerPicHeightInSamplesL.

390 Rec. ITU-T H.264 (03/2009)

– Otherwise, the following applies.

– If RefLayerMbaffFrameFlag is equal to 1, virtMbAddrRefLayer is derived by

virtMbAddrRefLayer = 2 * ((yRef / 32) * RefLayerPicWidthInMbs + (xRef / 16)) +
 (yRef % 32) / 16 (G-16)

– Otherwise (RefLayerMbaffFrameFlag is equal to 0), virtMbAddrRefLayer is derived by

virtMbAddrRefLayer = (yRef / 16) * RefLayerPicWidthInMbs + (xRef / 16) (G-17)

2. The reference layer macroblock address mbAddrRefLayer and the luma location (xB, yB) are derived as
follows.

– If virtMbAddrRefLayer is not available, the reference layer macroblock address mbAddrRefLayer and
the luma location (xB, yB) are marked as not available.

– Otherwise, if fieldMbFlag is equal to 0 and refLayerFieldMbRef[virtMbAddrRefLayer] is equal to 1,
the field-to-frame reference layer macroblock conversion process as specified in subclause G.6.1.1 is
invoked with virtMbAddrRefLayer, (xRef, yRef), and refLayerMbType as the inputs and the outputs
are assigned to mbAddrRefLayer and (xB, yB).

– Otherwise, if fieldMbFlag is equal to 1 and refLayerFieldMbRef[virtMbAddrRefLayer] is equal to 0,
the frame-to-field reference layer macroblock conversion process as specified in subclause G.6.1.2 is
invoked with virtMbAddrRefLayer and (xRef, yRef) as the inputs and the outputs are assigned to
mbAddrRefLayer and (xB, yB).

– Otherwise (virtMbAddrRefLayer is available and fieldMbFlag is equal to
refLayerFieldMbRef[virtMbAddrRefLayer]), mbAddrRefLayer and (xB, yB) are derived as

mbAddrRefLayer = ((virtMbAddrRefLayer >> fieldMbFlag) << fieldMbFlag)
 + (CurrMbAddr % 2) * fieldMbFlag (G-18)
xB = (xRef % 16) (G-19)
yB = (yRef % (16 << fieldMbFlag)) >> fieldMbFlag (G-20)

G.6.1.1 Field-to-frame reference layer macroblock conversion process

Inputs to this process are

– a virtual reference layer macroblock address virtMbAddrRefLayer,

– a reference layer luma location (xRef, yRef) relative to the upper-left luma sample of the reference layer picture,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying macroblock types for
the macroblocks of the reference layer representation.

Outputs of this process are

– the macroblock address mbAddrRefLayer of the reference layer macroblock,

– a luma location (xB, yB) relative to the upper-left luma sample of the reference layer macroblock.

The macroblock addresses mbAddrRefLayerTop and mbAddrRefLayerBot are derived by

mbAddrRefLayerTop = virtMbAddrRefLayer − (virtMbAddrRefLayer % 2) (G-21)
mbAddrRefLayerBot = mbAddrRefLayerTop + 1 (G-22)

The reference layer macroblock address mbAddrRefLayer is derived as follows.

– If refLayerMbType[mbAddrRefLayerTop] is equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL, mbAddrRefLayer
is set equal to mbAddrRefLayerBot.

– Otherwise (refLayerMbType[mbAddrRefLayerTop] is not equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL),
mbAddrRefLayer is set equal to mbAddrRefLayerTop.

 Rec. ITU-T H.264 (03/2009) 391

The luma location (xB, yB) is derived by

xB = xRef % 16 (G-23)
yB = 8 * ((yRef / 16) % 2) + 4 * ((yRef % 16) / 8) (G-24)

G.6.1.2 Frame-to-field reference layer macroblock conversion process

Inputs to this process are

– a virtual reference layer macroblock address virtMbAddrRefLayer,

– a virtual reference layer luma location (xRef, yRef) relative to the upper-left luma sample of the reference layer
picture.

Outputs of this process are

– the macroblock address mbAddrRefLayer of the reference layer macroblock,

– a luma location (xB, yB) relative to the upper-left luma sample of the reference layer macroblock.

The reference layer macroblock address mbAddrRefLayer and the luma location (xB, yB) are derived by

mbAddrRefLayer = virtMbAddrRefLayer (G-25)
xB = xRef % 16 (G-26)
yB = yRef % 16 (G-27)

G.6.2 Derivation process for reference layer partitions

This process is only invoked when no_inter_layer_pred_flag is equal to 0.

Inputs to this process are

– a luma location (xP, yP) relative to the upper-left luma sample of the current macroblock,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying macroblock types for
the macroblocks of the reference layer representation,

– a (RefLayerPicSizeInMbs)x4 array refLayerSubMbType specifying the sub-macroblock types for the macroblocks
of the reference layer representation.

Outputs of this process are

– the macroblock address mbAddrRefLayer specifying the reference layer macroblock,

– the macroblock partition index mbPartIdxRefLayer specifying the reference layer macroblock partition inside the
reference layer macroblock mbAddrRefLayer,

– the sub-macroblock partition index subMbPartIdxRefLayer specifying the reference layer sub-macroblock
partition inside the macroblock partition mbPartIdxRefLayer of the reference layer macroblock mbAddrRefLayer.

The derivation process for reference layer macroblocks as specified in subclause G.6.1 is invoked with the luma
location (xP, yP), fieldMbFlag, refLayerFieldMbFlag, and refLayerMbType as the input and the outputs are assigned
to mbAddrRefLayer and (xB, yB).

The reference layer macroblock partition index mbPartIdxRefLayer and the reference layer sub-macroblock partition
index subMbPartIdxRefLayer are derived as follows.

– If mbAddrRefLayer is not available, mbPartIdxRefLayer and subMbPartIdxRefLayer are marked as not available.

– Otherwise, SVC derivation process for macroblock and sub-macroblock partition indices as specified in
subclause G.6.4, is invoked with currDQId set equal to ref_layer_dq_id, the luma location (xB, yB), the
macroblock type refLayerMbType[mbAddrRefLayer], and, when refLayerMbType[mbAddrRefLayer] is equal
to P_8x8, P_8x8ref0, or B_8x8, the list of sub-macroblock types refLayerSubMbType[mbAddrRefLayer] as the

392 Rec. ITU-T H.264 (03/2009)

inputs; and the outputs are the reference layer macroblock partition index, mbPartIdxRefLayer, and the reference
layer sub-macroblock partition index, subMbPartIdxRefLayer.

G.6.3 Derivation process for reference layer sample locations in resampling

Inputs to this process are

– a variable chromaFlag specifying whether the luma or a chroma component is subject to the resampling process,

– a sample location (xP, yP) relative to the upper-left sample of the current macroblock,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable botFieldFlag specifying whether a top or a bottom field is subject to the resampling process (when
RefLayerFrameMbsOnlyFlag is equal to 0 or frame_mbs_only_flag is equal to 0).

Output of this process is a reference layer sample location (xRef16, yRef16), which specifies the following.

– If RefLayerFrameMbsOnlyFlag is equal to 1 or RefLayerFieldPicFlag is equal to 1, (xRef16, yRef16) specifies
the reference layer sample location in units of 1/16-th sample relative to the upper-left sample of the reference
layer picture.

– Otherwise (RefLayerFrameMbsOnlyFlag is equal to 0 and RefLayerFieldPicFlag is equal to 0), (xRef16, yRef16)
specifies the reference layer sample location in units of 1/16-th field sample relative to the upper-left sample of the
field specified by botFieldFlag of the reference layer picture.

Let currDQId be the current value of DQId and let levelIdc be the value of level_idc in the SVC sequence parameter set
that is referred to in coded slice NAL units with DQId equal to ((currDQId >> 4) << 4).

The variables subW, subH, shiftX, shiftY, scaleX, scaleY, offsetX, offsetY, addX, addY, deltaX, and deltaY are derived
as specified in the following ordered steps:

1. With Z being replaced by L for chromaFlag equal to 0 and C for chromaFlag equal to 1, the variables refW,
refH, scaledW, and scaledH are derived by

refW = RefLayerPicWidthInSamplesZ (G-28)
refH = RefLayerPicHeightInSamplesZ * (1 + RefLayerFieldPicFlag) (G-29)
scaledW = ScaledRefLayerPicWidthInSamplesZ (G-30)
scaledH = ScaledRefLayerPicHeightInSamplesZ * (1 + field_pic_flag) (G-31)

2. When frame_mbs_only_flag is equal to 0 and RefLayerFrameMbsOnlyFlag is equal to 1, the variable scaledH
is modified by

scaledH = scaledH / 2 (G-32)

3. The variables refPhaseX, refPhaseY, phaseX, phaseY, subW, and subH are derived by

refPhaseX = ((chromaFlag = = 0) ? 0 : (ref_layer_chroma_phase_x_plus1_flag − 1)) (G-33)
refPhaseY = ((chromaFlag = = 0) ? 0 : (ref_layer_chroma_phase_y_plus1 − 1)) (G-34)
phaseX = ((chromaFlag = = 0) ? 0 : (chroma_phase_x_plus1_flag − 1)) (G-35)
phaseY = ((chromaFlag = = 0) ? 0 : (chroma_phase_y_plus1 − 1)) (G-36)
subW = ((chromaFlag = = 0) ? 1 : SubWidthC) (G-37)
subH = ((chromaFlag = = 0) ? 1 : SubHeightC) (G-38)

4. When RefLayerFrameMbsOnlyFlag is equal to 0 or frame_mbs_only_flag is equal to 0, the following applies.

– If RefLayerFrameMbsOnlyFlag is equal to 1, the variables phaseY and refPhaseY are modified by

phaseY = phaseY + 4 * botFieldFlag + 3 − subH (G-39)
refPhaseY = 2 * refPhaseY + 2 (G-40)

– Otherwise (RefLayerFrameMbsOnlyFlag is equal to 0), the variables phaseY and refPhaseY are modified
by

phaseY = phaseY + 4 * botFieldFlag (G-41)
refPhaseY = refPhaseY + 4 * botFieldFlag (G-42)

 Rec. ITU-T H.264 (03/2009) 393

5. The variables shiftX and shiftY are derived by

shiftX = ((levelIdc <= 30) ? 16 : (31 − Ceil(Log2(refW)))) (G-43)
shiftY = ((levelIdc <= 30) ? 16 : (31 − Ceil(Log2(refH)))) (G-44)

6. The variables scaleX and scaleY are derived by

scaleX = ((refW << shiftX) + (scaledW >> 1)) / scaledW (G-45)
scaleY = ((refH << shiftY) + (scaledH >> 1)) / scaledH (G-46)

7. The variables offsetX, addX, and deltaX are derived by

offsetX = ScaledRefLayerLeftOffset / subW (G-47)
addX = (((refW * (2 + phaseX)) << (shiftX − 2)) + (scaledW >> 1)) / scaledW
 + (1 << (shiftX − 5)) (G-48)
deltaX = 4 * (2 + refPhaseX) (G-49)

8. The variables offsetY, addY, and deltaY are derived as follows.

– If RefLayerFrameMbsOnlyFlag is equal to 1 and frame_mbs_only_flag is equal to 1, the variables
offsetY, addY, and deltaY are derived by

offsetY = ScaledRefLayerTopOffset / subH (G-50)
addY = (((refH * (2 + phaseY)) << (shiftY − 2)) + (scaledH >> 1)) / scaledH
 + (1 << (shiftY − 5)) (G-51)
deltaY = 4 * (2 + refPhaseY) (G-52)

– Otherwise (RefLayerFrameMbsOnlyFlag is equal to 0 or frame_mbs_only_flag is equal to 0), the
variables offsetY, addY, and deltaY are derived by

offsetY = ScaledRefLayerTopOffset / (2 * subH) (G-53)
addY = (((refH * (2 + phaseY)) << (shiftY − 3)) + (scaledH >> 1)) / scaledH
 + (1 << (shiftY − 5)) (G-54)
deltaY = 2 * (2 + refPhaseY) (G-55)

NOTE – The variables subW, subH, shiftX, shiftY, scaleX, scaleY, offsetX, offsetY, addX, addY, deltaX, and deltaY do not
depend on the input sample location (xP, yP), the input variable fieldMbFlag, or the current macroblock address CurrMbAddr.

The sample location (xC, yC) is derived as specified in the following ordered steps:

1. The inverse macroblock scanning process as specified in subclause 6.4.1 is invoked with CurrMbAddr as input
and the output is assigned to (xM, yM). For this invocation of the process in subclause 6.4.1, the current
macroblock is treated as field macroblock when fieldMbFlag is equal to 1 and it is treated as frame
macroblock when fieldMbFlag is equal to 0.

2. The sample location (xC, yC) is derived by

xC = xP + (xM >> (subW − 1)) (G-56)
yC = yP + (yM >> (subH − 1 + fieldMbFlag − field_pic_flag)) (G-57)

3. When RefLayerFrameMbsOnlyFlag is equal to 0 or frame_mbs_only_flag is equal to 0, the vertical
component of the sample location (xC, yC) is modified by

yC = yC >> (1 − fieldMbFlag) (G-58)

The reference layer sample location (xRef16 yRef16) is derived by

xRef16 = (((xC − offsetX) * scaleX + addX) >> (shiftX − 4)) − deltaX (G-59)
yRef16 = (((yC − offsetY) * scaleY + addY) >> (shiftY − 4)) − deltaY (G-60)

394 Rec. ITU-T H.264 (03/2009)

G.6.4 SVC derivation process for macroblock and sub-macroblock partition indices

Inputs to this process are

– a variable currDQId specifying an identifier for a layer representation,

– a luma location (xP, yP) relative to the upper-left luma sample of a macroblock,

– a macroblock type mbType,

– when mbType is equal to P_8x8, P_8x8ref0, or B_8x8, a list of sub-macroblock types subMbType with 4
elements.

Outputs of this process are

– a macroblock partition index mbPartIdx,

– a sub-macroblock partition index subMbPartIdx.

The variable svcDirectModeFlag is derived as follows.

– If currDQId is greater than 0 and any of the following conditions is true, svcDirectModeFlag is set equal to 1.

– mbType is equal to B_Skip or B_Direct_16x16

– mbType is equal to B_8x8 and subMbType[2 * (yP / 8) + (xP / 8)] is equal to B_Direct_8x8

– Otherwise, svcDirectModeFlag is set equal to 0.

Depending on svcDirectModeFlag, the following applies.

– If svcDirectModeFlag is equal to 0, the derivation process for macroblock and sub-macroblock partition indices, as
specified in subclause 6.4.12.4, is invoked with the luma location (xP, yP), the macroblock type mbType, and,
when mbType is equal to P_8x8, P_8x8ref0, or B_8x8, the list of sub-macroblock types subMbType as the inputs;
and the outputs are the macroblock partition index, mbPartIdx, and the sub-macroblock partition index,
subMbPartIdx.

– Otherwise, if mbType is equal to B_Skip or B_Direct_16x16, mbPartIdx is set equal to 0 and subMbPartIdx is set
equal to 0.

– Otherwise (currDQId is greater than 0, mbType is equal to B_8x8, and subMbType[2 * (yP / 8) + (xP / 8)] is
equal to B_Direct_8x8), mbPartIdx is set equal to (2 * (yP / 8) + (xP / 8)) and subMbPartIdx is set equal to 0.

G.7 Syntax and semantics

This clause specifies syntax and semantics for coded video sequences that conform to one or more of the profiles
specified in this annex.

G.7.1 Method of specifying syntax in tabular form

The specifications in subclause 7.1 apply.

G.7.2 Specification of syntax functions, categories, and descriptors

The specifications in subclause 7.2 apply.

G.7.3 Syntax in tabular form

G.7.3.1 NAL unit syntax

The syntax table is specified in subclause 7.3.1.

 Rec. ITU-T H.264 (03/2009) 395

G.7.3.1.1 NAL unit header SVC extension syntax

nal_unit_header_svc_extension() { C Descriptor
 idr_flag All u(1)
 priority_id All u(6)
 no_inter_layer_pred_flag All u(1)
 dependency_id All u(3)
 quality_id All u(4)
 temporal_id All u(3)
 use_ref_base_pic_flag All u(1)
 discardable_flag All u(1)
 output_flag All u(1)
 reserved_three_2bits All u(2)
}

G.7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

G.7.3.2.1 Sequence parameter set RBSP syntax

The syntax table is specified in subclause 7.3.2.1.

G.7.3.2.1.1 Sequence parameter set data syntax

The syntax table is specified in subclause 7.3.2.1.1.

G.7.3.2.1.1.1 Scaling list syntax

The syntax table is specified in subclause 7.3.2.1.1.1.

G.7.3.2.1.2 Sequence parameter set extension RBSP syntax

The syntax table is specified in subclause 7.3.2.1.2.

G.7.3.2.1.3 Subset sequence parameter set RBSP syntax

The syntax table is specified in subclause 7.3.2.1.3.

G.7.3.2.1.4 Sequence parameter set SVC extension syntax

seq_parameter_set_svc_extension() { C Descriptor
 inter_layer_deblocking_filter_control_present_flag 0 u(1)
 extended_spatial_scalability_idc 0 u(2)
 if(ChromaArrayType = = 1 | | ChromaArrayType = = 2)
 chroma_phase_x_plus1_flag 0 u(1)
 if(ChromaArrayType = = 1)
 chroma_phase_y_plus1 0 u(2)
 if(extended_spatial_scalability_idc = = 1) {
 if(ChromaArrayType > 0) {
 seq_ref_layer_chroma_phase_x_plus1_flag 0 u(1)
 seq_ref_layer_chroma_phase_y_plus1 0 u(2)
 }
 seq_scaled_ref_layer_left_offset 0 se(v)
 seq_scaled_ref_layer_top_offset 0 se(v)
 seq_scaled_ref_layer_right_offset 0 se(v)
 seq_scaled_ref_layer_bottom_offset 0 se(v)

396 Rec. ITU-T H.264 (03/2009)

 }
 seq_tcoeff_level_prediction_flag 0 u(1)
 if(seq_tcoeff_level_prediction_flag) {
 adaptive_tcoeff_level_prediction_flag 0 u(1)
 }
 slice_header_restriction_flag 0 u(1)
}

G.7.3.2.2 Picture parameter set RBSP syntax

The syntax table is specified in subclause 7.3.2.2.

G.7.3.2.3 Supplemental enhancement information RBSP syntax

The syntax table is specified in subclause 7.3.2.3.

G.7.3.2.3.1 Supplemental enhancement information message syntax

The syntax table is specified in subclause 7.3.2.3.1.

G.7.3.2.4 Access unit delimiter RBSP syntax

The syntax table is specified in subclause 7.3.2.4.

G.7.3.2.5 End of sequence RBSP syntax

The syntax table is specified in subclause 7.3.2.5.

G.7.3.2.6 End of stream RBSP syntax

The syntax table is specified in subclause 7.3.2.6.

G.7.3.2.7 Filler data RBSP syntax

The syntax table is specified in subclause 7.3.2.7.

G.7.3.2.8 Slice layer without partitioning RBSP syntax

The syntax table is specified in subclause 7.3.2.8.

G.7.3.2.9 Slice data partition RBSP syntax

Slice data partition syntax is not present in coded video sequences conforming to any of the profiles specified in this
annex.

G.7.3.2.10 RBSP slice trailing bits syntax

The syntax table is specified in subclause 7.3.2.10.

G.7.3.2.11 RBSP trailing bits syntax

The syntax table is specified in subclause 7.3.2.11.

G.7.3.2.12 Prefix NAL unit RBSP syntax

The syntax table is specified in subclause 7.3.2.12.

 Rec. ITU-T H.264 (03/2009) 397

G.7.3.2.12.1 Prefix NAL unit SVC syntax

prefix_nal_unit_svc() { C Descriptor
 if(nal_ref_idc != 0) {
 store_ref_base_pic_flag 2 u(1)
 if((use_ref_base_pic_flag | | store_ref_base_pic_flag) &&
 !idr_flag)

 dec_ref_base_pic_marking() 2
 additional_prefix_nal_unit_extension_flag 2 u(1)
 if(additional_prefix_nal_unit_extension_flag = = 1)
 while(more_rbsp_data())
 additional_prefix_nal_unit_extension_data_flag 2 u(1)
 rbsp_trailing_bits() 2
 } else if(more_rbsp_data()) {
 while(more_rbsp_data())
 additional_prefix_nal_unit_extension_data_flag 2 u(1)
 rbsp_trailing_bits() 2
 }
}

G.7.3.2.13 Slice layer extension RBSP syntax

The syntax table is specified in subclause 7.3.2.13.

G.7.3.3 Slice header syntax

The syntax table is specified in subclause 7.3.3.

G.7.3.3.1 Reference picture list modification syntax

The syntax table is specified in subclause 7.3.3.1.

G.7.3.3.2 Prediction weight table syntax

The syntax table is specified in subclause 7.3.3.2.

G.7.3.3.3 Decoded reference picture marking syntax

The syntax table is specified in subclause 7.3.3.3.

398 Rec. ITU-T H.264 (03/2009)

G.7.3.3.4 Slice header in scalable extension syntax

slice_header_in_scalable_extension() { C Descriptor
 first_mb_in_slice 2 ue(v)
 slice_type 2 ue(v)
 pic_parameter_set_id 2 ue(v)
 if(separate_colour_plane_flag = = 1)
 colour_plane_id 2 u(2)
 frame_num 2 u(v)
 if(!frame_mbs_only_flag) {
 field_pic_flag 2 u(1)
 if(field_pic_flag)
 bottom_field_flag 2 u(1)
 }
 if(idr_flag = = 1)
 idr_pic_id 2 ue(v)
 if(pic_order_cnt_type = = 0) {
 pic_order_cnt_lsb 2 u(v)
 if(bottom_field_pic_order_in_frame_present_flag && !field_pic_flag)
 delta_pic_order_cnt_bottom 2 se(v)
 }
 if(pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag) {
 delta_pic_order_cnt[0] 2 se(v)
 if(bottom_field_pic_order_in_frame_present_flag && !field_pic_flag)
 delta_pic_order_cnt[1] 2 se(v)
 }
 if(redundant_pic_cnt_present_flag)
 redundant_pic_cnt 2 ue(v)
 if(quality_id = = 0) {
 if(slice_type = = EB)
 direct_spatial_mv_pred_flag 2 u(1)
 if(slice_type = = EP | | slice_type = = EB) {
 num_ref_idx_active_override_flag 2 u(1)
 if(num_ref_idx_active_override_flag) {
 num_ref_idx_l0_active_minus1 2 ue(v)
 if(slice_type = = EB)
 num_ref_idx_l1_active_minus1 2 ue(v)
 }
 }
 ref_pic_list_modification() 2
 if((weighted_pred_flag && slice_type = = EP) | |
 (weighted_bipred_idc = = 1 && slice_type = = EB)) {

 if(!no_inter_layer_pred_flag)
 base_pred_weight_table_flag 2 u(1)
 if(no_inter_layer_pred_flag | | !base_pred_weight_table_flag)
 pred_weight_table() 2
 }
 if(nal_ref_idc != 0) {

 Rec. ITU-T H.264 (03/2009) 399

 dec_ref_pic_marking() 2
 if(!slice_header_restriction_flag) {
 store_ref_base_pic_flag 2 u(1)
 if ((use_ref_base_pic_flag | | store_ref_base_pic_flag) &&
 !idr_flag)

 dec_ref_base_pic_marking() 2
 }
 }
 }
 if(entropy_coding_mode_flag && slice_type != EI)
 cabac_init_idc 2 ue(v)
 slice_qp_delta 2 se(v)
 if(deblocking_filter_control_present_flag) {
 disable_deblocking_filter_idc 2 ue(v)
 if(disable_deblocking_filter_idc != 1) {
 slice_alpha_c0_offset_div2 2 se(v)
 slice_beta_offset_div2 2 se(v)
 }
 }
 if(num_slice_groups_minus1 > 0 &&
 slice_group_map_type >= 3 && slice_group_map_type <= 5)

 slice_group_change_cycle 2 u(v)
 if(!no_inter_layer_pred_flag && quality_id = = 0) {
 ref_layer_dq_id 2 ue(v)
 if(inter_layer_deblocking_filter_control_present_flag) {
 disable_inter_layer_deblocking_filter_idc 2 ue(v)
 if(disable_inter_layer_deblocking_filter_idc != 1) {
 inter_layer_slice_alpha_c0_offset_div2 2 se(v)
 inter_layer_slice_beta_offset_div2 2 se(v)
 }
 }
 constrained_intra_resampling_flag 2 u(1)
 if(extended_spatial_scalability_idc = = 2) {
 if(ChromaArrayType > 0) {
 ref_layer_chroma_phase_x_plus1_flag 2 u(1)
 ref_layer_chroma_phase_y_plus1 2 u(2)
 }
 scaled_ref_layer_left_offset 2 se(v)
 scaled_ref_layer_top_offset 2 se(v)
 scaled_ref_layer_right_offset 2 se(v)
 scaled_ref_layer_bottom_offset 2 se(v)
 }
 }
 if(!no_inter_layer_pred_flag) {
 slice_skip_flag 2 u(1)
 if(slice_skip_flag)
 num_mbs_in_slice_minus1 2 ue(v)
 else {
 adaptive_base_mode_flag 2 u(1)

400 Rec. ITU-T H.264 (03/2009)

 if(!adaptive_base_mode_flag)
 default_base_mode_flag 2 u(1)
 if(!default_base_mode_flag) {
 adaptive_motion_prediction_flag 2 u(1)
 if(!adaptive_motion_prediction_flag)
 default_motion_prediction_flag 2 u(1)
 }
 adaptive_residual_prediction_flag 2 u(1)
 if(!adaptive_residual_prediction_flag)
 default_residual_prediction_flag 2 u(1)
 }
 if(adaptive_tcoeff_level_prediction_flag = = 1)
 tcoeff_level_prediction_flag 2 u(1)
 }
 if(!slice_header_restriction_flag && !slice_skip_flag) {
 scan_idx_start 2 u(4)
 scan_idx_end 2 u(4)
 }
}

G.7.3.3.5 Decoded reference base picture marking syntax

dec_ref_base_pic_marking() { C Descriptor
 adaptive_ref_base_pic_marking_mode_flag 2 u(1)
 if(adaptive_ref_base_pic_marking_mode_flag)
 do {
 memory_management_base_control_operation 2 ue(v)
 if(memory_management_base_control_operation = = 1)
 difference_of_base_pic_nums_minus1 2 ue(v)
 if(memory_management_base_control_operation = = 2)
 long_term_base_pic_num 2 ue(v)
 } while(memory_management_base_control_operation != 0)
}

G.7.3.4 Slice data syntax

The syntax table is specified in subclause 7.3.4.

 Rec. ITU-T H.264 (03/2009) 401

G.7.3.4.1 Slice data in scalable extension syntax

slice_data_in_scalable_extension() { C Descriptor
 if(entropy_coding_mode_flag)
 while(!byte_aligned())
 cabac_alignment_one_bit 2 f(1)
 firstMbAddr = first_mb_in_slice * (1 + MbaffFrameFlag)
 CurrMbAddr = firstMbAddr
 moreDataFlag = 1
 prevMbSkipped = 0
 do {
 if(slice_type != EI)
 if(!entropy_coding_mode_flag) {
 mb_skip_run 2 ue(v)
 prevMbSkipped = (mb_skip_run > 0)
 for(i = 0; i < mb_skip_run; i++)
 CurrMbAddr = NextMbAddress(CurrMbAddr)
 if(CurrMbAddr != firstMbAddr | | mb_skip_run > 0)
 moreDataFlag = more_rbsp_data()
 } else {
 mb_skip_flag 2 ae(v)
 moreDataFlag = !mb_skip_flag
 }
 if(moreDataFlag) {
 if(MbaffFrameFlag && ((CurrMbAddr % 2) = = 0 | |
 ((CurrMbAddr % 2) = = 1 && prevMbSkipped)))

 mb_field_decoding_flag 2 u(1) | ae(v)
 macroblock_layer_in_scalable_extension() 2 | 3 | 4
 }
 if(!entropy_coding_mode_flag)
 moreDataFlag = more_rbsp_data()
 else {
 if(slice_type != EI)
 prevMbSkipped = mb_skip_flag
 if(MbaffFrameFlag && (CurrMbAddr % 2) = = 0)
 moreDataFlag = 1
 else {
 end_of_slice_flag 2 ae(v)
 moreDataFlag = !end_of_slice_flag
 }
 }
 CurrMbAddr = NextMbAddress(CurrMbAddr)
 } while(moreDataFlag)
}

G.7.3.5 Macroblock layer syntax

The syntax table is specified in subclause 7.3.5.

402 Rec. ITU-T H.264 (03/2009)

G.7.3.5.1 Macroblock prediction syntax

The syntax table is specified in subclause 7.3.5.1.

G.7.3.5.2 Sub-macroblock prediction syntax

The syntax table is specified in subclause 7.3.5.2.

G.7.3.5.3 Residual data syntax

The syntax table is specified in subclause 7.3.5.3.

G.7.3.5.3.1 Residual luma syntax

The syntax table is specified in subclause 7.3.5.3.1.

G.7.3.5.3.2 Residual block CAVLC syntax

The syntax table is specified in subclause 7.3.5.3.2.

G.7.3.5.3.3 Residual block CABAC syntax

The syntax table is specified in subclause 7.3.5.3.3.

G.7.3.6 Macroblock layer in scalable extension syntax

macroblock_layer_in_scalable_extension() { C Descriptor
 if(InCropWindow(CurrMbAddr) && adaptive_base_mode_flag)
 base_mode_flag 2 u(1) | ae(v)
 if(!base_mode_flag)
 mb_type 2 ue(v) | ae(v)
 if(mb_type = = I_PCM) {
 while(!byte_aligned())
 pcm_alignment_zero_bit 3 f(1)
 for(i = 0; i < 256; i++)
 pcm_sample_luma[i] 3 u(v)
 for(i = 0; i < 2 * MbWidthC * MbHeightC; i++)
 pcm_sample_chroma[i] 3 u(v)
 } else {
 if(!base_mode_flag) {
 noSubMbPartSizeLessThan8x8Flag = 1
 if(mb_type != I_NxN &&
 MbPartPredMode(mb_type, 0) != Intra_16x16 &&
 NumMbPart(mb_type) = = 4) {

 sub_mb_pred_in_scalable_extension(mb_type) 2
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if(sub_mb_type[mbPartIdx] != B_Direct_8x8) {
 if(NumSubMbPart(sub_mb_type [mbPartIdx]) > 1)
 noSubMbPartSizeLessThan8x8Flag = 0
 } else if(!direct_8x8_inference_flag)
 noSubMbPartSizeLessThan8x8Flag = 0
 } else {
 if(transform_8x8_mode_flag && mb_type = = I_NxN)
 transform_size_8x8_flag 2 u(1) | ae(v)
 mb_pred_in_scalable_extension(mb_type) 2
 }
 }

 Rec. ITU-T H.264 (03/2009) 403

 if(adaptive_residual_prediction_flag && slice_type != EI &&
 (base_mode_flag | |
 (MbPartPredMode(mb_type, 0) != Intra_16x16 &&
 MbPartPredMode(mb_type, 0) != Intra_8x8 &&
 MbPartPredMode(mb_type, 0) != Intra_4x4 &&
 mb_type != I_PCM &&
 InCropWindow(CurrMbAddr))))

 residual_prediction_flag 2 u(1) | ae(v)
 if(scan_idx_end >= scan_idx_start) {
 if(base_mode_flag | |
 MbPartPredMode(mb_type, 0) != Intra_16x16) {

 coded_block_pattern 2 me(v) | ae(v)
 if(CodedBlockPatternLuma > 0 &&
 transform_8x8_mode_flag &&
 (base_mode_flag | |
 (mb_type != I_NxN &&
 noSubMbPartSizeLessThan8x8Flag &&
 (mb_type != B_Direct_16x16 | |
 direct_8x8_inference_flag))))

 transform_size_8x8_flag 2 u(1) | ae(v)
 }
 if(CodedBlockPatternLuma > 0 | |
 CodedBlockPatternChroma > 0 | |
 MbPartPredMode(mb_type, 0) = = Intra_16x16) {

 mb_qp_delta 2 se(v) | ae(v)
 residual(scan_idx_start, scan_idx_end) 3 | 4
 }
 }
 }
}

G.7.3.6.1 Macroblock prediction in scalable extension syntax

mb_pred_in_scalable_extension(mb_type) { C Descriptor
 if(MbPartPredMode(mb_type, 0) = = Intra_4x4 | |
 MbPartPredMode(mb_type, 0) = = Intra_8x8 | |
 MbPartPredMode(mb_type, 0) = = Intra_16x16) {

 if(MbPartPredMode(mb_type, 0) = = Intra_4x4)
 for(luma4x4BlkIdx = 0; luma4x4BlkIdx < 16; luma4x4BlkIdx++) {
 prev_intra4x4_pred_mode_flag[luma4x4BlkIdx] 2 u(1) | ae(v)
 if(!prev_intra4x4_pred_mode_flag[luma4x4BlkIdx])
 rem_intra4x4_pred_mode[luma4x4BlkIdx] 2 u(3) | ae(v)
 }
 if(MbPartPredMode(mb_type, 0) = = Intra_8x8)
 for(luma8x8BlkIdx = 0; luma8x8BlkIdx < 4; luma8x8BlkIdx++) {
 prev_intra8x8_pred_mode_flag[luma8x8BlkIdx] 2 u(1) | ae(v)
 if(!prev_intra8x8_pred_mode_flag[luma8x8BlkIdx])
 rem_intra8x8_pred_mode[luma8x8BlkIdx] 2 u(3) | ae(v)
 }
 if(ChromaArrayType != 0)
 intra_chroma_pred_mode 2 ue(v) | ae(v)
 } else if(MbPartPredMode(mb_type, 0) != Direct) {

404 Rec. ITU-T H.264 (03/2009)

 if(InCropWindow(CurrMbAddr) &&
 adaptive_motion_prediction_flag) {

 for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
 if(MbPartPredMode(mb_type, mbPartIdx) != Pred_L1)
 motion_prediction_flag_l0[mbPartIdx] 2 u(1) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
 if(MbPartPredMode(mb_type, mbPartIdx) != Pred_L0)
 motion_prediction_flag_l1[mbPartIdx] 2 u(1) | ae(v)
 }
 for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
 if((num_ref_idx_l0_active_minus1 > 0 | | mb_field_decoding_flag) &&
 MbPartPredMode(mb_type, mbPartIdx) != Pred_L1 &&
 !motion_prediction_flag_l0[mbPartIdx])

 ref_idx_l0[mbPartIdx] 2 te(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
 if((num_ref_idx_l1_active_minus1 > 0 | | mb_field_decoding_flag) &&
 MbPartPredMode(mb_type, mbPartIdx) != Pred_L0 &&
 !motion_prediction_flag_l1[mbPartIdx])

 ref_idx_l1[mbPartIdx] 2 te(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
 if(MbPartPredMode (mb_type, mbPartIdx) != Pred_L1)
 for(compIdx = 0; compIdx < 2; compIdx++)
 mvd_l0[mbPartIdx][0][compIdx] 2 se(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
 if(MbPartPredMode(mb_type, mbPartIdx) != Pred_L0)
 for(compIdx = 0; compIdx < 2; compIdx++)
 mvd_l1[mbPartIdx][0][compIdx] 2 se(v) | ae(v)
 }
}

 Rec. ITU-T H.264 (03/2009) 405

G.7.3.6.2 Sub-macroblock prediction in scalable extension syntax

sub_mb_pred_in_scalable_extension(mb_type) { C Descriptor
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 sub_mb_type[mbPartIdx] 2 ue(v) | ae(v)
 if(InCropWindow(CurrMbAddr) && adaptive_motion_prediction_flag) {
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if(SubMbPredMode(sub_mb_type[mbPartIdx]) != Direct &&
 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L1)

 motion_prediction_flag_l0[mbPartIdx] 2 u(1) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if(SubMbPredMode(sub_mb_type[mbPartIdx]) != Direct &&
 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L0)

 motion_prediction_flag_l1[mbPartIdx] 2 u(1) | ae(v)
 }
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if((num_ref_idx_l0_active_minus1 > 0 | | mb_field_decoding_flag) &&
 mb_type != P_8x8ref0 &&
 sub_mb_type[mbPartIdx] != B_Direct_8x8 &&
 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L1 &&
 !motion_prediction_flag_l0[mbPartIdx])

 ref_idx_l0[mbPartIdx] 2 te(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if((num_ref_idx_l1_active_minus1 > 0 | | mb_field_decoding_flag) &&
 sub_mb_type[mbPartIdx] != B_Direct_8x8 &&
 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L0 &&
 !motion_prediction_flag_l1[mbPartIdx])

 ref_idx_l1[mbPartIdx] 2 te(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if(sub_mb_type[mbPartIdx] != B_Direct_8x8 &&
 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L1)

 for(subMbPartIdx = 0;
 subMbPartIdx < NumSubMbPart(sub_mb_type[mbPartIdx]);
 subMbPartIdx++)

 for(compIdx = 0; compIdx < 2; compIdx++)
 mvd_l0[mbPartIdx][subMbPartIdx][compIdx] 2 se(v) | ae(v)
 for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
 if(sub_mb_type[mbPartIdx] != B_Direct_8x8 &&
 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L0)

 for(subMbPartIdx = 0;
 subMbPartIdx < NumSubMbPart(sub_mb_type[mbPartIdx]);
 subMbPartIdx++)

 for(compIdx = 0; compIdx < 2; compIdx++)
 mvd_l1[mbPartIdx][subMbPartIdx][compIdx] 2 se(v) | ae(v)
}

G.7.4 Semantics

Semantics associated with the syntax structures and syntax elements within these structures (in subclause G.7.3 and in
subclause 7.3 by reference in G.7.3) are specified in this subclause and by reference to subclause 7.4. When the
semantics of a syntax element are specified using a table or a set of tables, any values that are not specified in the
table(s) shall not be present in the bitstream unless otherwise specified in this Recommendation | International Standard.

Sub-bitstreams that are derived according to the process specified in subclause G.8.8.1 shall conform to one or more of
the profiles specified in Annex A or one or more of the profiles specified in this annex.

One or more sub-bitstreams shall conform to one or more of the profiles specified in Annex A. The decoding for these
sub-bitstreams is specified in clauses 2-9 and Annexes B-E.

406 Rec. ITU-T H.264 (03/2009)

The decoding for bitstreams conforming to one or more of the profiles specified in this annex is completely specified in
this annex with reference made to clauses 2-9 and Annexes B-E.

A specification or a process in clauses 2-9 and Annexes B-E may be used as is or by specifying assignments or
alternative meanings of certain parts.

This subclause describes the semantics of syntax elements. The syntax elements appear multiple times in the bitstream
and in each access unit. The meaning of each syntax element and derived variables depends on the position of the
syntax structure in the bitstream in which it is contained. A decoder conforming to this
Recommendation | International Standard processes the syntax structures in decoding order and determines the
semantics according to the position derived from that.

G.7.4.1 NAL unit semantics

The semantics for the syntax elements in subclause G.7.3.1 are specified in subclause 7.4.1. The following
specifications additionally apply.

For NAL units with nal_unit_type equal to 14, nal_ref_idc shall be identical to nal_ref_idc of the associated NAL unit,
which succeeds the NAL unit with nal_unit_type equal to 14 in decoding order.

The value of nal_ref_idc shall be the same for all VCL NAL units of a dependency representation.

The variable refNalRefIdc is derived as follows.

– If nal_unit_type is not equal to 20 or dependency_id is equal to the minimum value of dependency_id for all VCL
NAL units of the coded picture, refNalRefIdc is set equal to 0.

– Otherwise (nal_unit_type is equal to 20 and dependency_id is not equal to the minimum value of dependency_id
for all VCL NAL units of the coded picture), refNalRefIdc is set equal to the maximum value of nal_ref_idc for all
VCL NAL units of the coded picture with a value of dependency_id less than the current value of dependency_id.

When refNalRefIdc is greater than 0, the value of nal_ref_idc shall not be equal to 0.

nal_ref_idc equal to 0 for a NAL unit containing a slice and having a value of dependency_id that is equal to the
maximum value of dependency_id in the coded picture indicates that all coded slice NAL units of the coded picture are
coded slice NAL units of a non-reference picture.

nal_ref_idc greater than 0 for a NAL unit containing a slice and having a value of dependency_id that is equal to the
maximum value of dependency_id in the coded picture indicates that all coded slice NAL units of the coded picture are
coded slice NAL units of a reference picture.

G.7.4.1.1 NAL unit header SVC extension semantics

The syntax elements idr_flag, priority_id, no_inter_layer_pred_flag, dependency_id, quality_id, temporal_id,
use_ref_base_pic_flag, discardable_flag, and output_flag, when present in a prefix NAL unit, are considered as if they
were present in the associated NAL unit.

idr_flag equal to 1 specifies that the current coded picture is an IDR picture when the value of dependency_id for the
NAL unit is equal to the maximum value of dependency_id in the coded picture. idr_flag equal to 0 specifies that the
current coded picture is not an IDR picture when the value of dependency_id for the NAL unit is equal to the maximum
value of dependency_id in the coded picture. The value of idr_flag shall be the same for all NAL units of a dependency
representation.

NOTE 1 – The classification of a coded picture as IDR picture and the partitioning of a sequence of access units in coded video
sequences depends on the maximum value of dependency_id that is present in the associated NAL units. When NAL units are
removed from a bitstream, e.g. in order to adjust the bitstream to the capabilities of a receiving device, the maximum value of
dependency_id in the coded pictures may change and hence the classification of coded pictures as IDR pictures may change and
with that the partitioning of the sequence of access units into coded video sequences may change.

When idr_flag is equal to 1 for a prefix NAL unit, the associated NAL unit shall have nal_unit_type equal to 5. When
idr_flag is equal to 0 for a prefix NAL unit, the associated NAL unit shall have nal_unit_type equal to 1.

When nal_ref_idc is equal to 0, the value of idr_flag shall be equal to 0.

For NAL units, in which idr_flag is present, the variable IdrPicFlag derived in subclause 7.4.1 is modified by setting it
equal to idr_flag.

priority_id specifies a priority identifier for the NAL unit. The assignment of values to priority_id is constrained by the
sub-bitstream extraction process as specified in subclause G.8.8.1.

NOTE 2 – The syntax element priority_id is not required by the decoding process specified in this
Recommendation | International Standard. The syntax element priority_id may be used as determined by the application within
the specified constraints.

 Rec. ITU-T H.264 (03/2009) 407

no_inter_layer_pred_flag specifies whether inter-layer prediction may be used for decoding the coded slice. When
no_inter_layer_pred_flag is equal to 1, inter-layer prediction is not used for decoding the coded slice. When
no_inter_layer_pred_flag is equal to 0, inter-layer prediction may be used for decoding the coded slice as signalled in
the macroblock layer.

For prefix NAL units, no_inter_layer_pred_flag shall be equal to 1. When nal_unit_type is equal to 20 and quality_id is
greater than 0, no_inter_layer_pred_flag shall be equal to 0.

dependency_id specifies a dependency identifier for the NAL unit. dependency_id shall be equal to 0 in prefix NAL
units. The assignment of values to dependency_id is constrained by the sub-bitstream extraction process as specified in
subclause G.8.8.1.

quality_id specifies a quality identifier for the NAL unit. quality_id shall be equal to 0 in prefix NAL units. The
assignment of values to quality_id is constrained by the sub-bitstream extraction process as specified in
subclause G.8.8.1.

The variable DQId is derived by

DQId = (dependency_id << 4) + quality_id (G-61)

temporal_id specifies a temporal identifier for the NAL unit. The assignment of values to temporal_id is constrained
by the sub-bitstream extraction process as specified in subclause G.8.8.1.

The value of temporal_id shall be the same for all prefix NAL units and coded slice in scalable extension NAL units of
an access unit. When an access unit contains any NAL unit with nal_unit_type equal to 5 or idr_flag equal to 1,
temporal_id shall be equal to 0.

use_ref_base_pic_flag equal to 1 specifies that reference base pictures (when present) and decoded pictures (when
reference base pictures are not present) are used as reference pictures for inter prediction as specified in
subclause G.8.2.3. use_ref_base_pic_flag equal to 0 specifies that reference base pictures are not used as reference
pictures for inter prediction (i.e., only decoded pictures are used for inter prediction).

The values of use_ref_base_pic_flag shall be the same for all NAL units of a dependency representation.

discardable_flag equal to 1 specifies that the current NAL unit is not used in the decoding process of NAL units of the
current coded picture and all subsequent coded pictures that have a greater value of dependency_id than the current
NAL unit. discardable_flag equal to 0 specifies that the current NAL unit may be used for decoding NAL units of the
current coded picture and all subsequent coded pictures that have a greater value of dependency_id than the current
NAL unit.

output_flag affects the decoded picture output and removal processes as specified in Annex C. The value of
output_flag shall be the same for all NAL units of a dependency representation. For any particular value of
dependency_id, the value of output_flag shall be the same for both fields of a complementary field pair.

reserved_three_2bits shall be equal to 3. Other values of reserved_three_2bits may be specified in the future by
ITU-T | ISO/IEC. Decoders shall ignore the value of reserved_three_2bits.

G.7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences

This subclause specifies constraints on the order of NAL units in the bitstream. Any order of NAL units in the bitstream
obeying these constraints is referred to in the text as the decoding order of NAL units. Within a NAL unit, the syntax in
subclauses 7.3, D.1, E.1, G.7.3, G.13.1, and G.14.1 specifies the decoding order of syntax elements. Decoders
conforming to this Recommendation | International Standard shall be capable of receiving NAL units and their syntax
elements in decoding order.

G.7.4.1.2.1 Order of SVC sequence parameter set RBSPs and picture parameter set RBSPs and their activation
NOTE 1 – The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information
from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed
"out-of-band" using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units of one or more
layer representations of one or more coded pictures.

Each picture parameter set RBSP is initially considered not active at the start of the operation of the decoding process.
At most one picture parameter set RBSP is considered as the active picture parameter set RBSP at any given moment
during the operation of the decoding process, and when any particular picture parameter set RBSP becomes the active
picture parameter set RBSP, the previously-active picture parameter set RBSP (if any) is deactivated.

In addition to the active picture parameter set RBSP, zero or more picture parameter set RBSPs may be specifically
active for layer representations (with a particular value of DQId less than DQIdMax) that may be referred to through

408 Rec. ITU-T H.264 (03/2009)

inter-layer prediction in decoding the target layer representation. Such a picture parameter set RBSP is referred to as
active layer picture parameter set RBSP for the particular value of DQId (less than DQIdMax). The restrictions on
active picture parameter set RBSPs also apply to active layer picture parameter set RBSPs with a particular value of
DQId.

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) is not the active picture parameter
set RBSP and it is referred to by a coded slice NAL unit with DQId equal to DQIdMax (using that value of
pic_parameter_set_id), it is activated. This picture parameter set RBSP is called the active picture parameter set RBSP
until it is deactivated when another picture parameter set RBSP becomes the active picture parameter set RBSP. A
picture parameter set RBSP, with that particular value of pic_parameter_set_id, shall be available to the decoding
process prior to its activation.

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) is not the active layer picture
parameter set for a particular value of DQId less than DQIdMax and it is referred to by a coded slice NAL unit with the
particular value of DQId (using that value of pic_parameter_set_id), it is activated for layer representations with the
particular value of DQId. This picture parameter set RBSP is called the active layer picture parameter set RBSP for the
particular value of DQId until it is deactivated when another picture parameter set RBSP becomes the active layer
picture parameter set RBSP for the particular value of DQId or when decoding an access unit with DQIdMax less than
or equal to the particular value of DQId. A picture parameter set RBSP, with that particular value of
pic_parameter_set_id, shall be available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter_set_id for the active picture parameter set
RBSP for a coded picture shall have the same content as that of the active picture parameter set RBSP for the coded
picture unless it follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another
coded picture. Any picture parameter set NAL unit containing the value of pic_parameter_set_id for the active layer
picture parameter set RBSP for a particular value of DQId less than DQIdMax for a coded picture shall have the same
content as that of the active layer picture parameter set RBSP for the particular value of DQId for the coded picture
unless it follows the last VCL NAL unit of the coded picture and precedes the first VCL NAL unit of another coded
picture.

An SVC sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set
RBSPs or one or more SEI NAL units containing a buffering period SEI message.

Each SVC sequence parameter set RBSP is initially considered not active at the start of the operation of the decoding
process. At most one SVC sequence parameter set RBSP is considered as the active SVC sequence parameter set RBSP
at any given moment during the operation of the decoding process, and when any particular SVC sequence parameter
set RBSP becomes the active SVC sequence parameter set RBSP, the previously-active SVC sequence parameter set
RBSP (if any) is deactivated.

In addition to the active SVC sequence parameter set RBSP, zero or more SVC sequence parameter set RBSPs may be
specifically active for layer representations (with a particular value of DQId less than DQIdMax) that may be referred to
through inter-layer prediction in decoding the target layer representation. Such an SVC sequence parameter set RBSP is
referred to as active layer SVC sequence parameter set RBSP for the particular value of DQId (less than DQIdMax).
The restrictions on active SVC sequence parameter set RBSPs also apply to active layer SVC sequence parameter set
RBSPs with a particular value of DQId.

For the following specification in this subclause, the activating buffering period SEI message is specified as follows.

– If the access unit contains one or more buffering period SEI messages that are included in a scalable nesting SEI
message and are associated with values of DQId in the range of ((DQIdMax >> 4) << 4) to
(((DQIdMax >> 4) << 4) + 15), inclusive, the last of these buffering period SEI messages in decoding order is
the activating buffering period SEI message.

– Otherwise, if DQIdMax is equal to 0 and the access unit contains a buffering period SEI message that is not
included in a scalable nesting SEI message, this buffering period SEI message is the activating buffering period
SEI message.

– Otherwise, the access unit does not contain an activating buffering period SEI message.

When a sequence parameter set RBSP (nal_unit_type is equal to 7) with a particular value of seq_parameter_set_id is
not already the active SVC sequence parameter set RBSP and it is referred to by activation of a picture parameter set
RBSP (using that value of seq_parameter_set_id) and the picture parameter set RBSP is activated by a coded slice NAL
unit with nal_unit_type equal to 1 or 5 (the picture parameter set RBSP becomes the active picture parameter set RBSP
and DQIdMax is equal to 0) and the access unit does not contain an activating buffering period SEI message, the
sequence parameter set RBSP is activated. This sequence parameter set RBSP, is called the active SVC sequence
parameter set RBSP until it is deactivated when another SVC sequence parameter set RBSP becomes the active SVC

 Rec. ITU-T H.264 (03/2009) 409

sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of seq_parameter_set_id,
shall be available to the decoding process prior to its activation.

When a sequence parameter set RBSP (nal_unit_type is equal to 7) with a particular value of seq_parameter_set_id is
not already the active SVC sequence parameter set RBSP and it is referred to by an activating buffering period SEI
message (using that value of seq_parameter_set_id) that is not included in a scalable nesting SEI message (DQIdMax is
equal to 0), the sequence parameter set RBSP is activated. This sequence parameter set RBSP is called the active SVC
sequence parameter set RBSP until it is deactivated when another SVC sequence parameter set RBSP becomes the
active SVC sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of
seq_parameter_set_id, shall be available to the decoding process prior to its activation.

When a subset sequence parameter set RBSP (nal_unit_type is equal to 15) with a particular value of
seq_parameter_set_id is not already the active SVC sequence parameter set RBSP and it is referred to by activation of a
picture parameter set RBSP (using that value of seq_parameter_set_id) and the picture parameter set RBSP is activated
by a coded slice in scalable extension NAL unit (nal_unit_type is equal to 20) with DQId equal to DQIdMax (the
picture parameter set RBSP becomes the active picture parameter set RBSP) and the access unit does not contain an
activating buffering period SEI message, the subset sequence parameter set RBSP is activated. This subset sequence
parameter set RBSP is called the active SVC sequence parameter set RBSP until it is deactivated when another SVC
sequence parameter set RBSP becomes the active SVC sequence parameter set RBSP. A subset sequence parameter set
RBSP, with that particular value of seq_parameter_set_id, shall be available to the decoding process prior to its
activation.

When a subset sequence parameter set RBSP (nal_unit_type is equal to 15) with a particular value of
seq_parameter_set_id is not already the active SVC sequence parameter set RBSP and it is referred to by an activating
buffering period SEI message (using that value of seq_parameter_set_id) that is included in a scalable nesting SEI
message, the subset sequence parameter set RBSP is activated. This subset sequence parameter set RBSP, is called the
active SVC sequence parameter set RBSP until it is deactivated when another SVC sequence parameter set RBSP
becomes the active SVC sequence parameter set RBSP. A subset sequence parameter set RBSP, with that particular
value of seq_parameter_set_id, shall be available to the decoding process prior to its activation.

NOTE 2 – The active SVC sequence parameter set RBSP is either a sequence parameter set RBSP or a subset sequence
parameter set RBSP. Sequence parameter set RBSPs are activated by coded slice NAL units with nal_unit_type equal to 1 or 5 or
buffering period SEI messages that are not included in a scalable nesting SEI message. Subset sequence parameter sets are
activated by coded slice in scalable extension NAL units (nal_unit_type equal to 20) or buffering period SEI messages that are
included in a scalable nesting SEI message. A sequence parameter set RBSP and a subset sequence parameter set RBSP may
have the same value of seq_parameter_set_id.
NOTE 3 – Buffering period SEI messages have a higher priority for activating SVC sequence parameter sets than coded slice
NAL units. When an SVC sequence parameter set RBSP is referred to by activation of a picture parameter set RBSP inside a
particular access unit and this picture parameter set RBSP is activated by a coded slice NAL unit with DQId equal to DQIdMax
(the picture parameter set RBSP becomes the active picture parameter set RBSP) and this particular access unit also contains an
activating buffering period SEI message that refers to an SVC sequence parameter set RBSP that is different than the SVC
sequence parameter set RBSP referred to by the activation of the picture parameter set RBSP, the SVC sequence parameter set
RBSP that is referred to by the activating buffering period SEI message becomes the active SVC sequence parameter set.
NOTE 4 – Compared to the specifications for profiles specified in Annex A, where an activated sequence parameter set RBSP
must remain active for the entire coded video sequence, the specification for profiles specified in this annex differs. When an
SVC sequence parameter set RBSP is already active (as the active SVC sequence parameter set RBSP), another SVC sequence
parameter set RBSP becomes the active SVC sequence parameter set RBSP in a non-IDR access unit when it is referred to by an
activating buffering period SEI message or by the activation of a picture parameter set RBSP (as the active picture parameter set
RBSP). In this case, the contents of the de-activated and activated SVC sequence parameter set RBSP are mutually restricted as
described below. Hence, within a coded video sequence, multiple successively activated/de-activated SVC sequence parameter
set RBSPs can be present.

For the following specification in this subclause, the activating layer buffering period SEI message for a particular value
of DQId is specified as follows.

– If the access unit contains a buffering period SEI messages that is included in a scalable nesting SEI message and
is associated with the particular value of DQId, this buffering period SEI message is the activating layer buffering
period SEI message for the particular value of DQId.

– Otherwise, if the particular value of DQId is equal to 0 and the access unit contains a buffering period SEI message
that is not included in a scalable nesting SEI message, this buffering period SEI message is the activating layer
buffering period SEI message for the particular value of DQId.

– Otherwise, the access unit does not contain an activating layer buffering period SEI message for the particular
value of DQId.

When a sequence parameter set RBSP (nal_unit_type is equal to 7) with a particular value of seq_parameter_set_id is
not already the active layer SVC sequence parameter set RBSP for DQId equal to 0 and it is referred to by activation of
a picture parameter set RBSP (using that value of seq_parameter_set_id) and the picture parameter set RBSP is

410 Rec. ITU-T H.264 (03/2009)

activated by a coded slice NAL unit with nal_unit_type equal to 1 or 5 and DQIdMax is greater than 0 (the picture
parameter set RBSP becomes the active layer picture parameter set RBSP for DQId equal to 0) and the access unit does
not contain an activating layer buffering period SEI message for DQId equal to 0, the sequence parameter set RBSP is
activated for layer representations with DQId equal to 0. This sequence parameter set RBSP is called the active layer
SVC sequence parameter set RBSP for DQId equal to 0 until it is deactivated when another SVC sequence parameter
set RBSP becomes the active layer SVC sequence parameter set RBSP for DQId equal to 0 or when decoding an access
unit with DQIdMax equal to 0. A sequence parameter set RBSP, with that particular value of seq_parameter_set_id,
shall be available to the decoding process prior to its activation.

When a sequence parameter set RBSP (nal_unit_type is equal to 7) with a particular value of seq_parameter_set_id is
not already the active layer SVC sequence parameter set RBSP for DQId equal to 0 and it is referred to by an activating
layer buffering period SEI message for DQId equal to 0 (using that value of seq_parameter_set_id) that is not included
in a scalable nesting SEI message and DQIdMax is greater than 0, the sequence parameter set RBSP is activated for
layer representations with DQId equal to 0. This sequence parameter set RBSP is called the active layer SVC sequence
parameter set RBSP for DQId equal to 0 until it is deactivated when another SVC sequence parameter set RBSP
becomes the active layer SVC sequence parameter set RBSP for DQId equal to 0 or when decoding an access unit with
DQIdMax equal to 0. A sequence parameter set RBSP, with that particular value of seq_parameter_set_id, shall be
available to the decoding process prior to its activation.

When a subset sequence parameter set RBSP (nal_unit_type is equal to 15) with a particular value of
seq_parameter_set_id is not already the active layer SVC sequence parameter set RBSP for a particular value of DQId
less than DQIdMax and it is referred to by activation of a picture parameter set RBSP (using that value of
seq_parameter_set_id) and the picture parameter set RBSP is activated by a coded slice in scalable extension NAL unit
(nal_unit_type is equal to 20) with the particular value of DQId (the picture parameter set RBSP becomes the active
layer picture parameter set RBSP for the particular value of DQId) and the access unit does not contain an activating
layer buffering period SEI message for the particular value of DQId, the subset sequence parameter set is activated for
layer representations with the particular value of DQId. This subset sequence parameter set RBSP is called the active
layer SVC sequence parameter set RBSP for the particular value of DQId until it is deactivated when another SVC
sequence parameter set RBSP becomes the active layer SVC sequence parameter set RBSP for the particular value of
DQId or when decoding an access unit with DQIdMax less than or equal to the particular value of DQId. A subset
sequence parameter set RBSP, with that particular value of seq_parameter_set_id, shall be available to the decoding
process prior to its activation.

When a subset sequence parameter set RBSP (nal_unit_type is equal to 15) with a particular value of
seq_parameter_set_id is not already the active layer SVC sequence parameter set RBSP for a particular value of DQId
less than DQIdMax and it is referred to by an activating layer buffering period SEI message for the particular value of
DQId (using that value of seq_parameter_set_id) that is included in a scalable nesting SEI message, the subset sequence
parameter set RBSP is activated for layer representations with the particular value of DQId. This subset sequence
parameter set RBSP is called the active layer SVC sequence parameter set RBSP for the particular value of DQId until
it is deactivated when another SVC sequence parameter set RBSP becomes the active layer SVC sequence parameter set
RBSP for the particular value of DQId or when decoding an access unit with DQIdMax less than or equal to the
particular value of DQId. A subset sequence parameter set RBSP, with that particular value of seq_parameter_set_id,
shall be available to the decoding process prior to its activation.

A sequence parameter set RBSP or a subset sequence parameter set RBSP that includes a value of profile_idc not
specified in Annex A or G shall not be referred to by activation of a picture parameter set RBSP as the active picture
parameter set RBSP or as active layer picture parameter set RBSP (using that value of seq_parameter_set_id) or
referred to by a buffering period SEI message (using that value of seq_parameter_set_id). A sequence parameter set
RBSP or a subset sequence parameter set RBSP including a value of profile_idc not specified in Annex A or G is
ignored in the decoding for profiles specified in Annex A or G.

Let spsA and spsB be two SVC sequence parameter set RBSPs with one of the following properties:

– spsA is the active SVC sequence parameter set RBSP for an access unit and spsB is the SVC sequence parameter
set RBSP that is referred to by the coded slice NAL units (via the picture parameter set) of the layer representation
with DQId equal to DQIdMax,

– spsA is the active SVC sequence parameter set RBSP for an IDR access unit and spsB is the active SVC sequence
parameter set RBSP for any non-IDR access unit of the same coded video sequence.

The SVC sequence parameter set RBSPs spsA and spsB are restricted with regards to their contents as specified in the
following.

– The values of the syntax elements in the seq_parameter_set_data() syntax structure of spsA and spsB may only
differ for the syntax elements profile_idc, constraint_setX_flag (with X being equal to 0 to 3, inclusive), level_idc,
seq_parameter_set_id, and the hrd_parameters() syntax structure and shall be the same otherwise.

 Rec. ITU-T H.264 (03/2009) 411

– When spsA is the active SVC sequence parameter set RBSP and spsB is the SVC sequence parameter set RBSP
that is referred to by the coded slice NAL units of the layer representation with DQId equal to DQIdMax, the level
specified by level_idc (or level_idc and constraint_set3_flag) in spsA shall not be less than the level specified by
level_idc (or level_idc and constraint_set3_flag) in spsB.

– When the seq_parameter_set_svc_extension() syntax structure is present in both spsA and spsB, the values of all
syntax elements in the seq_parameter_set_svc_extension() syntax structure shall be the same.

It is a requirement of bitstream conformance that the following constraints are obeyed:

– For each particular value of DQId, all coded slice NAL units of a coded video sequence shall refer to the same
value of seq_parameter_set_id (via the picture parameter set RBSP that is referred to by the value of
pic_parameter_set_id).

– The value of seq_parameter_set_id in a buffering period SEI message that is not included in a scalable nesting SEI
message shall be identical to the value of seq_parameter_set_id in the picture parameter set RBSP that is referred
to by coded slice NAL units with nal_unit_type equal to 1 or 5 (via the value of pic_parameter_set_id) in the same
access unit.

– The value of seq_parameter_set_id in a buffering period SEI message that is included in a scalable nesting SEI
message and is associated with a particular value of DQId shall be identical to the value of seq_parameter_set_id
in the picture parameter set RBSP that is referred to by coded slice NAL units with the particular value of DQId
(via the value of pic_parameter_set_id) in the same access unit.

The active layer SVC sequence parameter set RBSPs for different values of DQId may be the same SVC sequence
parameter set RBSP. The active SVC sequence parameter set RBSP and an active layer SVC sequence parameter set
RBSP for a particular value of DQId may be the same SVC sequence parameter set RBSP.

When the active SVC sequence parameter set RBSP for a coded picture is a sequence parameter set RBSP, any
sequence parameter set RBSP with the value of seq_parameter_set_id for the active SVC sequence parameter set RBSP
for the coded picture shall have the same content as that of the active SVC sequence parameter set RBSP for the coded
picture unless it follows the last access unit of the coded video sequence containing the coded picture and precedes the
first VCL NAL unit and the first SEI NAL unit containing a buffering period SEI message (when present) of another
coded video sequence.

When the active SVC sequence parameter set RBSP for a coded picture is a subset sequence parameter set RBSP, any
subset sequence parameter set RBSP with the value of seq_parameter_set_id for the active SVC sequence parameter set
RBSP for the coded picture shall have the same content as that of the active SVC sequence parameter set RBSP for the
coded picture unless it follows the last access unit of the coded video sequence containing the coded picture and
precedes the first VCL NAL unit and the first SEI NAL unit containing a buffering period SEI message (when present)
of another coded video sequence.

For each particular value of DQId, the following applies:

– When the active layer SVC sequence parameter set RBSP for a coded picture is a sequence parameter set RBSP,
any sequence parameter set RBSP with the value of seq_parameter_set_id for the active layer SVC sequence
parameter set RBSP for the coded picture shall have the same content as that of the active layer SVC sequence
parameter set RBSP for the coded picture unless it follows the last access unit of the coded video sequence
containing the coded picture and precedes the first VCL NAL unit and the first SEI NAL unit containing a
buffering period SEI message (when present) of another coded video sequence.

– When the active layer SVC sequence parameter set RBSP for a coded picture is a subset sequence parameter set
RBSP, any subset sequence parameter set RBSP with the value of seq_parameter_set_id for the active layer SVC
sequence parameter set RBSP for the coded picture shall have the same content as that of the active layer SVC
sequence parameter set RBSP for the coded picture unless it follows the last access unit of the coded video
sequence containing the coded picture and precedes the first VCL NAL unit and the first SEI NAL unit containing
a buffering period SEI message (when present) of another coded video sequence.

NOTE 5 – If picture parameter set RBSP or SVC sequence parameter set RBSP are conveyed within the bitstream, these
constraints impose an order constraint on the NAL units that contain the picture parameter set RBSP or SVC sequence parameter
set RBSP, respectively. Otherwise (picture parameter set RBSP or SVC sequence parameter set RBSP are conveyed by other
means not specified in this Recommendation | International Standard), they must be available to the decoding process in a timely
fashion such that these constraints are obeyed.

When present, a sequence parameter set extension RBSP includes parameters having a similar function to those of a
sequence parameter set RBSP. For purposes of establishing constraints on the syntax elements of the sequence
parameter set extension RBSP and for purposes of determining activation of a sequence parameter set extension RBSP,
the sequence parameter set extension RBSP shall be considered part of the preceding sequence parameter set RBSP
with the same value of seq_parameter_set_id. When a sequence parameter set RBSP is present that is not followed by a

412 Rec. ITU-T H.264 (03/2009)

sequence parameter set extension RBSP with the same value of seq_parameter_set_id prior to the activation of the
sequence parameter set RBSP, the sequence parameter set extension RBSP and its syntax elements shall be considered
not present for the active SVC sequence parameter set RBSP. The contents of sequence parameter set extension RBSPs
only apply when the base layer, which conforms to one or more of the profiles specified in Annex A, of a coded video
sequence conforming to one or more of the profiles specified in Annex G is decoded. Subset sequence parameter set
RBSPs shall not be followed by a sequence parameter set extension RBSP.

NOTE 6 – Sequence parameter sets extension RBSPs are not considered to be part of a subset sequence parameter set RBSP and
subset sequence parameter set RBSPs must not be followed by a sequence parameter set extension RBSP.

For layer representations with DQId equal to DQIdMax, all constraints that are expressed on the relationship between
the values of the syntax elements (and the values of variables derived from those syntax elements) in SVC sequence
parameter sets and picture parameter sets and other syntax elements are expressions of constraints that apply only to the
active SVC sequence parameter set and the active picture parameter set. For layer representations with a particular
value of DQId less than DQIdMax, all constraints that are expressed on the relationship between the values of the
syntax elements (and the values of variables derived from those syntax elements) in SVC sequence parameter sets and
picture parameter sets and other syntax elements are expressions of constraints that apply only to the active layer SVC
sequence parameter set and the active layer picture parameter set for the particular value of DQId. If any SVC sequence
parameter set RBSP having profile_idc equal to one of the profile_idc values specified in Annex A or G is present that
is never activated in the bitstream (i.e., it never becomes the active SVC sequence parameter set or an active layer SVC
sequence parameter set), its syntax elements shall have values that would conform to the specified constraints if it were
activated by reference in an otherwise-conforming bitstream. If any picture parameter set RBSP is present that is never
ever activated in the bitstream (i.e., it never becomes the active picture parameter set or an active layer picture
parameter set), its syntax elements shall have values that would conform to the specified constraints if it were activated
by reference in an otherwise-conforming bitstream.

During operation of the decoding process (see clause G.8), for layer representations with DQId equal to DQIdMax, the
values of parameters of the active picture parameter set and the active SVC sequence parameter set shall be considered
in effect. For layer representations with a particular value of DQId less than DQIdMax, the values of the parameters of
the active layer picture parameter set and the active layer SVC sequence parameter set for the particular value of DQId
shall be considered in effect. For interpretation of SEI messages that apply to access units or dependency
representations with dependency_id equal to DependencyIdMax or layer representation with DQId equal to DQIdMax,
the values of the parameters of the active picture parameter set and the active SVC sequence parameter set for the
access unit shall be considered in effect unless otherwise specified in the SEI message semantics. For interpretation of
SEI messages that apply to dependency representations with a particular value of dependency_id less than
DependencyIdMax, the values of the parameters of the active layer picture parameter set and the active layer SVC
sequence parameter set for the layer representation with DQId equal to (dependency_id << 4) of the access unit shall
be considered in effect unless otherwise specified in the SEI message semantics. For interpretation of SEI messages that
apply to layer representations with a particular value of DQId less than DQIdMax, the values of the parameters of the
active layer picture parameter set and the active layer SVC sequence parameter set for the layer representation with the
particular value of DQId of the access unit shall be considered in effect unless otherwise specified in the SEI message
semantics.

G.7.4.1.2.2 Order of access units and association to coded video sequences

The specification of subclause 7.4.1.2.2 applies with the following modifications.

The first access unit of the bitstream shall only contain coded slice NAL units with nal_unit_type equal to 5 or idr_flag
equal to 1.

The order of NAL units and coded pictures and their association to access units is described in subclause G.7.4.1.2.3.

G.7.4.1.2.3 Order of NAL units and coded pictures and association to access units

The specification of subclause 7.4.1.2.3 applies with the following modifications.

The association of VCL NAL units to primary or redundant coded pictures is specified in subclause G.7.4.1.2.5. When
the primary coded picture does not contain a layer representation with a particular value of DQId, all redundant coded
pictures (when present) in the same access unit shall not contain a layer representation with the particular value of
DQId.

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in
subclause G.7.4.1.2.4.

The constraint expressed in subclause 7.4.1.2.3 on the order of a buffering period SEI message is replaced by the
following constraints.

– When an SEI NAL unit containing a buffering period SEI message is present, the following applies.

 Rec. ITU-T H.264 (03/2009) 413

– If the buffering period SEI message is the only buffering period SEI message in the access unit and it is not
included in a scalable nesting SEI message, the buffering period SEI message shall be the first SEI message
payload of the first SEI NAL unit in the access unit.

– Otherwise (the buffering period SEI message is not the only buffering period SEI message in the access unit
or it is included in a scalable nesting SEI message), the following constraints are specified:

– When a buffering period SEI message that is not included in a scalable nesting SEI message is present,
this buffering period SEI message shall be the only SEI message payload of the first SEI NAL unit in the
access unit.

– A scalable nesting SEI message that includes a buffering period SEI message shall not include any other
SEI messages and the scalable nesting SEI message that includes a buffering period SEI message shall be
the only SEI message inside an SEI NAL unit.

– All SEI NAL units that precede an SEI NAL unit that contains a scalable nesting SEI message with a
buffering period SEI message as payload in an access unit shall only contain buffering period SEI
messages or scalable nesting SEI messages with a buffering period SEI message as payload.

– When present, a scalable nesting SEI message with all_layer_representations_in_au_flag equal to 1 and a
buffering period SEI message as payload shall be the first scalable nesting SEI message in an access unit.

– Any scalable nesting SEI message with a buffering period SEI message as payload that immediately
precedes another scalable nesting SEI message with a buffering period SEI message as payload shall
have values of 128 * sei_dependency_id[i]) + 8 * sei_quality_id[i] + sei_temporal_id, for all present i,
that are less than any of the values of
128 * sei_dependency_id[i] + 8 * sei_quality_id[i] + sei_temporal_id in the immediately following
scalable nesting SEI message with a buffering period SEI message as payload.

The following additional constraints shall be obeyed:

– Each NAL unit with nal_unit_type equal to 1 or 5 shall be immediately preceded by a prefix NAL unit.

– In bitstreams conforming to this Recommendation | International Standard, each prefix NAL unit shall be
immediately followed by a NAL unit with nal_unit_type equal to 1 or 5.

G.7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

This subclause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL
NAL unit of each primary coded picture.

The first VCL NAL unit of the primary coded picture of the current access unit, in decoding order, shall be different
from the last VCL NAL unit of the primary coded picture of the previous access unit, in decoding order, in one or more
of the following ways:

– dependency_id of the first VCL NAL unit of the primary coded picture of the current access unit is smaller than
dependency_id of the last VCL NAL unit of the primary coded picture of the previous access unit

– dependency_id of the first VCL NAL unit of the primary coded picture of the current access unit is equal to
dependency_id of the last VCL NAL unit of the primary coded picture of the previous access unit and any of the
following conditions is true

– quality_id of the first VCL NAL unit of the primary coded picture of the current access unit is smaller than
quality_id of the last VCL NAL unit of the primary coded picture of the previous access unit

– quality_id of the first VCL NAL unit of the primary coded picture of the current access unit and the last VCL
NAL unit of the primary coded picture of the previous access unit is equal to 0, and any of the conditions
specified in subclause 7.4.1.2.4 is fulfilled

G.7.4.1.2.5 Order of VCL NAL units and association to coded pictures

Each VCL NAL unit is part of a coded picture.

Let dId be the value of dependency_id and let qId be the value of quality_id of any particular VCL NAL unit. The order
of the VCL NAL units within a coded picture is constrained as follows:

– For all VCL NAL units following this particular VCL NAL unit, the value of dependency_id shall be greater than
or equal to dId.

– For all VCL NAL units with a value of dependency_id equal to dId following this particular VCL NAL unit, the
value of quality_id shall be greater than or equal to qId.

414 Rec. ITU-T H.264 (03/2009)

For each set of VCL NAL units within a layer representation, the following applies.

– If arbitrary slice order, as specified in Annex A or subclause G.10, is allowed, coded slice NAL units of a layer
representation may have any order relative to each other.

– Otherwise (arbitrary slice order is not allowed), coded slice NAL units of a slice group shall not be interleaved
with coded slice NAL units of another slice group and the order of coded slice NAL units within a slice group shall
be in the order of increasing macroblock address for the first macroblock of each coded slice NAL unit of the same
slice group.

NAL units having nal_unit_type equal to 12 may be present in the access unit but shall not precede the first VCL NAL
unit of the primary coded picture within the access unit.

NAL units having nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, which are unspecified, may be present
in the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal_unit_type in the range of 21 to 23, inclusive, which are reserved, shall not precede the first VCL
NAL unit of the primary coded picture within the access unit (when specified in the future by ITU-T | ISO/IEC).

G.7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

G.7.4.2.1 Sequence parameter set RBSP semantics

The semantics specified in subclause 7.4.2.1 apply.

G.7.4.2.1.1 Sequence parameter set data semantics

The semantics specified in subclause 7.4.2.1.1 apply with substituting SVC sequence parameter set for sequence
parameter set. Additionally, the following applies.

profile_idc and level_idc indicate the profile and level to which the coded video sequence conforms when the SVC
sequence parameter set is the active SVC sequence parameter set.

constraint_set0_flag is specified as follows.
– If the sequence parameter set data syntax structure is included in a sequence parameter set RBSP, the semantics

specified in subclause 7.4.2.1.1 apply.
– Otherwise (the sequence parameter set data syntax structure is included in a subset sequence parameter set RBSP),

contraint_set0_flag specifies that the coded video sequence obeys all constraints specified in subclause G.10.1.1.
constraint_set0_flag equal to 0 specifies that the coded video sequence may or may not obey all constraints
specified in subclause G.10.1.1.

constraint_set1_flag is specified as follows.
– If the sequence parameter set data syntax structure is included in a sequence parameter set RBSP, the semantics

specified in subclause 7.4.2.1.1 apply.
– Otherwise (the sequence parameter set data syntax structure is included in a subset sequence parameter set RBSP),

contraint_set1_flag specifies that the coded video sequence obeys all constraints specified in subclause G.10.1.2.
constraint_set1_flag equal to 0 specifies that the coded video sequence may or may not obey all constraints
specified in subclause G.10.1.2.

constraint_set2_flag is specified as follows.
– If the sequence parameter set data syntax structure is included in a sequence parameter set RBSP, the semantics

specified in subclause 7.4.2.1.1 apply.
– Otherwise (the sequence parameter set data syntax structure is included in a subset sequence parameter set RBSP),

the value of 1 for constraint_set2_flag is reserved for future use by ITU-T | ISO/IEC. constraint_set2_flag shall be
equal to 0 for coded video sequences with profile_idc equal to 83 and 86 in bitstreams conforming to this
Recommendation | International Standard. Decoders conforming to this Recommendation | International Standard
shall ignore the value of constraint_set2_flag when profile_idc is equal to 83 or 86.

constraint_set3_flag is specified as follows.
– If the sequence parameter set data syntax structure is included in a sequence parameter set RBSP, the semantics

specified in subclause 7.4.2.1.1 apply.

 Rec. ITU-T H.264 (03/2009) 415

– Otherwise (the sequence parameter set data syntax structure is included in a subset sequence parameter set RBSP),
the following applies.
– If profile_idc is equal to 86, constraint_set3_flag equal to 1 specifies that the coded video sequence obeys all

constraints specified in subclause G.10.1.3, and constraint_set3_flag equal to 0 specifies that the coded video
sequence may or may not obey these corresponding constraints.

– Otherwise (profile_idc is not equal to 86), the value of 1 for constraint_set3_flag is reserved for future use by
ITU-T | ISO/IEC. constraint_set3_flag shall be equal to 0 for coded video sequences with profile_idc not
equal to 86 in bitstreams conforming to this Recommendation | International Standard. Decoders conforming
to this Recommendation | International Standard shall ignore the value of constraint_set3_flag when
profile_idc is not equal to 86.

The value of separate_colour_plane_flag shall be equal to 0 and the value of qpprime_y_zero_transform_bypass_flag
shall be equal to 0.

When the value of profile_idc does not indicate conformance to any of the profiles specified in Annex A and
vui_parameters_present_flag is equal to 1, timing_info_present_flag shall be equal to 0,
nal_hrd_parameters_present_flag shall be equal to 0, vcl_hrd_parameters_present_flag shall be equal to 0, and
pic_struct_present_flag shall be equal to 0.

When the value of profile_idc does indicate conformance to one or more of the profiles specified in Annex A and
vui_parameters_present_flag is equal to 1, the values of timing_info_present_flag, num_units_in_tick, time_scale,
fixed_frame_rate_flag, nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag, low_delay_hrd_flag,
pic_struct_present_flag and the values of syntax elements included in the hrd_parameters() syntax structures, when
present, shall be such that the bitstream activating the sequence parameter set is conforming to one or more of the
profiles specified in Annex A.

max_num_ref_frames specifies the maximum number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields that may be used by the decoding process for inter prediction of
any picture in the sequence. max_num_ref_frames also determines the size of the sliding window operation as specified
in subclause G.8.2.4.2. The value of max_num_ref_frames shall be in the range of 0 to MaxDpbFrames (as specified in
subclause G.10), inclusive.

The allowed range of values for pic_width_in_mbs_minus1, pic_height_in_map_units_minus1, and
frame_mbs_only_flag is specified by constraints in subclause G.10.

G.7.4.2.1.1.1 Scaling list semantics

The semantics specified in subclause 7.4.2.1.1.1 apply.

G.7.4.2.1.2 Sequence parameter set extension RBSP semantics

The semantics specified in subclause 7.4.2.1.2 apply. Additionally, the following applies.

Sequence parameter set extension RBSPs can only follow sequence parameter set RBSPs in decoding order. Subset
sequence parameter set RBSPs shall not be followed by a sequence parameter set extension RBSP. The contents of
sequence parameter set extension RBSPs only apply when the base layer, which conforms to one or more of the profiles
specified in Annex A, of a coded video sequence conforming to one or more of the profiles specified in Annex G is
decoded.

G.7.4.2.1.3 Subset sequence parameter set RBSP semantics

The semantics specified in subclause 7.4.2.1.3 apply.

G.7.4.2.1.4 Sequence parameter set SVC extension semantics

inter_layer_deblocking_filter_control_present_flag equal to 1 specifies that a set of syntax elements controlling the
characteristics of the deblocking filter for inter-layer prediction is present in the slice header.
inter_layer_deblocking_filter_control_present_flag equal to 0 specifies that the set of syntax elements controlling the
characteristics of the deblocking filter for inter-layer prediction is not present in the slice headers and their inferred
values are in effect.

extended_spatial_scalability_idc specifies the presence of syntax elements related to geometrical parameters for the
resampling processes. The value of extended_spatial_scalability_idc shall be in the range of 0 to 2, inclusive, and the
following applies.

– If extended_spatial_scalability_idc is equal to 0, no geometrical parameters are present in the subset sequence
parameter set and the slice headers referring to this subset sequence parameter set.

416 Rec. ITU-T H.264 (03/2009)

– Otherwise, if extended_spatial_scalability_idc is equal to 1, geometrical parameters are present in the subset
sequence parameter set, but not in the slice headers referring to this subset sequence parameter set.

– Otherwise (extended_spatial_scalability_idc is equal to 2), geometrical parameters are not present in the subset
sequence parameter set, but they are present in the slice headers referring to this subset sequence parameter set.

chroma_phase_x_plus1_flag specifies the horizontal phase shift of the chroma components in units of half luma
samples of a frame or layer frame. When chroma_phase_x_plus1_flag is not present, it shall be inferred to be equal to 1.

When ChromaArrayType is equal to 1 and chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field are present, the following applies.

– If chroma_phase_x_plus1_flag is equal to 0, chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field should be equal to 0, 2, or 4.

– Otherwise (chroma_phase_x_plus1_flag is equal to 1), chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field should be equal to 1, 3, or 5.

When ChromaArrayType is equal to 2, chroma_phase_x_plus1_flag should be equal to 1.

chroma_phase_y_plus1 specifies the vertical phase shift of the chroma components in units of half luma samples of a
frame or layer frame. When chroma_phase_y_plus1 is not present, it shall be inferred to be equal to 1. The value of
chroma_phase_y_plus1 shall be in the range of 0 to 2, inclusive.

When ChromaArrayType is equal to 1 and chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field are present, the following applies.

– If chroma_phase_y_plus1 is equal to 0, chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field should be equal to 2 or 3.

– Otherwise, if chroma_phase_y_plus1 is equal to 1, chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field should be equal to 0 or 1.

– Otherwise (chroma_phase_y_plus1 is equal to 2), chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field should be equal to 4 or 5.

seq_ref_layer_chroma_phase_x_plus1_flag specifies the horizontal phase shift of the chroma components in units of
half luma samples of a layer frame for the layer pictures that may be used for inter-layer prediction. When
seq_ref_layer_chroma_phase_x_plus1_flag is not present, it shall be inferred to be equal to
chroma_phase_x_plus1_flag.

seq_ref_layer_chroma_phase_y_plus1 specifies the vertical phase shift of the chroma components in units of half
luma samples of a layer frame for the layer pictures that may be used for inter-layer prediction. When
seq_ref_layer_chroma_phase_y_plus1 is not present, it shall be inferred to be equal to chroma_phase_y_plus1. The
value of seq_ref_layer_chroma_phase_y_plus1 shall be in the range of 0 to 2, inclusive.

seq_scaled_ref_layer_left_offset specifies the horizontal offset between the upper-left luma sample of a resampled
layer picture used for inter-layer prediction and the upper-left luma sample of the current picture or current layer picture
in units of two luma samples. When seq_scaled_ref_layer_left_offset is not present, it shall be inferred to be equal to 0.

seq_scaled_ref_layer_top_offset specifies the vertical offset between the upper-left luma sample of a resampled layer
picture used for inter-layer prediction and the upper-left luma sample of the current picture or current layer picture.
Depending on the value of frame_mbs_only_flag, the following applies.

– If frame_mbs_only_flag is equal to 1, the vertical offset is specified in units of two luma samples.

– Otherwise (frame_mbs_only_flag is equal to 0), the vertical offset is specified in units of four luma samples.

When seq_scaled_ref_layer_top_offset is not present, it shall be inferred to be equal to 0.

seq_scaled_ref_layer_right_offset specifies the horizontal offset between the bottom-right luma sample of a
resampled layer picture used for inter-layer prediction and the bottom-right luma sample of the current picture or
current layer picture in units of two luma samples. When seq_scaled_ref_layer_right_offset is not present, it shall be
inferred to be equal to 0.

seq_scaled_ref_layer_bottom_offset specifies the vertical offset between the bottom-right luma sample of a resampled
layer picture used for inter-layer prediction and the bottom-right luma sample of the current picture or current layer
picture. Depending on the value of frame_mbs_only_flag, the following applies.

– If frame_mbs_only_flag is equal to 1, the vertical offset is specified in units of two luma samples.

– Otherwise (frame_mbs_only_flag is equal to 0), the vertical offset is specified in units of four luma samples.

 Rec. ITU-T H.264 (03/2009) 417

When seq_scaled_ref_layer_bottom_offset is not present, it shall be inferred to be equal to 0.

seq_tcoeff_level_prediction_flag specifies the presence of the syntax element adaptive_tcoeff_level_prediction_flag in
the subset sequence parameter set.

adaptive_tcoeff_level_prediction_flag specifies the presence of tcoeff_level_prediction_flag in slice headers that refer
to the subset sequence parameter set. When adaptive_tcoeff_level_prediction_flag is not present, it shall be inferred to
be equal to 0.

slice_header_restriction_flag specifies the presence of syntax elements in slice headers that refer to the subset
sequence parameter set.

G.7.4.2.2 Picture parameter set RBSP semantics

The semantics specified in subclause 7.4.2.2 apply with substituting "SVC sequence parameter set" for "sequence
parameter set" and substituting "active SVC sequence parameter set or active layer SVC sequence parameter set" for
"active sequence parameter set". Additionally, the following applies.

num_slice_groups_minus1 plus 1 specifies the number of slice groups for a picture. When num_slice_groups_minus1
is equal to 0, all slices of the picture belong to the same slice group. The allowed range of num_slice_groups_minus1 is
specified in subclause G.10.

G.7.4.2.3 Supplemental enhancement information RBSP semantics

The semantics specified in subclause 7.4.2.3 apply.

G.7.4.2.3.1 Supplemental enhancement information message semantics

The semantics specified in subclause 7.4.2.3.1 apply.

G.7.4.2.4 Access unit delimiter RBSP semantics

The semantics specified in subclause 7.4.2.4 apply.

G.7.4.2.5 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any)
shall be an access unit for which all layer representation of the primary coded picture have IdrPicFlag equal to 1. The
syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No normative decoding process is
specified for an end of sequence RBSP.

G.7.4.2.6 End of stream RBSP semantics

The semantics specified in subclause 7.4.2.6 apply.

G.7.4.2.7 Filler data RBSP semantics

The semantics specified in subclause 7.4.2.7 apply with the following addition.

Filler data NAL units shall be considered to contain the syntax elements dependency_id, quality_id, temporal_id, and
priority_id with values that are inferred as follows.

1. Let prevSvcNalUnit be the most recent NAL unit in decoding order that has nal_unit_type equal to 14 or 20.
NOTE – The most recent NAL unit in decoding order with nal_unit_type equal to 14 or 20 always belongs to the same
access unit as the filler data NAL unit.

2. The values of dependency_id, quality_id, temporal_id, and priority_id for the filler data NAL unit are inferred to
be equal to the values of dependency_id, quality_id, temporal_id, and priority_id, respectively, of the NAL unit
prevSvcNalUnit.

G.7.4.2.8 Slice layer without partitioning RBSP semantics

The semantics specified in subclause 7.4.2.8 apply.

G.7.4.2.9 Slice data partition RBSP semantics

Slice data partition syntax is not present in bitstreams conforming to any of the profiles specified in Annex G.

G.7.4.2.10 RBSP slice trailing bits semantics

The semantics specified in subclause 7.4.2.10 apply with the following modifications.

418 Rec. ITU-T H.264 (03/2009)

Let NumBytesInVclNALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a layer
representation and let BinCountsInNALunits be the number of times that the parsing process function DecodeBin(),
specified in subclause 9.3.3.2, is invoked to decode the contents of all VCL NAL units of the layer representation.
When entropy_coding_mode_flag is equal to 1, BinCountsInNALunits shall not exceed
(32 ÷ 3) * NumBytesInVclNALunits + (RawMbBits * PicSizeInMbs) ÷ 32.

NOTE – The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units of a
layer representation can be met by inserting a number of cabac_zero_word syntax elements to increase the value of
NumBytesInVclNALunits. Each cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result
of the constraints on NAL unit contents that result in requiring inclusion of an emulation_prevention_three_byte for each
cabac_zero_word).

G.7.4.2.11 RBSP trailing bits semantics

The semantics specified in subclause 7.4.2.11 apply.

G.7.4.2.12 Prefix NAL unit RBSP semantics

The semantics specified in subclause 7.4.2.12 apply.

G.7.4.2.12.1 Prefix NAL unit SVC semantics

The syntax element store_ref_base_pic_flag is considered as if it was present in the associated NAL unit.

store_ref_base_pic_flag equal to 1 specifies that, when the value of dependency_id as specified in the NAL unit
header, is equal to the maximum value of dependency_id for the VCL NAL units of the current coded picture, an
additional representation of the coded picture that may or may not be identical to the decoded picture is marked as "used
for reference". This additional representation is also referred to as reference base picture and may be used for inter
prediction of following pictures in decoding order, but it is not output. When store_ref_base_pic_flag is not present, it
shall be inferred to be equal to 0.

The syntax element store_ref_base_pic_flag shall have the same value for all VCL NAL units of a dependency
representation. When nal_ref_idc is equal to 0, store_ref_base_pic_flag shall be equal to 0.

When max_num_ref_frames is less than 2 in the SVC sequence parameter set that is referred to by the associated NAL
unit, store_ref_base_pic_flag shall be equal to 0.

additional_prefix_nal_unit_extension_flag equal to 0 specifies that the prefix_nal_unit_svc() syntax structure does
not contain any additional_prefix_nal_unit_extension_data_flag syntax elements.
additional_prefix_nal_unit_extension_flag shall be equal to 0 in bitstreams conforming to this
Recommendation | International Standard. The value of 1 for additional_prefix_nal_unit_extension_flag is reserved for
future use by ITU-T | ISO/IEC. Decoders shall ignore all data that follow the value 1 for
additional_prefix_nal_unit_extension_flag in a prefix_nal_unit_svc() syntax structure.

additional_prefix_nal_unit_extension_data_flag may have any value.
NOTE – The syntax elements additional_prefix_nal_unit_extension_flag and additional_prefix_nal_unit_extension_data_flag are
not used by the decoding process specified in this Recommendation | International Standard.

G.7.4.2.13 Slice layer extension RBSP semantics

The semantics specified in subclause 7.4.2.13 apply.

G.7.4.3 Slice header semantics

The semantics specified in subclause 7.4.3 apply with the following modifications.

a) All referenced syntax elements and variables are syntax elements and variables for the dependency
representation with dependency_id equal to 0.

b) A frame, field, top field, bottom field, picture, and decoded picture is interpreted as layer frame, layer field,
layer top field, layer bottom field, layer picture, and decoded layer picture, respectively, that represent an
intermediate decoding result for the dependency representation with dependency_id equal to 0.

c) An IDR picture is interpreted as layer picture with IdrPicFlag equal to 1 for the dependency representation
with dependency_id equal to 0.

d) An IDR access unit is interpreted as an access unit containing a primary coded picture with IdrPicFlag equal
to 1 for the dependency representation with dependency_id equal to 0.

e) A reference frame, reference field, and reference picture is interpreted as layer frame, layer field, and layer
picture with nal_ref_idc greater than 0 for the dependency representation with dependency_id equal to 0.

 Rec. ITU-T H.264 (03/2009) 419

f) A non-reference frame, non-reference field, and non-reference picture is interpreted as layer frame, layer field,
and layer picture with nal_ref_idc equal to 0 for the dependency representation with dependency_id equal to 0.

g) All constraints specified in subclause 7.4.3 apply only to layer representations with DQId equal to 0.

h) The slice_header() syntax structure shall be considered to contain the following syntax elements with the
following inferred values:

– ref_layer_dq_id is inferred to be equal to −1.

– scan_idx_start is inferred to be equal to 0.

– scan_idx_end is inferred to be equal to 15.

i) References to the decoded reference picture marking process as specified in subclause 8.2.5 are replaced with
reference to the SVC decoded reference picture marking process as specified in subclause G.8.2.4.

j) The value of direct_spatial_mv_pred_flag shall be equal to 1.

k) The variable CroppingChangeFlag is set equal to 0.

l) The variable SpatialResolutionChangeFlag is set equal to 0.

m) In the semantics of first_mb_in_slice, the reference to Annex A is substituted with a reference to
subclause G.10

G.7.4.3.1 Reference picture list modification semantics

The semantics specified in subclause 7.4.3.1 apply. For this specification, the modifications a) to f) specified in
subclause G.7.4.3 apply. When quality_id is greater than 0, all syntax elements of the ref_pic_list_modification()
syntax structure are inferred as specified in the beginning of subclause G.7.4.3.4.

G.7.4.3.2 Prediction weight table semantics

The semantics specified in subclause 7.4.3.2 apply. When quality_id is greater than 0, all syntax elements of the
pred_weight_table() syntax structure are inferred as specified in the beginning of subclause G.7.4.3.4.

G.7.4.3.3 Decoded reference picture marking semantics

The semantics specified in subclause 7.4.3.3 apply with substituting "SVC sequence parameter set" for "sequence
parameter set" and with considering the reference pictures marked as "reference base pictures" as not present. The
constraints specified in subclause 7.4.3.3 apply only to the dependency representation with dependency_id equal to the
current value of dependency_id and the modifications a) and b) specified in subclause G.8.2 apply with
currDependencyId being equal to the current value of dependency_id.

When quality_id is greater than 0, all syntax elements of the dec_ref_pic_marking() syntax structure are inferred as
specified in the beginning of subclause G.7.4.3.4.

In addition to the constraints specified in 7.4.3.3, the following constraints are specified:

a) When decoding a frame, the dec_ref_pic_marking() syntax structure shall not contain a
memory_management_control_operation command equal to 3 that assigns a long-term frame index to a
complementary reference field pair (not marked as "reference base picture") when any of the following
conditions is true (when processing the memory_management_control_operation command equal to 3):

– there exists a non-paired reference base field (marked as "reference base picture") that is associated with
one of the fields of the complementary reference field pair and that is marked as "used for reference",

– there exists a complementary reference base field pair (marked as "reference base picture") that is
associated with the complementary reference field pair and in which one field is marked as "used for
reference" and the other field is marked as "unused for reference".

b) When decoding a field, the dec_ref_pic_marking() syntax structure shall not contain a
memory_management_control_operation command equal to 3 that assigns a long-term frame index to a field
(not marked as "reference base picture") of a reference frame or a complementary reference field pair when
both of the following conditions are true (when processing the memory_management_control_operation
command equal to 3):

– the other field of the reference frame or complementary reference field pair is marked as "unused for
reference",

420 Rec. ITU-T H.264 (03/2009)

– there exists a reference base frame or a complementary reference base field pair (marked as "reference
base picture") that is associated with the reference frame or complementary reference field pair,
respectively, and in which both fields are marked as "used for reference".

c) When decoding the second field (in decoding order) of a complementary reference field pair, the
dec_ref_pic_marking() syntax structure shall not contain a memory_management_control_operation
command equal to 6 that assigns a long-term frame index to this field when both of the following conditions
are true:

– there exists a reference base field (marked as "reference base picture") that is associated with the first
field of the complementary reference field pair and that is marked as "used for short-term reference"
when the memory_management_control_operation command equal to 6 is processed,

– the dec_ref_pic_marking() syntax structure does not contain a memory_management_control_operation
command equal to 3 that assigns the same long-term frame index to the first field of the complementary
reference field pair.

NOTE – The additional constraints specified above (in connection with the constraints specified in subclause 7.4.3.3) ensure that
after processing all memory_management_control_operation commands of the decoded reference picture marking syntax
structure the following applies, with reference entry being a collective term for a non-paired reference field, a reference frame, or
a complementary reference field pair (not marked as "reference base picture") and reference base entry being a collective term for
a non-paired reference base field, a reference base frame, or a complementary reference base field pair (marked as "reference
base picture"): When one or more fields of a reference entry are marked as "used for reference" and there exists a reference base
entry that is associated with the reference entry or one field of the reference entry and one or more fields of the reference base
entry are marked as "used for reference", either all fields of the reference entry and the reference base entry that are marked as
"used for reference" must be marked as "used for short-term reference" or all fields of the reference entry and the reference base
entry that are marked as "used for reference" must be marked as "used for long-term reference". When these fields are marked as
"used for long-term reference", the same value of long-term frame index must be assigned to all fields of the reference entry and
the reference base entry that are marked as "used for reference".

G.7.4.3.4 Slice header in scalable extension semantics

Unless stated otherwise, for all references to subclause 7.4.3 inside this subclause, the following modifications apply.

a) All referenced syntax elements and variables are syntax elements and variables for the dependency
representation with dependency_id equal to the current value of dependency_id.

b) A frame, field, top field, bottom field, picture, and decoded picture is interpreted as layer frame, layer field,
layer top field, layer bottom field, layer picture, and decoded layer picture, respectively, that represent an
intermediate decoding result for the dependency representation with dependency_id equal to the current value
of dependency_id.

c) An IDR picture is interpreted as layer picture with IdrPicFlag equal to 1 for the dependency representation
with dependency_id equal to the current value of dependency_id.

d) An IDR access unit is interpreted as an access unit containing a primary coded picture with IdrPicFlag equal
to 1 for the dependency representation with dependency_id equal to the current value of dependency_id.

e) A reference frame, reference field, and reference picture is interpreted as layer frame, layer field, and layer
picture with nal_ref_idc greater than 0 for the dependency representation with dependency_id equal to the
current value of dependency_id.

f) A non-reference frame, non-reference field, and non-reference picture is interpreted as layer frame, layer field,
and layer picture with nal_ref_idc equal to 0 for the dependency representation with dependency_id equal to
the current value of dependency_id.

g) References to the decoded reference picture marking process as specified in subclause 8.2.5 are replaced with
reference to the SVC decoded reference picture marking process as specified in subclause G.8.2.4.

When quality_id is greater than 0, the following syntax elements (that are not present) shall be inferred to be equal to
the corresponding syntax elements of the slice header of the slice with dependency_id equal to the current value of
dependency_id and quality_id equal to 0, in the same coded picture, that covers the macroblock with the macroblock
address (first_mb_in_slice * (1 + MbaffFrameFlag)), when present in this slice: direct_spatial_mv_pred_flag,
num_ref_idx_active_override_flag, num_ref_idx_l0_active_minus1, num_ref_idx_l1_active_minus1, all syntax
elements of the syntax structure ref_pic_list_modification(), base_pred_weight_table_flag, all syntax elements of the
syntax structure pred_weight_table(), all syntax elements of the syntax structure dec_ref_pic_marking(), all syntax
elements of the syntax structure dec_ref_base_pic_marking(), and store_ref_base_pic_flag.

The value of the following SVC sequence parameter set syntax elements shall be the same across all coded slice NAL
units of an access unit: bit_depth_luma_minus8, bit_depth_chroma_minus8, and chroma_format_idc.

 Rec. ITU-T H.264 (03/2009) 421

For all coded slice NAL units of a coded picture in which the syntax element field_pic_flag is present, field_pic_flag
shall have the same value.

For all coded slice NAL units of a coded picture in which the syntax element bottom_field_flag is present,
bottom_field_flag shall have the same value.

When present in any coded slice NAL unit of a dependency representation, the value of the following slice header
syntax elements shall be the same across all slices of the dependency representation including slice headers of NAL
units with nal_unit_type equal to 1, 2, or 5: frame_num, idr_pic_id, pic_order_cnt_lsb, delta_pic_order_cnt_bottom,
delta_pic_order_cnt[0], and delta_pic_order_cnt[1].

When present, the value of the following slice header syntax elements shall be the same across all slices of a layer
representation: pic_parameter_set_id, ref_layer_dq_id, disable_inter_layer_deblocking_filter_idc,
inter_layer_slice_alpha_c0_offset_div2, inter_layer_slice_beta_offset_div2, constrained_intra_resampling_flag,
ref_layer_chroma_phase_x_plus1_flag, ref_layer_chroma_phase_y_plus1, scaled_ref_layer_left_offset,
scaled_ref_layer_top_offset, scaled_ref_layer_right_offset, scaled_ref_layer_bottom_offset, slice_group_change_cycle,
store_ref_base_pic_flag, tcoeff_level_prediction_flag, and all syntax elements of the syntax structures
dec_ref_pic_marking() and dec_ref_base_pic_marking().

Let setOfRefLayerSlices be the set of slices with dependency_id equal to the current value of dependency_id and
quality_id equal to 0, inside the current coded picture, that are covered or partly covered by the macroblocks of the
current slice.

When quality_id is greater than 0, the value of (slice_type % 5) for all slices in the set setOfRefLayerSlices shall be the
same as the value of (slice_type % 5) for the current slice.

When quality_id is greater than 0 and setOfRefLayerSlices contains more than one slice, the following constraints shall
be obeyed:

a) When slice_type specifies an EP or EB slice, the value of the syntax element num_ref_idx_l0_active_minus1
(either the value transmitted in the slice header when num_ref_idx_active_override_flag is equal to 1 or the
value of the referenced picture parameter set when num_ref_idx_active_override_flag is equal to 0) shall be
the same across all slices of the set setOfRefLayerSlices.

b) When slice_type specifies an EB slice, the value of the syntax element num_ref_idx_l1_active_minus1 (either
the value transmitted in the slice header when num_ref_idx_active_override_flag is equal to 1 or the value of
the referenced picture parameter set when num_ref_idx_active_override_flag is equal to 0) shall be the same
across all slices of the set setOfRefLayerSlices.

c) All elements of the syntax structure ref_pic_list_modification() shall be the same across all slices of the set
setOfRefLayerSlices.

d) When slice_type specifies an EP slice, the syntax element weighted_pred_flag shall be the same across all
slices of the set setOfRefLayerSlices and the following applies.

i) When weighted_pred_flag is equal to 1 and no_inter_layer_pred_flag is equal to 0 for any of the slices of
the set setRefLayerSlices, base_pred_weight_table_flag shall be the same across all slices of the set
setOfRefLayerSlices.

ii) When weighted_pred_flag is equal to 1 for any of the slices of the set setRefLayerSlices and
pred_weight_table() is present in any of the slices of the set setOfRefLayerSlices, pred_weight_table()
shall be present in all slices of the set setOfRefLayerSlices and all syntax elements inside the syntax
structure pred_weight_table() shall be the same across all slices of the set setOfRefLayerSlices.

e) When slice_type specifies an EB slice, the syntax element weighted_bipred_idc shall be the same across all
slices of the set setOfRefLayerSlices and the following applies.

i) When weighted_bipred_idc is equal to 1 and no_inter_layer_pred_flag is equal to 0 for any of the slices
of the set setRefLayerSlices, base_pred_weight_table_flag shall the same across all slices of the set
setOfRefLayerSlices.

ii) When weighted_bipred_idc is equal to 1 for any of the slices of the set setRefLayerSlices and
pred_weight_table() is present in any of the slices of the set setOfRefLayerSlices, pred_weight_table()
shall be present in all slices of the set setOfRefLayerSlices and all syntax elements inside the syntax
structure pred_weight_table() shall be the same across all slices of the set setOfRefLayerSlices.

first_mb_in_slice has the same semantics as specified in subclause 7.4.3 with the term current picture being substituted
by the term current layer representation and with the reference to Annex A being substituted by a reference to
subclause G.10.

422 Rec. ITU-T H.264 (03/2009)

slice_type specifies the coding type of the slice according to Table G-1.

Table G-1 – Name association to slice_type for NAL units with nal_unit_type equal to 20.

slice_type Name of slice_type
0, 5 EP (P slice in scalable extension)
1, 6 EB (B slice in scalable extension)
2, 7 EI (I slice in scalable extension)

slice_type values in the range of 5 to 7, inclusive, specify, in addition to the coding type of the current slice, that all
other slices of the current layer representation shall have a value of slice_type equal to the current value of slice_type or
equal to the current value of slice_type minus 5.

When idr_flag is equal to 1 or max_num_ref_frames is equal to 0, slice_type shall be equal to 2 or 7.

In the text (in particular when the clauses 7-9 are referenced in this annex), slices with (slice_type % 5) equal to 0, 1,
and 2 may be collectively referred to as P, B, and I slices, respectively, regardless of whether the slices are coded using
NAL units with nal_unit_type equal to 20 (slice_type is present in the slice_header_in_scalable_extension() syntax
structure) or NAL units with nal_unit_type in the range of 1 to 5, inclusive (slice_type is present in the slice_header()
syntax structure).

pic_parameter_set_id has the same semantics as specified in subclause 7.4.3.

colour_plane_id has the same semantics as specified in subclause 7.4.3.

frame_num is used as an identifier for dependency representations and shall be represented by
log2_max_frame_num_minus4 + 4 bits in the bitstream.

frame_num is constrained as specified in subclause 7.4.3. For this specification, the modifications a) to f) specified in
the first paragraph of this subclause apply.

field_pic_flag and bottom_field_flag have the same semantics as specified in subclause7.4.3. For this specification, the
modifications a) to d) specified in the first paragraph of this subclause apply.

idr_pic_id identifies an IDR picture when dependency_id is equal to the maximum present value of dependency_id in
the VCL NAL units of the current coded picture. The value of idr_pic_id shall be in the range of 0 to 65535, inclusive.

When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in the slices of
the target dependency representation in the primary coded pictures of the first such IDR access unit shall differ from the
idr_pic_id in the slices of the target dependency representation in the primary coded pictures of the second such IDR
access unit.

NOTE 1 – The classification of an access unit as IDR access unit depends on the maximum present value of dependency_id.
When NAL units are removed from a bitstream, e.g. in order to adjust the bitstream to the capabilities of a receiving device, the
classification of access units as IDR access units may change. Since all bitstreams for different conformance points supported in
a scalable bitstream (in particular for different maximum values of dependency_id) must conform to this
Recommendation | International Standard (as specified in subclause G.8.8.1), the constraints on idr_pic_id must be obeyed for all
conformance points contained in a scalable bitstream.

pic_order_cnt_lsb, delta_pic_order_cnt_bottom, delta_pic_order_cnt[0], and delta_pic_order_cnt[1] have the
same semantics as specified in subclause 7.4.3. For this specification, the modifications a) to f) specified in the first
paragraph of this subclause apply.

redundant_pic_cnt has the same semantics as specified in subclause 7.4.3. For this specification, the modifications a)
to g) specified in the first paragraph of this subclause apply.

direct_spatial_mv_pred_flag specifies the method used in the decoding process to derive motion vectors and reference
indices for inter prediction. When quality_id is greater than 0, direct_spatial_mv_pred_flag is inferred as specified in
the beginning of this subclause. The value of direct_spatial_mv_pred_flag shall be equal to 1.

num_ref_idx_active_override_flag, num_ref_idx_l0_active_minus1, and num_ref_idx_l1_active_minus1 have the
same semantics as specified in subclause 7.4.3. When quality_id is greater than 0, num_ref_idx_active_override_flag,
num_ref_idx_l0_active_minus1, and num_ref_idx_l1_active_minus1 are inferred as specified in the beginning of this
subclause.

base_pred_weight_table_flag equal to 1 specifies that the variables for weighted prediction are inferred. When
base_pred_weight_table_flag is not present, it shall be inferred as follows.

– If no_inter_layer_pred_flag is equal to 1 or quality_id is greater than 0, base_pred_weight_table_flag is inferred to
be equal to 0.

 Rec. ITU-T H.264 (03/2009) 423

– Otherwise (no_inter_layer_pred_flag is equal to 0 and quality_id is equal to 0), base_pred_weight_table_flag is
inferred to be equal to 1.

Let setOfRefLayerSlices be the set of slices that is represented by the VCL NAL units with dependency_id equal to
(ref_layer_dq_id >> 4) and quality_id equal to 0 inside the current coded picture.

When base_pred_weight_table_flag equal to 1 the following constraints shall be obeyed.

a) For all slices in setOfRefLayerSlices, the value of (slice_type % 5) shall be equal to (slice_type % 5) of the
current slice.

b) When base_pred_weight_table_flag equal to 1 and the syntax structure pred_weight_table() is present in any
slice in setOfRefLayerSlices, it shall be present for all slices in setOfRefLayerSlices, and all syntax elements
inside the syntax structure pred_weight_table() shall be identical for all slices in setOfRefLayerSlices.

c) When base_pred_weight_table_flag is present in any slice in setOfRefLayerSlices, it shall have the same value
in all slices in setOfRefLayerSlices.

d) When the current slice is an EP slice, the following applies.

i) The value of num_ref_idx_l0_active_minus1 of all slices in setOfRefLayerSlices shall be identical to the
value of num_ref_idx_l0_active_minus1 of the current slice.

ii) For each slice in setOfRefLayerSlices all syntax elements inside the syntax structure
ref_pic_list_modification() shall be the same, and the syntax structure ref_pic_list_modification() for
the slices in setOfRefLayerSlices shall contain syntax elements so that for useRefBasePicFlag equal to 0
and 1, an invocation of subclause G.8.2.3 with currDependencyId set equal to (ref_layer_dq_id >> 4),
useRefBasePicFlag, and any slice of setOfRefLayerSlices as the inputs derives a reference picture list
refPicList0RefLayer that is identical to the reference picture list refPicList0, which is derived by invoking
subclause G.8.2.3 with currDependencyId set equal to dependency_id, useRefBasePicFlag, and the
current slice as the inputs.

iii) The syntax element weighted_pred_flag shall be equal to 1 for all slices in setOfRefLayerSlices.

e) When the current slice is an EB slice, the following applies.

i) The value of num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 of all slices in
setOfRefLayerSlices shall be identical to the value of num_ref_idx_l0_active_minus1 and
num_ref_idx_l1_active_minus1, respectively, of the current slice.

ii) For each slice in setOfRefLayerSlices all syntax elements inside the syntax structure
ref_pic_list_modification() shall be the same, and the syntax structure ref_pic_list_modification() for
the slices in setOfRefLayerSlices shall contain syntax elements so that for useRefBasePicFlag equal to 0
and 1, an invoking of subclause G.8.2.3 with currDependencyId set equal to (ref_layer_dq_id >> 4),
useRefBasePicFlag, and any slice of setOfRefLayerSlices as the inputs derives reference picture lists
refPicList0RefLayer and refPicList1RefLayer that are identical to the reference picture lists refPicList0
and refPicList1, respectively, which are derived by invoking subclause G.8.2.3 with currDependencyId
set equal to dependency_id, useRefBasePicFlag, and the current slice as the inputs.

iii) The syntax element weighted_bipred_idc shall be equal to 1 for all slices in setOfRefLayerSlices.

When quality_id is greater than 0, all elements of pred_weight_table are inferred as specified in the beginning of this
subclause.

store_ref_base_pic_flag equal to 1 specifies that, when the value of dependency_id is equal to the maximum value of
dependency_id for the VCL NAL units of the current coded picture, an additional representation of the coded picture
that may or may not be identical to the decoded picture is marked as "used for reference". This additional representation
is also referred to as reference base picture and may be used for inter prediction of following pictures in decoding order,
but it is not output. When store_ref_base_pic_flag is not present, it shall be inferred as follows.

– If quality_id is equal to 0, store_ref_base_pic_flag is inferred to be equal to 0.

– Otherwise (quality_id is greater than 0), store_ref_base_pic_flag is inferred as specified in the beginning of this
subclause.

The syntax element store_ref_base_pic_flag shall have the same value for all VCL NAL units of a dependency
representation. When nal_ref_idc is equal to 0, store_ref_base_pic_flag shall be equal to 0.

When max_num_ref_frames is less than 2, store_ref_base_pic_flag shall be equal to 0.

cabac_init_idc and slice_qp_delta have the same semantics as specified in subclause 7.4.3.

424 Rec. ITU-T H.264 (03/2009)

disable_deblocking_filter_idc specifies whether the operation of the deblocking filter shall be disabled across some
block edges of the slice, specifies for which edges the filtering is disabled, and specifies the order of deblocking filter
operations. When disable_deblocking_filter_idc is not present in the slice header, the value of
disable_deblocking_filter_idc shall be inferred to be equal to 0.

The value of disable_deblocking_filter_idc shall be in the range of 0 to 6, inclusive. disable_deblocking_filter_idc equal
to 0 specifies that all luma and chroma block edges of the slice are filtered. disable_deblocking_filter_idc equal to 1
specifies that deblocking is disabled for all block edges of the slice. disable_deblocking_filter_idc equal to 2 specifies
that all luma and chroma block edges of the slice are filtered with exception of the block edges that coincide with slice
boundaries. disable_deblocking_filter_idc equal to 3 specifies a two stage deblocking filter process for the slice: After
filtering all block luma and chroma block edges that do not coincide with slice boundaries (as if
disable_deblocking_filter_idc were equal to 2), the luma and chroma block edges that coincide with slice boundaries are
filtered. disable_deblocking_filter_idc equal to 4 specifies that all luma block edges of the slice are filtered, but the
deblocking of the chroma block edges is disabled. disable_deblocking_filter_idc equal to 5 specifies that all luma block
edges of the slice are filtered with exception of the block edges that coincide with slice boundaries (as if
disable_deblocking_filter_idc were equal to 2), and that deblocking for chroma block edges of the slice is disabled.
disable_deblocking_filter_idc equal to 6 specifies that the deblocking for chroma block edges is disabled and that the
two stage deblocking filter process is used for luma block edges of the slice: After filtering all block luma block edges
that do not coincide with slice boundaries (as if disable_deblocking_filter_idc were equal to 2), the luma block edges
that coincide with slice boundaries are filtered.

When no_inter_layer_pred_flag is equal to 1 or tcoeff_level_prediction_flag is equal to 1, the value of
disable_deblocking_filter_idc shall be in the range of 0 to 2, inclusive.

slice_alpha_c0_offset_div2, and slice_beta_offset_div2 have the same semantics as specified in subclause 7.4.3.

slice_group_change_cycle has the same semantics as specified in subclause 7.4.3.

ref_layer_dq_id specifies the layer representation inside the current coded picture that is used for inter-layer prediction
of the current layer representation. When ref_layer_dq_id is not present, it shall be inferred as follows.

– If quality_id is greater than 0, ref_layer_dq_id is inferred to be equal to (DQId − 1).

– Otherwise (quality_id is equal to 0), ref_layer_dq_id is inferred to be equal to −1.

The layer representation inside the current coded picture that has a value of DQId equal ref_layer_dq_id is also referred
to as reference layer representation.

When quality_id is equal to 0, the NAL units with DQId equal to ref_layer_dq_id shall have discardable_flag equal
to 0.

When present, the value of ref_layer_dq_id shall be the same for all coded slice NAL units of a layer representation.

When ref_layer_dq_id is not equal to −1, the following variables are derived as follows:

– RefLayerPicSizeInMbs is set equal to the value of the variable PicSizeInMbs for the reference layer representation.

– RefLayerPicWidthInMbs is set equal to the value of the variable PicWidthInMbs for the reference layer
representation.

– RefLayerPicHeightInMbs is set equal to the value of the variable PicHeightInMbs for the reference layer
representation.

– RefLayerChromaFormatIdc is set equal to the value of the syntax element chroma_format_idc for the reference
layer representation.

– RefLayerChromaArrayType is set equal to the value of ChromaArrayType for the reference layer representation.

– RefLayerPicWidthInSamplesL is set equal to the value of the variable PicWidthInSamplesL for the reference layer
representation.

– RefLayerPicHeightInSamplesL is set equal to the value of the variable PicHeightInSamplesL for the reference layer
representation.

– RefLayerPicWidthInSamplesC is set equal to the value of the variable PicWidthInSamplesC for the reference layer
representation.

– RefLayerPicHeightInSamplesC is set equal to the value of the variable PicHeightInSamplesC for the reference layer
representation.

– RefLayerMbWidthC is set equal to the value of the variable MbWidthC for the reference layer representation.

 Rec. ITU-T H.264 (03/2009) 425

– RefLayerMbHeightC is set equal to the value of the variable MbHeightC for the reference layer representation.

– RefLayerFrameMbsOnlyFlag is set equal to the value of the syntax element frame_mbs_only_flag for the
reference layer representation.

– RefLayerFieldPicFlag is set equal to the value of the syntax element field_pic_flag for the reference layer
representation.

– RefLayerBottomFieldFlag is set equal to the value of the syntax element bottom_field_flag for the reference layer
representation.

– RefLayerMbaffFrameFlag is set equal to the value of the variable MbaffFrameFlag for the reference layer
representation.

disable_inter_layer_deblocking_filter_idc specifies whether the operation of the deblocking filter for inter-layer intra
prediction is disabled across some block edges of the reference layer representation, specifies for which edges the
filtering is disabled, and specifies the order of deblocking filter operations for inter-layer intra prediction. When
disable_inter_layer_deblocking_filter_idc is not present in the slice header, the value of
disable_inter_layer_deblocking_filter_idc shall be inferred to be equal to 0. The value of
disable_inter_layer_deblocking_filter_idc shall be in the range of 0 to 6, inclusive. The values 0 to 6 of
disable_inter_layer_deblocking_filter_idc specify the same deblocking filter operations as the corresponding values of
disable_deblocking_filter_idc, but for the deblocking of the intra macroblocks of the reference layer representation
specified by ref_layer_dq_id before resampling.

When disable_inter_layer_deblocking_filter_idc is present, quality_id is equal to 0, and SpatialResolutionChangeFlag
as specified in the following paragraphs is equal to 0, disable_inter_layer_deblocking_filter_idc shall be equal to 1.

inter_layer_slice_alpha_c0_offset_div2 specifies the offset used in accessing the α and tC0 deblocking filter tables for
filtering operations of the intra macroblocks of the reference layer representation before resampling. From this value,
the offset that is applied when addressing these tables shall be computed as:

InterlayerFilterOffsetA = inter_layer_slice_alpha_c0_offset_div2 << 1 (G-62)

The value of inter_layer_slice_alpha_c0_offset_div2 shall be in the range of −6 to +6, inclusive. When
inter_layer_slice_alpha_c0_offset_div2 is not present in the slice header, the value of
inter_layer_slice_alpha_c0_offset_div2 shall be inferred to be equal to 0.

inter_layer_slice_beta_offset_div2 specifies the offset used in accessing the β deblocking filter table for filtering
operations of the intra macroblocks of the reference layer representation before resampling. From this value, the offset
that is applied when addressing the β table of the deblocking filter is computed as:

InterlayerFilterOffsetB = inter_layer_slice_beta_offset_div2 << 1 (G-63)

The value of inter_layer_slice_beta_offset_div2 shall be in the range of −6 to +6, inclusive. When
inter_layer_slice_beta_offset_div2 is not present in the slice header the value of inter_layer_slice_beta_offset_div2
shall be inferred to be equal to 0.

constrained_intra_resampling_flag specifies whether slice boundaries in the layer picture that is used for inter-layer
prediction (as specified by ref_layer_dq_id) are treated similar to layer picture boundaries for the intra resampling
process. When constrained_intra_resampling_flag is equal to 1, disable_inter_layer_deblocking_filter_idc shall be
equal to 1, 2, or 5.

When constrained_intra_resampling_flag is equal to 1, a macroblock cannot be coded using the Intra_Base macroblock
prediction mode when it covers more than one slice in the layer picture that is used for inter-layer prediction, as
specified in subclause G.8.6.2.

When constrained_intra_resampling_flag is not present, it shall be inferred to be equal to 0.

ref_layer_chroma_phase_x_plus1_flag specifies the horizontal phase shift of the chroma components in units of half
luma samples of a layer frame for the layer pictures that may be used for inter-layer prediction. When
ref_layer_chroma_phase_x_plus1_flag is not present, it shall be inferred to be equal to
seq_ref_layer_chroma_phase_x_plus1_flag.

When no_inter_layer_pred_flag is equal to 0, the following is specified:

a) When ref_layer_dq_id is greater than 0, ref_layer_chroma_phase_x_plus1_flag should be equal to
chroma_phase_x_plus1_flag of the subset sequence parameter set RBSP that is referred to by the reference layer
representation (with DQId equal to ref_layer_dq_id).

426 Rec. ITU-T H.264 (03/2009)

b) When RefLayerChromaArrayType is equal to 1 and chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field are present in the SVC sequence parameter set that is referred to by the
reference layer representation (with DQId equal to ref_layer_dq_id), the following applies.

– If ref_layer_chroma_phase_x_plus1_flag is equal to 0, chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field of the SVC sequence parameter set that is referred to by the
reference layer representation should be equal to 0, 2, or 4.

– Otherwise (ref_layer_chroma_phase_x_plus1_flag is equal to 1), chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field of the SVC sequence parameter set that is referred to by the
reference layer representation should be equal to 1, 3, or 5.

c) When RefLayerChromaArrayType is not equal to 1, ref_layer_chroma_phase_x_plus1_flag should be equal
to 1.

ref_layer_chroma_phase_y_plus1 specifies the vertical phase shift of the chroma components in units of half luma
samples of a layer frame for the layer pictures that may be used for inter-layer prediction. When
ref_layer_chroma_phase_y_plus1 is not present, it shall be inferred to be equal to
seq_ref_layer_chroma_phase_y_plus1. The value of ref_layer_chroma_phase_y_plus1 shall be in the range of 0 to 2,
inclusive.

When no_inter_layer_pred_flag is equal to 0, the following applies.

a) When ref_layer_dq_id is greater than 0, ref_layer_chroma_phase_y_plus1 should be equal to
chroma_phase_y_plus1 of the subset sequence parameter set RBSP that is referred to by the reference layer
representation (with DQId equal to ref_layer_dq_id).

b) When RefLayerChromaArrayType is equal to 1 and chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field are present in the SVC sequence parameter set that is referred to by the
reference layer representation (with DQId equal to ref_layer_dq_id), the following applies.

– If ref_layer_chroma_phase_y_plus1 is equal to 0, chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field of the SVC sequence parameter set that is referred to by the
reference layer representation should be equal to 2 or 3.

– Otherwise, if ref_layer_chroma_phase_y_plus1 is equal to 1, chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field of the SVC sequence parameter set that is referred to by the
reference layer representation should be equal to 0 or 1.

– Otherwise (chroma_phase_y_plus1 is equal to 2), chroma_sample_loc_type_top_field and
chroma_sample_loc_type_bottom_field of the SVC sequence parameter set that is referred to by the
reference layer representation should be equal to 4 or 5.

c) When RefLayerChromaArrayType is not equal to 1, ref_layer_chroma_phase_y_plus1 should be equal to 1.

scaled_ref_layer_left_offset specifies the horizontal offset between the upper-left luma sample of a resampled layer
picture used for inter-layer prediction and the upper-left luma sample of the current picture or current layer picture in
units of two luma samples.

When scaled_ref_layer_left_offset is not present, it shall be inferred as follows.

– If quality_id is greater than 0, scaled_ref_layer_left_offset is inferred to be equal to 0.

– Otherwise (quality_id is equal to 0), scaled_ref_layer_left_offset is inferred to be equal to
seq_scaled_ref_layer_left_offset.

scaled_ref_layer_top_offset specifies the vertical offset between the upper-left luma sample of a resampled layer
picture used for inter-layer prediction and the upper-left luma sample of the current picture or current layer picture. The
vertical offset is specified in units of two luma samples when frame_mbs_only_flag is equal to 1, and it is specified in
units of four luma samples when frame_mbs_only_flag is equal to 0.

When scaled_ref_layer_top_offset is not present, it shall be inferred as follows.

– If quality_id is greater than 0, scaled_ref_layer_top_offset is inferred to be equal to 0.

– Otherwise (quality_id is equal to 0), scaled_ref_layer_top_offset is inferred to be equal to
seq_scaled_ref_layer_top_offset.

scaled_ref_layer_right_offset specifies the horizontal offset between the bottom-right luma sample of a resampled
layer picture used for inter-layer prediction and the bottom-right luma sample of the current picture or current layer
picture in units of two luma samples.

 Rec. ITU-T H.264 (03/2009) 427

When scaled_ref_layer_right_offset is not present, it shall be inferred as follows.

– If quality_id is greater than 0, scaled_ref_layer_right_offset is inferred to be equal to 0.

– Otherwise (quality_id is equal to 0), scaled_ref_layer_right_offset is inferred to be equal to
seq_scaled_ref_layer_right_offset.

scaled_ref_layer_bottom_offset specifies the vertical offset between the bottom-right luma sample of a resampled
layer picture used for inter-layer prediction and the bottom-right luma sample of the current picture or current layer
picture. The vertical offset is specified in units of two luma samples when frame_mbs_only_flag is equal to 1, and it is
specified in units of four luma samples when frame_mbs_only_flag is equal to 0.

When scaled_ref_layer_bottom_offset is not present, it shall be inferred as follows.

– If quality_id is greater than 0, scaled_ref_layer_bottom_offset is inferred to be equal to 0.

– Otherwise (quality_id is equal to 0), scaled_ref_layer_bottom_offset is inferred to be equal to
seq_scaled_ref_layer_bottom_offset.

The variables ScaledRefLayerLeftOffset, ScaledRefLayerRightOffset, ScaledRefLayerTopOffset,
ScaledRefLayerBottomOffset, ScaledRefLayerPicWidthInSamplesL, and ScaledRefLayerPicHeightInSamplesL are
derived by

ScaledRefLayerLeftOffset = 2 * scaled_ref_layer_left_offset (G-64)
ScaledRefLayerRightOffset = 2 * scaled_ref_layer_right_offset (G-65)
ScaledRefLayerTopOffset = 2 * scaled_ref_layer_top_offset * (2 − frame_mbs_only_flag) (G-66)
ScaledRefLayerBottomOffset = 2 * scaled_ref_layer_bottom_offset * (2 − frame_mbs_only_flag) (G-67)
ScaledRefLayerPicWidthInSamplesL = PicWidthInMbs * 16 − ScaledRefLayerLeftOffset −
 ScaledRefLayerRightOffset (G-68)
ScaledRefLayerPicHeightInSamplesL = PicHeightInMbs * 16 −
 (ScaledRefLayerTopOffset + ScaledRefLayerBottomOffset) /
 (1 + field_pic_flag) (G-69)

When no_inter_layer_pred_flag is equal to 0, the following constraints shall be obeyed:

a) The bitstream shall not contain data that result in ScaledRefLayerPicWidthInSamplesL less than
RefLayerPicWidthInSamplesL.

b) When RefLayerFrameMbsOnlyFlag is equal to 0 or frame_mbs_only_flag is equal to 1, the bitstream shall not
contain data that result in (ScaledRefLayerPicHeightInSamplesL * (1 + field_pic_flag)) less than
(RefLayerPicHeightInSamplesL * (1 + RefLayerFieldPicFlag)).

c) When RefLayerFrameMbsOnlyFlag is equal to 1 and frame_mbs_only_flag is equal to 0, the bitstream shall not
contain data that result in (ScaledRefLayerPicHeightInSamplesL * (1 + field_pic_flag)) less than
(2 * RefLayerPicHeightInSamplesL).

When ChromaArrayType is not equal to 0, the variables ScaledRefLayerPicWidthInSamplesC, and
ScaledRefLayerPicHeightInSamplesC are derived by

ScaledRefLayerPicWidthInSamplesC = ScaledRefLayerPicWidthInSamplesL / SubWidthC (G-70)
ScaledRefLayerPicHeightInSamplesC = ScaledRefLayerPicHeightInSamplesL / SubHeightC (G-71)

The variable CroppingChangeFlag is derived as follows.

– If quality_id is equal to 0 and extended_spatial_scalability_idc is equal to 2, CroppingChangeFlag is set equal to 1.

– Otherwise (quality_id is greater than 0 or extended_spatial_scalability_idc is less than 2), CroppingChangeFlag is
set equal to 0.

The variable SpatialResolutionChangeFlag is derived as follows.

– If no_inter_layer_pred_flag is equal to 1, quality_id is greater than 0, or all of the following conditions are true,
SpatialResolutionChangeFlag is set equal to 0:

– CroppingChangeFlag is equal to 0,

– ScaledRefLayerPicWidthInSamplesL is equal to RefLayerPicWidthInSamplesL,

– ScaledRefLayerPicHeightInSamplesL is equal to RefLayerPicHeightInSamplesL,

– (ScaledRefLayerLeftOffset % 16) is equal to 0,

428 Rec. ITU-T H.264 (03/2009)

– (ScaledRefLayerTopOffset % (16 * (1 + field_pic_flag + MbaffFrameFlag))) is equal to 0,

– field_pic_flag is equal to RefLayerFieldPicFlag,

– MbaffFrameFlag is equal to RefLayerMbaffFrameFlag,

– chroma_format_idc is equal to RefLayerChromaFormatIdc,

– chroma_phase_x_plus1_flag is equal to ref_layer_chroma_phase_x_plus1_flag,

– chroma_phase_y_plus1 is equal to ref_layer_chroma_phase_y_plus1.

– Otherwise, SpatialResolutionChangeFlag is set equal to 1.

The variable RestrictedSpatialResolutionChangeFlag is derived as follows.

– If no_inter_layer_pred_flag is equal to 1, quality_id is greater than 0, or all of the following conditions are true,
RestrictedSpatialResolutionChangeFlag is set equal to 1:

– ScaledRefLayerPicWidthInSamplesL is equal to RefLayerPicWidthInSamplesL or
(2 * RefLayerPicWidthInSamplesL),

– ScaledRefLayerPicHeightInSamplesL is equal to RefLayerPicHeightInSamplesL or
(2 * RefLayerPicHeightInSamplesL),

– (ScaledRefLayerLeftOffset % 16) is equal to 0,

– (ScaledRefLayerTopOffset % (16 * (1 + field_pic_flag))) is equal to 0,

– MbaffFrameFlag is equal to 0,

– RefLayerMbaffFrameFlag is equal to 0,

– field_pic_flag is equal to RefLayerFieldPicFlag.

– Otherwise, RestrictedSpatialResolutionChangeFlag is set equal to 0.

slice_skip_flag specifies the presence of the slice data in scalable extension syntax structure. When slice_skip_flag is
not present, it shall be inferred to be equal to 0. slice_skip_flag equal to 0 specifies that the slice data in scalable
extension syntax structure is present in the NAL unit. slice_skip_flag equal to 1 specifies that the slice data in scalable
extension syntax structure is not present in the NAL unit and that the syntax elements for the macroblock layer of the
slice are derived by the following process:

1. CurrMbAddr is derived by

CurrMbAddr = first_mb_in_slice * (1 + MbaffFrameFlag) (G-72)

2. The variable mbIdx proceeds over the values 0..num_mbs_in_slice_minus1, and for each value of mbIdx, the
following ordered steps are specified:

a. The bitstream shall not contain data that result in InCropWindow(CurrMbAddr) equal to 0.

b. For the macroblock with address CurrMbAddr, the syntax elements mb_skip_flag (when applicable),
mb_skip_run (when applicable), mb_field_decoding_flag, base_mode_flag, residual_prediction_flag and
coded_block_pattern shall be inferred as follows:

– mb_skip_flag (when applicable) and mb_skip_run (when applicable) are inferred to be equal to 0.

– mb_field_decoding_flag is inferred to be equal to 0.
NOTE 2 – The frame/field mode used for decoding is inferred in subclause G.8.1.5.1.

– base_mode_flag is inferred to be equal to 1.

– residual_prediction_flag is inferred to be equal to 1.

– coded_block_pattern is inferred to be equal to 0.

– QPY is inferred to be equal to SliceQPY.

– QP′Y is inferred to be equal to (QPY + QpBdOffsetY).

c. When the variable mbIdx is less than num_mbs_in_slice_minus1, CurrMbAddr is set to
NextMbAddress(CurrMbAddr). The bitstream shall not contain data that result in CurrMbAddr being
set equal to a value that is not less than PicSizeInMbs.

 Rec. ITU-T H.264 (03/2009) 429

num_mbs_in_slice_minus1 plus 1specifies the number of macroblocks for a slice with slice_skip_flag equal to 1.

adaptive_base_mode_flag specifies the presence of syntax elements in the slice header and in the macroblock layer in
scalable extension. When adaptive_base_mode_flag is not present, it shall be inferred to be equal to 0.

default_base_mode_flag specifies how base_mode_flag is inferred when it is not present in macroblock layer in
scalable extension. When default_base_mode_flag is not present, it shall be inferred to be equal to 0.

adaptive_motion_prediction_flag specifies the presence of syntax elements in the macroblock layer in scalable
extension. When adaptive_motion_prediction_flag is not present, it shall be inferred to be equal to 0.

default_motion_prediction_flag specifies how motion_prediction_flag_l0[] and motion_prediction_flag_l1[] are
inferred when they are not present in macroblock layer in scalable extension. When default_motion_prediction_flag is
not present, it shall be inferred to be equal to 0.

adaptive_residual_prediction_flag specifies the presence of syntax elements in the macroblock layer in scalable
extension. When adaptive_residual_prediction_flag is not present, it shall be inferred to be equal to 0.

default_residual_prediction_flag specifies how residual_prediction_flag is inferred when it is not present in the
macroblock layer in scalable extension. When default_residual_prediction_flag is not present, it shall be inferred to be
equal to 0.

tcoeff_level_prediction_flag equal to 1 specifies that an alternative inter-layer prediction process is applied as
specified in subclause G.8. When tcoeff_level_prediction_flag is not present, it shall be inferred as follows.

– If no_inter_layer_pred_flag is equal to 1, tcoeff_level_prediction_flag is inferred to be equal to 0.

– Otherwise (no_inter_layer_pred_flag is equal to 0), tcoeff_level_prediction_flag is inferred to be equal to the value
of seq_tcoeff_level_prediction_flag.

When SpatialResolutionChangeFlag is equal to 1, tcoeff_level_prediction_flag shall be equal to 0.

When tcoeff_level_prediction_flag is equal to 1, the following constraints shall be obeyed:

a) The reference layer representation (with DQId equal to ref_layer_dq_id) shall have no_inter_layer_pred_flag
equal to 1 or tcoeff_level_prediction_flag equal to 1.

b) All elements of ScalingList4x4 shall be the same for the slices of the current layer representation and all slices
of the reference layer representation (with DQId equal to the value of ref_layer_dq_id).

c) All elements of ScalingList8x8 shall be the same for the slices of the current layer representation and all slices
of the reference layer representation (with DQId equal to the value of ref_layer_dq_id).

d) The value of the syntax element use_ref_base_pic_flag shall be equal to 0 for the slices of the current layer
representation and all slices of the reference layer representation (with DQId equal to the value of
ref_layer_dq_id).

e) When slice_skip_flag is equal to 1, the value of constrained_intra_pred_flag for the current layer
representation shall be identical to the value of constrained_intra_pred_flag for the reference layer
representation (with DQId equal to ref_layer_dq_id).

scan_idx_start specifies the first scanning position for the transform coefficient levels in the current slice. When
scan_idx_start is not present, it shall be inferred to be equal to 0.

scan_idx_end specifies the last scanning position for the transform coefficient levels in the current slice. When
scan_idx_end is not present, it shall be inferred to be equal to 15.

G.7.4.3.5 Decoded reference base picture marking semantics

The specification of this subclause applies to the current dependency representation. The modifications a) and b)
specified in subclause G.8.2 apply with currDependencyId being equal to the current value of dependency_id.

The syntax elements adaptive_ref_base_pic_marking_mode_flag, memory_management_base_control_operation,
difference_of_base_pic_nums_minus1, and long_term_base_pic_num specify marking of reference base pictures as
"unused for reference".

When present in a prefix NAL unit, all syntax elements of the dec_ref_base_pic_marking() syntax structure are
considered as if they were present in the associated NAL unit.

When quality_id is greater than 0, all syntax elements of the dec_ref_base_pic_marking() syntax structure are inferred
as specified in the beginning of subclause G.7.4.3.4.

430 Rec. ITU-T H.264 (03/2009)

The content of the decoded reference picture base marking syntax structure shall be the same in all slice headers of the
primary coded picture. When one or more redundant coded pictures are present, the content of the decoded reference
base picture marking syntax structure shall be the same in all slice headers of a redundant coded picture with a
particular value of redundant_pic_cnt.

NOTE 1 – It is not required that the content of the decoded reference base picture marking syntax structure in a redundant coded
picture with a particular value of redundant_pic_cnt is identical to the content of the decoded reference base picture marking
syntax structure in the corresponding primary coded picture or a redundant coded picture with a different value of
redundant_pic_cnt. However, as specified in subclause G.7.4.3.4 (by referencing subclause 7.4.3), the content of the decoded
reference base picture marking syntax structure in a redundant coded picture is constrained in the way that the marking status of
reference pictures and the value of frame_num after the SVC decoded reference picture marking process in subclause G.8.2.4
must be identical regardless whether the primary coded picture or any redundant coded picture of the access unit would be
decoded.

The memory_management_base_control_operation commands of the dec_ref_base_pic_marking() syntax structure are
processed by the decoding process before the memory_management_control_operation commands of the
dec_ref_pic_marking() syntax structure are processed.

adaptive_ref_base_pic_marking_mode_flag selects the reference base picture marking mode for the current picture
or layer picture as specified in Table G-2. When adaptive_ref_base_pic_marking_mode_flag is not present and
quality_id is equal to 0, it shall be inferred to be equal to 0.

Table G-2 – Interpretation of adaptive_ref_base_pic_marking_mode_flag

adaptive_ref_base_pic_marking_mode_flag Reference base picture marking mode specified
0 Sliding window reference picture marking mode: A

marking mode providing a first-in, first-out
mechanism for short-term reference pictures

1 Adaptive reference base picture marking mode: A
reference picture marking mode providing syntax
elements to specify marking of reference base
pictures as "unused for reference"

memory_management_base_control_operation specifies a control operation to be applied to affect the marking of
reference base pictures. The memory_management_base_control_operation syntax element is followed by data
necessary for the operation specified by the value of memory_management_base_control_operation. The values and
control operations associated with memory_management_base_control_operation are specified in Table G-3. The
memory_management_base_control_operation syntax elements are processed by the decoding process in the order in
which they appear, and the semantics constraints expressed for each memory_management_base_control_operation
apply at the specific position in that order at which that individual memory_management_base_control_operation is
processed.

For interpretation of memory_management_base_control_operation, the terms reference picture and reference base
picture are interpreted as follows.

– If the current picture is a frame, the term reference picture refers either to a reference frame or a complementary
reference field pair and the term reference base picture refers either to a reference base frame or a complementary
reference base field pair.

– Otherwise (the current picture is a field), the term reference picture refers either to a reference field or a field of a
reference frame and the term reference base picture refers either to a reference base field or a field of a reference
base frame.

memory_management_base_control_operation shall not be equal to 1 unless the specified reference base picture is
marked as "used for short-term reference" (and as "reference base picture") when the
memory_management_base_control_operation is processed by the decoding process.

memory_management_base_control_operation shall not be equal to 2 unless the specified long-term picture number
refers to a reference base picture that is marked as "used for long-term reference" (and as "reference base picture") when
the memory_management_base_control_operation is processed by the decoding process.

When the dec_ref_pic_marking() syntax structure contains a memory_management_control_operation equal to 5,
memory_management_base_control_operation shall not be equal to 1 or 2.

 Rec. ITU-T H.264 (03/2009) 431

Table G-3 – Memory management base control operation (memory_management_base_control_operation)
values

memory_management_base_control_operation Memory Management Base Control Operation
0 End memory_management_base_control_operation

syntax element loop
1 Mark a short-term reference base picture as

"unused for reference"
2 Mark a long-term reference base picture as

"unused for reference"

difference_of_base_pic_nums_minus1 is used (with memory_management_base_control_operation equal to 1) to
mark a short-term reference base picture as "unused for reference". When the associated
memory_management_base_control_operation is processed by the decoding process, the resulting picture number
derived from difference_of_base_pic_nums_minus1 shall be a picture number assigned to one of the reference pictures
marked as "used for short-term reference" and as "reference base picture".

The resulting picture number is constrained as follows.

– If field_pic_flag is equal to 0, the resulting picture number shall be one of the set of picture numbers assigned to
reference frames or complementary reference field pairs marked as "reference base picture".

NOTE 2 – When field_pic_flag is equal to 0, the resulting picture number must be a picture number assigned to a
complementary reference field pair in which both fields are marked as "used for short-term reference" and "reference
base picture" or a reference frame in which both fields are marked as "used for short-term reference" and "reference
base picture".

– Otherwise (field_pic_flag is equal to 1), the resulting picture number shall be one of the set of picture numbers
assigned to reference fields marked as "reference base picture".

long_term_base_pic_num is used (with memory_management_base_control_operation equal to 2) to mark a long-term
reference base picture as "unused for reference". When the associated memory_management_base_control_operation is
processed by the decoding process, long_term_base_pic_num shall be equal to a long-term picture number assigned to
one of the reference pictures marked as "used for long-term reference" and as "reference base picture".

The resulting long-term picture number is constrained as follows.

– If field_pic_flag is equal to 0, the resulting long-term picture number shall be one of the set of long-term picture
numbers assigned to reference frames or complementary reference field pairs marked as "reference base picture".

NOTE 3 – When field_pic_flag is equal to 0, the resulting long-term picture number must be a long-term picture
number assigned to a complementary reference field pair in which both fields are marked as "used for long-term
reference" and "reference base picture" or a reference frame in which both fields are marked as "used for long-term
reference" and "reference base picture".

– Otherwise (field_pic_flag is equal to 1), the resulting long-term picture number shall be one of the set of long-term
picture numbers assigned to reference fields marked as "reference base picture".

G.7.4.4 Slice data semantics

The semantics specified in subclause 7.4.4 apply.

G.7.4.4.1 Slice data in scalable extension semantics

The semantic specified in subclauses 7.4.4 apply with the following modifications.

mb_skip_run specifies the number of consecutive skipped macroblocks for which, when decoding an EP slice,
mb_type shall be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type, or
for which, when decoding an EB slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively
referred to as a B macroblock type. The value of mb_skip_run shall be in the range of 0 to
PicSizeInMbs − CurrMbAddr, inclusive.

mb_skip_flag equal to 1 specifies that for the current macroblock, when decoding an EP slice, mb_type shall be
inferred to be P_Skip and the macroblock type is collectively referred to as P macroblock type, or for which, when
decoding an EB slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as B
macroblock type. mb_skip_flag equal to 0 specifies that the current macroblock is not skipped.

G.7.4.5 Macroblock layer semantics

The semantics specified in subclause 7.4.5 apply. Additionally, the following applies.

432 Rec. ITU-T H.264 (03/2009)

The macroblock_layer() syntax structure shall be considered to contain the following syntax elements with the
following inferred values:

– base_mode_flag is inferred to be equal to 0.

– residual_prediction_flag is inferred to be equal to 0.

G.7.4.5.1 Macroblock prediction semantics

The semantics specified in subclause 7.4.5.1 apply. Additionally, the following applies.

The range of the components of mvd_l0[mbPartIdx][0][compIdx] and mvd_l1[mbPartIdx][0][compIdx] is
specified by constraints on the motion vector variable values derived from it as specified in subclause G.10.

The mb_pred() syntax structure shall be considered to contain the following syntax elements with the following
inferred values:

– motion_prediction_flag_l0[mbPartIdx] is inferred to be equal to 0 for each value of mbPartIdx in the range
from 0 to NumMbPart(mb_type) − 1, inclusive.

– motion_prediction_flag_l1[mbPartIdx] is inferred to be equal to 0 for each value of mbPartIdx in the range
from 0 to NumMbPart(mb_type) − 1, inclusive.

G.7.4.5.2 Sub-macroblock prediction semantics

The semantics specified in subclause 7.4.5.2 apply. Additionally, the following applies.

The range of the components of mvd_l0[mbPartIdx][0][compIdx] and mvd_l1[mbPartIdx][0][compIdx] is
specified by constraints on the motion vector variable values derived from it as specified in subclause G.10.

The sub_mb_pred() syntax structure shall be considered to contain the following syntax elements with the following
inferred values:

– motion_prediction_flag_l0[mbPartIdx] is inferred to be equal to 0 for each value of mbPartIdx in the range
from 0 to 3, inclusive.

– motion_prediction_flag_l1[mbPartIdx] is inferred to be equal to 0 for each value of mbPartIdx in the range
from 0 to 3, inclusive.

G.7.4.5.3 Residual data semantics

The semantics specified in subclause 7.4.5.3 apply.

G.7.4.5.3.1 Residual luma semantics

The semantics specified in subclause 7.4.5.3.1 apply.

G.7.4.5.3.2 Residual block CAVLC semantics

The semantics specified in subclause 7.4.5.3.2 apply.

G.7.4.5.3.3 Residual block CABAC semantics

The semantics specified in subclause 7.4.5.3.3 apply.

G.7.4.6 Macroblock layer in scalable extension semantics

The semantic specified in subclauses 7.4.5 apply. Additionally, the following modifications and extensions are
specified.

The function InCropWindow(mbAddr) is specified by the following ordered steps:

1. The variable mbX is set equal to (mbAddr % PicWidthInMbs).

2. The variables mbY0 and mbY1 are derived as follows.

– If MbaffFrameFlag is equal to 0, mbY0 and mbY1 are set equal to (mbAddr / PicWidthInMbs).

– Otherwise (MbaffFrameFlag is equal to 1), mbY0 is set equal to (2 * ((mbAddr / PicWidthInMbs) / 2))
and mbY1 is set equal to (mbY0 + 1).

3. The variable scalMbH is set equal to (16 * (1 + field_pic_flag)).

4. The return value of InCropWindow(mbAddr) is derived as follows.

 Rec. ITU-T H.264 (03/2009) 433

– If all of the following conditions are true, the return value of InCropWindow(mbAddr) is equal
to TRUE.

– no_inter_layer_pred_flag is equal to 0

– mbX is greater than or equal to ((ScaledRefLayerLeftOffset + 15) / 16)

– mbX is less than ((ScaledRefLayerLeftOffset + ScaledRefLayerPicWidthInSamplesL) / 16)

– mbY0 is greater than or equal to ((ScaledRefLayerTopOffset + scalMbH − 1) / scalMbH)

– mbY1 is less than ((ScaledRefLayerTopOffset + ScaledRefLayerPicHeightInSamplesL) / scalMbH)

– Otherwise, the return value of InCropWindow(mbAddr) is equal to FALSE.

base_mode_flag equal to 1 specifies that the macroblock partitioning, the macroblock (partition) prediction mode(s),
and the corresponding motion data (when applicable) are inferred as specified in subclause G.8. base_mode_flag equal
to 0 specifies that the syntax element mb_type is present in the macroblock layer in scalable extension syntax structure
or that mb_type shall be inferred as specified in subclause G.7.4.4.1.

When base_mode_flag is not present, base_mode_flag shall be inferred as follows.

– If InCropWindow(CurrMbAddr) is equal to 0, the value of base_mode_flag is inferred to be equal to 0.

– Otherwise, if the syntax element mb_skip_run (when entropy_coding_mode_flag is equal to 0) or mb_skip_flag
(when entropy_coding_mode_flag is equal to 1) specifies that mb_type is inferred to be equal to P_Skip or B_Skip
as specified in subclause G.7.4.4.1, the value of base_mode_flag is inferred to be equal to 0.

– Otherwise (InCropWindow(CurrMbAddr) is equal to 1 and the syntax element mb_skip_run (when
entropy_coding_mode_flag is equal to 0) or mb_skip_flag (when entropy_coding_mode_flag is equal to 1) does
not specify that mb_type is inferred to be equal to P_Skip or B_Skip), the value of base_mode_flag is inferred to
be equal to default_base_mode_flag.

When store_ref_base_pic_flag is equal to 1 and quality_id is greater than 0, base_mode_flag shall be equal to 1.

mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

When mb_type is not present, it shall be inferred as follows.

– If base_mode_flag is equal to 1, mb_type is inferred to be equal to Mb_Inferred.

– Otherwise, (base_mode_flag is equal to 0), mb_type is inferred as specified in subclause G.7.4.4.1.

The macroblock type Mb_Inferred specifies that the macroblock partitioning and the macroblock (partition) prediction
mode(s) are not known during the parsing process. In the decoding process specified in subclause G.8, the macroblock
type used for decoding is inferred to be equal to any of the macroblock types specified in Tables 7-11, 7-13, 7-14, or
G-5. For the purpose of parsing the slice_data_in_scalable_extension() syntax structure including the processes
specified in clause 9 and subclause G.9, Mb_Inferred shall be considered an additional macroblock type that is different
from all macroblock types specified in Tables 7-11, 7-13, 7-14, and G-5 and the following applies:

– macroblocks with mb_type equal to Mb_Inferred are considered as coded in an Inter macroblock prediction mode
and not coded in an Intra macroblock prediction mode,

– NumMbPart(Mb_Inferred) is considered to be equal to 1,

– MbPartWidth(Mb_Inferred) and MbPartHeight(Mb_Inferred) are considered to be equal to 16,

– MbPartPredMode(Mb_Inferred, 0) is considered to be not equal to Intra_4x4, Intra_8x8, Intra_16x16, Pred_L0,
Pred_L1, BiPred, and Direct.

Tables and semantics are specified for the various macroblock types for EI, EP, and EB slices. Each table presents the
value of mb_type, the name of mb_type, the number of macroblock partitions used (given by NumMbPart(mb_type)
function), the prediction mode of the macroblock (when it is not partitioned) or the first partition (given by the
MbPartPredMode(mb_type, 0) function) and the prediction mode of the second partition (given by the
MbPartPredMode(mb_type, 1) function). When a value is not applicable it is designated by "na". In the text, the value
of mb_type may be referred to as the macroblock type and a value X of MbPartPredMode() may be referred to in the
text by "X macroblock (partition) prediction mode" or as "X prediction macroblocks". The tables do not include the
macroblock type Mb_Inferred.

Table G-4 shows the allowed collective macroblock types for each slice_type.

434 Rec. ITU-T H.264 (03/2009)

Table G-4 – Allowed collective macroblock types for slice_type.

slice_type allowed collective macroblock types

EI (slice) I (see Table 7-11 and Table G-5) (macroblock types)

EP (slice) P (see Table 7-13) and I (see Table 7-11 and Table G-5) (macroblock types)

EB (slice) B (see Table 7-14) and I (see Table 7-11 and Table G-5) (macroblock types)

Macroblock types that may be collectively referred to as I macroblock types are specified in Tables G-5 and 7-11.
mb_type values 0 to 25 are specified in Table 7-11. Table G-5 specifies the additional macroblock type I_BL that can
be inferred in the decoding process specified in subclause G.8 for macroblocks with base_mode_flag equal to 1
(mb_type inferred to be equal to Mb_Inferred).

The macroblock types for EI slices are all I macroblock types.

Table G-5 – Inferred macroblock type I_BL for EI slices.

m
b_

ty
pe

N
am

e
of

 m
b_

ty
pe

tr
an

sf
or

m
_s

iz
e_

8x
8_

fla
g

M
bP

ar
tP

re
dM

od
e

(m
b_

ty
pe

, 0
)

In
tr

a1
6x

16
Pr

ed
M

od
e

C
od

ed
B

lo
ck

Pa
tt

er
nC

hr
om

a

C
od

ed
B

lo
ck

Pa
tt

er
nL

um
a

inferred I_BL na Intra_Base na Equation 7-35 Equation 7-35

Intra_Base specifies the macroblock prediction mode and specifies that the intra prediction samples are derived using
constructed intra samples of the reference layer representation as specified in subclause G.8. Intra_Base is an Intra
macroblock prediction mode.

Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7-13.

The macroblock types for EP slices are specified in Tables 7-13, 7-11, and G-5. mb_type values 0 to 4 are specified in
Table 7-13 and mb_type values 5 to 30 are specified in Table 7-11, indexed by subtracting 5 from the value of mb_type.
Table G-5 specifies the additional macroblock type I_BL that can be inferred in the decoding process specified in
subclause G.8 for macroblocks with base_mode_flag equal to 1 (mb_type inferred to be equal to Mb_Inferred).

Macroblock types that may be collectively referred to as B macroblock types are specified in Table 7-14.

The macroblock types for EB slices are specified in Tables 7-14, 7-11, and G-5. mb_type values 0 to 22 are specified in
Table 7-14 and mb_type values 23 to 48 are specified in Table 7-14, indexed by subtracting 23 from the value of
mb_type. Table G-5 specifies the additional macroblock type I_BL that can be inferred in the decoding process
specified in subclause G.8 for macroblocks with base_mode_flag equal to 1 (mb_type inferred to be equal to
Mb_Inferred).

coded_block_pattern specifies which of the four 8x8 luma blocks and associated chroma blocks of a macroblock may
contain non-zero transform coefficient values. For macroblocks with prediction mode not equal to Intra_16x16,
coded_block_pattern is present in the bitstream and the variables CodedBlockPatternLuma and
CodedBlockPatternChroma are derived as specified by Equation 7-35.

The meaning of CodedBlockPatternLuma and CodedBlockPatternChroma is specified in subclause 7.4.5.

residual_prediction_flag equal to 1 specifies that the residual signal of the current macroblock is predicted as specified
in subclause G.8 using the reference layer representation specified by ref_layer_dq_id. residual_prediction_flag equal
to 0 specifies that the residual signal of the current macroblock is not predicted.

When the syntax element residual_prediction_flag is not present, residual_prediction_flag shall be inferred as follows.

 Rec. ITU-T H.264 (03/2009) 435

– If all of the following conditions are true, residual_prediction_flag is inferred to be equal to
default_residual_prediction_flag:

– slice_type is not equal to EI,

– InCropWindow(CurrMbAddr) is equal to 1,

– base_mode_flag is equal to 1 or mb_type does not specify an I macroblock type.

– Otherwise, residual_prediction_flag is inferred to be equal to 0.

All elements of the arrays LumaLevel, LumaLevel8x8, Intra16x16DCLevel, Intra16x16ACLevel, CbLevel,
CbLevel8x8, CbIntra16x16DCLevel, CbIntra16x16ACLevel, CrLevel, CrLevel8x8, CrIntra16x16DCLevel,
CrIntra16x16ACLevel, ChromaDCLevel, and ChromaACLevel are set equal to 0 before parsing the residual() syntax
structure.

G.7.4.6.1 Macroblock prediction in scalable extension semantics

The semantics specified in subclauses 7.3.5.1 apply. Additionally, the following semantics are specified.

motion_prediction_flag_l0[mbPartIdx] equal to 1 specifies that an alternative motion vector prediction process as
specified in subclause G.8 is used for deriving the list 0 motion vector of the macroblock partition mbPartIdx and that
the list 0 reference index of the macroblock partition mbPartIdx is inferred as specified in subclause G.8.

When motion_prediction_flag_l0[mbPartIdx] is not present, motion_prediction_flag_l0[mbPartIdx] shall be inferred
as follows.

– If InCropWindow(CurrMbAddr) is equal to 0, motion_prediction_flag_l0[mbPartIdx] is inferred to be equal
to 0.

– Otherwise (InCropWindow(CurrMbAddr) is equal to 1), motion_prediction_flag_l0[mbPartIdx] is inferred to be
equal to default_motion_prediction_flag.

motion_prediction_flag_l1[mbPartIdx] has the same semantics as motion_prediction_flag_l0[mbPartIdx], with l0
and list 0 replaced by l1 and list 1, respectively.

G.7.4.6.2 Sub-macroblock prediction in scalable extension semantics

The semantic specified in subclauses 7.4.5.2 apply. Additionally, the following semantics are specified.

motion_prediction_flag_l0[mbPartIdx] and motion_prediction_flag_l1[mbPartIdx] have the same semantics as
specified in subclause G.7.3.6.1.

G.8 SVC decoding process

This subclause describes the decoding process for an access unit, given syntax elements and upper-case variables from
subclause G.7 (with reference made to clause 7 in subclause G.7) that are derived from the bitstream.

NOTE 1 – All syntax elements and upper-case variables from subclause G.7 are available for the entire current access unit. When
syntax elements or upper-case variables appear with identical names in subclause G.7 they are referred herein through unique
identifiers.

Outputs of this process are decoded samples of the current primary coded picture.

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding
process that produces identical results to the process described here conforms to the decoding process requirements of
this Recommendation | International Standard.

All sub-bitstreams that can be derived using the sub-bitstream extraction process as specified in subclause G.8.8.1 with
any combination of values for priority_id, temporal_id, dependency_id, or quality_id as the input shall result in a set of
coded video sequences, with each coded video sequence conforming to one or more of the profiles specified in
Annexes A and G.

This subclause specifies the decoding process for an access unit of a coded video sequence conforming to one or more
of the profiles specified in subclause G.10.

Each picture referred to in this subclause is a complete primary coded picture or part of a primary coded picture. Each
dependency representation referred to in this subclause is a dependency representation of a primary coded picture. Each
layer representation referred to in this subclause is a layer representation of a primary coded picture. Each slice referred
to in this subclause is a slice of a primary coded picture. All syntax elements and derived variables referred to in this
subclause are syntax elements and derived variables for primary coded pictures.

436 Rec. ITU-T H.264 (03/2009)

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the decoding
process specified in this subclause and all child processes invoked from the process specified in this subclause are the
syntax elements and derived upper-case variables for the current access unit.

The derivation process for the set of layer representations required for decoding as specified in subclause G.8.1.1 is
invoked and the output is a list dqIdList of integer values specifying layer representation identifiers. The variables
DQIdMin and DQIdMax are set equal to the minimum and maximum values, respectively, of the entries of the list
dqIdList, and the variable DependencyIdMax is set equal to (DQIdMax >> 4). DependencyIdMax shall be the same for
all access units of the coded video sequence.

At the start of the decoding process for an access unit, the following applies.

1. Variables and functions relating to picture order count are derived by invoking the SVC decoding process for
picture order count as specified in subclause G.8.2.1 with dqIdList as the input.

2. The SVC decoding process for gaps in frame_num as specified in subclause G.8.2.5 is invoked with dqIdList
as the input.

3. For each value of currDQId that is contained in the list dqIdList, the following applies:

– The decoding process for macroblock to slice group map as specified in subclause 8.2.2 is invoked with
the syntax elements of the NAL units with DQId equal to currDQId as the input. For this invocation of the
process specified in subclause 8.2.2, when currDQId is less than DQIdMax, "active picture parameter set"
is substituted with "active layer picture parameter set".

– The function NextMbAddress() as specified in subclause 8.2.2 is used for parsing the slice data syntax
structures of all NAL units with DQId equal to currDQId and for inferring slice data and macroblock
layer syntax elements for slices with slice_skip_flag equal to 1 and DQId equal to currDQId (see
subclause G.7.4.3.4).

The collective terms currentVars and refLayerVars are initially marked as not available.

The variable currDQId proceeds over the values DQIdMin..DQIdMax, and when a value of currDQId is present in the
list dqIdList, the following ordered steps apply:

1. The variable spatResChangeFlag is set equal to the variable SpatialResolutionChangeFlag of the layer
representation with DQId equal to currDQId.

2. Depending on spatResChangeFlag, the following applies.

– If spatResChangeFlag is equal to 0, the base decoding process for layer representations without
resolution change as specified in subclause G.8.1.3.1 is invoked with currDQId and currentVars as the
inputs and the output is a modified version of currentVars.

– Otherwise (spatResChangeFlag is equal to 1), the base decoding process for layer representations with
resolution change as specified in subclause G.8.1.3.2 is invoked with currDQId and currentVars as the
inputs and the outputs are variables assigned to the collective term refLayerVars and a modified version
of currentVars.

3. When currDQId is equal to (DependencyIdMax << 4) and store_ref_base_pic_flag for the dependency
representation with dependency_id equal to DependencyIdMax is equal to 1, the target layer representation
decoding process as specified in subclause G.8.1.3.3 is invoked with currDQId, refLayerVars (when
spatResChangeFlag is equal to 1), and currentVars as the inputs and the outputs are assigned to the sample
array BL and, when ChromaArrayType is not equal to 0, the sample arrays BCb and BCr.
NOTE 2 – The sample arrays BL, BCb, and BCr represent the reference base picture for an access unit with
store_ref_base_pic_flag equal to 1 for the dependency representation with dependency_id equal to DependencyIdMax.

The target layer representation decoding process as specified in subclause G.8.1.3.3 is invoked with currDQId,
refLayerVars, and currentVars as the inputs and the outputs are assigned to the sample array SL and, when
ChromaArrayType is not equal to 0, the sample arrays SCb and SCr.

NOTE 3 – The sample arrays SL, SCb, and SCr represent the decoded picture for the access unit.

The SVC decoded reference picture marking process as specified in subclause G.8.2.4 is invoked with dqIdList as the
input.

G.8.1 SVC initialisation and decoding processes

Subclause G.8.1.1 specifies the derivation process for the set of layer representations required for decoding.

Subclause G.8.1.2 specifies the array assignment, initialisation, and restructuring processes.

 Rec. ITU-T H.264 (03/2009) 437

Subclause G.8.1.3 specifies the layer representation decoding processes.

Subclause G.8.1.4 specifies the slice decoding processes.

Subclause G.8.1.5 specifies the macroblock initialisation and decoding processes.

G.8.1.1 Derivation process for the set of layer representations required for decoding

Inputs to this process are the coded slice NAL units of an access unit.

Output of this process is a list dqIdList of integer values specifying layer representation identifiers.

With currDQId being set equal to the maximum value of DQId for all coded slice NAL units of the access unit and with
refLayerDQId(dqId) specifying the maximum value of ref_layer_dq_id for all coded slice NAL units of the layer
representation of the access unit with DQId equal to dqId, the list dqIdList is derived as specified by the following
pseudo-code.

numEntries = 0
dqIdList[numEntries++] = currDQId
while(refLayerDQId(currDQId) >= 0) {
 dqIdList[numEntries++] = refLayerDQId(currDQId) (G-73)
 currDQId = dqIdList[numEntries – 1]
}

G.8.1.2 Array assignment, initialisation, and restructuring processes

Subclause G.8.1.2.1 specifies the array assignment and initialisation process.

Subclause G.8.1.2.2 specifies the array restructuring process.

G.8.1.2.1 Array assignment and initialisation process

Output of this process is a set of arrays that are assigned to the collective term currentVars.

The following arrays are collectively referred to as currentVars:

– A one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of a layer representation. An element of this array for a macroblock with address mbAddr is referred to as
sliceIdc[mbAddr]. All elements of the array sliceIdc are initially marked as unspecified.

– A one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of a layer
representation are field macroblocks and which macroblocks are frame macroblocks. An element of this array for a
macroblock with address mbAddr is referred to as fieldMbFlag[mbAddr]. All elements of the array fieldMbFlag
are initially marked as unspecified.

– A one-dimensional array cTrafo with PicSizeInMbs elements specifying the luma and, when ChromaArrayType is
equal to 3, chroma transform types for the macroblocks of a layer representation. An element of this array for a
macroblock with address mbAddr is referred to as cTrafo[mbAddr]. Unless marked as unspecified, each element
of cTrafo is equal to T_4x4, T_8x8, T_16x16, or T_PCM. All elements of the array cTrafo are initially marked as
unspecified.

– A one-dimensional array baseModeFlag with PicSizeInMbs elements specifying the syntax element
base_mode_flag for the macroblocks of a layer representation. An element of this array for a macroblock with
address mbAddr is referred to as baseModeFlag[mbAddr]. All elements of the array baseModeFlag are initially
marked as unspecified.

– A one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks
of a layer representation. An element of this array for a macroblock with address mbAddr is referred to as
mbType[mbAddr]. Unless marked as unspecified, each element of mbType is equal to I_4x4, I_8x8, I_16x16,
I_PCM, I_BL, or one of the Inter macroblock types specified in Tables 7-13 and 7-14. All elements of the array
mbType are initially marked as unspecified.

– A (PicSizeInMbs)x4 array subMbType specifying sub-macroblock types for the macroblocks of a layer
representation. An element of this array for a macroblock with address mbAddr and a macroblock partition index
mbPartIdx is referred to as subMbType[mbAddr][mbPartIdx]. A one-dimensional array specifying
sub-macroblock types for the macroblock partitions of a macroblock with address mbAddr is referred to as
subMbType[mbAddr]. Unless marked as unspecified, each element of subMbType is equal to one of the
sub-macroblock types specified in Tables 7-17 and 7-18. All elements of the array subMbType are initially marked
as unspecified.

438 Rec. ITU-T H.264 (03/2009)

– A one-dimensional array mvCnt with PicSizeInMbs elements specifying the number of motion vectors for the
macroblocks of a layer representation. An element of this array for a macroblock with address mbAddr is referred
to as mvCnt[mbAddr]. All elements of the array mvCnt are initially set equal to 0.

– A one-dimensional array tQPY with PicSizeInMbs elements specifying luma quantisation parameters for the
macroblocks of a layer representation. An element of this array for a macroblock with address mbAddr is referred
to as tQPY[mbAddr]. All elements of the array tQPY are initially set equal to 0.

– When ChromaArrayType is not equal to 0, two one-dimensional arrays tQPCb and tQPCr with PicSizeInMbs
elements specifying Cb and Cr quantisation parameters, respectively, for the macroblocks of a layer representation.
An element of these arrays for a macroblock with address mbAddr is referred to as tQPCX[mbAddr] with CX
being replaced by Cb or Cr. All elements of the arrays tQPCb and tQPCr are initially set equal to 0.

– A (PicSizeInMbs)x16 array ipred4x4 specifying Intra_4x4 prediction modes for the macroblocks of a layer
representation. An element of this array for a macroblock with address mbAddr and a 4x4 block with index
c4x4BlkIdx is referred to as ipred4x4[mbAddr][c4x4BlkIdx]. A one-dimensional array specifying Intra_4x4
prediction modes for the 4x4 blocks of a macroblock with address mbAddr is referred to as ipred4x4[mbAddr].
All elements of the array ipred4x4 are initially marked as unspecified.

– A (PicSizeInMbs)x4 array ipred8x8 specifying Intra_8x8 prediction modes for the macroblocks of a layer
representation. An element of this array for a macroblock with address mbAddr and a 8x8 block with index
c8x8BlkIdx is referred to as ipred8x8[mbAddr][c8x8BlkIdx]. A one-dimensional array specifying Intra_8x8
prediction modes for the 8x8 blocks of a macroblock with address mbAddr is referred to as ipred8x8[mbAddr].
All elements of the array ipred8x8 are initially marked as unspecified.

– A one-dimensional array ipred16x16 with PicSizeInMbs elements specifying Intra_16x16 prediction modes for the
macroblocks of a layer representation. An element of this array for a macroblock with address mbAddr is referred
to as ipred16x16[mbAddr]. All elements of the array ipred16x16 are initially marked as unspecified.

– When ChromaArrayType is equal to 1 or 2, a one-dimensional array ipredChroma with PicSizeInMbs elements
specifying intra chroma prediction modes for the macroblocks of a layer representation. An element of this array
for a macroblock with address mbAddr is referred to as ipredChroma[mbAddr]. All elements of the array
ipredChroma are initially marked as unspecified.

– Two (PicSizeInMbs)x4 arrays predFlagL0 and predFlagL1 specifying prediction utilization flags for the
macroblocks of a layer representation. An element of these arrays for a macroblock with address mbAddr and a
macroblock partition index mbPartIdx is referred to as predFlagLX[mbAddr][mbPartIdx] with X being replaced
by 0 or 1. A one-dimensional array specifying prediction utilization flags for the macroblock partitions of a
macroblock with address mbAddr is referred to as predFlagLX[mbAddr] with X being replaced by 0 or 1. All
elements of the arrays predFlagL0 and predFlagL1 are initially set equal to 0.

– Two (PicSizeInMbs)x4 arrays refIdxL0 and refIdxL1 specifying reference indices for the macroblocks of a layer
representation. An element of these arrays for a macroblock with address mbAddr and a macroblock partition
index mbPartIdx is referred to as refIdxLX[mbAddr][mbPartIdx] with X being replaced by 0 or 1. A one-
dimensional array specifying reference indices for the macroblock partitions of a macroblock with address mbAddr
is referred to as refIdxLX[mbAddr] with X being replaced by 0 or 1. All elements of the arrays refIdxL0 and
refIdxL1 are initially set equal to −1.

– Two (PicSizeInMbs)x4x4x2 arrays mvL0 and mvL1 specifying motion vector components for the macroblocks of
a layer representation. An element of these arrays for a macroblock with address mbAddr, a macroblock partition
index mbPartIdx, a sub-macroblock partition index subMbPartIdx, and a motion vector component index c is
referred to as mvLX[mbAddr][mbPartIdx][subMbPartIdx][c] with X being replaced by 0 or 1. A
one-dimensional array with 2 elements representing the motion vector for a sub-macroblock partition
subMbPartIdx of a macroblock partition mbPartIdx inside a macroblock mbAddr is referred to as
mvLX[mbAddr][mbPartIdx][subMbPartIdx] with X being replaced by 0 or 1. A 4x2 array representing the
motion vectors for a macroblock partition mbPartIdx inside a macroblock mbAddr is referred to as
mvLX[mbAddr][mbPartIdx] with X being replaced by 0 or 1. A 4x4x2 array representing the motion vectors for
a macroblock mbAddr is referred to as mvLX[mbAddr] with X being replaced by 0 or 1. A motion vector
component with component index c for a macroblock partition mbPartIdx of a macroblock mbAddr that is not split
into sub-macroblock partitions can also be referred to as mvLX[mbAddr][mbPartIdx][c] with X being replaced
by 0 or 1, which is identical to mvLX[mbAddr][mbPartIdx][0][c]. A motion vector for a macroblock partition
mbPartIdx of a macroblock mbAddr that is not split into sub-macroblock partitions can also be referred to as
mvLX[mbAddr][mbPartIdx] with X being replaced by 0 or 1, which is identical to
mvLX[mbAddr][mbPartIdx][0]. All elements of the arrays mvL0 and mvL1 are initially set equal to 0.

– A (PicSizeInMbs)x(256 + 2 * MbWidthC * MbHeightC) array tCoeffLevel specifying transform coefficient level
values for the macroblocks of a layer representation. An element of this array for a macroblock with address

 Rec. ITU-T H.264 (03/2009) 439

mbAddr and a transform coefficient index tCoeffIdx is referred to as tCoeffLevel[mbAddr][tCoeffIdx]. A
one-dimensional array specifying the transform coefficient level values for a macroblock with address mbAddr is
referred to as tCoeffLevel[mbAddr]. All elements of the array tCoeffLevel are initially set equal to 0.

– A (PicSizeInMbs)x(256 + 2 * MbWidthC * MbHeightC) array sTCoeff specifying scaled transform coefficient
values for the macroblocks of a layer representation. An element of this array for a macroblock with address
mbAddr and a transform coefficient index tCoeffIdx is referred to as sTCoeff[mbAddr][tCoeffIdx]. A
one-dimensional array specifying the scaled transform coefficient values for a macroblock with address mbAddr is
referred to as sTCoeff[mbAddr]. All elements of the array sTCoeff are initially set equal to 0.

– A (PicWidthInSamplesL)x(PicHeightInSamplesL) array rSL specifying residual luma sample values for a layer
picture. An element of this array for a luma location (x, y) relative to the upper-left luma sample of the
macroblock with address 0 is referred to as rSL[x, y]. All elements of the array rSL are initially set equal to 0.

– When ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays rSCb and rSCr
specifying residual chroma sample values for a layer picture. An element of these arrays for a chroma location
(x, y) relative to the upper-left chroma sample of the macroblock with address 0 is referred to as rSCX[x, y] with
CX being replaced by Cb or Cr. All elements of the arrays rSCb and rSCr are initially set equal to 0.

– A (PicWidthInSamplesL)x(PicHeightInSamplesL) array cSL specifying constructed luma sample values for a layer
picture. An element of this array for a luma location (x, y) relative to the upper-left luma sample of the
macroblock with address 0 is referred to as cSL[x, y]. All elements of the array cSL are initially set equal to 0.

– When ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays cSCb and
cSCr specifying constructed chroma sample values for a layer picture. An element of these arrays for a chroma
location (x, y) relative to the upper-left chroma sample of the macroblock with address 0 is referred to as
cSCX[x, y] with CX being replaced by Cb or Cr. All elements of the arrays cSCb and cSCr are initially set equal
to 0.

G.8.1.2.2 Array restructuring process

This process is only invoked when no_inter_layer_pred_flag is equal to 0, SpatialResolutionChangeFlag is equal to 0,
and any of the variables ScaledRefLayerLeftOffset, ScaledRefLayerRightOffset, ScaledRefLayerTopOffset, or
ScaledRefLayerBottomOffset is not equal to 0.

Input to this process is a set of arrays collectively referred to as currentVars.

Output of this process is the set of arrays collectively referred to as currentVars with modifications related to the array
sizes as well as the ordering of array elements.

The variables that are assigned to the collective term currentVars are assigned to the collective term refLayerVars.

The array assignment and initialisation process as specified in subclause G.8.1.2.1 is invoked and the output is the set of
arrays collectively referred to as currentVars.

The variables xOffset, yOffset, xOffsetC, and yOffsetC are derived by

xOffset = ScaledRefLayerLeftOffset (G-74)
yOffset = ScaledRefLayerTopOffset / (1 + field_pic_flag) (G-75)
xOffsetC = (xOffset >> 4) * MbWidthC (G-76)
yOffsetC = (yOffset >> 4) * MbHeightC (G-77)

For the macroblock address mbAddr proceeding over the values 0..(PicSizeInMbs − 1), the following ordered steps are
specified:

1. With eS set equal to (1 + MbaffFrameFlag), the variables refMbX and refMbY are derived by

refMbX = ((mbAddr / eS) % PicWidthInMbs) − (xOffset / 16) (G-78)
refMbY = ((mbAddr / eS) / PicWidthInMbs) * eS + (mbAddr % eS) − (yOffset / 16) (G-79)

2. The reference layer macroblock address refMbAddr is derived as follows.

– If any of the following conditions is true, refMbAddr is marked as not available:

– refMbX is less than 0 or refMbX is greater than or equal to RefLayerPicWidthInMbs,

– refMbY is less than 0 or refMbY is greater than or equal to RefLayerPicHeightInMbs.

– Otherwise, with bS set equal to (1 + RefLayerMbaffFrameFlag), refMbAddr is derived by

refMbAddr = (refMbY / bS) * bS * RefLayerPicWidthInMbs + (refMbY % bS) + refMbX (G-80)

440 Rec. ITU-T H.264 (03/2009)

3. When refMbAddr is available, for X being replaced by sliceIdc, fieldMbFlag, cTrafo, baseModeFlag,
mbType, subMbType, mvCnt, tQPY, tQPCb (when ChromaArrayType is not equal to 0), tQPCb (when
ChromaArrayType is not equal to 0), ipred4x4, ipred8x8, ipred16x16, ipredChroma (when ChromaArrayType
is equal to 1 or 2), predFlagL0, predFlagL1, refIdxL0, refIdxL1, mvL0, mvL1, tCoeffLevel, and sTCoeff and
with currArray representing the array X of the collective term currentVars and refLayerArray representing the
array X of the collective term refLayerVars, the array element currArray[mbAddr], which can be a scalar or
an array, is set equal to the array element refLayerArray[refMbAddr].

For X being replaced by rSY and cSY and with currArray representing the array X of the collective term currentVars and
refLayerArray representing the array X of the collective term refLayerVars, the array currArray is modified by

currArray[x, y] = refLayerArray[x − xOffset, y − yOffset]
 (G-81)
with x = Max(0, xOffset)..Min(PicWidthInSamplesL, RefLayerPicWidthInSamplesL − xOffset)
and y = Max(0, yOffset)..Min(PicHeightInSamplesL, RefLayerPicHeightInSamplesL − yOffset)

When ChromaArrayType is not equal to 0, for X being replaced by rSCb, rSCr, cSCb, and cSCr and with currArray
representing the array X of the collective term currentVars and refLayerArray representing the array X of the collective
term refLayerVars, the array currArray is modified by

currArray[x, y] = refLayerArray[x − xOffsetC, y − yOffsetC]
 (G-82)
with x = Max(0, xOffsetC)..Min(PicWidthInSamplesC, RefLayerPicWidthInSamplesC − xOffsetC)
and y = Max(0, yOffsetC)..Min(PicHeightInSamplesC, RefLayerPicHeightInSamplesC − yOffsetC)

G.8.1.3 Layer representation decoding processes

Subclause G.8.1.3.1 specifies the base decoding process for layer representations without resolution change.

Subclause G.8.1.3.2 specifies the base decoding process for layer representations with resolution change.

Subclause G.8.1.3.3 specifies the target layer representation decoding process

G.8.1.3.1 Base decoding process for layer representations without resolution change

Inputs to this process are

– a variable currDQId specifying the current layer representation,

– a set of arrays collectively referred to as currentVars.

Output of this process is the modified set of arrays collectively referred to as currentVars.

This process modifies the variables assigned to currentVars using syntax elements and derived upper-case variables for
the current layer representation with DQId equal to currDQId.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived upper-
case variables for the current layer representation with DQId equal to currDQId.

The base decoding process for layer representations without resolution change proceeds in the following ordered steps.

1. The variable noInterLayerPredFlag is set equal to the minimum value of no_inter_layer_pred_flag of the slices
of the layer representation with DQId equal to currDQId.

2. Depending on noInterLayerPredFlag, the following applies.

– If noInterLayerPredFlag is equal to 1, the array assignment and initialisation process as specified in
subclause G.8.1.2.1 is invoked and the output is a modified set of arrays collectively referred to as
currentVars.

– Otherwise (noInterLayerPredFlag is equal to 0), the following ordered steps are specified:

a. When tcoeff_level_prediction_flag is equal to 0, the macroblock address mbAddr proceeds over the
values 0..(RefLayerPicSizeInMbs − 1), and for each macroblock address mbAddr, the macroblock
decoding process prior to decoding a layer representation without resolution change and
tcoeff_level_prediction_flag equal to 0 as specified in subclause 8 is invoked with currDQId set
equal to ref_layer_dq_id, mbAddr, and currentVars as the inputs and the output is a modified version
of currentVars.

 Rec. ITU-T H.264 (03/2009) 441

b. When any of the variables ScaledRefLayerLeftOffset, ScaledRefLayerRightOffset,
ScaledRefLayerTopOffset, or ScaledRefLayerBottomOffset is not equal to 0, the array restructuring
process as specified in subclause G.8.1.2.2 is invoked with currentVars as the input and the output is
a modified version of currentVars.

3. Let setOfSlices be the set of all slices of the current layer representation with DQId equal to currDQId. For
each slice of the set setOfSlices, the base decoding process for slices without resolution change as specified in
subclause G.8.1.4.1 is invoked with currSlice representing the currently processed slice, currDQId, and
currentVars as the inputs and the output is a modified version of currentVars.

4. When currDQId is less than or equal to (DependencyIdMax << 4), with sliceIdc being the array sliceIdc of the
collective term currentVars, the bitstream shall not contain data that result in any value of
(sliceIdc[mbAddr] & 127) with mbAddr = 0..(PicSizeInMbs − 1) not equal to currDQId.
NOTE – This constraint and a similar constraint in subclause G.8.1.3.2 specify that all layer representations with
quality_id equal to 0 and all layer representations that are used for inter-layer prediction must be completely covered by
the slices of the access unit. An additional constraint for layer representations with dependency_id equal to
DependencyIdMax and quality_id greater than 0 is specified in subclause G.8.1.5.1.

G.8.1.3.2 Base decoding process for layer representations with resolution change

Inputs to this process are

– a variable currDQId specifying the current layer representation,

– a set of arrays collectively referred to as currentVars.

Outputs of this process are

– a set of arrays collectively referred to as refLayerVars,

– the modified set of arrays collectively referred to as currentVars.

This process modifies the variables assigned to currentVars using syntax elements and derived upper-case variables for
the current layer representation with DQId equal to currDQId.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived
upper-case variables for the current layer representation with DQId equal to currDQId.

The base decoding process for layer representations with resolution change proceeds in the following ordered steps:

1. The macroblock address mbAddr proceeds over the values 0..(RefLayerPicSizeInMbs − 1), and for each
macroblock address mbAddr, the macroblock decoding process prior to resolution change as specified in
subclause G.8.1.5.5 is invoked with ref_layer_dq_id, mbAddr, and currentVars as the inputs and the output is
a modified version of currentVars.

2. The deblocking filter process for Intra_Base prediction as specified in subclause G.8.7.1 is invoked with
currDQId and currentVars as the inputs and the output is a modified version of currentVars.

3. The variables that are assigned to the collective term currentVars are assigned to the collective term
refLayerVars.

4. The array assignment and initialisation process as specified in subclause G.8.1.2.1 is invoked and the output is
assigned to the collective term currentVars.

5. Let setOfSlices be the set of all slices of the current layer representation with DQId equal to currDQId. For
each slice of the set setOfSlices, the base decoding process for slices with resolution change as specified in
subclause G.8.1.4.2 is invoked with currSlice representing the currently processed slice, currDQId,
refLayerVars, and currentVars as the inputs and the output is a modified version of currentVars.

6. With sliceIdc being the array sliceIdc of the collective term currentVars, the bitstream shall not contain data
that result in any value of (sliceIdc[mbAddr] & 127) with mbAddr = 0..(PicSizeInMbs − 1) not equal to
currDQId.
NOTE – This constraint and a similar constraint in subclause G.8.1.3.1 specify that all layer representations with
quality_id equal to 0 and all layer representation that are used for inter-layer prediction must be completely covered by the
slices of the access unit. An additional constraint for layer representations with dependency_id equal to
DependencyIdMax and quality_id greater than 0 is specified in subclause G.8.1.5.1.

442 Rec. ITU-T H.264 (03/2009)

G.8.1.3.3 Target layer representation decoding process

Inputs to this process are

– a variable currDQId specifying the current layer representation,

– when present, a set of arrays collectively referred to as refLayerVars,

– a set of arrays collectively referred to as currentVars.

Outputs of this process are

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array sL containing constructed luma sample values,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays sCb and sCr
containing constructed chroma sample values.

In this process the constructed samples of the array sL and, when ChromaArrayType is not equal to 0, the arrays sCb and
sCr are derived using the variables that are assigned to currentVars.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived upper-
case variables for the current layer representation with DQId equal to currDQId.

The target layer representation decoding process proceeds in the following ordered steps:

1. The variables that are assigned to the collective term currentVars are assigned to the collective term tempVars,
and in the following of this subclause, the arrays that are collectively referred to as tempVars are referred to by
their names as specified in subclause G.8.1.2.1.

NOTE 1 – Any following modification of the variables assigned to the collective term tempVars does not influence
the variables assigned to the collective term currentVars.

2. The macroblock address mbAddr proceeds over the values 0..(PicSizeInMbs − 1), and for each macroblock
address mbAddr, the following ordered steps are specified:

a. Let currSlice specify the slice of the layer representation with DQId equal to
(((sliceIdc[mbAddr] & 127) >> 4) << 4) that covers the macroblock with macroblock address
(sliceIdc[mbAddr] >> 7).

b. Let firstMbInSlice and sliceType be the syntax elements first_mb_in_slice and slice_type of the slice
currSlice.

c. The variable firstMbAddrInSlice is set equal to (firstMbInSlice * (1 + MbaffFrameFlag)).

d. The reference picture lists refPicList0 and refPicList1 are marked as not available.

e. When (slice_type & 5) is less than 2, the following applies.

– If mbAddr is greater than firstMbAddrInSlice, the reference picture list refPicList0 is set equal to the
reference picture list refPicList0 that was derived for the macroblock address mbAddr equal to
firstMbInSlice inside this subclause and, when (slice_type % 5) is equal to 1, the reference picture
list refPicList1 is set equal to the reference picture list refPicList1 that was derived for the
macroblock address mbAddr equal to firstMbInSlice inside this subclause.

– Otherwise (mbAddr is equal to firstMbAddrInSlice), the SVC decoding process for reference picture
lists construction as specified in subclause G.8.2.3 is invoked with currDependencyId set equal to
dependency_id, useRefBasePicFlag set equal to use_ref_base_pic_flag, and the slice currSlice as the
inputs and the outputs are the modified reference picture list refPicList0 and, when (sliceType % 5)
is equal to 1, the modified reference picture list refPicList1.
NOTE 2 – The reference picture lists refPicList0 and refPicList1 are only constructed for the slices of the layer
representation with dependency_id equal to DependencyIdMax and quality_id equal to 0. For slices with
dependency_id equal to DependencyIdMax and quality_id greater than 0, the reference picture lists are
inferred.

f. The target macroblock decoding process as specified in subclause G.8.1.5.6 is invoked with currDQId,
mbAddr, refLayerVars (when present as input to this subclause), tempVars, refPicList0 (when available),
and refPicList1 (when available) as the inputs and the output is a modified version of tempVars.

NOTE 3 – Although the target layer representation decoding process is invoked twice for pictures with
store_ref_base_pic_flag equal to 1, only a single motion compensation operation is needed for each
macroblock.

 Rec. ITU-T H.264 (03/2009) 443

3. The deblocking filter process for target representations as specified in subclause G.8.7.2 is invoked with
currDQId and tempVars as the inputs and the output is a modified version of tempVars.

4. All sample values of the array SL are copied to the array sL, which is output of this subclause.

5. When ChromaArrayType is not equal to 0, all sample values of the arrays SCb and SCr are copied to the arrays
sCb and sCr, respectively, which are output of this subclause.

G.8.1.4 Slice decoding processes

Subclause G.8.1.4.1 specifies the base decoding process for slices without resolution change.

Subclause G.8.1.4.2 specifies the base decoding process for slices with resolution change.

G.8.1.4.1 Base decoding process for slices without resolution change

Inputs to this process are

– the current slice currSlice,

– a variable currDQId specifying the current layer representation,

– a set of arrays collectively referred to as currentVars.

Output of this process is the modified set of arrays collectively referred to as currentVars.

This process modifies the variables assigned to currentVars using syntax elements and derived upper-case variables for
the current slice currSlice.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived
upper-case variables for the slice header of the current slice currSlice, the current picture parameter, which is identified
by the syntax element pic_parameter_set_id inside the slice header of the current slice currSlice, and the current
sequence parameter, which is identified by the syntax element seq_parameter_set_id inside the current picture
parameter set.

When currDQId is equal to 0 and (slice_type % 5) is equal to 1, the SVC decoding process for reference picture lists
construction as specified in subclause G.8.2.3 is invoked with currDependencyId equal to 0, useRefBasePicFlag equal
to use_ref_base_pic_flag, and the current slice as input and the output is the reference picture list refPicList1.

The macroblocks of the current slice currSlice are processed in increasing order of their macroblock addresses. For each
macroblock with macroblock address mbAddr, the base decoding process for macroblocks in slices without resolution
change as specified in subclause G.8.1.5.2 is invoked with currDQId, mbAddr, currentVars, and, when currDQId is
equal to 0 and (slice_type % 5) is equal to 1, the reference picture list refPicList1 as the inputs and the output is a
modified version of currentVars.

G.8.1.4.2 Base decoding process for slices with resolution change

Inputs to this process are

– the current slice currSlice,

– a variable currDQId specifying the current layer representation,

– a set of arrays collectively referred to as refLayerVars,

– a set of arrays collectively referred to as currentVars.

Output of this process is the modified set of arrays collectively referred to as currentVars.

This process modifies the variables assigned to currentVars using syntax elements and derived upper-case variables for
the current slice currSlice.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived
upper-case variables for the slice header of the current slice currSlice, the current picture parameter, which is identified
by the syntax element pic_parameter_set_id inside the slice header of the current slice currSlice, and the current
sequence parameter, which is identified by the syntax element seq_parameter_set_id inside the current picture
parameter set.

When CroppingChangeFlag is equal to 1 and (slice_type % 5) is less than 2, the SVC decoding process for reference
picture lists construction as specified in subclause G.8.2.3 is invoked with currDependencyId equal to dependency_id,

444 Rec. ITU-T H.264 (03/2009)

useRefBasePicFlag equal to use_ref_base_pic_flag, and the current slice as the inputs and the outputs are the reference
picture list refPicList0 and, when (sliceType % 5) is equal to 1, the reference picture list refPicList1.

The macroblocks of the current slice currSlice are processed in increasing order of their macroblock addresses. For each
macroblock with macroblock address mbAddr, the base decoding process for macroblocks in slices with resolution
change as specified in clause 8 is invoked with currDQId, mbAddr, refLayerVars, currentVars, refPicList0 (when
CroppingChangeFlag is equal to 1 and (slice_type % 5) is less than 2), and refPicList1 (when CroppingChangeFlag is
equal to 1 and (slice_type % 5) is equal to 1) as the inputs and the output is a modified version of currentVars.

G.8.1.5 Macroblock initialisation and decoding processes

Subclause G.8.1.5.1 specifies the macroblock initialisation process.

Subclause G.8.1.5.2 specifies the base decoding process for macroblocks in slices without resolution change.

Subclause G.8.1.5.3 specifies the base decoding process for macroblocks in slices with resolution change.

Subclause G.8.1.5.4 specifies the macroblock decoding process prior to decoding a layer representation without
resolution change and tcoeff_level_prediction_flag equal to 0.

Subclause G.8.1.5.5 specifies the macroblock decoding process prior to resolution change.

Subclause G.8.1.5.6 specifies the target macroblock decoding process.

G.8.1.5.1 Macroblock initialisation process

Inputs to this process are

– a set of arrays collectively referred to as refLayerVars,

– when CroppingChangeFlag is equal to 1 and (slice_type % 5) is less than 2, the reference picture list refPicList0,

– when CroppingChangeFlag is equal to 1 and (slice_type % 5) is equal to 1, the reference picture list refPicList1.

Outputs of this process are

– a variable sliceIdc specifying the slice identification for the current macroblock,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable cTrafo specifying the transform type for the current macroblock,

– a variable baseModeFlag specifying the syntax element base_mode_flag of the current macroblock,

– a variable mbType specifying the macroblock type of the current macroblock,

– a list subMbType with 4 elements specifying the sub-macroblock types of the current macroblock,

– a variable mvCnt specifying an initialisation value for the motion vector count of the current macroblock,

– a variable tQPY specifying the luma quantisation parameter for the current macroblock,

– when ChromaArrayType is not equal to 0, two variables tQPCb and tQPCr specifying the chroma quantisation
parameters for the current macroblock,

– two 2x2 arrays refIdxILPredL0 and refIdxILPredL1 specifying inter-layer predictors for the reference indices of
the current macroblock,

– two 4x4x2 arrays mvILPredL0 and mvILPredL1 specifying inter-layer predictors for the motion vector
components of the current macroblock.

Inside this subclause, the arrays sliceIdc, fieldMbFlag, cTrafo, mbType, subMbType, tQPY, predFlagL0, predFlagL1,
refIdxL0, refIdxL1, mvL0, mvL1, and sTCoeff that are collectively referred to as refLayerVars are referred to as
refLayerSliceIdc, refLayerFieldMbFlag, refLayerCTrafo, refLayerMbType, refLayerSubMbType, refLayerQPY,
refLayerPredFlagL0, refLayerPredFlagL1, refLayerRefIdxL0, refLayerRefIdxL1, refLayerMvL0, refLayerMvL1, and
refLayerSTCoeff, respectively.

The variable sliceIdc is set equal to ((first_mb_in_slice << 7) + DQId).

The variable baseModeFlag is set equal to base_mode_flag.

The variable fieldMbFlag is derived as follows.

– If field_pic_flag is equal to 1, fieldMbFlag is set equal to 1.

 Rec. ITU-T H.264 (03/2009) 445

– Otherwise, if SpatialResolutionChangeFlag is equal to 0 and slice_skip_flag is equal to 1, fieldMbFlag is set equal
to refLayerFieldMbFlag[CurrMbAddr].

– Otherwise, fieldMbFlag is set equal to mb_field_decoding_flag.

The derivation process for macroblock type, sub-macroblock type, and inter-layer predictors for reference indices and
motion vectors as specified in subclause G.8.1.5.1.1 is invoked with fieldMbFlag, refLayerFieldMbFlag,
refLayerMbType, refLayerSubMbType, refLayerPredFlagL0, refLayerPredFlagL1, refLayerRefIdxL0,
refLayerRefIdxL1, refLayerMvL0, refLayerMvL1, refPicList0 (when available), and refPicList1 (when available) as
the inputs and the outputs are the variable mbType, the list subMbType, the 2x2 arrays refIdxILPredL0 and
refIdxILPredL1, and the 4x4x2 arrays mvILPredL0 and mvILPredL1.

The derivation process for quantisation parameters and transform type as specified in subclause G.8.1.5.1.2 is invoked
with mbType, subMbType, refLayerMbType, refLayerCTrafo, refLayerQPY, and refLayerSTCoeff as the inputs and the
outputs are cTrafo, tQPY, and, when ChromaArrayType is not equal to 0, tQPCb and tQPCr.

The variable mvCnt is set equal to 0.

When quality_id is greater than 0, the bitstream shall not contain data that result in
(sliceIdcRefLayer[CurrMbAddr] & 127) not equal to (DQId − 1).

When no_inter_layer_pred_flag is equal to 0, SpatialResolutionChangeFlag is equal to 0, and fieldMbFlag is not equal
to refLayerFieldMbRef[CurrMbAddr], the following constraints shall be obeyed:

a) The bitstream shall not contain data that result in base_mode_flag equal to 1, or any
motion_prediction_flag_lX[mbPartIdx] with X being replaced by 0 and 1 and mbPartIdx = 0..3 equal to 1.

b) When residual_prediction_flag is equal to 1, refLayerMbType[CurrMbAddr] is not equal to I_PCM,
I_16x16, I_8x8, I_4x4, or I_BL, and mbType is not equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL, the
bitstream shall not contain data that result in any element refLayerSTCoeff[CurrMbAddr][i] not equal to 0
for i = 0..(255 + 2 * MbWidthC * MbHeightC).

G.8.1.5.1.1 Derivation process for macroblock type, sub-macroblock type, and inter-layer predictors for
reference indices and motion vectors

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying the macroblock types
for the macroblocks of the reference layer representation,

– a (RefLayerPicSizeInMbs)x4 array refLayerSubMbType specifying the sub-macroblock types for the macroblocks
of the reference layer representation,

– two (RefLayerPicSizeInMbs)x4 arrays refLayerPredFlagL0 and refLayerPredFlagL1 specifying prediction
utilization flags for the macroblocks of the reference layer representation,

– two (RefLayerPicSizeInMbs)x4 arrays refLayerRefIdxL0 and refLayerRefIdxL1 specifying reference indices for
the macroblocks of the reference layer representation,

– two (RefLayerPicSizeInMbs)x4x4x2 arrays refLayerMvL0 and refLayerMvL1 specifying motion vector
components for the macroblocks of the reference layer representation,

– when CroppingChangeFlag is equal to 1 and (slice_type % 5) is less than 2, the reference picture list refPicList0,

– when CroppingChangeFlag is equal to 1 and (slice_type % 5) is equal to 1, the reference picture list refPicList1.

Outputs of this process are

– a variable mbType specifying the macroblock type of the current macroblock,

– a list subMbType with 4 elements specifying the sub-macroblock types of the current macroblock,

– two 2x2 arrays refIdxILPredL0 and refIdxILPredL1 specifying inter-layer predictors for the reference indices of
the current macroblock,

446 Rec. ITU-T H.264 (03/2009)

– two 4x4x2 arrays mvILPredL0 and mvILPredL1 specifying inter-layer predictors for the motion vector
components of the current macroblock.

The variable mbTypeILPred, the list subMbTypeILPred, the 2x2 arrays refIdxILPredL0 and refIdxILPredL1, and the
4x4x2 arrays mvILPredL0 and mvILPredL1 are derived as follows.

– If base_mode_flag is equal to 1 or any syntax element motion_prediction_flag_lX[mbPartIdx] with X being
replaced by 0 and 1 and mbPartIdx = 0..3 is equal to 1, the derivation process for inter-layer predictors for
macroblock type, sub-macroblock type, reference indices, and motion vectors as specified in subclause G.8.6.1 is
invoked with fieldMbFlag, refLayerFieldMbFlag, refLayerMbType, refLayerSubMbType, refLayerPredFlagL0,
refLayerPredFlagL1, refLayerRefIdxL0, refLayerRefIdxL1, refLayerMvL0, refLayerMvL1, refPicList0 (when
available), and refPicList1 (when available) as the inputs and the outputs are the variable mbTypeILPred, the list
subMbTypeILPred, the 2x2 arrays refIdxILPredL0 and refIdxILPredL1, and the 4x4x2 arrays mvILPredL0 and
mvILPredL1.

– Otherwise (base_mode_flag is equal to 0 and all syntax elements motion_prediction_flag_lX[mbPartIdx] with X
being replaced by 0 and 1 and mbPartIdx = 0..3 are equal to 0), mbTypeILPred is marked as not available, all
elements subMbTypeILPred[mbPartIdx] with mbPartIdx = 0..3 of the list subMbTypeILPred are marked as not
available, all elements of the 2x2 arrays refIdxILPredL0 and refIdxILPredL1 are set equal to −1, and all elements
of the 4x4x2 arrays mvILPredL0 and mvILPredL1 are set equal to 0.

Depending on base_mode_flag, mb_type, refLayerMbType[CurrMbAddr], CodedBlockPatternLuma, and
CodedBlockPatternChroma, the variable mbType is derived as follows.

– If base_mode_flag is equal to 1, the following applies.

– If refLayerMbType[CurrMbAddr] is equal to I_PCM, CodedBlockPatternLuma is equal to 0, and
CodedBlockPatternChroma is equal to 0, mbType is set equal to I_PCM.

– Otherwise (refLayerMbType[CurrMbAddr] is not equal to I_PCM, CodedBlockPatternLuma is not equal
to 0, or CodedBlockPatternChroma is not equal to 0), mbType is set equal to mbTypeILPred.

– Otherwise, if MbPartPredMode(mb_type, 0) is equal to Intra_4x4, mbType is set equal to I_4x4.

– Otherwise, if MbPartPredMode(mb_type, 0) is equal to Intra_8x8, mbType is set equal to I_8x8.

– Otherwise, if MbPartPredMode(mb_type, 0) is equal to Intra_16x16, mbType is set equal to I_16x16.

– Otherwise, if mb_type is equal to I_PCM, mbType is set equal to I_PCM.

– Otherwise (base_mode_flag is equal to 0 and mb_type specifies a P or B macroblock type), mbType is set equal to
mb_type.

Depending on mbType and base_mode_flag, the list subMbType is derived as follows.

– If mbType is not equal to P_8x8 or B_8x8, all elements subMbType[mbPartIdx] with mbPartIdx = 0..3 are
marked as unspecified.

– Otherwise, if base_mode_flag is equal to 1, each element subMbType[mbPartIdx] with mbPartIdx = 0..3 is set
equal to subMbTypeILPred[mbPartIdx].

– Otherwise (mbType is equal to P_8x8 or B_8x8 and base_mode_flag is equal to 0), each element
subMbType[mbPartIdx] with mbPartIdx = 0..3 is set equal to sub_mb_type[mbPartIdx].

When slice_type is equal to EP and base_mode_flag is equal to 1, the bitstream shall not contain data that result in any
element refIdxILPredL0[mbPartIdx] with mbPartIdx = 0..3 that is less than 0.

When residual_prediction_flag equal to 1 is present in the bitstream, the bitstream shall not contain data that result in
mbType being equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL.

G.8.1.5.1.2 Derivation process for quantisation parameters and transform type

Inputs to this process are

– a variable mbType specifying the macroblock type for the current macroblock,

– a list subMbType with 4 elements specifying the sub-macroblock types for the current macroblock,

– a one-dimensional array refLayerMbType specifying macroblock types for the macroblocks of the reference layer
representation,

 Rec. ITU-T H.264 (03/2009) 447

– a one-dimensional array refLayerCTrafo specifying transform types for the macroblocks of the reference layer
representation,

– a one-dimensional array refLayerQPY specifying luma quantisation parameters for the macroblocks of the
reference layer representation,

– an (RefLayerPicSizeInMbs)x(256 + 2 * MbWidthC * MbHeightC) array refLayerSTCoeff specifying scaled
transform coefficient values for the macroblocks of the reference layer representation.

Outputs of this process are

– a variable cTrafo specifying the transform type for the current macroblock,

– a variable tQPY specifying the luma quantisation parameter for the current macroblock,

– when ChromaArrayType is not equal to 0, two variables tQPCb and tQPCr specifying the chroma quantisation
parameters for the current macroblock.

The variable tQPY is derived as follows.

– If SpatialResolutionChangeFlag is equal to 0, CodedBlockPatternLuma is equal to 0, CodedBlockPatternChroma
is equal to 0, and any of the following conditions is true, tQPY is set equal to refLayerQPY[CurrMbAddr]:

– mbType is equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL and base_mode_flag is equal to 1,

– mbType is not equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL and residual_prediction_flag is equal to 1.

– Otherwise, tQPY is set equal to QPY.

When ChromaArrayType is not equal to 0, for CX being replaced by Cb and Cr, the variable tQPCX is set equal to the
value of QPCX that corresponds to a value of tQPY for QPY as specified in subclause 8.5.8.

The variable predCoeffFlag is derived as follows.

– If SpatialResolutionChangeFlag is equal to 0 and any of the following conditions is true, predCoeffFlag is set
equal to 1:

– base_mode_flag is equal to 1, tcoeff_level_prediction_flag is equal to 0, and refLayerMbType[CurrMbAddr]
is equal to I_BL, and any element refLayerSTCoeff[CurrMbAddr][i] for
i = 0..((ChromaArrayType != 3) ? 255 : 767) is not equal to 0,

– base_mode_flag is equal to 1, tcoeff_level_prediction_flag is equal to 0, refLayerMbType[CurrMbAddr] is
equal to I_PCM, CodedBlockPatternLuma is equal to 0, and CodedBlockPatternChroma is equal to 0,

– base_mode_flag is equal to 1, tcoeff_level_prediction_flag is equal to 0, refLayerMbType[CurrMbAddr] is
equal to I_8x8 or I_4x4, and CodedBlockPatternLuma is equal to 0,

– base_mode_flag is equal to 1, tcoeff_level_prediction_flag is equal to 1, and mbType is equal to I_PCM,
I_16x16, I_8x8, or I_4x4,

– residual_prediction_flag is equal to 1, refLayerMbType[CurrMbAddr] is not equal to I_PCM, I_16x16,
I_8x8, I_4x4, or I_BL, and mbType is not equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL.

– Otherwise, predCoeffFlag is set equal to 0.

The variable cTrafo is derived as follows.

– If mbType is equal to I_PCM, cTrafo is set equal to T_PCM.

– Otherwise, if mbType is equal to I_16x16, cTrafo is set equal to T_16x16.

– Otherwise, if mbType is equal to I_8x8 or transform_size_8x8_flag is equal to 1, cTrafo is set equal to T_8x8.

– Otherwise, if predCoeffFlag is equal to 1, cTrafo is set equal to refLayerCTrafo[CurrMbAddr].

– Otherwise (predCoeffFlag is equal to 0, transform_size_8x8_flag is equal to 0, and mbType is not equal to I_PCM,
I_16x16, or I_8x8), cTrafo is set equal to T_4x4.

When cTrafo is equal to T_8x8, the SVC sequence parameter set that is referred to by the coded slice NAL unit (via
pic_parameter_set_id in the slice header and seq_parameter_set_id in referenced the picture parameter set) shall have
transform_8x8_mode_flag equal to 1.

448 Rec. ITU-T H.264 (03/2009)

When base_mode_flag is equal to 1, the following constraints shall be obeyed:

a) When mbType is equal to P_8x8 or B8x8 and NumSubMbPart(subMbType[mbPartIdx]) is not equal to 1
for any mbPartIdx = 0..3, the bitstream shall not contain transform_size_8x8_flag equal to 1.

b) When mbType is equal to I_PCM, the bitstream shall not contain data that result in CodedBlockPatternLuma
not equal to 0 or CodedBlockPatternChroma not equal to 0.

c) When mbType is equal to I_16x16 or I_4x4, the bitstream shall not contain transform_8x8_size_flag equal
to 1.

d) When mbType is equal to I_8x8 and transform_size_8x8_flag is equal to 0, the bitstream shall not contain
data that result in CodedBlockPatternLuma not equal to 0.

When predCoeffFlag is equal to 1, the following constraints shall be obeyed:

a) When refLayerCTrafo[CurrMbAddr] is equal to T_8x8 and transform_size_8x8_flag is equal 0, any of the
following constraints shall be obeyed:

i) The bitstream shall not contain data that result in CodedBlockPatternLuma not equal to 0.

ii) The bitstream shall not contain data that result in any element refLayerSTCoeff[CurrMbAddr][i] not
equal to 0 for i = 0..((ChromaArrayType != 3) ? 255 : 767).

b) When refLayerCTrafo[CurrMbAddr] is equal to T_4x4 and transform_size_8x8_flag equal to 1, the
bitstream shall not contain data that result in any element refLayerSTCoeff[CurrMbAddr][i] not equal to 0
for i = 0..((ChromaArrayType != 3) ? 255 : 767).

G.8.1.5.2 Base decoding process for macroblocks in slices without resolution change

Inputs to this process are

– a variable currDQId specifying the current layer representation,

– a variable mbAddr specifying the current macroblock inside the current layer representation,

– a set of arrays collectively referred to as currentVars,

– when currDQId is equal to 0 and (slice_type % 5) is equal to 1, the reference picture list refPicList1.

Output of this process is the modified set of arrays collectively referred to as currentVars.

This process modifies the variables assigned to currentVars using syntax elements and derived upper-case variables for
the current macroblock, which is specified by its address mbAddr and the layer representation identifier currDQId.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived
upper-case variables for the current macroblock, which is the macroblock with address mbAddr inside the layer
representation with DQId equal to currDQId, the slice header of the current slice, which is the slice that contains the
current macroblock, the current picture parameter, which is identified by the syntax element pic_parameter_set_id
inside the slice header of the current slice, and the current sequence parameter, which is identified by the syntax element
seq_parameter_set_id inside the current picture parameter set.

Inside this subclause, the arrays that are collectively referred to as currentVars are referred to by their names as
specified in subclause G.8.1.2.1.

The base decoding process for macroblocks in slices without resolution change is specified by the following ordered
steps:

1. The variable CurrMbAddr is set equal to mbAddr.

2. When tcoeff_level_prediction_flag is equal to 1, the variable refQPY is set equal to tQPY[mbAddr] and, when
ChromaArrayType is not equal to 0, the variables refQPCb and refQPCr are set equal to tQPCb[mbAddr] and
tQPCr[mbAddr], respectively.

3. When no_inter_layer_pred_flag is equal to 0, the variable refLayerIntraBLFlag is derived as follows.

– If mbType[mbAddr] is equal to I_BL, refLayerIntraBLFlag is set equal to 1.

– Otherwise (mbType[mbAddr] is not equal to I_BL), refLayerIntraBLFlag is set equal to 0.

 Rec. ITU-T H.264 (03/2009) 449

4. The variable resPredFlag is derived as follows.

– If residual_prediction_flag is equal to 1 and mbType[mbAddr] is not equal to I_PCM, I_16x16, I_8x8,
I_4x4, or I_BL, resPredFlag is set equal to 1.

– Otherwise (residual_prediction_flag is equal to 0 or mbType[mbAddr] is equal to I_PCM, I_16x16,
I_8x8, I_4x4, or I_BL), resPredFlag is set equal to 0.

5. The macroblock initialisation process as specified in subclause G.8.1.5.1 is invoked with refLayerVars set
equal to currentVars as the input and the outputs are assigned to sliceIdc[mbAddr], fieldMbFlag[mbAddr],
cTrafo[mbAddr], baseModeFlag[mbAddr], mbType[mbAddr], subMbType[mbAddr], mvCnt[mbAddr],
tQPY[mbAddr], tQPCb[mbAddr] (when ChromaArrayType is not equal to 0), tQPCr[mbAddr] (when
ChromaArrayType is not equal to 0), the 2x2 arrays refIdxILPredL0 and refIdxILPredL1, and the 4x4x2
arrays mvILPredL0 and mvILPredL1.

6. The SVC derivation process for motion vector components and reference indices as specified in
subclause G.8.4.1 is invoked with sliceIdc, fieldMbFlag, mbType, subMbType, predFlagL0, predFlagL1,
refIdxL0, refIdxL1, mvL0, mvL1, mvCnt, refIdxILPredL0, refIdxILPredL1, mvILPredL0, mvILPredL1, and
refPicList1 (when available) as the inputs and the outputs are modified versions of the arrays predFlagL0,
predFlagL1, refIdxL0, refIdxL1, mvL0, mvL1, and mvCnt.

7. Depending on mbType[mbAddr], the following applies.

– If mbType[mbAddr] is equal to I_PCM, I_16x16, I_8x8, or I_4x4, the following ordered steps are
specified:

a. When base_mode_flag is equal to 0, the SVC derivation process for intra prediction modes as
specified in subclause G.8.3.1 is invoked with sliceIdc, fieldMbFlag, baseModeFlag, mbType,
ipred4x4, ipred8x8, ipred16x16, and, when ChromaArrayType is equal to 1 or 2, ipredChroma as the
inputs and the outputs are modified versions of ipred4x4, ipred8x8, ipred16x16, and, when
ChromaArrayType is equal to 1 or 2, ipredChroma.

b. When tcoeff_level_prediction_flag is equal to 1 and base_mode_flag is equal to 1, the transform
coefficient level scaling process prior to transform coefficient refinement as specified in
subclause G.8.5.2 is invoked with cTrafo[mbAddr], tCoeffLevel[mbAddr], tQPY[mbAddr],
refQPY, and, when ChromaArrayType is not equal to 0, tQPCb[mbAddr], tQPCr[mbAddr], refQPCb,
and refQPCr as the inputs and the output is a modified version of tCoeffLevel[mbAddr].

c. The transform coefficient scaling and refinement process as specified in subclause G.8.5.1 is invoked
with refinementFlag set equal to base_mode_flag, fieldMbFlag[mbAddr], cTrafo[mbAddr],
sTCoeff[mbAddr], and tCoeffLevel[mbAddr] as the inputs and the outputs are modified versions
of sTCoeff[mbAddr] and tCoeffLevel[mbAddr].

d. The sample array re-initialisation process as specified in subclause G.8.5.5 is invoked with
fieldMbFlag[mbAddr], rSL, and, when ChromaArrayType is not equal to 0, rSCb and rSCr as the
inputs and the outputs are a modified version of rSL and, when ChromaArrayType is not equal to 0,
modified versions of rSCb and rSCr.

e. The sample array re-initialisation process as specified in subclause G.8.5.5 is invoked with
fieldMbFlag[mbAddr], cSL, and, when ChromaArrayType is not equal to 0, cSCb and cSCr as the
inputs and the outputs are a modified version of cSL and, when ChromaArrayType is not equal to 0,
modified versions of cSCb and cSCr.

– Otherwise, if mbType[mbAddr] is equal to I_BL, the transform coefficient scaling and refinement
process as specified in subclause G.8.5.1 is invoked with refinementFlag set equal to
refLayerIntraBLFlag, fieldMbFlag[mbAddr], cTrafo[mbAddr], sTCoeff[mbAddr], and
tCoeffLevel[mbAddr] as the inputs and the outputs are modified versions of sTCoeff[mbAddr] and
tCoeffLevel[mbAddr].

– Otherwise (mbType[mbAddr] is not equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL), the following
ordered steps are specified:

a. When tcoeff_level_prediction_flag is equal to 1 and resPredFlag is equal to 1, the transform
coefficient level scaling process prior to transform coefficient refinement as specified in
subclause G.8.5.2 is invoked with cTrafo[mbAddr], tCoeffLevel[mbAddr], tQPY[mbAddr],
refQPY, and, when ChromaArrayType is not equal to 0, tQPCb[mbAddr], tQPCr[mbAddr], refQPCb,
and refQPCr as the inputs and the output is a modified version of tCoeffLevel[mbAddr].

450 Rec. ITU-T H.264 (03/2009)

b. The transform coefficient scaling and refinement process as specified in subclause G.8.5.1 is invoked
with refinementFlag set equal to resPredFlag, fieldMbFlag[mbAddr], cTrafo[mbAddr],
sTCoeff[mbAddr], and tCoeffLevel[mbAddr] as the inputs and the outputs are modified versions
of sTCoeff[mbAddr] and tCoeffLevel[mbAddr].

c. When resPredFlag is equal to 0, the sample array re-initialisation process as specified in
subclause G.8.5.5 is invoked with fieldMbFlag[mbAddr], rSL, and, when ChromaArrayType is not
equal to 0, rSCb and rSCr as the inputs and the outputs are a modified versions of rSL and, when
ChromaArrayType is not equal to 0, modified versions of rSCb and rSCr.

d. When resPredFlag is equal to 0, the sample array re-initialisation process as specified in
subclause G.8.5.5 is invoked with fieldMbFlag[mbAddr], cSL, and, when ChromaArrayType is not
equal to 0, cSCb and cSCr as the inputs and the outputs are a modified versions of cSL and, when
ChromaArrayType is not equal to 0, modified versions of cSCb and cSCr.

8. The variable MvCnt for the macroblock mbAddr is set equal to mvCnt[mbAddr].

G.8.1.5.3 Base decoding process for macroblocks in slices with resolution change

Inputs to this process are

– a variable currDQId specifying the current layer representation,

– a variable mbAddr specifying the current macroblock inside the current layer representation,

– a set of arrays collectively referred to as refLayerVars,

– a set of arrays collectively referred to as currentVars,

– when CroppingChangeFlag is equal to 1 and (slice_type % 5) is less than 2, the reference picture list refPicList0,

– when CroppingChangeFlag is equal to 1 and (slice_type % 5) is equal to 1, the reference picture list refPicList1.

Output of this process is the modified set of arrays collectively referred to as currentVars.

This process modifies the variables assigned to currentVars using syntax elements and derived upper-case variables for
the current macroblock, which is specified by its address mbAddr and the layer representation identifier currDQId, as
well as variables assigned to refLayerVars.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived
upper-case variables for the current macroblock, which is the macroblock with address mbAddr inside the layer
representation with DQId equal to currDQId, the slice header of the current slice, which is the slice that contains the
current macroblock, the current picture parameter, which is identified by the syntax element pic_parameter_set_id
inside the slice header of the current slice, and the current sequence parameter, which is identified by the syntax element
seq_parameter_set_id inside the current picture parameter set.

Inside this subclause, the arrays that are collectively referred to as currentVars are referred to by their names as
specified in subclause G.8.1.2.1.

Inside this subclause, the arrays sliceIdc, fieldMbFlag, cTrafo, mbType, cSL, cSCb, cSCr, rSL, rSCb, and rSCr of the
collective term refLayerVars are referred to as refLayerSliceIdc, refLayerFieldMbFlag, refLayerCTrafo,
refLayerMbType, refSL, refSCb, refSCr, refRL, refRCb, and refRCr, respectively.

The base decoding process for macroblocks in slices with resolution change is specified by the following ordered steps:

1. The variable CurrMbAddr is set equal to mbAddr.

2. The macroblock initialisation process as specified in subclause G.8.1.5.1 is invoked with refLayerVars,
refPicList0 (when available), and refPicList1 (when available) as the inputs and the outputs are assigned to
sliceIdc[mbAddr], fieldMbFlag[mbAddr], cTrafo[mbAddr], baseModeFlag[mbAddr],
mbType[mbAddr], subMbType[mbAddr], mvCnt[mbAddr], tQPY[mbAddr], tQPCb[mbAddr] (when
ChromaArrayType is not equal to 0), tQPCr[mbAddr] (when ChromaArrayType is not equal to 0), the 2x2
arrays refIdxILPredL0 and refIdxILPredL1, and the 4x4x2 arrays mvILPredL0 and mvILPredL1.

3. The SVC derivation process for motion vector components and reference indices as specified in
subclause G.8.4.1 is invoked with sliceIdc, fieldMbFlag, mbType, subMbType, predFlagL0, predFlagL1,
refIdxL0, refIdxL1, mvL0, mvL1, mvCnt, refIdxILPredL0, refIdxILPredL1, mvILPredL0, and mvILPredL1 as
the inputs and the outputs are modified versions of the arrays predFlagL0, predFlagL1, refIdxL0, refIdxL1,
mvL0, mvL1, and mvCnt.

 Rec. ITU-T H.264 (03/2009) 451

4. The variable intraResamplingFlag is derived as follows.

– If any of the following conditions is true, intraResamplingFlag is set equal to 1:

– mbType[mbAddr] is equal to I_BL,

– RestrictedSpatialResolutionChangeFlag is equal to 0, MbaffFrameFlag is equal to 0,
RefLayerMbaffFrameFlag is equal to 0, and base_mode_flag is equal to 1.

– Otherwise, intraResamplingFlag is set equal to 0.

5. When intraResamplingFlag is equal to 1, the resampling process for intra samples as specified in
subclause G.8.6.2 is invoked with fieldMbFlag[mbAddr], refLayerSliceIdc, refLayerFieldMbFlag,
refLayerMbType, refSL, cSL, and, when ChromaArrayType is not equal to 0, refSCb, refSCr, cSCb, and cSCr as
the inputs and the outputs are a modified version of the array cSL and, when ChromaArrayType is not equal
to 0, modified versions of the array cSCb, and cSCr.

6. Depending on mbType[mbAddr], the following applies.

– If mbType[mbAddr] is equal to I_PCM, I_16x16, I_8x8, or I_4x4, the SVC derivation process for intra
prediction modes as specified in subclause G.8.3.1 is invoked with sliceIdc, fieldMbFlag, baseModeFlag,
mbType, ipred4x4, ipred8x8, ipred16x16, and, when ChromaArrayType is equal to 1 or 2, ipredChroma
as the inputs and the outputs are modified versions of ipred4x4, ipred8x8, ipred16x16, and, when
ChromaArrayType is equal to 1 or 2, ipredChroma.

– Otherwise, if mbType[mbAddr] is not equal to I_BL and residual_prediction_flag is equal to 1, the
resampling process for residual samples as specified in subclause G.8.6.3 is invoked with
fieldMbFlag[mbAddr], refLayerFieldMbFlag, refLayerCTrafo, refRL, rSL, and, when ChromaArrayType
is not equal to 0, refRCb, refRCr, rSCb, and rSCr as the inputs and the outputs are a modified version of the
array rSL and, when ChromaArrayType is not equal to 0, modified versions of the array rSCb, and rSCr.

– Otherwise, the arrays of the collective term currentVars are not modified.

7. The transform coefficient scaling and refinement process as specified in subclause G.8.5.1 is invoked with
refinementFlag set equal to 0, fieldMbFlag[mbAddr], cTrafo[mbAddr], sTCoeff[mbAddr], and
tCoeffLevel[mbAddr] as the inputs and the outputs are modified versions of sTCoeff[mbAddr] and
tCoeffLevel[mbAddr].

8. The variable MvCnt for the macroblock mbAddr is set equal to mvCnt[mbAddr].

G.8.1.5.4 Macroblock decoding process prior to decoding a layer representation without resolution change and
tcoeff_level_prediction_flag equal to 0

Inputs to this process are

– a variable currDQId specifying the current layer representation,

– a variable mbAddr specifying the current macroblock inside the current layer representation,

– a set of arrays collectively referred to as currentVars.

Output of this process is the modified set of arrays collectively referred to as currentVars.

This process modifies the variables assigned to currentVars using syntax elements and derived upper-case variables for
the current macroblock, which is specified by its address mbAddr and the layer representation identifier currDQId.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived
upper-case variables for the current macroblock, which is the macroblock with address mbAddr inside the layer
representation with DQId equal to currDQId, the slice header of the current slice, which is the slice that contains the
current macroblock, the current picture parameter, which is identified by the syntax element pic_parameter_set_id
inside the slice header of the current slice, and the current sequence parameter, which is identified by the syntax element
seq_parameter_set_id inside the current picture parameter set.

Inside this subclause, the arrays that are collectively referred to as currentVars are referred to by their names as
specified in subclause G.8.1.2.1.

The macroblock decoding process prior to decoding a layer representation without resolution change and
tcoeff_level_prediction_flag equal to 0 is specified by the following ordered steps:

1. The variable CurrMbAddr is set equal to mbAddr.

452 Rec. ITU-T H.264 (03/2009)

2. With tcoeffLevelPredFlag being the value of tcoeff_level_prediction_flag for the layer representation with
DQId equal to (sliceIdc[mbAddr] & 127), the variable intraPredFlag is derived as follows.

– If (sliceIdc[mbAddr] & 127) is equal to currDQId or tcoeffLevelPredFlag is equal to 1, intraPredFlag is
set equal to 1.

– Otherwise ((sliceIdc[mbAddr] & 127) is not equal to currDQId and tcoeffLevelPredFlag is equal to 0,
intraPredFlag is set equal to 0).

3. When intraPredFlag is equal to 1 and mbType[mbAddr] is equal to I_PCM, I_16x16, I_8x8, or I_4x4, the
SVC intra sample prediction and construction process as specified in subclause G.8.3.2 is invoked with
sliceIdc, fieldMbFlag, baseModeFlag, mbType, ipred4x4[mbAddr], ipred8x8[mbAddr],
ipred16x16[mbAddr], ipredChroma[mbAddr], cTrafo[mbAddr], sTCoeff[mbAddr], cSL, and, when
ChromaArrayType is not equal to 0, cSCb and cSCr as the inputs and the outputs are a modified version of the
array cSL and, when ChromaArrayType is not equal to 0, modified versions of the arrays cSCb and cSCr.

G.8.1.5.5 Macroblock decoding process prior to resolution change

Inputs to this process are

– a variable currDQId specifying the current layer representation,

– a variable mbAddr specifying the current macroblock inside the current layer representation,

– a set of arrays collectively referred to as currentVars.

Output of this process is the modified set of arrays collectively referred to as currentVars.

This process modifies the variables assigned to currentVars using syntax elements and derived upper-case variables for
the current macroblock, which is specified by its address mbAddr and the layer representation identifier currDQId.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived
upper-case variables for the current macroblock, which is the macroblock with address mbAddr inside the layer
representation with DQId equal to currDQId, the slice header of the current slice, which is the slice that contains the
current macroblock, the current picture parameter, which is identified by the syntax element pic_parameter_set_id
inside the slice header of the current slice, and the current sequence parameter, which is identified by the syntax element
seq_parameter_set_id inside the current picture parameter set.

Inside this subclause, the arrays that are collectively referred to as currentVars are referred to by their names as
specified in subclause G.8.1.2.1.

The macroblock decoding process prior to resolution change is specified by the following ordered steps:

1. The variable CurrMbAddr is set equal to mbAddr.

2. Depending on mbType[mbAddr], the following applies.

– If mbType[mbAddr] is equal to I_PCM, I_16x16, I_8x8, or I_4x4, the SVC intra sample prediction and
construction process as specified in subclause G.8.3.2 in invoked with sliceIdc, fieldMbFlag,
baseModeFlag, mbType, ipred4x4[mbAddr], ipred8x8[mbAddr], ipred16x16[mbAddr],
ipredChroma[mbAddr], cTrafo[mbAddr], sTCoeff[mbAddr], cSL, and, when ChromaArrayType is
not equal to 0, cSCb and cSCr as the inputs and the outputs are a modified version of the array cSL and,
when ChromaArrayType is not equal to 0, modified versions of the arrays cSCb and cSCr.

– Otherwise, if mbType[mbAddr] is equal to I_BL, the following ordered steps are specified:

a. The residual construction and accumulation process as specified in subclause G.8.5.3 is invoked with
accumulationFlag set equal to 0, fieldMbFlag[mbAddr], cTrafo[mbAddr], sTCoeff[mbAddr],
rSL, and, when ChromaArrayType is not equal to 0, rSCb and rSCr as the inputs and the outputs are a
modified version of rSL and, when ChromaArrayType is not equal to 0, modified versions of rSCb
and rSCr.

b. The sample array accumulation process as specified in subclause G.8.5.4 is invoked with
fieldMbFlag[mbAddr], rSL, cSL, and, when ChromaArrayType is not equal to 0, rSCb, rSCr cSCb, and
cSCr as the inputs and the outputs are a modified version of cSL and, when ChromaArrayType is not
equal to 0, modified versions of cSCb and cSCr.

c. The sample array re-initialisation process as specified in subclause G.8.5.5 is invoked with
fieldMbFlag[mbAddr], rSL, and, when ChromaArrayType is not equal to 0, rSCb and rSCr as the

 Rec. ITU-T H.264 (03/2009) 453

inputs and the outputs are a modified version of rSL and, when ChromaArrayType is not equal to 0,
modified versions of rSCb and rSCr.

– Otherwise (mbType[mbAddr] is not equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL), the following
ordered steps are specified:

a. The residual construction and accumulation process as specified in subclause G.8.5.3 is invoked with
accumulationFlag set equal to 1, fieldMbFlag[mbAddr], cTrafo[mbAddr], sTCoeff[mbAddr],
rSL, and, when ChromaArrayType is not equal to 0, rSCb and rSCr as the inputs and the outputs are a
modified version of rSL and, when ChromaArrayType is not equal to 0, modified versions of rSCb
and rSCr.

b. The sample array re-initialisation process as specified in subclause G.8.5.5 is invoked with
fieldMbFlag[mbAddr], cSL, and, when ChromaArrayType is not equal to 0, cSCb and cSCr as the
inputs and the outputs are a modified version of cSL and, when ChromaArrayType is not equal to 0,
modified versions of cSCb and cSCr.

G.8.1.5.6 Target macroblock decoding process

Inputs to this process are

– a variable currDQId specifying the current layer representation,

– a variable mbAddr specifying the current macroblock inside the current layer representation,

– when present, a set of arrays collectively referred to as refLayerVars,

– a set of arrays collectively referred to as currentVars,

– when (slice_type % 5) is less than 2, the reference picture list refPicList0,

– when (slice_type % 5) is equal to 1, the reference picture list refPicList1.

Output of this process is the modified set of arrays collectively referred to as currentVars.

This process modifies the variables assigned to currentVars using syntax elements and derived upper-case variables for
the current macroblock, which is specified by its address mbAddr and the layer representation identifier currDQId.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived
upper-case variables for the current macroblock, which is the macroblock with address mbAddr inside the layer
representation with DQId equal to currDQId, the slice header of the current slice, which is the slice that contains the
current macroblock, the current picture parameter, which is identified by the syntax element pic_parameter_set_id
inside the slice header of the current slice, and the current sequence parameter, which is identified by the syntax element
seq_parameter_set_id inside the current picture parameter set.

Inside this subclause, the arrays that are collectively referred to as currentVars are referred to by their names as
specified in subclause G.8.1.2.1.

Inside this subclause, the following applies.

– If refLayerVars is present as input to this subclause, the arrays fieldMbFlag and mbType of the collective term
refLayerVars are referred to as refLayerFieldMbFlag and refLayerMbType, respectively.

– Otherwise (refLayerVars are not present as input to this subclause), the variables refLayerFieldMbFlag and
refLayerMbType are marked as not available.

The target macroblock decoding process is specified by the following ordered steps:

1. The variable CurrMbAddr is set equal to mbAddr.

2. When tcoeff_level_prediction_flag is equal to 1, (sliceIdc[mbAddr] &127) is not equal to currDQId, and
ChromaArrayType is not equal to 0, the following ordered steps are specified:

a. The variable cQPY is set equal to tQPY[mbAddr], and for CX being replaced by Cb and Cr, the variable
cQPCX is set equal to the value of QPCX that corresponds to a value of cQPY for QPY as specified in
subclause 8.5.8.

b. The transform coefficient level scaling process prior to transform coefficient refinement as specified in
subclause G.8.5.2 is invoked with cTrafo[mbAddr], tCoeffLevel[mbAddr], tQPY set equal to cQPY,
refQPY set equal to tQPY[mbAddr], and, when ChromaArrayType is not equal to 0, tQPCb set equal to

454 Rec. ITU-T H.264 (03/2009)

cQPCb, tQPCr set equal to cQPCr, refQPCb set equal to tQPCb[mbAddr], refQPCr set equal to
tQPCr[mbAddr] as the inputs and the output is a modified version of tCoeffLevel[mbAddr].

c. The transform coefficient scaling and refinement process as specified in subclause G.8.5.1 is invoked
with refinementFlag equal to 1, fieldMbFlag[mbAddr], cTrafo[mbAddr], sTCoeff[mbAddr], and
tCoeffLevel[mbAddr] as the inputs and the outputs are modified versions of sTCoeff[mbAddr] and
tCoeffLevel[mbAddr]. For this invocation of the process in subclause G.8.5.1, all elements of the arrays
LumaLevel, LumaLevel8x8, Intra16x16DCLevel, Intra16x16ACLevel, CbLevel, CbLevel8x8,
CbIntra16x16DCLevel, CbIntra16x16ACLevel, CrLevel, CrLevel8x8, CrIntra16x16DCLevel,
CrIntra16x16ACLevel, ChromaDCLevel, and ChromaACLevel are inferred to be equal to 0, and the
quantisation parameter QP′Y is set equal to (tQPY[mbAddr] + QpBdOffsetY).

NOTE – By the ordered steps specified above, the elements of the arrays tCoeffLevel[mbAddr] and sTCoeff[mbAddr]
that are related to luma transform coefficients are not modified. The array elements that are related to chroma transform
coefficients are only modified when the chroma quantisation parameter offsets of the current layer representation with
DQId equal to currDQId and the layer representation with DQId equal to (sliceIdc[mbAddr] &127) are different.

3. Depending on mbType[mbAddr], the following applies.

– If mbType[mbAddr] is equal to I_PCM, I_16x16, I_8x8, or I_4x4, the following ordered steps are
specified:

a. With tcoeffLevelPredFlag being the value of tcoeff_level_prediction_flag for the layer representation
with DQId equal to (sliceIdc[mbAddr] & 127), the variable intraPredFlag is derived as follows.

– If (sliceIdc[mbAddr] & 127) is equal to currDQId or tcoeffLevelPredFlag is equal to 1,
intraPredFlag is set equal to 1.

– Otherwise ((sliceIdc[mbAddr] & 127) is not equal to currDQId and tcoeffLevelPredFlag is
equal to 0, intraPredFlag is set equal to 0.

b. When intraPredFlag is equal to 1, the SVC intra sample prediction and construction process as
specified in subclause G.8.3.2 in invoked with sliceIdc, fieldMbFlag, baseModeFlag, mbType,
ipred4x4[mbAddr], ipred8x8[mbAddr], ipred16x16[mbAddr], ipredChroma[mbAddr],
cTrafo[mbAddr], sTCoeff[mbAddr], cSL, and, when ChromaArrayType is not equal to 0, cSCb and
cSCr as the inputs and the outputs are a modified version of the array cSL and, when
ChromaArrayType is not equal to 0, modified versions of the arrays cSCb and cSCr.

– Otherwise, if mbType[mbAddr] is equal to I_BL, the following ordered steps are specified:

a. The residual construction and accumulation process as specified in subclause G.8.5.3 is invoked with
accumulationFlag set equal to 0, fieldMbFlag[mbAddr], cTrafo[mbAddr], sTCoeff[mbAddr],
rSL, and, when ChromaArrayType is not equal to 0, rSCb and rSCr as the inputs and the outputs are a
modified version of rSL and, when ChromaArrayType is not equal to 0, modified versions of rSCb
and rSCr.

b. The sample array accumulation process as specified in subclause G.8.5.4 is invoked with
fieldMbFlag[mbAddr], rSL, cSL, and, when ChromaArrayType is not equal to 0, rSCb, rSCr cSCb, and
cSCr as the inputs and the outputs are a modified version of cSL and, when ChromaArrayType is not
equal to 0, modified versions of cSCb and cSCr.

– Otherwise (mbType[mbAddr] is not equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL), the following
ordered steps are specified:

a. The residual construction and accumulation process as specified in subclause G.8.5.3 is invoked with
accumulationFlag set equal to 1, fieldMbFlag[mbAddr], cTrafo[mbAddr], sTCoeff[mbAddr],
rSL, and, when ChromaArrayType is not equal to 0, rSCb and rSCr as the inputs and the outputs are a
modified version of rSL and, when ChromaArrayType is not equal to 0, modified versions of rSCb
and rSCr.

b. The SVC decoding process for Inter prediction samples as specified in subclause G.8.4.2 is invoked
with fieldMbFlag[mbAddr], mbType[mbAddr], subMbType[mbAddr], predFlagL0[mbAddr],
predFlagL1[mbAddr], refIdxL0[mbAddr], refIdxL1[mbAddr], mvL0[mbAddr],
mvL1[mbAddr], refLayerFieldMbFlag (when available), refLayerMbType (when available),
refPicList0, refPicList1 (when available), cSL, and, when ChromaArrayType is not equal to 0, cSCb
and cSCr as the inputs and the outputs are a modified version of cSL and, when ChromaArrayType is
not equal to 0, modified versions of cSCb and cSCr.

c. The sample array accumulation process as specified in subclause G.8.5.4 is invoked with
fieldMbFlag[mbAddr], rSL, cSL, and, when ChromaArrayType is not equal to 0, rSCb, rSCr cSCb, and

 Rec. ITU-T H.264 (03/2009) 455

cSCr as the inputs and the outputs are a modified version of cSL and, when ChromaArrayType is not
equal to 0, modified versions of cSCb and cSCr.

G.8.2 SVC reference picture lists construction and decoded reference picture marking process

The SVC decoding process for picture order count is specified in subclause G.8.2.1.

The SVC decoding process for picture numbers is specified in subclause G.8.2.2.

The SVC decoding process for reference picture lists construction is specified in subclause G.8.2.3.

The SVC decoded reference picture marking process is specified in subclause G.8.2.4.

The SVC decoding process for gaps in frame_num is specified in subclause G.8.2.5.

The decoding process for picture order counts is independently applied for different values of dependency_id. Syntax
elements that are related to picture order count for a particular value of dependency_id do not influence the derivation
of picture order counts for other values of dependency_id.

The reference picture marking is independently applied for different values of dependency_id. Syntax elements that are
related to reference picture marking for a particular value of dependency_id do not influence the reference picture
marking for other values of dependency_id.

The decoding process for gaps is frame_num is independently applied for different values of dependency_id.

Reference picture lists for different dependency representations are constructed independently. Syntax elements that are
related to reference picture list construction for a particular value of dependency_id do not influence the reference
picture list construction for other values of dependency_id. Reference picture lists for a particular value of
dependency_id are constructed based on the reference picture marking for this particular value of dependency_id. The
reference picture marking for a particular value of dependency_id does not influence the reference picture list
construction for a different value of dependency_id.

Only the elements of the reference picture lists for dependency_id equal to DependencyIdMax represent decoded
pictures that are associated with decoded samples. Only the reference picture lists for dependency_id equal to
DependencyIdMax are used for the derivation of inter prediction samples as specified in subclause G.8.4.2. The
elements of the reference picture lists for dependency representation with dependency_id less than DependencyIdMax
represent layer pictures, which are not associated with decoded samples. The elements of the reference picture lists for
dependency_id equal to 0 are associated with the arrays fieldMbFlag, mbType, subMbType, predFlagL0, predFlagL1,
refIdxL0, refIdxL1, mvL0, and mvL1 as specified in subclause G.8.1.2.1 that were derived when decoding the layer
representation with dependency_id equal to 0 and quality_id equal to 0 for the corresponding access unit. These arrays
are used for the derivation of motion vectors and reference indices for layer representation with dependency_id equal
to 0 and quality_id equal to 0 as specified in subclause G.8.4.1.2. The elements of the reference picture lists for all
dependency representations with dependency_id greater than 0 are associated with the variables
ScaledRefLayerLeftOffset, ScaledRefLayerRightOffset, ScaledRefLayerTopOffset, and ScaledRefLayerBottomOffset.
These variables are used for deriving inter-layer motion vector predictions as specified in subclause G.8.6.1.2.

NOTE – For each access unit, decoded samples only need to be stored for the dependency representation with dependency_id
equal to DependencyIdMax and motion data arrays only need to be stored for the dependency representation with dependency_id
equal to 0.

The SVC decoding processes for picture order count, reference picture list construction, reference picture marking, and
gaps in frame_num are specified using processes specified in clause 8. The following modifications to the processes
specified in this subclause and the processes of clause 8 that are invoked from these processes apply with
currDependencyId representing the value of dependency_id for the dependency representation for which the processes
are invoked:

a) All syntax elements and derived upper-case variables that are referred to in this process or in a child process
invoked from this process are syntax elements and upper-case variables for the dependency representation with
dependency_id equal to currDependencyId.

b) When dependency_id is less than DependencyIdMax, the following applies.

– A frame, field, top field, bottom field, picture, and decoded picture is interpreted as layer frame, layer
field, layer top field, layer bottom field, layer picture, and decoded layer picture, respectively, for the
dependency representation with dependency_id equal to currDependencyId. A decoded layer picture is
not associated with the sample arrays SL, SCb, or SCr.

– An IDR picture is interpreted as layer picture with IdrPicFlag is equal to 1 for the dependency
representation with dependency_id equal to currDependencyId.

456 Rec. ITU-T H.264 (03/2009)

– A reference frame, reference field, and reference picture is interpreted as layer frame, layer field, and
layer picture with nal_ref_idc greater than 0 for the dependency representation with dependency_id equal
to currDependencyId.

– A non-reference frame, non-reference field, and non-reference picture is interpreted as layer frame, layer
field, and layer picture with nal_ref_idc equal to 0 for the dependency representation with dependency_id
equal to currDependencyId.

– A complementary non-reference field pair is interpreted as complementary non-reference layer field pair
for the dependency representation with dependency_id equal to currDependencyId. A complementary
non-reference layer field pair for a particular value of dependency_id is a pair of two layer fields for the
particular value of dependency_id with the following properties: (i) the layer fields are in consecutive
access units containing a dependency representation with the particular value of dependency_id, (ii) the
dependency representations with the particular value of dependency_id in these access units have
nal_ref_idc equal to 0, field_pic_flag equal to 1, and different values of bottom_field_flag, (iii) the first
layer field is not already a paired layer field.

– A complementary reference field pair is interpreted as complementary reference layer field pair for the
dependency representation with dependency_id equal to currDependencyId. A complementary reference
layer field pair for a particular value of dependency_id is a pair of two layer fields for the particular value
of dependency_id with the following properties: (i) the layer fields are in consecutive access units
containing a dependency representation with the particular value of dependency_id, (ii) the dependency
representations with the particular value of dependency_id in these access units have nal_ref_idc greater
than 0, field_pic_flag equal to 1, and the same value of frame_num, (iii) the dependency representation
with the particular value of dependency_id of the second access unit in decoding order has IdrPicFlag
equal to 0 and does not contain a memory_management_control_operation syntax element equal to 5.

– A complementary field pair is interpreted as complementary layer field pair for the dependency
representation with dependency_id equal to currDependencyId. A complementary layer field pair is a
collective term for a complementary reference layer field pair and a complementary non-reference layer
field pair.

– A non-paired non-reference field is interpreted as layer field with nal_ref_idc equal to 0 for the
dependency representation with dependency_id equal to currDependencyId that is not part of a
complementary non-reference layer field pair.

– A non-paired reference field is interpreted as layer field with nal_ref_idc greater than 0 for the
dependency representation with dependency_id equal to currDependencyId that is not part of a
complementary reference layer field pair.

– A non-paired field is interpreted as layer field for the dependency representation with dependency_id
equal to currDependencyId that is not part of a complementary layer field pair.

– A reference base frame is interpreted as reference layer base frame for the dependency representation
with dependency_id equal to currDependencyId. A reference layer base frame for a particular value of
dependency_id represents a second representation of a layer frame for dependency representations with
nal_ref_idc greater than 0, store_ref_base_pic_flag equal to 1, and field_pic_flag equal to 0.

– A reference base field is interpreted as reference layer base field for the dependency representation with
dependency_id equal to currDependencyId. A reference layer base field for a particular value of
dependency_id represents a second representation of a layer field for dependency representations with
nal_ref_idc greater than 0, store_ref_base_pic_flag equal to 1, and field_pic_flag equal to 1.

– A reference base picture is interpreted as reference layer base picture for the dependency representation
with dependency_id equal to currDependencyId. A reference layer base picture is a collective term for a
reference layer base field or a reference layer base frame. A reference layer base picture is not associated
with the sample arrays BL, BCb, or BCr.

– A complementary reference base field pair is interpreted as complementary reference layer base field pair
for the dependency representation with dependency_id equal to currDependencyId. A complementary
reference layer base field pair for a particular value of dependency_id is a pair of two reference layer base
fields for the particular value of dependency_id with the following properties: (i) the reference layer base
fields are in consecutive access units containing a dependency representation with the particular value of
dependency_id, (ii) the dependency representations with the particular value of dependency_id in these
access units have nal_ref_idc greater than 0, store_ref_base_pic_flag equal to 1, field_pic_flag equal to 1
and the same value of frame_num, (iii) the dependency representation with the particular value of

 Rec. ITU-T H.264 (03/2009) 457

dependency_id of the second of these access units in decoding order has IdrPicFlag equal to 0 and does
not contain a memory_management_control_operation syntax element equal to 5.

– A non-paired reference base field is interpreted as reference layer base field for the dependency
representation with dependency_id equal to currDependencyId that is not part of a complementary
reference layer base field pair.

G.8.2.1 SVC decoding process for picture order count

Input to this process is a list dqIdList of integer values specifying layer representation identifiers.

Outputs of this process are the variables TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if applicable) for
all dependency representations of the set depRepSet specified in the following.

Let depRepSet be the set of dependency representations for which (dependency_id << 4) is contained in the list
dqIdList.

For all dependency representations of the set depRepSet, the variables TopFieldOrderCnt (if applicable) and
BottomFieldOrderCnt (if applicable) are derived by invoking the decoding process for picture order count as specified
in subclause 8.2.1. For these invocations of the process specified in subclause 8.2.1, the modifications a) and b)
specified in subclause G.8.2 apply with currDependencyId being equal to dependency_id of the corresponding
dependency representation.

For all dependency representations of the set depRepSet for an access unit, either TopFieldOrderCnt or
BottomFieldOrderCnt or both are derived. When both are derived in two or more dependency representations of an
access unit, their difference shall be the same in these dependency representations of the access unit.

The values of TopFieldOrderCnt and BottomFieldOrderCnt are restricted as specified in the following ordered steps:

1. The set depRepSet for an access unit is the set depRepSet that has been derived in the process specified in this
subclause for the corresponding access unit.

2. For each access unit, the one-dimensional array picOrderCnt is derived as follows.

– If TopFieldOrderCnt is derived for all dependency representations of the set depRepSet for an access
unit, for each dependency representation of the set depRepSet for this access unit, the variable
picOrderCnt[dId] is set equal to TopFieldOrderCnt with dId being the value of dependency_id for the
dependency representation.

– Otherwise (TopFieldOrderCnt is not derived for all dependency representations of the set depRepSet for
an access unit), for each dependency representation of the set depRepSet for this access unit, the variable
picOrderCnt[dId] is set equal to BottomFieldOrderCnt with dId being the value of dependency_id for
the dependency representation.

3. Let au0 and au1 be any pair of access units in the bitstream with au1 being later in decoding order than au0.

4. Let the flag idrConditionFlag be derived for each dependency representation of the set depRepSet for an
access unit as follows.

– If the dependency representation in the access unit has IdrPicFlag equal to 1 or a
memory_management_control_operation syntax element equal to 5, idrConditionFlag is set equal to 1.

– Otherwise (the dependency representation in the access unit has IdrPicFlag equal to 0 and does not have a
memory_management_control_operation syntax element equal to 5), idrConditionFlag is set equal to 0.

5. Let the set dIdSet0 be the set of all dependency_id values of the set depRepSet for au0.

6. Let the set dIdSet1 be the set of all dependency_id values of the set depRepSet for au1 for which
idrConditionFlag is not equal to 1 in any access unit in decoding order between the access unit that follows
au0 and the access unit au1, inclusive.

7. For all values of dId that are present in both sets dIdSet0 and dIdSet1, the differences between the value
picOrderCnt[dId] in au0 and the value picOrderCnt[dId] in au1 shall be the same.

G.8.2.2 SVC decoding process for picture numbers

This process is invoked when the SVC decoding process for reference picture lists construction specified in
subclause G.8.2.3 is invoked or when the SVC reference picture marking process for a dependency representation as
specified in subclause G.8.2.4.1 is invoked.

458 Rec. ITU-T H.264 (03/2009)

Inputs to this process are

– a variable currDependencyId specifying a dependency representation,

– a variable refPicListConstructionFlag specifying whether this process is invoked for reference picture list
construction,

– when refPicListConstructionFlag is equal to 1, a variable useRefBasePicFlag specifying whether reference base
pictures are considered for reference picture list construction.

From here to the end of this subclause, the modifications a) and b) specified in subclause G.8.2 apply.

The variables FrameNum, FrameNumWrap, and PicNum are assigned to all short-term reference pictures and the
variables LongTermFrameIdx and LongTermPicNum are assigned to all long-term reference pictures by invoking the
decoding process for picture numbers as specified in subclause 8.2.4.1.

NOTE 1 – For this invocation of the process specified in subclause 8.2.4.1, the pictures marked as "reference base pictures" and
the pictures not marked as "reference base pictures" are taken into account.

For the following specification of this subclause, reference frames, complementary reference field pairs, and non-paired
reference field with at least one field marked as "used for reference" are referred to as reference entries. When only one
field of a reference entry is marked as "used for reference", the reference entry is considered to have the same
marking(s) and the same assigned variables as its field marked as "used for reference". When a reference entry is
marked as "not available for reference list construction" in the following process, both of its fields are also marked as
"not available for reference list construction".

When refPicListConstructionFlag is equal to 1, the following applies

– If useRefBasePicFlag is equal to 0, all reference entries that are marked as "reference base picture" are marked as
"not available for reference list construction".
NOTE 2 – When useRefBasePicFlag is equal to 0, only reference entries that are not marked as "reference base picture" are
considered as present for the purpose of reference picture list construction.

– Otherwise (useRefBasePicFlag is equal to 1), all reference entries for which one of the following conditions is true
are marked as "not available for reference list construction":

– the reference entry is not marked as "reference base picture", the reference entry is marked as "used for
short-term reference", and there exists a reference entry with the same value of FrameNum that is marked as
"reference base picture" and "used for short-term reference",

– the reference entry is not marked as "reference base picture", the reference entry is marked as "used for
long-term reference", and there exists a reference entry with the same value of LongTermFrameIdx that is
marked as "reference base picture" and "used for long-term reference".

NOTE 3 – When useRefBasePicFlag is equal to 1 and either two short-term reference entries have the same value of
FrameNum or two long-term reference entries have the same value of LongTermFrameIdx (one of these reference entries is
marked as "reference base picture" and the other reference entry is not marked as "reference base picture"), only the reference
entry marked as "reference base picture" is considered as present for the purpose of reference picture list construction.

G.8.2.3 SVC decoding process for reference picture lists construction

This process is invoked at the beginning of the decoding process for each P, EP, B, or EB slice.

Inputs to this process are

– a variable currDependencyId,

– a variable useRefBasePicFlag,

– the current slice currSlice.

Outputs of this process are

– a reference picture list refPicList0,

– for B and EB slices, a reference picture list refPicList1.

After applying the process described in this subclause, the output reference picture lists refPicList0 and refPicList1
(when applicable) shall not contain any pictures for which the syntax element temporal_id is greater than the syntax
element temporal_id of the current picture.

From here to the end of this subclause, the modifications a) and b) specified in subclause G.8.2 apply.

 Rec. ITU-T H.264 (03/2009) 459

A variable biPred is derived as follows.

– If the current slice currSlice is a B or EB slice, biPred is set equal to 1.

– Otherwise, biPred is set equal to 0.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified
by the bitstream and specified in subclause G.8.2.4. Short-term reference pictures are identified by the value of
frame_num that is decoded in the slice header(s) with dependency_id equal to currDependencyId. Long-term reference
pictures are identified by a long-term frame index as specified by the bitstream and specified in subclause G.8.2.4.

Subclause G.8.2.2 is invoked with currDependencyId, refPicListConstructionFlag equal to 1, and useRefBasePicFlag as
inputs to specify the following:

– the assignment of variables FrameNum, FrameNumWrap, and PicNum to each of the short-term reference pictures,

– the assignment of variables LongTermPicNum to each of the long-term reference pictures,

– the marking of reference pictures that are not used for reference picture list construction as "not available for
reference list construction" (depending on the value of useRefBasePicFlag).

NOTE 1 – The marking of reference pictures as "not available for reference list construction" is removed after construction of the
reference picture lists.

Reference pictures are addressed through reference indices as specified in subclause 8.4.2.1. A reference index is an
index into a reference picture list. When biPred is equal to 0, a single reference picture list refPicList0 is constructed.
When decoding a B or EB slice (biPred is equal to 1), a second independent reference picture list refPicList1 is
constructed in addition to refPicList0.

At the beginning of the decoding process for each slice, reference picture list refPicList0, and for biPred equal to 1
refPicList1, are derived as specified in the following ordered steps:

1. Initial reference picture lists RefPicList0 and, for biPred equal to 1, RefPicList1 are derived by invoking the
initialisation process for reference picture lists as specified in subclause 8.2.4.2. During the initialisation process
in subclause 8.2.4.2 all reference frames, complementary reference field pairs, and non-paired reference fields
that have been marked as "not available for reference list construction" by the invocation of subclause G.8.2.2
are considered as not present.

2. When ref_pic_list_modification_flag_l0 is equal to 1 or, when decoding a B or EB slice (biPred is equal to 1),
ref_pic_list_modification_flag_l1 is equal to 1, the initial reference picture list RefPicList0 and for biPred equal
to 1 RefPicList1 are modified by invoking the modification process for reference picture lists as specified in
subclause 8.2.4.3. During the modification process in subclause 8.2.4.3 all reference frames, complementary
reference field pairs, and non-paired reference fields that have been marked as "not available for reference list
construction" by the invocation of subclause G.8.2.2 are considered as not present.

3. RefPicList0 is assigned to refPicList0.

4. When biPred is equal to 1, RefPicList1 is assigned to refPicList1.
NOTE 2 – By the invocation of the process in subclause G.8.2.2 some reference frames, complementary reference field pairs, and
non-paired reference fields might have been marked as "not available for reference list construction". Since, these pictures are not
considered in the construction process for reference picture lists, the reference picture lists refPicList0 and, for biPred equal to 1,
refPicList1 are dependent on the value of the input parameter useRefBasePicFlag.

The number of entries in the modified reference picture list refPicList0 is num_ref_idx_l0_active_minus1 + 1, and for
biPred equal to 1 the number of entries in the modified reference picture list refPicList1 is
num_ref_idx_l1_active_minus1 + 1. A reference picture may appear at more than one index in the modified reference
picture lists refPicList0 or refPicList1.

For all reference frames, complementary reference field pairs, and non-paired reference fields that have been marked as
"not available for reference list construction" during the invocation of subclause G.8.2.2, this marking is removed.

G.8.2.4 SVC decoded reference picture marking process

Input to this process is a list dqIdList of integer values specifying layer representation identifiers.

Let depRepSet be the set of dependency representations for which all of the following conditions are true:

– the list dqIdList contains the value (dependency_id << 4),

– nal_ref_idc is greater than 0.

For each dependency representation of the set depRepSet, the SVC reference picture marking process for a dependency
representation as specified in subclause G.8.2.4.1 is invoked. For these invocations of the process specified in

460 Rec. ITU-T H.264 (03/2009)

subclause G.8.2.4.1, the modifications a) and b) specified in subclause G.8.2 apply with currDependencyId being equal
to dependency_id for the corresponding dependency representation.

G.8.2.4.1 SVC reference picture marking process for a dependency representation

Input to this process is a variable currDependencyId.

Output of this process is a modified reference picture marking for dependency representations with dependency_id
equal to currDependencyId.

This process is invoked for a decoded picture when nal_ref_idc is not equal to 0 for the dependency representation with
dependency_id being equal to currDependencyId.

All syntax elements and derived upper-case variables that are referred to by the process specified in this subclause and
all child processes invoked from this process are syntax elements and derived upper-case variables for the dependency
representation with dependency_id equal to currDependencyId.

A decoded picture with nal_ref_idc not equal to 0, referred to as a reference picture, is marked as "used for short-term
reference" or "used for long-term reference". When store_ref_base_pic_flag is equal to 1, a second representation of the
decoded picture also referred to as reference base picture is marked as "used for short-term reference" or "used for
long-term reference" and additionally marked as "reference base picture". Pictures that are marked as "reference base
picture" are only used as references for inter prediction of following pictures with use_ref_base_pic_flag equal to 1.
These pictures are not used for inter prediction of pictures with use_ref_base_pic_flag equal to 0, and these pictures do
not represent an output of the decoding process.

For a decoded reference frame, both of its fields are marked the same as the frame. For a complementary reference field
pair, the pair is marked the same as both of its fields. A picture that is marked as "used for short-term reference" is
identified by its FrameNum and, when it is a field, by its parity, and, when it is a reference base picture, by the marking
"reference base picture". A picture that is marked as "used for long-term reference" is identified by its
LongTermFrameIdx and, when it is a field, by its parity, and, when it is a reference base picture, by the marking
"reference base picture".

While decoded pictures are represented by the sample arrays SL and, when ChromaArrayType is not equal to 0, SCb and
SCr, reference base pictures are represented by the sample arrays BL and, when ChromaArrayType is not equal to 0, BCb
and BCr. When reference base pictures are referenced in the inter prediction process via subclause 8.4.2.1, the samples
arrays BL, BCb, and BCr are referred to as SL, SCb, and SCr, respectively. Reference base pictures are associated with the
same descriptive information such as the variables FrameNum, FrameNumWrap, PicNum, LongTermFrameIdx, and
LongTermPicNum as decoded pictures.

Frames or complementary field pairs marked as "used for short-term reference" or as "used for long-term reference" can
be used as a reference for inter prediction when decoding a frame until the frame, the complementary field pair, or one
of its constituent fields is marked as "unused for reference". A field marked as "used for short-term reference" or as
"used for long-term reference" can be used as a reference for inter prediction when decoding a field until marked as
"unused for reference".

A picture can be marked as "unused for reference" by the sliding window reference picture marking process, a first-in,
first-out mechanism specified in subclause G.8.2.4.2, or by the adaptive memory control reference picture marking
process, a customised adaptive marking operation specified in subclauses G.8.2.4.3 and G.8.2.4.4.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and
FrameNumWrap and its picture number PicNum, and, when it is a reference base picture, by the marking as "reference
base picture". A long-term reference picture is identified for use in the decoding process by its variable
LongTermFrameIdx, its long-term picture number LongTermPicNum, and, when it is a reference base picture, by the
marking as "reference base picture".

When the current picture is not an IDR picture, the variables FrameNum, FrameNumWrap, PicNum,
LongTermFrameIdx, and LongTermPicNum are assigned to the reference pictures by invoking the SVC decoding
process for picture numbers as specified in subclause G.8.2.2 with currDependencyId and refPicListConstructionFlag
set equal to 0 as the inputs.

Decoded reference picture marking proceeds in the following ordered steps:

1. All slices of the current access unit are decoded.

2. Depending on the current picture, the following applies.

– If the current picture is an IDR picture, the following ordered steps are specified:

a. All reference pictures are marked as "unused for reference".

 Rec. ITU-T H.264 (03/2009) 461

b. Depending on long_term_reference_flag, the following applies.

– If long_term_reference_flag is equal to 0, the following ordered steps are specified:

i. The IDR picture is marked as "used for short-term reference" and MaxLongTermFrameIdx
is set equal to "no long-term frame indices".

ii. When store_ref_base_pic_flag is equal to 1, the reference base picture of the IDR picture
is marked as "used for short-term reference" and as "reference base picture".

– Otherwise (long_term_reference_flag is equal to 1), the following ordered steps are specified:

i. The IDR picture is marked as "used for long-term reference", the LongTermFrameIdx for
the IDR picture is set equal to 0, and MaxLongTermFrameIdx is set equal to 0.

ii. When store_ref_base_pic_flag is equal to 1, the reference base picture of the IDR picture
is marked as "used for long-term reference" and as "reference base picture", and the
LongTermFrameIdx for the reference base picture of the IDR picture is set equal to 0.

– Otherwise (the current picture is not an IDR picture), the following ordered steps are specified:

a. When adaptive_ref_base_pic_marking_mode_flag is equal to 1, the SVC adaptive memory control
reference base picture marking process as specified in subclause G.8.2.4.3 is invoked.

NOTE 1 – By this invocation of the process specified in subclause G.8.2.4.3, pictures that are marked as
"used for reference" and "reference base picture" can be marked as "unused for reference".

With currTId being the value of temporal_id for the current access unit, the bitstream shall not
contain data that result in the marking of pictures with temporal_id less currTId as "unused for
reference" during this invocation of the process in subclause G.8.2.4.3.

b. Depending on adaptive_ref_pic_marking_mode_flag, the following applies.

– If adaptive_ref_pic_marking_mode_flag is equal to 1, the SVC adaptive memory control
decoded reference picture marking process as specified in subclause G.8.2.4.4 is invoked.

With currTId being the value of temporal_id for the current access unit, the bitstream shall not
contain data that result in the marking of pictures with temporal_id less currTId as "unused for
reference" during this invocation of the process in subclause G.8.2.4.4.

– Otherwise (adaptive_ref_pic_marking_mode_flag is equal to 0), the SVC sliding window
decoded reference picture marking process as specified in subclause G.8.2.4.2 is invoked with
refBasePicFlag equal to 0 as the input.

c. When the current picture was not marked as "used for long-term reference" by a
memory_management_control_operation command equal to 6, the current picture is marked as "used
for short-term reference" and, when the current picture is the second field (in decoding order) of a
complementary reference field pair and the first field is marked as "used for short-term reference",
the complementary field pair is also marked as "used for short-term reference".

d. When store_ref_base_pic_flag is equal to 1 and the reference base picture for the current picture was
not marked as "used for long-term reference" by a memory_management_control_operation
command equal to 6, the following ordered steps are specified:

i. When adaptive_ref_base_pic_marking_mode_flag is equal to 0, the SVC sliding window
decoded reference picture marking process as specified in subclause G.8.2.4.2 is invoked with
refBasePicFlag equal to 1 as the input.

ii. The reference base picture of the current picture is marked as "used for short-term
reference"and as "reference base picture" and, when the reference base picture of the current
picture is the second reference base field (in decoding order) of a complementary reference
base field pair and the first reference base field is marked as "used for short-term reference"
(and "reference base picture"), the complementary reference base field pair is also marked as
"used for short-term reference" and "reference base picture".

NOTE 2 – When both the decoded picture and the reference base picture for an access unit (including the current access
unit) are marked as "used for reference", either both pictures are marked as "used for short-term reference" or both
pictures are marked as "used for long-term reference" after the completion of the process specified in this subclause. And
in the latter case, the same value of LongTermFrameIdx is assigned to both pictures.

It is a requirement of bitstream conformance that, after marking the current decoded reference picture and, when
store_ref_base_pic_flag is equal to 1, the current reference base picture, the total number of frames with at least one

462 Rec. ITU-T H.264 (03/2009)

field marked as "used for reference", plus the number of complementary field pairs with at least one field marked as
"used for reference", plus the number of non-paired fields marked as "used for reference" shall not be greater than
Max(max_num_ref_frames, 1).

NOTE 3 – For this constraint, the pictures marked as "reference base pictures" and the pictures not marked as "reference base
picture" are taken into account.

G.8.2.4.2 SVC sliding window decoded reference picture marking process

Input to this process is a variable refBasePicFlag.

The variable newFrameBufferFlag is derived as follows.

– If one of the following conditions is true, newFrameBufferFlag is set equal to 0:

– refBasePicFlag is equal to 0, the current picture is a coded field that is the second field in decoding order of a
complementary reference field pair, and the first field of the complementary reference field pair has been
marked as "used for short-term reference",

– refBasePicFlag is equal to 1, the current reference base picture is a reference base field that is the second field
in decoding order of a complementary reference base field pair, and the first field has been marked as "used
for short-term reference" (and "reference base picture").

– Otherwise, newFrameBufferFlag is set equal to 1.

When newFrameBufferFlag is equal to 1, the following ordered steps are specified:

1. Let numShortTerm be the total number of reference frames, complementary reference field pairs, and
non-paired reference fields for which at least one field is marked as "used for short-term reference". Let
numLongTerm be the total number of reference frames, complementary reference field pairs, and non-paired
reference fields for which at least one field is marked as "used for long-term reference".

NOTE 1 – For this derivation of numShortTerm and numLongTerm, the pictures marked as "reference base
pictures" and the pictures not marked as "reference base picture" are taken into account.

2. When numShortTerm + numLongTerm is equal to Max(max_num_ref_frames, 1), the following ordered
steps are specified:

a. The condition that numShortTerm is greater than 0 shall be fulfilled.

b. Let frameNumWrapDecPic be the smallest value of FrameNumWrap that is assigned to reference
frames, complementary reference field pairs, and non-paired reference fields that are marked as "used for
short-term reference" and not marked as "reference base pictures". When there doesn't exist any
reference frame, complementary reference field pair, or non-paired reference field that is marked as
"used for short-term reference" and not marked as "reference base picture", frameNumWrapDecPic is set
equal to MaxFrameNum.

c. Let frameNumWrapBasePic be the smallest value of FrameNumWrap that is assigned to reference
frames, complementary reference field pairs, and non-paired reference fields that are marked as "used for
short-term reference" and marked as "reference base pictures". When there doesn't exist any reference
frame, complementary reference field pair, or non-paired reference field that is marked as "used for
short-term reference" and marked as "reference base picture", frameNumWrapBasePic is set equal to
MaxFrameNum.

NOTE 2 – The value of MaxFrameNum is greater than all values of FrameNumWrap that are assigned to
reference frames, complementary reference field pairs, and non-paired reference fields marked as "used for
short-term reference.

d. The short-term reference frame, complementary reference field pair, or non-paired reference field picX is
derived as follows.

– If frameNumWrapDecPic is less than frameNumWrapBasePic, picX is the short-term reference
frame, complementary reference field pair, or non-paired reference field that has the value of
FrameNumWrap equal to frameNumWrapDecPic (and is not marked as "reference base picture").

– Otherwise (frameNumWrapDecPic is greater than or equal to frameNumWrapBasePic), picX is the
short-term reference frame, complementary reference field pair, or non-paired reference field that
has the value of FrameNumWrap equal to frameNumWrapBasePic and is marked as "reference base
picture".

e. It is a requirement of bitstream conformance that the short-term reference frame, complementary
reference field pair, or non-paired reference field picX shall not be the current picture or the
complementary field pair that contains the current picture.

 Rec. ITU-T H.264 (03/2009) 463

NOTE 3 – When refBasePicFlag is equal to 1, the current picture has been marked as "used for short-term
reference" in the same invocation of the process specified in subclause G.8.2.4.1.

f. The short-term reference frame, complementary reference field pair, or non-paired reference field picX is
marked as "unused for reference". When it is a frame or a complementary field pair, both of its fields are
also marked as "unused for reference".

G.8.2.4.3 SVC adaptive memory control reference base picture marking process

This process is invoked when adaptive_ref_base_pic_marking_mode_flag is equal to 1.

The memory_management_base_control_operation commands with values of 1 and 2 are processed in the order they
occur in the dec_ref_base_pic_marking() syntax structure after the current picture has been decoded. The
memory_management_base_control_operation command with value of 0 specifies the end of the
memory_management_base_control_operation commands.

Memory management control base operations are applied to pictures as follows.

– If field_pic_flag is equal to 0, memory_management_base_control_operation commands are applied to the
reference base frames or complementary reference base field pairs specified.

– Otherwise (field_pic_flag is equal to 1), memory_management_base_control_operation commands are applied to
the individual reference base fields specified.

For each memory_management_base_control_operation command with a value not equal to 0, the following applies.

– If memory_management_base_control_operation is equal to 1, the marking process of a short-term reference
picture as "unused for reference" as specified in subclause 8.2.5.4.1, is invoked with substituting
difference_of_pic_nums_minus1 with difference_of_base_pic_nums_minus1. For this invocation of the process
specified in subclause 8.2.5.4.1, all pictures that are not marked as "reference base picture" are considered as not
present.

NOTE 1 – Short-term reference pictures that are not marked as "reference base pictures" cannot be marked as
"unused for reference" by a memory_management_base_control_operation equal to 1.

– Otherwise, if memory_management_base_control_operation is equal to 2, the marking process of a long-term
reference picture as "unused for reference" as specified in subclause 8.2.5.4.2 is invoked with substituting
long_term_pic_num with long_term_base_pic_num. For this invocation of the process specified in
subclause 8.2.5.4.2, all pictures that are not marked as "reference base picture" are considered as not present.

NOTE 2 – Long-term reference pictures that are not marked as "reference base pictures" cannot be marked as
"unused for reference" by a memory_management_base_control_operation equal to 2.

G.8.2.4.4 SVC adaptive memory control decoded reference picture marking process

This process is invoked when adaptive_ref_pic_marking_mode_flag is equal to 1.

The memory_management_control_operation commands with values of 1 to 6 are processed in the order they occur in
the dec_ref_pic_marking() syntax structure after the current picture has been decoded. The
memory_management_control_operation command with value of 0 specifies the end of the
memory_management_control_operation commands.

Memory management control operations are applied to pictures as follows.

– If field_pic_flag is equal to 0, memory_management_control_operation commands are applied to the frames or
complementary reference field pairs specified.

– Otherwise (field_pic_flag is equal to 1), memory_management_control_operation commands are applied to the
individual reference fields specified.

For each memory_management_control_operation command with a value not equal to 0, the following applies.

– If memory_management_control_operation is equal to 1, the marking process of a short-term reference picture as
"unused for reference" as specified in subclause 8.2.5.4.1 is invoked. For this invocation of the process specified in
subclause 8.2.5.4.1, all pictures that are marked as "reference base picture" are considered as not present.

NOTE 1 – Short-term reference pictures that are marked as "reference base pictures" cannot be marked as "unused
for reference" by a memory_management_control_operation equal to 1.

– Otherwise, if memory_management_control_operation is equal to 2, the marking process of a long-term reference
picture as "unused for reference" as specified in subclause 8.2.5.4.2 is invoked. For this invocation of the process
specified in subclause 8.2.5.4.2, all pictures that are marked as "reference base picture" are considered as not
present.

464 Rec. ITU-T H.264 (03/2009)

NOTE 2 – Long-term reference pictures that are marked as "reference base pictures" cannot be marked as "unused
for reference" by a memory_management_control_operation equal to 2.

– Otherwise, if memory_management_control_operation is equal to 3, the following ordered steps are specified:

1. The assignment process of a LongTermFrameIdx to a short-term reference picture as specified in
subclause 8.2.5.4.3 is invoked. For this invocation of the process specified in subclause 8.2.5.4.3, all pictures
that are marked as "reference base picture" are considered as not present. The variable picNumX is set equal
to the value picNumX that is derived during the invocation of the process specified in subclause 8.2.5.4.3.

2. Depending on whether there exists a picture that is marked as "reference base picture" and "used for
short-term reference" and has a value of PicNum equal to picNumX, the following applies.

– If there exists a picture that is marked as "reference base picture" and "used for short-term reference"
and has a value of PicNum equal to picNumX, the assignment process of a LongTermFrameIdx to a
short-term reference picture as specified in subclause 8.2.5.4.3 is invoked again. For this second
invocation of the process specified in subclause 8.2.5.4.3, all pictures that are not marked as "reference
base picture" are considered as not present.

NOTE 3 – When the marking of a decoded picture (not marked as "reference base picture") is changed from
"used for short-term reference" to "used for long-term reference" and there exists a reference base picture
(marked as "reference base picture") that has the same value of PicNum as the decoded picture (before the
marking is modified), the marking of this reference base picture is also changed from "used for short-term
reference" to "used for long-term reference" and the same value of LongTermFrameIdx is assigned to both the
decoded picture and the reference base picture.

– Otherwise, if LongTermFrameIdx equal to long_term_frame_idx is assigned to a long-term reference
frame marked as "reference base picture" or a long-term complementary reference field pair marked as
"reference base picture", that frame or complementary field pair and both of its fields are marked as
"unused for reference".

– Otherwise, if LongTermFrameIdx equal to long_term_frame_idx is assigned to a long-term reference
field marked as "reference base picture", and the associated decoded picture (not marked as "reference
base picture") is not part of a complementary field pair that includes the picture specified by picNumX
(before invoking the process specified in subclause 8.2.5.4.3) and not marked as "reference base
picture", that field is marked as "unused for reference".

NOTE 4 – When a particular value of LongTermFrameIdx is assigned to a reference base picture (marked as
"reference base picture") and a decoded picture (not marked as "reference base picture"), the reference base
picture is either associated with the same access unit as the decoded picture or with an access unit that
represents a field that is part of a complementary field pair that includes the decoded picture.

– Otherwise, the reference picture marking is not modified.

– Otherwise, if memory_management_control_operation is equal to 4, the decoding process for
MaxLongTermFrameIdx as specified in subclause 8.2.5.4.4 is invoked.

NOTE 5 – For this invocation of the process specified in subclause 8.2.5.4.4, the pictures marked as "reference base
pictures" and the pictures not marked as "reference base picture" are taken into account.

– Otherwise, if memory_management_control_operation is equal to 5, the marking process of all reference pictures
as "unused for reference" and setting MaxLongTermFrameIdx to "no long-term frame indices" as specified in
subclause 8.2.5.4.5 is invoked.

NOTE 6 – For this invocation of the process specified in subclause 8.2.5.4.5, the pictures marked as "reference base
pictures" and the pictures not marked as "reference base picture" are taken into account.

– Otherwise (memory_management_control_operation is equal to 6), the following ordered steps are specified:

1. The process for assigning a long-term frame index to the current picture as specified in subclause 8.2.5.4.6 in
invoked. For this invocation of the process specified in subclause 8.2.5.4.6, all pictures that are marked as
"reference base picture" are considered as not present.

2. Depending on store_ref_base_pic_flag, the following applies.

– If store_ref_base_pic_flag is equal to 1, the reference base picture of the current picture is marked as
"reference base picture" and the process for assigning a long-term frame index to the current picture as
specified in subclause 8.2.5.4.6 is invoked again. For this second invocation of the process specified in
subclause 8.2.5.4.6, the reference base picture is considered as the current picture and all pictures that
are not marked as "reference base picture" are considered as not present. When the reference base
picture of the current picture is the second reference base field (in decoding order) of a complementary
reference base field pair, the complementary reference base field pair is also marked as "reference base
picture".

 Rec. ITU-T H.264 (03/2009) 465

NOTE 7 – When the current decoded picture is marked as "used for long-term reference" and
store_ref_base_pic_flag is equal to 1, the current reference base picture is also marked as "used for long-term
reference" and the same value of LongTermFrameIdx is assigned to both the current decoded picture and the
current reference base picture. The current reference base picture is additionally marked as "reference base
picture".

– Otherwise, if LongTermFrameIdx equal to long_term_frame_idx is assigned to a long-term reference
frame marked as "reference base picture" or a long-term complementary reference field pair marked as
"reference base picture", that frame or complementary field pair and both of its fields are marked as
"unused for reference".

– Otherwise, if LongTermFrameIdx equal to long_term_frame_idx is assigned to a long-term reference
field marked as "reference base picture", and the associated decoded picture (not marked as "reference
base picture") is not part of a complementary field pair that includes the current picture, that field is
marked as "unused for reference".

NOTE 8 – When a particular value of LongTermFrameIdx is assigned to a reference base picture (marked as
"reference base picture") and a decoded picture (not marked as "reference base picture"), the reference base
picture is either associated with the same access unit as the decoded picture or with an access unit that
represents a field that is part of a complementary field pair that includes the decoded picture.

– Otherwise, the reference picture marking is not modified.

3. It is a requirement of bitstream conformance that, after marking the current decoded reference picture and,
when store_ref_base_pic_flag is equal to 1, the current reference base picture, the total number of frames
with at least one field marked as "used for reference", plus the number of complementary field pairs with at
least one field marked as "used for reference", plus the number of non-paired fields marked as "used for
reference" shall not be greater than Max(max_num_ref_frames, 1).

NOTE 9 – For this constraint, the pictures marked as "reference base pictures" and the pictures not marked as
"reference base picture" are taken into account.
NOTE 10 – Under some circumstances, the above statement may impose a constraint on the order in which a
memory_management_control_operation syntax element equal to 6 can appear in the decoded reference picture
marking syntax relative to a memory_management_control_operation syntax element equal to 1, 2, 3, or 4, or it may
impose a constraint on the value of adaptive_ref_base_pic_marking_mode_flag.

G.8.2.5 SVC decoding process for gaps in frame_num

Input to this process is a list dqIdList of integer values specifying layer representation identifiers.

Let depRepSet be the set of dependency representations for which (dependency_id << 4) is contained in the list
dqIdList.

For all dependency representations of the set depRepSet, the following applies.

– The syntax elements gaps_in_frame_num_value_allowed_flag and frame_num and the derived upper-case
variables PrevRefFrameNum and MaxFrameNum are the syntax elements and derived upper-case variables for the
considered dependency representation.

– When gaps_in_frame_num_value_allowed_flag is equal to 0, the bitstream shall not contain data that result in
frame_num not being equal to PrevRefFrameNum or (PrevRefFrameNum + 1) % MaxFrameNum.

NOTE – When gaps_in_frame_num_value_allowed_flag is equal to 0 and frame_num is not equal to PrevRefFrameNum
and is not equal to (PrevRefFrameNum + 1) % MaxFrameNum, the decoding process should infer an unintentional loss of
pictures.

– When frame_num is not equal to PrevRefFrameNum and is not equal to (PrevRefFrameNum + 1) %
MaxFrameNum, the decoding process for gaps in frame_num as specified in subclause 8.2.5.2 is invoked. For this
invocation of the process specified in subclause 8.2.5.2, the modifications a) and b) specified in subclause G.8.2
apply with currDependencyId being equal to dependency_id for the considered dependency representation and the
invocation of sliding window picture marking process specified in subclause 8.2.5.3 is substituted with the
invocation of the SVC sliding window decoded reference picture marking process specified in subclause G.8.2.4.2
with refBasePicFlag equal to 0 as the input.

G.8.3 SVC intra decoding processes

Subclause G.8.3.1 specifies the SVC derivation process for intra prediction modes.

Subclause G.8.3.2 specifies the SVC intra sample prediction and construction process.

466 Rec. ITU-T H.264 (03/2009)

G.8.3.1 SVC derivation process for intra prediction modes

This process is only invoked when base_mode_flag is equal to 0 and mbType[CurrMbAddr] specified as input to this
process is equal to I_PCM, I_16x16, I_8x8, or I_4x4.

Inputs to this process are

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a list fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current layer representation
are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a list baseModeFlag with PicSizeInMbs elements specifying the syntax element base_mode_flag for the
macroblocks of the current layer representation,

– a list mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of the current layer
representation,

– a (PicSizeInMbs)x16 array ipred4x4 specifying Intra_4x4 prediction modes for macroblocks of the current layer
representation,

– a (PicSizeInMbs)x4 array ipred8x8 specifying Intra_8x8 prediction modes for macroblocks of the current layer
representation,

– a list intra16x16 with PicSizeInMbs elements specifying Intra_16x16 prediction modes for macroblocks of the
current layer representation,

– when ChromaArrayType is equal to 1 or 2, a list ipredChroma with PicSizeInMbs elements specifying intra
chroma prediction modes for macroblocks of the current layer representation.

Outputs of this process are

– a modified version of the array ipred4x4,

– a modified version of the array ipred8x8,

– a modified version of the array ipred16x16,

– when ChromaArrayType is equal to 1 or 2, a modified version of the array ipredChroma.

For all processes specified in clause 6 that are invoked from the process specified in this subclause or a child process of
the process specified in this subclause, the following modifications apply:

a) In subclause 6.4.11.2, a macroblock with address mbAddr is treated as field macroblock when
fieldMbFlag[mbAddr] is equal to 1, and it is treated as frame macroblock when fieldMbFlag[mbAddr] is
equal to 0. In particular, the current macroblock is treated as field macroblock when
fieldMbFlag[CurrMbAddr] is equal to 1, and it is treated as frame macroblock when
fieldMbFlag[CurrMbAddr] is equal to 0.

b) In subclause 6.4.7, a macroblock with address mbAddr is treated to belong to a different slice than the current
macroblock CurrMbAddr, when sliceIdc[mbAddr] is not equal to sliceIdc[CurrMbAddr].

c) In subclause 6.4.11.2, a macroblock mbAddr is treated as top macroblock when (mbAddr % 2) is equal to 0,
and it is treated as bottom macroblock when (mbAddr % 2) is equal to 1.

When mbType[CurrMbAddr] is not equal to I_PCM, the following applies.

– If mbType[CurrMbAddr] is equal to I_4x4, the SVC derivation process for Intra_4x4 prediction modes as
specified in subclause G.8.3.1.1 is invoked with sliceIdc, fieldMbFlag, baseModeFlag, mbType, ipred4x4, and
ipred8x8 as the inputs and the output is a modified version of the array ipred4x4.

– Otherwise, if mbType[CurrMbAddr] is equal to I_8x8, the SVC derivation process for Intra_8x8 prediction
modes as specified in subclause G.8.3.1.2 is invoked with sliceIdc, fieldMbFlag, baseModeFlag, mbType,
ipred4x4, and ipred8x8 as the inputs and the output is a modified version of the array ipred8x8.

– Otherwise, if mbType[CurrMbAddr] is equal to I_16x16, ipred16x16[CurrMbAddr] is set equal to
Intra16x16PredMode.

When ChromaArrayType is equal to 1 or 2 and mbType[CurrMbAddr] is not equal to I_PCM,
ipredChroma[CurrMbAddr] is set equal to intra_chroma_pred_mode.

 Rec. ITU-T H.264 (03/2009) 467

G.8.3.1.1 SVC derivation process for Intra_4x4 prediction modes

Inputs to this process are

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a list fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current layer representation
are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a list baseModeFlag with PicSizeInMbs elements specifying the syntax element base_mode_flag for the
macroblocks of the current layer representation,

– a list mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of the current layer
representation,

– a (PicSizeInMbs)x16 array ipred4x4 specifying Intra_4x4 prediction modes for macroblocks of the current layer
representation,

– a (PicSizeInMbs)x4 array ipred8x8 specifying Intra_8x8 prediction modes for macroblocks of the current layer
representation.

Output of this process is a modified version of the array ipred4x4.

The 4x4 blocks indexed by c4x4BlkIdx = 0..15 are processed in increasing order of c4x4BlkIdx, and for each 4x4
block, the following ordered steps are specified:

1. The derivation process for neighbouring 4x4 luma blocks as specified in subclause 6.4.10.4 is invoked with
c4x4BlkIdx as the input and the outputs are assigned to mbAddrA, c4x4BlkIdxA, mbAddrB, and
c4x4BlkIdxB. For this invocation of the process in subclause 6.4.10.4, the modifications specified in items a)
through c) in subclause G.8.3.1 apply.

2. For N being replaced by A and B, the variables availableFlagN are derived as follows.

– If the macroblock mbAddrN is available and any of the following conditions is true, availableFlagN is set
equal to 1:

– constrained_intra_pred_flag is equal to 0,

– mbType[mbAddrN] is equal to I_PCM and tcoeff_level_prediction_flag is equal to 1,

– mbType[mbAddrN] is equal to I_PCM and baseModeFlag[mbAddrN] is equal to 0,

– mbType[mbAddrN] is equal to I_16x16, I_8x8, or I_4x4.

– Otherwise, availableFlagN is set equal to 0.

3. The variable dcPredModePredictedFlag is derived as follows.

– If availableFlagA or availableFlagB is equal to 0, dcPredModePredictedFlag is set equal to 1.

– Otherwise (availableFlagA is equal to 1 and availableFlagB is equal to 1), dcPredModePredictedFlag is
set equal to 0.

4. For N being replaced by A and B, the variables intraMxMPredModeN are derived as follows.

– If dcPredModePredictedFlag is equal to 0 and mbType[mbAddrN] is equal to I_4x4,
intraMxMPredModeN is set equal to ipred4x4[mbAddrN][c4x4BlkIdxN].

– Otherwise, if dcPredModePredictedFlag is equal to 0 and mbType[mbAddrN] is equal to I_8x8,
intraMxMPredModeN is set equal to ipred8x8[mbAddrN][c4x4BlkIdxN >> 2].

– Otherwise (dcPredModePredictedFlag is equal to 1 or (mbType[mbAddrN] is not equal to I_4x4 and
mbType[mbAddrN] is not equal to I_8x8)), intraMxMPredModeN is set equal to 2.

5. The element ipred4x4[CurrMbAddr][c4x4BlkIdx] of the array ipred4x4 is derived by applying the
procedure specified in the following pseudo-code.

predIntra4x4PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra4x4_pred_mode_flag[c4x4BlkIdx])
 ipred4x4[CurrMbAddr][c4x4BlkIdx] = predIntra4x4PredMode
else if(rem_intra4x4_pred_mode[c4x4BlkIdx] < predIntra4x4PredMode) (G-83)
 ipred4x4[CurrMbAddr][c4x4BlkIdx] = rem_intra4x4_pred_mode[c4x4BlkIdx]

468 Rec. ITU-T H.264 (03/2009)

else
 ipred4x4[CurrMbAddr][c4x4BlkIdx] = rem_intra4x4_pred_mode[c4x4BlkIdx] + 1

G.8.3.1.2 SVC derivation process for Intra_8x8 prediction modes

Inputs to this process are

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a list fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current layer representation
are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a list baseModeFlag with PicSizeInMbs elements specifying the syntax element base_mode_flag for the
macroblocks of the current layer representation,

– a list mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of the current layer
representation,

– a (PicSizeInMbs)x16 array ipred4x4 specifying Intra_4x4 prediction modes for macroblocks of the current layer
representation,

– a (PicSizeInMbs)x4 array ipred8x8 specifying Intra_8x8 prediction modes for macroblocks of the current layer
representation.

Output of this process is a modified version of the array ipred8x8.

The 8x8 blocks indexed by c8x8BlkIdx = 0..3 are processed in increasing order of c8x8BlkIdx, and for each 8x8 block,
the following ordered steps are specified:

1. The derivation process for neighbouring 8x8 luma blocks as specified in subclause 6.4.10.2 is invoked with
c8x8BlkIdx as the input and the outputs are assigned to mbAddrA, c8x8BlkIdxA, mbAddrB, and
c8x8BlkIdxB. For this invocation of the process in subclause 6.4.10.2, the modifications specified in items a)
through c) in subclause G.8.3.1 apply.

2. For N being replaced by A and B, the variables availableFlagN are derived as follows.

– If the macroblock mbAddrN is available and any of the following conditions is true, availableFlagN is set
equal to 1:

– constrained_intra_pred_flag is equal to 0,

– mbType[mbAddrN] is equal to I_PCM and tcoeff_level_prediction_flag is equal to 1,

– mbType[mbAddrN] is equal to I_PCM and baseModeFlag[mbAddrN] is equal to 0,

– mbType[mbAddrN] is equal to I_16x16, I_8x8, or I_4x4.

– Otherwise, availableFlagN is set equal to 0.

3. The variable dcPredModePredictedFlag is derived as follows.

– If availableFlagA or availableFlagB is equal to 0, dcPredModePredictedFlag is set equal to 1.

– Otherwise (availableFlagA is equal to 1 and availableFlagB are equal to 1), dcPredModePredictedFlag is
set equal to 0.

4. For N being replaced by A and B, the variables intraMxMPredModeN are derived as follows.

– If dcPredModePredictedFlag is equal to 0 and mbType[mbAddrN] is equal to I_4x4,
intraMxMPredModeN is set equal to ipred4x4[mbAddrN][c8x8BlkIdxN * 4 + c4x4Idx] with the
variable c4x4Idx being derived as follows.

– If N is equal to B, c4x4Idx is set equal to 2.

– Otherwise, if fieldMbFlag[CurrMbAddr] is equal to 0, fieldMbFlag[mbAddrN] is equal to 1, and
c8x8BlkIdx is equal to 2, c4x4Idx is set equal to 3.

– Otherwise (N is equal to A and (fieldMbFlag[CurrMbAddr] is equal to 1 or
fieldMbFlag[mbAddrN] is equal to 0 or c8x8BlkIdx is not equal to 2)), c4x4Idx is set equal to 1.

– Otherwise, if dcPredModePredictedFlag is equal to 0 and mbType[mbAddrN] is equal to I_8x8,
intraMxMPredModeN is set equal to ipred8x8[mbAddrN][c8x8BlkIdxN].

 Rec. ITU-T H.264 (03/2009) 469

– Otherwise (dcPredModePredictedFlag is equal to 1 or (mbType[mbAddrN] is not equal to I_4x4 and
mbType[mbAddrN] is not equal to I_8x8)), intraMxMPredModeN is set equal to 2.

5. The element ipred8x8[CurrMbAddr][c8x8BlkIdx] of the array ipred8x8 is derived by applying the
procedure specified in the following pseudo-code.

predIntra8x8PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra8x8_pred_mode_flag[c8x8BlkIdx])
 ipred8x8[CurrMbAddr][c8x8BlkIdx] = predIntra8x8PredMode
else if(rem_intra8x8_pred_mode[c8x8BlkIdx] < predIntra8x8PredMode) (G-84)
 ipred8x8[CurrMbAddr][c8x8BlkIdx] = rem_intra8x8_pred_mode[c8x8BlkIdx]
else
 ipred8x8[CurrMbAddr][c8x8BlkIdx] = rem_intra8x8_pred_mode[c8x8BlkIdx] + 1

G.8.3.2 SVC intra sample prediction and construction process

This process is only invoked when mbType specified as input to this process is equal to I_PCM, I_16x16, I_8x8, or
I_4x4.

Inputs to this process are

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a list baseModeFlag with PicSizeInMbs elements specifying the syntax element base_mode_flag for the
macroblocks of the current layer representation,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current layer representation,

– a list ipred4x4 with 16 elements specifying Intra_4x4 prediction modes for the current macroblock,

– a list ipred8x8 with 4 elements specifying Intra_8x8 prediction modes for the current macroblock,

– a variable ipred16x16 specifying the Intra_16x16 prediction mode for the current macroblock,

– a variable ipredChroma specifying the intra chroma prediction mode for the current macroblock,

– a variable cTrafo specifying the transform type for the current macroblock,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamplesL containing constructed luma sample values for
the current layer representation.

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picSamplesCb
and picSamplesCr containing constructed chroma sample values for the current layer representation.

Outputs of this process are

– a modified version of the array picSamplesL,

– when ChromaArrayType is not equal to 0, modified versions of the arrays picSamplesCb and picSamplesCr.

For all processes specified in clauses 6 or 8 that are invoked from the process specified in this subclause or a child
process of the process specified in this subclause, the following modifications apply.

a) In subclause 6.4.11.2, a macroblock with address mbAddr is treated as field macroblock when
fieldMbFlag[mbAddr] is equal to 1, and it is treated as frame macroblock when fieldMbFlag[mbAddr] is
equal to 0. In particular, the current macroblock is treated as field macroblock when
fieldMbFlag[CurrMbAddr] is equal to 1, and it is treated as frame macroblock when
fieldMbFlag[CurrMbAddr] is equal to 0.

b) In subclause 6.4.7, a macroblock with address mbAddr is treated to belong to a different slice than the current
macroblock CurrMbAddr, when MbToSliceGroupMap[mbAddr] is not equal to
MbToSliceGroupMap[CurrMbAddr] or mbAddr is less than (sliceIdc[CurrMbAddr] >> 7), where
MbToSliceGroupMap represents the variable that is derived as specified in subclause 8.2.2 for the layer
representation with DQId equal to (sliceIdc[CurrMbAddr] & 127).

470 Rec. ITU-T H.264 (03/2009)

NOTE 1 – When tcoeff_level_prediction_flag is equal to 0 or when all macroblocks of the current layer picture are
covered by slices with the same value of DQId, the above condition can be simplified. In this case, two macroblocks
mbAddrA and mbAddrB can be treated to belong to different slices, when sliceIdc[mbAddrA] is not equal to
sliceIdc[mbAddrB].

c) In subclause 6.4.11.2, a macroblock mbAddr is treated as top macroblock when (mbAddr % 2) is equal to 0,
and it is treated as bottom macroblock when (mbAddr % 2) is equal to 1.

d) In subclauses 8.3.1.2, 8.3.2.2, 8.3.3, and 8.3.4, the variables Intra4x4PredMode, Intra8x8PredMode,
Intra16x16PredMode, and intra_chroma_pred_mode are replaced by ipred4x4, ipred8x8, ipred16x16, and
ipredChroma, respectively.

e) In subclauses 8.3.1.2, 8.3.2.2, 8.3.3, and 8.3.4, the syntax element mb_type of a macroblock with macroblock
address mbAddr is replaced by mbType[mbAddr].

f) The value of constrained_intra_pred_flag that is referred to in subclauses 8.3.1.2, 8.3.2.2, 8.3.3, and 8.3.4 is
specified as follows.

– If (sliceIdc[CurrMbAddr] & 127) is less than DQIdMax, the value of constrained_intra_pred_flag is the
value of constrained_intra_pred_flag of the active layer picture parameter set for the layer representation
with DQId equal to (sliceIdc[CurrMbAddr] & 127).

– Otherwise ((sliceIdc[CurrMbAddr] & 127) is equal to DQIdMax), the value of
constrained_intra_pred_flag is the value of constrained_intra_pred_flag of the active picture parameter
set.

g) In subclauses 8.3.1.2, 8.3.2.2, 8.3.3, and 8.3.4, a macroblock with mbAddrN is treated as coded in an Inter
macroblock prediction mode when all of the following conditions are false:

– mbType[mbAddrN] is equal to I_PCM and tcoeff_level_prediction_flag is equal to 1,

– mbType[mbAddrN] is equal to I_PCM, tcoeff_level_prediction_flag is equal to 0, and
baseModeFlag[mbAddrN] is equal to 0,

– mbType[mbAddrN] is equal to I_16x16, I_8x8, or I_4x4,

– sliceIdc[mbAddrN] is not equal to sliceIdc[CurrMbAddr].
NOTE 2 – The latter condition does only have an impact on the decoding process when tcoeff_level_prediction_flag
is equal to 1 and not all macroblocks of the current layer picture are covered by slices with the same value of DQId.

The SVC intra sample prediction and construction process proceeds in the following ordered steps:

1. The construction process for luma residuals or chroma residuals with ChromaArrayType equal to 3 as
specified in subclause G.8.5.3.1 is invoked with cTrafo and sTCoeff as the inputs and the outputs are residual
luma sample values as a 16x16 array mbResL with elements mbResL[x, y].

2. When ChromaArrayType is not equal to 0, the construction process for chroma residuals as specified in
subclause G.8.5.3.2 is invoked with cTrafo and sTCoeff as the inputs and the outputs are residual chroma
sample values as two (MbWidthC)x(MbHeightC) arrays mbResCb and mbResCr with elements mbResCb[x, y]
and mbResCr[x, y], respectively.

3. The SVC intra prediction and construction process for luma samples or chroma samples with
ChromaArrayType equal to 3 as specified in subclause G.8.3.2.1 is invoked with BitDepthY, sliceIdc,
fieldMbFlag, mbType, ipred4x4, ipred8x8, ipred16x16, mbResL, and picSamplesL as the inputs and the output
is a modified version of the array picSamplesL.

4. When ChromaArrayType is not equal to 0, the SVC intra prediction and construction process for chroma
samples as specified in subclause G.8.3.2.2 is invoked with sliceIdc, fieldMbFlag, mbType, ipred4x4,
ipred8x8, ipred16x16, ipredChroma, mbResCb, mbResCr, picSamplesCb, and picSamplesCr as the inputs and the
outputs are modified versions of the arrays picSamplesCb and picSamplesCr.

G.8.3.2.1 SVC intra prediction and construction process for luma samples or chroma samples with
ChromaArrayType equal to 3

Inputs to this process are

– a variable bitDepth specifying the bit depth,

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

 Rec. ITU-T H.264 (03/2009) 471

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current layer representation,

– a list ipred4x4 with 16 elements specifying Intra_4x4 prediction modes for the current macroblock,

– a list ipred8x8 with 4 elements specifying Intra_8x8 prediction modes for the current macroblock,

– a variable ipred16x16 specifying the Intra_16x16 prediction mode for the current macroblock,

– a 16x16 array mbRes containing residual sample values for the current macroblock,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamples containing constructed sample values for the
current layer representation.

Outputs of this process is a modified version of the array picSamples.

Depending on mbType[CurrMbAddr], the following applies.

– If mbType[CurrMbAddr] is equal to I_PCM, the SVC construction process for luma samples and chroma samples
with ChromaArrayType equal to 3 of I_PCM macroblocks as specified in subclause G.8.3.2.1.1 is invoked with
fieldMbFlag, mbRes, and picSamples as the inputs and the output is a modified version of the array picSamples.

– Otherwise, if mbType[CurrMbAddr] is equal to I_4x4, the SVC Intra_4x4 sample prediction and construction
process as specified in subclause G.8.3.2.1.2 is invoked with bitDepth, sliceIdc, fieldMbFlag, mbType, ipred4x4,
mbRes, and picSamples as the inputs and the output is a modified version of the array picSamples.

– Otherwise, if mbType[CurrMbAddr] is equal to I_8x8, the SVC Intra_8x8 sample prediction and construction
process as specified in subclause G.8.3.2.1.3 is invoked with bitDepth, sliceIdc, fieldMbFlag, mbType, ipred8x8,
mbRes, and picSamples as the inputs and the output is a modified version of the array picSamples.

– Otherwise (mbType[CurrMbAddr] is equal to I_16x16), the SVC Intra_16x16 sample prediction and construction
process as specified in subclause G.8.3.2.1.4 is invoked with bitDepth, sliceIdc, fieldMbFlag, mbType,
ipred16x16, mbRes, and picSamples as the inputs and the output is a modified version of the array picSamples.

G.8.3.2.1.1 SVC construction process for luma samples and chroma samples with ChromaArrayType equal to 3
of I_PCM macroblocks

Inputs to this process are

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a 16x16 array mbRes containing residual sample values for the current macroblock,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamples containing constructed sample values for the
current layer representation.

Output of this process is a modified version of the array picSamples.

The picture sample array construction process for a signal component as specified in subclause G.8.5.4.3 is invoked
with fieldMbFlag[CurrMbAddr], mbW set equal to 16, mbH set equal to 16, mbRes, and picSamples as the inputs and
the output is a modified version of the array picSamples.

G.8.3.2.1.2 SVC Intra_4x4 sample prediction and construction process

Inputs to this process are

– a variable bitDepth specifying the bit depth,

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current layer representation,

– a list ipred4x4 with 16 elements specifying Intra_4x4 prediction modes for the current macroblock,

472 Rec. ITU-T H.264 (03/2009)

– a 16x16 array mbRes containing residual sample values for the current macroblock,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamples containing constructed sample values for the
current layer representation.

Output of this process is a modified version of the array picSamples.

Let mbSamples be a 16x16 array containing constructed intra sample values for the current macroblock. All elements of
mbSamples are initially set equal to 0.

The 4x4 blocks indexed by c4x4BlkIdx = 0..15 are processed in increasing order of c4x4BlkIdx, and for each 4x4
block, the following ordered steps are specified:

1. The Intra_4x4 sample prediction process as specified in subclause 8.3.1.2 is invoked with c4x4BlkIdx and
picSamples as the inputs and the outputs are intra prediction sample values as a 4x4 array pred4x4 with
elements pred4x4[x, y]. For this invocation of the process in subclause 8.3.1.2, the modifications specified in
items a) through g) of subclause G.8.3.2 apply. Additionally in subclause 8.3.1.2.3, which may be invoked as
part of the process specified in subclause 8.3.1.2, the variable BitDepthY is replaced by bitDepth.

2. The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with c4x4BlkIdx as
the input and the output is assigned to (xP, yP).

3. For x = xP..(xP + 3) and y = yP..(yP + 3) and with Clip(a) specifying Clip3(0, (1 << bitDepth) − 1, a), the
elements mbSamples[x, y] of the 16x16 array mbSamples are derived by

mbSamples[x, y] = Clip(pred4x4[x − xP, y − yP] + mbRes[x, y]) (G-85)

4. The picture sample array construction process for a signal component as specified in subclause G.8.5.4.3 is
invoked with fieldMbFlag[CurrMbAddr], mbW set equal to 16, mbH set equal to 16, mbSamples, and
picSamples as the inputs and the output is a modified version of the array picSamples.

NOTE – When c4x4BlkIdx is less than 15, the array mbSamples does only contain constructed intra samples for 4x4
blocks with c4x4BlkIdx less than or equal to the current value of c4x4BlkIdx.

G.8.3.2.1.3 SVC Intra_8x8 sample prediction and construction process

Inputs to this process are

– a variable bitDepth specifying the bit depth,

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current layer representation,

– a list ipred8x8 with 4 elements specifying Intra_8x8 prediction modes for the current macroblock,

– a 16x16 array mbRes containing residual sample values for the current macroblock,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamples containing constructed sample values for the
current layer representation.

Output of this process is a modified version of the array picSamples.

Let mbSamples be a 16x16 array containing constructed intra sample values for the current macroblock. All elements of
mbSamples are initially set equal to 0.

The 8x8 blocks indexed by c8x8BlkIdx = 0..3 are processed in increasing order of c8x8BlkIdx, and for each 8x8 block,
the following ordered steps are specified:

1. The Intra_8x8 sample prediction process as specified in subclause 8.3.2.2 is invoked with c8x8BlkIdx and
picSamples as the inputs and the outputs are intra prediction sample values as an 8x8 array pred8x8 with
elements pred8x8[x, y]. For this invocation of the process in subclause 8.3.2.2, the modifications specified in
items a) through g) of subclause G.8.3.2 apply. Additionally in subclause 8.3.2.2.4, which may be invoked as
part of the process specified in subclause 8.3.2.2, the variable BitDepthY is replaced by bitDepth.

2. The inverse 8x8 luma block scanning process as specified in subclause 6.4.5 is invoked with c8x8BlkIdx as
the input and the output is assigned to (xP, yP).

 Rec. ITU-T H.264 (03/2009) 473

3. For x = xP..(xP + 7) and y = yP..(yP + 7) and with Clip(a) specifying Clip3(0, (1 << bitDepth) − 1, a), the
elements mbSamples[x, y] of the 16x16 array mbSamples are derived by

mbSamples[x, y] = Clip(pred8x8[x − xP, y − yP] + mbRes[x, y]) (G-86)

4. The picture sample array construction process for a signal component as specified in subclause G.8.5.4.3 is
invoked with fieldMbFlag[CurrMbAddr], mbW set equal to 16, mbH set equal to 16, mbSamples, and
picSamples as the inputs and the output is a modified version of the array picSamples.

NOTE – When c8x8BlkIdx is less than 3, the array mbSamples does only contain constructed intra samples for 8x8
blocks with c8x8BlkIdx less than or equal to the current value of c8x8BlkIdx.

G.8.3.2.1.4 SVC Intra_16x16 sample prediction and construction process

Inputs to this process are

– a variable bitDepth specifying the bit depth,

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current layer representation,

– a variable ipred16x16 specifying the Intra_16x16 prediction mode for the current macroblock,

– a 16x16 array mbRes containing residual sample values for the current macroblock,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamples containing constructed sample values for the
current layer representation.

Output of this process is a modified version of the array picSamples.

The SVC Intra_16x16 sample prediction and construction process proceeds in the following ordered steps:

1. The Intra_16x16 prediction process for luma samples as specified in subclause 8.3.3 is invoked with
picSamples as the input and the outputs are intra prediction sample values as a 16x16 array pred16x16 with
elements pred16x16[x, y]. For this invocation of the process in subclause 8.3.3, the modifications specified in
items a) through g) of subclause G.8.3.2 apply. Additionally in subclause 8.3.3.3, which may be invoked as
part of the process specified in subclause 8.3.3, the variable BitDepthY is replaced by bitDepth.

2. With Clip(a) specifying Clip3(0, (1 << bitDepth) − 1, a), the 16x16 array mbSamples is derived by

mbSamples[x, y] = Clip(pred16x16[x, y] + mbRes[x, y]) with x, y = 0..15 (G-87)

3. The picture sample array construction process for a signal component as specified in subclause G.8.5.4.3 is
invoked with fieldMbFlag[CurrMbAddr], mbW set equal to 16, mbH set equal to 16, mbSamples, and
picSamples as the inputs and the output is a modified version of the array picSamples.

G.8.3.2.2 SVC intra prediction and construction process for chroma samples

Inputs to this process are

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current layer representation,

– a list ipred4x4 with 16 elements specifying Intra_4x4 prediction modes for the current macroblock,

– a list ipred8x8 with 4 elements specifying Intra_8x8 prediction modes for the current macroblock,

– a variable ipred16x16 specifying the Intra_16x16 prediction mode for the current macroblock,

– a variable ipredChroma specifying the intra chroma prediction mode for the current macroblock,

474 Rec. ITU-T H.264 (03/2009)

– two (MbWidthC)x(MbHeightC) arrays mbResCb and mbResCr containing residual chroma sample values for the
current macroblock,

– two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picSamplesCb and picSamplesCr containing constructed
sample values for the current layer representation.

Outputs of this process are modified versions of the arrays picSamplesCb and picSamplesCr.

Depending on ChromaArrayType, the following applies.

– If ChromaArrayType is equal to 1 or 2, the following applies.

– If mbType[CurrMbAddr] is equal to I_PCM, the SVC construction process for chroma samples of I_PCM
macroblock as specified in subclause G.8.3.2.2.1 is invoked with fieldMbFlag, sTCoeff, picSamplesCb, and
picSamplesCr as the inputs and the outputs are modified versions of picSamplesCb and picSamplesCr.

– Otherwise (mbType[CurrMbAddr] is not equal to I_PCM), the SVC intra prediction and construction
process for chroma samples with ChromaArrayType equal to 1 or 2 as specified in subclause G.8.3.2.2.2 is
invoked with sliceIdc, fieldMbFlag, mbType, ipredChroma, mbResCb, mbResCr, picSamplesCb, and
picSamplesCr as the inputs and the outputs are modified versions of the arrays picSamplesCb and picSamplesCr.

– Otherwise (ChromaArrayType is equal to 3), for CX being replaced by Cb and Cr, the SVC intra prediction and
construction process for luma samples or chroma samples with ChromaArrayType equal to 3 as specified in
subclause G.8.3.2.1 is invoked with BitDepthC, sliceIdc, fieldMbFlag, mbType, ipred4x4, ipred8x8, ipred16x16,
mbResCX, and picSamplesCX as the inputs and the output is a modified version of the array picSamplesCX.

G.8.3.2.2.1 SVC construction process for chroma samples of I_PCM macroblocks

Inputs to this process are

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– two (MbWidthC)x(MbHeightC) arrays mbResCb and mbResCr containing residual chroma sample values for the
current macroblock,

– two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picSamplesCb and picSamplesCr containing constructed
chroma sample values for the current layer representation.

Outputs of this process are modified versions of the arrays picSamplesCb and picSamplesCr.

For CX being replaced by Cb and Cr, the picture sample array construction process for a signal component as specified
in subclause G.8.5.4.3 is invoked with fieldMbFlag[CurrMbAddr], mbW set equal to MbWidthC, mbH set equal to
MbHeightC, mbResCX, and picSamplesCX as the inputs and the output is a modified version of the array picSamplesCX.

G.8.3.2.2.2 SVC intra prediction and construction process for chroma samples with ChromaArrayType equal
to 1 or 2

This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current layer representation,

– a variable ipredChroma specifying the intra chroma prediction mode for the current macroblock,

– two (MbWidthC)x(MbHeightC) arrays mbResCb and mbResCr containing residual chroma sample values for the
current macroblock,

– two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picSamplesCb and picSamplesCr containing constructed
chroma sample values for the current layer representation.

Outputs of this process are modified versions of the arrays picSamplesCb and picSamplesCr.

 Rec. ITU-T H.264 (03/2009) 475

The SVC intra prediction and construction process for chroma samples with ChromaArrayType equal to 1 or 2 proceeds
in the following ordered steps:

1. The intra prediction process for chroma samples as specified in subclause 8.3.4 is invoked with picSamplesCb
and picSamplesCr as the inputs and the outputs are intra prediction chroma sample values as two
(MbWidthC)x(MbHeightC) arrays predCb and predCr with elements predCb[x, y] and predCr[x, y],
respectively. For this invocation of the process in subclause 8.3.4, the modifications specified in items a)
through g) of subclause G.8.3.2 apply.

2. For CX being replaced by Cb and Cr, the (MbWidthC)x(MbHeightC) array mbSamplesCX is derived by

mbSamplesCX[x, y] = Clip1C(predCX[x, y] + mbResCX[x, y]) with x = 0..(MbWidthC − 1)
 and y = 0..(MbHeightC − 1) (G-88)

3. For CX being replaced by Cb and Cr, the picture sample array construction process for a signal component as
specified in subclause G.8.5.4.3 is invoked with fieldMbFlag[CurrMbAddr], mbW set equal to MbWidthC,
mbH set equal to MbHeightC, mbSamplesCX, and picSamplesCX as the inputs and the output is a modified
version of the array picSamplesCX.

G.8.4 SVC Inter prediction process

Subclause G.8.4.1 specifies the SVC derivation process for motion vector components and reference indices.

Subclause G.8.4.2 specifies the SVC decoding process for Inter prediction samples

G.8.4.1 SVC derivation process for motion vector components and reference indices

Inputs to this process are

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current layer representation,

– a (PicSizeInMbs)x4 array subMbType specifying sub-macroblock types for the macroblocks of the current layer
representation,

– two (PicSizeInMbs)x4 arrays predFlagL0 and predFlagL1 specifying prediction utilization flags for the
macroblocks of the current layer representation,

– two (PicSizeInMbs)x4 arrays refIdxL0 and refIdxL1 specifying reference indices for the macroblocks of the
current layer representation,

– two (PicSizeInMbs)x4x4x2 arrays mvL0 and mvL1 specifying motion vector components for the macroblocks of
the current layer representation,

– a one-dimensional array mvCnt with PicSizeInMbs elements specifying the number of motion vectors for the
macroblocks of the current layer representation,

– two 2x2 arrays refIdxILPredL0 and refIdxILPredL1 specifying inter-layer reference index predictors for the
current macroblock,

– two 4x4x2 arrays mvILPredL0 and mvILPredL1 specifying inter-layer motion vector predictors for the current
macroblock,

– when DQId is equal to 0 and (slice_type % 5) is equal to 1, the reference list refPicList1.

Outputs of this process are

– modified versions of the arrays predFlagL0 and predFlagL1,

– modified versions of the arrays refIdxL0 and refIdxL1,

– modified versions of the arrays mvL0 and mvL1,

– a modified version of the array mvCnt.

476 Rec. ITU-T H.264 (03/2009)

Depending on mbType[CurrMbAddr], the following applies.

– If mbType[CurrMbAddr] is equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL, the arrays predFlagL0, predFlagL1,
refIdxL0, refIdxL1, mvL0, mvL1, and mvCnt are modified by

predFlagLX[CurrMbAddr][m] = 0 with X = 0..1, m = 0..3 (G-89)
refIdxLX[CurrMbAddr][m] = −1 with X = 0..1, m = 0..3 (G-90)
mvLX[CurrMbAddr][m][s][c] = 0 with X = 0..1, m = 0..3, s = 0..3, c = 0..1 (G-91)
mvCnt[CurrMbAddr] = 0 (G-92)

– Otherwise (mbType[CurrMbAddr] is not equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL), the arrays
predFlagL0, predFlagL1, refIdxL0, refIdxL1, mvL0, mvL1, and mvCnt are modified as specified by the following
text.

The variable numMbPart is derived as follows.

– If mbType[CurrMbAddr] is equal to B_Skip or B_Direct_16x16 and DQId is equal to 0 (nal_unit_type is not
equal to 20), numMbPart is set equal to 4.

– Otherwise, if mbType[CurrMbAddr] is equal to B_Skip or B_Direct_16x16 (and DQId is greater than 0 and
nal_unit_type is equal to 20), numMbPart is set equal to 1.

– Otherwise (mbType[CurrMbAddr] is not equal to B_Skip or B_Direct_16x16), numMbPart is set equal to
NumMbPart(mbType[CurrMbAddr]).

The macroblock partition index mbPartIdx proceeds over the values 0..(numMbPart − 1), and for each value of
mbPartIdx the following ordered steps are specified:

1. The variable isDirectFlag is derived as follows.

– If any of the following conditions is true, isDirectFlag is set equal to 1:

– mbType[CurrMbAddr] is equal to B_Skip or B_Direct_16x16,

– mbType[CurrMbAddr] is equal to B_8x8 and subMbType[CurrMbAddr][mbPartIdx] is equal
to B_Direct_8x8.

– Otherwise, isDirectFlag is set equal to 0.

2. The variable numSubMbPart is derived as follows.

– If isDirectFlag is equal to 1 and DQId is equal to 0 (nal_unit_type is not equal to 20), numSubMbPart is
set equal to 4.

– Otherwise, if isDirectFlag is equal to 1 (and DQId is greater than 0 and nal_unit_type is equal to 20),
numSubMbPart is set equal to 1.

– Otherwise (isDirectFlag is equal to 0), numSubMbPart is set equal to
NumSubMbPart(subMbType[CurrMbAddr][mbPartIdx])

3. The sub-macroblock partition index subMbPartIdx proceeds over values 0..(numSubMbPart − 1), and for each
value of subMbPartIdx the SVC derivation process for luma motion vector components and reference indices
of a macroblock or sub-macroblock partition as specified in subclause G.8.4.1.1 is invoked with mbPartIdx,
subMbPartIdx, isDirectFlag, sliceIdc, fieldMbFlag, mbType, subMbType, predFlagL0, predFlagL1, refIdxL0,
refIdxL1, mvL0, mvL1, mvCnt, refIdxILPredL0, refIdxILPredL1, mvILPredL0, mvILPredL1, and, when
DQId is equal to 0 and (slice_type % 5) is equal to 1, the reference picture list refPicList1 as the inputs and the
outputs are modified versions of the arrays predFlagL0, predFlagL1, refIdxL0, refIdxL1, mvL0, mvL1, and
mvCnt.

G.8.4.1.1 SVC derivation process for luma motion vector components and reference indices of a macroblock or
sub-macroblock partition

This subclause is only invoked when mbType[CurrMbAddr], which is specified as input to this subclause, is not equal
to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL.

Inputs to this process are

– a variable mbPartIdx specifying the current macroblock partition,

– a variable subMbPartIdx specifying the current sub-macroblock partition,

 Rec. ITU-T H.264 (03/2009) 477

– a variable isDirectFlag specifying whether the current macroblock partition is coded in direct mode,

– a one-dimensional array sliceIdc with PicSizeInMbs elements specifying slice identifications for the macroblocks
of the current layer representation,

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current layer representation,

– a (PicSizeInMbs)x4 array subMbType specifying sub-macroblock types for the macroblocks of the current layer
representation,

– two (PicSizeInMbs)x4 arrays predFlagL0 and predFlagL1 specifying prediction utilization flags for the
macroblocks of the current layer representation,

– two (PicSizeInMbs)x4 arrays refIdxL0 and refIdxL1 specifying reference indices for the macroblocks of the
current layer representation,

– two (PicSizeInMbs)x4x4x2 arrays mvL0 and mvL1 specifying motion vector components for the macroblocks of
the current layer representation,

– a one-dimensional array mvCnt with PicSizeInMbs elements specifying the number of motion vectors for the
macroblocks of the current layer representation,

– two 2x2 arrays refIdxILPredL0 and refIdxILPredL1 specifying inter-layer reference index predictors for the
current macroblock,

– two 4x4x2 arrays mvILPredL0 and mvILPredL1 specifying inter-layer motion vector predictors for the current
macroblock,

– when DQId is equal to 0 and (slice_type % 5) is equal to 1, the reference picture list refPicList1.

Outputs of this process are

– modified versions of the arrays predFlagL0 and predFlagL1,

– modified versions of the arrays refIdxL0 and refIdxL1,

– modified versions of the arrays mvL0 and mvL1,

– a modified version of the array mvCnt.

For all processes specified in clauses 6 or 8 that are invoked from the process specified in this subclause or a child
process of the process specified in this subclause, the following modifications apply:

a) In subclauses 6.4.11.2 and 8.4.1.3.2, a macroblock with address mbAddr is treated as field macroblock when
fieldMbFlag[mbAddr] is equal to 1, and it is treated as frame macroblock when fieldMbFlag[mbAddr] is
equal to 0. In particular, the current macroblock is treated as field macroblock when
fieldMbFlag[CurrMbAddr] is equal to 1, and it is treated as frame macroblock when
fieldMbFlag[CurrMbAddr] is equal to 0.

b) In subclause 6.4.7, a macroblock with address mbAddr is treated to belong to a different slice than the current
macroblock CurrMbAddr, when sliceIdc[mbAddr] is not equal to sliceIdc[CurrMbAddr].

c) In subclause 6.4.11.2, a macroblock mbAddr is treated as top macroblock when (mbAddr % 2) is equal to 0,
and it is treated as bottom macroblock when (mbAddr % 2) is equal to 1.

d) In subclauses 6.4.2.1, 6.4.2.2, 6.4.10.7, 8.4.1.1, 8.4.1.3, any occurrence of mb_type is replaced by
mbType[CurrMbAddr] with mbType being the array mbType that is input to this subclause.

e) In subclauses 6.4.2.2 and 6.4.10.7, any occurrence of sub_mb_type is replaced by subMbType[CurrMbAddr]
with subMbType being the array subMbType that is input to this subclause.

f) In subclause 6.4.10.7, mb_type for a macroblock with macroblock address mbAddrN is replaced by
mbType[mbAddrN] with mbType being the array mbType that is input to this subclause and sub_mb_type
for a macroblock with macroblock address mbAddrN is replaced by subMbType[mbAddrN] with
subMbType being the array subMbType that is input to this subclause.

g) In subclause 6.4.10.7, a macroblock partition or sub-macroblock partition given by mbAddrN, mbPartIdxN,
and subMbPartIdxN is treated as not yet decoded when mbAddrN is equal to CurrMbAddr and
(4 * mbPartIdxN + subMbPartIdxN) is greater than (4 * mbPartIdx + subMbPartIdx).

478 Rec. ITU-T H.264 (03/2009)

h) In subclause 8.4.1.3.2, a macroblock with mbAddrN is treated as coded in an Intra macroblock prediction
mode when mbType[mbAddrN] is equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL.

i) In subclause 8.4.1.3.2, the variable predFlagLX of a macroblock or sub-macroblock partition given by
mbAddrN\mbPartIdxN\subMbPartIdxN is replaced by predFlagLX[mbAddrN][mbPartIdxN] with
predFlagLX being the array predFlagLX that is input to this subclause.

j) In subclause 8.4.1.3.2, the motion vector MvLX[mbPartIdxN][subMbPartIdxN] and the reference index
RefIdxLX[mbPartIdxN] of a macroblock or sub-macroblock partition given by
mbAddrN\mbPartIdxN\subMbPartIdxN are replaced by mvLX[mbAddrN][mbPartIdxN][subMbPartIdxN]
and refIdxLX[mbAddrN][mbPartIdxN], respectively, with mvLX and refIdxLX being the arrays mvLX and
refIdxLX, respectively, that are input to this subclause.

k) In subclause 8.4.1.2.1, any occurrence of RefPicList1[0] is replaced by refPicList1[0] with refPicList1[0]
being the first layer field (when field_pic_flag is equal to 1) or the first layer frame or layer complementary
field pair (when field_pic_flag is equal to 0) in the reference picture list refPicList1 that is specified as input to
this subclause. The reference picture list refPicList1 is a reference list of layer pictures that correspond to layer
representations with DQId equal to 0 of previously decoded access units.

l) In subclause 8.4.1.2.1, the current picture CurrPic represents the current layer picture with DQId equal to 0
and variable colPic specifies the layer picture for the layer representation with DQId equal to 0 of a previously
decoded access unit.

m) In subclause 8.4.1.2.1, all picture order count values are picture order count value for the dependency
representation with dependency_id equal to 0.

n) In subclause 8.4.1.2.1, the modification b) specified in subclause G.8.2 applies with currDependencyId being
equal to 0.

o) In subclause 8.4.1.2.1, for deriving the variable fieldDecodingFlagX, the macroblock mbAddrX is treated as
field macroblock when fieldMbColPicFlag[mbAddrX] is equal to 1, it is treated as frame macroblock when
fieldMbColPicFlag[mbAddrX] is equal to 0. The array fieldMbColPicFlag specifies the array fieldMbFlag
that was derived by the process in subclause G.8.1.5.1 for the layer representation with DQId equal to 0.

p) In subclause 8.4.1.2.1, the variables PredFlagL0, PredFlagL1, RefIdxL0, RefIdxL1, MvL0, and MvL1 for the
macroblock mbAddrCol inside the picture colPic are replaced with the predFlagL0[mbAddrCol],
predFlagL1[mbAddrCol], refIdxL0[mbAddrCol], refIdxL1[mbAddrCol], mvL0[mbAddrCol], and
mvL1[mbAddrCol], respectively, that have been derived for the layer picture colPic that is associated with
DQId equal to 0.

q) In subclause 8.4.1.2.1, the macroblock mbAddrCol is interpreted as coded in an Intra macroblock prediction
mode when mbType[mbAddrCol] that has been derived for the layer picture colPic that is associated with
DQId equal to 0 is equal to I_16x16, I_8x8, I_4x4, or I_PCM.

r) In subclause 8.4.1.2.1, the syntax element mb_type of the macroblock with address mbAddrCol inside the
picture colPic is replaced with mbType[mbAddrCol] that has been derived for the layer picture colPic that is
associated with DQId equal to 0 and the syntax element list sub_mb_type of the macroblock with address
mbAddrCol inside the picture colPic is replaced with the list subMbType[mbAddrCol] that has been derived
for the layer picture colPic that is associated with DQId equal to 0.

s) In subclause 8.4.1.2.2, the co-located macroblock is treated as field macroblock when
fieldMbColPicFlag[mbAddrCol] is equal to 1, it is treated as frame macroblock when
fieldMbColPicFlag[mbAddrCol] is equal to 0. The array fieldMbColPicFlag specifies the array fieldMbFlag
that was derived by the process in subclause G.8.1.5.1 for the layer representation with DQId equal to 0. The
macroblock address mbAddrCol is the macroblock address of the co-located macroblock as derived in
subclause 8.4.1.2.1.

The reference index predictors refIdxPredL0 and refIdxPredL1, the motion vector predictors mvPredL0 and mvPredL1,
and the variable mvCntInc are derived as follows.

– If mbType[CurrMbAddr] is equal to P_Skip, the reference index predictor refIdxPredL1 is set equal to −1, both
components of the motion vector predictor mvPredL1 are set equal to 0, the variable mvCntInc is set equal to 1,
and the derivation process for luma motion vectors for skipped macroblocks in P slices as specified in
subclause 8.4.1.1 is invoked with the outputs being assigned to the motion vector predictor mvPredL0 and the
reference index predictor refIdxPredL0. For this invocation of the process in subclause 8.4.1.1, the modifications
specified above in items a) through j) of this subclause apply.

– Otherwise, if isDirectFlag is equal to 1 and DQId is equal to 0 (nal_unit_type is not equal to 20), the derivation
process for spatial direct luma motion vector and reference index prediction mode as specified in

 Rec. ITU-T H.264 (03/2009) 479

subclause 8.4.1.2.2 is invoked with mbPartIdx and subMbPartIdx as the inputs and the output variables refIdxL0,
refIdxL1, mvL0, mvL1, and subMvCnt are assigned to the reference index predictors refIdxPredL0 and
refIdxPredL1, the motion vectors predictors mvPredL0 and mvPredL1, and the variable mvCntInc, respectively.
For this invocation of the process in subclause 8.4.1.2.2, the modifications specified above in items a) through s) of
this subclause apply.
NOTE – When the current subclause is invoked, direct_spatial_mv_pred_flag is always equal to 1.

– Otherwise, if isDirectFlag is equal to 1 (and DQId is greater than 0 and nal_unit_type is equal to 20), the SVC
derivation process for luma motion vectors and reference indices for B_Skip, B_Direct_16x16, and B_Direct_8x8
in NAL units with nal_unit_type equal to 20 as specified in subclause G.8.4.1.2 is invoked with mbPartIdx,
fieldMbFlag, mbType, subMbType, predFlagL0, predFlagL1, refIdxL0, refIdxL1, mvL0, and mvL1 as the inputs
and the outputs are refIdxPredL0, refIdxPredL1, mvPredL0, mvPredL1, and mvCntInc.

– Otherwise, the variable mvCntInc is initially set equal to 0, and for X being replaced by 0 and 1, the following
applies.

– If any of the following conditions is true, refIdxPredLX is set equal to −1 and both components of mvPredLX
are set equal to 0:

– mbType[CurrMbAddr] is not equal to P_8x8, P_8x8ref0, or B_8x8 and
MbPartPredMode(mbType[CurrMbAddr], mbPartIdx) is not equal to Pred_LX or BiPred,

– mbType[CurrMbAddr] is equal to P_8x8, P_8x8ref0, or B_8x8 and
SubMbPartPredMode(subMbType[CurrMbAddr][mbPartIdx]) is not equal to Pred_LX or BiPred.

– Otherwise, if base_mode_flag is equal to 1 or motion_prediction_flag_lX[mbPartIdx] is equal to 1, the
following ordered steps are specified:

1. The inverse macroblock partition scanning process as specified in subclause 6.4.2.1 is invoked with
mbPartIdx as the input and the output is assigned to (xP, yP). For this invocation of the process in
subclause 6.4.2.1, the modification specified above in item d) of this subclause applies.

2. Inverse sub-macroblock partition scanning process as specified in subclause 6.4.2.2 is invoked with
mbPartIdx and subMbPartIdx as the inputs and the output is assigned to (xS, yS). For this
invocation of the process in subclause 6.4.2.2, the modifications specified above in items d) and e) of
this subclause apply.

3. The reference index predictor refIdxPredLX and the motion vector predictor mvPredLX are derived
by

refIdxPredLX = refIdxILPredLX[(xP + xS) / 8, (yP + yS) / 8]
mvPredLX[c] = mvILPredLX[(xP + xS) / 4, (yP + yS) / 4][c] with c = 0..1 (G-93)

The bitstream shall not contain data that result in refIdxPredLX less than 0 or refIdxPredLX greater
than num_ref_idx_active_lX_minus1.

4. mvCntInc is set equal to (mvCntInc + 1).

– Otherwise, the following ordered steps are specified:

1. Depending on mbType[CurrMbAddr], the reference index predictor refIdxPredLX is derived as
follows.

– If mbType[CurrMbAddr] is equal to P_8x8ref0, refIdxPredLX is set equal to 0.

– Otherwise (mbType[CurrMbAddr] is not equal to P_8x8ref0), refIdxPredLX is set equal to
ref_idx_lX[mbPartIdx].

2. The derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is invoked
with mbPartIdx, subMbPartIdx, refIdxPredLX, and currSubMbType set equal to
subMbType[CurrMbAddr][mbPartIdx] as the inputs and the output is assigned to mvPredLX. For
this invocation of the process in subclause 8.4.1.3, the modifications specified in items a) through j)
of this subclause apply

3. mvCntInc is set equal to (mvCntInc + 1).

For X being replaced by 0 and 1, the arrays refIdxLX, predFlagLX, and mvLX are modified by applying the following
ordered steps:

480 Rec. ITU-T H.264 (03/2009)

1. When subMbPartIdx is equal to 0, the arrays refIdxLX and predFlagLX are modified by

refIdxLX[CurrMbAddr][mbPartIdx] = refIdxPredLX (G-94)
predFlagLX[CurrMbAddr][mbPartIdx] = ((refIdxPredLX < 0) ? 0 : 1) (G-95)

2. The array mvLX is modified by.

mvLX[CurrMbAddr][mbPartIdx][subMbPartIdx][c] = mvPredLX[c] with c = 0..1 (G-96)

3. When predFlagLX[CurrMbAddr][mbPartIdx] is equal to 1, base_mode_flag is equal to 0, isDirectFlag is
equal to 0, and mbType[CurrMbAddr] is not equal to P_Skip, the array mvLX is modified by

mvLX[CurrMbAddr][mbPartIdx][subMbPartIdx][c] +=
 mvd_lX[mbPartIdx][subMbPartIdx][c] with c = 0..1 (G-97)

The array mvCnt is modified as follows.

– If mbPartIdx is equal to 0 and subMbPartIdx is equal to 0, mvCnt[CurrMbAddr] is set equal to mvCntInc.

– Otherwise (mbPartIdx is greater than 0 or subMbPartIdx is greater than 0), the array mvCnt is modified by

mvCnt[CurrMbAddr] += mvCntInc (G-98)

G.8.4.1.2 SVC derivation process for luma motion vectors and reference indices for B_Skip, B_Direct_16x16,
and B_Direct_8x8 in NAL units with nal_unit_type equal to 20

Inputs to this process are

– a variable mbPartIdx specifying the current macroblock partition,

– a one-dimensional array fieldMbFlag with PicSizeInMbs elements specifying which macroblocks of the current
layer representation are coded as field macroblocks and which macroblocks are coded as frame macroblocks,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current layer representation,

– a (PicSizeInMbs)x4 array subMbType specifying sub-macroblock types for the macroblocks of the current layer
representation,

– two (PicSizeInMbs)x4 arrays predFlagL0 and predFlagL1 specifying prediction utilization flags for the
macroblocks of the current layer representation,

– two (PicSizeInMbs)x4 arrays refIdxL0 and refIdxL1 specifying reference indices for the macroblocks of the
current layer representation,

– two (PicSizeInMbs)x4x4x2 arrays mvL0 and mvL1 specifying motion vector components for the macroblocks of
the current layer representation.

Outputs of this process are

– the reference index predictors refIdxPredL0 and refIdxPredL1,

– the motion vector predictors mvPredL0 and mvPredL1,

– the variable mvCntInc.

The variable currSubMbType is derived as follows.

– If mbType[CurrMbAddr] is equal to B_Skip or B_Direct_16x16, currSubMbType is marked as "unspecified".

– Otherwise (mbType[CurrMbAddr] is equal to B_8x8 and subMbType[CurrMbAddr][mbPartIdx] is equal to
B_Direct_8x8), currSubMbType is set equal to B_Bi_8x8.
NOTE – The variable currSubMbType is only used for deriving the variable predPartWidth in subclause 6.4.10.7, which
specifies the partition width of the current macroblock or sub-macroblock partition for determining neighbouring partitions that
are used for motion vector prediction. Inside subclause 6.4.10.7, the variable predPartWidth is set equal to 16 when the current
macroblock is coded with macroblock type equal to B_Skip or B_Direct_16x16 or the current sub-macroblock is coded with
sub macroblock type equal B_Direct_8x8. When the current subclause is invoked for a sub-macroblock coded with

 Rec. ITU-T H.264 (03/2009) 481

sub-macroblock type equal to B_Direct_8x8 (the current subclause is only invoked for NAL units with nal_unit_type equal to
20), currSubMbType is set equal to B_Bi_8x8 in order to set the variable predPartWidth equal to 8 in subclause 6.4.10.7.

For X being replaced by 0 and 1, the reference index predictor refIdxPredLX is derived by applying the following
ordered steps:

1. The derivation process for motion data of neighbouring partitions as specified in subclause 8.4.1.3.2 is
invoked with mbPartIdx, subMbPartIdx set equal to 0, currSubMbType, and listSuffixFlag set equal to X as
the inputs and the outputs are the reference indices refIdxLXN with N being replaced by A, B, and C. For this
invocation of the process in subclause 8.4.1.3.2, the modifications specified in items a) through j) of
subclause G.8.4.1.1 apply.

2. The reference index predictor refIdxPredLX is derived by

refIdxPredLX = MinPositive(refIdxLXA, MinPositive(refIdxLXB, refIdxLXC)) (G-99)

with

⎩
⎨
⎧ >=>=

=
otherwise)yx,Max(

0yand0xif)yx,Min(
)y x,e(MinPositiv

 (G-100)

When both reference index predictors refIdxPredL0 and refIdxPredL1 are less than 0, refIdxPredL0 and refIdxPredL1
are set equal to 0.

For X being replaced by 0 and 1, the motion vector predictor mvPredLX is derived as follows.

– If refIdxPredLX is greater than or equal to 0, the derivation process for luma motion vector prediction as specified
in subclause 8.4.1.3 is invoked with mbPartIdx, subMbPartIdx set equal to 0, refIdxPredLX, and currSubMbType
as the inputs and the output is assigned to mvPredLX. For this invocation of the process in subclause 8.4.1.3, the
modifications specified in items a) through j) of subclause G.8.4.1.1 apply.

– Otherwise, both components of the motion vector mvPredLX are set equal to 0.

The variable mvCntInc is derived as specified by the following ordered steps:

1. mvCntInc is set equal to 0

2. When refIdxPredL0 is greater than or equal to 0, mvCntInc is set equal to (mvCntInc + 1).

3. When refIdxPredL1 is greater than or equal to 0, mvCntInc is set equal to (mvCntInc + 1).

G.8.4.2 SVC decoding process for Inter prediction samples

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable mbType specifying the macroblock type for the current macroblock,

– a list subMbType with 4 elements specifying the sub-macroblock types for the current macroblock,

– two lists predFlagL0 and predFlagL1 with 4 elements specifying prediction utilization flags for the current
macroblock,

– two lists refIdxL0 and refIdxL1 with 4 elements specifying reference indices for the current macroblock,

– two 4x4x2 arrays mvL0 and mvL1 specifying motion vectors components for the current macroblock,

– when present, a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying
which macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– when present, a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying
macroblock types for the macroblocks of the reference layer representation,

– the reference picture lists refPicList0 and refPicList1 (when available),

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamplesL of luma sample values,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picSamplesCb
and picSamplesCr of chroma sample values.

482 Rec. ITU-T H.264 (03/2009)

Outputs of this process are

– a modified version of the array of luma sample values picSamplesL,

– when ChromaArrayType is not equal to 0, modified versions of the two arrays of chroma sample values
picSamplesCb and picSamplesCr.

For all processes specified in clauses 6 or 8 that are invoked from the process specified in this subclause or a child
process of the process specified in this subclause, the following modifications apply:

a) In subclauses 8.4.3, 8.4.1.4, and 8.4.2.1, the current macroblock is treated as field macroblock when
fieldMbFlag is equal to 1, and it is treated as frame macroblock when fieldMbFlag is equal to 0. When
field_pic_flag is equal to 0 and the current macroblock CurrMbAddr is a field macroblock, its parity is equal
to top when (CurrMbAddr % 2) is equal to 0 and its parity is equal to bottom when (CurrMbAddr % 2) is
equal to 1.

b) In subclauses 8.4.3 and 8.4.2.1, any occurrence of RefPicList0 or RefPicList1 is replaced with refPicList0 or
refPicList1, respectively, with refPicList0 and refPicList1 being the reference picture lists specified as inputs
to this subclause.

c) In subclause 8.4.1.4, the reference picture referred by refIdxLX is specified by refPicListX[refIdxLX] with
refPicList0 and refPicList1 specified as inputs to this subclause.

d) In subclauses 8.4.2.2.1 and 8.4.2.2.2, any occurrence of mb_field_decoding_flag is replaced by fieldMbFlag.

Let predMbL be a 16x16 array of luma prediction samples for the macroblock mbAddr.

When ChromaArrayType is not equal to 0, let predMbCb and predMbCr be two (MbWidthC)x(MbHeightC) arrays of
chroma prediction samples for the macroblock mbAddr.

The variable numMbPart is derived as follows.

– If mbType is equal to B_Skip or B_Direct_16x16 and DQId is equal to 0 (nal_unit_type is not equal to 20),
numMbPart is set equal to 4.

– Otherwise, if mbType is equal to B_Skip or B_Direct_16x16 (and DQId is greater than 0 and nal_unit_type is
equal to 20), numMbPart is set equal to 1.

– Otherwise (mbType is not equal to B_Skip or B_Direct_16x16), numMbPart is set equal to
NumMbPart(mbType).

The macroblock partition index mbPartIdx proceeds over the values 0..(numMbPart − 1), and for each value of
mbPartIdx the following ordered steps are specified:

1. The variable isDirectFlag is derived as follows.

– If any of the following conditions is true, isDirectFlag is set equal to 1:

– mbType is equal to B_Skip or B_Direct_16x16,

– mbType is equal to B_8x8 and subMbType[mbPartIdx] is equal to B_Direct_8x8.

– Otherwise, isDirectFlag is set equal to 0.

2. The SVC derivation process for prediction weights as specified in subclause G.8.4.2.1 is invoked with
fieldMbFlag, refIdxL0[mbPartIdx], refIdxL1[mbPartIdx], predFlagL0[mbPartIdx],
predFlagL1[mbPartIdx], refPicList0, and refPicList1 (when available) as inputs and the outputs are assigned
to logWDL, w0L, w1L, o0L, o1L, and when ChromaArrayType is not equal to 0, logWDC, w0C, w1C, o0C, o1C with
C being replaced by Cb and Cr.

3. The luma location (xP, yP) is derived as follows.

– If mbType is equal to B_Skip or B_Direct_16x16, xP is set equal to (8 * (mbPartIdx % 2)) and yP is set
equal to (8 * (mbPartIdx / 2)).

– Otherwise (mbType is not equal to B_Skip or B_Direct_16x16), the inverse macroblock partition
scanning process as specified in subclause 6.4.2.1 is invoked with mbPartIdx as the input and the output
is assigned to (xP, yP). For this invocation of the process in subclause 6.4.2.1, any occurrence of
mb_type is replaced by mbType.

 Rec. ITU-T H.264 (03/2009) 483

4. The variable numSubMbPart is derived as follows.

– If isDirectFlag is equal to 1 and DQId is equal to 0 (nal_unit_type is not equal to 20), numSubMbPart is
set equal to 4.

– Otherwise, if isDirectFlag is equal to 1 (and DQId is greater than 0 and nal_unit_type is equal to 20),
numSubMbPart is set equal to 1.

– Otherwise (isDirectFlag is equal to 0), numSubMbPart is set equal to
NumSubMbPart(subMbType[mbPartIdx])

5. The sub-macroblock partition index proceeds over values 0..(numSubMbPart − 1), and for each value of
subMbPartIdx the following ordered steps are specified:

a. The variables partWidth and partHeight are derived as follows.

– If isDirectFlag is equal to 1 and DQId is equal to 0 (nal_unit_type is not equal to 20), partWidth and
partHeight are set equal to 4.

– Otherwise, if isDirectFlag is equal to 1 (and DQId is greater than 0 and nal_unit_type is equal to 20),
the following applies.

– If mbType is equal to B_Skip or B_Direct_16x16, partWidth and partHeight are set equal to 16.

– Otherwise (mbType is equal to B_8x8 and subMbType[mbPartIdx] is equal to B_Direct_8x8),
partWidth and partHeight are set equal to 8.

– Otherwise (isDirectFlag is equal to 0), the following applies.

– If mbType is not equal to P_8x8, P_8x8ref0, or B_8x8, partWidth and partHeight are derived by

partWidth = MbPartWidth(mbType) (G-101)
partHeight = MbPartHeight(mbType) (G-102)

– Otherwise (mbType is equal to P_8x8, P_8x8ref0, or B_8x8), partWidth and partHeight are
derived by

partWidth = SubMbPartWidth(subMbType[mbPartIdx]) (G-103)
partHeight = SubMbPartHeight(subMbType[mbPartIdx]) (G-104)

b. When ChromaArrayType is not equal to 0, the variables partWidthC and partHeightC are derived by

partWidthC = partWidth / SubWidthC (G-105)
partHeightC = partHeight / SubWidthC (G-106)

c. For X being replaced by 0 and 1, when ChromaArrayType is not equal to 0 and predFlagLX[mbPartIdx]
is equal to 1, the derivation process for chroma motion vectors as specified in subclause 8.4.1.4 is invoked
with mvLX[mbPartIdx][subMbPartIdx] and refIdxLX[mbPartIdx] as the inputs and the output is the
chroma motion vector mvCLX. For this invocation of the process in subclause 8.4.1.4, the modifications
specified above in items a) and c) of this subclause apply.

d. The decoding process for Inter prediction samples as specified in subclause 8.4.2 is invoked with
mbPartIdx, subMbPartIdx, partWidth and partHeight, partWidthC and partHeightC (if available), luma
motion vectors mvL0[mbPartIdx][subMbPartIdx] and mvL1[mbPartIdx][subMbPartIdx], chroma
motion vectors mvCL0 and mvCL1 (if available), reference indices refIdxL0[mbPartIdx] and
refIdxL1[mbPartIdx], prediction utilization flags predFlagL0[mbPartIdx] and predFlagL1[mbPartIdx]
as well as variables for weighted prediction logWDL, w0L, w1L, o1L, o0L, and when ChromaArrayType is
not equal to 0, logWDC, w0C, w1C, o1C, and o0C (with C being replaced by Cb and Cr) as the inputs and the
outputs are a (partWidth)x(partHeight) array predPartL of luma prediction samples and, when
ChromaArrayType is not equal to 0, two (partWidthC)x(partHeightC) arrays predPartCb and predPartCr of
chroma prediction samples. For this invocation of the process in subclause 8.4.2, the modifications
specified above in items a), b), and d) of this subclause apply.

e. The luma location (xS, yS) is derived as follows.

– If mbType is equal to B_8x8 and subMbType[mbPartIdx] is equal to B_Direct_8x8, xS is set equal
to (4 * (subMbPartIdx % 2)) and yS is set equal to (4 * (subMbPartIdx / 2)).

– Otherwise (mbType is not equal to B_8x8 or subMbType[mbPartIdx] is not equal to
B_Direct_8x8), the inverse sub-macroblock partition scanning process as specified in

484 Rec. ITU-T H.264 (03/2009)

subclause 6.4.2.2 is invoked with mbPartIdx and subMbPartIdx as the inputs and the output is
assigned to (xS, yS). For this invocation of the process in subclause 6.4.2.2, any occurrence of
mb_type is replaced by mbType and any occurrence of sub_mb_type is replaced by subMbType.

f. For x = 0..(partWidth − 1) and y = 0..(partHeight − 1), the 16x16 array predMbL is modified by

predMbL[xP + xS + x, yP + yS + y] = predPartL[x, y] (G-107)

g. When ChromaArrayType is not equal to 0, for x = 0..(partWidthC − 1) and y = 0..(partHeightC − 1), the
(MbWidthC)x(MbHeightC) arrays predMbCb and predMbCr are modified by

predMbCb[(xP + xS) / SubWidthC + x, (yP + yS) / SubHeightC + y] = predPartCb[x, y] (G-108)
predMbCr[(xP + xS) / SubWidthC + x, (yP + yS) / SubHeightC + y] = predPartCr[x, y] (G-109)

When base_mode_flag is equal to 1, MbaffFrameFlag is equal to 0, RefLayerMbaffFrameFlag is equal to 0, and
RestrictedSpatialResolutionChangeFlag is equal to 0, the intra-inter prediction combination process specified in
subclause G.8.4.2.2 is invoked with fieldMbFlag, refLayerFieldMbFlag, refLayerMbType, predMbL, picSamplesL, and,
when ChromaArrayType is not equal to 0, predMbCb, predMbCr, picSamplesCb, and picSamplesCr as the inputs, and the
outputs are a modified version of predMbL and, when ChromaArrayType is not equal to 0, modified versions of
predMbCb and predMbCr.

The picture sample array construction process as specified in subclause G.8.5.4.1 is invoked with fieldMbFlag,
predMbL, picSamplesL, and, when ChromaArrayType is not equal to 0, predMbCb, predMbCr, picSamplesCb, and
picSamplesCr as the inputs and the outputs are a modified version of picSamplesL and, when ChromaArrayType is not
equal to 0, modified versions of picSamplesCb, and picSamplesCr.

G.8.4.2.1 SVC derivation process for prediction weights

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– the reference indices refIdxL0 and refIdxL1 for the current macroblock partition,

– the prediction list utilization flags predFlagL0 and predFlagL1 for the current macroblock partition,

– the reference picture lists refPicList0 and refPicList1 (when available).

Outputs of this process are

– variables for weighted prediction of luma samples logWDL, w0L, w1L, o0L, o1L,

– when ChromaArrayType is not equal to 0 (monochrome), variables for weighted prediction of chroma samples
logWDC, w0C, w1C, o0C, o1C with C being replaced by Cb and Cr.

Depending on base_pred_weight_table_flag the following applies.

– If base_pred_weight_table_flag is equal to 0, the derivation process for prediction weights as specified in
subclause 8.4.3 is invoked with refIdxL0, refIdxL1, predFlagL0, and predFlagL1 as inputs and the outputs are
assigned to logWDL, w0L, w1L, o0L, o1L, and when ChromaArrayType is not equal to 0, logWDC, w0C, w1C, o0C, o1C
with C being replaced by Cb and Cr. For this invocation of the process in subclause 8.4.3, the modifications
specified in items a) and b) of subclause G.8.4.2 apply.

– Otherwise (base_pred_weight_table_flag is equal to 1), for X being replaced by 0 and 1, the following ordered
steps are specified:

1. Let baseSlice be any slice of the layer representation with DQId equal to the value of ref_layer_dq_id.

2. Let refLayerLumaLogWD, aRefLayerLumaWeightLX[], and aRefLayerLumaOffsetLX[] be variables
that are set equal to the values of the syntax elements luma_log2_weight_denom, luma_weight_lX[], and
luma_offset_lX[], respectively, of baseSlice.

3. When ChromaArrayType is not equal to 0, let refLayerChromaLogWD, aRefLayerChromaWeightLX[][],
and aRefLayerChromaOffsetLX[][] be variables that are set equal to the values of the syntax elements
chroma_log2_weight_denom, chroma_weight_lX[], and chroma_offset_lX[], respectively, of baseSlice.

4. The variable refIdxLXWP is derived as follows

– If MbaffFrame is equal to 1 and fieldMbFlag is equal to 1,

refIdxLXWP = refIdxLX >> 1 (G-110)

 Rec. ITU-T H.264 (03/2009) 485

– Otherwise (MbaffFrameFlag is equal to 0 or fieldMbFlag is equal to 0),

refIdxLXWP = refIdxLX (G-111)

5. The variables logWDY, wXY, oXY are derived by

logWDY = baseLumaLogWD (G-112)
wXY = aRefLayerLumaWeightLX[refIdxLXWP] (G-113)
oXY = aRefLayerLumaOffsetLX[refIdxLXWP] * (1 << (BitDepthY − 8)) (G-114)

6. When ChromaArrayType is not equal to 0, the variables logWDC, wXC, oXC (with C being replaced by Cb
and Cr and iCbCr = 0 for Cb and iCbCr = 1 for Cr) are derived by

logWDC = baseChromaLogWD (G-115)
wXC = aRefLayerChromaWeightLX[refIdxLXWP][iCbCr] (G-116)
oXC = aRefLayerChromaOffsetLX[refIdxLXWP][iCbCr] * (1 << (BitDepthC − 8)) (G-117)

7. When base_pred_weight_table_flag is equal to 1 and predFlagL0 and predFlagL1 are equal to 1, the
following constraint shall be obeyed for C equal to L and, when ChromaArrayType is not equal to 0, Cb
and Cr

-128 <= w0C + w1C <= ((logWDC = = 7) ? 127 : 128) (G-118)

G.8.4.2.2 Intra-inter prediction combination process

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying macroblock types for
the macroblocks of the reference layer representation,

– a 16x16 array predMbL of luma inter prediction samples for the current macroblock,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamplesL of luma sample values,

– when ChromaArrayType is not equal to 0, two (MbWidthC)x(MbHeightC) arrays predMbCb and predMbCr of
chroma prediction samples for the macroblock mbAddr,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picSamplesCb
and picSamplesCr of chroma sample values.

Outputs of this process are

– a modified version of the array predMbL of luma prediction samples for the macroblock mbAddr,

– when ChromaArrayType is not equal to 0, modified versions of the two arrays predMbCb and predMbCr of chroma
prediction samples for the macroblock mbAddr.

Let predMbTempL be a 16x16 array and, when ChromaArrayType is not equal to 0, let predMbTempCb and
predMbTempCr be two (MbWidthC)x(MbHeightC) arrays. The macroblock sample array extraction process as specified
in subclause G.8.5.4.2 is invoked with fieldMbFlag, picSamplesL, and when ChromaArrayType is not equal to 0,
picSamplesCb and picSamplesCr as the inputs and the outputs are assigned to predMbTempL, and when
ChromaArrayType is not equal to 0, predMbTempCb and predMbTempCr.

For x proceeding over the values 0..15 and y proceeding over the values 0..15, the following ordered steps are specified:

1. The derivation process for reference layer macroblocks as specified in subclause G.6.1 is invoked with (x, y),
fieldMbFlag, refLayerFieldMbFlag, and refLayerMbType as the inputs and the outputs are assigned to
mbAddrRefLayer and (xRef, yRef).

486 Rec. ITU-T H.264 (03/2009)

2. When refLayerMbType[mbAddrRefLayer] is equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL, the
following applies:

a. The prediction luma sample predMbL[x, y] is modified by

predMbL[x, y] = predMbTempL[x, y] (G-119)

b. When ChromaArrayType is not equal to 0, (x % SubWidthC) is equal to 0, and (y % SubHeightC) is
equal to 0, the prediction chroma samples predMbCb[x / SubWidthC, y / SubHeightC] and
predMbCr[x / SubWidthC, y / SubHeightC] are modified by

predMbCb[x / SubWidthC, y / SubHeightC] = predMbTempCb[x / SubWidthC, y / SubHeightC]
 (G-120)

predMbCr[x / SubWidthC, y / SubHeightC] = predMbTempCr[x / SubWidthC, y / SubHeightC]
 (G-121)

G.8.5 SVC transform coefficient decoding and sample array construction processes

Subclause G.8.5.1 specifies the transform coefficient scaling and refinement process.

Subclause G.8.5.2 specifies the transform coefficient level scaling process prior to transform coefficient refinement.

Subclause G.8.5.3 specifies the residual construction and accumulation process.

Subclause G.8.5.4 specifies the sample array accumulation process.

Subclause G.8.5.5 specifies the sample array re-initialisation process.

G.8.5.1 Transform coefficient scaling and refinement process

Inputs to this process are

– a variable refinementFlag specifying whether the transform coefficients for the current macroblock are combined
with the existent transform coefficients for the current macroblock, which were obtained from the reference layer
representation,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable cTrafo specifying the transform type,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

– a list of transform coefficient level values tCoeffLevel with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are

– a modified version of the list sTCoeff,

– a modified version of the list tCoeffLevel.

The scaling functions are derived as specified in subclause 8.5.9.

When ChromaArrayType is not equal to 0, the chroma quantisation parameters QP′Cb and QP′Cr are derived as specified
in subclause 8.5.8.

When refinementFlag is equal to 0, all (256 + 2 * MbWidthC * MbHeightC) elements of the lists sTCoeff and
tCoeffLevel are set equal to 0.

The refinement process for luma transform coefficients as specified in subclause G.8.5.1.1 is invoked with fieldMbFlag,
cTrafo, sTCoeff, and tCoeffLevel as the inputs and the outputs are modified versions of the lists sTCoeff and
tCoeffLevel.

When ChromaArrayType is not equal to 0, the refinement process for chroma transform coefficients as specified in
subclause G.8.5.1.2 is invoked with fieldMbFlag, cTrafo, sTCoeff, and tCoeffLevel as the inputs and the outputs are
modified versions of the lists sTCoeff and tCoeffLevel.

 Rec. ITU-T H.264 (03/2009) 487

G.8.5.1.1 Refinement process for luma transform coefficients or chroma transform coefficients with
ChromaArrayType equal to 3

Inputs to this process are

– a variable iYCbCr specifying the colour component (when present),

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable cTrafo specifying the transform type,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

– a list of transform coefficient level values tCoeffLevel with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are

– a modified version of the list sTCoeff,

– a modified version of the list tCoeffLevel.

When iYCbCr is not present as input to this subclause, it is inferred to be equal to 0.

Depending on iYCbCr, the variables bitDepth, qP, cO, coeffLevel, coeffLevel8x8, coeffDCLevel, and coeffACLevel
are derived as follows.

– If iYCbCr is equal to 0, bitDepth is set equal to BitDepthY, qP is set equal to QP′Y, cO is set equal to 0, coeffLevel
is set equal to LumaLevel, coeffLevel8x8 is set equal to LumaLevel8x8, coeffDCLevel is set equal to
Intra16x16DCLevel, and coeffACLevel is set equal to Intra16x16ACLevel.

– Otherwise, if iYCbCr is equal to 1, bitDepth is set equal to BitDepthC, qP is set equal to QP′Cb, cO is set equal
to 256, coeffLevel is set equal to CbLevel, coeffLevel8x8 is set equal to CbLevel8x8, coeffDCLevel is set equal to
CbIntra16x16DCLevel, and coeffACLevel is set equal to CbIntra16x16ACLevel.

– Otherwise (iYCbCr is equal to 2), bitDepth is set equal to BitDepthC, qP is set equal to QP′Cr, cO is set equal to
(256 + MbWidthC * MbHeightC), coeffLevel is set equal to CrLevel, coeffLevel8x8 is set equal to CrLevel8x8,
coeffDCLevel is set equal to CrIntra16x16DCLevel, and coeffACLevel is set equal to CrIntra16x16ACLevel.

Depending on cTrafo, the following applies.

– If cTrafo is equal to T_PCM, the assignment process for luma transform coefficient values or chroma transform
coefficient values with ChromaArrayType equal to 3 for I_PCM macroblocks as specified in subclause G.8.5.1.1.1
is invoked with iYCbCr, sTCoeff, and tCoeffLevel as the inputs and the outputs are modified versions of sTCoeff
and tCoeffLevel.

– Otherwise, if cTrafo is equal to T_4x4, the refinement process for transform coefficients of residual 4x4 blocks as
specified in subclause G.8.5.1.1.2 is invoked with fieldMbFlag, bitDepth, qP, cO, coeffLevel, sTCoeff, and
tCoeffLevel as the inputs and the outputs are modified versions of the lists sTCoeff and tCoeffLevel.

– Otherwise, if cTrafo is equal to T_8x8, the refinement process for transform coefficients of residual 8x8 blocks as
specified in subclause G.8.5.1.1.3 is invoked with fieldMbFlag, bitDepth, qP, cO, coeffLevel8x8, sTCoeff, and
tCoeffLevel as the inputs and the outputs are modified versions of the lists sTCoeff and tCoeffLevel.

– Otherwise (cTrafo is equal to T_16x16), the refinement process for transform coefficients of Intra_16x16
macroblocks as specified in subclause G.8.5.1.1.4 is invoked with fieldMbFlag, bitDepth, qP, cO, coeffDCLevel,
coeffACLevel, coeffLevel, sTCoeff, and tCoeffLevel as the inputs and the outputs are modified versions of the
lists sTCoeff and tCoeffLevel.

G.8.5.1.1.1 Assignment process for luma transform coefficient values or chroma transform coefficient values
with ChromaArrayType equal to 3 for I_PCM macroblocks

Inputs to this process are

– a variable iYCbCr specifying the colour component,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

– a list of transform coefficient level values tCoeffLevel with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are

– a modified version of the list sTCoeff,

– a modified version of the list tCoeffLevel.

488 Rec. ITU-T H.264 (03/2009)

Depending on iYCbCr, the variables cO, cListOffset and pcmSample are derived by

cO = iYCbCr * 256
cListOffset = ((iYCbCr = = 0) ? 0 : (iYCbCr − 1) * 256) (G-122)
pcmSample = ((iYCbCr = = 0) ? pcm_sample_luma : pcm_sample_chroma) (G-123)

When base_mode_flag is equal to 0, the lists tCoeffLevel and sTCoeff are modified by

tCoeffLevel[cO + k] = 0 with k = 0..255 (G-124)

sTCoeff[cO + k] = pcmSample[cListOffset + k] with k = 0..255 (G-125)

G.8.5.1.1.2 Refinement process for transform coefficients of residual 4x4 blocks

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable bitDepth specifying the bit depth,

– a variable qP specifying the quantisation parameter value,

– a variable cO specifying the first coefficient index in the list of scaled transform coefficient values sTCoeff and in
the list of transform coefficient values tCoeffLevel,

– a variable coeffLevel representing LumaLevel, CbLevel, or CrLevel,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

– a list of transform coefficient level values tCoeffLevel with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are

– a modified version of the list sTCoeff,

– a modified version of the list tCoeffLevel.

Depending on tcoeff_level_prediction_flag, the following applies.

– If tcoeff_level_prediction_flag is equal to 1, the list sTCoeff is modified by

sTCoeff[cO + k] = 0 with k = 0..255 (G-126)

– Otherwise (tcoeff_level_prediction_flag is equal to 0), the list tCoeffLevel is modified by

tCoeffLevel[cO + k] = 0 with k = 0..255 (G-127)

For each residual 4x4 block indexed by c4x4BlkIdx = 0..15, the following ordered steps are specified:

1. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is
invoked with coeffLevel[c4x4BlkIdx] as the input and the outputs are transform coefficient level values as a
4x4 array c with elements cij. For this invocation of the process in subclause 8.5.6, the current macroblock is
treated as field macroblock when fieldMbFlag is equal to 1, and it is treated as frame macroblock when
fieldMbFlag is equal to 0.

2. The list tCoeffLevel and the 4x4 array c are modified by

tCoeffLevel[cO + 16 * c4x4BlkIdx + 4 * i + j] += cij with i, j = 0..3 (G-128)

cij = tCoeffLevel[cO + 16 * c4x4BlkIdx + 4 * i + j] with i, j = 0..3 (G-129)

3. The scaling process for residual 4x4 blocks as specified in subclause 8.5.12.1 is invoked with bitDepth, qP,
and the 4x4 array c as the inputs and the outputs are scaled transform coefficient values as a 4x4 array d with
elements dij. For this invocation of the process in subclause 8.5.12.1, the array c is treated as not relating to a
luma residual block coded using the Intra_16x16 macroblock prediction mode and as not relating to a chroma
residual block.

4. The list sTCoeff is modified by

sTCoeff[cO + 16 * c4x4BlkIdx + 4 * i + j] += dij with i, j = 0..3 (G-130)

 Rec. ITU-T H.264 (03/2009) 489

The bitstream shall not contain data that result in any element sTCoeff[cO + k] with k = 0..255 that exceeds the range
of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

The bitstream shall not contain data that result in any element tCoeffLevel[cO + k] with k = 0..255 that exceeds the
range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

G.8.5.1.1.3 Refinement process for transform coefficients of residual 8x8 blocks

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable bitDepth specifying the bit depth,

– a variable qP specifying the quantisation parameter value,

– a variable cO specifying the first coefficient index in the list of scaled transform coefficient values sTCoeff and in
the list of transform coefficient values tCoeffLevel,

– a variable coeffLevel8x8 representing LumaLevel8x8, CbLevel8x8, or CrLevel8x8,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

– a list of transform coefficient level values tCoeffLevel with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are

– a modified version of the list sTCoeff,

– a modified version of the list tCoeffLevel.

Depending on tcoeff_level_prediction_flag, the following applies.

– If tcoeff_level_prediction_flag is equal to 1, the list sTCoeff is modified by

sTCoeff[cO + k] = 0 with k = 0..255 (G-131)

– Otherwise (tcoeff_level_prediction_flag is equal to 0), the list tCoeffLevel is modified by

tCoeffLevel[cO + k] = 0 with k = 0..255 (G-132)

For each residual 8x8 block indexed by c8x8BlkIdx = 0..3, the following ordered steps are specified:

1. The inverse scanning process for 8x8 transform coefficients and scaling lists as specified in subclause 8.5.7 is
invoked with coeffLevel8x8[c8x8BlkIdx] as the input and the outputs are transform coefficient level values
as an 8x8 array c with elements cij. For this invocation of the process in subclause 8.5.7, the current
macroblock is treated as field macroblock when fieldMbFlag is equal to 1, and it is treated as frame
macroblock when fieldMbFlag is equal to 0.

2. The list tCoeffLevel and the 8x8 array c are modified by

tCoeffLevel[cO + 64 * c8x8BlkIdx + 8 * i + j] += cij with i, j = 0..7 (G-133)

cij = tCoeffLevel[cO + 64 * c8x8BlkIdx + 8 * i + j] with i, j = 0..7 (G-134)

3. The scaling process for residual 8x8 blocks as specified in subclause 8.5.13.1 is invoked with bitDepth, qP,
and the 8x8 array c as the inputs and the outputs are scaled transform coefficient values as an 8x8 array d with
elements dij.

4. The list sTCoeff is modified by

sTCoeff[cO + 64 * c8x8BlkIdx + 8 * i + j] += dij with i, j = 0..7 (G-135)

The bitstream shall not contain data that result in any element sTCoeff[cO + k] with k = 0..255 that exceeds the range
of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

The bitstream shall not contain data that result in any element tCoeffLevel[cO + k] with k = 0..255 that exceeds the
range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

G.8.5.1.1.4 Refinement process for transform coefficients of Intra_16x16 macroblocks

This process is only invoked when base_mode_flag is equal to 0 or tcoeff_level_prediction_flag is equal to 1.

490 Rec. ITU-T H.264 (03/2009)

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable bitDepth specifying the bit depth,

– a variable qP specifying the quantisation parameter value,

– a variable cO specifying the first coefficient index in the list of scaled transform coefficient values sTCoeff and in
the list of transform coefficient values tCoeffLevel,

– a variable coeffDCLevel representing Intra16x16DCLevel, CbIntra16x16DCLevel, or CrIntra16x16DCLevel,

– a variable coeffACLevel representing Intra16x16ACLevel, CbIntra16x16ACLevel, or CrIntra16x16ACLevel,

– a variable coeffLevel representing LumaLevel, CbLevel, or CrLevel,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

– a list of transform coefficient level values tCoeffLevel with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are

– a modified version of the list sTCoeff,

– a modified version of the list tCoeffLevel.
NOTE 1 – When tcoeff_level_prediction_flag is equal to 0, this subclause is always invoked as part of an invocation of
subclause G.8.5.1 with refinementFlag equal to 0, in which case all elements of the list tCoeffLevel are set equal to 0 before
invoking this subclause.

For the DC transform coefficients of all residual 4x4 blocks, the following ordered steps are specified:

1. Depending on base_mode_flag, the 4x4 array c with elements cij is derived as follows.

– If base_mode_flag is equal to 0, the inverse scanning process for 4x4 transform coefficients and scaling
lists as specified in subclause 8.5.6 is invoked with coeffDCLevel as the input and the outputs are DC
transform coefficient level values for all residual 4x4 blocks as a 4x4 array c with elements cij. For this
invocation of the process in subclause 8.5.6, the current macroblock is treated as field macroblock when
fieldMbFlag is equal to 1, and it is treated as frame macroblock when fieldMbFlag is equal to 0.

– Otherwise (base_mode_flag is equal to 1), the 4x4 array c with elements cij containing DC transform
coefficient level values is derived by

cij = coeffLevel[8 * (i / 2) + 4 * (j / 2) + 2 * (i % 2) + (j % 2)][0] with i, j = 0..3 (G-136)

2. The list tCoeffLevel and the 4x4 array c are modified by

tCoeffLevel[cO + 128 * (i / 2) + 64 * (j / 2) + 32 * (i % 2) + 16 * (j % 2)] += cij
 with i, j = 0..3 (G-137)

cij = tCoeffLevel[cO + 128 * (i / 2) + 64 * (j / 2) + 32 * (i % 2) + 16 * (j % 2)]
 with i, j = 0..3 (G-138)

3. The scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock type as
specified in subclause 8.5.10 is invoked with bitDepth, qP, and c as the inputs and the output is the 4x4 array d
with elements dij representing scaled DC transform coefficient values for all residual 4x4 blocks.

4. The list sTCoeff is modified by

sTCoeff[cO + 128 * (i / 2) + 64 * (j / 2) + 32 * (i % 2) + 16 * (j % 2)] = dij
 with i, j = 0..3 (G-139)

For each residual 4x4 block indexed by c4x4BlkIdx = 0..15, the following ordered steps are specified:

1. Depending on base_mode_flag, the variable c4x4List, which is a list of 16 entries, is derived as follows.

– If base_mode_flag is equal to 0, the following applies.

c4x4List[k] = ((k = = 0) ? 0 : coeffACLevel[c4x4BlkIdx][k − 1]) with k = 0..15 (G-140)

– Otherwise (base_mode_flag is equal to 1), the following applies.

c4x4List[k] = ((k = = 0) ? 0 : coeffLevel[c4x4BlkIdx][k]) with k = 0..15 (G-141)

 Rec. ITU-T H.264 (03/2009) 491

2. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is
invoked with c4x4List as the input and the outputs are transform coefficient level values as a 4x4 array e with
elements eij. For this invocation of the process in subclause 8.5.6, the current macroblock is treated as field
macroblock when fieldMbFlag is equal to 1, and it is treated as frame macroblock when fieldMbFlag is equal
to 0.

3. The list tCoeffLevel and the 4x4 array e are modified by

tCoeffLevel[cO + 16 * c4x4BlkIdx + 4 * i + j] += eij with i, j = 0..3 and i + j > 0 (G-142)

eij = tCoeffLevel[cO + 16 * c4x4BlkIdx + 4 * i + j] with i, j = 0..3 and i + j > 0 (G-143)

4. The scaling process for residual 4x4 blocks as specified in subclause 8.5.12.1 is invoked with bitDepth, qP,
and the 4x4 array e as the inputs and the outputs are scaled transform coefficient values as a 4x4 array d with
elements dij. During the process in subclause 8.5.12.1, the array e is treated as relating to a luma residual block
coded using the Intra_16x16 macroblock prediction mode.

5. The list sTCoeff is modified by

sTCoeff[cO + 16 * c4x4BlkIdx + 4 * i + j] = dij with i, j = 0..3 and i + j > 0 (G-144)

NOTE 2 – The elements tCoeffLevel[cO + 16* c4x4BlkIdx] and sTCoeff[cO + 16* c4x4BlkIdx] are not modified
during the process for a residual 4x4 block with index c4x4BlkIdx.

The bitstream shall not contain data that result in any element tCoeffLevel[cO + 16* b + k] with b = 0..15 and
k = 1..15 that exceeds the range of integer values from −2(7 + bitDepth) to 2(7 + bitDepth) − 1, inclusive.

NOTE 3 – The elements tCoeffLevel[cO + 16* b] with b = 0..15 can exceed the range of integer values from −2(7 + bitDepth)
to 2(7 + bitDepth) − 1, inclusive.

G.8.5.1.2 Refinement process for chroma transform coefficients

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable cTrafo specifying the transform type,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

– a list of transform coefficient level values tCoeffLevel with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are

– a modified version of the list sTCoeff,

– a modified version of the list tCoeffLevel.

For both chroma components indexed by iCbCr = 0..1, the following applies.

– If ChromaArrayType is equal to 1 or 2, the following applies.

– If cTrafo is equal to T_PCM, the assignment process for chroma transform coefficient values for I_PCM
macroblocks as specified in subclause G.8.5.1.2.1 is invoked with iCbCr, sTCoeff, and tCoeffLevel as the
inputs and the outputs are modified versions of sTCoeff and tCoeffLevel.

– Otherwise (cTrafo is not equal to T_PCM), the refinement process for chroma transform coefficients with
ChromaArrayType equal to 1 or 2 as specified in subclause G.8.5.1.2.2 is invoked with iCbCr, fieldMbFlag,
sTCoeff, and tCoeffLevel as the inputs and the outputs are modified versions of the lists sTCoeff and
tCoeffLevel.

– Otherwise (ChromaArrayType is equal to 3), the refinement process for luma transform coefficients or chroma
transform coefficients with ChromaArrayType equal to 3 as specified in subclause G.8.5.1.1 is invoked with
iYCbCr set equal to (1 + iCbCr), fieldMbFlag, cTrafo, sTCoeff, and tCoeffLevel as the inputs and the outputs are
modified versions of the lists sTCoeff and tCoeffLevel.

G.8.5.1.2.1 Assignment process for chroma transform coefficient values for I_PCM macroblocks

Inputs to this process are

– a variable iCbCr specifying the chroma component,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

492 Rec. ITU-T H.264 (03/2009)

– a list of transform coefficient level values tCoeffLevel with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are

– a modified version of the list sTCoeff,

– a modified version of the list tCoeffLevel.

The variable numC is set equal to (MbWidthC * MbHeightC) and the variable cCO is set equal to (iCbCr * numC).

When base_mode_flag is equal to 0, the lists tCoeffLevel and sTCoeff are modified by

tCoeffLevel[256 + cCO + k] = 0 with k = 0..(numC − 1) (G-145)

sTCoeff[256 + cCO + k] = pcm_sample_chroma[cCO + k] with k = 0..(numC − 1) (G-146)

G.8.5.1.2.2 Refinement process for chroma transform coefficients with ChromaArrayType equal to 1 or 2

This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are

– a variable iCbCr specifying the chroma component,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

– a list of transform coefficient level values tCoeffLevel with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are

– a modified version of the list sTCoeff,

– a modified version of the list tCoeffLevel.

The variables nW, nH, numB, cO, and qP are derived by

nW = MbWidthC / 4 (G-147)
nH = MbHeightC / 4 (G-148)
numB = nW * nH (G-149)
cO = 256 + (iCbCr * MbWidthC * MbHeightC) (G-150)
qP = ((iCbCr = = 0) ? QP′Cb : QP′Cr) (G-151)

Depending on tcoeff_level_prediction_flag, the following applies.

– If tcoeff_level_prediction_flag is equal to 1, the list sTCoeff is modified by

sTCoeff[cO + k] = 0 with k = 0..(MbWidthC * MbHeightC − 1) (G-152)

– Otherwise (tcoeff_level_prediction_flag is equal to 0), the list tCoeffLevel is modified by

tCoeffLevel[cO + k] = 0 with k = 0..(MbWidthC * MbHeightC − 1) (G-153)

For the chroma DC transform coefficients of all residual 4x4 chroma blocks, the following ordered steps are specified:

1. Depending ChromaArrayType, the (nW)x(nH) array c with elements cij is derived as follows.

– If ChromaArrayType is equal to 1,

cij = ChromaDCLevel[iCbCr][2 * i + j] with i = 0..(nH − 1), j = 0..(nW − 1) (G-154)

– Otherwise (ChromaArrayType is equal to 2),

cij = ChromaDCLevel[iCbCr][scan422ChromaDC[2 * i + j]]
 with i = 0..(nH − 1), j = 0..(nW − 1),
 and scan422ChromaDC = { 0, 2, 1, 5, 3, 6, 4, 7 } (G-155)

2. The list tCoeffLevel and the (nW)x(nH) array c are modified by

tCoeffLevel[cO + 32 * i + 16 * j] += cij with i = 0..(nH − 1), j = 0..(nW − 1) (G-156)

cij = tCoeffLevel[cO + 32 * i + 16 * j] with i = 0..(nH − 1), j = 0..(nW − 1) (G-157)

 Rec. ITU-T H.264 (03/2009) 493

3. The variable qPDC is derived by

qPDC = ((ChromaArrayType = = 1) ? qP : (qP + 3)) (G-158)

4. The (nW)x(nH) array d with elements dij representing scaled chroma DC transform coefficient values for all
residual 4x4 chroma blocks is derived by

dij = cij * (LevelScale4x4(qPDC % 6, 0, 0) << (qPDC / 6)) with i = 0..(nH − 1), j = 0..(nW − 1)
 (G-159)

5. The list sTCoeff is modified by

sTCoeff[cO + 32 * i + 16 * j] += dij with i = 0..(nH − 1), j = 0..(nW − 1) (G-160)

For each residual 4x4 chroma block indexed by c4x4BlkIdx = 0..(numB − 1), the following ordered steps are specified:

1. The variable c4x4List, which is a list of 16 entries, is derived by

c4x4List[k] = ((k = = 0) ? 0 : ChromaACLevel[iCbCr][c4x4BlkIdx][k − 1])
 with k = 0..15 (G-161)

2. The inverse scanning process for 4x4 transform coefficients and scaling lists as specified in subclause 8.5.6 is
invoked with c4x4List as the input and the outputs are chroma transform coefficient level values as a 4x4
array e with elements eij. During the process in subclause 8.5.6, the current macroblock is treated as field
macroblock when fieldMbFlag is equal to 1, and it is treated as frame macroblock when fieldMbFlag is equal
to 0.

3. The list tCoeffLevel and the 4x4 array e are modified by

tCoeffLevel[cO + 16 * c4x4BlkIdx + 4 * i + j] += eij with i, j = 0..3 and i + j > 0 (G-162)

eij = tCoeffLevel[cO + 16 * c4x4BlkIdx + 4 * i + j] with i, j = 0..3 and i + j > 0 (G-163)

4. The scaling process for residual 4x4 blocks as specified in subclause 8.5.12.1 is invoked with BitDepthC, qP,
and the 4x4 array e as the inputs and the outputs are scaled chroma transform coefficient values as a 4x4 array
d of with elements dij. During the process in subclause 8.5.12.1, the array e is treated as relating to a chroma
residual block.

5. The list sTCoeff is modified by

sTCoeff[cO + 16 * c4x4BlkIdx + 4 * i + j] += dij with i, j = 0..3 and i + j > 0 (G-164)

NOTE 1 – The elements tCoeffLevel[cO + 16* c4x4BlkIdx] and sTCoeff[cO + 16* c4x4BlkIdx] are not modified
during the process for a residual 4x4 chroma block with index c4x4BlkIdx.

The bitstream shall not contain data that result in any element sTCoeff[cO + 16* b + k] with b = 0..(numB − 1) and
k = 1..15 that exceeds the range of integer values from −2(7 + BitDepthC) to 2(7 + BitDepthC) − 1, inclusive.

The bitstream shall not contain data that result in any element tCoeffLevel[cO + 16* b + k] with b = 0..(numB − 1) and
k = 1..15 that exceeds the range of integer values from −2(7 + BitDepthC) to 2(7 + BitDepthC) − 1, inclusive.

NOTE 2 – The elements tCoeffLevel[cO + 16* b] and sTCoeff[cO + 16* b] with b = 0..(numB − 1) can exceed the range of
integer values from −2(7 + BitDepthC) to 2(7 + BitDepthC) − 1, inclusive.

G.8.5.2 Transform coefficient level scaling process prior to transform coefficient refinement

Inputs to this process are

– a variable cTrafo specifying the luma transform type for the current macroblock,

– a list tCoeffLevel with (256 + 2 * MbWidthC * MbHeightC) elements specifying transform coefficient level
values for the current macroblock,

– a variable tQPY specifying the luma quantisation parameter for the current macroblock,

– a variable refQPY specifying the quantisation parameter for the macroblock of the reference layer representation,

– when ChromaArrayType is not equal to 0, two variables tQPCb and tQPCr specifying chroma quantisation
parameters for the current macroblock,

– when ChromaArrayType is not equal to 0, two variables refQPCb and refQPCr specifying chroma quantisation
parameters for the macroblock of the reference layer representation,

494 Rec. ITU-T H.264 (03/2009)

Output of this process is a modified version of the list tCoeffLevel.

Table G-6 specifies the scale values cS for transform coefficient level scaling.

Table G-6 – Scale values cS for transform coefficient level scaling

(refQP − cQP + 54) % 6 scale value cS

0 8

1 9

2 10

3 11

4 13

5 14

The variable iYCbCr proceeds over the values from 0 to ((ChromaArrayType = = 0) ? 0 : 2), inclusive, and for
each value of iYCbCr, the following ordered steps are specified:

1. The variables cO, iMax, cQP, and refQP are derived by

cO = ((iYCbCr = = 0) ? 0 : (256 + (iYCbCr − 1) * MbWidthC * MbHeightC)) (G-165)
iMax = ((iYCbCr = = 0) ? 255 : (MbWidthC * MbHeightC − 1)) (G-166)
cQP = ((iYCbCr = = 0) ? tQPY : (iYCbCr = = 1 ? tQPCb : tQPCr)) (G-167)
refQP = ((iYCbCr = = 0) ? refQPY : (iYCbCr = = 1 ? refQPCb : refQPCr)) (G-168)

2. The variable cS is set as specified in Table G-6 using the values of refQP and cQP.

3. The variable rShift is calculated by

rShift = (refQP − cQP + 54) / 6 (G-169)

4. The list tCoeffLevel of transform coefficient level values is modified by

tCoeffLevel[cO + i] = ((cS * tCoeffLevel[cO + i]) << rShift) >> 12 with i = 0..iMax (G-170)

The following constraints shall be obeyed:

a) When cTrafo is equal to T_4x4 or T_8x8, the bitstream shall not contain data that result in any element
tCoeffLevel[k] with k = 0..255 that exceeds the range of integer values from −2(7 + BitDepthY) to 2(7 + BitDepthY) − 1,
inclusive.

b) When cTrafo is equal to T_16x16, the bitstream shall not contain data that result in any element
tCoeffLevel[16* b + k] with b = 0..15 and k = 1..15 that exceeds the range of integer values from
−2(7 + BitDepthY) to 2(7 + BitDepthY) − 1, inclusive.
NOTE 1 – When cTrafo is equal to T_16x16, the elements tCoeffLevel[16* b] with b = 0..15 can exceed the range of
integer values from −2(7 + BitDepthY) to 2(7 + BitDepthY) − 1, inclusive.

c) When ChromaArrayType is equal to 1 or 2 and cTrafo is not equal to T_PCM, the bitstream shall not contain
data that result in any element tCoeffLevel[256 + 16* b + k] with b = 0..(MbWidthC * MbHeightC / 8 − 1),
and k = 1..15 that exceeds the range of integer values from −2(7 + BitDepthC) to 2(7 + BitDepthC) − 1, inclusive.
NOTE 2 – When ChromaArrayType is equal to 1 or 2 and cTrafo is not equal to T_PCM, the elements
tCoeffLevel[256 + 16* b] with b = 0..(MbWidthC * MbHeightC / 8 − 1) can exceed the range of integer values from
−2(7 + BitDepthC) to 2(7 + BitDepthC) − 1, inclusive.

d) When ChromaArrayType is equal to 3 and cTrafo is equal to T_4x4 or T_8x8, the bitstream shall not contain
data that result in any element tCoeffLevel[256 + k] with k = 0..511 that exceeds the range of integer values
from −2(7 + BitDepthC) to 2(7 + BitDepthC) − 1, inclusive.

e) When ChromaArrayType is equal to 3 and cTrafo is T_16x16, the bitstream shall not contain data that result
in any element tCoeffLevel[256 + 16* b + k] with b = 0..31 and k = 1..15 that exceeds the range of integer
values from −2(7 + BitDepthC) to 2(7 + BitDepthC) − 1, inclusive.

 Rec. ITU-T H.264 (03/2009) 495

NOTE 3 – When ChromaArrayType is equal to 3 and cTrafo is equal to T_16x16, the elements
tCoeffLevel[256 + 16* b] with b = 0..(MbWidthC * MbHeightC / 8 − 1) can exceed the range of integer values
from −2(7 + BitDepthC) to 2(7 + BitDepthC) − 1, inclusive.
NOTE 4 – When tQPY is less than 10 and cTrafo is equal to T_16x16, the range of values that can be represented by
an alternative representation of the bitstream with entropy_coding_mode_flag equal to 0 and profile_idc equal to 66,
77, or 88, may not be sufficient to represent the full range of values of the elements tCoeffLevel[16 * b] with
b = 0..15 that could be necessary to form a close approximation of the content of any possible source picture.
NOTE 5 – When ChromaArrayType is equal to 1 or 2 and tQPCX with CX being replaced by Cb and Cr is less than
4, the range of values that can be represented by an alternative representation of the bitstream with
entropy_coding_mode_flag equal to 0 and profile_idc equal to 66, 77, or 88, may not be sufficient to represent the
full range of values of the elements tCoeffLevel[256 + 16 * b] with b = 0..(MbWidthC * MbHeightC / 8 − 1) that
could be necessary to form a close approximation of the content of any possible source picture.

G.8.5.3 Residual construction and accumulation process

Inputs to this process are

– a variable accumulationFlag specifying whether the constructed residual sample values for the current macroblock
are combined with the existent residual sample value for the macroblock,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable cTrafo specifying the transform type,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picResL containing residual luma sample values for the
current layer representation,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picResCb and
picResCr containing residual chroma sample values for the current layer representation.

Outputs of this process are

– a modified version of the array picResL,

– when ChromaArrayType is not equal to 0, modified versions of the arrays picResCb and picResCr.

The construction process for luma residuals as specified in subclause G.8.5.3.1 is invoked with cTrafo and sTCoeff as
the inputs and the outputs are residual luma sample values as a 16x16 array mbResL.

When ChromaArrayType is not equal to 0, the construction process for chroma residuals as specified in
subclause G.8.5.3.2 is invoked with cTrafo and sTCoeff as the inputs and the outputs are residual chroma sample values
as two (MbWidthC)x(MbHeightC) arrays mbResCb and mbResCr.

When accumulationFlag is equal to 1, the following ordered steps are specified:

1. The macroblock sample array extraction process as specified in subclause G.8.5.4.2 is invoked with
fieldMbFlag, picResL, and, when ChromaArrayType is equal to 0, picResCb and picResCr as the inputs and the
outputs are a 16x16 array refLayerMbResL and, when ChromaArrayType is not equal to 0, two
(MbWidthC)x(MbHeightC) arrays refLayerMbResCb and refLayerMbResCr.

2. All elements mbResL[x, y] of the 16x16 array mbResL with x, y = 0..15 are modified by

mbResL[x, y] = Clip3(yMin, yMax, mbResL[x, y] + refLayerMbResL[x, y]) (G-171)

with

yMin = − (1 << BitDepthY) + 1 (G-172)
yMax = (1 << BitDepthY) − 1 (G-173)

3. When ChromaArrayType is not equal to 0, for CX being replaced by Cb and Cr, all elements mbResCX[x, y]
of the (MbWidthC)x(MbHeightC) array mbResCX with x = 0..(MbWidthC − 1) and y = 0..(MbHeightC − 1)
are modified by

mbResCX[x, y] = Clip3(cMin, cMax, mbResCX[x, y] + refLayerMbResCX[x, y]) (G-174)

with

cMin = − (1 << BitDepthC) + 1 (G-175)
cMax = (1 << BitDepthC) − 1 (G-176)

496 Rec. ITU-T H.264 (03/2009)

The picture sample array construction process as specified in subclause G.8.5.4.1 is invoked with fieldMbFlag, mbResL,
picResL, and, when ChromaArrayType is not equal to 0, mbResCb, mbResCr, picResCb, and picResCr as the inputs and the
outputs are a modified version of the array picResL and, when ChromaArrayType is not equal to 0, modified versions of
the arrays picResCb and picResCr.

G.8.5.3.1 Construction process for luma residuals or chroma residuals with ChromaArrayType equal to 3

Inputs to this process are

– a variable iYCbCr specifying the colour component (when present),

– a variable cTrafo specifying the transform type,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are residual sample values as a 16x16 array mbRes with elements mbRes[x, y].

When iYCbCr is not present as input to this subclause, it is inferred to be equal to 0.

Depending on iYCbCr, the variables bitDepth and cO are derived as follows.

– If iYCbCr is equal to 0, bitDepth is set equal to BitDepthY and cO is set equal to 0.

– Otherwise, if iYCbCr is equal to 1, bitDepth is set equal to BitDepthC and cO is set equal to 256.

– Otherwise (iYCbCr is equal to 2), bitDepth is set equal to BitDepthC and cO is set equal to
(256 + MbWidthC * MbHeightC).

Depending on cTrafo, the 16x16 array mbRes is derived as follows.

– If cTrafo is equal to T_PCM, the construction process for luma residuals or chroma residuals with
ChromaArrayType equal to 3 of I_PCM macroblocks as specified in subclause G.8.5.3.1.1 is invoked with cO and
sTCoeff as the inputs and the output is the 16x16 array mbRes of residual sample values.

– Otherwise, if cTrafo is equal to T_4x4, the construction process for residual 4x4 blocks as specified in
subclause G.8.5.3.1.2 is invoked with bitDepth, cO, and sTCoeff as the inputs and the output is the 16x16 array
mbRes of residual sample values.

– Otherwise, if cTrafo is equal to T_8x8, the construction process for residual 8x8 blocks as specified in
subclause G.8.5.3.1.3 is invoked with bitDepth, cO, and sTCoeff as the inputs and the output is the 16x16 array
mbRes of residual sample values.

– Otherwise (cTrafo is equal to T_16x16), the construction process for residuals of Intra_16x16 macroblocks as
specified in subclause G.8.5.3.1.4 is invoked with bitDepth, cO, and sTCoeff as the inputs and the output is the
16x16 array mbRes of residual sample values.

G.8.5.3.1.1 Construction process for luma residuals or chroma residuals with ChromaArrayType equal to 3 of
I_PCM macroblocks

Inputs to this process are

– a variable cO specifying the first coefficient index in the list of scaled transform coefficient values sTCoeff,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are residual sample values as a 16x16 array mbRes with elements mbRes[x, y].

The 16x16 array mbRes is derived by

mbRes[x, y] = sTCoeff[cO + y * 16 + x] with x, y = 0..15 (G-177)

G.8.5.3.1.2 Construction process for residual 4x4 blocks

Inputs to this process are

– a variable bitDepth specifying the bit depth,

– a variable cO specifying the first coefficient index in the list of scaled transform coefficient values sTCoeff,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are residual sample values as a 16x16 array mbRes with elements mbRes[x, y].

For each residual 4x4 block indexed by c4x4BlkIdx = 0..15, the following ordered steps are specified:

 Rec. ITU-T H.264 (03/2009) 497

1. The 4x4 array d with elements dij is derived by

dij = sTCoeff[cO + 16 * c4x4BlkIdx + 4 * i + j] with i, j = 0..3 (G-178)

2. The transformation process for residual 4x4 blocks as specified in subclause 8.5.12.2 is invoked with bitDepth
and the 4x4 array d as the inputs and the outputs are residual sample value as a 4x4 array r with elements rij.

3. The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with c4x4BlkIdx as
the input and the output is assigned to (xP, yP).

4. The elements mbRes[x, y] of the 16x16 array mbRes with x = xP..(xP + 3) and y = yP..(yP + 3) are derived
by

mbRes[xP + j, yP + i] = rij with i, j = 0..3 (G-179)

G.8.5.3.1.3 Construction process for residual 8x8 blocks

Inputs to this process are

– a variable bitDepth specifying the bit depth,

– a variable cO specifying the first coefficient index in the list of scaled transform coefficient values sTCoeff,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are residual sample values as a 16x16 array mbRes with elements mbRes[x, y].

For each residual 8x8 block indexed by c8x8BlkIdx = 0..3, the following ordered steps are specified:

1. The 8x8 array d with elements dij is derived by

dij = sTCoeff[cO + 64 * c8x8BlkIdx + 8 * i + j] with i, j = 0..7 (G-180)

2. The transformation process for residual 8x8 blocks as specified in subclause 8.5.13.2 is invoked with bitDepth
and the 8x8 array d as the inputs and the outputs are residual sample values as an 8x8 array r with elements rij.

3. The inverse 8x8 luma block scanning process as specified in subclause 6.4.5 is invoked with c8x8BlkIdx as
the input and the output is assigned to (xP, yP).

4. The elements mbRes[x, y] of the 16x16 array mbRes with x = xP..(xP + 7) and y = yP..(yP + 7) are derived
by

mbRes[xP + j, yP + i] = rij with i, j = 0..7 (G-181)

G.8.5.3.1.4 Construction process for residuals of Intra_16x16 macroblocks

Inputs to this process are

– a variable bitDepth specifying the bit depth,

– a variable cO specifying the first coefficient index in the list of scaled transform coefficient values sTCoeff,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are residual sample values as a 16x16 array mbRes with elements mbRes[x, y].

For each residual 4x4 block indexed by c4x4BlkIdx = 0..15, the following ordered steps are specified:

1. The 4x4 array d with elements dij is derived by

dij = sTCoeff[cO + 16 * c4x4BlkIdx + 4 * i + j] with i, j = 0..3 (G-182)

2. The transformation process for residual 4x4 blocks as specified in subclause 8.5.12.2 is invoked with bitDepth
and the 4x4 array d as the inputs and the outputs are residual sample values as a 4x4 array r with elements rij.

3. The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with c4x4BlkIdx as
the input and the output is assigned to (xP, yP).

4. The elements mbRes[x, y] of the 16x16 array mbRes with x = xP..(xP + 3) and y = yP..(yP + 3) are derived
by

mbRes[xP + j, yP + i] = rij with i, j = 0..3 (G-183)

498 Rec. ITU-T H.264 (03/2009)

G.8.5.3.2 Construction process for chroma residuals

Inputs to this process are

– a variable cTrafo specifying the transform type,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are residual chroma sample values as two (MbWidthC)x(MbHeightC) arrays mbResCb and
mbResCr with elements mbResCb[x, y] and mbResCr[x, y], respectively.

For both chroma components indexed by iCbCr = 0..1 and for CX being replaced by Cb for iCbCr equal to 0 and Cr for
iCbCr equal to 1, the following applies.

– If ChromaArrayType is equal to 1 or 2, the following applies.

– If cTrafo is equal to T_PCM, the construction process for chroma residuals of I_PCM macroblocks as
specified in subclause G.8.5.3.2.1 is invoked with iCbCr and sTCoeff as the inputs and the output is the
(MbWidthC)x(MbHeightC) array mbResCX of residual chroma sample values.

– Otherwise (cTrafo is not equal to T_PCM), the construction process for chroma residuals with
ChromaArrayType equal to 1 or 2 as specified in subclause G.8.5.3.2.2 is invoked with iCbCr and sTCoeff as
the inputs and the output is the (MbWidthC)x(MbHeightC) array mbResCX of residual chroma sample values.

– Otherwise (ChromaArrayType is equal to 3), the construction process for luma residuals or chroma residuals with
ChromaArrayType equal to 3 as specified in subclause G.8.5.3.1 is invoked with iYCbCr set equal to (1 + iCbCr),
cTrafo, and sTCoeff as the inputs and the output is the (MbWidthC)x(MbHeightC) array mbResCX of residual
chroma sample values.

G.8.5.3.2.1 Construction process for chroma residuals of I_PCM macroblocks

Inputs to this process are

– a variable iCbCr specifying the chroma component,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are residual chroma sample values as a (MbWidthC)x(MbHeightC) array mbRes with elements
mbRes[x, y].

The (MbWidthC)x(MbHeightC) array mbRes is derived by

mbRes[x, y] = sTCoeff[256 + iCbCr * MbWidth * MbHeight + y * MbWidthC + x]
 (G-184)
 with x = 0..(MbWidthC − 1) and y = 0..(MbHeightC − 1)

G.8.5.3.2.2 Construction process for chroma residuals with ChromaArrayType equal to 1 or 2

This process is only invoked when ChromaArrayType is equal to 1 or 2.

Inputs to this process are

– a variable iCbCr specifying the chroma component,

– a list of scaled transform coefficient values sTCoeff with (256 + 2 * MbWidthC * MbHeightC) elements.

Outputs of this process are residual chroma sample values as a (MbWidthC)x(MbHeightC) array mbRes with elements
mbRes[x, y].

The variables nW, nH, numB, and cO are derived by

nW = MbWidthC / 4 (G-185)
nH = MbHeightC / 4 (G-186)
numB = nW * nH (G-187)
cO = 256 + (iCbCr * MbWidthC * MbHeightC) (G-188)

For the chroma DC transform coefficients of all residual 4x4 chroma blocks, the following ordered steps are specified:

1. The (nW)x(nH) array c with the elements cij is derived by

cij = sTCoeff[cO + 32 * i + 16 * j] with i = 0..(nH − 1), j = 0..(nW − 1) (G-189)

 Rec. ITU-T H.264 (03/2009) 499

2. The transformation process for chroma DC transform coefficients as specified in subclause 8.5.11.1 is invoked
with BitDepthC and the (nW)x(nH) array c as the inputs and the outputs are DC values for all residual 4x4
chroma blocks as a (nW)x(nH) array f with elements fij.

3. Depending on ChromaArrayType, the (nW)x(nH) array dcC with elements dcCij is derived as follows.

– If ChromaArrayType is equal to 1,

dcCij = fij >> 5 with i = 0..(nH − 1), j = 0..(nW − 1) (G-190)

– Otherwise (ChromaArrayType is equal to 2),

dcCij = (fij + (1 << 5)) >> 6 with i = 0..(nH − 1), j = 0..(nW − 1) (G-191)

The bitstream shall not contain data that result in any element dcCij of dcC with i = 0..(nH − 1) and
j = 0..(nW − 1) that exceeds the range of integer values from −2(7 + BitDepthC) to 2(7 + BitDepthC) − 1, inclusive.

NOTE – For the layer representation with dependency_id equal to 0 and quality_id equal to 0, successive
invocations of subclause G.8.5.1.2 (as part of an invocation of subclause G.8.5.1) and this subclause yield an array
dcC that is identical to the array dcC that would be obtained by an invocation of subclause 8.5.11. However, the
intermediate values cij and fij with i = 0..(nH − 1) and j = 0..(nW − 1) that are derived in this subclause can exceed
the range of integer values from −2(7 + BitDepthC) to 2(7 + BitDepthC) − 1, inclusive.

For each residual 4x4 chroma block indexed by c4x4BlkIdx = 0..(numB − 1), the following ordered steps are specified.

1. The 4x4 array d with elements dij is derived as follows.

– The element d00 is derived by

d00 = dcCkl with k = c4x4BlkIdx / 2 and l = c4x4BlkIdx % 2 (G-192)

– The elements dij with i, j = 0..3 and i + j > 0 are derived by

dij = sTCoeff[cO + 16 * c4x4BlkIdx + 4 * i + j] (G-193)

2. The transformation process for residual 4x4 blocks as specified in subclause 8.5.12.2 is invoked with
BitDepthC and the 4x4 array d as the inputs and the outputs are residual chroma sample values as a 4x4 array r
with elements rij.

3. The chroma location (xP, yP) is derived by

xP = 4 * (c4x4BlkIdx % 2) (G-194)
yP = 4 * (c4x4BlkIdx / 2) (G-195)

4. The elements mbRes[x, y] of the (MbWidthC)x(MbHeightC) array mbRes with x = xP..(xP + 3) and
y = yP..(yP + 3) are derived by

mbRes[xP + j, yP + i] = rij with i, j = 0..3 (G-196)

G.8.5.4 Sample array accumulation process

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picResL containing residual luma sample values for the
current layer representation,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamplesL containing constructed luma sample values for
the current layer representation,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picResCb and
picResCr containing residual chroma sample values for the current layer representation,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picSamplesCb
and picSamplesCr containing constructed chroma sample values for the current layer representation.

Outputs of this process are

– a modified version of the array picSamplesL,

– when ChromaArrayType is not equal to 0, modified versions of the arrays picSamplesCb and picSamplesCr.

500 Rec. ITU-T H.264 (03/2009)

The macroblock sample array extraction process as specified in subclause G.8.5.4.2 is invoked with fieldMbFlag,
picResL, and, when ChromaArrayType is not equal to 0, picResCb and picResCr as the inputs and the outputs are
assigned to mbResL and, when ChromaArrayType is not equal to 0, mbResCb and mbResCr.

The macroblock sample array extraction process as specified in subclause G.8.5.4.2 is invoked with fieldMbFlag,
picSamplesL, and, when ChromaArrayType is not equal to 0, picSamplesCb and picSamplesCr as the inputs and the
outputs are assigned to mbPredL and, when ChromaArrayType is not equal to 0, mbPredCb and mbPredCr.

The 16x16 array mbSamplesL is derived by

mbSamplesL[x, y] = Clip1Y(mbPredL[x, y] + mbResL[x, y]) with x, y = 0..15 (G-197)

When ChromaArrayType is not equal to 0, for CX being replaced by Cb and Cr, the (MbWidthC)x(MbHeightC) array
mbSamplesCX is derived by

mbSamplesCX[x, y] = Clip1C(mbPredCX[x, y] + mbResCX[x, y]) with x = 0..(MbWidthC − 1)
 and y = 0..(MbHeightC − 1) (G-198)

The picture sample array construction process as specified in subclause G.8.5.4.1 is invoked with fieldMbFlag,
mbSamplesL, picSamplesL, and, when ChromaArrayType is not equal to 0, mbSamplesCb, mbSamplesCr, picSamplesCb,
and picSamplesCr as inputs and the outputs are a modified version of picSamplesL and, when ChromaArrayType is not
equal to 0, modified versions of picSamplesCb and picSamplesCr.

G.8.5.4.1 Picture sample array construction process

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a 16x16 array mbArrayL containing luma sample values for the current macroblock,

– a (PicWidthInSamplesL)x(PicWidthInHeightL) array picArrayL containing luma sample values for the current layer
representation,

– when ChromaArrayType is not equal to 0, two (MbWidthC)x(MbHeightC) arrays mbArrayCb and mbArrayCr
containing chroma sample values for the current macroblock,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picArrayCb
and picArrayCr containing chroma sample values for the current layer representation.

Outputs of this process are

– a modified version of the array picArrayL,

– when ChromaArrayType is not equal to 0, modified versions of the arrays picArrayCb and picArrayCr.

The picture sample array construction process for a colour component as specified in subclause G.8.5.4.3 is invoked
with fieldMbFlag, mbW set equal to 16, mbH set equal to 16, mbArrayL, and picArrayL as the inputs and the output is a
modified version of the array picArrayL.

When ChromaArrayType is not equal to 0, for CX being replaced with Cr and Cb, the picture sample array construction
process for a colour component as specified in subclause G.8.5.4.3 is invoked with fieldMbFlag, mbW set equal to
MbWidthC, mbH set equal to MbHeightC, mbArrayCX, and picArrayCX as the inputs and the output is a modified
version of the array picArrayCX.

G.8.5.4.2 Macroblock sample array extraction process

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a (PicWidthInSamplesL)x(PicWidthInHeightL) array picArrayL containing luma sample values for the current layer
representation,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picArrayCb
and picArrayCr containing chroma sample values for the current layer representation.

Outputs of this process are

– a 16x16 array mbArrayL containing luma sample values for the current macroblock,

 Rec. ITU-T H.264 (03/2009) 501

– when ChromaArrayType is not equal to 0, two (MbWidthC)x(MbHeightC) arrays mbArrayCb and mbArrayCr
containing chroma sample values for the current macroblock.

The macroblock sample array extraction process for a colour component as specified in subclause G.8.5.4.4 is invoked
with fieldMbFlag, mbW set equal to 16, mbH set equal to 16, and picArrayL as the inputs and the output is assigned to
mbArrayL.

When ChromaArrayType is not equal to 0, for CX being replaced with Cr and Cb, the macroblock sample array
extraction process for a colour component as specified in subclause G.8.5.4.4 is invoked with fieldMbFlag, mbW set
equal to MbWidthC, mbH set equal to MbHeightC, and picArrayCX as the inputs and the output is assigned to
mbArrayCX.

G.8.5.4.3 Picture sample array construction process for a colour component

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable mbW specifying the width of a macroblock colour component in samples,

– a variable mbH specifying the height of a macroblock colour component in samples,

– an (mbW)x(mbH) array mbArray containing sample values for a colour component of the current macroblock,

– an (mbW * PicWidthInMbs)x(mbH * PicHeightInMbs) array picArray containing sample values for a colour
component of the current layer representation.

Output of this process is a modified version of the array picArray.

The inverse macroblock scanning process as specified in subclause 6.4.1 is invoked with CurrMbAddr as the input and
the output is assigned to (xO, yO). During the process in subclause 6.4.1, the current macroblock is treated as field
macroblock when fieldMbFlag is equal to 1, and it is treated as frame macroblock when fieldMbFlag is equal to 0.

The sample location (xP, yP) is derived by

xP = (xO >> 4) * mbW (G-199)
yP = ((yO >> 4) * mbH) + (yO % 2) (G-200)

Depending on the variables MbaffFrameFlag and fieldMbFlag, the array picArray is modified as follows.

– If MbaffFrameFlag is equal to 1 and fieldMbFlag is equal to 1,

picArray[xP + x, yP + 2 * y] = mbArray[x, y] with x = 0..(mbW − 1), y = 0..(mbH − 1) (G-201)

– Otherwise (MbaffFrameFlag is equal to 0 or fieldMbFlag is equal to 0),

picArray[xP + x, yP + y] = mbArray[x, y] with x = 0..(mbW − 1), y = 0..(mbH − 1) (G-202)

G.8.5.4.4 Macroblock sample array extraction process for a colour component

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable mbW specifying the width of a macroblock colour component in samples,

– a variable mbH specifying the height of a macroblock colour component in samples,

– an (mbW * PicWidthInMbs)x(mbH * PicHeightInMbs) array picArray containing sample values for a colour
component of the current layer representation.

Output of this process is an (mbW)x(mbH) array mbArray containing sample values for a colour component of the
current macroblock.

The inverse macroblock scanning process as specified in subclause 6.4.1 is invoked with CurrMbAddr as the input and
the output is assigned to (xO, yO). During the process in subclause 6.4.1, the current macroblock is treated as field
macroblock when fieldMbFlag is equal to 1, and it is treated as frame macroblock when fieldMbFlag is equal to 0.

The sample location (xP, yP) is derived by

xP = (xO >> 4) * mbW (G-203)
yP = ((yO >> 4) * mbH) + (yO % 2) (G-204)

502 Rec. ITU-T H.264 (03/2009)

Depending on the variables MbaffFrameFlag and fieldMbFlag, the samples of the array mbArray are derived as
follows.

– If MbaffFrameFlag is equal to 1 and fieldMbFlag is equal to 1,

mbArray[x, y] = picArray[xP + x, yP + 2 * y] with x = 0..(mbW − 1), y = 0..(mbH − 1) (G-205)

– Otherwise (MbaffFrameFlag is equal to 0 or fieldMbFlag is equal to 0),

mbArray[x, y] = picArray[xP + x, yP + y] with x = 0..(mbW − 1), y = 0..(mbH − 1) (G-206)

G.8.5.5 Sample array re-initialisation process

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamplesL containing luma sample values for the current
layer representation,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picSamplesCb
and picSamplesCr containing chroma sample values for the current layer representation.

Outputs of this process are

– a modified version of the array picSamplesL,

– when ChromaArrayType is not equal to 0, modified versions of the arrays picSamplesCb and picSamplesCr.

The 16x16 array mbSamplesL is derived by

mbSamplesL[x, y] = 0 with x, y = 0..15 (G-207)

When ChromaArrayType is not equal to 0, for CX being replaced by Cb and Cr, the (MbWidthC)x(MbHeightC) array
mbSamplesCX is derived by

mbSamplesCX[x, y] = 0 with x = 0..(MbWidthC − 1) and y = 0..(MbHeightC − 1) (G-208)

The picture sample array construction process as specified in subclause G.8.5.4.1 is invoked with fieldMbFlag,
mbSamplesL, picSamplesL, and, when ChromaArrayType is not equal to 0, mbSamplesCb, mbSamplesCr, picSamplesCb,
and picSamplesCr as inputs and the outputs are a modified version of picSamplesL and, when ChromaArrayType is not
equal to 0, modified versions of picSamplesCb and picSamplesCr.

G.8.6 Resampling processes for prediction data, intra samples, and residual samples

Subclause G.8.6.1 specifies the derivation process for inter-layer predictors for macroblock type, sub-macroblock type,
references indices, and motion vectors.

Subclause G.8.6.2 specifies the resampling process for intra samples.

Subclause G.8.6.3 specifies the resampling process for residual samples.

G.8.6.1 Derivation process for inter-layer predictors for macroblock type, sub-macroblock type, reference
indices, and motion vectors

This process is only invoked when base_mode_flag is equal to 1 or any motion_prediction_flag_lX[mbPartIdx] with X
being replaced by 0 and 1 and mbPartIdx = 0..3 is equal to 1.

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying the macroblock types
for the macroblocks of the reference layer representation,

– a (RefLayerPicSizeInMbs)x4 array refLayerSubMbType specifying the sub-macroblock types for the macroblocks
of the reference layer representation,

 Rec. ITU-T H.264 (03/2009) 503

– two (RefLayerPicSizeInMbs)x4 arrays refLayerPredFlagL0 and refLayerPredFlagL1 specifying prediction
utilization flags for the macroblocks of the reference layer representation,

– two (RefLayerPicSizeInMbs)x4 arrays refLayerRefIdxL0 and refLayerRefIdxL1 specifying reference indices for
the macroblocks of the reference layer representation,

– two (RefLayerPicSizeInMbs)x4x4x2 arrays refLayerMvL0 and refLayerMvL1 specifying motion vector
components for the macroblocks of the reference layer representation,

– when CroppingChangeFlag is equal to 1 and (slice_type % 5) is less than 2, the reference picture list refPicList0,

– when CroppingChangeFlag is equal to 1 and (slice_type % 5) is equal to 1, the reference picture list refPicList1.

Outputs of this process are

– a variable mbTypeILPred specifying a predictor for the macroblock type of the current macroblock,

– a list subMbTypeILPred with 4 elements specifying predictors for sub-macroblock types of the current
macroblock,

– two 2x2 arrays refIdxILPredL0 and refIdxILPredL1 specifying inter-layer predictors for the reference indices of
the current macroblock,

– two 4x4x2 arrays mvILPredL0 and mvILPredL1 specifying inter-layer predictors for the motion vector
components of the current macroblock.

The derivation process for reference layer partition identifications as specified in subclause G.8.6.1.1 is invoked with
fieldMbFlag, refLayerFieldMbFlag, refLayerMbType, and refLayerSubMbType as the inputs and the outputs are a
variable intraILPredFlag and, when intraILPredFlag is equal to 0, reference layer partition identifications as a 4x4 array
refLayerPartIdc with elements refLayerPartIdc[x, y].

When slice_type is equal to EI, the bitstream shall not contain data that result in intraILPredFlag equal to 0.

Depending on intraILPredFlag, the 2x2 arrays refIdxILPredL0 and refIdxILPredL1 and the 4x4x2 array mvILPredL0
and mvILPredL1 are derived as follows.

– If intraILPredFlag is equal to 1, all elements of the 2x2 arrays refIdxILPredL0 and refIdxILPredL1 are set equal
to −1 and all elements of the 4x4x2 arrays mvILPredL0 and mvILPredL1 are set equal to 0.

– Otherwise (intraILPredFlag is equal to 0), the derivation process for inter-layer predictors for reference indices and
motion vectors as specified in subclause G.8.6.1.2 is invoked with fieldMbFlag, refLayerFieldMbFlag,
refLayerPredFlagL0, refLayerPredFlagL1, refLayerRefIdxL0, refLayerRefIdxL1, refLayerMvL0, refLayerMvL1,
refLayerPartIdc, refPicList0 (when available), and refPicList1 (when available) as the inputs and the outputs are
the arrays refIdxILPredL0, refIdxILPredL1, mvILPredL0, and mvILPredL1.

Depending on intraILPredFlag, the variable mbTypeILPred and the list subMbTypeILPred are derived as follows.

– If intraILPredFlag is equal to 1, all elements subMbTypeILPred[mbPartIdx] of the list subMbTypeILPred with
mbPartIdx = 0..3 are marked as unspecified, and the variable mbTypeILPred is derived as follows.

– If tcoeff_level_prediction_flag is equal to 1, mbTypeILPred is set equal to refLayerMbType[CurrMbAddr].

– Otherwise (tcoeff_level_prediction_flag is equal to 0), mbTypeILPred is set equal to I_BL.

– Otherwise (intraILPredFlag is equal to 0), the derivation process for inter-layer predictors for P and B macroblock
and sub-macroblock types as specified in subclause G.8.6.1.3 is invoked with refIdxILPredL0, refIdxILPredL1,
mvILPredL0, and mvILPredL1 as the inputs and the outputs are the variable mbTypeILPred and the list
subMbTypeILPred.

G.8.6.1.1 Derivation process for reference layer partition identifications

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying the macroblock types
for the macroblocks of the reference layer representation,

504 Rec. ITU-T H.264 (03/2009)

– a (RefLayerPicSizeInMbs)x4 array refLayerSubMbType specifying the sub-macroblock types for the macroblocks
of the reference layer representation.

Outputs of this process are

– a variable intraILPredFlag specifying whether the current macroblock can be predicted by inter-layer intra
prediction or, in the case of tcoeff_level_prediction_flag equal to 1, by a combination of intra-layer intra prediction
and inter-layer prediction,

– when intraILPredFlag is equal to 0, reference layer partition identifications for the current macroblock as a 4x4
array refLayerPartIdc with elements refLayerPartIdc[x, y].

When the 4x4 array refLayerPartIdc is output of this process, each of its elements refLayerPartIdc[x, y] specifies the
macroblock address, the macroblock partition index, and the sub-macroblock partition index of the partition in the
reference layer representation that can be used for inter-layer motion prediction of the macroblock or sub-macroblock
partition of the current macroblock that contains the 4x4 block with coordinates x and y.

For each 4x4 block with block coordinates x, y = 0..3, the element refLayerPartIdc[x, y] of the 4x4 array
refLayerPartIdc is derived by applying the following ordered steps:

1. The derivation process for reference layer partitions as specified in subclause G.6.2 is invoked with the luma
location (4 * x + 1, 4 * y + 1), fieldMbFlag, refLayerFieldMbFlag, refLayerMbType, and
refLayerSubMbType as the inputs and the outputs are a macroblock address refMbAddr, a macroblock
partition index refMbPartIdx, and a sub-macroblock partition index refSubMbPartIdx of a partition in the
reference layer representation.

The bitstream shall not contain data that result in refMbAddr, refMbPartIdx, or refSubMbPartIdx being
marked as not available.

2. The element refLayerPartIdc[x, y] of the array refLayerPartIdc is derived as follows.

– If refLayerMbType[refMbAddr] is equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL,
refLayerPartIdc[x, y] is set equal to −1.

– Otherwise (refLayerMbType[refMbAddr] is not equal to I_PCM, I_16x16, I_8x8, I_4x4, or I_BL),
refLayerPartIdc[x, y] is derived by

refLayerPartIdc[x, y] = 16 * refMbAddr + 4 * refMbPartIdx + refSubMbPartIdx (G-209)

The variable intraILPredFlag is derived as follows.

– If all elements refLayerPartIdc[x, y] with x, y = 0..3 are equal to −1, intraILPredFlag is set equal to 1.

– Otherwise (any element refLayerPartIdc[x, y] with x, y = 0..3 is not equal to −1, intraILPredFlag is set equal to 0.

When intraILPredFlag is equal to 0 and RestrictedSpatialResolutionChangeFlag is equal to 0, the 4x4 array
refLayerPartIdc is modified by the following ordered steps:

1. For each 8x8 block with block coordinates xP, yP = 0..1, the following ordered steps are specified.

a. The variables xO and yO are set equal to (2 * xP) and (2 * yP), respectively.

b. All elements procI4x4Blk[xS, yS] of the 2x2 array procI4x4Blk with xS, yS = 0..1 are set equal to 0.

c. The 4x4 blocks of the current 8x8 block with block coordinates xS, yS = 0..1 are processed in increasing
order of (2 * yS + xS), and when refLayerPartIdc[xO + xS, yO + yS] is equal to −1 for a 4x4 block, the
element procI4x4Blk[xS, yS] of the array procI4x4Blk is set equal to 1 and the following applies.

– If procI4x4Blk[1 − xS, yS] is equal to 0 and refLayerPartIdc[xO + 1 − xS, yO + yS] is not equal
to −1, the element refLayerPartIdc[xO + xS, yO + yS] is modified by

refLayerPartIdc[xO + xS, yO + yS] = refLayerPartIdc[xO + 1 − xS, yO + yS] (G-210)

– Otherwise, if procI4x4Blk[xS, 1 − yS] is equal to 0 and refLayerPartIdc[xO + xS, yO + 1 − yS] is
not equal to −1, the element refLayerPartIdc[xO + xS, yO + yS] is modified by

refLayerPartIdc[xO + xS, yO + yS] = refLayerPartIdc[xO + xS, yO + 1 − yS] (G-211)

 Rec. ITU-T H.264 (03/2009) 505

– Otherwise, if procI4x4Blk[1 − xS, 1 − yS] is equal to 0 and refLayerPartIdc[xO + 1 − xS,
yO + 1 − yS] is not equal to −1, the element refLayerPartIdc[xO + xS, yO + yS] is modified by

refLayerPartIdc[xO + xS, yO + yS] = refLayerPartIdc[xO + 1 − xS, yO + 1 − yS] (G-212)

– Otherwise, the element refLayerPartIdc[xO + xS, yO + yS] is not modified.

2. All elements procI8x8Blk[xP, yP] of the 2x2 array procI8x8Blk with xP, yP = 0..1 are set equal to 0.

3. The 8x8 blocks with block coordinates xP, yP = 0..1 are processed in increasing order of (2 * yP + xP), and
when refLayerPartIdc[2 * xP, 2 * yP] is equal to −1 for an 8x8 block, the element procI8x8Blk[xP, yP] of
the array procI8x8Blk is set equal to 1 and the following applies.

– If procI8x8Blk[1 − xP, yP] is equal to 0 and refLayerPartIdc[2 − xP, 2 * yP] is not equal to −1, the
elements refLayerPartIdc[2 * xP + xS, 2 * yP + yS] with xS, yS = 0..1 are modified by

refLayerPartIdc[2 * xP + xS, 2 * yP + yS] = refLayerPartIdc[2 − xP, 2 * yP + yS] (G-213)

– Otherwise, if procI8x8Blk [xP, 1 − yP] is equal to 0 and refLayerPartIdc[2 * xP, 2 − yP] is not equal
to −1, the elements refLayerPartIdc[2 * xP + xS, 2 * yP + yS] with xS, yS = 0..1 are modified by

refLayerPartIdc[2 * xP + xS, 2 * yP + yS] = refLayerPartIdc[2 * xP + xS, 2 − yP] (G-214)

– Otherwise, if procI8x8Blk[1 − xP, 1 − yP] is equal to 0 and refLayerPartIdc [2 − xP, 2 − yP] is not
equal to −1, the elements refLayerPartIdc[2 * xP + xS, 2 * yP + yS] with xS, yS = 0..1 are modified by

refLayerPartIdc[2 * xP + xS, 2 * yP + yS] = refLayerPartIdc[2 − xP, 2 − yP] (G-215)

– Otherwise, the elements refLayerPartIdc[2 * xP + xS, 2 * yP + yS] with xS, yS = 0..1 are not modified.
NOTE – By the process specified above the elements refLayerPartIdc[x, y] that are equal to −1 are replaced by elements
refLayerPartIdc[x, y] that are not equal to −1. This process can also be applied when RestrictedSpatialResolutionChangeFlag
is equal to 1 or intraILPredFlag is equal to 1, but in this case, the 4x4 array refLayerPartIdc is not modified.

G.8.6.1.2 Derivation process for inter-layer predictors for reference indices and motion vectors

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– two (RefLayerPicSizeInMbs)x4 arrays refLayerPredFlagL0 and refLayerPredFlagL1 specifying prediction
utilization flags for the macroblocks of the reference layer representation,

– two (RefLayerPicSizeInMbs)x4 arrays refLayerRefIdxL0 and refLayerRefIdxL1 specifying reference indices for
the macroblocks of the reference layer representation,

– two (RefLayerPicSizeInMbs)x4x4x2 arrays refLayerMvL0 and refLayerMvL1 specifying motion vector
components for the macroblocks of the reference layer representation,

– a 4x4 array refLayerPartIdc specifying reference layer partition identifications for the 4x4 blocks of the current
macroblock,

– when CroppingChangeFlag is equal to 1 and (slice_type % 5) is less than 2, the reference picture list refPicList0,

– when CroppingChangeFlag is equal to 1 and (slice_type % 5) is equal to 1, the reference picture list refPicList1.

Outputs of this process are

– two 2x2 arrays refIdxILPredL0 and refIdxILPredL0 specifying inter-layer predictors for the reference indices of
the current macroblock,

– two 4x4x2 arrays mvILPredL0 and mvILPredL0 specifying inter-layer predictors for the motion vector
components of the current macroblock.

506 Rec. ITU-T H.264 (03/2009)

Let tempRefIdxPredL0 and tempRefIdxPredL1 be two 4x4 arrays with elements tempRefIdxPredL0[x, y] and
tempRefIdxPredL1[x, y], respectively, that specify auxiliary inter-layer predictors for reference indices.

For each 4x4 block indexed by x, y = 0..3 and for X being replaced by 0 and 1, the auxiliary reference index predictor
tempRefIdxPredLX[x, y] and the motion vector predictor mvILPredLX[x, y] are derived as follows.

– If refLayerPredFlagLX[refLayerPartIdc[x, y] / 16][(refLayerPartIdc[x, y] % 16) / 4] is equal 0, the reference
index predictor tempRefIdxPredLX[x, y] and the motion vector predictor mvILPredLX[x, y] are derived by

tempRefIdxPredLX[x, y] = −1 (G-216)
mvILPredLX[x, y][0] = 0 (G-217)
mvILPredLX[x, y][1] = 0 (G-218)

– Otherwise (refLayerPredFlagLX[refLayerPartIdc[x, y] / 16][(refLayerPartIdc[x, y] % 16) / 4] is equal to 1),
the following ordered steps are specified:

1. The variables refMbAddr, refMbPartIdx, and refSubMbPartIdx are derived by

refMbAddr = refLayerPartIdc[x, y] / 16 (G-219)
refMbPartIdx = (refLayerPartIdc[x, y] % 16) / 4 (G-220)
refSubMbPartIdx = refLayerPartIdc[x, y] % 4 (G-221)

2. The auxiliary reference index predictor tempRefIdxPredLX[x, y] is derived by

tempRefIdxPredLX[x, y] = refLayerRefIdxLX[refMbAddr][refMbPartIdx]
 * (1 + fieldMbFlag − field_pic_flag) (G-222)
 / (1 + refLayerFieldMbFlag[refMbAddr] − RefLayerFieldPicFlag)

3. The motion vector aMv is set equal to refLayerMvLX[refMbAddr][refMbPartIdx][refSubMbPartIdx], and
afterwards its vertical component aMv[1] is modified by

aMv[1] = aMv[1] * (1 + refLayerFieldMbFlag[refMbAddr]) (G-223)

4. The variables scaledW, scaledH, refLayerW, and refLayerH are derived by

scaledW = ScaledRefLayerPicWidthInSamplesL (G-224)
scaledH = ScaledRefLayerPicHeightInSamplesL * (1 + field_pic_flag) (G-225)
refLayerW = RefLayerPicWidthInSamplesL (G-226)
refLayerH = RefLayerPicHeightInSamplesL * (1 + RefLayerFieldPicFlag) (G-227)

5. The variables dOX, dOY, dSW, and dSH are derived as follows.

– If CroppingChangeFlag is equal to 0 or the reference picture refPicListX[tempRefIdxPredLX[x, y]] is
not available, dOX, dOY, dSW, and dSH are set equal to 0.

– Otherwise (CroppingChangeFlag is equal to 1 and the reference picture
refPicListX[tempRefIdxPredLX[x, y]] is available), the variables refPicScaledRefLayerLeftOffset,
refPicScaledRefLayerRightOffset, refPicScaledRefLayerTopOffset, and
refPicScaledRefLayerBottomOffset are set equal to the variables ScaledRefLayerLeftOffset,
ScaledRefLayerRightOffset, ScaledRefLayerTopOffset, and ScaledRefLayerBottomOffset, respectively,
that are associated with the layer representation of the reference picture
refPicListX[tempRefIdxPredLX[x, y]] that has the same value of DQId as the current layer
representation, and the variables dOX, dOY, dSW, and dSH are derived by

dOX = ScaledRefLayerLeftOffset − refPicScaledRefLayerLeftOffset (G-228)
dOY = ScaledRefLayerTopOffset − refPicScaledRefLayerTopOffset (G-229)
dSW = ScaledRefLayerRightOffset − refPicScaledRefLayerRightOffset + dOX (G-230)
dSH = ScaledRefLayerBottomOffset − refPicScaledRefLayerBottomOffset + dOY (G-231)

 Rec. ITU-T H.264 (03/2009) 507

6. The variables scaleX and scaleY are derived by

scaleX = (((scaledW + dSW) << 16) + (refLayerW >> 1)) / refLayerW (G-232)
scaleY = (((scaledH + dSH) << 16) + (refLayerH >> 1)) / refLayerH (G-233)

7. The motion vector aMv is scaled by

aMv[0] = (aMv[0] * scaleX + 32768) >> 16 (G-234)
aMv[1] = (aMv[1] * scaleY + 32768) >> 16 (G-235)

8. When CroppingChangeFlag is equal to 1, the motion vector aMv is modified by applying the following
ordered steps:

a. The inverse macroblock scanning process as specified in subclause 6.4.1 is invoked with CurrMbAddr as
the input and the output is a luma location (xMbPic, yMbPic). For this invocation of the process
specified in subclause 6.4.1, the current macroblock is treated as field macroblock when fieldMbFlag is
equal to 1, and it is treated as frame macroblock when fieldMbFlag is equal to 0.

b. The luma location (xFrm, yFrm) is derived by

xFrm = (xMbPic + (4 * x + 1)) (G-236)
yFrm = (yMbPic + (4 * y + 1) * (1 + fieldMbFlag − field_pic_flag)) * (1 + field_pic_flag) (G-237)

c. The variables scaleX and scaleY are modified by

scaleX = (((4 * dSW) << 16) + (scaledW >> 1)) / scaledW (G-238)
scaleY = (((4 * dSH) << 16) + (scaledH >> 1)) / scaledH (G-239)

d. The motion vector aMv is modified by

aMv[0] += (((xFrm − ScaledRefLayerLeftOffset) * scaleX + 32768) >> 16) − 4 * dOX (G-240)
aMv[1] += (((yFrm − ScaledRefLayerTopOffset) * scaleY + 32768) >> 16) − 4 * dOY (G-241)

9. The motion vector predictor mvILPredLX[x, y] is derived by

mvILPredLX[x, y][0] = aMv[0] (G-242)
mvILPredLX[x, y][1] = aMv[1] / (1 + fieldMbFlag) (G-243)

For each 8x8 block indexed by xP, yP = 0..1 and for X being replaced by 0 or 1, the reference index predictor
refIdxILPredLX[xP, yP] is set equal to tempRefIdxPredLX[2 * xP, 2 * yP], and when
RestrictedSpatialResolutionChangeFlag is equal to 0, the following ordered steps are specified:

1. The 4x4 blocks indexed by xS, yS = 0..1 of the current 8x8 block are processed in increasing order of
(2 * yS + xS), and for each 4x4 block, the reference index predictor refIdxILPredLX[xP, yP] is modified by

refIdxILPredLX[xP, yP] = MinPositive(refIdxILPredLX[xP, yP],
 tempRefIdxPredLX[2 * xP + xS, 2 * yP + yS]) (G-244)

with

⎩
⎨
⎧ >=>=

=
otherwise)ba,Max(

0band0aif)ba,Min(
) b a, e(MinPositiv (G-245)

508 Rec. ITU-T H.264 (03/2009)

2. The 4x4 blocks index by xS, yS = 0..1 of the current 8x8 block are processed in increasing order of
(2 * yS + xS), and for each 4x4 block, when tempRefIdxPredLX[2 * xP + xS, 2 * yP + yS] is not equal to the
reference index predictor refIdxILPredLX[xP, yP], the following applies.

– If tempRefIdxPredLX[2 * xP + 1 − xS, 2 * yP + yS] is equal to refIdxILPredLX[xP, yP], the motion
vector predictor mvILPredLX[2 * xP + xS, 2 * yP + yS] is modified by

mvILPredLX[2 * xP + xS, 2 * yP + yS] = mvILPredLX[2 * xP + 1 − xS, 2 * yP + yS] (G-246)

– Otherwise, if tempRefIdxPredLX[2 * xP + xS, 2 * yP + 1 − yS] is equal to refIdxILPredLX[xP, yP],
the motion vector predictor mvILPredLX[2 * xP + xS, 2 * yP + yS] is modified by

mvILPredLX[2 * xP + xS, 2 * yP + yS] = mvILPredLX[2 * xP + xS, 2 * yP + 1 − yS] (G-247)

– Otherwise (tempRefIdxPredLX[2 * xP + 1 − xS, 2 * yP + 1 − yS] is equal to
refIdxILPredLX[xP, yP]), the motion vector predictor mvILPredLX[2 * xP + xS, 2 * yP + yS] is
modified by

mvILPredLX[2 * xP + xS, 2 * yP + yS] = mvILPredLX[2 * xP + 1 − xS, 2 * yP + 1 − yS] (G-248)

NOTE – The process specified above can also be applied when RestrictedSpatialResolutionChangeFlag is equal to 1, but in this
case, the reference index predictor refIdxILPredLX[xP, yP] and the motion vector predictors
mvILPredLX[2 * xP + xS, 2 * yP + yS] with xS, yS = 0..1 will not be modified.

When RestrictedSpatialResolutionChangeFlag is equal to 0, slice_type is equal to EB, and direct_8x8_inference_flag is
equal to 1, for each 8x8 block indexed by xP, yP = 0..1 and for X being replaced by 0 or 1, the following ordered steps
are specified:

1. The motion vector tempMv with components tempMv[0] and tempMv[1] is derived by

tempMv[c] = mvILPredX[3 * xP, 3 * yP][c] with c = 0..1 (G-249)

2. The array mvILPredLX is modified by

mvILPredLX[2 * xP + xS, 2 * yP + yS][c] = tempMv[c] with xS, yS = 0..1 and c = 0..1 (G-250)

When RestrictedSpatialResolutionChangeFlag is equal to 0, for each 8x8 block indexed by xP, yP = 0..1, the motion
vector predictor arrays mvILPredL0 and mvILPredL1 are modified by applying the following ordered steps:

1. The variable maxX is derived as follows.

– If slice_type is equal to EB, maxX is set equal to 1.

– Otherwise (slice_type is equal to EP), maxX is set equal to 0.

2. The variables xO and yO are set equal to (2 * xP) and (2 * yP), respectively.

3. The function mvDiff(mv1, mv2) of two motion vectors mv1 and mv2 is defined by

mvDiff(mv1, mv2) = Abs(mv1[0] − mv2[0]) + Abs(mv1[1] − mv2[1]) (G-251)

4. The variable subPartSize is derived as follows.

– If for X = 0..maxX, all of the following conditions are true, subPartSize is set equal to 8x8.

– mvDiff(mvILPredLX[xO, yO], mvILPredLX[xO + 1, yO]) is less than or equal to 1

– mvDiff(mvILPredLX[xO, yO], mvILPredLX[xO, yO + 1]) is less than or equal to 1

– mvDiff(mvILPredLX[xO, yO], mvILPredLX[xO + 1, yO + 1]) is less than or equal to 1

– Otherwise, if for X = 0..maxX, all of the following conditions are true, subPartSize is set equal to 8x4.

– mvDiff(mvILPredLX[xO, yO], mvILPredLX[xO + 1, yO]) is less than or equal to 1

– mvDiff(mvILPredLX[xO, yO + 1], mvILPredLX[xO + 1, yO + 1]) is less than or equal to 1

 Rec. ITU-T H.264 (03/2009) 509

– Otherwise, if for X = 0..maxX, all of the following conditions are true, subPartSize is set equal to 4x8.

– mvDiff(mvILPredLX[xO, yO], mvILPredLX[xO, yO + 1]) is less than or equal to 1

– mvDiff(mvILPredLX[xO + 1, yO], mvILPredLX[xO + 1, yO + 1]) is less than or equal to 1

– Otherwise, subPartSize is set equal to 4x4.

5. When subPartSize is not equal to 4x4, for X = 0..maxX, the motion vectors tempMvALX and tempMvBLX
(when subPartSize is equal to 8x4 or 4x8) are derived as follows

– If subPartSize is equal to 8x8, tempMvALX is derived by

tempMvALX[c] = (mvILPredLX[xO, yO][c] +
 mvILPredLX[xO + 1, yO][c] +
 mvILPredLX[xO, yO + 1][c] +
 mvILPredLX[xO + 1, yO + 1][c] + 2) >> 2 with c = 0..1 (G-252)

– Otherwise, if subPartSize is equal to 8x4, tempMvALX and tempMvBLX are derived by

tempMvALX[c] = (mvILPredLX[xO, yO][c] +
 mvILPredLX[xO + 1, yO][c] + 1) >> 1 with c = 0..1 (G-253)

tempMvBLX[c] = (mvILPredLX[xO, yO + 1][c] +
 mvILPredLX[xO + 1, yO + 1][c] + 1) >> 1 with c = 0..1 (G-254)

– Otherwise (subPartSize is equal to 4x8), tempMvALX and tempMvBLX are derived by

tempMvALX[c] = (mvILPredLX[xO, yO][c] +
 mvILPredLX[xO, yO + 1][c] + 1) >> 1 with c = 0..1 (G-255)

tempMvBLX[c] = (mvILPredLX[xO + 1, yO][c] +
 mvILPredLX[xO + 1, yO + 1][c] + 1) >> 1 with c = 0..1 (G-256)

6. When subPartSize is not equal to 4x4, for X = 0..maxX, the motion vector predictor array mvILPredLX is
modified as follows.

– If subPartSize is equal to 8x8, the array mvILPredLX is modified by

mvILPredLX[xO + xS, yO + yS][c] = tempMvALX[c] with xS, yS = 0..1 and c = 0..1 (G-257)

– Otherwise, if subPartSize is equal to 8x4, the array mvILPredLX is modified by

mvILPredLX[xO + xS, yO][c] = tempMvALX[c] with xS = 0..1 and c = 0..1 (G-258)
mvILPredLX[xO + xS, yO + 1][c] = tempMvBLX[c] with xS = 0..1 and c = 0..1 (G-259)

– Otherwise (subPartSize is equal to 4x8), the array mvILPredLX is modified by

mvILPredLX[xO , yO + yS][c] = tempMvALX[c] with yS = 0..1 and c = 0..1 (G-260)
mvILPredLX[xO + 1, yO + yS][c] = tempMvBLX[c] with yS = 0..1 and c = 0..1 (G-261)

G.8.6.1.3 Derivation process for inter-layer predictors for P and B macroblock and sub-macroblock types

This process is only invoked when slice_type is equal to EP or EB.

Inputs to this process are

– two 2x2 arrays refIdxILPredL0 and refIdxILPredL1 specifying predictors for the reference indices of the current
macroblock,

– two 4x4x2 arrays mvILPredL0 and mvILPredL1 specifying predictors for the motion vectors of the current
macroblock.

510 Rec. ITU-T H.264 (03/2009)

Outputs of this process are

– a variable mbTypeILPred specifying a predictor for the macroblock type of the current macroblock,

– a list subMbTypeILPred with 4 elements specifying predictors for sub-macroblock types of the current
macroblock.

The variable maxX is derived as follows.

– If slice_type is equal to EB, maxX is set equal to 1.

– Otherwise (slice_type is equal to EP), maxX is set equal to 0.

The macroblock type predictor mbTypeILPred is derived by applying the following ordered steps:

1. The variable partitionSize is derived as follows.

– If for X = 0..maxX, all of the following conditions are true, partitionSize is set equal to 16x16.

– all elements refIdxILPredLX[x, y] with x, y = 0..1 are the same

– all elements mvILPredLX[x, y] with x, y = 0..3 are the same

– Otherwise, if for X = 0..maxX, all of the following conditions are true, partitionSize is set equal to 16x8.

– refIdxILPredLX[0, 0] is equal to refIdxILPredLX[1, 0]

– refIdxILPredLX[0, 1] is equal to refIdxILPredLX[1, 1]

– all elements mvILPredLX[x, y] with x = 0..3 and y = 0..1 are the same

– all elements mvILPredLX[x, y] with x = 0..3 and y = 2..3 are the same

– Otherwise, if for X = 0..maxX, all of the following conditions are true, partitionSize is set equal to 8x16.

– refIdxILPredLX[0, 0] is equal to refIdxILPredLX[0, 1]

– refIdxILPredLX[1, 0] is equal to refIdxILPredLX[1, 1]

– all elements mvILPredLX[x, y] with x = 0..1 and y = 0..3 are the same

– all elements mvILPredLX[x, y] with x = 2..3 and y = 0..3 are the same

– Otherwise, partitionSize is set equal to 8x8.

2. When slice_type is equal to EB and partitionSize is not equal to 8x8, the variable partPredModeA is derived
by

partPredModeA = ((refIdxILPredL1[0, 0] >= 0) ? 2 : 0) +
 ((refIdxILPredL0[0, 0] >= 0) ? 1 : 0) (G-262)

3. When slice_type is equal to EB and partitionSize is equal to 16x8 or 8x16, the variable partPredModeB is
derived by

partPredModeB = ((refIdxILPredL1[1, 1] >= 0) ? 2 : 0) +
 ((refIdxILPredL0[1, 1] >= 0) ? 1 : 0) (G-263)

4. Depending on slice_type, partitionSize, partPredModeA (when applicable), and partPredModeB (when
applicable), the macroblock type predictor mbTypeILPred is derived as specified in Table G-7.

All elements subMbTypeILPred[mbPartIdx] of the list subMbTypeILPred with mbPartIdx = 0..3 are marked as
"unspecified".

When mbTypeILPred is equal to P_8x8 or B_8x8, each element subMbTypeILPred[mbPartIdx] with mbPartIdx = 0..3
is modified by applying the following ordered steps:

1. The coordinate offset (xO, yO) is set equal to (2 * (mbPartIdx % 2), 2 * (mbPartIdx / 2)).

 Rec. ITU-T H.264 (03/2009) 511

2. The variable subPartitionSize is derived as follows.

– If for X = 0..maxX, all elements mvILPredLX[xO + xS, yO + yS] with xS, yS = 0..1 are the same,
subPartitionSize is set equal to 8x8.

– Otherwise, if for X = 0..maxX, mvILPredLX[xO, yO] is equal to mvILPredLX[xO + 1, yO] and
mvILPredLX[xO, yO + 1] is equal to mvILPredLX[xO + 1, yO + 1], subPartitionSize is set equal
to 8x4.

– Otherwise, if for X = 0..maxX, mvILPredLX[xO, yO] is equal to mvILPredLX[xO, yO + 1] and
mvILPredLX[xO + 1, yO] is equal to mvILPredLX[xO + 1, yO + 1], subPartitionSize is set equal
to 4x8.

– Otherwise, subPartitionSize is set equal to 4x4.

3. When slice_type is equal to EB, the variable partPredMode is derived by

partPredMode = ((refIdxILPredL1[xO / 2, yO / 2] >= 0) ? 2 : 0) +
 ((refIdxILPredL0[xO / 2, yO / 2] >= 0) ? 1 : 0) (G-264)

4. Depending on slice_type, subPartitionSize, and partPredMode (when applicable), the sub-macroblock type
predictor subMbTypeILPred[mbPartIdx] is derived as specified in Table G-8.

Table G-7 – Macroblock type predictors mbTypeILPred

sl
ic

e_
ty

pe

pa
rt

iti
on

Si
ze

pa
rt

Pr
ed

M
od

eA

pa
rt

Pr
ed

M
od

eB

m
bT

yp
eI

L
Pr

ed

sl
ic

e_
ty

pe

pa
rt

iti
on

Si
ze

pa
rt

Pr
ed

M
od

eA

pa
rt

Pr
ed

M
od

eB

m
bT

yp
eI

L
Pr

ed

EB 16x16 1 na B_L0_16x16 EB 16x8 2 3 B_L1_Bi_16x8

EB 16x16 2 na B_L1_16x16 EB 8x16 2 3 B_L1_Bi_8x16

EB 16x16 3 na B_Bi_16x16 EB 16x8 3 1 B_Bi_L0_16x8

EB 16x8 1 1 B_L0_L0_16x8 EB 8x16 3 1 B_Bi_L0_8x16

EB 8x16 1 1 B_L0_L0_8x16 EB 16x8 3 2 B_Bi_L1_16x8

EB 16x8 2 2 B_L1_L1_16x8 EB 8x16 3 2 B_Bi_L1_8x16

EB 8x16 2 2 B_L1_L1_8x16 EB 16x8 3 3 B_Bi_Bi_16x8

EB 16x8 1 2 B_L0_L1_16x8 EB 8x16 3 3 B_Bi_Bi_8x16

EB 8x16 1 2 B_L0_L1_8x16 EB 8x8 na na B_8x8

EB 16x8 2 1 B_L1_L0_16x8 EP 16x16 na na P_L0_16x16

EB 8x16 2 1 B_L1_L0_8x16 EP 16x8 na na P_L0_L0_16x8

EB 16x8 1 3 B_L0_Bi_16x8 EP 8x16 na na P_L0_L0_8x16

EB 8x16 1 3 B_L0_Bi_8x16 EP 8x8 na na P_8x8

512 Rec. ITU-T H.264 (03/2009)

Table G-8 – Sub-macroblock type predictors subMbTypeILPred[mbPartIdx]

sl
ic

e_
ty

pe

su
bP

ar
tit

io
nS

iz
e

pa
rt

Pr
ed

M
od

e

su
bM

bT
yp

eI
L

Pr
ed

[m

bP
ar

tI
dx

]

sl
ic

e_
ty

pe

su
bP

ar
tit

io
nS

iz
e

pa
rt

Pr
ed

M
od

e

su
bM

bT
yp

eI
L

Pr
ed

[m

bP
ar

tI
dx

]

EB 8x8 1 B_L0_8x8 EB 4x8 3 B_Bi_4x8

EB 8x8 2 B_L1_8x8 EB 4x4 1 B_L0_4x4

EB 8x8 3 B_Bi_8x8 EB 4x4 2 B_L1_4x4

EB 8x4 1 B_L0_8x4 EB 4x4 3 B_Bi_4x4

EB 8x4 2 B_L1_8x4 EP 8x8 na P_L0_8x8

EB 8x4 3 B_Bi_8x4 EP 8x4 na P_L0_8x4

EB 4x8 1 B_L0_4x8 EP 4x8 na P_L0_4x8

EB 4x8 2 B_L1_4x8 EP 4x4 na P_L0_4x4

G.8.6.2 Resampling process for intra samples

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a one-dimensional array refLayerSliceIdc with RefLayerPicSizeInMbs elements specifying slice identifications for
the macroblocks of the reference layer representation,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying macroblock types for
the macroblocks of the reference layer representation,

– a (RefLayerPicWidthInSamplesL)x(RefLayerPicHeightInSamplesL) array refLayerPicSamplesL of luma samples
for the reference layer representation,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamplesL of luma samples,

– when ChromaArrayType is not equal to 0, two (RefLayerPicWidthInSamplesC)x(RefLayerPicHeightInSamplesC)
arrays refLayerPicSamplesCb and refLayerPicSamplesCr of chroma samples for the reference layer representation,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picSamplesCb
and picSamplesCr of chroma samples.

Outputs of this process are

– a modified version of the array picSamplesL of luma samples,

– when ChromaArrayType is not equal to 0, modified versions of the arrays picSamplesCb and picSamplesCr of
chroma samples.

The resampling process for intra samples of a macroblock colour component as specified in subclause G.8.6.2.1 is
invoked with chromaFlag equal to 0, mbW equal to 16, mbH equal to 16, fieldMbFlag, refLayerPicSamplesL,
refLayerSliceIdc, refLayerFieldMbFlag, and refLayerMbType as the inputs and the output is the 16x16 array mbPredL
of Intra_Base prediction samples for the luma component of the current macroblock.

When ChromaArrayType is not equal to 0, for CX being replaced by Cb and Cr, the resampling process for intra
samples of a macroblock colour component as specified in subclause G.8.6.2.1 is invoked with chromaFlag equal to 1,
mbW equal to MbWidthC, mbH equal to MbHeightC, fieldMbFlag, refLayerPicSamplesCX, refLayerSliceIdc,

 Rec. ITU-T H.264 (03/2009) 513

refLayerFieldMbFlag, and refLayerMbType as the inputs and the output is the (MbWidthC)x(MbHeightC) array
mbPredCX of Intra_Base prediction samples for the CX component of the current macroblock.

The picture sample array construction process as specified in subclause G.8.5.4.1 is invoked with fieldMbFlag,
mbPredL, picSamplesL and, when ChromaArrayType is not equal to 0, mbPredCb, mbPredCr, picSamplesCb, and
picSamplesCr as the inputs and the outputs are a modified version of picSamplesL and, when ChromaArrayType is not
equal to 0, modified versions of picSamplesCb, and picSamplesCr.

G.8.6.2.1 Resampling process for intra samples of a macroblock colour component

Inputs to this process are

– a variable chromaFlag specifying whether the luma or a chroma component is subject to the resampling process,

– two variables mbW and mbH specifying the width and height, respectively, of a macroblock for the considered
colour component,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– an array refLayerPicSamples, which is a (RefLayerPicWidthInSamplesL)x(RefLayerPicHeightInSamplesL) array
containing constructed intra luma sample values for the reference layer representation when chromaFlag is equal
to 0 or a (RefLayerPicWidthInSamplesC)x(RefLayerPicHeightInSamplesC) array containing constructed intra
chroma sample values for the reference layer representation when chromaFlag is equal to 1,

– a one-dimensional array refLayerSliceIdc with RefLayerPicSizeInMbs elements specifying slice identifications for
the macroblocks of the reference layer representation,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying macroblock types for
the macroblocks of the reference layer representation.

Output of this process is an (mbW)x(mbH) array mbPred of Intra_Base prediction samples.

The variable botFieldFlag is derived as follows.

– If RefLayerFrameMbsOnlyFlag is equal to 1, botFieldFlag is set equal to 0.

– Otherwise, if field_pic_flag is equal to 1, botFieldFlag is set equal to bottom_field_flag.

– Otherwise, if RefLayerFieldPicFlag is equal to 1, botFieldFlag is set equal to RefLayerBottomFieldFlag.

– Otherwise, if fieldMbFlag is equal to 1, botFieldFlag is set equal to (CurrMbAddr % 2).

– Otherwise, botFieldFlag is set equal to 0.

The variable frameBasedResamplingFlag is derived as follows.

– If all of the following conditions are true, frameBasedResamplingFlag is set equal to 1:

– RefLayerFrameMbsOnlyFlag is equal to 1,

– frame_mbs_only_flag is equal to 1.

– Otherwise, frameBasedResamplingFlag is set equal to 0.

The variable topAndBotResamplingFlag is derived as follows.

– If all of the following conditions are true, topAndBotResamplingFlag is set equal to 1:

– RefLayerFrameMbsOnlyFlag is equal to 0,

– RefLayerFieldPicFlag is equal to 0,

– frame_mbs_only_flag is equal to 0,

– fieldMbFlag is equal to 0.

– Otherwise, topAndBotResamplingFlag is set equal to 0.

514 Rec. ITU-T H.264 (03/2009)

The variable botFieldFrameMbsOnlyRefFlag is derived as follows.

– If RefLayerFrameMbsOnlyFlag is equal to 1, fieldMbFlag is equal to 1, and any of the following conditions is
true, botFieldFrameMbsOnlyRefFlag is set equal to 1:

– field_pic_flag is equal to 1 and bottom_field_flag is equal to 1,

– field_pic_flag is equal to 0 and (CurrMbAddr % 2) is equal to 1,

– Otherwise, botFieldFrameMbsOnlyRefFlag is set equal to 0.

The variable filteringModeFlag is derived as follows.

– If chromaFlag is equal to 0 or ChromaArrayType is equal to 3, filteringModeFlag is set equal to 0.

– Otherwise (chromaFlag is equal to 1 and ChromaArrayType is not equal to 3), filteringModeFlag is set equal to 1.

The array predArray is derived as specified in the following.

– If botFieldFrameMbsOnlyRefFlag is equal to 1, the following ordered steps are specified:

1. The reference layer sample array construction process prior to intra resampling as specified in
subclause G.8.6.2.2 is invoked with chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag,
refLayerPicSamples, refLayerSliceIdc, refLayerFieldMbFlag, and refLayerMbType as the inputs and the
outputs are the variables refArrayW, refArrayH, the array refSampleArray of reference layer sample values,
and the variables xOffset and yOffset.

2. The variable yBorder is set equal to (2 − chromaFlag).

3. The interpolation process for Intra_Base prediction as specified in subclause G.8.6.2.3 is invoked with
filteringModeFlag, chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag, fldPrdInFrmMbFlag equal to 0,
yBorder, refArrayW, refArrayH, refSampleArray, xOffset, and yOffset as the inputs and the output is the
(mbW)x(mbH + 2 * yBorder) array topFldPredArray of top field prediction samples.

4. The vertical interpolation process for Intra_Base prediction as specified in subclause G.8.6.2.4 is invoked with
filteringModeFlag, chromaFlag, mbW, mbH, botFieldFlag, yBorder, frameMbFlag equal to 0, and
topFldPredArray as the inputs and the output is the (mbW)x(mbH) array mbPred of Intra_Base prediction
samples.

– Otherwise, if frameBasedResamplingFlag is equal to 1 or fieldMbFlag is equal to 1, the following ordered steps
are specified:

1. The reference layer sample array construction process prior to intra resampling as specified in
subclause G.8.6.2.2 is invoked with chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag,
refLayerPicSamples, refLayerSliceIdc, refLayerFieldMbFlag, and refLayerMbType as the inputs and the
outputs are the variables refArrayW, refArrayH, the array refSampleArray of reference layer sample values,
and the variables xOffset and yOffset.

2. The interpolation process for Intra_Base prediction as specified in subclause G.8.6.2.3 is invoked with
filteringModeFlag, chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag, fldPrdInFrmMbFlag equal to 0,
yBorder equal to 0, refArrayW, refArrayH, refSampleArray, xOffset, and yOffset as the inputs and the output
is the (mbW)x(mbH) array mbPred of Intra_Base prediction samples.

– Otherwise, if topAndBotResamplingFlag is equal to 0, the following ordered steps are specified:

1. The reference layer sample array construction process prior to intra resampling as specified in
subclause G.8.6.2.2 is invoked with chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag,
refLayerPicSamples, refLayerSliceIdc, refLayerFieldMbFlag, and refLayerMbType as the inputs and the
outputs are the variables refArrayW, refArrayH, the array refSampleArray of reference layer sample values,
and the variables xOffset and yOffset.

2. The variable yBorder is set equal to (2 − chromaFlag).

3. The interpolation process for Intra_Base prediction as specified in subclause G.8.6.2.3 is invoked with
filteringModeFlag, chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag, fldPrdInFrmMbFlag equal to 1,
yBorder, refArrayW, refArrayH, refSampleArray, xOffset, and yOffset as the inputs and the output is the
(mbW)x(mbH / 2 + 2* yBorder) array fieldPredArray of field prediction samples.

4. The vertical interpolation process for Intra_Base prediction as specified in subclause G.8.6.2.4 is invoked with
filteringModeFlag, chromaFlag, mbW, mbH, botFieldFlag, yBorder, frameMbFlag equal to 1, and

 Rec. ITU-T H.264 (03/2009) 515

fieldPredArray as the inputs and the output is the (mbW)x(mbH) array mbPred of Intra_Base prediction
samples.

– Otherwise (topAndBotResamplingFlag is equal to 1), the following ordered steps are specified:

1. The reference layer sample array construction process prior to intra resampling as specified in
subclause G.8.6.2.2 is invoked with chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag equal to 0,
refLayerPicSamples, refLayerSliceIdc, refLayerFieldMbFlag, and refLayerMbType as the inputs and the
outputs are the variables refArrayTopW, refArrayTopH, the array refSampleArrayTop of top field reference
layer sample values, and the variables xOffsetTop and yOffsetTop.

2. The interpolation process for Intra_Base prediction as specified in subclause G.8.6.2.3 is invoked with
filteringModeFlag, chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag equal to 0, fldPrdInFrmMbFlag equal
to 1, yBorder equal to 0, refArrayTopW, refArrayTopH, refSampleArrayTop, xOffsetTop, and yOffsetTop as
the inputs and the output is the (mbW)x(mbH / 2) array topFieldPredArray of top field prediction samples.

3. The reference layer sample array construction process prior to intra resampling as specified in
subclause G.8.6.2.2 is invoked with chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag equal to 1,
refLayerPicSamples, refLayerSliceIdc, refLayerFieldMbFlag, and refLayerMbType as the inputs and the
outputs are the variables refArrayBotW, refArrayBotH, the array refSampleArrayBot of bottom field reference
layer sample values, and the variables xOffsetBot and yOffsetBot.

4. The interpolation process for Intra_Base prediction as specified in subclause G.8.6.2.3 is invoked with
filteringModeFlag, chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag equal to 1, fldPrdInFrmMbFlag equal
to 1, yBorder equal to 0, refArrayBotW, refArrayBotH, refSampleArrayBot, xOffsetBot, and yOffsetBot as
the inputs and the output is the (mbW)x(mbH / 2) array botFieldPredArray of bottom field prediction samples.

5. Each sample predArray[x, y] with x = 0..(mbW − 1) and y = 0..(mbH − 1) of the array mbPred of Intra_Base
prediction samples is derived by

mbPred[x, y] = (((y % 2) = = 0) ? topFieldPredArray[x, y >> 1]
 : botFieldPredArray[x, y >> 1]) (G-265)

G.8.6.2.2 Reference layer sample array construction process prior to intra resampling

Inputs to this process are

– a variable chromaFlag specifying whether the luma or a chroma component is subject to the resampling process,

– two variables mbW and mbH specifying the width and height, respectively, of a macroblock for the considered
colour component,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable botFieldFlag specifying whether a top or a bottom field is subject to the resampling process (when
RefLayerFrameMbsOnlyFlag is equal to 0 or frame_mbs_only_flag is equal to 0),

– an array refLayerPicSamples, which is a (RefLayerPicWidthInSamplesL)x(RefLayerPicHeightInSamplesL) array
containing constructed intra luma sample values for the reference layer representation when chromaFlag is equal
to 0 or a (RefLayerPicWidthInSamplesC)x(RefLayerPicHeightInSamplesC) array containing constructed intra
chroma sample values for the reference layer representation when chromaFlag is equal to 1,

– a one-dimensional array refLayerSliceIdc with RefLayerPicSizeInMbs elements specifying slice identifications for
the macroblocks of the reference layer representation,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying macroblock types for
the macroblocks of the reference layer representation.

Outputs of this process are

– two variables refArrayW and refArrayH specifying the width and height, respectively, of the constructed array of
reference layer sample values,

– a (refArrayW)x(refArrayH) array refSampleArray of reference layer sample values,

– two variables xOffset and yOffset specifying the x and y coordinate, respectively, of the reference layer sample
location that corresponds to the sample refSampleArray[0, 0] of the array refSampleArray.

516 Rec. ITU-T H.264 (03/2009)

The variables refW, refH, refMbW, refMbH, xOffset, yOffset, refArrayW, refArrayH, xMin, yMin, xMax, yMax,
yRefScale, and yRefAdd are derived as specified in the following ordered steps:

1. The derivation process for reference layer sample locations in resampling as specified in subclause G.6.3 is
invoked with chromaFlag, the sample location (0, 0), fieldMbFlag, and botFieldFlag as the inputs and the
output is the sample location (xRefMin16, yRefMin16) in units of 1/16-th sample.

2. The derivation process for reference layer sample locations in resampling as specified in subclause G.6.3 is
invoked with chromaFlag, the sample location (mbW − 1, mbH − 1), fieldMbFlag, and botFieldFlag as the
inputs and the output is the sample location (xRefMax16, yRefMax16) in units of 1/16-th sample.

3. With Z being replaced by L for chromaFlag equal to 0 and C for chromaFlag equal to 1, the variables refW,
refH, refMbW, and refMbH are derived by

refW = RefLayerPicWidthInSamplesZ (G-266)
refH = RefLayerPicHeightInSamplesZ (G-267)
refMbW = ((chromaFlag = = 0) ? 16 : RefLayerMbWidthC) (G-268)
refMbH = ((chromaFlag = = 0) ? 16 : RefLayerMbHeightC) (G-269)

4. The variables xOffset, yOffset, refArrayW, and refArrayH are derived by

xOffset = (((xRefMin16 − 64) >> 8) << 4) − (refMbW >> 1) (G-270)
yOffset = (((yRefMin16 − 64) >> 8) << 4) − (refMbH >> 1) (G-271)
refArrayW = (((xRefMax16 + 79) >> 8) << 4) + 3 * (refMbW >> 1) − xOffset (G-272)
refArrayH = (((yRefMax16 + 79) >> 8) << 4) + 3 * (refMbH >> 1) − yOffset (G-273)

NOTE 1 – The derived array size might be larger than the array size that is actually required by the interpolation
process for Intra_Base prediction specified in subclause G.8.6.2.3.

5. The variables xMin, yMin, xMax, and yMax are derived by

xMin = (xRefMin16 >> 4) − xOffset (G-274)
yMin = (yRefMin16 >> 4) − yOffset (G-275)
xMax = ((xRefMax16 + 15) >> 4) − xOffset (G-276)
yMax = ((yRefMax16 + 15) >> 4) − yOffset (G-277)

6. The variables yRefScale and yRefAdd are derived as follows.

– If RefLayerFrameMbsOnlyFlag is equal to 1 or RefLayerFieldPicFlag is equal to 1, yRefScale is set
equal to 1 and yRefAdd is set equal to 0.

– Otherwise (RefLayerFrameMbsOnlyFlag is equal to 0 and RefLayerFieldPicFlag is equal to 0),
yRefScale is set equal to 2 and yRefAdd is set equal to botFieldFlag.

The variable refSliceIdcMb is marked as "not available".

When constrained_intra_resampling_flag is equal to 1, the variable y proceeds over the values (yMin + 1)..(yMax − 1)
and for each value of y, the variable x proceeds over the values (xMin + 1)..(xMax − 1), and for each pair (x, y), the
following ordered steps are specified:

1. A reference layer sample location (xRef, yRef) is derived by

xRef = max(0, min(refW − 1, x + xOffset)) (G-278)
yRef = yRefScale * max(0, min(refH / yRefScale − 1, y + yOffset)) + yRefAdd (G-279)

2. The derivation process for reference layer slice and intra macroblock identifications as specified in
subclause G.8.6.2.2.1 is invoked with the reference layer sample location (xRef, yRef), refMbW, refMbH,
refLayerSliceIdc, refLayerFieldMbFlag, and refLayerMbType as the inputs and the outputs are the reference
layer slice identification refSliceIdc and the variable refIntraMbFlag.

3. When refIntraMbFlag is equal to 1 and refSliceIdcMb is marked as "not available", the variable refSliceIdcMb
is marked as "available" and set equal to refSliceIdc.

Each sample refSampleArray[x, y] with x = 0..(refArrayW − 1) and y = 0..(refArrayH − 1) is derived as specified in
the following ordered steps:

1. A reference layer sample location (xRef, yRef) is derived by

xRef = max(0, min(refW − 1, x + xOffset)) (G-280)
yRef = yRefScale * max(0, min(refH / yRefScale − 1, y + yOffset)) + yRefAdd (G-281)

 Rec. ITU-T H.264 (03/2009) 517

2. The derivation process for reference layer slice and intra macroblock identifications as specified in
subclause G.8.6.2.2.1 is invoked with the reference layer sample location (xRef, yRef), refMbW, refMbH,
refLayerSliceIdc, refLayerFieldMbFlag, and refLayerMbType as the inputs and the outputs are the reference
layer slice identification refSliceIdc and the variable refIntraMbFlag.

3. When constrained_intra_resampling_flag is equal to 1, refIntraMbFlag is equal to 1, x is greater than to xMin,
x is less than to xMax, y is greater than to yMin, and y is less than to yMax, it is a requirement of bitstream
conformance that the bitstream shall not contain data that result in refSliceIdc being not equal to
refSliceIdcMb.

NOTE 2 – This constraint specifies that a macroblock cannot be coded with base_mode_flag equal to 1 when it
covers intra-coded macroblocks of more than one slice in the reference layer representation,
constrained_intra_resampling_flag is equal to 1, and either the inferred macroblock type is equal to I_BL or the
conditions for invoking the intra-inter prediction combination process as specified in subclause G.8.4.2.2 are
fulfilled.

4. Depending on refIntraMbFlag, constrained_intra_resampling_flag, and refSliceIdc, the following applies.

– If any of the following conditions is true, the sample refSampleArray[x, y] is marked as "not available
for Intra_Base prediction" and its value is set equal to 0:

– refIntraMbFlag is equal to 0,

– constrained_intra_resampling_flag is equal to 1 and refSliceIdc is not equal to refSliceIdcMb.

– Otherwise, the sample refSampleArray[x, y] is marked as "available for Intra_Base prediction" and its
value is derived by

refSampleArray[x, y] = refLayerPicSamples[xRef, yRef] (G-282)

The construction process for not available sample values prior to intra resampling as specified in subclause G.8.6.2.2.2
is invoked with refMbW, refMbH, refArrayW, refArrayH, refSampleArray, xOffset, and yOffset as the inputs and the
output is a modified version of the sample array refSampleArray.

G.8.6.2.2.1 Derivation process for reference layer slice and intra macroblock identifications

Inputs to this process are

– a reference layer sample location (xRef, yRef) relative to the upper-left sample of the considered colour
component of the reference layer picture,

– two variables refMbW and refMbH specifying the width and height, respectively, of a reference layer macroblock
for the considered colour component,

– a one-dimensional array refLayerSliceIdc with RefLayerPicSizeInMbs elements specifying slice identifications for
the macroblocks of the reference layer representation,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerMbType with RefLayerPicSizeInMbs elements specifying macroblock types for
the macroblocks of the reference layer representation.

Outputs of this process are

– a reference layer slice identification refSliceIdc for the slice that covers the input reference layer sample location,

– a variable refIntraMbFlag specifying whether the reference layer macroblock that covers the input reference layer
sample location is intra coded.

The reference layer macroblock address refMbAddr is derived as follows.

– If RefLayerMbaffFrameFlag is equal to 0, the variable refMbAddr is derived by

refMbAddr = (yRef / refMbH) * RefLayerPicWidthInMbs + (xRef / refMbW) (G-283)

518 Rec. ITU-T H.264 (03/2009)

– Otherwise (RefLayerMbaffFrameFlag is equal to 1), the variable refMbAddr is derived as specified in the
following ordered steps:

1. A variable refMbAddrTop is derived by

refMbAddrTop = 2 * ((yRef / (2 * refMbH)) * RefLayerPicWidthInMbs
 + (xRef / refMbW)) (G-284)

2. Depending on refLayerFieldMbFlag[refMbAddrTop], the variable refMbAddr is derived as follows.

– If refLayerFieldMbFlag[refMbAddrTop] is equal to 0, the variable refMbAddr is derived by

refMbAddr = refMbAddrTop + (yRef % (2 * refMbH)) / refMbH (G-285)

– Otherwise (refLayerFieldMbFlag[refMbAddrTop] is equal to 1), the variable refMbAddr is derived by

refMbAddr = refMbAddrTop + (yRef % 2) (G-286)

The reference layer slice identification refSliceIdc is set equal to refLayerSliceIdc[refMbAddr].

Depending on refLayerMbType[refMbAddr], the variable refIntraMbFlag is derived as follows.

– If refLayerMbType[refMbAddr] is equal to I_4x4, I_8x8, I_16x16, I_PCM, or I_BL, refIntraMbFlag is set equal
to 1.

– Otherwise (refLayerMbType[refMbAddr] is not equal to I_4x4, I_8x8, I_16x16, I_PCM, or I_BL),
refIntraMbFlag is set equal to 0.

G.8.6.2.2.2 Construction process for not available sample values prior to intra resampling

Inputs to this process are

– two variables refMbW and refMbH specifying the width and height, respectively, of a reference layer macroblock
for the considered colour component,

– two variables refArrayW and refArrayH specifying the width and height, respectively, of the array of reference
layer sample values,

– a (refArrayW)x(refArrayH) array refSampleArray of reference layer sample values,

– two variables xOffset and yOffset specifying the x and y coordinates, respectively, of the reference layer sample
location that corresponds to the sample refSampleArray[0, 0] of the array refSampleArray.

Output of this process is a modified version of the array refSampleArray.

For each sample refSampleArray[x, y] with x = (refMbW / 2)..(refArrayW − refMbW / 2 − 1) and
y = (refMbH / 2)..(refArrayH − refMbH / 2 − 1) that is marked as "not available for Intra_Base prediction", the
following ordered steps are specified:

1. The sample location difference (xD, yD) and the variable yA are derived by

xR = (x + xOffset) % refMbW (G-287)
yR = (y + yOffset) % refMbH (G-288)

xD = ((xR >= refMbW / 2) ? (xR − refMbW) : (xR + 1)) (G-289)
yD = ((yR >= refMbH / 2) ? (yR − refMbH) : (yR + 1)) (G-290)

yA = yD − (refMbH / 2 + 1) * Sign(yD) (G-291)

2. When any of the following conditions is true, yD is set equal to yA:

– the sample refSampleArray[x, y − yD] is marked as "not available for Intra_Base prediction", the
sample refSampleArray[x, y − yA] is marked as "available for Intra_Base prediction", and the sample
refSampleArray[x − xD, y] is marked as "available for Intra_Base prediction",

– all of the samples refSampleArray[x − xD, y], refSampleArray[x, y − yD], and
refSampleArray[x − xD, y − yD] are marked as "not available for Intra_Base prediction" and any of the
samples refSampleArray[x, y − yA] and refSampleArray[x − xD, y − yA] is marked as "available for
Intra_base prediction",

– Abs(yA) is less than Abs(yD) and any of the following conditions is true:

 Rec. ITU-T H.264 (03/2009) 519

– both samples refSampleArray[x, y − yD] and refSampleArray[x, y − yA] are marked as
"available for Intra_Base prediction",

– any of the samples refSampleArray[x, y − yD] and refSampleArray[x − xD, y − yD] is marked as
"available for Intra_Base prediction", any of the samples refSampleArray[x, y − yA] and
refSampleArray[x − xD, y − yA] is marked as "available for Intra_Base prediction", and the
sample refSampleArray[x − xD, y] is marked as "not available for Intra_Base prediction".

NOTE – The variable yD is never set equal to yA when RefLayerFrameMbsOnlyFlag is equal to 1 or
RefLayerFieldPicFlag is equal to 1.

3. The sample value refSampleArray[x, y] is derived as follows.

– If the sample refSampleArray[x − xD, y] and the sample refSampleArray[x, y − yD] are marked as
"available for Intra_Base prediction", the following ordered steps are specified:

a. A variable cornerSampleAvailableFlag is derived as follows.

– If the sample refSampleArray[x − xD, y − yD] is marked as "available for Intra_Base
prediction", the variable cornerSampleAvailableFlag is set equal to 1.

– Otherwise (the sample refSampleArray[x − xD, y − yD] is marked as "not available for
Intra_Base prediction"), the variable cornerSampleAvailable is set equal to 0.

b. The diagonal construction process for not available sample values as specified in
subclause G.8.6.2.2.2.1 is invoked with refArrayW, refArrayH, refSampleArray, the sample location
difference (xD, yD), the sample location (x, y), and the variable cornerSampleAvailableFlag as
the inputs and the output is the sample array refSampleArray with a modified sample value at
sample location (x, y).

– Otherwise (the sample refSampleArray[x − xD, y] or the sample refSampleArray[x, y − yD] is marked
as "not available for Intra_Base prediction"), the following applies.

– If the sample refSampleArray[x − xD, y] is marked as "available for Intra_Base prediction", the
sample value refSampleArray[x, y] is set equal to refSampleArray[x − xD, y].

– Otherwise, if the sample refSampleArray[x, y − yD] is marked as "available for Intra_Base
prediction", the sample value refSampleArray[x, y] is set equal to refSampleArray[x, y − yD].

– Otherwise, if the sample refSampleArray[x − xD, y − yD] is marked as "available for Intra_Base
prediction", the sample value refSampleArray[x, y] is set equal to
refSampleArray[x − xD, y − yD].

– Otherwise (the samples refSampleArray[x − xD, y], refSampleArray[x, y − yD], and
refSampleArray[x − xD, y − yD] are marked as "not available for Intra_Base prediction"), the
sample value refSampleArray[x, y] is not modified.

All samples refSampleArray[x, y] with x = 0..(refArrayW − 1) and y = 0..(refArrayH − 1) are marked as "available for
Intra_Base prediction".

G.8.6.2.2.2.1 Diagonal construction process for not available sample values

Inputs to this process are

– two variables refArrayW and refArrayH specifying the width and height, respectively, of the array of reference
layer sample values,

– a (refArrayW)x(refArrayH) array p of reference layer sample values,

– a sample location difference (xD, yD),

– a sample location (x, y) inside the reference layer sample array refSampleArray,

– a variable cornerSampleAvailableFlag.

Output of this process is the sample array p with a modified sample value at sample location (x, y).

The variables diffHorVer and sgnXY are derived by

diffHorVer = Abs(xD) − Abs(yD) (G-292)
sgnXY = Sign(xD * yD) (G-293)

520 Rec. ITU-T H.264 (03/2009)

When cornerSampleAvailableFlag is equal to 0, the following ordered steps are specified:

1. The variable cornerSample is set equal to p[x − xD, y − yD].

2. The sample location (xC, yC) is set equal to (x − xD + Sign(xD), y − yD + Sign(yD)) and the sample
value p[x − xD, y − yD] is modified by

p[x − xD, y − yD] = (p[x − xD, yC] + p[xC, y − yD] + 1) >> 1 (G-294)

The sample value p[x, y] is derived as follows.

– If diffHorVer is greater than 0, the sample location (xC, yC) is set equal to (x − sgnXY * yD, y − yD) and the
sample value p[x, y] is derived by

p[x, y] = (p[xC − 1, yC] + 2 * p[xC, yC] + p[xC + 1, yC] + 2) >> 2 (G-295)

– Otherwise, if diffHorVer is less than 0, the sample location (xC, yC) is set equal to (x − xD, y − sgnXY * xD)
and the sample value p[x, y] is derived by

p[x, y] = (p[xC, yC − 1] + 2 * p[xC, yC] + p[xC, yC + 1] + 2) >> 2 (G-296)

– Otherwise (diffVerHor is equal to 0), the sample location (xC, yC) is set equal to
(x − xD +Sign(xD), y − yD + Sign(yD)) and the sample value p[x, y] is derived by

p[x, y] = (p[xC, y − yD] + 2 * p[x − xD, y − yD] + p[x − xD, yC] + 2) >> 2 (G-297)

When cornerSampleAvailableFlag is equal to 0, the sample value p[x − xD, y − yD] is set equal to cornerSample.

G.8.6.2.3 Interpolation process for Intra_Base prediction

Inputs to this process are

– a variable filteringModeFlag specifying the interpolation method,

– a variable chromaFlag specifying whether the luma or a chroma component is subject to the resampling process,

– two variables mbW and mbH specifying the width and height, respectively, of a macroblock for the considered
colour component,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable botFieldFlag specifying whether a top or a bottom field is subject to the resampling process (when
RefLayerFrameMbsOnlyFlag is equal to 0 or frame_mbs_only_flag is equal to 0),

– a variable fldPrdInFrmMbFlag specifying whether field prediction for a frame macroblock is applied,

– a variable yBorder specifying the vertical border for the output sample array predSamples,

– two variables refArrayW and refArrayH specifying the width and height, respectively, of the array of reference
layer sample values,

– a (refArrayW)x(refArrayH) array refSampleArray of reference layer sample values,

– two variables xOffset and yOffset specifying the x and y coordinate, respectively, of the reference layer sample
location that corresponds to the sample refSampleArray[0, 0] of the array refSampleArray.

Output of this process is an (mbW)x(mbH / (1 + fldPrdInFrmMbFlag) + 2 * yBorder) array predArray of interpolated
sample values.

Table G-9 specifies the filter coefficients eF[p, x] with p = 0..15 and x = 0..3 of the luma interpolation filter eF for
resampling in Intra_Base prediction.

 Rec. ITU-T H.264 (03/2009) 521

Table G-9 – 16-phase luma interpolation filter for resampling in Intra_Base prediction

interpolation filter coefficients phase p
eF[p, 0] eF[p, 1] eF[p, 2] eF[p, 3]

0 0 32 0 0
1 −1 32 2 −1
2 −2 31 4 −1
3 −3 30 6 −1
4 −3 28 8 −1
5 −4 26 11 −1
6 −4 24 14 −2
7 −3 22 16 −3
8 −3 19 19 −3
9 −3 16 22 −3

10 −2 14 24 −4
11 −1 11 26 −4
12 −1 8 28 −3
13 −1 6 30 −3
14 −1 4 31 −2
15 −1 2 32 −1

Let tempArray be a (refArrayW)x(mbH / (1 + fldPrdInFrmMbFlag) + 2 * yBorder) array of samples. Each sample
tempArray[x, y] with x = 0..(refArrayW − 1) and y = 0..(mbH / (1 + fldPrdInFrmMbFlag) + 2 * yBorder − 1) is
derived as specified in the following ordered steps:

1. The variable yP is derived by

yP = (y − yBorder) * (1 + fldPrdInFrmMbFlag) + botFieldFlag (G-298)

2. The derivation process for reference layer sample locations in resampling as specified in subclause G.6.3 is
invoked with chromaFlag, the sample location (0, yP), fieldMbFlag, and botFieldFlag as the inputs and the
output is the sample location (xRef16, yRef16) in units of 1/16-th sample.
NOTE 1 – In this invocation of the process in subclause G.6.3, only the vertical component yRef16 of the sample location
needs to be derived.

3. The variables yRef and yPhase are derived by

yRef = (yRef16 >> 4) − yOffset (G-299)
yPhase = (yRef16 − 16 * yOffset) % 16 (G-300)

4. Depending on filteringModeFlag, the sample value tempArray[x, y] is derived as follows.

– If filteringModeFlag is equal to 0, the sample value tempArray[x, y] is derived by

tempArray[x, y] = eF[yPhase, 0] * refSampleArray[x, yRef − 1] +
 eF[yPhase, 1] * refSampleArray[x, yRef] +
 eF[yPhase, 2] * refSampleArray[x, yRef + 1] + (G-301)
 eF[yPhase, 3] * refSampleArray[x, yRef + 2]

– Otherwise (filteringModeFlag is equal to 1), the sample value tempArray[x, y] is derived by

tempArray[x, y] = (16 − yPhase) * refSampleArray[x, yRef] +
 yPhase * refSampleArray[x, yRef + 1] (G-302)

Each sample predArray[x, y] with x = 0..(mbW − 1) and y = 0..(mbH / (1 + fldPrdInFrmMbFlag) + 2 * yBorder − 1)
is derived as specified in the following ordered steps:

1. The derivation process for reference layer sample locations in resampling as specified in subclause G.6.3 is
invoked with chromaFlag, the sample location (x, 0), fieldMbFlag, and botFieldFlag as the inputs and the
output is the sample location (xRef16, yRef16) in units of 1/16-th sample.
NOTE 2 – In this invocation of the process in subclause G.6.3, only the horizontal component xRef16 of the sample
location needs to be derived.

522 Rec. ITU-T H.264 (03/2009)

2. The variables xRef and xPhase are derived by

xRef = (xRef16 >> 4) − xOffset (G-303)
xPhase = (xRef16 − 16 * xOffset) % 16 (G-304)

3. Depending on filteringModeFlag, and with Clip1 being replaced by Clip1Y for chromaFlag equal to 0 and
Clip1C for chromaFlag equal to 1, the sample value predArray[x, y] is derived as follows.

– If filteringModeFlag is equal to 0, the sample value tempArray[x, y] is derived by

predArray[x, y] = Clip1((eF[xPhase, 0] * tempArray[xRef − 1, y] +
 eF[xPhase, 1] * tempArray[xRef , y] +
 eF[xPhase, 2] * tempArray[xRef + 1, y] + (G-305)
 eF[xPhase, 3] * tempArray[xRef + 2, y] + 512) >> 10)

– Otherwise (filteringModeFlag is equal to 1), the sample value tempArray[x, y] is derived by

predArray[x, y] = ((16 − xPhase) * tempArray[xRef, y] +
 xPhase * tempArray[xRef + 1, y] + 128) >> 8 (G-306)

G.8.6.2.4 Vertical interpolation process for Intra_Base prediction

Inputs to this process are

– a variable filteringModeFlag specifying the interpolation method,

– a variable chromaFlag specifying whether the luma or a chroma component is subject to the resampling process,

– two variables mbW and mbH specifying the width and height, respectively, of a macroblock for the considered
colour component,

– a variable botFieldFlag specifying whether the sample array fieldPredArray contains interpolated samples for the
top or bottom field,

– a variable yBorder specifying the vertical border for the sample array fieldPredArray,

– a variable frameMbFlag specifying whether the current macroblock is a frame or a field macroblock,

– an (mbW)x(mbH / (1 + frameMbFlag) + 2 * yBorder) array fieldPredArray of sample values.

Output of this process is an (mbW)x(mbH) array predArray of interpolated sample values.

Each sample predArray[x, y] with x = 0..(mbW − 1) and y = 0..(mbH − 1) is derived as follows.

– If frameMbFlag is equal to 1 and (y % 2) is equal to botFieldFlag, the sample value predArray[x, y] is derived
by

predArray[x, y] = fieldPredArray[x, (y >> 1) + yBorder] (G-307)

– Otherwise (frameMbFlag is equal to 0 or (y % 2) is not equal to botFieldFlag), the following ordered steps are
specified:

1. The variable yFld is derived by

yFld = (y >> frameMbFlag) + yBorder − botFieldFlag (G-308)

2. Depending on filteringModeFlag, and with Clip1 being replaced by Clip1Y for chromaFlag equal to 0 and
Clip1C for chromaFlag equal to 1, the sample value predArray[x, y] is derived as follows.

– If filteringModeFlag is equal to 0, the sample value predArray[x, y] is derived by

predArray[x, y] = Clip1((19 * (fieldPredArray[x, yFld] +
 fieldPredArray[x, yFld + 1]) −
 3 * (fieldPredArray[x, yFld − 1] +
 fieldPredArray[x, yFld + 2]) + 16) >> 5) (G-309)

– Otherwise (filteringModeFlag is equal to 1), the sample value predArray[x, y] is derived by

predArray[x, y] = (fieldPredArray[x, yFld] +
 fieldPredArray[x, yFld + 1] + 1) >> 1 (G-310)

 Rec. ITU-T H.264 (03/2009) 523

G.8.6.2.5 Derivation process for variables related to inter-layer intra prediction

This subclause is only invoked when no_inter_layer_pred_flag is equal to 0.

Inputs to this subclause are

– a variable currDQId,

– a variable sliceConstraintFlag,

– when sliceConstraintFlag is equal to 1, a slice currSlice.

Outputs of this subclause are

– a variable numILIntraPredSamples,

– a variable numRefLayerILIntraPredMbs.

Unless stated otherwise, all syntax elements and derived upper-case variables that are referred to inside this
subclause are syntax elements and derived upper case variables for the layer representation with DQId equal to
currDQId.

Inside this subclause, the collective terms currentVars and refLayerVars are specified as follows.

– If SpatialResolutionChangeFlag is equal to 1, the following applies.

– currentVars is the collective term currentVars after completion of the base decoding process for layer
representations with resolution change as specified in subclause G.8.1.3.2 for the layer representation with
DQId equal to currDQId,

– refLayerVars is the collective term refLayerVars after completion of the base decoding process for layer
representations with resolution change as specified in subclause G.8.1.3.2 for the layer representation with
DQId equal to currDQId.

– Otherwise (SpatialResolutionChangeFlag is equal to 0), the following applies.

– currentVars is the collective term currentVars after completion of the base decoding process for layer
representations without resolution change as specified in subclause G.8.1.3.1 for the layer representation with
DQId equal to currDQId,

– refLayerVars is of the collective term currentVars before invoking the base decoding process for layer
representations without resolution change as specified in subclause G.8.1.3.1 for the layer representation with
DQId equal to currDQId.

Inside this subclause, the arrays of the collective term currentVars are referred to by their names as specified in
subclause G.8.1.2.1.

Inside this subclause, the arrays fieldMbFlag and mbType of the collective term refLayerVars are referred to as
refLayerFieldMbFlag and refLayerMbType, respectively.

Let currILIntraPredFlag be a (PicWidthInSamplesL)x(PicHeightInSamplesL) array and let refILIntraPredFlag be a
one-dimensional array with RefLayerPicSizeInMbs elements. All elements of the arrays numILIntraPred and
refILIntraPredFlag are initially set equal to 0.

The variable yC proceeds over the values 0..(PicWidthInSamplesL − 1). For each value of yC, the variable xC proceeds
over the values 0..(PicHeightInSamplesL − 1). For each combination of the values yC and xC, the following ordered
steps are specified:

1. The variable mbAddr is set equal to the address of the macroblock that contains the luma sample at location
(xC, yC) relative to the upper-left sample of the layer picture.

2. The variable useFlag is derived as follows.

– If sliceConstraintFlag is equal to 0 or the slice currSlice contains the macroblock with address mbAddr,
useFlag is set equal to 1.

– Otherwise (sliceConstraintFlag is equal to 1 and the slice currSlice does not contain the macroblock with
address mbAddr), useFlag is set equal to 1.

524 Rec. ITU-T H.264 (03/2009)

3. When useFlag is equal to 1, depending on SpatialResolutionChangeFlag, the following applies.

– If SpatialResolutionChangeFlag is equal to 0, the following ordered steps are specified:

a. The array element currILIntraPredFlag[xC, yC] is derived as follows.

– If mbType[mbAddr] is equal to I_BL, currILIntraPredFlag[xC, yC] is set equal to 1.

– Otherwise (mbType[mbAddr] is not equal to I_BL), currILIntraPredFlag[xC, yC] is set
equal to 0.

b. When currILIntraPredFlag[xC, yC] is equal to 1, the following ordered steps are specified:

i. The variable refMbAddr is derived as specified in subclause G.8.1.2.2 with mbAddr being the
value of mbAddr derived in step 1 of this subclause.

ii. The array element refILIntraPredFlag[refMbAddr] is set equal to 1.

iii. When refLayerMbType[refMbAddr] is equal to I_16x16, I_8x8, or I_4x4, let setRefIntraMbs
be the set of macroblocks that contain luma or chroma samples that are directly (by the
invocation of subclause G.8.3.2 for the macroblock with address refMbAddr) or indirectly (by
multiple invocations of subclause G.8.3.2 for macroblocks with mbAddr less than or equal to
refMbAddr) used for construction of the intra prediction signal of the macroblock with address
refMbAddr in the layer representation with DQId equal to ref_layer_dq_id.

iv. For refIntraMbAddr proceeding over the macroblock addresses for the macroblocks of the set
setRefIntraMbs, refILIntraPredFlag[refIntraMbAddr] is set equal to 1.

– Otherwise (SpatialResolutionChangeFlag is equal to 1), the following ordered steps are specified:

a. When RestrictedSpatialResolutionFlag is equal to 0, MbaffFrameFlag is equal to 0,
RefLayerMbaffFrameFlag is equal to 0, and base_mode_flag for the macroblock with address
mbAddr is equal to 1, the derivation process for reference layer macroblocks as specified in
subclause G.6.1 is invoked with (xC % 16, yC % 16), fieldMbFlag, refLayerFieldMbFlag, and
refLayerMbType as the inputs and the outputs are assigned to mbAddrRefLayer and (xRef, yRef).

b. The element currILIntraPredFlag[xC, yC] is derived as follows.

– If any of the following conditions is true, currILIntraPredFlag[xC, yC] is set equal to 1:

– mbType[mbAddr] is equal to I_BL,

– RestrictedSpatialResolutionFlag is equal to 0, MbaffFrameFlag is equal to 0,
RefLayerMbaffFrameFlag is equal to 0, base_mode_flag for the macroblock with address
mbAddr is equal to 1, and refLayerMbType[mbAddrRefLayer] is equal to I_PCM,
I_16x16, I_8x8, I_4x4, or I_BL.

– Otherwise, currILIntraPredFlag[xC, yC] is set equal to 0.

c. When currILIntraPredFlag[xC, yC] is equal to 1, the following ordered steps are specified:

i. Let setOfRefSamples be the set of reference layer luma sample locations (xR, yR) of the luma
sample values that are used in the filtering processes specified in subclause G.8.6.2.3 and,
when applicable, subclause G.8.6.2.4 for deriving the inter-layer intra prediction sample for the
luma sample at location (xC, yC) relative to the upper-left luma sample of the layer picture.

ii. For each of the reference layer luma sample locations (xR, yR) of the set setOfRefSamples
that correspond to luma samples marked "available for Intra_Base prediction" in the invocation
of subclause G.8.6.2.2 for the macroblock with address mbAddr of the layer representation
with DQId equal to currDQId, the following ordered steps are specified:

(1) Let refMbAddr be the macroblock address of the macroblock in the layer representation
with DQId equal to ref_layer_dq_id that contains the luma sample at location (xR, yR).

(2) The array element refILIntraPredFlag[refMbAddr] is set equal to 1.

(3) When refLayerMbType[refMbAddr] is equal to I_16x16, I_8x8, or I_4x4, let
setRefIntraMbs be the set of macroblocks that contain luma or chroma samples that are
directly (by the invocation of subclause G.8.3.2 for the macroblock with address
refMbAddr) or indirectly (by multiple invocations of subclause G.8.3.2 for macroblocks
with mbAddr less than or equal to refMbAddr) used for construction of the intra prediction

 Rec. ITU-T H.264 (03/2009) 525

signal of the macroblock with address refMbAddr in the layer representation with DQId
equal to ref_layer_dq_id.

(4) For refIntraMbAddr proceeding over the macroblock addresses for the macroblocks of the
set setRefIntraMbs, refILIntraPredFlag[refIntraMbAddr] is set equal to 1.

The variable numIntraPredSamples is set equal to the number of elements of the
(PicWidthInSamplesL)x(PicHeightInSamplesL) array currILIntraPredFlag that are equal to 1.

NOTE 1 – The variable numIntraPredSamples specifies the number of luma samples in the layer representation with DQId
equal to currDQId (when sliceConstraintFlag is equal to 0) or the slice currSlice (when sliceConstraintFlag is equal to 1)
that are predicted by inter-layer intra prediction.

The variable numRefLayerILIntraPredMbs is set equal to the number of elements of the array refILIntraPredFlag that
are equal to 1.

NOTE 2 – The variable numRefLayerIntraPredMbs specifies the number of intra coded macroblocks in the reference layer
representation that need to be decoded for constructing the inter-layer intra prediction samples of the layer representation
with DQId equal to currDQId (when sliceConstraintFlag is equal to 0) or the slice currSlice (when sliceConstraintFlag is
equal to 1).

G.8.6.3 Resampling process for residual samples

Inputs to this process are

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerCTrafo with RefLayerPicSizeInMbs elements specifying the luma transform
types for the macroblocks of the reference layer representation,

– a (RefLayerPicWidthInSamplesC)x(RefLayerPicHeightInSamplesC) array refLayerPicSamplesL of luma samples
for the reference layer representation,

– a (PicWidthInSamplesL)x(PicHeightInSamplesL) array picSamplesL of luma samples,

– when ChromaArrayType is not equal to 0, two (RefLayerPicWidthInSamplesC)x(RefLayerPicHeightInSamplesC)
arrays refLayerPicSamplesCb and refLayerPicSamplesCr of chroma samples for the reference layer representation,

– when ChromaArrayType is not equal to 0, two (PicWidthInSamplesC)x(PicHeightInSamplesC) arrays picSamplesCb
and picSamplesCr of chroma samples.

Outputs of this process are

– a modified version of the array picSamplesL of luma samples,

– when ChromaArrayType is not equal to 0, modified versions of the arrays picSamplesCb and picSamplesCr of
chroma samples.

The resampling process for residual samples of a macroblock colour component as specified in subclause G.8.6.3.1 is
invoked with chromaFlag equal to 0, mbW equal to 16, mbH equal to 16, fieldMbFlag, refLayerPicSamplesL,
refLayerFieldMbFlag, and refLayerCTrafo as the inputs and the output is the 16x16 array mbPredL of residual
prediction samples for the luma component of the current macroblock.

When ChromaArrayType is not equal to 0, for CX being replaced by Cb and Cr, the resampling process for residual
samples of a macroblock colour component as specified in subclause G.8.6.3.1 is invoked with chromaFlag equal to 1,
mbW equal to MbWidthC, mbH equal to MbHeightC, fieldMbFlag, refLayerPicSamplesCX, refLayerFieldMbFlag, and
refLayerCTrafo as the inputs and the output is the (MbWidthC)x(MbHeightC) array mbPredCX of residual prediction
samples for the CX component of the current macroblock.

The picture sample array construction process as specified in subclause G.8.5.4.1 is invoked with fieldMbFlag,
mbPredL, picSamplesL and, when ChromaArrayType is not equal to 0, mbPredCb, mbPredCr, picSamplesCb, and
picSamplesCr as the inputs and the outputs are a modified version of picSamplesL and, when ChromaArrayType is not
equal to 0, modified versions of picSamplesCb, and picSamplesCr.

G.8.6.3.1 Resampling process for residual samples of a macroblock colour component

Inputs to this process are

– a variable chromaFlag specifying whether the luma or a chroma component is subject to the resampling process,

526 Rec. ITU-T H.264 (03/2009)

– two variables mbW and mbH specifying the width and height, respectively, of a macroblock for the considered
colour component,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– an array refLayerPicSamples, which is a (RefLayerPicWidthInSamplesL)x(RefLayerPicHeightInSamplesL) array
containing constructed residual luma sample values for the reference layer representation when chromaFlag is
equal to 0 or a (RefLayerPicWidthInSamplesC)x(RefLayerPicHeightInSamplesC) array containing constructed
residual chroma sample values for the reference layer representation when chromaFlag is equal to 1,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerCTrafo with RefLayerPicSizeInMbs elements specifying the luma transform
types for the macroblocks of the reference layer representation.

Output of this process is an (mbW)x(mbH) array mbPred of residual prediction samples.

The variable botFieldFlag is derived as follows.

– If RefLayerFrameMbsOnlyFlag is equal to 1, botFieldFlag is set equal to 0.

– Otherwise, if field_pic_flag is equal to 1, botFieldFlag is set equal to bottom_field_flag.

– Otherwise, if RefLayerFieldPicFlag is equal to 1, botFieldFlag is set equal to RefLayerBottomFieldFlag.

– Otherwise, if fieldMbFlag is equal to 1, botFieldFlag is set equal to (CurrMbAddr % 2).

– Otherwise, botFieldFlag is set equal to 0.

The variable frameBasedResamplingFlag is derived as follows.

– If all of the following conditions are true, frameBasedResamplingFlag is set equal to 1:

– RefLayerFrameMbsOnlyFlag is equal to 1,

– frame_mbs_only_flag is equal to 1.

– Otherwise, frameBasedResamplingFlag is set equal to 0.

The variable topAndBotResamplingFlag is derived as follows.

– If all of the following conditions are true, topAndBotResamplingFlag is set equal to 1:

– RefLayerFrameMbsOnlyFlag is equal to 0,

– RefLayerFieldPicFlag is equal to 0,

– frame_mbs_only_flag is equal to 0,

– fieldMbFlag is equal to 0.

– Otherwise, topAndBotResamplingFlag is set equal to 0.

The variable botFieldFrameMbsOnlyRefFlag is derived as follows.

– If RefLayerFrameMbsOnlyFlag is equal to 1, fieldMbFlag is equal to 1, and any of the following conditions is
true, botFieldFrameMbsOnlyRefFlag is set equal to 1:

– field_pic_flag is equal to 1 and bottom_field_flag is equal to 1,

– field_pic_flag is equal to 0 and (CurrMbAddr % 2) is equal to 1.

– Otherwise, botFieldFrameMbsOnlyRefFlag is set equal to 0.

The array predArray is derived as specified in the following.

– If botFieldFrameMbsOnlyRefFlag is equal to 1, the following ordered steps are specified:

1. The reference layer sample array construction process prior to residual resampling as specified in
subclause G.8.6.3.2 is invoked with chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag, yBorder equal to 1,
refLayerPicSamples, refLayerFieldMbFlag, and refLayerCTrafo as the inputs and the outputs are the variables
refArrayW, refArrayH, the array refSampleArray of reference layer sample values, the array refTransBlkIdc
of reference layer transform block identifications, and the variables xOffset and yOffset.

 Rec. ITU-T H.264 (03/2009) 527

2. The interpolation process for residual prediction as specified in subclause G.8.6.3.3 is invoked with
chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag, fldPrdInFrmMbFlag equal to 0, yBorder equal to 1,
refArrayW, refArrayH, refSampleArray, refTransBlkIdc, xOffset, and yOffset as the inputs and the output is
the (mbW)x(mbH + 2) array topFldPredArray of top field prediction samples.

3. The vertical interpolation process for residual prediction as specified in subclause G.8.6.3.4 is invoked with
mbW, mbH, botFieldFlag, yBorder equal to 1, frameMbFlag equal to 0, and topFldPredArray as the inputs
and the output is the (mbW)x(mbH) array mbPred of residual prediction samples.

– Otherwise, if frameBasedResamplingFlag is equal to 1 or fieldMbFlag is equal to 1, the following ordered steps
are specified:

1. The reference layer sample array construction process prior to residual resampling as specified in
subclause G.8.6.3.2 is invoked with chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag, yBorder equal to 0,
refLayerPicSamples, refLayerFieldMbFlag, and refLayerCTrafo as the inputs and the outputs are the variables
refArrayW, refArrayH, the array refSampleArray of reference layer sample values, the array refTransBlkIdc
of reference layer transform block identifications, and the variables xOffset and yOffset.

2. The interpolation process for residual prediction as specified in subclause G.8.6.3.3 is invoked with
chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag, fldPrdInFrmMbFlag equal to 0, yBorder equal to 0,
refArrayW, refArrayH, refSampleArray, refTransBlkIdc, xOffset, and yOffset as the inputs and the output is
the (mbW)x(mbH) array mbPred of residual prediction samples.

– Otherwise, if topAndBotResamplingFlag is equal to 0, the following ordered steps are specified:

1. The reference layer sample array construction process prior to residual resampling as specified in
subclause G.8.6.3.2 is invoked with chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag, yBorder equal to 1,
refLayerPicSamples, refLayerFieldMbFlag, and refLayerCTrafo as the inputs and the outputs are the variables
refArrayW, refArrayH, the array refSampleArray of reference layer sample values, the array refTransBlkIdc
of reference layer transform block identifications, and the variables xOffset and yOffset.

2. The interpolation process for residual prediction as specified in subclause G.8.6.3.3 is invoked with
chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag, fldPrdInFrmMbFlag equal to 1, yBorder equal to 1,
refArrayW, refArrayH, refSampleArray, refTransBlkIdc, xOffset, and yOffset as the inputs and the output is
the (mbW)x(mbH / 2 + 2) array fieldPredArray of field prediction samples.

3. The vertical interpolation process for residual prediction as specified in subclause G.8.6.3.4 is invoked with
mbW, mbH, botFieldFlag, yBorder equal to 1, frameMbFlag equal to 1, and fieldPredArray as the inputs and
the output is the (mbW)x(mbH) array mbPred of residual prediction samples.

– Otherwise (topAndBotResamplingFlag is equal to 1), the following ordered steps are specified:

1. The reference layer sample array construction process prior to residual resampling as specified in
subclause G.8.6.3.2 is invoked with chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag equal to 0, yBorder
equal to 0, refLayerPicSamples, refLayerFieldMbFlag, and refLayerCTrafo as the inputs and the outputs are
the variables refArrayTopW, refArrayTopH, the array refSampleArrayTop of reference layer sample values,
the array refTransBlkIdcTop of reference layer transform block identifications, and the variables xOffsetTop
and yOffsetTop.

2. The interpolation process for residual prediction as specified in subclause G.8.6.3.3 is invoked with
chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag equal to 0, fldPrdInFrmMbFlag equal to 1, yBorder equal
to 0, refArrayTopW, refArrayTopH, refSampleArrayTop, refTransBlkIdcTop, xOffsetTop, and yOffsetTop as
the inputs and the output is the (mbW)x(mbH / 2) array topFieldPredArray of top field prediction samples.

3. The reference layer sample array construction process prior to residual resampling as specified in
subclause G.8.6.3.2 is invoked with chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag equal to 1, yBorder
equal to 0, refLayerPicSamples, refLayerFieldMbFlag, and refLayerCTrafo as the inputs and the outputs are
the variables refArrayBotW, refArrayBotH, the array refSampleArrayBot of reference layer sample values, the
array refTransBlkIdcBot of reference layer transform block identifications, and the variables xOffsetBot and
yOffsetBot.

4. The interpolation process for residual prediction as specified in subclause G.8.6.3.3 is invoked with
chromaFlag, mbW, mbH, fieldMbFlag, botFieldFlag equal to 1, fldPrdInFrmMbFlag equal to 1, yBorder equal
to 0, refArrayBotW, refArrayBotH, refSampleArrayBot, refTransBlkIdcBot, xOffsetBot, and yOffsetBot as
the inputs and the output is the (mbW)x(mbH / 2) array botFieldPredArray of bottom field prediction samples.

528 Rec. ITU-T H.264 (03/2009)

5. Each sample predArray[x, y] with x = 0..(mbW − 1) and y = 0..(mbH − 1) of the array mbPred of residual
prediction samples is derived by

mbPred[x, y] = (((y % 2) = = 0) ? topFieldPredArray[x, y >> 1]
 : botFieldPredArray[x, y >> 1]) (G-311)

G.8.6.3.2 Reference layer sample array construction process prior to residual resampling

Inputs to this process are

– a variable chromaFlag specifying whether the luma or a chroma component is subject to the resampling process,

– two variables mbW and mbH specifying the width and height, respectively, of a macroblock for the considered
colour component,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable botFieldFlag specifying whether a top or a bottom field is subject to the resampling process (when
RefLayerFrameMbsOnlyFlag is equal to 0 or frame_mbs_only_flag is equal to 0),

– a variable yBorder specifying the vertical border for determining the vertical size of the output arrays,

– an array refLayerPicSamples, which is a (RefLayerPicWidthInSamplesL)x(RefLayerPicHeightInSamplesL) array
containing constructed residual luma sample values for the reference layer representation when chromaFlag is
equal to 0 or a (RefLayerPicWidthInSamplesC)x(RefLayerPicHeightInSamplesC) array containing constructed
residual chroma sample values for the reference layer representation when chromaFlag is equal to 1,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerCTrafo with RefLayerPicSizeInMbs elements specifying the luma transform
types for the macroblocks of the reference layer representation.

Outputs of this process are

– two variables refArrayW and refArrayH specifying the width and height, respectively, of the constructed arrays of
reference layer sample values and reference layer transform block identification,

– a (refArrayW)x(refArrayH) array refSampleArray of reference layer sample values,

– a (refArrayW)x(refArrayH) array refTransBlkIdc of reference layer transform block identifications,

– two variables xOffset and yOffset specifying the x and y coordinate, respectively, of the reference layer sample
location that corresponds to the sample refSampleArray[0, 0] of the array refSampleArray and the transform
block identification refTransBlkIdc[0, 0] of the array refTransBlkIdc.

The variables refW, refH, refMbW, refMbH, xOffset, yOffset, refArrayW, refArrayH, yRefScale, and yRefAdd are
derived as specified in the following ordered steps:

1. The derivation process for reference layer sample locations in resampling as specified in subclause G.6.3 is
invoked with chromaFlag, the sample location (0, −yBorder), fieldMbFlag, and botFieldFlag as the inputs
and the output is the sample location (xRefMin16, yRefMin16) in units of 1/16-th sample.

2. The derivation process for reference layer sample locations in resampling as specified in subclause G.6.3 is
invoked with chromaFlag, the sample location (mbW − 1, mbH − 1 + yBorder), fieldMbFlag, and
botFieldFlag as the inputs and the output is the sample location (xRefMax16, yRefMax16) in units of 1/16-th
sample.

3. With Z being replaced by L for chromaFlag equal to 0 and C for chromaFlag equal to 1, the variables refW,
refH, refMbW, and refMbH are derived by

refW = RefLayerPicWidthInSamplesZ (G-312)
refH = RefLayerPicHeightInSamplesZ (G-313)
refMbW = ((chromaFlag = = 0) ? 16 : RefLayerMbWidthC) (G-314)
refMbH = ((chromaFlag = = 0) ? 16 : RefLayerMbHeightC) (G-315)

4. The variables xOffset, yOffset, refArrayW, and refArrayH are derived by

xOffset = (xRefMin16 >> 4) (G-316)
yOffset = (yRefMin16 >> 4) (G-317)

 Rec. ITU-T H.264 (03/2009) 529

refArrayW = (xRefMax16 >> 4) − xOffset + 2 (G-318)
refArrayH = (yRefMax16 >> 4) − yOffset + 2 (G-319)

5. The variables yRefScale and yRefAdd are derived as follows.

– If RefLayerFrameMbsOnlyFlag is equal to 1 or RefLayerFieldPicFlag is equal to 1, yRefScale is set
equal to 1 and yRefAdd is set equal to 0.

– Otherwise (RefLayerFrameMbsOnlyFlag is equal to 0 and RefLayerFieldPicFlag is equal to 0),
yRefScale is set equal to 2 and yRefAdd is set equal to botFieldFlag.

Each sample refSampleArray[x, y] and each transform block identification refTransBlkIdc[x, y] with
x = 0..(refArrayW − 1) and y = 0..(refArrayH − 1) are derived as specified in the following ordered steps:

1. A reference layer sample location (xRef, yRef) is derived by

xRef = max(0, min(refW − 1, x + xOffset)) (G-320)
yRef = yRefScale * max(0, min(refH / yRefScale − 1, y + yOffset)) + yRefAdd (G-321)

2. The sample refSampleArray[x, y] is derived by

refSampleArray[x, y] = refLayerPicSamples[xRef, yRef] (G-322)

3. The transform block identification refTransBlkIdc[x, y] is derived by invoking the derivation process for
reference layer transform block identifications as specified in subclause G.8.6.3.2.1 with the reference layer
sample location (xRef, yRef), chromaFlag, refMbW, refMbH, refLayerFieldMbFlag, and refLayerCTrafo as
the inputs and assigning the output to refTransBlkIdc[x, y].

G.8.6.3.2.1 Derivation process for reference layer transform block identifications

Inputs to this process are

– a reference layer sample location (xRef, yRef) relative to the upper-left sample of the considered colour
component of the reference layer picture,

– a variable chromaFlag specifying whether the luma or a chroma component is subject to the resampling process,

– two variables refMbW and refMbH specifying the width and height, respectively, of a reference layer macroblock
for the considered colour component,

– a one-dimensional array refLayerFieldMbFlag with RefLayerPicSizeInMbs elements specifying which
macroblocks of the reference layer representation are field macroblocks and which macroblocks are frame
macroblocks,

– a one-dimensional array refLayerCTrafo with RefLayerPicSizeInMbs elements specifying the luma transform
types for the macroblocks of the reference layer representation.

Output of this process is a variable refTransBlkIdc specifying an identification for the reference layer transform block
that contains the sample at location (xRef, yRef).

The reference layer macroblock address refMbAddr and the reference layer sample location (xM, yM) inside the
reference layer macroblock are derived as follows.

– If RefLayerMbaffFrameFlag is equal to 0, the variable refMbAddr and the sample location (xM, yM) are derived
by

refMbAddr = (yRef / refMbH) * RefLayerPicWidthInMbs + (xRef / refMbW) (G-323)
xM = xRef % refMbW (G-324)
yM = yRef % refMbH (G-325)

– Otherwise (RefLayerMbaffFrameFlag is equal to 1), the variable refMbAddr is derived as specified in the
following ordered steps:

1. A variable refMbAddrTop and the horizontal sample location xM are derived by

refMbAddrTop = 2 * ((yRef / (2 * refMbH)) * RefLayerPicWidthInMbs
 + (xRef / refMbW)) (G-326)
xM = xRef % refMbW (G-327)

530 Rec. ITU-T H.264 (03/2009)

2. Depending on refLayerFieldMbFlag[refMbAddrTop], the variable refMbAddr and the vertical sample
location yM are derived as follows.

– If refLayerFieldMbFlag[refMbAddrTop] is equal to 0, the variables refMbAddr and yM are derived by

refMbAddr = refMbAddrTop + (yRef % (2 * refMbH)) / refMbH (G-328)
yM = yRef % refMbH (G-329)

– Otherwise (refLayerFieldMbFlag[refMbAddrTop] is equal to 1), the variables refMbAddr and yM are
derived by

refMbAddr = refMbAddrTop + (yRef % 2) (G-330)
yM = (yRef % (2 * refMbH)) >> 1 (G-331)

Depending on chromaFlag, RefLayerChromaArrayType, and refLayerCTrafo[refMbAddr], the following applies.

– If (chromaFlag is equal to 0 or RefLayerChromaArrayType is equal to 3) and refLayerCTrafo[refMbAddr] is
equal to T_8x8, the variable refTransBlkIdc is derived by

refTransBlkIdc = 1 + 2 * (4 * refMbAddr + 2 * (yM / 8) + (xM / 8)) (G-332)

– Otherwise ((chromaFlag is equal to 1 and RefLayerChromaArrayType is not equal to 3) or
refLayerCTrafo[refMbAddr] is not equal to T_8x8), the variable refTransBlkIdc is derived by

refTransBlkIdc = 2 * (16 * refMbAddr + 4 * (yM / 4) + (xM / 4)) (G-333)

G.8.6.3.3 Interpolation process for residual prediction

Inputs to this process are

– a variable chromaFlag specifying whether the luma or a chroma component is subject to the resampling process,

– two variables mbW and mbH specifying the width and height, respectively, of a macroblock for the considered
colour component,

– a variable fieldMbFlag specifying whether the current macroblock is a field or a frame macroblock,

– a variable botFieldFlag specifying whether a top or a bottom field is subject to the resampling process (when
RefLayerFrameMbsOnlyFlag is equal to 0 or frame_mbs_only_flag is equal to 0),

– a variable fldPrdInFrmMbFlag specifying whether field prediction for a frame macroblock is applied,

– a variable yBorder specifying the vertical border for the output sample array predSamples,

– two variables refArrayW and refArrayH specifying the width and height, respectively, of the array of reference
layer sample values and the array of transform block identifications,

– a (refArrayW)x(refArrayH) array refSampleArray of reference layer sample values,

– a (refArrayW)x(refArrayH) array refTransBlkIdc of transform block identifications,

– two variables xOffset and yOffset specifying the x and y coordinate, respectively, of the reference layer sample
location that corresponds to the sample refSampleArray[0, 0] of the array refSampleArray and the transform
block identification refTransBlkIdc[0, 0] of the array refTransBlkIdc.

Output of this process is an (mbW)x(mbH / (1 + fldPrdInFrmMbFlag) + 2 * yBorder) array predArray of interpolated
sample values.

Each sample predArray[x, y] with x = 0..(mbW − 1) and y = 0..(mbH / (1 + fldPrdInFrmMbFlag) + 2 *yBorder − 1)
is derived as specified in the following ordered steps:

1. The variable yP is derived by

yP = (y − yBorder) * (1 + fldPrdInFrmMbFlag) + botFieldFlag (G-334)

2. The derivation process for reference layer sample locations in resampling as specified in subclause G.6.3 is
invoked with chromaFlag, the sample location (x, yP), fieldMbFlag, and botFieldFlag as the inputs and the
output is the sample location (xRef16, yRef16) in units of 1/16-th sample.

 Rec. ITU-T H.264 (03/2009) 531

3. The variables xRef, yRef, xPhase, and yPhase are derived by

xRef = (xRef16 >> 4) − xOffset (G-335)
yRef = (yRef16 >> 4) − yOffset (G-336)
xPhase = (xRef16 − 16 * xOffset) % 16 (G-337)
yPhase = (yRef16 − 16 * yOffset) % 16 (G-338)

4. Let tempPred be a one-dimensional array with 2 elements. Each sample value tempPred[dY] with dY = 0..1
is derived as follows.

– If refTransBlkIdc[xRef, yRef + dY] is equal to refTransBlkIdc[xRef + 1, yRef + dY], the sample value
tempPred[dY] is derived by

tempPred[dY] = (16 − xPhase) * refSampleArray[xRef, yRef + dY] +
 xPhase * refSampleArray[xRef + 1, yRef + dY] (G-339)

– Otherwise (refTransBlkIdc[xRef, yRef + dY] is not equal to refTransBlkIdc[xRef + 1, yRef + dY]), the
sample value tempPred[dY] is derived by

tempPred[dY] = ((xPhase < 8) ? refSampleArray[xRef, yRef + dY]
 : refSampleArray[xRef + 1, yRef + dY]) << 4 (G-340)

5. With xRefRound set equal to (xRef + (xPhase / 8)), the sample value predArray[x, y] is derived as follows.

– If refTransBlkIdc[xRefRound, yRef] is equal to refTransBlkIdc[xRefRound, yRef + 1], the sample
value predArray[x, y] is derived by

predArray[x, y] = ((16 − yPhase) * tempPred[0] +
 yPhase * tempPred[1] + 128) >> 8 (G-341)

– Otherwise (refTransBlkIdc[xRefRound, yRef] is not equal to refTransBlkIdc[xRefRound, yRef + 1]),
the sample value predArray[x, y] is derived by

predArray[x, y] = (((yPhase < 8) ? tempPred[0] : tempPred[1]) + 8) >> 4 (G-342)

G.8.6.3.4 Vertical interpolation process for residual prediction

Inputs to this process are

– two variables mbW and mbH specifying the width and height, respectively, of a macroblock for the considered
colour component,

– a variable botFieldFlag specifying whether the sample array fieldPredArray contains interpolated samples for the
top or bottom field,

– a variable yBorder specifying the vertical border for the sample array fieldPredArray,

– a variable frameMbFlag specifying whether the current macroblock is a frame or a field macroblock,

– an (mbW)x(mbH / (1 + frameMbFlag) + 2 * yBorder) array fieldPredArray of sample values.

Output of this process is an (mbW)x(mbH) array predArray of interpolated sample values.

Each sample predArray[x, y] with x = 0..(mbW − 1) and y = 0..(mbH − 1) is derived as follows.

– If frameMbFlag is equal to 1 and (y % 2) is equal to botFieldFlag, the sample value predArray[x, y] is derived
by

predArray[x, y] = fieldPredArray[x, (y >> 1) + yBorder] (G-343)

– Otherwise (frameMbFlag is equal to 0 or (y % 2) is not equal to botFieldFlag), the sample value predArray[x, y]
is derived by

predArray[x, y] = (fieldPredArray[x, (y >> frameMbFlag) + yBorder − botFieldFlag] +
 fieldPredArray[x, (y >> frameMbFlag) + yBorder − botFieldFlag + 1] + 1) >> 1 (G-344)

G.8.7 SVC deblocking filter processes

Subclause G.8.7.1 specifies the deblocking filter process for Intra_Base prediction.

532 Rec. ITU-T H.264 (03/2009)

Subclause G.8.7.2 specifies the deblocking filter process for target representations.

G.8.7.1 Deblocking filter process for Intra_Base prediction

Inputs to the process are

– the variable currDQId,

– the collective term currentVars.

Output of this process is a modified version of currentVars.

Let the variable refLayerDQId be equal to the value of the syntax element ref_layer_dq_id of the layer representation
with DQId equal to currDQId.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived
upper-case variables for the layer representation with DQId equal to ((refLayerDQId >> 4) << 4).

Inside this subclause, the arrays that are collectively referred to as currentVars are referred to by their names as
specified in subclause G.8.1.2.1.

The derivation process for quantisation parameters used in the deblocking filter process as specified in
subclause G.8.7.3 is invoked with deblockingDQId set equal to refLayerDQId, mbType, tQPY, and tCoeffLevel as the
inputs and the outputs are a list qpDBY specifying luma quantisation parameter that are used in the deblocking filter
process and, when ChromaArrayType is not equal to 0, two lists qpDBCb and qpDBCr specifying chroma quantisation
parameters that are used in the deblocking filter process.

Let disableDeblockingFilterIdc, filterOffsetA, and filterOffsetB be equal to the value of
disable_inter_layer_deblocking_filter_idc, InterlayerFilterOffsetA, and InterlayerFilterOffsetB, respectively, for the
layer representation with DQId equal to currDQId.

For the current macroblock address CurrMbAddr proceeding over values 0..(PicSizeInMbs − 1), the macroblock
deblocking filter process as specified in subclause G.8.7.4 is invoked with interLayerDeblockingFlag = 1,
disableDeblockingFilterIdc, filterOffsetA, filterOffsetB, sliceBoundariesOnlyFlag = 0, currentVars, qpDBY and, when
ChromaArrayType is not equal to 0, qpDBCb and qpDBCr as the inputs and the output is a modified version of
currentVars.

When disableDeblockingFilterIdc is equal to 3 or 6, for the current macroblock address CurrMbAddr proceeding over
values 0..(PicSizeInMbs − 1), the macroblock deblocking filter process as specified in subclause G.8.7.4 is invoked
with interLayerDeblockingFlag = 1, disableDeblockingFilterIdc, filterOffsetA, filterOffsetB,
sliceBoundariesOnlyFlag = 1, currentVars, qpDBY and, when ChromaArrayType is not equal to 0, qpDBCb and qpDBCr
as the inputs and the output is a modified version of currentVars.

G.8.7.2 Deblocking filter process for target representations

Inputs to the process are

– the variable currDQId,

– the collective term currentVars.

Output of this process are decoded samples represented by the sample arrays SL, and, when ChromaArrayType is not
equal to 0, SCb and SCr.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the process
specified in this subclause and all child processes invoked from this process are the syntax elements and derived
upper-case variables for the layer representation with DQId equal to ((currDQId >> 4) << 4).

Inside this subclause, the arrays that are collectively referred to as currentVars are referred to by their names as
specified in subclause G.8.1.2.1.

The derivation process for quantisation parameters used in the deblocking filter process as specified in
subclause G.8.7.3 is invoked with deblockingDQId set equal to currDQId, mbType, tQPY, and tCoeffLevel as the inputs
and the outputs are a list qpDBY specifying luma quantisation parameter that are used in the deblocking filter process
and, when ChromaArrayType is not equal to 0, two lists qpDBCb and qpDBCr specifying chroma quantisation
parameters that are used in the deblocking filter process.

For the current macroblock address CurrMbAddr proceeding over values 0..(PicSizeInMbs − 1), the following ordered
steps are specified:

 Rec. ITU-T H.264 (03/2009) 533

1. Let disableDeblockingFilterIdc, filterOffsetA, and filterOffsetB be equal to the value of
disable_deblocking_filter_idc, FilterOffsetA, and FilterOffsetB, respectively, for the slice with DQId equal to
(sliceIdc[CurrMbAddr] & 127) and first_mb_in_slice equal to (sliceIdc[CurrMbAddr] >> 7).

2. The macroblock deblocking filter process as specified in subclause G.8.7.4 is invoked with
interLayerDeblockingFlag = 0, disableDeblockingFilterIdc, filterOffsetA, filterOffsetB,
sliceBoundariesOnlyFlag = 0, currentVars, qpDBY and, when ChromaArrayType is not equal to 0, qpDBCb
and qpDBCr as the inputs and the output is a modified version of currentVars.

For the current macroblock address CurrMbAddr proceeding over values 0..(PicSizeInMbs − 1), the following ordered
steps are specified:

1. Let disableDeblockingFilterIdc, filterOffsetA, and filterOffsetB be equal to the value of
disable_deblocking_filter_idc, FilterOffsetA, and FilterOffsetB, respectively, for the slice with DQId equal to
(sliceIdc[CurrMbAddr] & 127) and first_mb_in_slice equal to (sliceIdc[CurrMbAddr] >> 7).

2. When disableDeblockingFilterIdc is equal to 3 or 6, the macroblock deblocking filter process as specified in
subclause G.8.7.4 is invoked with interLayerDeblockingFlag = 0, disableDeblockingFilterIdc, filterOffsetA,
filterOffsetB, sliceBoundariesOnlyFlag = 1, currentVars, qpDBY and, when ChromaArrayType is not equal to
0, qpDBCb and qpDBCr as inputs and the output is a modified version of currentVars.

G.8.7.3 Derivation process for quantisation parameters used in the deblocking filter process

Inputs to this process are

– a variable deblockingDQId,

– a one-dimensional array mbType with PicSizeInMbs elements specifying macroblock types for the macroblocks of
the current decoded or partly decoded dependency representation,

– a one-dimensional array tQPY with PicSizeInMbs elements specifying luma quantisation parameters for the
macroblocks of the current decoded or partly decoded dependency representation,

– a (PicSizeInMbs)x(256 + 2 * MbWidthC * MbHeightC) array tCoeffLevel specifying transform coefficient level
values for the macroblocks of the current decoded or partly decoded dependency representation.

Outputs of this process are

– a one-dimensional array qpDBY with PicSizeInMbs elements specifying luma quantisation parameters used in the
deblocking filter process for the macroblocks of the current decoded or partly decoded dependency representation,

– when ChromaArrayType is not equal to 0, two one-dimensional arrays qpDBCb and qpDBCr with PicSizeInMbs
elements specifying chroma quantisation parameters used in the deblocking filter process for the macroblocks of
the current decoded or partly decoded dependency representation.

The syntax elements and derived upper-case variables that are referred to by the process specified in this subclause are
the syntax elements and derived upper-case variables for the layer representation with DQId equal to deblockingDQId.

Let tempQP be a one-dimensional array with PicSizeInMbs elements. All elements tempQP[i] with
i = 0..(PicSizeInMbs − 1) are set equal to tQPY[i].

When tcoeff_level_prediction_flag is equal to 1, the following ordered steps are specified:

1. Let firstMbInSliceGroup and numMbsInSliceGroup be two one-dimensional arrays with
(num_slice_groups_minus1 + 1) elements. The array elements are derived as specified by the following
pseudo code.

for(iGroup = 0; iGroup <= num_slice_groups_minus1; iGroup++) {
 firstMbInSliceGroup[iGroup] = −1
 numMbsInSliceGroup[iGroup] = 0
}
for(i = 0; i < PicSizeInMbs; i++) { (G-345)
 if(firstMbInSliceGroup[MbToSliceGroupMap[i]] = = −1)
 firstMbInSliceGroup[MbToSliceGroupMap[i]] = i
 numMbsInSliceGroup[MbToSliceGroupMap[i]]++
}

2. The variable iGroup proceeds over the values 0..num_slice_groups_minus1. For each value of iGroup, the
variable lastMbAddr is set equal to firstMbInSliceGroup[iGroup] and the variable mbIdx proceeds over the

534 Rec. ITU-T H.264 (03/2009)

values 1..(numMbsInSliceGroup[iGroup] − 1). For each value of mbIdx, the following ordered steps are
specified.

a. The variable mbAddr is derived as specified by the following pseudo-code:

mbAddr = lastMbAddr + 1
while(MbToSliceGroupMap[mbAddr] != MbToSliceGroupMap[lastMbAddr]) (G-346)
 mbAddr++

b. When mbType[mbAddr] is not equal to I_16x16 and all elements tCoeffLevel[mbAddr][i] with
i = 0..(255 + 2 * MbWidthC * MbHeightC) are equal to 0, tempQP[mbAddr] is set equal to
tempQP[lastMbAddr].

c. The variable lastMbAddr is set equal to mbAddr.

The macroblock address mbAddr proceeds over the values 0..(PicSizeInMbs − 1), and for each value of mbAddr, the
following ordered steps are specified:

1. The variable qpDBY[mbAddr] is derived as follows.

– If mbType[mbAddr] is equal to I_PCM, qpDBY[mbAddr] is set equal to 0.

– Otherwise (mbType[mbAddr] is not equal to I_PCM), qpDBY[mbAddr] is set equal to
tempQP[mbAddr].

2. When ChromaArrayType is not equal to 0, for C being replaced by Cb and Cr, the variable qpDBC[mbAddr]
is set equal to the value of QPC that corresponds to a value of qpDBY[mbAddr] for QPY as specified in
subclause 8.5.8. During this invocation of the process in subclause 8.5.8, the syntax elements
chroma_qp_index_offset and second_chroma_qp_index_offset of the layer representation with DQId equal to
deblockingFilterDQId are used.

G.8.7.4 Macroblock deblocking filter process

Inputs to this process are

– the variables interLayerDeblockingFlag, disableDeblockingFilterIdc, filterOffsetA, filterOffsetB, and
sliceBoundariesOnlyFlag,

– the collective term currentVars,

– a one-dimensional array qpDBY with PicSizeInMbs elements specifying luma quantisation parameters used in the
deblocking filter process for the macroblocks of the current decoded or partly decoded dependency representation,

– when ChromaArrayType is not equal to 0, two one-dimensional arrays qpDBCb and qpDBCr with PicSizeInMbs
elements specifying chroma quantisation parameters used in the deblocking filter process for the macroblocks of
the current decoded or partly decoded dependency representation.

Output of this process is a modified version of currentVars

In the following of this subclause, the arrays that are collectively referred to as currentVars are referred to as sliceIdc,
fieldMbFlag, baseModeFlag, mbType, lumaTrafo, subMbType, ipred4x4, ipred8x8, ipred16x16, ipredChroma,
refIdxL0, refIdxL1, predFlagL0, predFlagL1, mvL0, mvL1, mvCnt, sTCoeff, tCoeffLevel, tQPY, tQPCb, tQPCr, rSL,
rSCb, rSCr, cSL, cSCb, and cSCr, respectively, by their names as specified in subclause G.8.1.2.1.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB. For this invocation of the process in subclause 6.4.10.1, the current macroblock is
treated as field macroblock when fieldMbFlag[CurrMbAddr] is equal to 1, and it is treated as frame macroblock when
fieldMbFlag[CurrMbAddr] is equal to 0.

NOTE 1 – The availability status of the macroblocks mbAddrA and mbAddrB is not used inside this subclause. Slice boundaries
are detected using the array sliceIdc.

The variable filterLeftLumaMbEdgeFlag is derived as follows.

– If any of the following conditions is true, the variable filterLeftLumaMbEdgeFlag is set equal to 0:

– MbaffFrameFlag is equal to 0 and CurrMbAddr % PicWidthInMbs is equal to 0,

– MbaffFrameFlag is equal to 1 and (CurrMbAddr >> 1) % PicWidthInMbs is equal to 0,

– disableDeblockingFilterIdc is equal to 1,

 Rec. ITU-T H.264 (03/2009) 535

– disableDeblockingFilterIdc is equal to 2 or 5 and sliceIdc[mbAddrA] is different than
sliceIdc[CurrMbAddr],

– disableDeblockingFilterIdc is equal to 3 or 6, sliceBoundariesOnlyFlag is equal to 0, and sliceIdc[mbAddrA]
is different than sliceIdc[CurrMbAddr],

– disableDeblockingFilterIdc is equal to 3 or 6, sliceBoundariesOnlyFlag is equal to 1, and sliceIdc[mbAddrA]
is equal to sliceIdc[CurrMbAddr],

– interLayerDeblockingFlag is equal to 1 and mbType[CurrMbAddr] specifies an Inter macroblock prediction
mode.

– Otherwise, the variable filterLeftLumaMbEdgeFlag is set equal to 1.

The variable filterTopLumaMbEdgeFlag is derived as follows.

– If any of the following conditions is true, the variable filterTopLumaMbEdgeFlag is set equal to 0:

– MbaffFrameFlag is equal to 0 and CurrMbAddr is less than PicWidthInMbs,

– MbaffFrameFlag is equal to 1, (CurrMbAddr >> 1) is less than PicWidthInMbs, and
fieldMbFlag[CurrMbAddr] is equal to 1,

– MbaffFrameFlag is equal to 1, (CurrMbAddr >> 1) is less than PicWidthInMbs,
fieldMbFlag[CurrMbAddr] is equal to 0, and CurrMbAddr % 2 is equal to 0,

– disableDeblockingFilterIdc is equal to 1,

– disableDeblockingFilterIdc is equal to 2 or 5 and sliceIdc[mbAddrB] is different than
sliceIdc[CurrMbAddr],

– disableDeblockingFilterIdc is equal to 3 or 6, sliceBoundariesOnlyFlag is equal to 0, and sliceIdc[mbAddrB]
is different than sliceIdc[CurrMbAddr],

– disableDeblockingFilterIdc is equal to 3 or 6, sliceBoundariesOnlyFlag is equal to 1, and sliceIdc[mbAddrB]
is equal to sliceIdc[CurrMbAddr],

– interLayerDeblockingFlag is equal to 1 and mbType[CurrMbAddr] specifies an Inter macroblock prediction
mode.

– Otherwise, the variable filterTopLumaMbEdgeFlag is set equal to 1.

The variable filterInternalLumaEdgesFlag is derived as follows.

– If any of the following conditions is true, the variable filterInternalLumaEdgesFlag is set equal to 0:

– disableDeblockingFilterIdc is equal to 1,

– disableDeblockingFilterIdc is equal to 3 or 6 and sliceBoundariesOnlyFlag is equal to 1,

– interLayerDeblockingFlag is equal to 1 mbType[CurrMbAddr] specifies an Inter macroblock prediction
mode.

– Otherwise the variable filterInternalLumaEdgesFlag is set equal to 1.

The variables filterLeftChromaMbEdgeFlag, filterTopChromaMbEdgeFlag, and filterInternalChromaEdgesFlag are
derived as follows.

– If disableDeblockingFilterIdc is greater than 3, filterLeftChromaMbEdgeFlag, filterTopChromaMbEdgeFlag, and
filterInternalChromaEdgesFlag are set equal to 0.

– Otherwise (disableDeblockingFilterIdc is less than 4), filterLeftChromaMbEdgeFlag,
filterTopChromaMbEdgeFlag, and filterInternalChromaEdgesFlag are set equal to filterLeftLumaMbEdgeFlag,
filterTopLumaMbEdgeFlag, and filterInternalLumaEdgesFlag, respectively.

The variable fieldMbInFrameFlag is derived as follows.

– If MbaffFrameFlag is equal to 1 and fieldMbFlag[CurrMbAddr] is equal to 1, fieldMbInFrameFlag is set equal
to 1.

– Otherwise (MbaffFrameFlag is equal to 0 or fieldMbFlag[CurrMbAddr] is equal to 0), fieldMbInFrameFlag is set
equal to 0.

536 Rec. ITU-T H.264 (03/2009)

When filterLeftLumaMbEdgeFlag is equal to 1, the left vertical luma edge is filtered by invoking the process specified
in subclause G.8.7.4.1 with interLayerDeblockingFlag, chromaEdgeFlag set equal to 0, verticalEdgeFlag set equal to 1,
fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag, filterOffsetA, filterOffsetB, qpDB set equal to
qpDBY, currentVars, (xEk, yEk) set equal to (0, k) with k = 0..15, and cSL as the inputs and cSL as the output.

When filterInternalLumaEdgesFlag is equal to 1, the filtering of the internal vertical luma edges is specified by the
following ordered steps:

1. When lumaTrafo[CurrMbAddr] is not equal to T_8x8, the process specified in subclause G.8.7.4.1 is
invoked with interLayerDeblockingFlag, chromaEdgeFlag set equal to 0, verticalEdgeFlag set equal to 1,
fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag, filterOffsetA, filterOffsetB, qpDB set equal
to qpDBY, currentVars, (xEk, yEk) set equal to (4, k) with k = 0..15, and cSL as the inputs and cSL as the
output.

2. The process specified in subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag, chromaEdgeFlag set
equal to 0, verticalEdgeFlag set equal to 1, fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag,
filterOffsetA, filterOffsetB, qpDB set equal to qpDBY, currentVars, (xEk, yEk) set equal to (8, k) with
k = 0..15, and cSL as the inputs and cSL as the output.

3. When lumaTrafo[CurrMbAddr] is not equal to T_8x8, the process specified in subclause G.8.7.4.1 is
invoked with interLayerDeblockingFlag, chromaEdgeFlag set equal to 0, verticalEdgeFlag set equal to 1,
fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag, filterOffsetA, filterOffsetB, qpDB set equal
to qpDBY, currentVars, (xEk, yEk) set equal to (12, k) with k = 0..15, and cSL as the inputs and cSL as the
output.

When filterTopLumaMbEdgeFlag is equal to 1, the filtering of the top horizontal luma edge is specified as follows.

– If MbaffFrameFlag is equal to 1, (CurrMbAddr % 2) is equal to 0, CurrMbAddr is greater than or equal to
(2 * PicWidthInMbs), fieldMbFlag[CurrMbAddr] is equal to 0, and
fieldMbFlag[CurrMbAddr − 2 * PicWidthInMbs + 1] is equal to 1, the following ordered steps are specified:

1. The process specified in subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag, chromaEdgeFlag set
equal to 0, verticalEdgeFlag set equal to 0, fieldModeInFrameFilteringFlag set equal to 1, filterOffsetA,
filterOffsetB, qpDB set equal to qpDBY, currentVars, (xEk, yEk) set equal to (k, 0) with k = 0..15, and cSL as
the inputs and cSL as the output.

2. The process specified in subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag, chromaEdgeFlag set
equal to 0, verticalEdgeFlag set equal to 0, fieldModeInFrameFilteringFlag set equal to 1, filterOffsetA,
filterOffsetB, qpDB set equal to qpDBY, currentVars, (xEk, yEk) set equal to (k, 1) with k = 0..15, and cSL as
the inputs and cSL as the output.

– Otherwise, the process specified in subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag,
chromaEdgeFlag set equal to 0, verticalEdgeFlag set equal to 0, fieldModeInFrameFilteringFlag set equal to
fieldMbInFrameFlag, filterOffsetA, filterOffsetB, qpDB set equal to qpDBY, currentVars, (xEk, yEk) set equal to
(k, 0) with k = 0..15, and cSL as the inputs and cSL as the output.

When filterInternalLumaEdgesFlag is equal to 1, the filtering of the internal horizontal luma edges is specified by the
following ordered steps:

1. When lumaTrafo[CurrMbAddr] is not equal to T_8x8, the process specified in subclause G.8.7.4.1 is invoked
with interLayerDeblockingFlag, chromaEdgeFlag set equal to 0, verticalEdgeFlag set equal to 0,
fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag, filterOffsetA, filterOffsetB, qpDB set equal
to qpDBY, currentVars, (xEk, yEk) set equal to (k, 4) with k = 0..15, and cSL as the inputs and cSL as the
output.

2. The process specified in subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag, chromaEdgeFlag set
equal to 0, verticalEdgeFlag set equal to 0, fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag,
filterOffsetA, filterOffsetB, qpDB set equal to qpDBY, currentVars, (xEk, yEk) set equal to (k, 8) with
k = 0..15, and cSL as the inputs and cSL as the output.

3. When lumaTrafo[CurrMbAddr] is not equal to T_8x8, the process specified in subclause G.8.7.4.1 is invoked
with interLayerDeblockingFlag, chromaEdgeFlag set equal to 0, verticalEdgeFlag set equal to 0,
fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag, filterOffsetA, filterOffsetB, qpDB set equal
to qpDBY, currentVars, (xEk, yEk) set equal to (k, 12) with k = 0..15, and cSL as the inputs and cSL as the
output.

When ChromaArrayType is not equal to 0, for the filtering of both chroma components with C being replaced by Cb
and Cr in qpDBC and cSC, the following ordered steps are specified:

 Rec. ITU-T H.264 (03/2009) 537

1. When filterLeftChromaMbEdgeFlag is equal to 1, the left vertical chroma edge is filtered by invoking the
process specified in subclause G.8.7.4.1 with interLayerDeblockingFlag, chromaEdgeFlag set equal to 1,
verticalEdgeFlag set equal to 1, fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag,
filterOffsetA, filterOffsetB, qpDB set equal to qpDBC, currentVars, (xEk, yEk) set equal to (0, k) with
k = 0..(MbHeightC − 1), and cSC as the inputs and cSC as the output.

2. When filterInternalChromaEdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is
specified by the following ordered steps:

a. When ChromaArrayType is not equal to 3 or transform_size_8x8_flag is equal to 0, the process specified
in subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag, chromaEdgeFlag set equal to 1,
verticalEdgeFlag set equal to 1, fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag,
filterOffsetA, filterOffsetB, qpDB set equal to qpDBC, currentVars, (xEk, yEk) set equal to (4, k) with
k = 0..(MbHeightC − 1), and cSC as the inputs and cSC as the output.

b. When ChromaArrayType is equal to 3, the process specified in subclause G.8.7.4.1 is invoked with
interLayerDeblockingFlag, chromaEdgeFlag set equal to 1, verticalEdgeFlag set equal to 1,
fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag, filterOffsetA, filterOffsetB, qpDB set
equal to qpDBC, currentVars, (xEk, yEk) set equal to (8, k) with k = 0..(MbHeightC − 1), and cSC as the
inputs and cSC as the output.

c. When ChromaArrayType is equal to 3 and transform_size_8x8_flag is equal to 0, the process specified in
subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag, chromaEdgeFlag set equal to 1,
verticalEdgeFlag set equal to 1, fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag,
filterOffsetA, filterOffsetB, qpDB set equal to qpDBC, currentVars, (xEk, yEk) set equal to (12, k) with
k = 0..(MbHeightC − 1), and cSC as the inputs and cSC as the output.

3. When filterTopChromaMbEdgeFlag is equal to 1, the filtering of the top horizontal chroma edge is specified
as follows.

– If MbaffFrameFlag is equal to 1, (CurrMbAddr % 2) is equal to 0, CurrMbAddr is greater than or equal
to (2 * PicWidthInMbs), fieldMbFlag[CurrMbAddr] is equal to 0,
fieldMbFlag[CurrMbAddr − 2 * PicWidthInMbs + 1] is equal to 1, the following ordered steps are
specified:

a. The process specified in subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag,
chromaEdgeFlag set equal to 1, verticalEdgeFlag set equal to 0, fieldModeInFrameFilteringFlag set
equal to 1, filterOffsetA, filterOffsetB, qpDB set equal to qpDBC, currentVars, (xEk, yEk) set equal
to (k, 0) with k = 0..(MbWidthC − 1), and cSC as the inputs and cSC as the output.

b. The process specified in subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag,
chromaEdgeFlag set equal to 1, verticalEdgeFlag set equal to 0, fieldModeInFrameFilteringFlag set
equal to 1, filterOffsetA, filterOffsetB, qpDB set equal to qpDBC, currentVars, (xEk, yEk) set equal
to (k, 1) with k = 0..(MbWidthC − 1), and cSC as the inputs and cSC as the output.

– Otherwise, the process specified in subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag,
chromaEdgeFlag set equal to 1, verticalEdgeFlag set equal to 0, fieldModeInFrameFilteringFlag set equal
to fieldMbInFrameFlag, filterOffsetA, filterOffsetB, qpDB set equal to qpDBC, currentVars, (xEk, yEk)
set equal to (k, 0) with k = 0..(MbWidthC − 1), and cSC as the inputs and cSC as the output.

4. When filterInternalChromaEdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is
specified by the following ordered steps:

a. When ChromaArrayType is not equal to 3 or transform_size_8x8_flag is equal to 0, the process specified
in subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag, chromaEdgeFlag set equal to 1,
verticalEdgeFlag set equal to 0, fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag,
filterOffsetA, filterOffsetB, qpDB set equal to qpDBC, currentVars, (xEk, yEk) set equal to (k, 4) with
k = 0..(MbWidthC − 1), and cSC as the inputs and cSC as the output.

b. When ChromaArrayType is not equal to 1, the process specified in subclause G.8.7.4.1 is invoked with
interLayerDeblockingFlag, chromaEdgeFlag set equal to 1, verticalEdgeFlag set equal to 0,
fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag, filterOffsetA, filterOffsetB, qpDB set
equal to qpDBC, currentVars, (xEk, yEk) set equal to (k, 8) with k = 0..(MbWidthC − 1), and cSC as the
inputs and cSC as the output.

c. When ChromaArrayType is equal to 2, the process specified in subclause G.8.7.4.1 is invoked with
interLayerDeblockingFlag, chromaEdgeFlag set equal to 1, verticalEdgeFlag set equal to 0,
fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag, filterOffsetA, filterOffsetB, qpDB set

538 Rec. ITU-T H.264 (03/2009)

equal to qpDBC, currentVars, (xEk, yEk) set equal to (k, 12) with k = 0..(MbWidthC − 1), and cSC as the
inputs and cSC as the output.

d. When ChromaArrayType is equal to 3 and transform_size_8x8_flag is equal to 0, the process specified in
subclause G.8.7.4.1 is invoked with interLayerDeblockingFlag, chromaEdgeFlag set equal to 1,
verticalEdgeFlag set equal to 0, fieldModeInFrameFilteringFlag set equal to fieldMbInFrameFlag,
filterOffsetA, filterOffsetB, qpDB set equal to qpDBC, currentVars, (xEk, yEk) set equal to (k, 12) with
k = 0..(MbWidthC − 1), and cSC as the inputs and cSC as the output.

NOTE 2 – When field mode filtering (fieldModeInFrameFilteringFlag is equal to 1) is applied across the top horizontal
edges of a frame macroblock, this vertical filtering across the top or bottom macroblock boundary may involve some
samples that extend across an internal block edge that is also filtered internally in frame mode.
NOTE 3 – For example, in 4:2:0 chroma format when transform_size_8x8_flag is equal to 0, the following applies. 3
horizontal luma edges, 1 horizontal chroma edge for Cb, and 1 horizontal chroma edge for Cr are filtered that are internal
to a macroblock. When field mode filtering (fieldModeInFrameFilteringFlag is equal to 1) is applied to the top edges of a
frame macroblock, 2 horizontal luma, 2 horizontal chroma edges for Cb, and 2 horizontal chroma edges for Cr between
the frame macroblock and the above macroblock pair are filtered using field mode filtering, for a total of up to 5
horizontal luma edges, 3 horizontal chroma edges for Cb, and 3 horizontal chroma edges for Cr filtered that are considered
to be controlled by the frame macroblock. In all other cases, at most 4 horizontal luma, 2 horizontal chroma edges for Cb,
and 2 horizontal chroma edges for Cr are filtered that are considered to be controlled by a particular macroblock.

G.8.7.4.1 SVC filtering process for block edges

Inputs to this process are

– the variable interLayerDeblockingFlag,

– the variable chromaEdgeFlag,

– the variable verticalEdgeFlag,

– the variable fieldModeInFrameFilteringFlag,

– the variables filterOffsetA and filterOffsetB,

– the one-dimensional array qpDB with PicSizeInMbs elements specifying quantisation parameters,

– the collective term currentVars,

– a set of nE sample locations (xEk, yEk), with k = 0..(nE − 1), expressed relative to the upper left corner of the
macroblock CurrMbAddr. The set of sample locations (xEk, yEk) represent the sample locations immediately to the
right of a vertical edge (when verticalEdgeFlag is equal to 1) or immediately below a horizontal edge (when
verticalEdgeFlag is equal to 0),

– an array of samples s′.

Output of this process is a modified version of the array s′.

The variable nE is derived as follows

– If chromaEdgeFlag is equal to 0, nE is set equal to 16.

– Otherwise (chromaEdgeFlag is equal to 1), nE is set equal to
((verticalEdgeFlag = = 1) ? MbHeightC : MbWidthC).

Inside this subclause, the arrays that are collectively referred to as currentVars are referred to by their names as
specified in subclause G.8.1.2.1.

The variable dy is set equal to (1 + fieldModeInFrameFilteringFlag).

The position of the upper-left luma sample of the macroblock CurrMbAddr is derived by invoking the inverse
macroblock scanning process in subclause 6.4.1 with mbAddr = CurrMbAddr as input and the output being assigned to
(xI, yI). During the process in subclause 6.4.1, the current macroblock is treated as field macroblock when
fieldMbFlag[CurrMbAddr] is equal to 1, and it is treated as frame macroblock when fieldMbFlag[CurrMbAddr] is
equal to 0.

The variables xP and yP are derived as follows.

– If chromaEdgeFlag is equal to 0, xP is set equal to xI and yP is set equal to yI.

– Otherwise (chromaEdgeFlag is equal to 1), xP is set equal to (xI / SubWidthC) and yP is set equal to
((yI + SubHeightC − 1) / SubHeightC).

 Rec. ITU-T H.264 (03/2009) 539

For each sample location (xEk, yEk), k = 0..(nE − 1), the following ordered steps are specified:

1. The filtering process is applied to a set of eight samples across a 4x4 block horizontal or vertical edge denoted
as pi and qi with i = 0..3 as shown in Figure 8-11 with the edge lying between p0 and q0. pi and qi with i = 0..3 are
specified as follows.

– If verticalEdgeFlag is equal to 1,

qi = s′[xP + xEk + i, yP + dy * yEk] (G-347)
pi = s′[xP + xEk − i − 1, yP + dy * yEk] (G-348)

– Otherwise (verticalEdgeFlag is equal to 0),

qi = s′[xP + xEk, yP + dy * (yEk + i) − (yEk % 2)] (G-349)
pi = s′[xP + xEk, yP + dy * (yEk − i − 1) − (yEk % 2)] (G-350)

2. Let mbAddrP and mbAddrQ specify the addresses of the macroblocks that contain the samples p0 and q0,
respectively.

3. The process specified in subclause G.8.7.4.2 is invoked with the sample values pi and qi (i = 0..3),
interLayerDeblockingFlag, chromaEdgeFlag, verticalEdgeFlag, filterOffsetA, filterOffsetB, qPp set equal to
qpDB[mbAddrP], qPq set equal to qpDB[mbAddrQ], sliceIdc, fieldMbFlag, mbType, cTrafo, predFlagL0,
predFlagL1, refIdxL0, refIdxL1, mvL0, mvL1, sTCoeff, and rSL as inputs, and the output is assigned to the
filtered result sample values p′i and q′i with i = 0..2.

4. The input sample values pi and qi with i = 0..2 are replaced by the corresponding filtered result sample values p′i
and q′i with i = 0..2 inside the sample array s′ as follows.

– If verticalEdgeFlag is equal to 1,

s′[xP + xEk + i, yP + dy * yEk] = q′i (G-351)
s′[xP + xEk − i − 1, yP + dy * yEk] = p′i (G-352)

– Otherwise (verticalEdgeFlag is equal to 0),

s′[xP + xEk, yP + dy * (yEk + i) − (yEk % 2)] = q′i (G-353)
s′[xP + xEk, yP + dy * (yEk − i − 1) − (yEk % 2)] = p′i (G-354)

G.8.7.4.2 SVC filtering process for a set of samples across a horizontal or vertical block edge

Inputs to this process are

– the input sample values pi and qi with i = 0..3 of a single set of samples across an edge that is to be filtered,

– the variable interLayerDeblockingFlag,

– the variable chromaEdgeFlag,

– the variable verticalEdgeFlag,

– the variables filterOffsetA and filterOffsetB,

– the variables qPp and qPq,

– the arrays sliceIdc, fieldMbFlag, mbType, cTrafo, predFlagL0, predFlagL1, refIdxL0, refIdxL1, mvL0, mvL1, and
sTCoeff,

– an array rSL containing residual sample values.

Outputs of this process are the filtered result sample values p′i and q′i with i in the range of 0..2.

The content dependent boundary filtering strength variable bS is derived as follows.

– If chromaEdgeFlag is equal to 0, the SVC derivation process for the luma content dependent boundary filtering
strength specified in subclause G.8.7.4.3 is invoked with p0, q0, interLayerDeblockingFlag, verticalEdgeFlag,
sliceIdc, fieldMbFlag, mbType, cTrafo, predFlagL0, predFlagL1, refIdxL0, refIdxL1, mvL0, mvL1, sTCoeff, and
rSL as inputs, and the output is assigned to bS.

540 Rec. ITU-T H.264 (03/2009)

– Otherwise (chromaEdgeFlag is equal to 1), the bS used for filtering a set of samples of a horizontal or vertical
chroma edge is set equal to the value of bS for filtering the set of samples of a horizontal or vertical luma edge,
respectively, that contains the luma sample at location (SubWidthC * x, SubHeightC * y) inside the luma array of
the same field, where (x, y) is the location of the chroma sample q0 inside the chroma array for that field.

The process specified in subclause 8.7.2.2 is invoked with p0, q0, p1, q1, chromaEdgeFlag, bS, filterOffsetA,
filterOffsetB, qPp, and qPq as inputs, and the output is assigned to filterSamplesFlag, indexA, α, and β.

Depending on the variable filterSamplesFlag, the following applies.

– If filterSamplesFlag is equal to 1, the following applies.

– If bS is less than 4, the process specified in subclause 8.7.2.3 is invoked with pi and qi (i = 0..2),
chromaEdgeFlag, bS, β, and indexA given as input, and the output is assigned to p′i and q′i (i = 0..2).

– Otherwise (bS is equal to 4), the process specified in subclause 8.7.2.4 is invoked with pi and qi (i = 0..3),
chromaEdgeFlag, α, and β given as input, and the output is assigned to p′i and q′i (i = 0..2).

– Otherwise (filterSamplesFlag is equal to 0), the filtered result samples p′i and q′i (i = 0..2) are replaced by the
corresponding input samples pi and qi:

for i = 0..2, p′i = pi (G-355)
for i = 0..2, q′i = qi (G-356)

G.8.7.4.3 SVC derivation process for the luma content dependent boundary filtering strength

Inputs to this process are

– the input sample values p0 and q0 of a single set of samples across an edge that is to be filtered,

– the variable interLayerDeblockingFlag,

– the variable verticalEdgeFlag,

– the arrays sliceIdc, fieldMbFlag, mbType, cTrafo, predFlagL0, predFlagL1, refIdxL0, refIdxL1, mvL0, mvL1, and
sTCoeff,

– the array rSL containing residual sample values.

Output of this process is the variable bS.

The following variables are derived as specified in the following:

– mbAddrP and mbAddrQ specify the macroblocks containing the samples p0 and q0, respectively.

– mbPartIdxP and mbPartIdxQ specify the macroblock partitions containing the samples p0 and q0, respectively.

– subMbPartIdxP and subMbPartIdxQ specify the sub-macroblock partitions containing the samples p0 and q0,
respectively.

– pFLXP and pFLXQ with X being replaced by 0 and 1 are equal to predFlagLX[mbAddrP][mbPartIdxP] and
predFlagLX[mbAddrQ][mbPartIdxQ], respectively.

– refLXP and refLXQ with X being replaced by 0 and 1 are equal to refIdxLX[mbAddrP][mbPartIdxP] and
refIdxLX[mbAddrQ][mbPartIdxQ], respectively.

– mvLXP and mvLXQ with X being replaced by 0 and 1 are equal to
mvLX[mbAddrP][mbPartIdxP][subMbPartP] and mvLX[mbAddrQ][mbPartIdxQ][subMbPartQ],
respectively.

– numMvP and numMvQ are equal to (pFL0P + pFL1P) and (pFL0Q + pFL1Q), respectively.

– When numMvP and numMvQ are both equal to 1, the variables refX and mvX with X being replaced by P and Q
are derived as follows.

– If pFL0X is equal to 1, refX is set equal to refL0X and mvX is set equal to mvL0X.

– Otherwise (pFL1X is equal to 1), refX is set equal to refL1X and mvX is set equal to mvL1X.

– sliceX with X being replaced by P and Q is the slice with DQId equal to (sliceIdc[mbAddrP] & 127) and
first_mb_in_slice equal to (sliceIdc[mbAddrP] >> 7)

 Rec. ITU-T H.264 (03/2009) 541

Let the variable mixedModeEdgeFlag be derived as follows.

– If MbaffFrameFlag is equal to 1 and fieldMbFlag[mbAddrP] is not equal to fieldMbFlag[mbAddrQ],
mixedModeEdgeFlag is set equal to 1

– Otherwise, mixedModeEdgeFlag is set equal to 0.

The variable bS is derived as follows.

– If interLayerDeblockingFlag is equal to 1 and mbType[mbAddrP] specifies an Inter macroblock prediction mode,
bS is set equal to 0.

NOTE 1 – This subclause is not invoked when interLayerDeblockingFlag is equal to 1 and mbType[mbAddrQ]
specifies an Inter macroblock prediction mode.

– Otherwise, if SpatialResolutionChangeFlag is equal to 1 and either or both mbType[mbAddrP] or
mbType[mbAddrQ] is equal to I_BL, the following applies.

– If either mbType[mbAddrP] or mbType[mbAddrQ] specifies an Intra macroblock prediction mode other
than I_BL, the following applies.

– If verticalEdgeFlag is equal to 1 or both fieldMbFlag[mbAddrP] and fieldMbFlag[mbAddrQ] are
equal to 0, bS is set equal to 4.

– Otherwise (verticalEdgeFlag is equal to 0 and either or both fieldMbFlag[mbAddrP] or
fieldMbFlag[mbAddrQ] is equal to 1), bS is set equal to 3.

– Otherwise, if mbType[mbAddrP] is equal to I_BL and mbType[mbAddrQ] is equal to I_BL, the following
applies.

– If any of the following conditions is true, bS is set equal to 1:

– cTrafo[mbAddrP] is equal to T_8x8 and the 8x8 luma transform block coded in sliceP and
associated with the 8x8 luma block containing sample p0 contains non-zero transform coefficient
levels,

– cTrafo[mbAddrP] is equal to T_4x4 and the 4x4 luma transform block coded in sliceP and
associated with the 4x4 luma block containing sample p0 contains non-zero transform coefficient
levels,

– cTrafo[mbAddrQ] is equal to T_8x8 and the 8x8 luma transform block coded in sliceQ and
associated with the 8x8 luma block containing sample q0 contains non-zero transform coefficient
levels,

– cTrafo[mbAddrQ] is equal to T_4x4 and the 4x4 luma transform block coded in sliceQ and
associated with the 4x4 luma block containing sample q0 contains non-zero transform coefficient
levels.

NOTE 2 – A luma transform block of a layer representation with dependency_id and quality_id is considered to
contain non-zero transform coefficient levels, if non-zero transform coefficients are transmitted in the
macroblock layer for dependency_id and quality_id for the considered luma transform block. Transform
coefficient levels that are transmitted in layers that are used for inter-layer prediction are not taken into account.

– Otherwise, bS is set equal to 0.

– Otherwise (either mbType[mbAddrP] or mbType[mbAddrQ] specifies an Inter macroblock prediction
mode), the following applies.

– If any of the following conditions is true, bS is set equal to 1:

– mbType[mbAddrP] specifies an Inter macroblock prediction type, cTrafo[mbAddrP] is equal
to T_8x8, and the array rSL contains non-zero samples for the 8x8 luma block containing sample p0,

– mbType[mbAddrP] specifies an Inter macroblock prediction type, cTrafo[mbAddrP] is equal
to T_4x4, and the array rSL contains non-zero samples for the 4x4 luma block containing sample p0,

– mbType[mbAddrQ] specifies an Inter macroblock prediction type, cTrafo[mbAddrQ] is equal
to T_8x8, and the array rSL contains non-zero samples for the 8x8 luma block containing sample q0,

– mbType[mbAddrQ] specifies an Inter macroblock prediction type, cTrafo[mbAddrQ] is equal
to T_4x4, and the array rSL contains non-zero samples for the 4x4 luma block containing sample q0.

NOTE 3 – The array rSL contains samples for the accumulated residual signal. Transform coefficient values of
layer representations that are used for inter-layer prediction are taken into account.

542 Rec. ITU-T H.264 (03/2009)

– Otherwise, bS is set equal to 1.

– Otherwise, if the block edge is also a macroblock edge and any of the following conditions is true, bS is set equal
to 4:

– fieldMbFlag[mbAddrP] is equal to 0 and fieldMbFlag[mbAddrQ] is equal to 0 and either or both
mbType[mbAddrP] or mbType[mbAddrQ] specify an Intra macroblock prediction mode,

– MbaffFrameFlag is equal to 1 or field_pic_flag is equal to 1, and verticalEdgeFlag is equal to 1, and either or
both mbType[mbAddrP] or mbType[mbAddrQ] specify an Intra macroblock prediction mode.

– Otherwise, if any of the following conditions is true, bS is set equal to 3:

– mixedModeEdgeFlag is equal to 0 and either or both mbType[mbAddrP] or mbType[mbAddrQ] specify an
Intra macroblock prediction mode,

– mixedModeEdgeFlag is equal to 1, verticalEdgeFlag is equal to 0, and either or both mbType[mbAddrP] or
mbType[mbAddrQ] specify an Intra macroblock prediction mode.

– Otherwise, if any of the following conditions is true, bS is set equal to 2:

– cTrafo[mbAddrP] is equal to T_8x8 and either the array rSL contains non-zero samples for the 8x8 luma
block containing sample p0 or the array sTCoeff[mbAddrP] contains non-zero scaled transform coefficient
values for the 8x8 luma transform block associated with the 8x8 luma block containing sample p0,

– cTrafo[mbAddrP] is equal to T_4x4 and either the array rSL contains non-zero samples for the 4x4 luma
block containing sample p0 or the array sTCoeff[mbAddrP] contains non-zero scaled transform coefficient
values for the 4x4 luma transform block associated with the 4x4 luma block containing sample p0,

– cTrafo[mbAddrQ] is equal to T_8x8 and either the array rSL contains non-zero samples for the 8x8 luma
block containing sample q0 or the array sTCoeff[mbAddrQ] contains non-zero scaled transform coefficient
values for the 8x8 luma transform block associated with the 8x8 luma block containing sample q0,

– cTrafo[mbAddrQ] is equal to T_4x4 and either the array rSL contains non-zero samples for the 4x4 luma
block containing sample q0 or the array sTCoeff[mbAddrQ] contains non-zero scaled transform coefficient
values for the 4x4 luma transform block associated with the 4x4 luma block containing sample q0.

NOTE 4 – The array rSL contains samples for the accumulated residual signal. Transform coefficient values of
layer representations that are used for inter-layer prediction are taken into account.

– Otherwise, if mixedModeEdgeFlag is equal to 1 or any of the following conditions is true, bS is set equal to 1:

1. numMvP is not equal to numMvQ.

2. numMvP and numMvQ are both equal to 1 and any of the following conditions is true:

– refP and refQ specify different reference pictures,

– the absolute difference between the horizontal or vertical component of the motion vectors mvP and
mvQ is greater than or equal to 4 in units of quarter luma frame samples.

3. numRefP and numRefQ are both equal to 2 and any of the following conditions is true:

a. refL0P and refL1P specify different reference pictures and any of the following conditions is true:

i. both of the following conditions are true:

– refL0P and refL0Q specify different reference pictures or refL1P and refL1Q specify different
reference pictures,

– refL0P and refL1Q specify different reference pictures or refL1P and refL0Q specify different
reference pictures.

ii. refL0P and refL0Q specifies the same reference picture, refL1P and refL1Q specify the same
reference picture, and any of the following conditions is true:

– the absolute difference between the horizontal or vertical component of the motion vectors
mvL0P and mvL0Q is greater than or equal to 4 in units of quarter luma frame samples,

– the absolute difference between the horizontal or vertical component of the motion vectors
mvL1P and mvL1Q is greater than or equal to 4 in units of quarter luma frame samples.

iii. refL0P and refL1Q specifies the same reference picture, refL1P and refL0Q specify the same
reference picture, and any of the following conditions is true:

 Rec. ITU-T H.264 (03/2009) 543

– the absolute difference between the horizontal or vertical component of the motion vectors
mvL0P and mvL1Q is greater than or equal to 4 in units of quarter luma frame samples,

– the absolute difference between the horizontal or vertical component of the motion vectors
mvL1P and mvL0Q is greater than or equal to 4 in units of quarter luma frame samples.

b. refL0P and refL1P specify the same reference picture and any of the following conditions is true:

i. refL0Q or refL1Q specify a different reference picture than refL0P (or refL1P).

ii. refL0Q and refL1Q specify the same reference picture as refL0P (and refL1P) and both of the
following conditions are true:

– the absolute difference between the horizontal or vertical component of the motion vectors
mvL0P and mvL0Q is greater than or equal to 4 in units of quarter luma frame samples or the
absolute difference between the horizontal or vertical component of the motion vectors mvL1P
and mvL1Q is greater than or equal to 4 in units of quarter luma frame samples,

– the absolute difference between the horizontal or vertical component of the motion vectors
mvL0P and mvL1Q is greater than or equal to 4 in units of quarter luma frame samples or the
absolute difference between the horizontal or vertical component of the motion vectors mvL1P
and mvL0Q is greater than or equal to 4 in units of quarter luma frame samples.

NOTE 5 – The determination of whether the reference pictures used for the two macroblock/sub-macroblock partitions
are the same or different is based only on which pictures are referenced, without regard to whether a prediction is
formed using an index into reference picture list 0 or an index into reference picture list 1, and also without regard to
whether the index position within a reference picture list is different.
NOTE 6 – A vertical difference of 4 in units of quarter luma frame samples is a difference of 2 in units of quarter luma
field samples

– Otherwise, bS is set equal to 0.

G.8.8 Specification of bitstream subsets

Subclause G.8.8.1 specifies the sub-bitstream extraction process.

Subclause G.8.8.2 specifies the base layer bitstream.

G.8.8.1 Sub-bitstream extraction process

It is requirement of bitstream conformance that any sub-bitstream that is the output of the process specified in this
subclause with pIdTarget equal to any value in the range of 0 to 63, inclusive, tIdTarget equal to any value in the range
of 0 to 7, inclusive, dIdTarget equal to any value in the range of 0 to 7, inclusive, and qIdTarget equal to any value in
the range of 0 to 15, inclusive, shall be conforming to this Recommendation | International Standard.

NOTE – A conforming bitstream contains one or more coded slice NAL units with priority_id equal to 0, dependency_id equal
to 0, quality_id equal to 0, and temporal_id equal to 0.

Inputs to this process are

– a variable pIdTarget (when present),

– a variable tIdTarget (when present),

– a variable dIdTarget (when present),

– a variable qIdTarget (when present).

Output of this process is a sub-bitstream.

When pIdTarget is not present as input to this subclause, pIdTarget is inferred to be equal to 63.

When tIdTarget is not present as input to this subclause, tIdTarget is inferred to be equal to 7.

When dIdTarget is not present as input to this subclause, dIdTarget is inferred to be equal to 7.

When qIdTarget is not present as input to this subclause, qIdTarget is inferred to be equal to 15.

The sub-bitstream is derived by applying the following operations in sequential order:

1. Mark all VCL NAL units and filler data NAL units for which any of the following conditions is true as "to be
removed from the bitstream":

– priority_id is greater than pIdTarget,

544 Rec. ITU-T H.264 (03/2009)

– temporal_id is greater than tIdTarget,

– dependency_id is greater than dIdTarget,

– dependency_id is equal to dIdTarget and quality_id is greater than qIdTarget.

2. Remove all access units for which all VCL NAL units are marked as "to be removed from the bitstream".

3. Remove all VCL NAL units and filler data NAL units that are marked as "to be removed from the bitstream".

4. When dIdTarget is equal to 0 and qIdTarget is equal to 0, remove the following NAL units:

– all NAL units with nal_unit_type equal to 14 or 15,

– all NAL units with nal_unit_type equal to 6 in which the first SEI message has payloadType in the range
of 24 to 35, inclusive.

5. Remove all NAL units with nal_unit_type equal to 6 that only contain SEI messages that are part of a scalable
nesting SEI message with any of the following properties:

– sei_temporal_id is greater than tIdTarget,

– the minimum value of (sei_dependency_id[i] << 4) + sei_quality_id[i] for all i in the range of 0 to
num_layer_representations_minus1, inclusive, is greater than (dIdTarget << 4) + qIdTarget.

6. Remove all NAL units with nal_unit_type equal to 6 that contain SEI messages with payloadType equal to 24,
28, or 29.

G.8.8.2 Specification of the base layer bitstream

Each scalable bitstream that conforms to this specification shall contain a base layer bitstream that conforms to one or
more of the profiles specified in Annex A. This base layer bitstream is derived by invoking the sub-bitstream extraction
process as specified in subclause G.8.8.1 with dIdTarget being equal to 0 and qIdTarget being equal to 0 and the base
layer bitstream being the output.

G.9 Parsing process

Inputs to this process are bits from the RBSP, a request for a value of a syntax element, and values of prior parsed
syntax elements (if applicable).

Output of this process is the value of the syntax element.

This process is invoked for all syntax elements in the syntax tables in subclause G.7.3 with descriptors equal to u(v),
ue(v), me(v), se(v), te(v), ce(v), and ae(v).

When parsing coded slice NAL units with nal_unit_type not equal to 20, the syntax elements scan_idx_start and
scan_idx_end, which are not present in these NAL units, shall be inferred to be equal to 0 and 15, respectively.

When the parsing process is invoked for the first request for a value of a syntax element in the slice data and
entropy_coding_mode_flag is equal to 1, the following ordered steps apply:

1. The initialisation process as specified in subclause 9.3.1 is invoked, where a slice_type equal to EI is
interpreted as I, a slice_type equal to EP is interpreted as P, and a slice_type equal to EB is interpreted as B.

2. The initialisation process as specified in subclause G.9.3.1 is invoked.

Depending on entropy_coding_mode_flag and the descriptor, the value of a syntax element is derived as follows.

– If entropy_coding_mode_flag is equal to 0, the following applies:

1. The parsing process for syntax elements coded as coded as ue(v), se(v), or te(v) is specified in subclause 9.1.

2. The parsing process for the syntax element coded_block_pattern is specified in subclause G.9.1.

3. The parsing process for syntax elements of the residual_block_cavlc() syntax structure is specified in
subclause G.9.2.

– Otherwise (entropy_coding_mode_flag is equal to 1), the value of the syntax element is derived as follows.

– If the syntax element is equal to base_mode_flag, motion_prediction_flag_l0, motion_prediction_flag_l1, or
residual_prediction_flag, the following applies:

1. The binarization process as specified in subclause G.9.3.2 is invoked.

 Rec. ITU-T H.264 (03/2009) 545

2. The decoding process flow as specified in G.9.3.3 is invoked.

– Otherwise (the syntax element is not equal to base_mode_flag, motion_prediction_flag_l0,
motion_prediction_flag_l1, or residual_prediction_flag), the following applies:

1. The binarization process as specified in subclause 9.3.2 is invoked, where a slice_type equal to EI is
interpreted as I, a slice_type equal to EP is interpreted as P, and a slice_type equal to EB is
interpreted as B.

2. The decoding process flow as specified in subclause 9.3.3 is invoked.
NOTE – For macroblocks with base_mode_flag equal to 1, mb_type is inferred to be equal to Mb_Inferred and
the specifications in subclause G.7.4.6 apply.

3. When the syntax element is equal to mb_type and the decoded value of mb_type is equal to I_PCM,
the arithmetic decoding engine is initialised after decoding of any pcm_alignment_zero_bit and all
pcm_sample_luma and pcm_sample_chroma data as specified in subclause 9.3.1.2.

G.9.1 Alternative parsing process for coded block pattern

This process is invoked for the parsing syntax elements with descriptor equal to me(v) when
entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from the RBSP.

Outputs of this process is a value of the syntax element coded_block_pattern.

The parsing process for the syntax elements begins with reading the bits starting at the current location in the bitstream
up to and including the first non-zero bit. By counting the number of leading bits that are equal to 0 and assigning this
value to the variable leadingZeroBits, the variable codeNum is then derived as

codeNum = 2leadingZeroBits − 1 + read_bits(leadingZeroBits)

where the value returned from read_bits(leadingZeroBits) is interpreted as a binary representation of an unsigned
integer with most significant bit written first.

When ref_layer_dq_id is greater than or equal to 0 and (scan_idx_end − scan_idx_start) is less than 15, codeNum is
set equal to (codeNum − 1).

Depending on codeNum, the following applies.

– If codeNum is equal to −1, the following ordered steps are specified:

1. The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output
is assigned to mbAddrA and mbAddrB.

2. When mbAddrN is available, the variable codedBlockPatternN is set equal to
(16 * cbpChromaN + cbpLumaN) with cbpChromaN and cbpLumaN representing the values of
CodedBlockPatternLuma and CodedBlockPatternChroma for the macroblock mbAddrN (with N being either
A or B).

3. Depending on mbAddrA and mbAddrB, the following applies.

– If mbAddrA is available, coded_block_pattern is set equal to codedBlockPatternA.

– Otherwise, if mbAddrB is available, coded_block_pattern is set equal to codedBlockPatternB.

– Otherwise (mbAddrA and mbAddrB are not available), coded_block_pattern is set equal to 0.

– Otherwise (codeNum is greater than or equal to 0), the mapping process for coded block pattern as specified in
subclause 9.1.2 is invoked with codeNum as input and the output is assigned to the syntax element
coded_block_pattern.

G.9.2 Alternative CAVLC parsing process for transform coefficient levels

This process is invoked for the parsing syntax elements with descriptor equal to ce(v) when entropy_coding_mode_flag
is equal to 0.

Inputs to this process are a request for a value of a syntax element, bits from slice data, a maximum number of non-zero
transform coefficient levels maxNumCoeff, the luma block index luma4x4BlkIdx or the chroma block index
chroma4x4BlkIdx, cb4x4BlkIdx or cr4x4BlkIdx of the current block of transform coefficient levels.

Output of this process is the list coeffLevel containing transform coefficient levels of the luma block with block index
luma4x4BlkIdx or the chroma block with block index chroma4x4BlkIdx, cb4x4BlkIdx or cr4x4BlkIdx.

546 Rec. ITU-T H.264 (03/2009)

The process is specified in the following ordered steps:

1. All transform coefficient levels, with indices from 0 to maxNumCoeff − 1, in the list coeffLevel are set equal
to 0.

2. The total number of non-zero transform coefficient levels TotalCoeff(coeff_token) and the number of trailing
one transform coefficient levels TrailingOnes(coeff_token) are derived by parsing coeff_token as specified by
the following ordered steps:

a. The parsing process of coeff_token as specified in subclause 9.2.1 is invoked and the outputs are
TotalCoeff(coeff_token), TrailingOnes(coeff_token), and nC.

NOTE – For macroblocks with base_mode_flag equal to 1, mb_type is inferred to be equal to Mb_Inferred and
the specifications in subclause G.7.4.6 apply.

b. When the CAVLC parsing process not invoked for ChromaDCLevel and
(scan_idx_end − scan_idx_start) is less than 15, nC modified by setting it equal to Min(7, nC), and the
additional parsing process for total number of transform coefficient levels and trailing ones as specified in
subclause G.9.2.1 is invoked with nC, totalCoeffStart set equal to TotalCoeff(coeff_token), and
trailingOnesStart set equal to TrailingOnes(coeff_token) as the inputs and the outputs are assigned to
TotalCoeff(coeff_token) and TrailingOnes(coeff_token).

3. When TotalCoeff(coeff_token) is greater than 0, the following ordered steps are specified:

a. The non-zero transform coefficient levels are derived by parsing trailing_ones_sign_flag, level_prefix, and
level_suffix as specified in subclause 9.2.2.

b. The runs of zero transform coefficient levels before each non-zero transform coefficient level are derived
by parsing total_zeros and run_before as specified in subclause G.9.2.2.

c. The level and run information are combined into the list coeffLevel as specified in subclause 9.2.4.

G.9.2.1 Additional parsing process for total number of transform coefficient levels and trailing ones

Inputs to this process are variables nC, totalCoeffStart, and trailingOnesStart.

Outputs of this process are variables totalCoeff and trailingOnes.

The value of totalCoeffStart resulting from decoding coeff_token as specified in subclause 9.2.1 shall be in the range
of 0 to (scan_idx_end − scan_idx_start + 1), inclusive.

Let invTotalCoeff(coeffTokenIdx) and invTrailingOnes(coeffTokenIdx) be functions that map the variable
coeffTokenIdx to the variables nX and nY, respectively, as specified by Table G-10 given the variable nC.

A variable targetCoeffTokenIdx is derived as specified by Table G-10 given the variables nC, nX = totalCoeffStart, and
nY = trailingOnesStart.

A variable coeffTokenIdx is derived as specified by the following pseudo code:
for(coeffTokenIdx = 0, i = 0; i <= targetCoeffTokenIdx; coeffTokenIdx++)
{
 if(invTotalCoeff(coeffTokenIdx) < min(4, scan_idx_end − scan_idx_start + 2) && (G-357)
 invTrailingOnes(coeffTokenIdx) < min(17, scan_idx_end − scan_idx_start + 2))
 i++;
}

The variable totalCoeff is set equal to invTotalCoeff(coeffTokenIdx − 1) and the variable trailingOnes is set equal to
invTrailingOnes(coeffTokenIdx − 1).

Table G-10 – Mapping of (nX, nY) to coeffTokenIdx and vice versa

nY nX 0 <= nC < 2 2 <= nC < 4 4 <= nC < 8

0 0 0 0 0

0 1 4 7 16

1 1 1 1 1

0 2 9 11 20

 Rec. ITU-T H.264 (03/2009) 547

Table G-10 – Mapping of (nX, nY) to coeffTokenIdx and vice versa

nY nX 0 <= nC < 2 2 <= nC < 4 4 <= nC < 8

1 2 5 5 8

2 2 2 2 2

0 3 13 15 23

1 3 10 8 11

2 3 7 9 9

3 3 3 3 3

0 4 17 19 24

1 4 14 12 13

2 4 11 13 12

3 4 6 4 4

0 5 21 22 28

1 5 18 16 15

2 5 15 17 14

3 5 8 6 5

0 6 25 23 30

1 6 22 20 17

2 6 19 21 18

3 6 12 10 6

0 7 29 27 31

1 7 26 24 21

2 7 23 25 22

3 7 16 14 7

0 8 32 31 32

1 8 30 28 25

2 8 27 29 26

3 8 20 18 10

0 9 33 35 36

1 9 34 32 33

2 9 31 33 29

3 9 24 26 19

0 10 37 39 40

1 10 38 36 37

2 10 35 37 34

3 10 28 30 27

0 11 41 42 44

1 11 42 40 41

2 11 39 41 38

548 Rec. ITU-T H.264 (03/2009)

Table G-10 – Mapping of (nX, nY) to coeffTokenIdx and vice versa

nY nX 0 <= nC < 2 2 <= nC < 4 4 <= nC < 8

3 11 36 34 35

0 12 45 43 47

1 12 46 44 45

2 12 43 45 42

3 12 40 38 39

0 13 50 47 49

1 13 49 48 48

2 13 47 49 46

3 13 44 46 43

0 14 54 51 53

1 14 51 54 50

2 14 52 52 51

3 14 48 50 52

0 15 58 55 57

1 15 55 56 54

2 15 56 57 55

3 15 53 53 56

0 16 61 59 61

1 16 59 60 58

2 16 60 61 59

3 16 57 58 60

G.9.2.2 Alternative parsing process for run information

Inputs to this process are bits from slice data and the number of non-zero transform coefficient levels
TotalCoeff(coeff_token).

Output of this process is a list of runs of zero transform coefficient levels preceding non-zero transform coefficient
levels called run.

Let maxCoeff be a variable that is set equal to (scan_idx_end − scan_idx_start + 1).

Initially, an index i is set equal to 0.

The variable zerosLeft is derived as follows.

– If the number of non-zero transform coefficient levels TotalCoeff(coeff_token) is equal to the maximum number
of non-zero transform coefficient levels maxCoeff, a variable zerosLeft is set equal to 0.

– Otherwise (the number of non-zero transform coefficient levels TotalCoeff(coeff_token) is less than the
maximum number of non-zero transform coefficient levels maxCoeff), total_zeros is decoded and zerosLeft is set
equal to its value.

The VLC used to decode total_zeros is derived as follows.

– If maxCoeff is less than or equal to 4, one of the VLCs specified in Table 9-9(a) is used with tzVlcIndex being
derived by

tzVlcIndex = min(3, TotalCoeff(coeff_token) + 4 − maxCoeff) (G-358)

 Rec. ITU-T H.264 (03/2009) 549

– Otherwise, if maxCoeff is greater than 4 and less than or equal to 8, one of the VLCs specified in Table 9-9(b) is
used with tzVlcIndex being derived by

tzVlcIndex = min(7, TotalCoeff(coeff_token) + 8 − maxCoeff) (G-359)

– Otherwise, if maxCoeff is greater than 8 and less than 15, VLCs from Tables 9-7 and 9-8 are used with tzVlcIndex
being derived by

tzVlcIndex = min(15, TotalCoeff(coeff_token) + 16 − maxCoeff) (G-360)

– Otherwise (maxCoeff is greater than or equal to 15), VLCs from Tables 9-7 and 9-8 are used with tzVlcIndex
equal to TotalCoeff(coeff_token).

The following procedure is then applied iteratively (TotalCoeff(coeff_token) − 1) times:

1. The variable run[i] is derived as follows.

– If zerosLeft is greater than zero, a value run_before is decoded based on Table 9-10 and zerosLeft. run[i]
is set equal to run_before.

– Otherwise (zerosLeft is equal to 0), run[i] is set equal to 0.

2. The value of run[i] is subtracted from zerosLeft and the result assigned to zerosLeft. The result of the
subtraction shall be greater than or equal to 0.

3. The index i is incremented by 1.

Finally the value of zerosLeft is assigned to run[i].

G.9.3 Alternative CABAC parsing process for slice data in scalable extension

Subclause G.9.3.1 specifies the initialisation process for the alternative CABAC parsing process for slice data in
scalable extension.

Subclause G.9.3.2 specifies the binarization process for the alternative CABAC parsing process for slice data in scalable
extension.

Subclause G.9.3.3 specifies the decoding process flow for the alternative CABAC parsing process for slice data in
scalable extension.

G.9.3.1 Initialisation process

Outputs of this process are the initialised CABAC context variables indexed by ctxIdx.

Tables G-12 and G-13 contain the values of the variables n and m used in the initialisation of context variables that are
assigned to syntax element base_mode_flag, motion_prediction_flag_l0, motion_prediction_flag_l1, and
residual_prediction_flag in subclause G.7.3.4.1 and G.7.3.6. For all other syntax elements in subclauses G.7.3.4.1 and
G.7.3.6 the initialisation process of context variables as specified in subclause 9.3.1 applies.

For each context variable, the two variables pStateIdx and valMPS are initialised. The two values assigned to pStateIdx
and valMPS for the initialisation are derived from SliceQPY, which is derived in Equation 7-29. Given the two table
entries (m, n), the initialisation is specified by the following pseudo-code process:

preCtxState = Clip3(1, 126, ((m ∗ Clip3(0, 51, SliceQPY)) >> 4) + n)
if(preCtxState <= 63) {
 pStateIdx = 63 − preCtxState
 valMPS = 0
} else { (G-361)
 pStateIdx = preCtxState − 64
 valMPS = 1
}

In Table G-11, the ctxIdx for which initialisation is needed for each of the slice types EI, EP, and EB are listed. Also
listed is the table number that includes the values of m and n needed for the initialisation. For EP and EB slices, the
initialisation depends also on the value of the cabac_init_idc syntax element. Note that the syntax element names do not
affect the initialisation process.

550 Rec. ITU-T H.264 (03/2009)

Table G-11 – Association of ctxIdx and syntax elements for each slice type in the initialisation process

Slice type
 Syntax element Table

EI EP EB

macroblock_layer_in_scalable_extension() base_mode_flag Table G-12 1024..1026 1024..1026 1024..1026

motion_prediction_flag_l0 Table G-13 1027 1027 mb_pred_in_scalable_extension() and
sub_mb_pred_in_scalable_extension()

motion_prediction_flag_l1 Table G-13 1028 1028

macroblock_layer_in_scalable_extension() residual_prediction_flag Table G-13 1029..1030 1029..1030

Table G-12 – Values of variables m and n for ctxIdx from 1024 to 1026

Value of cabac_init_idc (EP, EB slices)
EI slices

0 1 2 ctxIdx

m n m n m n m n

1024 −14 138 0 75 0 75 0 75

1025 −22 140 2 65 2 65 2 65

1026 −11 99 2 59 2 59 2 59

Table G-13 – Values of variables m and n for ctxIdx from 1027 to 1030

Value of cabac_init_idc

0 1 2 ctxIdx

m n m n m n

1027 −6 67 −6 67 −6 67

1028 −6 67 −6 67 −6 67

1029 −23 104 −23 104 −23 104

1030 −35 106 −35 106 −35 106

G.9.3.2 Binarization process

Input to this process is a request for a syntax element.

Output of this process is the binarization of the syntax element, maxBinIdxCtx, ctxIdxOffset, and bypassFlag.

Associated with each binarization or binarization part of a syntax element is a specific value of the context index offset
(ctxIdxOffset) variable and a specific value of the maxBinIdxCtx variable as given in Table G-14.

The variable bypassFlag is set equal to 0.

The possible values of the context index ctxIdx are in the range 1024 to 1030, inclusive. The value assigned to
ctxIdxOffset specifies the lower value of the range of ctxIdx assigned to the corresponding binarization or binarization
part of a syntax element.

 Rec. ITU-T H.264 (03/2009) 551

Table G-14 – Syntax elements and associated types of binarization, maxBinIdxCtx, and ctxIdxOffset

Syntax element Type of binarization maxBinIdxCtx ctxIdxOffset

base_mode_flag FL, cMax=1 0 1024

motion_prediction_flag_l0 FL, cMax=1 0 1027

motion_prediction_flag_l1 FL, cMax=1 0 1028

residual_prediction_flag FL, cMax=1 0 1029

G.9.3.3 Decoding process flow

Input to this process is a binarization of the requested syntax element, maxBinIdxCtx, bypassFlag and ctxIdxOffset as
specified in subclause G.9.3.2.

Output of this process is the value of the syntax element.

This process specifies how each bit of a bit string is parsed for each syntax element.

After parsing each bit, the resulting bit string is compared to all bin strings of the binarization of the syntax element and
the following applies.

– If the bit string is equal to one of the bin strings, the corresponding value of the syntax element is the output.

– Otherwise (the bit string is not equal to one of the bin strings), the next bit is parsed.

While parsing each bin, the variable binIdx is incremented by 1 starting with binIdx being set equal to 0 for the first bin.

The parsing of each bin is specified by the following two ordered steps:

1. Given binIdx, maxBinIdxCtx and ctxIdxOffset, ctxIdx is derived as specified in subclause G.9.3.3.1.

2. Given ctxIdx, the value of the bin from the bitstream as specified in subclause 9.3.3.2 is decoded.

G.9.3.3.1 Derivation process for ctxIdx

Inputs to this process are binIdx, maxBinIdxCtx and ctxIdxOffset.

Output of this process is ctxIdx.

Table G-15 shows the assignment of ctxIdx increments (ctxIdxInc) to binIdx for all ctxIdxOffset values for the syntax
elements base_mode_flag, motion_prediction_flag_l0, motion_prediction_flag_l1, and residual_prediction_flag.

The ctxIdx to be used with a specific binIdx is the sum of ctxIdxOffset and ctxIdxInc, which is found in Table G-15.
When more than one value is listed in Table G-15 or 9-39 for a binIdx, the assignment process for ctxIdxInc for that
binIdx is further specified in the subclauses given in parenthesis of the corresponding table entry.

All entries in Table G-15 labelled with "na" correspond to values of binIdx that do not occur for the corresponding
ctxIdxOffset.

Table G-15 – Assignment of ctxIdxInc to binIdx for the ctxIdxOffset values related to the syntax elements
base_mode_flag and residual_prediction_flag

binIdx
ctxIdxOffset 0 1 2 3 4 5 >= 6

1024 0,1,2
(subclause G.9.3.3.2.1) na na na na na na

1027 0 na na na na na na

1028 0 na na na na na na

1029 0,1
(subclause G.9.3.3.2.2) na na na na na na

552 Rec. ITU-T H.264 (03/2009)

G.9.3.3.2 Assignment process of ctxIdxInc using neighbouring syntax elements

Subclause G.9.3.3.2.1 specifies the derivation process of ctxIdxInc for the syntax element base_mode_flag.

Subclause G.9.3.3.2.2 specifies the derivation process of ctxIdxInc for the syntax element residual_prediction_flag.

G.9.3.3.2.1 Derivation process of ctxIdxInc for the syntax element base_mode_flag

Output of this process is ctxIdxInc.

The derivation process for neighbouring macroblocks specified in subclause 6.4.10.1 is invoked and the output is
assigned to mbAddrA and mbAddrB.

Let the variable condTermFlagN (with N being either A or B) be derived as follows.

– If mbAddrN is available and base_mode_flag for the macroblock mbAddrN is equal to 1, condTermFlagN is set
equal to 0.

– Otherwise (mbAddrN is not available or base_mode_flag for the macroblock mbAddrN is equal to 0),
condTermFlagN is set equal to 1.

The variable ctxIdxInc is derived by

ctxIdxInc = condTermFlagA + condTermFlagB (G-362)

G.9.3.3.2.2 Derivation process of ctxIdxInc for the syntax element residual_prediction_flag

Output of this process is ctxIdxInc.

Depending on base_mode_flag, the following applies.

– If base_mode_flag is equal to 1, ctxIdxInc is set equal to 0.

– Otherwise (base_mode_flag is equal to 0), ctxIdxInc is set equal to 1.

G.10 Profiles and levels

The specifications in Annex A apply. Additional profiles and specific values of profile_idc are specified in the
following.

The profiles that are specified in subclause G.10.1 are also referred to as the profiles specified in Annex G.

G.10.1 Profiles

All constraints for picture parameter sets that are specified in subclauses G.10.1.1 to G.10.1.3 are constraints for picture
parameter sets that become the active picture parameter set or an active layer picture parameter set inside the bitstream.
All constraints for SVC sequence parameter sets that are specified in subclauses G.10.1.1 to G.10.1.3 are constraints for
SVC sequence parameter sets that become the active SVC sequence parameter set or an active layer SVC sequence
parameter set inside the bitstream. All constraints for sequence parameter sets of the base layer bitstream that are
specified in subclauses G.10.1.1 to G.10.1.3 are constraints for sequence parameter sets that are activated in the base
layer bitstream.

G.10.1.1 Scalable Baseline profile

Bitstreams conforming to the Scalable Baseline profile shall obey the following constraints:

a) The base layer bitstream as specified in subclause G.8.8.2 shall obey the following constraints:

i) All constraints of the Baseline and Constrained Baseline profiles specified in subclauses A.2.1 and
A.2.1.1 shall be obeyed.

ii) Sequence parameter sets should have profile_idc equal to 66. Sequence parameter sets may have
profile_idc equal to 77 or 88. Sequence parameter sets shall not have profile_idc equal to a value other
than 66, 77, or 88.

iii) Sequence parameter sets shall have constraint_set0_flag, constraint_set1_flag, and
constraint_set2_flag equal to 1.

NOTE 1 – The above constraint implies that picture parameter sets must have num_slice_groups_minus1 equal to 0 and
redundant_pic_cnt_present_flag equal to 0 and that arbitrary slice order is not allowed.
NOTE 2 – In addition to the base layer constraints specified above in items i) through iii), the value of the syntax element
constrained_intra_pred_flag for picture parameter sets of the base layer stream is constrained as specified below in item l).

 Rec. ITU-T H.264 (03/2009) 553

b) A list of integer values specifying layer representation identifiers is derived by invoking the process specified
in G.8.1.1 with the output being the list dqIdList. The SVC sequence parameter sets that are referred to by
coded slice NAL units with DQId greater than 0 and DQId in the list dqIdList shall have profile_idc equal to
83 or (profile_idc equal to 86 and constraint_set0_flag equal to 1).

c) Only I, P, EI, EP, and EB slices shall be present.

d) SVC sequence parameter sets shall have chroma_format_idc equal to 1.

e) SVC sequence parameter sets shall have bit_depth_luma_minus8 equal to 0.

f) SVC sequence parameter sets shall have bit_depth_chroma_minus8 equal to 0.

g) SVC sequence parameter sets shall have separate_colour_plane_flag equal to 0.

h) SVC sequence parameter sets shall have qpprime_y_zero_transform_bypass_flag equal to 0.

i) SVC sequence parameter sets shall have frame_mbs_only_flag equal to 1.

j) Picture parameter sets shall have num_slice_groups_minus1 in the range of 0 to 7, inclusive.

k) When present, picture parameter sets shall have slice_group_map_type equal to 2.

l) A list of integer values specifying layer representation identifiers is derived by invoking the process specified
in G.8.1.1 with the output being the list dqIdList. The variable numDQEntries is set equal to the number of
elements in the list dqIdList. When numDQEntries is greater than 1, for any element dqIdList[i] with
i = 0..(numDQEntries − 2), when tcoeff_level_prediction_flag is equal to 0 for any layer representation with
DQId in the set specified by dqIdList[k] with k = i..(numDQEntries − 1), the picture parameter set that is
referenced by the coded slice NAL units of the layer representation with DQId equal to dqIdList[i] shall have
constrained_intra_pred_flag equal to 1.

m) For each present value of dependency_id greater than 0, one of the following constraints shall be obeyed.

– ScaledRefLayerPicWidthInSamplesL is equal to RefLayerPicWidthInSamplesL and
ScaledRefLayerPicHeightInSamplesL is equal to RefLayerPicHeightInSamplesL

– ScaledRefLayerPicWidthInSamplesL is equal to (1.5 * RefLayerPicWidthInSamplesL) and
ScaledRefLayerPicHeightInSamplesL is equal to (1.5 * RefLayerPicHeightInSamplesL)

– ScaledRefLayerPicWidthInSamplesL is equal to (2 * RefLayerPicWidthInSamplesL) and
ScaledRefLayerPicHeightInSamplesL is equal to (2 * RefLayerPicHeightInSamplesL)

n) For each present value of dependency_id greater than 0, all of the following constraints shall be obeyed.

– (ScaledRefLayerLeftOffset % 16) is equal to 0

– (ScaledRefLayerTopOffset % 16) is equal to 0

o) The level constraints specified in subclause G.10.2 shall be fulfilled.

Conformance of a bitstream to Scalable Baseline profile is specified by profile_idc equal to 83.

Decoders conforming to the Scalable Baseline profile at a specific level shall be capable of decoding all bitstreams in
which both of the following conditions are true:

a) Any of the following conditions is true for all active SVC sequence parameter sets:

– profile_idc is equal to 83,

– profile_idc is equal to 86 and constraint_set0_flag is equal to 1,

– profile_idc is equal to 66 and constraint_set1_flag is equal to 1,

– profile_idc is equal to 77, 100, 110, 122, 244, or 44 and constraint_set0_flag is equal to 1,

– profile_idc is equal to 88, constraint_set0_flag is equal to 1, and constraint_set1_flag is equal to 1.

b) level_idc or (level_idc and constraint_set3_flag) for all active SVC sequence parameter sets represent a level
less than or equal to the specified level.

554 Rec. ITU-T H.264 (03/2009)

G.10.1.2 Scalable High profile

Bitstreams conforming to the Scalable High profile shall obey the following constraints:

a) The base layer bitstream as specified in subclause G.8.8.2 shall obey the following constraints:

i) All constraints of the High profile specified in subclause A.2.4 shall be obeyed.

ii) Sequence parameter sets should have profile_idc equal to 100. Sequence parameter sets may have
profile_idc equal to 66, 77, or 88 and constraint_set1_flag equal to 1. Sequence parameter sets shall
not have profile_idc equal to a value other than 66, 77, 88, or 100.

iii) The syntax element direct_spatial_mv_pred_flag shall be equal to 1.
NOTE – In addition to the base layer constraints specified below in items i) through iii), the value of the syntax element
constrained_intra_pred_flag for picture parameter sets of the base layer stream is constrained as specified below in item k).

b) A list of integer values specifying layer representation identifiers is derived by invoking the process specified
in G.8.1.1 with the output being the list dqIdList. The SVC sequence parameter sets that are referred to by
coded slice NAL units with DQId greater than 0 and DQId in the list dqIdList shall have profile_idc equal to
86 or (profile_idc equal to 83 and constraint_set1_flag equal to 1).

c) Only I, P, B, EI, EP, and EB slices shall be present.

d) SVC sequence parameter sets shall have chroma_format_idc equal to 1.

e) SVC sequence parameter sets shall have bit_depth_luma_minus8 equal to 0.

f) SVC sequence parameter sets shall have bit_depth_chroma_minus8 equal to 0.

g) SVC sequence parameter sets shall have separate_colour_plane_flag equal to 0.

h) SVC sequence parameter sets shall have qpprime_y_zero_transform_bypass_flag equal to 0.

i) Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0.

j) Picture parameter sets shall have num_slice_groups_minus1 equal to 0.

k) A list of integer values specifying layer representation identifiers is derived by invoking the process specified
in G.8.1.1 with the output being the list dqIdList. The variable numDQEntries is set equal to the number of
elements in the list dqIdList. When numDQEntries is greater than 1, for any element dqIdList[i] with
i = 0..(numDQEntries − 2), when tcoeff_level_prediction_flag is equal to 0 for any layer representation with
DQId in the set specified by dqIdList[k] with k = i..(numDQEntries − 1), the picture parameter set that is
referenced by the coded slice NAL units of the layer representation with DQId equal to dqIdList[i] shall have
constrained_intra_pred_flag equal to 1.

l) Arbitrary slice order is not allowed.

m) The level constraints specified in subclause G.10.2 shall be fulfilled.

Conformance of a bitstream to Scalable High profile is specified by profile_idc equal to 86.

Decoders conforming to the Scalable High profile at a specific level shall be capable of decoding all bitstreams in which
both of the following conditions are true:

a) Any of the following conditions is true for all active SVC sequence parameter sets:

– profile_idc is equal to 86,

– profile_idc is equal to 83 and constraint_set1_flag is equal to 1,

– profile_idc is equal to 77 or 100,

– profile_idc is equal to 66, 88, 110, 122, 244 or 44 and constraint_set1_flag equal to 1.

b) level_idc or (level_idc and constraint_set3_flag) for all active SVC sequence parameter sets represent a level
less than or equal to the specified level.

 Rec. ITU-T H.264 (03/2009) 555

G.10.1.3 Scalable High Intra profile

Bitstreams conforming to the Scalable High Intra profile shall obey the following constraints:

a) The base layer bitstream as specified in subclause G.8.8.2 shall obey the following constraints:

i) All constraints of the High profile specified in subclause A.2.4 shall be obeyed.

ii) Sequence parameter sets should have profile_idc equal to 100 and constraint_set3_flag equal to 1.
Sequence parameter sets may have profile_idc equal to 66, 77, or 88 and constraint_set1_flag equal
to 1. Sequence parameter sets shall not have profile_idc equal to a value other than 66, 77, 88, or 100.

b) A list of integer values specifying layer representation identifiers is derived by invoking the process specified
in G.8.1.1 with the output being the list dqIdList. The SVC sequence parameter sets that are referred to by
coded slice NAL units with DQId greater than 0 and DQId in the list dqIdList shall have profile_idc equal to
86 and constraint_set3_flag equal to 1.

c) All constraints of the Scalable High profile specified in subclause G.10.1.2 shall be obeyed.

d) All pictures shall be IDR pictures.

e) SVC sequence parameter sets shall have max_num_ref_frames equal to 0.

f) When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, SVC sequence
parameter sets shall have num_reorder_frames equal to 0.

g) When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, SVC sequence
parameter sets shall have max_dec_frame_buffering equal to 0.

h) Picture timing SEI messages, whether present in the bitstream (by non-VCL NAL units) or conveyed
equivalently by other means not specified in this Recommendation | International Standard, shall have
dpb_output_delay equal to 0.

i) The level constraints specified in subclause G.10.2 shall be fulfilled.

Conformance of a bitstream to Scalable High Intra profile is specified by constraint_set3_flag being equal to 1 with
profile_idc equal to 86.

Decoders conforming to the Scalable High Intra profile at a specific level shall be capable of decoding all bitstreams in
which both of the following conditions are true:

a) Any of the following conditions is true for all active SVC sequence parameter sets:

– profile_idc is equal to 86 or 100 and constraint_set3_flag equal to 1.

– profile_idc is equal to 110, 122, 244, 44 and constraint_set1_flag equal to 1, and constraint_set3_flag
equal to 1.

b) level_idc or (level_idc and constraint_set3_flag) for all active SVC sequence parameter sets represents a level
less than or equal to the specified level.

The operation of the deblocking filter process for target representation as specified in subclause G.8.7.2 is not required
for decoder conformance to the Scalable High Intra profile.

G.10.2 Levels

The following is specified for expressing the constraints in this subclause:

– Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.

– Let picture n be the primary coded picture or the corresponding decoded picture of access unit n.

The variable fR is derived as follows.

– If picture n is a frame, fR is set equal to (1 ÷ 172).

– Otherwise (picture n is a field), fR is set equal to (1 ÷ (172 * 2)).

G.10.2.1 Level limits common to Scalable Baseline, Scalable High, and Scalable High Intra profiles

The variable dqIdMax is set equal to the maximum value of DQId for the layer representation of the access unit.

The variable refLayerDQId is set equal to the maximum value of ref_layer_dq_id for the layer representation with
DQId equal to dqIdMax.

556 Rec. ITU-T H.264 (03/2009)

A list of integer values specifying layer representation identifiers for the access unit is derived by invoking the process
specified in subclause G.8.1.1 with the output being the list dqIdList. The variable numDQEntries is set equal to the
number of elements in the list dqIdList.

A variable dependentDId is derived by the following pseudo-code:

dependentDId = 0
for(i = 0; i < numDQEntries; i++)
 if((dqIdList[i] % 16) = = 0) (G-363)
 dependentDId++

The variable svcPicSizeInMbs is derived as follows.

– If numDQEntries is less than 3, svcPicSizeInMbs is set equal to PicSizeInMbs for the layer representation with
DQId equal to dqIdMax.

– Otherwise (numDQEntries is greater than 2), svcPicSizeInMbs is derived by applying the following ordered steps:

1. svcPicSizeInMbs is set equal to PicSizeInMbs for the layer representation with DQId equal to dqIdMax.

2. The variable refLayerMbs is set equal to 0.

3. For each element dqIdList[i] with i = 2..(numDQEntries − 1), with refLayerPicSizeInMbs being the
variable PicSizeInMbs for the layer representation, the variable refLayerMbs is modified by

refLayerMbs += refLayerPicSizeInMbs (G-364)

4. svcPicSizeInMbs is modified by

svcPicSizeInMbs += (refLayerMbs + 1) >> 1 (G-365)

Bitstreams conforming to the Scalable Baseline, Scalable High, or Scalable High Intra profiles at a specific level shall
obey the following constraints:

a) The nominal removal time of access unit n with n > 0 from the CPB as specified in subclause C.1.2, satisfies
the constraint that tr,n(n) − tr(n − 1) is greater than or equal to Max(svcPicSizeInMbs ÷ MaxMBPS, fR),
where MaxMBPS is the value specified in Table A-1 that applies to picture n − 1 and svcPicSizeInMbs is
derived for picture n − 1.

b) The difference between consecutive output times of pictures from the DPB as specified in subclause C.2.2,
satisfies the constraint that Δto,dpb(n) >= Max(svcPicSizeInMbs ÷ MaxMBPS, fR), where MaxMBPS is the
value specified in Table A-1 for picture n, and svcPicSizeInMbs is derived for picture n, provided that picture
n is a picture that is output and is not the last picture of the bitstream that is output.

c) PicWidthInMbs * FrameHeightInMbs <= MaxFS, where MaxFS is specified in Table A-1. PicWidthInMbs
and FrameHeightInMbs are the derived variables for the layer representation with DQId equal to dqIdMax.

d) PicWidthInMbs <= Sqrt(MaxFS * 8), where MaxFS is specified in Table A-1 and PicWidthInMbs is the
derived variable for the layer representation with DQId equal to dqIdMax.

e) FrameHeightInMbs <= Sqrt(MaxFS * 8), where MaxFS is specified in Table A-1 and FrameHeightInMbs is
the derived variable for the layer representation with DQId equal to dqIdMax.

f) max_dec_frame_buffering <= MaxDpbFrames, where MaxDpbFrames is equal to
Min(MaxDpbMbs / (PicWidthInMbs * FrameHeightInMbs), 16) and MaxDpbMbs is specified in
Table A-1. PicWidthInMbs and FrameHeightInMbs are the derived variables for the layer representation with
DQId equal to dqIdMax.

g) Vertical motion vector component range does not exceed MaxVmvR in units of luma frame samples, where
MaxVmvR is specified in Table A-1.

h) Horizontal motion vector range does not exceed the range of −2048 to 2047.75, inclusive, in units of luma
samples.

i) For each layer representation, the total number of motion vectors per two macroblocks mbAddrA and
mbAddrB with (mbAddrA + 1) equal to mbAddrB does not exceed MaxMvsPer2Mb, where MaxMvsPer2Mb
is specified in Table A-1 given the level that is indicated in the active SVC sequence parameter set (when
DQId equal to DQIdMax) or the active layer SVC sequence parameter set for this layer representation (when
DQId is less than DQIdMax). The number of motion vectors for each macroblock is the value of the variable
MvCnt after the completion of the base decoding process for slices without resolution change specified in

 Rec. ITU-T H.264 (03/2009) 557

subclause G.8.1.4.1 (when SpatialResolutionChangeFlag is equal to 0) or after completion the base decoding
process for slices with resolution change specified in subclause G.8.1.4.2 (when SpatialResolutionChangeFlag
is equal to 1).

NOTE – Due to the constraint specified in subclause G.8.8.1, the number of motion vectors for the layer
representation with DQId equal to 0 is additionally constrained as specified in Annex A.

j) Number of bits of macroblock_layer() and macroblock_layer_in_scalable_extension() data for any
macroblock in any layer representation is not greater than 128 + RawMbBits. Depending on
entropy_coding_mode_flag, the bits of macroblock_layer() data are counted as follows.

– If entropy_coding_mode_flag is equal to 0, the number of bits of macroblock_layer() data is given by the
number of bits in the macroblock_layer() syntax structure for a macroblock.

– Otherwise (entropy_coding_mode_flag is equal to 1), the number of bits of macroblock_layer() data for
a macroblock is given by the number of times read_bits(1) is called in subclauses 9.3.3.2.2 and 9.3.3.2.3
when parsing the macroblock_layer() associated with the macroblock.

k) The variable dependentDId specified at the beginning of this subclause shall not exceed 3.

l) For each layer representation present in an access unit that has no_inter_layer_pred_flag equal to 0, the
following applies.

– If PicSizeInMbs is less than or equal to 1620, for each slice currSlice of the current layer representation
specified by DQId, the following applies:

1. The variables numIntraPredSamples and numRefLayerILIntraPredMbs are derived as specified in
the derivation process for variables related to inter-layer intra prediction in subclause G.8.6.2.5 with
DQId, sliceConstraintFlag equal to 1, and currSlice being the input.

2. The following constraint shall be obeyed.

bsPicSizeInM
cSizeInMbsRefLayerPi*5.1

edSamplesnumIntraPr
256*rILPredMbsnumRefLaye ≤ (G-366)

– Otherwise (PicSizeInMbs is greater than 1620), the following applies:

1. The variables numIntraPredSamples and numRefLayerILIntraPredMbs are derived as specified in
the derivation process for variables related to inter-layer intra prediction in subclause G.8.6.2.5 with
DQId and sliceConstraintFlag equal to 0 being the input.

2. The constraint specified in Equation G-366 shall be obeyed.

m) When ref_layer_dq_id is greater than or equal to 0 for a particular layer representation, the value of level_idc
in the SVC sequence parameter set that is referenced by the particular layer representation shall represent a
level that is greater than or equal to the level that is represented by the value of level_idc or (level_idc and
constraint_set3_flag) in the SVC sequence parameter set that is referenced by the layer representation with
DQId equal to ref_layer_dq_id.

Table A-1 specifies the limits for each level. Entries marked "-" in Table A-1 denote the absence of a corresponding
limit.

A level to which the bitstream conforms shall be indicated by the syntax element level_idc as follows.

– If level_idc is equal to 9, the indicated level is level 1b.

– Otherwise (level_idc is not equal to 9), level_idc is equal to a value of ten times the level number specified in
Table A-1.

G.10.2.2 Profile specific level limits

The variable dqIdMax is set equal to the maximum value of DQId for the layer representation of the access unit.

A list of integer values specifying layer representation identifiers for the access unit is derived by invoking the process
specified in subclause G.8.1.1 with the output being the list dqIdList. The variable numDQEntries is set equal to the
number of elements in the list dqIdList.

558 Rec. ITU-T H.264 (03/2009)

The variable numSVCSlices is derived as specified by the following pseudo-code:

numSVCSlices = 0
for(i = 0; i < numDQEntries; i++) (G-367)
 numSVCSlices += number of slices in layer representation with DQId equal to dqIdList[i]

The variable numSVCBytesInAU is derived as specified by the following pseudo-code:

numSVCBytesInAU = 0
for(i = 0; i < numDQEntries; i++) (G-368)
 numSVCBytesInAU += sum of the NumBytesInNALunit variables for the layer representation with
 DQId equal to dqIdList[i]

The variable svcPicSizeInMbs is derived as specified in subclause G.10.2.1.

The following constraints are specified:

a) In bitstreams conforming to the Scalable Baseline, Scalable High, or Scalable High Intra profiles, the removal
time of access unit 0 shall satisfy the constraint that the numSVCSlices variable for picture 0 is less than or
equal to (Max(svcPicSizeInMbs, fR * MaxMBPS) + MaxMBPS * (tr(0) − tr,n(0))) ÷ SliceRate, where
MaxMBPS and SliceRate are the values that apply to picture 0. MaxMBPS is specified in Table A-1. For
Scalable Baseline profile, SliceRate is specified in Table G-16. For Scalable High and Scalable High Intra
profiles, SliceRate is specified in Table A-4.

b) In bitstreams conforming to the Scalable Baseline, Scalable High, or Scalable High Intra profiles, the
difference between consecutive removal time of access units n and n − 1 with n > 0 shall satisfy the constraint
that the numSVCSlices variable for picture n is less than or equal to
MaxMBPS * (tr(n) − tr(n − 1)) ÷ SliceRate, where MaxMBPS and SliceRate are the values that apply to
picture n. MaxMBPS is specified in Table A-1. For the Scalable Baseline profile, SliceRate is specified in
Table G-16. For the Scalable High and Scalable High Intra profiles, SliceRate is specified in Table A-4.

c) In bitstreams conforming to the Scalable High or Scalable High Intra profiles, SVC sequence parameter sets
shall have direct_8x8_inference_flag equal to 1 for the levels specified in Table A-4. In bitstreams conforming
to Scalable Baseline profile, SVC sequence parameter sets shall have direct_8x8_inference_flag equal to 1.

d) In bitstreams conforming to the Scalable High or Scalable High Intra profiles, SVC sequence parameter sets
shall have frame_mbs_only_flag equal to 1 for the levels specified in Table A-4.

e) In bitstreams conforming to the Scalable High or Scalable High Intra profiles, for all macroblocks mbAddr
and macroblock partitions mbPartIdx, the value of subMbType[mbAddr][mbPartIdx] that is derived as
specified in subclause G.8.1.5.1.1 shall not be equal to B_Bi_8x4, B_Bi_4x8, or B_Bi_4x4 for the levels in
which MinLumaBiPredSize is shown as 8x8 in Table A-4. In bitstreams conforming to the Scalable Baseline
profile, for all macroblocks mbAddr and macroblock partitions mbPartIdx, the value of
subMbType[mbAddr][mbPartIdx] that is derived as specified in subclause G.8.1.5.1.1 shall not be equal to
B_Bi_8x4, B_Bi_4x8, or B_Bi_4x4.

f) In bitstreams conforming to the Scalable Baseline profile, (xIntmax − xIntmin + 6) * (yIntmax − yIntmin + 6) <=
MaxSubMbRectSize in macroblocks coded with macroblock type equal to P_8x8, P_8x8ref0 or B_8x8 for all
invocations of the process specified in subclause 8.4.2.2.1 used to generate the predicted luma sample array
for a single reference picture list (reference picture list 0 or reference picture list 1) for each 8x8 sub-
macroblock with the macroblock partition index mbPartIdx, where
NumSubMbPart(sub_mb_type[mbPartIdx]) > 1, where MaxSubMbRectSize is specified in Table G-16 and

– xIntmin is the minimum value of xIntL among all luma sample predictions for the sub-macroblock,

– xIntmax is the maximum value of xIntL among all luma sample predictions for the sub-macroblock,

– yIntmin is the minimum value of yIntL among all luma sample predictions for the sub-macroblock,

– yIntmax is the maximum value of yIntL among all luma sample predictions for the sub-macroblock.

 Rec. ITU-T H.264 (03/2009) 559

g) In bitstreams conforming to the Scalable Baseline, Scalable High, or Scalable High Intra profiles, for the VCL
HRD parameters, BitRate[SchedSelIdx] <= cpbBrVclFactor * MaxBR and CpbSize[SchedSelIdx] <=
cpbBrVclFactor * MaxCPB for at least one value of SchedSelIdx, where cpbBrVclFactor is specified in
Table G-17. With vui_ext_vcl_hrd_parameters_present_flag[i] being the syntax element, in the SVC VUI
parameters extension of the active SVC sequence parameter set, that is associated with the VCL HRD
parameters that are used for conformance checking (as specified in Annex C), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are given as follows.

– If vui_ext_vcl_hrd_parameters_present_flag[i] is equal to 1, BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are given by Equations E-37 and E-38, respectively, using the syntax elements of
the hrd_parameters() syntax structure that immediately follows
vui_ext_vcl_hrd_parameters_present_flag[i].

– Otherwise (vui_ext_vcl_hrd_parameters_present_flag[i] is equal to 0), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.2 for VCL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of cpbBrVclFactor bits/s and cpbBrVclFactor bits,
respectively. The bitstream shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to
cpb_cnt_minus1, inclusive.

h) In bitstreams conforming to the Scalable Baseline, Scalable High, or Scalable High Intra profiles, for the NAL
HRD parameters, BitRate[SchedSelIdx] <= cpbBrNalFactor * MaxBR and CpbSize[SchedSelIdx] <=
cpbBrNalFactor * MaxCPB for at least one value of SchedSelIdx, where cpbBrNalFactor is specified in
Table G-17. With vui_ext_nal_hrd_parameters_present_flag[i] being the syntax element, in the SVC VUI
parameters extension of the active SVC sequence parameter set, that is associated with the NAL HRD
parameters that are used for conformance checking (as specified in Annex C), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are given as follows.

– If vui_ext_nal_hrd_parameters_present_flag[i] is equal to 1, BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are given by Equations E-37 and E-38, respectively, using the syntax elements of
the hrd_parameters() syntax structure that immediately follows
vui_ext_nal_hrd_parameters_present_flag[i].

– Otherwise (vui_ext_nal_hrd_parameters_present_flag[i] is equal to 0), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.2 for NAL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of cpbBrNalFactor bits/s and cpbBrNalFactor bits,
respectively. The bitstream shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to
cpb_cnt_minus1, inclusive.

i) In bitstreams conforming to the Scalable Baseline, Scalable High, or Scalable High Intra profiles, the
numSVCBytesInAU variable for access unit 0 is less than or equal to 384 * (Max(svcPicSizeInMbs,
fR * MaxMBPS) + MaxMBPS * (tr(0) − tr,n(0))) ÷ MinCR, where MaxMBPS and MinCR are the values
specified in Table A-1 that apply to picture 0.

j) In bitstreams conforming to the Scalable Baseline, Scalable High, or Scalable High Intra profiles, the
numSVCBytesInAU variable for access unit n with n > 0 is less than or equal to 384 * MaxMBPS *
(tr(n) − tr(n − 1)) ÷ MinCR, where MaxMBPS and MinCR are the values specified in Table A-1 that apply
to picture n.

k) In bitstreams conforming to Scalable Baseline profile, picture parameter sets shall have
entropy_coding_mode_flag equal to 0 and transform_8x8_mode_flag equal to 0 for level 2.1 and below.

l) In bitstreams conforming to Scalable Baseline, Scalable High, and Scalable High Intra profiles, when
PicSizeInMbs is greater than 1620 for DQId equal to dqIdMax, the number of macroblocks in any coded slice
shall not exceed MaxFS / 4, where MaxFS is specified in Table A-1.

560 Rec. ITU-T H.264 (03/2009)

Table G-16 – Scalable Baseline profile level limits

Level number SliceRate MaxSubMbRectSize

1 - 576

1b - 576

1.1 - 576

1.2 - 576

1.3 - 576

2 - 576

2.1 22 576

2.2 22 576

3 22 576

3.1 60 1152

3.2 60 1152

4 60 1440

4.1 24 1440

4.2 24 1440

5 24 -

5.1 24 -

Table G-17 – Specification of cpbBrVclFactor and cpbBrNalFactor

Profile cpbBrVclFactor cpbBrNalFactor

Scalable Baseline
Scalable High, or

Scalable High Intra
1250 1500

G.11 Byte stream format

The specifications in Annex B apply.

G.12 Hypothetical reference decoder

The specifications in Annex C apply with substituting SVC sequence parameter set for sequence parameter set.

G.13 Supplemental enhancement information

The specifications in Annex D together with the extensions and modifications specified in this subclause apply.

 Rec. ITU-T H.264 (03/2009) 561

G.13.1 SEI payload syntax

G.13.1.1 Scalability information SEI message syntax

scalability_info(payloadSize) { C Descriptor
 temporal_id_nesting_flag 5 u(1)
 priority_layer_info_present_flag 5 u(1)
 priority_id_setting_flag 5 u(1)
 num_layers_minus1 5 ue(v)
 for(i = 0; i <= num_layers_minus1; i++) {
 layer_id[i] 5 ue(v)
 priority_id[i] 5 u(6)
 discardable_flag[i] 5 u(1)
 dependency_id[i] 5 u(3)
 quality_id[i] 5 u(4)
 temporal_id[i] 5 u(3)
 sub_pic_layer_flag[i] 5 u(1)
 sub_region_layer_flag[i] 5 u(1)
 iroi_division_info_present_flag[i] 5 u(1)
 profile_level_info_present_flag[i] 5 u(1)
 bitrate_info_present_flag[i] 5 u(1)
 frm_rate_info_present_flag[i] 5 u(1)
 frm_size_info_present_flag[i] 5 u(1)
 layer_dependency_info_present_flag[i] 5 u(1)
 parameter_sets_info_present_flag[i] 5 u(1)
 bitstream_restriction_info_present_flag[i] 5 u(1)
 exact_inter_layer_pred_flag[i] 5 u(1)
 if(sub_pic_layer_flag[i] | | iroi_division_info_present_flag[i])
 exact_sample_value_match_flag[i] 5 u(1)
 layer_conversion_flag[i] 5 u(1)
 layer_output_flag[i] 5 u(1)
 if(profile_level_info_present_flag[i])
 layer_profile_level_idc[i] 5 u(24)
 if(bitrate_info_present_flag[i]) {
 avg_bitrate[i] 5 u(16)
 max_bitrate_layer[i] 5 u(16)
 max_bitrate_layer_representation[i] 5 u(16)
 max_bitrate_calc_window[i] 5 u(16)
 }
 if(frm_rate_info_present_flag[i]) {
 constant_frm_rate_idc[i] 5 u(2)
 avg_frm_rate[i] 5 u(16)
 }
 if(frm_size_info_present_flag[i] | |
 iroi_division_info_present_flag[i]) {

 frm_width_in_mbs_minus1[i] 5 ue(v)
 frm_height_in_mbs_minus1[i] 5 ue(v)
 }

562 Rec. ITU-T H.264 (03/2009)

 if(sub_region_layer_flag[i]) {
 base_region_layer_id[i] 5 ue(v)
 dynamic_rect_flag[i] 5 u(1)
 if(!dynamic_rect_flag[i]) {
 horizontal_offset[i] 5 u(16)
 vertical_offset[i] 5 u(16)
 region_width[i] 5 u(16)
 region_height[i] 5 u(16)
 }
 }
 if(sub_pic_layer_flag[i])
 roi_id[i] 5 ue(v)
 if (iroi_division_info_present_flag[i]) {
 iroi_grid_flag[i] 5 u(1)
 if (iroi_grid_flag[i]) {
 grid_width_in_mbs_minus1[i] 5 ue(v)
 grid_height_in_mbs_minus1[i] 5 ue(v)
 } else {
 num_rois_minus1[i] 5 ue(v)
 for (j = 0; j <= num_rois_minus1[i]; j++) {
 first_mb_in_roi[i][j] 5 ue(v)
 roi_width_in_mbs_minus1[i][j] 5 ue(v)
 roi_height_in_mbs_minus1[i][j] 5 ue(v)
 }
 }
 }
 if(layer_dependency_info_present_flag[i]) {
 num_directly_dependent_layers[i] 5 ue(v)
 for(j = 0; j < num_directly_dependent_layers[i]; j++)
 directly_dependent_layer_id_delta_minus1[i][j] 5 ue(v)
 } else
 layer_dependency_info_src_layer_id_delta[i] 5 ue(v)
 if(parameter_sets_info_present_flag[i]) {
 num_seq_parameter_set_minus1[i] 5 ue(v)
 for(j = 0; j <= num_seq_parameter_set_minus1[i]; j++)
 seq_parameter_set_id_delta[i][j] 5 ue(v)
 num_subset_seq_parameter_set_minus1[i] 5 ue(v)
 for(j = 0; j <= num_subset_seq_parameter_set_minus1[i]; j++)
 subset_seq_parameter_set_id_delta[i][j] 5 ue(v)
 num_pic_parameter_set_minus1[i] 5 ue(v)
 for(j = 0; j <= num_pic_parameter_set_minus1[i]; j++)
 pic_parameter_set_id_delta[i][j] 5 ue(v)
 } else
 parameter_sets_info_src_layer_id_delta[i] 5 ue(v)
 if(bitstream_restriction_info_present_flag[i]) {
 motion_vectors_over_pic_boundaries_flag[i] 5 u(1)
 max_bytes_per_pic_denom[i] 5 ue(v)

 Rec. ITU-T H.264 (03/2009) 563

 max_bits_per_mb_denom[i] 5 ue(v)
 log2_max_mv_length_horizontal[i] 5 ue(v)
 log2_max_mv_length_vertical[i] 5 ue(v)
 num_reorder_frames[i] 5 ue(v)
 max_dec_frame_buffering[i] 5 ue(v)
 }
 if(layer_conversion_flag[i]) {
 conversion_type_idc[i] 5 ue(v)
 for(j=0; j < 2; j++) {
 rewriting_info_flag[i][j] 5 u(1)
 if(rewriting_info_flag[i][j]) {
 rewriting_profile_level_idc[i][j] 5 u(24)
 rewriting_avg_bitrate[i][j] 5 u(16)
 rewriting_max_bitrate[i][j] 5 u(16)
 }
 }
 }
 }
 if(priority_layer_info_present_flag) {
 pr_num_dId_minus1 5 ue(v)
 for(i = 0; i <= pr_num_dId_minus1; i++) {
 pr_dependency_id[i] 5 u(3)
 pr_num_minus1[i] 5 ue(v)
 for(j = 0; j <= pr_num_minus1[i]; j++) {
 pr_id[i][j] 5 ue(v)
 pr_profile_level_idc[i][j] 5 u(24)
 pr_avg_bitrate[i][j] 5 u(16)
 pr_max_bitrate[i][j] 5 u(16)
 }
 }
 }
 if(priority_id_setting_flag) {
 PriorityIdSettingUriIdx = 0
 do
 priority_id_setting_uri[PriorityIdSettingUriIdx] 5 b(8)
 while(priority_id_setting_uri[PriorityIdSettingUriIdx++] != 0)
 }
}

G.13.1.2 Sub-picture scalable layer SEI message syntax

sub_pic_scalable_layer(payloadSize) { C Descriptor
 layer_id 5 ue(v)
}

564 Rec. ITU-T H.264 (03/2009)

G.13.1.3 Non-required layer representation SEI message syntax

non_required_layer_rep(payloadSize) { C Descriptor
 num_info_entries_minus1 5 ue(v)
 for(i = 0; i <= num_info_entries_minus1; i++) {
 entry_dependency_id[i] 5 u(3)
 num_non_required_layer_rep_minus1[i] 5 ue(v)
 for(j = 0; j <= num_non_required_layer_rep_minus1[i]; j++) {
 non_required_layer_rep_dependency_id[i][j] 5 u(3)
 non_required_layer_rep_quality_id[i][j] 5 u(4)
 }
 }
}

G.13.1.4 Priority layer information SEI message syntax

priority_layer_info(payloadSize) { C Descriptor
 pr_dependency_id 5 u(3)
 num_priority_ids 5 u(4)
 for(i = 0; i < num_priority_ids; i++) {
 alt_priority_id[i] 5 u(6)
 }
}

G.13.1.5 Layers not present SEI message syntax

layers_not_present(payloadSize) { C Descriptor
 num_layers 5 ue(v)
 for(i = 0; i < num_layers; i++) {
 layer_id[i] 5 ue(v)
 }
}

G.13.1.6 Layer dependency change SEI message syntax

layer_dependency_change(payloadSize) { C Descriptor
 num_layers_minus1 5 ue(v)
 for(i = 0; i <= num_layers_minus1; i++) {
 layer_id[i] 5 ue(v)

 Rec. ITU-T H.264 (03/2009) 565

 layer_dependency_info_present_flag[i] 5 u(1)
 if(layer_dependency_info_present_flag[i]) {
 num_directly_dependent_layers[i] 5 ue(v)
 for (j = 0; j < num_directly_dependent_layers[i]; j++)
 directly_dependent_layer_id_delta_minus1[i][j] 5 ue(v)
 } else {
 layer_dependency_info_src_layer_id_delta_minus1[i] 5 ue(v)
 }
 }
}

G.13.1.7 Scalable nesting SEI message syntax

scalable_nesting(payloadSize) { C Descriptor
 all_layer_representations_in_au_flag 5 u(1)
 if(all_layer_representations_in_au_flag = = 0) {
 num_layer_representations_minus1 5 ue(v)
 for(i = 0; i <= num_layer_representations_minus1; i++) {
 sei_dependency_id[i] 5 u(3)
 sei_quality_id[i] 5 u(4)
 }
 sei_temporal_id 5 u(3)
 }
 while(!byte_aligned())
 sei_nesting_zero_bit /* equal to 0 */ 5 f(1)
 do
 sei_message() 5
 while(more_rbsp_data())
}

566 Rec. ITU-T H.264 (03/2009)

G.13.1.8 Base layer temporal HRD SEI message syntax

base_layer_temporal_hrd(payloadSize) { C Descriptor
 num_of_temporal_layers_in_base_layer_minus1 5 ue(v)
 for(i = 0; i < num_of_temporal_layers_in_base_layer_minus1; i++){

 sei_temporal_id[i] 5 u(3)
 sei_timing_info_present_flag[i] 5 u(1)
 if(sei_timing_info_present_flag[i]) {
 sei_num_units_in_tick[i] 5 u(32)
 sei_time_scale[i] 5 u(32)
 sei_fixed_frame_rate_flag[i] 5 u(1)
 }
 sei_nal_hrd_parameters_present_flag[i] 5 u(1)
 if(sei_nal_hrd_parameters_present_flag[i])
 hrd_parameters() 5
 sei_vcl_hrd_parameters_present_flag[i] 5 u(1)
 if(sei_vcl_hrd_parameters_present_flag[i])
 hrd_parameters() 5
 if(sei_nal_hrd_parameters_present_flag[i] | |
 sei_vcl_hrd_parameters_present_flag[i])

 sei_low_delay_hrd_flag[i] 5 u(1)
 sei_pic_struct_present_flag[i] 5 u(1)
 }
}

G.13.1.9 Quality layer integrity check SEI message syntax

quality_layer_integrity_check(payloadSize) { C Descriptor
 num_info_entries_minus1 5 ue(v)
 for(i = 0; i <= num_info_entries_minus1; i++) {
 entry_dependency_id[i] 5 u(3)
 quality_layer_crc[i] 5 u(16)
 }
}

 Rec. ITU-T H.264 (03/2009) 567

G.13.1.10 Redundant picture property SEI message syntax

redundant_pic_property(payloadSize) { C Descriptor
 num_dId_minus1 5 ue(v)
 for(i = 0; i <= num_dId_minus1; i++) {
 dependency_id[i] 5 u(3)
 num_qId_minus1[i] 5 ue(v)
 for(j = 0; j <= num_qId_minus1[i]; j++) {
 quality_id[i][j] 5 u(4)
 num_redundant_pics_minus1[i][j] 5 ue(v)
 for(k = 0; k <= num_redundant_pics_minus1[i][j]; k++) {
 redundant_pic_cnt_minus1[i][j][k] 5 ue(v)
 pic_match_flag[i][j][k] 5 u(1)
 if(!pic_match_flag[i][j][k]) {
 mb_type_match_flag[i][j][k] 5 u(1)
 motion_match_flag[i][j][k] 5 u(1)
 residual_match_flag[i][j][k] 5 u(1)
 intra_samples_match_flag[i][j][k] 5 u(1)
 }
 }
 }
 }
}

G.13.1.11 Temporal level zero dependency representation index SEI message syntax

tl0_dep_rep_index(payloadSize) { C Descriptor
 tl0_dep_rep_idx 5 u(8)
 effective_idr_pic_id 5 u(16)
}

G.13.1.12 Temporal level switching point SEI message syntax

tl_switching_point(payloadSize) { C Descriptor
 delta_frame_num 5 se(v)
}

G.13.2 SEI payload semantics

The semantics of the SEI messages with payloadType in the range of 0 to 23, inclusive, which are specified in
subclause D.2, are extended as follows.

– If payloadType is equal to 3, 8, 19, 20, or 22, the following applies.

– If the SEI message is not included in a scalable nesting SEI message, it applies to the layer representations of
the current access unit that have dependency_id equal to 0 and quality_id equal to 0.

The semantics as specified in subclause D.2 apply to the bitstream that would be obtained by invoking the
bitstream extraction process as specified in subclause G.8.8.1 with dIdTarget equal to 0 and qIdTarget equal

568 Rec. ITU-T H.264 (03/2009)

to 0. All syntax elements and derived variables that are referred to in the semantics in subclause D.2 are
syntax elements and variables for layer representations with dependency_id equal to 0 and quality_id equal to
0. All SEI messages that are referred to in subclause D.2 are SEI messages that apply to layer representations
with dependency_id equal to 0 and quality_id equal to 0.

– Otherwise (the SEI message is included in a scalable nesting SEI message), the SEI message applies to all
layer representations of the current access unit for which DQId is equal to any value of
((sei_dependency_id[i] << 4) + sei_quality_id[i]) with i in the range of 0 to
num_layer_representations_minus1, inclusive.

For each value of i in the range of 0 to num_layer_representations_minus1, inclusive, the semantics as
specified in subclause D.2 apply to the bitstream that would be obtained by invoking the bitstream extraction
process as specified in subclause G.8.8.1 with dIdTarget equal to sei_dependency_id[i] and qIdTarget equal
to sei_quality_id[i]. All syntax elements and derived variables that are referred to in the semantics in
subclause D.2 are syntax elements and variables for layer representations with dependency_id equal to
sei_dependency_id[i] and quality_id equal to sei_quality_id[i]. All SEI messages that are referred to in
subclause D.2 are SEI messages that apply to layer representations with dependency_id equal to
sei_dependency_id[i] and quality_id equal to sei_quality_id[i].

– Otherwise, if payloadType is equal to 2, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 21, or 23, the following applies.

– If the SEI message is not included in a scalable nesting SEI message, it applies to the dependency
representations of the current access unit that have dependency_id equal to 0.

The semantics as specified in subclause D.2 apply to the bitstream that would be obtained by invoking the
bitstream extraction process as specified in subclause G.8.8.1 with dIdTarget equal to 0. All syntax elements
and derived variables that are referred to in the semantics in subclause D.2 are syntax elements and variables
for dependency representations with dependency_id equal to 0. All SEI messages that are referred to in
subclause D.2 are SEI messages that apply to dependency representations with dependency_id equal to 0.

– Otherwise (the SEI message is included in a scalable nesting SEI message), the scalable nesting SEI message
containing the SEI message shall have all_layer_representations_in_au_flag equal to 1 or, when
all_layer_representations_in_au_flag is equal to 0, all values of sei_quality_id[i] present in the scalable
nesting SEI message shall be equal to 0. The SEI message that is included in the scalable nesting SEI message
applies to all dependency representations of the current access unit for which dependency_id is equal to any
value of sei_dependency_id[i] with i in the range of 0 to num_layer_representations_minus1, inclusive.

For each value of i in the range of 0 to num_layer_representations_minus1, inclusive, the semantics as
specified in subclause D.2 apply to the bitstream that would be obtained by invoking the bitstream extraction
process as specified in subclause G.8.8.1 with dIdTarget equal to sei_dependency_id[i]. All syntax elements
and derived variables that are referred to in the semantics in subclause D.2 are syntax elements and variables
for dependency representations with dependency_id equal to sei_dependency_id[i]. All SEI messages that
are referred to in subclause D.2 are SEI messages that apply to dependency representations with
dependency_id equal to sei_dependency_id[i].

When payloadType is equal to 10 for the SEI message that is included in a scalable nesting SEI message, the
semantics for sub_seq_layer_num of the sub-sequence information SEI message is modified as follows:

sub_seq_layer_num specifies the sub-sequence layer number of the current picture. When the current
picture resides in a sub-sequence whose first picture in decoding order is an IDR picture, the value of
sub_seq_layer_num shall be equal to 0. For a non-paired reference field, the value of sub_seq_layer_num
shall be equal to 0. sub_seq_layer_num shall be in the range of 0 to 255, inclusive.

– Otherwise, if payloadType is equal to 0 or 1, the following applies.

– If the SEI message is not included in a scalable nesting SEI message, the following applies. When the SEI
message and all other SEI messages with payloadType equal to 0 or 1 not included in a scalable nesting SEI
message are used as the buffering period and picture timing SEI messages for checking the bitstream
conformance according to Annex C and the decoding process specified in clauses 2-9 of this
Recommendation | International Standard is used, the bitstream shall be conforming to this
Recommendation | International Standard.

The value of seq_parameter_set_id in a buffering period SEI message not included in a scalable nesting SEI
message shall be equal to the value of seq_parameter_set_id in the picture parameter set that is referenced by
the layer representation with DQId equal to 0 of the primary coded picture in the same access unit.

– Otherwise (the SEI message is included in a scalable nesting SEI message), the following applies. When the
SEI message and all other SEI messages with payloadType equal to 0 or 1 included in a scalable nesting SEI

 Rec. ITU-T H.264 (03/2009) 569

message with identical values of sei_temporal_id, sei_dependency_id[i], and sei_quality_id[i] are used as
the buffering period and picture timing SEI messages for checking the bitstream conformance according to
Annex C, the bitstream that would be obtained by invoking the bitstream extraction process as specified in
subclause G.8.8.1 with tIdTarget equal to sei_temporal_id, dIdTarget equal to sei_dependency_id[i], and
qIdTarget equal to sei_quality_id[i] shall be conforming to this Recommendation | International Standard.

In the semantics of subclauses D.2.1 and D.2.2, the syntax elements num_units_in_tick, time_scale,
fixed_frame_rate_flag, nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag,
low_delay_hrd_flag, and pic_struct_present_flag and the derived variables NalHrdBpPresentFlag,
VclHrdBpPresentFlag, and CpbDpbDelaysPresentFlag are substituted with the syntax elements
vui_ext_num_units_in_tick[i], vui_ext_time_scale[i], vui_ext_fixed_frame_rate_flag[i],
vui_ext_nal_hrd_parameters_present_flag[i], vui_ext_vcl_hrd_parameters_present_flag[i],
vui_ext_low_delay_hrd_flag[i], and vui_ext_pic_struct_present_flag[i] and the derived variables
VuiExtNalHrdBpPresentFlag[i], VuiExtVclHrdBpPresentFlag[i], and
VuiExtCpbDpbDelaysPresentFlag[i].

The value of seq_parameter_set_id in a buffering period SEI message included in a scalable nesting SEI
message with the values of sei_dependency_id[i] and sei_quality_id[i] shall be equal to the value of
seq_parameter_set_id in the picture parameter set that is referenced by the layer representation with DQId
equal to ((sei_dependency_id[i] << 4) + sei_quality_id[i]) of the primary coded picture in the same access
unit.

– Otherwise (payloadType is equal to 4 or 5), the corresponding SEI message semantics are not extended.

For the semantics of SEI messages with payloadType in the range of 0 to 23, inclusive, which are specified in
subclause D.2, SVC sequence parameter set is substituted for sequence parameter set; the parameters of the picture
parameter set RBSP and SVC sequence parameter set RBSP that are in effect are specified in subclause G.7.4.1.2.1.

When an SEI NAL unit contains an SEI message with payloadType in the range of 24 to 35, inclusive, it shall not
contain any SEI message with payloadType less than 24 that is not included in a scalable nesting SEI message, and the
first SEI message in the SEI NAL unit shall have payloadType in the range of 24 to 35, inclusive.

When an SEI NAL unit contains an SEI message with payloadType equal to 24, 28, or 29, it shall not contain any SEI
message with payloadType not equal to 24, 28, or 29.

When a scalable nesting SEI message (payloadType is equal to 30) is present in an SEI NAL unit, it shall be the only
SEI message in the SEI NAL unit.

The semantics for SEI messages with payloadType in the range of 24 to 35, inclusive, are specified in the following.

G.13.2.1 Scalability information SEI message semantics

The scalability information SEI message provides scalability information for subsets of the bitstream.

In the following specification of this subclause, a VCL NAL unit of a primary coded picture is also referred to as
primary coded VCL NAL unit and a VCL NAL unit of a redundant coded picture is also referred to as redundant coded
VCL NAL unit.

A scalability information SEI message shall not be included in a scalable nesting SEI message.

A scalability information SEI message shall not be present in access units that contain primary coded VCL NAL units
with IdrPicFlag equal to 0. The set of access units consisting of the access unit associated with the scalability
information SEI message and all succeeding access units in decoding order until, but excluding, the next access unit that
does not contain any primary coded VCL NAL unit with IdrPicFlag equal to 0 (if present) or the end of the bitstream
(otherwise) is referred to as the target access unit set. The scalability information SEI message applies to the target
access unit set.

The scalability information SEI message provides information for subsets of the target access unit set. These subsets are
referred to as scalable layers. A scalable layer represents a set of NAL units, inside the target access unit set, that
consists of VCL NAL units with the same values of dependency_id, quality_id, and temporal_id, as specified later in
this subclause, and associated non-VCL NAL units. When present in the target access unit set, the following NAL units
are associated non-VCL NAL units for a scalable layer:

– sequence parameter set, subset sequence parameter set, and picture parameter set NAL units that are referenced in
the VCL NAL units of the scalable layer (via the syntax element pic_parameter_set_id),

– sequence parameter set extension NAL units that are associated with a sequence parameter set NAL unit
referenced in the VCL NAL units of the scalable layer,

570 Rec. ITU-T H.264 (03/2009)

– filler data NAL units that are associated with the same values of dependency_id, quality_id, and temporal_id as the
VCL NAL units of the scalable layer,

– SEI NAL units containing SEI messages, with payloadType not equal to 24, 28, or 29, that apply to subsets of the
bitstream that contain one or more VCL NAL units of the scalable layer,

– access unit delimiter, end of sequence, and end of stream NAL units that are present in access units that contain
VCL NAL units of the scalable layer,

– when dependency_id and quality_id are both equal to 0 in the VCL NAL units of a scalable layer, coded slice of an
auxiliary coded picture without partitioning NAL units that are present in access units that contain VCL NAL units
of the scalable layer.

A scalable layer A is directly dependent on a scalable layer B when any primary coded VCL NAL unit of the scalable
layer A references data of any VCL NAL unit of the scalable layer B through inter prediction or inter-layer prediction
as specified in the decoding process in subclause G.8, with the following exception: A scalable layer A (identified by
layer_id[a]) is not directly dependent on a scalable layer B (identified by layer_id[b]) when dependency_id[a] is
equal to dependency_id[b], sub_pic_layer_flag[a] is equal to 1, and one of the following conditions is true:

– sub_pic_layer_flag[b] is equal to 0,

– sub_pic_layer_flag[b] is equal to 1 and (horizontal_offset[a] is not equal to horizontal_offset[b],
vertical_offset[a] is not equal to vertical_offset[b], region_width[a] is not equal to region_width[b], or
region_height[a] is not equal to region_height[b]).

NOTE 1 – Sub-picture scalable layers with a particular value of dependency_id and a particular sub-picture area are only
considered to depend on scalable layers with the same value of dependency_id when these scalable layers are associated with the
same sub-picture area.

A scalable layer A is indirectly dependent on a scalable layer B when the scalable layer A is not directly dependent on
the scalable layer B but there exists a set of n (with n being greater than 0) scalable layers {C0, .., Cn−1} with the
following properties: The scalable layer A is directly dependent on the scalable layer C0, each scalable layer Ci with i in
the range of 0 to n − 2, inclusive, is directly dependent on the scalable layer Ci+1, and the scalable layer Cn−1 is directly
dependent on the scalable layer B.

The representation of a particular scalable layer is the set of NAL units that represents the set union of the particular
scalable layer and all scalable layers on which the particular scalable layer directly or indirectly depends. The
representation of a scalable layer is also referred to as scalable layer representation. In the following specification of this
subclause, the terms representation of a scalable layer and scalable layer representation are also used for referring to the
access unit set that can be constructed from the NAL units of the scalable layer representation. A scalable layer
representation can be decoded independently of all NAL units that do not belong to the scalable layer representation.
The decoding result of a scalable layer representation is the set of decoded pictures that are obtained by decoding the
access unit set of the scalable layer representation.

NOTE 2 – The set of access units that is formed by the representation of a scalable layer with sub_pic_layer_flag[i] equal to 1
does not conform to this Recommendation | International Standard, since the primary coded VCL NAL units with quality_id
equal to 0 that belong to such a scalable layer representation do not cover all macroblocks of the layer pictures with
dependency_id equal to dependency_id[i] and quality_id equal to 0. For the following specification in this subclause, the
decoding result for the representation of a scalable layer with sub_pic_layer_flag[i] equal to 1 is the decoding result that would
be obtained for the sub-picture area (as specified later in this subclause) by following the decoding process in G.8 but ignoring
the constraint that the layer representations with quality_id equal to 0 of primary coded pictures must cover all macroblocks of
the corresponding layer pictures.

Each scalable layer is associated with a unique layer identifier as specified later in this subclause. The representation of
a particular scalable layer with a particular layer identifier layerId does not include any scalable layer with a layer
identifier greater than layerId, but it may include scalable layers with layer identifiers less than layerId. The scalable
layers on which a particular scalable layer depends may be indicated in the scalability information SEI message as
specified later in this subclause.

NOTE 3 – When all scalable layers for which scalability information is provided in the scalability information SEI message have
sub_pic_layer_flag[i] equal to 0, the unique layer identifier values may be set equal to (128 * dependency_id + 8 * quality_id +
temporal_id), with dependency_id, quality_id, and temporal_id being the corresponding syntax elements that are associated with
the VCL NAL units of a scalable layer.

temporal_id_nesting_flag indicates whether inter prediction is additionally restricted for the target access unit set.
Depending on the value of temporal_id_nesting_flag, the following applies.

– If temporal_id_nesting_flag is equal to 1, the scalability information SEI message indicates that the following
constraint is obeyed for all access units sets that can be derived from the target access unit set by invoking the
sub-bitstream extraction process as specified in subclause G.8.8.1 with tIdTarget equal to any value in the range of
0 to 7, inclusive, dIdTarget equal to any value in the range of 0 to 7, inclusive, and qIdTarget equal to any value in
the range of 0 to 15, inclusive, as the inputs: The values of the samples in the decoded pictures for each access unit

 Rec. ITU-T H.264 (03/2009) 571

auA with temporal_id equal to tIdA and all following access units in decoding order are independent of an access
unit auB with temporal_id equal to tIdB and tIdB less than or equal to tIdA, when there exists an access unit auC
with temporal_id equal to tIdC and tIdC less than tIdB, that follows the access unit auB and precedes the access
unit auA in decoding order.

– Otherwise (temporal_id_nesting_flag is equal to 0), the scalability information SEI message indicates that the
constraint specified for temporal_id_nesting_flag equal to 1 may or may not be obeyed.

NOTE 4 – The syntax element temporal_id_nesting_flag is used to indicate that temporal up-switching, i.e., switching from
decoding of up to a particular temporal_id value tIdN to decoding of up to a temporal_id value tIdM greater than tIdN, is always
possible inside the target access unit set.

priority_layer_info_present_flag equal to 1 specifies that characteristic information for priority layers, as specified
later in this subclause, is present in the scalability information SEI message and that priority layer information SEI
messages associating an alternative value for priority_id with each layer representation of the primary coded pictures in
the target access unit set are present. priority_layer_info_present_flag equal to 0 specifies that characteristic information
for priority layers is not present in the scalability information SEI message.

priority_id_setting_flag equal to 1 specifies that syntax elements priority_id_setting_uri[i] are present in the
scalability information SEI message and that the description of the method used to calculate the priority_id values is
provided by the specified universal resource identifier (URI). priority_id_setting_flag equal to 0 specifies that syntax
elements priority_id_setting_uri[i] are not present in the scalability information SEI message.

num_layers_minus1 plus 1 specifies the number of scalable layers for which information is provided in the scalability
information SEI message. The value of num_layers_minus1 shall be in the range of 0 to 2047, inclusive.

layer_id[i] specifies the layer identifier of the i-th scalable layer specified in the scalability information SEI message.
layer_id[i] shall be in the range of 0 to 2047, inclusive.

For the following specification inside this subclause, the scalable layer with layer identifier equal to the current value of
layer_id[i] is referred to as the current scalable layer, and the representation of the current scalable layer is referred to
as the current scalable layer representation.

priority_id[i] indicates an upper bound for the priority_id values of the current scalable layer representation. All
primary coded VCL NAL units of the current scalable layer representation shall have a value of priority_id that is less
than or equal to priority_id[i].

discardable_flag[i] equal to 1 indicates that all primary coded VCL NAL units of the current scalable layer have
discardable_flag equal to 1. discardable_flag[i] equal to 0 indicates that the current scalable layer may contain one or
more primary coded VCL NAL units with discardable_flag equal to 0.

dependency_id[i], quality_id[i], and temporal_id[i] are equal to the values of dependency_id, quality_id, and
temporal_id, respectively, of the VCL NAL units of the current scalable layer. All VCL NAL units of a scalable layer
have the same values of dependency_id, quality_id, and temporal_id.

When the target access unit set does not contain any primary coded VCL NAL unit with particular values of
dependency_id, quality_id, and temporal_id, the scalability information SEI message shall not contain information for a
scalable layer with dependency_id[i], quality_id[i], and temporal_id[i] equal to the particular values of
dependency_id, quality_id, and temporal_id, respectively.

NOTE 5 – When an application removes NAL units from a scalable bitstream, e.g. in order to adapt the bitstream to a
transmission channel or the capabilities of a receiving device, and keeps the present scalability information SEI messages, it
might need to modify the content of the scalability information SEI messages in order to obtain a bitstream conforming to this
Recommendation | International Standard.

sub_pic_layer_flag[i] specifies whether the current scalable layer represents a sub-picture scalable layer as specified
subsequently. Depending on sub_pic_layer_flag[i], the following applies.

– If sub_pic_layer_flag[i] is equal to 0, the current scalable layer does not represent a sub-picture scalable layer.
The VCL NAL units of the current scalable layer are all VCL NAL units of the target access unit set that have
dependency_id, quality_id, and temporal_id equal to dependency_id[i], quality_id[i], and temporal_id[i],
respectively.

– Otherwise (sub_pic_layer_flag[i] is equal to 1), the current scalable layer represents a sub-picture scalable layer
and is associated with a sub-picture area as specified in the following:

(a) The sub-picture area is a rectangular area of slice group map units inside the layer frames with dependency_id
equal to dependency_id[i] and represents a proper subset of the area of the layer frames with dependency_id
equal to dependency_id[i]. The sub-picture area associated with a sub-picture scalable layer does not change
inside the target access unit set. The sub-picture area is specified by the syntax elements horizontal_offset[i],
vertical_offset[i], region_width[i], and region_height[i] as specified later in this subclause.

572 Rec. ITU-T H.264 (03/2009)

NOTE 6 – The sub-picture area for a sub-picture scalable layer may additionally be indicated by the presence of
sub-picture scalable layer SEI messages with layer_id equal to value of layer_id[i] for the current scalable layer.

(b) When a VCL NAL unit of the target access unit set has dependency_id equal to dependency_id[i] and
contains any macroblock that resides inside the sub-picture area, it shall not contain any macroblock that
resides outside of the sub-picture area.

(c) The VCL NAL units of the current scalable layer are the coded slice NAL units of the target access unit set
that have dependency_id, quality_id, and temporal_id equal to dependency_id[i], quality_id[i], and
temporal_id[i], respectively, and for which the macroblock specified by first_mb_in_slice resides inside the
specified sub-picture area and the associated prefix NAL units (when present).

(d) For all access units sets that can be derived from the target access unit set by invoking the sub-bitstream
extraction process as specified in subclause G.8.8.1 with dIdTarget equal to dependency_id[i] and qIdTarget
equal to any value in the range of 0 to 15, inclusive, as the inputs, the following constraint shall be obeyed: No
sample value outside the sub-picture area and no sample value at a fractional sample position that is derived
using one or more sample values outside the sub-picture area is used, in the decoding process as specified in
subclause G.8, to inter predict any sample within the sub-picture area.

When the target access unit set contains any primary coded VCL NAL unit with particular values of dependency_id,
quality_id, and temporal_id, the scalability information SEI message shall contain information for a exactly one
scalable layer with dependency_id[i], quality_id[i], and temporal_id[i] equal to the particular values of
dependency_id, quality_id, and temporal_id, respectively, and sub_pic_layer_flag[i] equal to 0.

NOTE 7 – The scalability information SEI message may additionally contain information for one or more scalable layers with
dependency_id[i], quality_id[i], and temporal_id[i] equal to the particular values of dependency_id, quality_id, and
temporal_id, respectively, and sub_pic_layer_flag[i] equal to 1.

When sub_pic_layer_flag[i] is equal to 1 for the current scalable layer and the target access unit set contains any
primary coded VCL NAL unit that has dependency_id equal to dependency_id[i], resides inside the sub-picture area,
and has particular values of quality_id and temporal_id, with either quality_id not equal to quality_id[i] or temporal_id
not equal to temporal_id[i], the scalability information SEI message shall also contain information for a scalable layer
j with dependency_id[j] equal to dependency_id[i], quality_id[j] and temporal_id[j] equal to the particular values
of quality_id and temporal_id, respectively, sub_pic_layer_flag[j] equal to 1, and horizontal_offset[j],
vertical_offset[j], region_width[j], and region_height[j] equal to horizontal_offset[i], vertical_offset[i],
region_width[i], and region_height[i], respectively.

The scalability information SEI message shall not contain information for two or more scalable layers with
sub_pic_layer_flag[i] equal to 1 and the same values of dependency_id[i], quality_id[i], temporal_id[i],
sub_pic_layer_flag[i], horizontal_offset[i], vertical_offset[i], region_width[i], and region_height[i].

When the scalability information SEI message contains information for two scalable layers A and B (identified by
layer_id[a] and layer_id[b], respectively) with dependency_id[a] equal to dependency_id[b], quality_id[a] equal
to quality_id[b], temporal_id[a] equal to temporal_id[b], sub_pic_layer_flag[a] equal to 1, and
sub_pic_layer_flag[b] equal to 1, and the sub-picture areas associated with the scalable layers A and B overlap, the
scalability information SEI message shall also contain information for a scalable layer C (identified by layer_id[c])
with dependency_id[c] equal to dependency_id[b], quality_id[c] equal to quality_id[b], temporal_id[c] equal to
temporal_id[b], and sub_pic_layer_flag[c] is equal to 1, and with the scalable layer C being associated with a sub-
picture area that represents the intersection of the sub-picture areas associated with the scalable layers A and B.

sub_region_layer_flag[i] equal to 1 specifies that the syntax elements base_region_layer_id[i] and
dynamic_rect_flag[i] for the current scalable layer are present in the scalability information SEI message.
sub_region_layer_flag[i] equal to 0 specifies that the syntax elements base_region_layer_id[i] and
dynamic_rect_flag[i] for the current scalable layer are not present in the scalability information SEI message.

When sub_pic_layer_flag[i] is equal to 1, sub_region_layer_flag[i] shall be equal to 1.

iroi_division_info_present_flag[i] equal to 1 specifies that the layer pictures with dependency_id equal to
dependency_id[i] are divided along slice group map unit boundaries into multiple rectangular regions of interest,
referred to as interactive regions of interest (IROIs), and that the IROI division information is explicitly signalled in the
scalability information SEI message as specified later in this subclause, and that the syntax elements
frame_width_in_mbs_minus1[i] and frame_height_in_mbs_minus1[i] for the current scalable layer are present in the
scalability information SEI message. iroi_division_info_present_flag[i] equal to 0 specifies that the IROI division
information for the current scalable layer is not present in the scalability information SEI message.

When sub_pic_layer_flag[i] is equal to 1, iroi_division_info_present_flag[i] shall be equal to 0.

 Rec. ITU-T H.264 (03/2009) 573

When iroi_division_info_present_flag[i] is equal to 1, the following is specified:

(a) When a primary coded VCL NAL unit of the target access unit set has dependency_id equal to
dependency_id[i] and contains any macroblock that resides inside a particular IROI, it shall not contain any
macroblock that resides outside of the particular IROI.

(b) For all access units sets that can be derived from the target access unit set by invoking the sub-bitstream
extraction process as specified in subclause G.8.8.1 with dIdTarget equal to dependency_id[i] and qIdTarget
equal to any value in the range of 0 to 15, inclusive, as the inputs, the following constraint shall be obeyed: No
sample value outside a particular IROI and no sample value at a fractional sample position that is derived using
one or more sample values outside the particular IROI is used, in the decoding process as specified in
subclause G.8, to inter predict any sample within the particular IROI.

All scalable layers with the same value of dependency_id[i] for which scalability information is present in the
scalability information SEI message shall have the same value of iroi_division_info_present_flag[i].

profile_level_info_present_flag[i] equal to 1 specifies that profile_idc, constraint_set0_flag, constraint_set1_flag,
constraint_set2_flag, constraint_set3_flag, and level_idc applicable for the current scalable layer representation are
indicated by the value of layer_profile_level_idc[i] as specified later in this subclause.

When profile_level_info_present_flag[i] is equal to 0, profile_idc, constraint_set0_flag, constraint_set1_flag,
constraint_set2_flag, constraint_set3_flag, and level_idc applicable for the current scalable layer representation are not
indicated in the scalability information SEI message.

bitrate_info_present_flag[i] equal to 1 specifies that the bit rate information for the current scalable layer
representation is present in the scalability information SEI message. bitrate_info_present_flag[i] equal to 0 specifies
that the bit rate information for the current scalable layer representation is not present in the scalability information SEI
message.

frm_rate_info_present_flag[i] equal to 1 specifies that the frame rate information for the current scalable layer
representation is present in the scalability information SEI message. frm_rate_info_present_flag[i] equal to 0 specifies
that the frame rate information for the current scalable layer representation is not present in the scalability information
SEI message.

frm_size_info_present_flag[i] equal to 1 specifies that the frame size information for the current scalable layer
representation is present in the scalability information SEI message. frm_size_info_present_flag[i] equal to 0 specifies
that the presence of the frame size information for the current scalable layer representation in the scalability information
SEI message is specified by iroi_division_info_present_flag[i].

layer_dependency_info_present_flag[i] equal to 1 specifies that one or more syntax elements
dependent_layer_id_delta_minus1[i][j] indicating the layer dependency information for the current scalable layer are
present in the scalability information SEI message. layer_dependency_info_present_flag[i] equal to 0 specifies that,
for the current scalable layer, the syntax element layer_dependency_info_src_layer_id_delta[i] is present in the
scalability information SEI message.

parameter_sets_info_present_flag[i] equal to 1 specifies that the values of seq_parameter_set_id of the sequence
parameter sets and subset sequence parameter sets and the values of pic_parameter_set_id of the picture parameter sets
that are referred to in the primary coded VCL NAL units of the current scalable layer representation are present in the
scalability information SEI message. parameter_sets_info_present_flag[i] equal to 0 specifies that, for the current
scalable layer, the syntax element parameter_sets_info_src_layer_id_delta[i] is present in the scalability information
SEI message.

bitstream_restriction_info_present_flag[i] equal to 1 specifies that the bitstream restriction information for the
current scalable layer representation is present in the scalability information SEI message.
bitstream_restriction_info_present_flag[i] equal to 0 specifies that the bitstream restriction information for the current
scalable layer representation is not present in the scalability information SEI message.

exact_inter_layer_pred_flag[i] equal to 1 indicates that, for all primary coded VCL NAL units with
no_inter_layer_pred_flag equal to 0 of the current scalable layer representation, the reference layer representation
(specified by the syntax elements ref_layer_dq_id) that is used for inter-layer prediction in the decoding process, as
specified in clause G.8, is the same as the reference layer representation that was used during encoding.
exact_inter_layer_pred_flag[i] equal to 0 indicates that, for the primary coded VCL NAL units with
no_inter_layer_pred_flag equal to 0 of the current scalable layer representation, the reference layer representations that
are used for inter-layer prediction in the decoding process may or may not be the same as the reference layer
representations that were used during encoding.

NOTE 8 – A mismatch between the reference layer representation that is used for inter-layer prediction in the decoding process
and the reference layer representation that was used during encoding may be a result of a bitstream adaption, in which one or
more layer representations that are referred to in inter-layer prediction are removed from the bitstream, any of the primary coded

574 Rec. ITU-T H.264 (03/2009)

VCL NAL units that refer to any of the removed layer representations by inter-layer prediction is not removed from the
bitstream, and the value of the syntax elements ref_layer_dq_id in the primary coded VCL NAL units that refer to any of the
removed layer representations is modified in order to obtain a bitstream conforming to this Recommendation | International
Standard.

exact_inter_layer_pred_flag[i] should be equal to 1. When the current scalable layer representation does not contain
any primary coded VCL NAL unit with no_inter_layer_pred_flag equal to 0, exact_inter_layer_pred_flag[i] shall be
equal to 1.

exact_sample_value_match_flag[i] indicates whether the values of decoded samples for decoding the representation
of the current sub-picture scalable layer (when sub_pic_layer_flag[i] is equal to 1) or any particular IROI within the
current scalable layer representation (when iroi_division_info_present_flag[i] is equal to 1) are identical to the values
of the same decoded samples that would be obtained by decoding all layer representations, of the primary coded
pictures inside the target access unit set, that have DQId less than or equal to 16 * dependency_id[i] + quality_id[i]
and temporal_id less than or equal to temporal_id[i].

With picSubset being the set of the primary coded pictures of the current scalable layer representation that contain any
VCL NAL unit with dependency_id equal to dependency_id[i], the following applies.

– If sub_pic_layer_flag[i] is equal to 1 (iroi_division_info_present_flag[i] is equal to 0), the following is specified:

1. Let picLRepSubset be the set of primary coded pictures that is formed by all the layer representations, of the
target access unit set, that contain any primary coded VCL NAL unit present in the set of pictures picSubset.

NOTE 9 – picSubset is a proper subset of picLRepSubset. picSubset only contains the primary coded slices of the
current (sub-picture) scalable layer representation, picLRepSubset contains all primary coded slices of the
corresponding layer representations (i.e. the complete layer representations that contain any slice of picSubset).

2. exact_sample_value_match_flag[i] equal to 1 indicates that the value of each decoded sample inside the
sub-picture area for decoding the picture set picSubset is identical to the value of the same decoded sample
that would be obtained by decoding the picture set picLRepSubset.

3. exact_sample_value_match_flag[i] equal to 0 indicates that the value of any decoded sample inside the
sub-picture area for decoding the picture set picSubset may or may not be identical to the value of the same
decoded sample that would be obtained by decoding the picture set picLRepSubset.

– Otherwise (sub_pic_layer_flag[i] is equal to 0 and iroi_division_info_present_flag[i] is equal to 1), for each
particular IROI, the following is specified:

1. Let picIROISubset be the set of primary coded VCL NAL units that is obtained by removing all the VCL NAL
units from the set of pictures picSubset that do not cover any macroblock inside the IROI.

2. exact_sample_value_match_flag[i] equal to 1 indicates that the value of each decoded sample inside the
IROI for decoding the picture set picSubset is identical to the value of the same decoded sample that would be
obtained by decoding the picture set picIROISubset.

3. exact_sample_value_match_flag[i] equal to 0 indicates that the value of any decoded sample inside the IROI
for decoding the picture set picSubset may or may not be identical to the value of the same decoded sample
that would be obtained by decoding the picture set picIROISubset.

NOTE 10 – In the above specification, the decoding result for picIROISubset is the decoding result that would be obtained for
the IROI by following the decoding process in G.8 but ignoring the constraint that the layer representations with quality_id equal
to 0 of primary coded pictures must cover all macroblocks of the corresponding layer pictures.
NOTE 11 – When disable_deblocking_filter_idc is equal to 1, 2, or 5 in all primary coded slices of the current scalable layer
representation that have dependency_id equal to dependency_id[i], exact_sample_value_match_flag should be equal to 1.

layer_conversion_flag[i] equal to 1 indicates that the representation of the current scalable layer can be converted into
an alternative set of access units that conforms to one or more of the profiles specified in Annex A and gives exactly the
same decoding result as the current scalable layer representation and that this conversion can be done without full
reconstruction and re-encoding. layer_conversion_flag[i] equal to 0 indicates that such a conversion of the current
scalable layer representation may or may not be possible.

layer_output_flag[i] equal to 1 indicates that the decoding result for the current scalable layer representation is
intended for output. layer_output_flag[i] equal to 0 indicates that the decoding result for the current scalable layer
representation is not intended for output.

NOTE 12 – The decoding result for a scalable layer representation with layer_output_flag[i] equal to 0 may be inappropriate for
output due to its low visual quality.

layer_profile_level_idc[i] indicates the conformance point of the representation of the current scalable layer.
layer_profile_level_idc[i] is the exact copy of the three bytes comprised of profile_idc, constraint_set0_flag,

 Rec. ITU-T H.264 (03/2009) 575

constraint_set1_flag, constraint_set2_flag, constraint_set3_flag, reserved_zero_4bits and level_idc, as if these syntax
elements were used to specify the profile and level conformance of the representation of the current scalable layer.

NOTE 13 – The representation of a sub-picture scalable layer (sub_pic_layer_flag[i] is equal to 1) does not conform to this
Recommendation | International Standard, since the primary coded VCL NAL units with quality_id equal to 0 that belong to a
sub-picture scalable layer representation do not cover all macroblocks of the layer pictures with dependency_id equal to
dependency_id[i] and quality_id equal to 0. For sub-picture scalable layers, the violation of the constraint that the layer
representations with quality_id equal to 0 of primary coded pictures must cover all macroblocks of the corresponding layer
pictures is ignored in the conformance point indication by layer_profile_level_idc[i].

avg_bitrate[i] indicates the average bit rate of the representation of the current scalable layer. The average bit rate for
the representation of the current scalable layer in bits per second is given by BitRateBPS(avg_bitrate[i]) with the
function BitRateBPS() being specified by

BitRateBPS(x) = (x & (214 − 1)) * 10(2 + (x >> 14)) (G-369)

The average bit rate is derived according to the access unit removal time specified in Annex C of this
Recommendation | International Standard. In the following, bTotal is the number of bits in all NAL units of the current
scalable layer representation, t1 is the removal time (in seconds) of the access unit associated with the scalability
information SEI message, and t2 is the removal time (in seconds) of the last access unit (in decoding order) of the target
access unit set.

With x specifying the value of avg_bitrate[i], the following applies.

– If t1 is not equal to t2, the following condition shall be true:

(x & (214 − 1)) = = Round(bTotal ÷ ((t2 − t1) * 10(2 + (x >> 14)))) (G-370)

– Otherwise (t1 is equal to t2), the following condition shall be true:

(x & (214 − 1)) = = 0 (G-371)

max_bitrate_layer[i] indicates an upper bound for the bit rate of the current scalable layer in any fixed-size time
window, specified by max_bitrate_calc_window[i], of access unit removal time as specified in Annex C. The upper
bound for the bit rate of the current scalable layer in bits per second is given by BitRateBPS(max_bitrate_layer[i])
with the function BitRateBPS() being specified in Equation G-369. The bit rate values are derived according to the
access unit removal time specified in Annex C of this Recommendation | International Standard. In the following, t1 is
any point in time (in seconds), t2 is set equal to t1 + max_bitrate_calc_window[i] ÷ 100, and bTotal is the number of
bits in all NAL units of the current scalable layer that belong to access units with a removal time greater than or equal to
t1 and less than t2. With x specifying the value of max_bitrate_layer[i], the following condition shall be obeyed for all
values of t1:

(x & (214 − 1)) >= bTotal ÷ ((t2 − t1) * 10(2 + (x >> 14))) (G-372)

max_bitrate_layer_representation[i] indicates an upper bound for the bit rate of the current scalable layer
representation in any fixed-size time window, specified by max_bitrate_calc_window[i], of access unit removal time
as specified in Annex C. The upper bound for the bit rate of the current scalable layer representation in bits per second
is given by BitRateBPS(max_bitrate_layer_representation[i]) with the function BitRateBPS() being specified in
Equation G-369. The bit rate values are derived according to the access unit removal time specified in Annex C of this
Recommendation | International Standard. In the following, t1 is any point in time (in seconds), t2 is set equal to
t1 + max_bitrate_calc_window[i] ÷ 100, and bTotal is the number of bits in all NAL units of the current scalable layer
representation that belong to access units with a removal time greater than or equal to t1 and less than t2. With x
specifying the value of max_bitrate_layer_representation[i], the condition specified in Equation G-372 shall be
obeyed.

max_bitrate_calc_window[i] specifies the size of the time window that is used for calculating the upper bounds for
the bit rate of the current scalable layer (indicated by max_bitrate_layer[i]) and the bit rate of the current scalable layer
representation (indicated by max_bitrate_layer_representation[i]) in units of 1/100 second.

constant_frm_rate_idc[i] indicates whether the frame rate of the current scalable layer representation is constant. In
the following, a temporal segment tSeg is any set of two or more consecutive access units, in decoding order, of the
current scalable layer representation, fTotal(tSeg) is the number of frames, complementary field pairs, and non-paired
fields in the temporal segment tSeg, t1(tSeg) is the removal time (in seconds) of the first access unit (in decoding
order) of the temporal segment tSeg, t2(tSeg) is the removal time (in seconds) of the last access unit (in decoding
order) of the temporal segment tSeg, and avgFR(tSeg) is the average frame rate in the temporal segment tSeg, which is
given by

avgFR(tSeg) = = Round(fTotal(tSeg) * 256 ÷ (t2(tSeg) − t1(tSeg))) (G-373)

576 Rec. ITU-T H.264 (03/2009)

If the current scalable layer representation does only contain one access unit or the value of avgFR(tSeg) is constant
over all temporal segments of the scalable layer representation, the frame rate is constant; otherwise, the frame rate is
not constant. constant_frm_rate_idc[i] equal to 0 indicates that the frame rate of the current scalable layer
representation is not constant. constant_frm_rate_idc[i] equal to 1 indicates that the frame rate of the current scalable
layer representation is constant. constant_frm_rate_idc[i] equal to 2 indicates that the frame rate of the current
scalable layer representation may or may not be constant. The value of constant_frm_rate_idc[i] shall be in the range
of 0 to 2, inclusive.

avg_frm_rate[i] indicates the average frame rate, in units of frames per 256 seconds, of the representation of the
current scalable layer. With fTotal being the number of frames, complementary field pairs, and non-paired fields in the
current scalable layer representation, t1 being the removal time (in seconds) of the access unit associated with the
scalability information SEI message, and t2 being the removal time (in seconds) of the last access unit (in decoding
order) of the target access unit set, the following applies.

– If t1 is not equal to t2, the following condition shall be true:

avg_frm_rate[i] = = Round(fTotal * 256 ÷ (t2 − t1)) (G-374)

– Otherwise (t1 is equal to t2), the following condition shall be true:

avg_frm_rate[i] = = 0 (G-375)

frm_width_in_mbs_minus1[i] and frm_height_in_mbs_minus1[i] indicate the width and height, respectively, of
the decoded pictures for the current scalable layer representation (when sub_pic_layer_flag[i] is equal to 0) or the
sub-picture area inside the decoded pictures for the current sub-picture scalable layer (when sub_pic_layer_flag[i] is
equal to 1). When frame_mbs_only_flag is equal to 0 for any primary coded VCL NAL unit of the current scalable
layer, (frm_height_in_mbs_minus1[i] + 1) % 2 shall be equal to 0.

Let picSubset be the set of the primary coded pictures inside the current scalable layer representation that contain any
VCL NAL unit with dependency_id equal to dependency_id[i]. For decoding the picture set picSubset, the following
applies.

– If sub_pic_layer_flag[i] is equal to 0, the width and height of a decoded picture are equal to
frm_width_in_mbs_minus1[i] + 1 and ((frm_height_in_mbs_minus1[i] + 1) / (1 + field_pic_flag))
macroblocks, respectively, with field_pic_flag being the slice header syntax element in the slices with
dependency_id equal to dependency_id[i] of the corresponding primary coded picture. The width and height of
the decoded pictures that are indicated by frm_width_in_mbs_minus1[i] and frm_height_in_mbs_minus1[i],
respectively, shall be identical to the width and height of the decoded pictures that are specified by the syntax
elements pic_width_in_mbs_minus1 and pic_height_in_map_units_minus1, respectively, of the SVC sequence
parameter sets referenced in the corresponding coded slice NAL units with dependency_id equal to
dependency_id[i].

– Otherwise (sub_pic_layer_flag[i] is equal to 1), the width and height of the sub-picture area inside a decoded
picture are equal to frm_width_in_mbs_minus1[i] + 1 and ((frm_height_in_mbs_minus1[i] + 1) /
(1 + field_pic_flag)) macroblocks, respectively, with field_pic_flag being the slice header syntax element in the
slices with dependency_id equal to dependency_id[i] of the corresponding primary coded picture.

The variable FrmWidthInMbs[i] is set equal to (frm_width_in_mbs_minus1[i] + 1). The variable
FrmHeightInMbs[i] is set equal to frm_height_in_mbs_minus1[i] + 1 . The variable FrmSizeInMbs[i] is set equal
to (FrmWidthInMbs[i] * FrmHeightInMbs[i]).

base_region_layer_id[i] indicates the layer identifier layer_id[b] of the scalable layer b that represents the base
region for the current scalable layer as specified in the following.

Let picSubset be the set of the primary coded pictures, inside the current scalable layer representation, that contain any
VCL NAL unit with dependency_id equal to dependency_id[i]. Let basePicSubset be the set of the primary coded
pictures, inside the representation of the scalable layer b with layer_id[b] equal to base_region_layer_id[i], that
contain any VCL NAL unit with dependency_id equal to dependency_id[b]. Depending on sub_pic_layer_flag[i], the
following applies.

– If sub_pic_layer_flag[i] is equal to 0, it is indicated that the decoded pictures for the picture set picSubset
represent a subset of the areas that are represented by the decoded pictures for the picture set basePicSubset. The
value of dependency_id[b] for the scalable layer b shall be less than the value of dependency_id[i] for the
current scalable layer. The area that is represented by the decoded pictures for the picture set picSubset is also
referred to as the region represented by the current scalable layer and the area represented by the corresponding
decoded pictures for the picture set basePicSubset is also referred to as the base region for the current scalable
layer.

 Rec. ITU-T H.264 (03/2009) 577

– Otherwise (sub_pic_layer_flag[i] is equal to 1), it is indicated that the sub-picture area inside the decoded pictures
for the picture set picSubset represents a proper subset of the areas that are represented by the decoded pictures for
the picture set basePicSubset. The value of dependency_id[b] shall be equal to the value of dependency_id[i] for
the current sub-picture scalable layer. The area that is represented by the sub-picture area inside the decoded
pictures for the picture set picSubset is also referred to as the region represented by the current scalable layer and
the area represented by the corresponding decoded pictures for the picture set basePicSubset is also referred to as
the base region for the current scalable layer.

NOTE 14 – When sub_pic_layer_flag[i] is equal to 1, the base region represents the area of the layer pictures with
dependency_id equal to dependency_id[i].

The scalability information SEI message shall contain information for the scalable layer b with layer_id[b] equal to
base_region_layer_id[i], the value of sub_pic_layer_flag[b] for the scalable layer b shall be equal to 0, and the value
of temporal_id[i] for the scalable layer b shall be equal to the value of temporal_id[i] for the current scalable layer.

dynamic_rect_flag[i] equal to 1 indicates that the region represented by the current scalable layer representation is a
dynamically changing rectangular subset of the base region. dynamic_rect_flag[i] equal to 0 indicates that the region
represented by the current scalable layer representation is a fixed rectangular subset of the base region and is specified
by the syntax elements horizontal_offset[i], vertical_offset[i], region_width[i], and region_height[i]. When
sub_pic_layer_flag[i] is equal to 1, dynamic_rect_flag[i] shall be equal to 0.

horizontal_offset[i], vertical_offset[i], region_width[i], and region_height[i] indicate the position and size of
the region represented by the current scalable layer in relation to its base region.

Let picSubset be the set of the primary coded pictures, inside the current scalable layer representation, that contain any
VCL NAL unit with dependency_id equal to dependency_id[i]. Let basePicSubset be the set of the primary coded
pictures, inside the representation of the scalable layer b with layer_id[b] equal to base_region_layer_id[i], that
contain any VCL NAL unit with dependency_id equal to dependency_id[b]. Depending on sub_pic_layer_flag[i], the
following applies.

– If sub_pic_layer_flag[i] is equal to 0, the top-left luma frame sample in the decoded pictures for picture set
picSubset corresponds to the luma frame sample at the luma frame sample location (horizontal_offset[i],
vertical_offset[i]) in the decoded pictures for the picture set basePicSubset. The region represented by the
decoded pictures for picture set picSubset represents an area of (region_width[i])x(region_height[i]) luma frame
samples in the decoded pictures for the picture set basePicSubset. When frame_mbs_only_flag is equal to 0 for any
primary coded VCL NAL unit of the current scalable layer, (vertical_offset[i] % 2) and (region_height[i] % 2)
shall both be equal to 0.

– Otherwise (sub_pic_layer_flag[i] is equal to 1), the top-left luma frame sample of the sub-picture area in the
decoded pictures for picture set picSubset corresponds to the luma frame sample at the luma frame sample location
(horizontal_offset[i], vertical_offset[i]) in the decoded pictures for the picture set basePicSubset. The region
represented by the sub-picture area in the decoded pictures for picture set picSubset represents an area of
(region_width[i])x(region_height[i]) luma frame samples in the decoded pictures for the picture set
basePicSubset. (horizontal_offset[i] % 16) and (region_width[i] % 16) shall both be equal to 0, and depending
on the values of frame_mbs_only_flag for the primary coded VCL NAL units of the current scalable layer, the
following applies.

– If frame_mbs_only_flag is equal to 1 for all primary coded VCL NAL units of the current scalable layer,
(vertical_offset[i] % 16) and (region_height[i] % 16) shall both be equal to 0.

– Otherwise (frame_mbs_only_flag is equal to 0 for any primary coded VCL NAL units of the current scalable
layer), (vertical_offset[i] % 32) and (region_height[i] % 32) shall both be equal to 0.

When sub_pic_layer_flag[i] is equal to 1 and frm_size_info_present_flag[i] is equal to 1, the values of
region_width[i] and region_height[i] shall be equal to (FrmWidthInMbs[i] << 4) and (FrmHeightInMbs[i] << 4),
respectively.

roi_id[i] specifies a region-of-interest identifier for the region represented by the current sub-picture scalable layer,
which may be used for identifying the purpose of the current sub-picture scalable layer by an application. The value of
roi_id[i] shall be in the range of 0 to 63, inclusive.

Let layerIdA and layerIdB be the layer identifiers of two scalable layers A and B, respectively, both of which having
sub_pic_layer_flag[i] equal to 1, and roiIdA and roidIdB be the region-of-interest identifiers of the scalable layers A
and B, respectively. When layerIdA is less than layerIdB, roiIdA shall not be greater than roidIdB.

iroi_grid_flag[i] specifies how the IROI division information is indicated for the current scalable layer.
iroi_grid_flag[i] equal to 1 indicates that all IROIs for the current scalable layer are aligned on a fixed-size grid as
specified in the following and that the syntax elements grid_width_in_mbs_minus1[i] and

578 Rec. ITU-T H.264 (03/2009)

grid_width_in_mbs_minus1[i] for the current scalable layer are present in the scalability information SEI message.
iroi_grid_flag[i] equal to 0 indicates that the IROIs for the current scalable layer may or may not be aligned on a fixed-
size grid.

All scalable layers with the same value of dependency_id[i] for which scalability information is present in the
scalability information SEI message and for which iroi_division_info_present_flag[i] is equal to 1 shall have the same
value of iroi_grid_flag[i].

grid_width_in_mbs_minus1[i] and grid_height_in_mbs_minus1[i] indicate the size of the IROI grid for the
current scalable layer. When frame_mbs_only_flag is equal to 0 for any primary coded VCL NAL unit of the current
scalable layer, (grid_height_in_mbs_minus1 + 1) % 2 shall be equal to 0.

Let numX and numY be equal to (FrmWidthInMbs[i] + grid_width_in_mbs_minus1[i]) /
(grid_width_in_mbs_minus1[i] + 1) and (FrmHeightInMbs[i] + grid_height_in_mbs_minus1[i]) /
(grid_height_in_mbs_minus1[i] + 1), respectively.

The layer pictures with dependency_id equal to dependency_id[i] are partitioned into (numX * numY) IROIs. Let
(xI[k], yI[k]) be the location of the top-left luma sample of the k-th IROI relative to the top-left luma sample of the
layer picture and let w[k] and h[k] be the width and height, in luma samples, of the k-th IROI in the layer picture.
With field_pic_flag being the slice header syntax element for a particular layer picture with dependency_id equal to
dependency_id[i], the location of the top-left luma sample and the width and height of the k-th IROI, with
k = 0..(numX * numY − 1), are given by

xI[k] = 16 * (k % numX) * (grid_width_in_mbs_minus1[i] + 1) (G-376)

yI[k] = 16 * (k / numX) * (grid_height_in_mbs_minus1[i] + 1) / (1 + field_pic_flag) (G-377)

w[k] = Min(16 * (grid_width_in_mbs_minus1[i] + 1), 16 * FrmWidthInMbs[i] − x[k]) (G-378)

h[k] = Min(16 * (grid_height_in_mbs_minus1[i] + 1) / (1 + field_pic_flag),
 16 * FrmHeightInMbs[i] / (1 + field_pic_flag) − x[k]) (G-379)

All scalable layers with the same value of dependency_id[i] for which scalability information is present in the
scalability information SEI message and for which iroi_division_info_present_flag[i] is equal to 1 and
iroi_grid_flag[i] is equal to 1 shall have the same values of grid_width_in_mbs_minus1[i] and
grid_height_in_mbs_minus1[i].

num_rois_minus1[i] plus 1 indicates the number of IROIs for the current scalable layer.

All scalable layers with the same value of dependency_id[i] for which scalability information is present in the
scalability information SEI message and for which iroi_division_info_present_flag[i] is equal to 1 and
iroi_grid_flag[i] is equal to 0 shall have the same value of num_rois_minus1[i].

first_mb_in_roi[i][j] indicates the macroblock address of the first macroblock in the j-th IROI for the current
scalable layer. first_mb_in_roi[i][j] shall not be equal to any of the values of first_mb_in_roi[i][k] with
k = 0..(j − 1).

The variables firstMbY and firstMbInROIFld are derived as

firstMbY = first_mb_in_roi[i][j] − (first_mb_in_roi[i][j] % FrmWidthInMbs[i]) (G-380)

firstMbInROIFld = (firstMbY >> 1) + (first_mb_in_roi[i][j] % FrmWidthInMbs[i]) (G-381)

When frame_mbs_only_flag is equal to 0 for any primary coded VCL NAL unit of the current scalable layer,
(firstMbY % 2) shall be equal to 0.

For each dependency representation that contains any primary coded VCL NAL unit of the current scalable layer, the
following applies.

– If field_pic_flag is equal to 0 and MbaffFrameFlag is equal to 0 for the dependency representation, the value of
first_mb_in_roi[i][j] shall be equal to the syntax element first_mb_in_slice in the slice that belongs to the
dependency representation and covers the top-left macroblock of the j-th IROI.

– Otherwise (field_pic_flag is equal to 1 or MbaffFrameFlag is equal to 1 for the dependency representation), the
value of firstMbInROIFld shall be equal to the syntax element first_mb_in_slice in the slice that belongs to the
dependency representation and covers the top-left macroblock of the j-th IROI.

 Rec. ITU-T H.264 (03/2009) 579

roi_width_in_mbs_minus1[i][j] and roi_height_in_mbs_minus1[i][j] specify the size of the j-th IROI for the
current scalable layer. When frame_mbs_only_flag is equal to 0 in any primary coded VCL NAL unit of the current
scalable layer, (roi_height_in_mbs_minus1 + 1) % 2 shall be equal to 0.

With field_pic_flag being the slice header syntax element for a particular layer picture with dependency_id equal to
dependency_id[i], the width and height of the j-th IROI in the layer pictures with dependency_id equal to
dependency_id[i] are equal to 16 * (roi_width_in_mbs_minus1[i][j] + 1) and
16 * (roi_height_in_mbs_minus1[i][j] + 1) / (1 + field_pic_flag), respectively, in units of luma samples.

All scalable layers with the same value of dependency_id[i] for which scalability information is present in the
scalability information SEI message and for which iroi_division_info_present_flag[i] is equal to 1 and
iroi_grid_flag[i] is equal to 0 shall have the same values of first_mb_in_roi[i][j], roi_width_in_mbs_minus1[i][j],
and roi_height_in_mbs_minus1[i][j] with j in the range of 0 to num_rois_minus1[i], inclusive.

num_directly_dependent_layers[i] specifies the number of the syntax elements
directly_dependent_layer_id_delta_minus1[i][j] that are present for the current scalable layer. The value of
num_directly_dependent_layers shall be in the range of 0 to 255, inclusive.

directly_dependent_layer_id_delta_minus1[i][j] plus 1 indicates the difference between the value of layer_id[i]
for the current scalable layer and the layer identifier of a particular scalable layer, on which the current scalable layer
directly depends. The layer identifier of the particular scalable layer, on which the current scalable layer directly
depends, is equal to layer_id[i] − directly_dependent_layer_id_delta_minus1[i][j] − 1. The scalability information
SEI message shall contain information for a scalable layer b with layer_id[b] equal to
layer_id[i] − directly_dependent_layer_id_delta_minus1[i][j] − 1 and this information shall not contain a value of
layer_dependency_info_src_layer_id_delta[i] equal to 0.

Let setOfDepLayers be the set union of the representations of the scalable layers b that have layer_id[b] equal to
layer_id[i] − directly_dependent_layer_id_delta_minus1[i][j] − 1, with
j = 0..num_directly_dependent_layers[i] − 1. When layer_dependency_info_present_flag[i] is equal to 1, the set
setOfDepLayers shall not contain any scalable layer, on which the current scalable layer does not directly or indirectly
depends and the current scalable layer shall not depend on any scalable layer that is not included in the set
setOfDepLayers.

layer_dependency_info_src_layer_id_delta[i] greater than 0 indicates that the current scalable layer has the same
layer dependency information as the scalable layer with layer identifier equal to
layer_id[i] − layer_dependency_info_src_layer_id_delta[i]. layer_dependency_info_src_layer_id_delta[i] equal to 0
specifies that the layer dependency information of the current scalable layer is not present in the scalability information
SEI message. When layer_dependency_info_src_layer_id_delta[i] is greater than 0, the scalability information SEI
message shall contain information for a scalable layer b with layer_id[b] equal to
layer_id[i] − layer_dependency_info_src_layer_id_delta[i] and this information shall not contain a value of
layer_dependency_info_src_layer_id_delta[b] equal to 0.

When layer_dependency_info_present_flag[i] is equal to 0 and layer_dependency_info_src_layer_id_delta[i] is
greater than 0, the set of scalable layers on which the current scalable layer depends shall be identical to the set of layers
on which the scalable layer b with layer_id[b] equal to layer_id[i] − layer_dependency_info_src_layer_id_delta[i]
depends.

NOTE 15 – When layer_dependency_info_src_layer_id_delta[i] equal to 0 is not present for the current scalable layer, the
representation of the current scalable layer is specified by the syntax element
layer_dependency_info_src_layer_id_delta[i] or by the syntax elements directly_dependent_layer_id_delta_minus1[i]
[j], with j = 0..num_directly_dependent_layers[i] – 1.

NOTE 16 – A change for the layer dependency information may be signalled by the presence of one or more layer
dependency change SEI messages. When a scalability information SEI message specifies that a scalable layer A does not
directly or indirectly depend on a scalable layer B, this relationship applies to the complete target access unit set. When a
scalability information SEI message specifies that a scalable layer A does directly or indirectly depend on a scalable layer
B, a following layer dependency change SEI message may indicate that this dependency does not apply for a subset of the
target access unit set.

num_seq_parameter_set_minus1[i] plus 1 indicates the number of different sequence parameter sets that are referred
to by the primary coded VCL NAL units of the current scalable layer representation.

seq_parameter_set_id_delta[i][j] indicates the smallest value of the seq_parameter_set_id of any sequence
parameter set required for decoding the representation of the current scalable layer, if j is equal to 0. Otherwise (j is
greater than 0), seq_parameter_set_id_delta[i][j] indicates the difference between the value of the
seq_parameter_set_id of the j-th required sequence parameter set and the value of the seq_parameter_set_id of the
(j − 1)-th required sequence parameter set for decoding the representation of the current scalable layer. When j is greater
than 0, seq_parameter_set_id_delta[i][j] shall not be equal to 0. When parameter_sets_info_present_flag is equal to 1,
the primary coded VCL NAL units of the current scalable layer representation shall not refer to any sequence parameter

580 Rec. ITU-T H.264 (03/2009)

set for which the value of seq_parameter_set_id is not indicated by the syntax elements
seq_parameter_set_id_delta[i][j] for the current scalable layer and the syntax elements
seq_parameter_set_id_delta[i][j] for the current scalable layer shall not indicate any sequence parameter set that is
not referenced in any primary coded VCL NAL unit of the current scalable layer representation.

num_subset_seq_parameter_set_minus1[i] plus 1 indicates the number of different subset sequence parameter sets
that are referred to by the primary coded VCL NAL units of the current scalable layer representation.

subset_seq_parameter_set_id_delta[i][j] indicates the smallest value of the seq_parameter_set_id of any subset
sequence parameter set required for decoding the representation of the current scalable layer, if j is equal to 0.
Otherwise (j is greater than 0), subset_seq_parameter_set_id_delta[i][j] indicates the difference between the value of
the seq_parameter_set_id of the j-th required subset sequence parameter set and the value of the seq_parameter_set_id
of the (j − 1)-th required subset sequence parameter set for decoding the representation of the current scalable layer.
When j is greater than 0, subset_seq_parameter_set_id_delta[i][j] shall not be equal to 0. When
parameter_sets_info_present_flag is equal to 1, the primary coded VCL NAL units of the current scalable layer
representation shall not refer to any subset sequence parameter set for which the value of seq_parameter_set_id is not
indicated by the syntax elements subset_seq_parameter_set_id_delta[i][j] for the current scalable layer and the syntax
elements subset_seq_parameter_set_id_delta[i][j] for the current scalable layer shall not indicate any subset sequence
parameter set that is not referenced in any primary coded VCL NAL unit of the current scalable layer representation.

num_pic_parameter_set_minus1[i] plus 1 indicates the number of different picture parameter sets that are referred to
by the primary coded VCL NAL units of the current scalable layer representation.

pic_parameter_set_id_delta[i][j] indicates the smallest value of the pic_parameter_set_id of any picture
parameter set required for decoding the representation of the current scalable layer, if j is equal to 0. Otherwise (j is
greater than 0), pic_parameter_set_id_delta[i][j] indicates the difference between the value of the
pic_parameter_set_id of the j-th required picture parameter set and the value of the pic_parameter_set_id of the (j − 1)-
the required picture parameter set for decoding the representation of the current scalable layer. When j is greater than 0,
pic_parameter_set_id_delta[i][j] shall not be equal to 0. When parameter_sets_info_present_flag is equal to 1, the
primary coded VCL NAL units of the current scalable layer representation shall not refer to any picture parameter set
for which the value of pic_parameter_set_id is not indicated by the syntax elements pic_parameter_set_id_delta[i][j]
for the current scalable layer and the syntax elements pic_parameter_set_id_delta[i][j] for the current scalable layer
shall not indicate any picture parameter set that is not referenced in any primary coded VCL NAL unit of the current
scalable layer representation.

parameter_sets_info_src_layer_id_delta[i] greater than 0 indicates that the values of seq_parameter_set_id of the
sequence parameter sets and subset sequence parameter sets and the values of pic_parameter_set_id of the picture
parameter sets that are referred to by the primary coded VCL NAL units of the current scalable layer representation are
the same as those that are referred to by the primary coded VCL NAL units of the representation of the scalable layer b
with the layer identifier layer_id[b] equal to layer_id[i] − parameter_sets_info_src_layer_id_delta[i]. When
parameter_sets_info_src_layer_id_delta[i] is greater than 0, the scalability information SEI message shall contain
information for a scalable layer b with layer_id[b] equal to layer_id[i] − parameter_sets_info_src_layer_id_delta[i]
and this information shall not contain a value of parameter_sets_info_src_layer_id_delta[b] equal to 0.

parameter_sets_info_src_layer_id_delta[i] equal to 0 indicates that the values of seq_parameter_set_id of the
sequence parameter sets and subset sequence parameter sets and the values of pic_parameter_set_id of the picture
parameter sets that are referred to by the primary coded VCL NAL units of the current scalable layer representation are
not indicated in the scalability information SEI message.

motion_vectors_over_pic_boundaries_flag[i] indicates the value of motion_vectors_over_pic_boundaries_flag, as
specified in subclause E.2.1, that applies to the current scalable layer representation.

max_bytes_per_pic_denom[i] indicates the value of max_bytes_per_pic_denom, as specified in subclause E.2.1, that
applies to the current scalable layer representation.

max_bits_per_mb_denom[i] indicates the value of max_bits_per_mb_denom, as specified in subclause E.2.1, that
applies to the current scalable layer representation.

log2_max_mv_length_horizontal[i] and log2_max_mv_length_vertical[i] indicate the values of
log2_max_mv_length_horizontal and log2_max_mv_length_vertical, as specified in subclause E.2.1, that apply to the
current scalable layer representation.

NOTE 17 – The maximum absolute value of a decoded vertical or horizontal motion vector component is also constrained by
profile and level limits as specified in Annex A and subclause G.10.

num_reorder_frames[i] indicates the value of num_reorder_frames, as specified in subclause E.2.1, that applies to
the current scalable layer representation.

 Rec. ITU-T H.264 (03/2009) 581

max_dec_frame_buffering[i] indicates the value of max_dec_frame_buffering, as specified in subclause E.2.1, that
applies to the current scalable layer representation.

conversion_type_idc[i] equal to 0 indicates that tcoeff_level_prediction_flag is equal to 1 for all primary coded slices
of the current scalable layer representation excluding those having no_inter_layer_pred_flag equal to 1 and that the
information specified by the syntax elements rewriting_profile_level_idc[i][j], rewriting_avg_bitrate[i][j], and
rewriting_max_bitrate[i][j], when present, is correct, though the method for converting the current scalable layer
representation into an alternative set of access units that conforms to one or more of the profiles specified in Annex A
and gives exactly the same decoding result as the current scalable layer representation is unspecified.

conversion_type_idc[i] equal to 1 indicates that the slice_header_restriction_flag in the subset sequence parameter sets
referred to by the primary coded VCL NAL units of the current scalable layer is equal to 1, that slice_skip_flag is equal
to 1 for all primary coded VCL NAL units with no_inter_layer_pred_flag equal to 0 in the current scalable layer
representation, and that the alternative set of access units obtained by applying the following operations in sequential
order to the current scalable layer representation conforms to one or more of the profiles specified in Annex A:

1. For all picture parameter set NAL units referred to by NAL units with nal_unit_type equal to 1 or 5, change
the value of seq_parameter_set_id to be equal to the value of seq_parameter_set_id in a subset sequence
parameter set NAL unit with profile_idc equal to 83 or 86 that is referred to by slices with nal_unit_type equal
to 20 of the current scalable layer.

2. Remove all NAL units with nal_unit_type equal to 20 and slice_skip_flag equal to 1.

3. Remove all NAL units with nal_unit_type equal to 14.

4. Remove all redundant coded VCL NAL units.

5. In each access unit, remove all VCL NAL units with DQId less than DQIdMax, with DQIdMax being the
maximum value of DQId in the primary coded slices of the access unit after removing the NAL units with
nal_unit_type equal to 20 and slice_skip_flag equal to 1.

6. Remove the NAL unit header SVC extension from NAL units with nal_unit_type equal to 20.

7. For NAL units with nal_unit_type equal to 20 and idr_flag equal to 1, set nal_unit_type equal to 5.

8. For NAL units with nal_unit_type equal to 20 and idr_flag equal to 0, set nal_unit_type equal to 1.

9. Remove all SEI NAL units.

10. Remove all NAL units with nal_unit_type equal to 7.

11. For all NAL units with nal_unit_type equal to 15, set nal_unit_type equal to 7, remove all the syntax elements
after the syntax structure seq_parameter_set_data() and before the rbsp_trailing_bits() syntax structure,
replace the three bytes starting from profile_idc as specified by
rewriting_profile_level_idc[i][entropy_coding_mode_flag], when present, and change RBSP trailing bits
appropriately.

conversion_type_idc[i] equal to 2 indicates that slice_header_restriction_flag in the subset sequence parameter sets
referred to by the primary coded VCL NAL units of the current scalable layer is equal to 1, that
no_inter_layer_pred_flag is equal to 1 in all primary coded VCL NAL units of the current scalable layer, and that the
alternative set of access units obtained by applying the following operations in sequential order to the current scalable
layer representation conforms to one or more of the profiles specified in Annex A:

1. Remove all NAL units with nal_unit_type equal to 14.

2. Remove all redundant coded VCL NAL units.

3. In each access unit, remove all VCL NAL units with DQId less than DQIdMax.

4. Remove the NAL unit header SVC extension from NAL units with nal_unit_type equal to 20.

5. For NAL units with nal_unit_type equal to 20 and idr_flag equal to 1, set nal_unit_type equal to 5.

6. For NAL units with nal_unit_type equal to 20 and idr_flag equal to 0, set nal_unit_type equal to 1.

7. Remove all SEI NAL units.

8. Remove all NAL units with nal_unit_type equal to 7.

9. For all NAL units with nal_unit_type equal to 15, set nal_unit_type equal to 7, remove all the syntax elements
after the syntax structure seq_parameter_set_data() and before the rbsp_trailing_bits() syntax structure,
replace the three bytes starting from profile_idc as specified by

582 Rec. ITU-T H.264 (03/2009)

rewriting_profile_level_idc[i][entropy_coding_mode_flag], when present, and change RBSP trailing bits
appropriately.

The value of conversion_type_idc[i] shall be in the range of 0 to 2, inclusive.

For the following syntax elements rewriting_info_flag[i][j], rewriting_profile_level_idc[i [j],
rewriting_avg_bitrate[i][j], and rewriting_max_bitrate[i][j], the variable j specifies the value of
entropy_coding_mode_flag for all picture parameter set NAL units that are referenced in the VCL NAL units of the
alternative set of access units obtained by converting the current scalable layer representation, with values for j equal to
0 or 1 indicating use of the CAVLC or CABAC entropy coding methods, respectively.

NOTE 18 – It might be possible to convert the current scalable layer representation into two alternative sets of access units that
conform to one or more of the profiles specified in Annex A, with one of these sets having entropy_coding_mode_flag equal to 0
and the other set having entropy_coding_mode_flag equal to 1 in all picture parameter set NAL units that are referenced in the
VCL NAL units of the alternative set of access units.

rewriting_info_flag[i][j] equal to 1 specifies that information about the alternative set of access units obtained by
converting the current scalable layer representation is present in the scalability information SEI message.
rewriting_info_flag[i][j] equal to 0 specifies that information about the alternative set of access units is not present in
the scalability information SEI message. When rewriting_info_flag[i][j] is equal to 1, it is asserted that the
information signalled by the syntax elements rewriting_profile_level_idc[i [j], rewriting_avg_bitrate[i][j], and
rewriting_max_bitrate[i][j] is correct, though, when conversion_type_idc[i] is equal to 0 or the value of
entropy_coding_mode_flag is modified, the method for constructing the alternative set of access units is unspecified.

rewriting_profile_level_idc[i][j] indicates the conformance point of the alternative set of access units for the current
scalable layer representation after conversion. rewriting_profile_level_idc[i] is the exact copy of the three bytes consist
of profile_idc, constraint_set0_flag, constraint_set1_flag, constraint_set2_flag, constraint_set3_flag,
reserved_zero_4bits, and level_idc, as if these syntax elements were used to specify the profile and level conformance
of the alternative set of access units obtained by converting the scalable layer representation.

rewriting_avg_bitrate[i][j] indicates the average bit rate of the alternative set of access units obtained by converting
the representation of the current scalable layer. The average bit rate of the alternative set of access units in bits per
second is given by BitRateBPS(rewriting_avg_bitrate[i][j]) with the function BitRateBPS() being specified in
Equation G-369. The average bit rate is derived according to the access unit removal time specified in Annex C of the
Recommendation | International Standard.

rewriting_max_bitrate[i][j] indicates an upper bound for the bit rate of the alternative set of access units obtained
by converting the representation of the current scalable layer, in any one-second time window of access unit removal
time as specified in Annex C. The upper bound for the bit rate of the alternative set of access units in bits per second is
given by BitRateBPS(rewriting_max_bitrate[i][j]) with the function BitRateBPS() being specified in Equation G-
369.

For the following specification, the terms priority layer, dependency layer, and priority layer representation are defined
as follows. A priority layer consists of the set of primary coded VCL NAL units, inside the target access unit set, that
are associated with a particular value of dependency_id and a value of alt_priority_id[i], as specified in
subclause G.13.2.4, that is less than or equal to a particular priority identifier pId and the set of associated non-VCL
NAL units. A priority layer is associated with a particular value of dependency_id and a particular priority layer
identifier pId. When present in the target access unit, the following NAL units are associated non-VCL NAL units for a
priority layer:

– sequence parameter set, subset sequence parameter set, and picture parameter set NAL units that are referenced in
the VCL NAL units of the priority layer (via the syntax element pic_parameter_set_id),

– sequence parameter set extension NAL units that are associated with a sequence parameter set NAL unit
referenced in the VCL NAL units of the priority layer,

– filler data NAL units that belong to an access unit containing VCL NAL units of the priority layer and are
associated with the same values of dependency_id and quality_id as the VCL NAL units of the priority layer in the
same access unit,

– SEI NAL units containing SEI messages, with payloadType not equal to 24, 28, or 29, that apply to subsets of the
bitstream that contain one or more VCL NAL units of the priority layer,

– access unit delimiter, end of sequence, and end of stream NAL units that are present in access units that contain
VCL NAL units of the priority layer.

The set of NAL units that represents the set union of all priority layers that are associated with the same value of
dependency_id is referred to as dependency layer. A dependency layer is associated with a particular value of
dependency_id.

 Rec. ITU-T H.264 (03/2009) 583

A priority layer A is directly dependent on a priority layer B when any VCL NAL unit of the priority layer A references
data of any VCL NAL unit of the priority layer B through inter prediction or inter-layer prediction as specified in the
decoding process in subclause G.8. A priority layer A is indirectly dependent on a priority layer B when the priority
layer A is not directly dependent on the priority layer B but there exists a set of n (with n being greater than 0) priority
layers {C0, .., Cn−1} with the following properties: The priority layer A is directly dependent on the priority layer C0,
each priority layer Ci with i in the range of 0 to n − 2, inclusive, is directly dependent on the priority layer Ci+1, and the
priority layer Cn−1 is directly dependent on the priority layer B.

The representation of a particular priority layer is the set of NAL units that represents the set union of the particular
priority layer and all priority layers on which the particular priority layer directly or indirectly depends. The
representation of a priority layer is also referred to as priority layer representation. In the following specification of this
subclause, the terms representation of a priority layer and priority layer representation are also used for referring to the
access unit set that can be constructed from the NAL units of the priority layer representation. A priority layer
representation can be decoded independently of all NAL units that do not belong to the priority layer representation.

pr_num_dId_minus1 plus 1 specifies the number of dependency layers for which the priority layer characteristic
information as specified by the following syntax elements is present in the scalability information SEI message.

pr_dependency_id[i] specifies the value of dependency_id of the dependency layer for which the priority layer
characteristic information is signalled by the following syntax elements.

pr_num_minus1[i] plus 1 specifies the number of priority layers with dependency_id equal to pr_dependency_id[i]
for which priority layer characteristic information as specified by the following syntax elements is present in the
scalability information SEI message.

pr_id[i][j] specifies the priority identifier pId for a priority layer with dependency_id equal to pr_dependency_id[i].
The target access unit set shall contain one or more primary coded VCL NAL units that are associated with
dependency_id equal to pr_dependency_id[i] and alt_priority_id[i] equal to pr_id[i][j], where the value of
alt_priority_id[i] that is associated with a primary coded VCL NAL unit is specified in subclause G.13.2.4. When j is
greater than 0, the value of pr_id[i][j] shall not be equal to any of the values pr_id[i][k] with k = 0..(j − 1).

For the following specification inside the subclause, the priority layer with dependency_id equal to the current value of
pr_dependency_id[i] and the priority layer identifier pId equal to the current value of pr_id[i][j] is referred to as the
current priority layer and the representation of the current priority layer is referred to as the current priority layer
representation.

pr_profile_level_idc[i][j] indicates the conformance point of the current priority layer representation.
pr_profile_level_idc[i] is the exact copy of the three bytes consisting of profile_idc, constraint_set0_flag,
constraint_set1_flag, constraint_set2_flag, constraint_set3_flag, reserved_zero_4bits, and level_idc, as if these syntax
elements were used to specify the profile and level conformance of the current priority layer representation.

pr_avg_bitrate[i][j] indicates the average bit rate of the current priority layer representation. The average bit rate of
the current priority layer representation in bits per second is given by BitRateBPS(pr_avg_bitrate[i][j]) with the
function BitRateBPS() being specified in Equation G-369. The average bit rate is derived according to the access unit
removal time specified in Annex C of this Recommendation | International Standard. In the following, bTotal is the
number of bits in all NAL units of the current priority layer representation, t1 is the removal time (in seconds) of the
access unit associated with the scalability information SEI message, and t2 is the removal time (in seconds) of the last
access unit (in decoding order) of the target access unit set.

With x specifying the value of pr_avg_bitrate[i], the following applies.

– If t1 is not equal to t2, the condition specified in Equation G-370 shall be fulfilled.

– Otherwise (t1 is equal to t2), the condition specified in Equation G-371 shall be fulfilled.

pr_max_bitrate[i][j] indicates an upper bound for the bit rate of the current priority layer representation in any
one-second time window of access unit removal time as specified in Annex C. The upper bound for the bit rate of the
current priority layer representation in bits per second is given by BitRateBPS(pr_max_bitrate[i][j]) with the
function BitRateBPS() being specified in Equation G-369. The bit rate values are derived according to the access unit
removal time specified in Annex C of this Recommendation | International Standard. In the following, t1 is any point in
time (in seconds), t2 is set equal to t1 + 1, and bTotal is the number of bits in all NAL units of the current priority layer
representation that belong to access units with a removal time greater than or equal to t1 and less than t2. With x
specifying the value of pr_max_bitrate[i][j], the condition specified in Equation G-372 shall be obeyed.

priority_id_setting_uri[PriorityIdSettingUriIdx] is the PriorityIdSettingUriIdx-th byte of a null-terminated string
encoded in UTF-8 characters, specifying the universal resource identifier (URI) of the description of the method used to
calculate the priority_id values in the NAL unit headers for the target access unit set.

584 Rec. ITU-T H.264 (03/2009)

G.13.2.2 Sub-picture scalable layer SEI message semantics

The sub-picture scalable SEI message provides a mechanism for associating a slice group set indicated in a motion-
constrained slice group SEI message with a sub-picture scalable layer.

In the following specification of this subclause, the terms scalable layer, sub-picture scalable layer, and primary coded
VCL NAL unit are used as specified in subclause G.13.2.1.

A sub-picture scalable layer SEI message shall not be succeeded, in decoding order, by a scalability information SEI
message inside the same access unit.

When a sub-picture scalable SEI message is present, the following applies.

– If the sub-picture scalable layer SEI message is included in a scalable nesting SEI message, a motion-constrained
slice group set SEI message, which is also referred to as the associated motion-constrained slice group SEI
message, shall be present in the same scalable nesting SEI message and it shall immediately precede the sub-
picture scalable layer SEI message in decoding order. The scalable nesting SEI message that contains the sub-
picture scalable layer SEI message shall contain num_layer_representations_minus1 equal to 0 and
sei_quality_id[0] equal to 0. The variable depId is set equal to the value of sei_dependency_id[0] that is present
in the scalable nesting SEI message containing the sub-picture scalable layer SEI message.

– Otherwise (the sub-picture scalable layer SEI message is not included in a scalable nesting SEI message), the
sub-picture scalable layer SEI message shall be the first SEI payload in an SEI NAL unit and the NAL unit
immediately preceding the SEI NAL unit containing the sub-picture scalable layer SEI message shall be an SEI
NAL unit that contains a motion-constrained slice group set SEI message, which is also referred to as associated
motion-constrained slice group set SEI message, as last SEI payload. The variable depId is set equal to 0.

The slice group set identified by the associated motion-constrained slice group set SEI message is referred to as the
associated slice group set of the sub-picture scalable layer SEI message.

The access unit associated with the sub-picture scalable layer SEI message shall not contain any primary coded VCL
NAL unit that has dependency_id equal to depId and IdrPicFlag equal to 0. The set of access units consisting of the
access unit associated with the sub-picture scalable layer SEI message and all succeeding access units in decoding order
until, but excluding, the next access unit that contains any primary coded VCL NAL unit with dependency_id equal to
depId and IdrPicFlag equal to 1 or that does not contain any primary coded VCL NAL units with IdrPicFlag equal to 0
(if present) or the end of the bitstream (otherwise) is referred to as the target access unit set. The sub-picture scalable
layer SEI message applies to the target access unit set.

NOTE – The set of primary coded pictures in the target access unit set for a sub-picture scalable layer SEI message is identical to
the target picture set for the associated motion-constrained slice group set SEI message.

layer_id indicates, when the access unit containing the sub-picture scalable layer SEI message belongs to the target
access unit set of a scalability information SEI message, the layer identifier of the sub-picture scalable layer to which
the coded slice NAL units in the associated slice group set belong. The value of layer_id shall be in the range of 0
to 2047, inclusive.

The access unit containing the sub-picture scalable layer SEI message may or may not belong to the target access unit
set of a scalability information SEI message. When the access unit containing the sub-picture scalable layer SEI
message belongs to the target access unit set of a scalability information SEI message, the corresponding scalability
information SEI message may or may not contain information for a scalable layer i with layer identifier layer_id[i]
equal to layer_id. When the access unit containing the sub-picture scalable layer SEI message belongs to the target
access unit set of a scalability information SEI message and the corresponding scalability information SEI message
contains information for a scalable layer i with layer identifier layer_id[i] equal to layer_id, which is referred to as the
current scalable layer in the following, the following applies. The information for the current scalable layer in the
scalability SEI shall contain sub_pic_layer_flag[i] equal to 1. The sub-picture area for the current scalable layer i,
which is specified by the syntax elements horizontal_offset[i], vertical_offset[i], region_width[i], and
region_height[i] in the scalability information SEI message, shall be identical to the area specified by the associated
slice group set.

G.13.2.3 Non-required layer representation SEI message semantics

The non-required layer representation SEI message provides a mechanism for indicating which layer representations of
the current primary coded picture are not required for decoding dependency representations with a particular value of
dependency_id of the current primary coded picture and succeeding primary coded pictures, in decoding order.

The non-required layer representation SEI message shall not be included in a scalable nesting SEI message.

 Rec. ITU-T H.264 (03/2009) 585

num_info_entries_minus1 plus 1 specifies the number of dependency_id values for which non-required layer
representations are indicated in the SEI message. The value of num_info_entries_minus1 shall be in the range of 0 to 7,
inclusive.

entry_dependency_id[i] specifies the dependency_id value for which non-required layer representations are indicated
by the following syntax elements. The instances of entry_dependency_id[i] shall appear in increasing order of their
values.

The dependency representation of the primary coded picture with dependency_id equal to entry_dependency_id[i] is
referred to as the target dependency representation.

The target dependency representation may or may not be present in the access unit.

num_non_required_layer_rep_minus1[i] plus 1 specifies the number of non-required layer representations for the
target dependency representation that are indicated in the SEI message. The value of
num_non_required_layer_rep_minus1[i] shall be in the range of 0 to 127, inclusive.

non_required_layer_rep_dependency_id[i][j] indicates the value of dependency_id of the j-th non-required layer
representation for the target dependency representation.

non_required_layer_rep_quality_id[i][j] indicates the value of quality_id of the j-th non-required layer
representation for the target dependency representation.

The i-th non-required layer representation for the target dependency representation is the layer representation of the
primary coded picture that has dependency_id equal to non_required_layer_rep_dependency_id[i][j] and quality_id
equal to non_required_layer_rep_quality_id[i][j]. A non-required layer representation for the target dependency
representation is not required for decoding the target dependency representation and any dependency representation
with dependency_id equal to entry_dependency_id[i] of primary coded pictures that follow the current primary picture
in decoding order.

When DependencyIdMax is equal to entry_dependency_id[i], the VCL NAL units of the non-required layer
representations shall not be referenced through inter or inter-layer prediction in the decoding process as specified in
subclause G.8.

NOTE – In addition to the i-th non-required layer representation for the target dependency representation, those layer
representations that have dependency_id equal to non_required_layer_rep_dependency_id[i][j] and quality_id greater than
non_required_layer_rep_quality_id[i][j] are also non-required layer representations for the target dependency representation.

The i-th non-required layer representation may or may not be present in the access unit.

G.13.2.4 Priority layer information SEI message semantics

The priority layer information SEI message provides a mechanism for signalling alternative priority_id values for VCL
NAL units of the primary coded picture. The alternative values for priority_id indicate priority layers.

The priority layer information SEI message shall not be included in a scalable nesting SEI message.

pr_dependency_id specifies the value of dependency_id for the VCL NAL units for which alternative values for
priority_id are indicated.

num_priority_ids specifies the number of layer representations with dependency_id equal to pr_dependency_id for
which alternative values of priority_id are indicated.

alt_priority_id[i] specifies the alternative value for priority_id for the VCL NAL units of the primary coded picture
that have dependency_id equal to pr_dependency_id and quality_id equal to i.

The layer representation of the primary coded picture with dependency_id equal to pr_dependency_id and quality_id
equal to i may or may not be present in the access unit.

G.13.2.5 Layers not present SEI message semantics

The layers not present SEI message provides a mechanism for signalling that NAL units of particular scalable layers
indicated by the preceding scalability information SEI message are not present in a particular set of access units.

In the following specification of this subclause, the terms scalable layer and primary coded VCL NAL unit are used as
specified in subclause G.13.2.1.

A layers not present SEI message shall not be included in a scalable nesting SEI message.

A layers not present SEI message shall not be present in an access unit that does not belong to the target access unit set
of any scalability information SEI message. A layers not present SEI message shall not be succeeded, in decoding order,
by a scalability information SEI message inside the same access unit. The set of access units consisting of the access

586 Rec. ITU-T H.264 (03/2009)

unit associated with the layers not present SEI message and all succeeding access units in decoding order until, but
excluding, the next access unit that contains a layers not present SEI message or that does not contain any primary
coded VCL NAL units with IdrPicFlag equal to 0 (if present), or the end of the bitstream (otherwise) is referred to as
the target access unit set. The layers not present SEI message applies to the target access unit set.

A layers not present SEI message refers to the most recent scalability information SEI message in decoding order. Each
scalable layer that is referred to in this subclause is a scalable layer indicated in the most recent scalability information
SEI message in decoding order. Each layer identifier for a scalable layer that is referred to in this subclause is a layer
identifier for a scalable layer indicated in the most recent scalability information SEI message in decoding order.

NOTE 1 – Layers not present SEI messages do not have a cumulative effect.

num_layers specifies the number of syntax elements layer_id[i] that are present in the layers not present SEI message.
The value of num_layers shall be in the range of 0 to 2047, inclusive.

layer_id[i] indicates the layer identifier of a scalable layer for which no VCL NAL units are present in the target
access unit set. The value of layer_id[i] shall be in the range of 0 to 2047, inclusive. The value of layer_id[i] shall be
equal to one of the values of layer_id[i] in the most recent scalability information SEI message. The target access unit
set shall not contain any VCL NAL unit of the scalable layer having a layer identifier equal to layer_id[i]. When i is
greater than 0, the value of layer_id[i] shall not be equal to any of the values layer_id[j] with j = 0..(i − 1).

NOTE 2 – When an application removes NAL units from a scalable bitstream, e.g. in order to adapt the bitstream to a
transmission channel or the capabilities of a receiving device, and keeps the present layers not present SEI messages, it might
need to modify the content of some of the layers not present SEI messages and remove some other layers not present SEI
messages in order to obtain a bitstream conforming to this Recommendation | International Standard.

G.13.2.6 Layer dependency change SEI message semantics

The layer dependency change SEI message provides a mechanism for signalling that the interdependencies between
particular scalable layers indicated by the preceding scalability information SEI message are changed for a particular set
of access units.

In the following specification of this subclause, the terms scalable layer, representation of a scalable layer, scalable
layer representation, and primary coded VCL NAL unit are used as specified in subclause G.13.2.1.

A layer dependency change SEI message shall not be included in a scalable nesting SEI message.

A layer dependency change SEI message shall not be present in an access unit that does not belong to the target access
unit set of any scalability information SEI message. A layer dependency change SEI message shall not be succeeded, in
decoding order, by a scalability information SEI message or a layers not present SEI message inside the same access
unit. The set of access units consisting of the access unit associated with the layer dependency change SEI message and
all succeeding access units in decoding order until, but excluding, the next access unit that contains a layer dependency
change SEI message or a layers not present SEI message or that does not contain any primary coded VCL NAL units
with IdrPicFlag equal to 0 (if present), or the end of the bitstream (otherwise) is referred to as the target access unit set.
The layer dependency change SEI message applies to the target access unit set.

A layer dependency change SEI message refers to the most recent scalability information SEI message in decoding
order. Each scalable layer that is referred to in this subclause is a scalable layer indicated in the most recent scalability
information SEI message in decoding order. Each layer identifier for a scalable layer that is referred to in this
subclause is a layer identifier for a scalable layer indicated in the most recent scalability information SEI message in
decoding order.

NOTE 1 – Layer dependency change SEI messages do not have a cumulative effect.

The presence of the layer dependency change SEI message specifies the following. For a scalable layer with a layer
identifier equal to any value of layer_id[i] present in the layer dependency change SEI message, the layer dependency
relationship is changed for the target access unit set relative to the layer dependency relationship specified by the most
recent scalability information SEI message in decoding order. For a scalable layer with a layer identifier not equal to
any value of layer_id[i] present in the layer dependency change SEI message, the layer dependency relationship
remains the same as the one specified in the most recent scalability information SEI message in decoding order.

When, according to the layer dependency information indicated in the most recent scalability information SEI message
in decoding order, a scalable layer A does not directly or indirectly depend on another scalable layer B, the layer
dependency change SEI message shall not specify that the scalable layer A directly or indirectly depends on the scalable
layer B.

When a scalable layer is considered to directly or indirectly depend on another scalable layer is specified in
subclause G.13.2.1, with the target access unit set being the target access unit set for the layer dependency change SEI
message.

 Rec. ITU-T H.264 (03/2009) 587

num_layers_minus1 plus 1 specifies the number of scalable layers for which a layer dependency information change
relative to the most recent scalability information SEI message, in decoding order, is indicated in the layer dependency
change SEI message. The value of num_layers_minus1 is in the range of 0 to 2047, inclusive.

layer_id[i] indicates the layer identifier of the scalable layer for which a layer dependency information change is
indicated by the following syntax elements. The value of layer_id[i] shall be in the range of 0 to 2047, inclusive. The
value of layer_id[i] shall be equal to one of the values of layer_id[i] in the most recent scalability information SEI
message. When i is greater than 0, the value of layer_id[i] shall not be equal to any of the values of layer_id[j] with
j = 0..(i − 1).

NOTE 2 – When an application removes NAL units from a scalable bitstream, e.g. in order to adapt the bitstream to a
transmission channel or the capabilities of a receiving device, and keeps the present layer dependency change SEI messages, it
might need to modify the content of some of the layer dependency change SEI messages and remove some other layer
dependency change SEI messages in order to obtain a bitstream conforming to this Recommendation | International Standard.

For the following specification of this subclause, the scalable layer with layer identifier equal to the current value of
layer_id[i] is referred to as the current scalable layer and the representation of the current scalable layer is referred to
as current scalable layer representation.

layer_dependency_info_present_flag[i] equal to 1 specifies that one or more syntax elements
dependent_layer_id_delta_minus1[i][j] indicating the layer dependency information for the current scalable layer are
present in the layer dependency change SEI message. layer_dependency_info_present_flag[i] equal to 0 specifies that
the syntax element layer_dependency_info_src_layer_id_delta_minus1[i] for the current scalable layer is present in the
layer dependency change SEI message.

num_directly_dependent_layers[i] specifies the number of the syntax elements
directly_dependent_layer_id_delta_minus1[i][j] that are present for the current scalable layer. The value of
num_directly_dependent_layers shall be in the range of 0 to 255, inclusive.

directly_dependent_layer_id_delta_minus1[i][j] plus 1 indicates the difference between the value of layer_id[i]
for the current scalable layer and the layer identifier of a particular scalable layer, on which the current scalable layer
directly depends. The layer identifier of the particular scalable layer, on which the current scalable layer directly
depends, is equal to layer_id[i] − directly_dependent_layer_id_delta_minus1 − 1. The most recent scalability
information SEI message in decoding order shall contain information for a scalable layer b with layer_id[b] equal to
layer_id[i] − directly_dependent_layer_id_delta_minus1[i][j] − 1 and this information shall not contain a value of
layer_dependency_info_src_layer_id_delta[i] equal to 0.

Let setOfDepLayers be the set union of the representations of the scalable layers b that have layer_id[b] equal to
layer_id[i] − directly_dependent_layer_id_delta_minus1[i][j] − 1, with
j = 0..num_directly_dependent_layers[i] − 1. When layer_dependency_info_present_flag[i] is equal to 1, the set
setOfDepLayers shall not contain any scalable layer, on which the current scalable layer does not directly or indirectly
depends inside the target access unit set and the current scalable layer shall not depend on any scalable layer, inside the
target access unit set, that is not included in the set setOfDepLayers.

layer_dependency_info_src_layer_id_delta_minus1[i] indicates that the current scalable layer has the same layer
dependency information as the scalable layer with layer identifier equal to layer_id[i] −
layer_dependency_info_scr_layer_id_delta_minus1[i] − 1. The most recent scalability information SEI message in
decoding order shall contain information for a scalable layer b with layer_id[b] equal to
layer_id[i] − layer_dependency_info_src_layer_id_delta_minus1[i] − 1 and this information shall not contain a value
of layer_dependency_info_src_layer_id_delta[b] equal to 0.

When layer_dependency_info_present_flag[i] is equal to 0, the set of scalable layers on which the current scalable
layer depends inside the target access unit set shall be identical to the set of layers on which the scalable layer b with
layer_id[b] equal to layer_id[i] − layer_dependency_info_src_layer_id_delta_minus1[i] − 1 depends inside the
target access unit set.

G.13.2.7 Scalable nesting SEI message semantics

The scalable nesting SEI message provides a mechanism for associating SEI messages with subsets of a bitstream.

A scalable nesting SEI message shall contain one or more SEI messages with payloadType not equal to 30 and it shall
not contain any SEI message with payloadType equal to 30. An SEI message contained in a scalable nesting SEI
message is referred to as a nested SEI message. An SEI message not contained in a scalable nesting SEI message is
referred to as a non-nested SEI message. The scope to which the nested SEI message applies is indicated by the syntax
elements all_layer_representations_in_au_flag, num_layer_representations_minus1, sei_dependency_id[i],
sei_quality_id[i], and sei_temporal_id, when present.

588 Rec. ITU-T H.264 (03/2009)

A buffering period SEI message and an SEI message of any other type shall not be nested in the same scalable nesting
SEI message. A picture timing SEI message and an SEI message of any other type shall not be nested in the same
scalable nesting SEI message.

all_layer_representations_in_au_flag equal to 1 specifies that the nested SEI message applies to all layer
representations of the access unit. all_layer_representations_in_au_flag equal to 0 specifies that the scope of the nested
SEI message is specified by the syntax elements num_layer_representations_minus1, sei_dependency_id[i],
sei_quality_id[i], and sei_temporal_id.

num_layer_representations_minus1 plus 1 specifies, when num_layer_representations_minus1 is present, the number
of syntax element pairs sei_dependency_id[i] and sei_quality_id[i] that are present in the scalable nesting SEI
message. When num_layer_representations_minus1 is not present, it shall be inferred to be equal to
(numSVCLayers − 1) with numSVCLayers being the number of layer representations that are present in the primary
coded picture of the access unit.

sei_dependency_id[i] and sei_quality_id[i] indicate the dependency_id and the quality_id values, respectively, of
the layer representations to which the nested SEI message applies. The access unit may or may not contain layer
representations with dependency_id equal to sei_dependency_id[i] and quality_id equal to sei_quality_id[i].

When num_layer_representations_minus1 is not present, the values of sei_dependency_id[i] and sei_quality_id[i] for
i in the range of 0 to num_layer_representations_minus1 (with num_layer_representations_minus1 being the inferred
value), inclusive, shall be inferred as specified in the following:

1. Let setDQId be the set of the values DQId for all layer representations that are present in the primary coded
picture of the access unit.

2. For i proceeding from 0 to num_layer_representations_minus1, inclusive, the following applies:

a. sei_dependency_id[i] and sei_quality_id[i] are inferred to be equal to (minDQId >> 4) and
(minDQId & 15), respectively, with minDQId being the smallest value (smallest value of DQId) in
the set setDQId.

b. The smallest value (smallest value of DQId) of the set setDQId is removed from setDQId and thus the
number of elements in the set setDQId is decreased by 1.

sei_temporal_id indicates the temporal_id value of the bitstream subset to which the nested SEI message applies.
When sei_temporal_id is not present, it shall be inferred to be equal to temporal_id of the access unit.

When the nested SEI message is a buffering period SEI message or a picture timing SEI message (i.e., payloadType is
equal to 0 or 1 for the nested SEI message), sei_temporal_id indicates the bitstream subset for which the nested
buffering period SEI message or picture timing SEI message applies. For a buffering period SEI message or picture
timing SEI message that is nested in a scalable nesting SEI message, sei_dependency_id[i], sei_quality_id[i], and
sei_temporal_id specify the greatest values of dependency_id, quality_id, and temporal_id, respectively, of the
bitstream subsets to which the nested buffering period SEI message or picture timing SEI message applies. The
bitstream may or may not contain access units with temporal_id equal to sei_temporal_id.

When the scalable nesting SEI message contains one or more SEI messages with payloadType not equal to 0 or 1,
sei_temporal_id shall be equal to the value of temporal_id for the access unit associated with the scalable nesting SEI
message. For an nested SEI message with payloadType not equal to 0 or 1, the values of sei_dependency_id[i],
sei_quality_id[i], and sei_temporal_id, present in or inferred for the associated scalable nesting SEI message, indicate
the values of dependency_id, quality_id, and temporal_id, respectively, of the VCL NAL units to which the nested SEI
message applies.

sei_nesting_zero_bit shall be equal to 0.

G.13.2.8 Base layer temporal HRD SEI message semantics

The base layer temporal HRD SEI message provides HRD parameters for subsets of the base layer bitstream.

The base layer temporal HRD SEI message shall not be included in a scalable nesting SEI message. The base layer
temporal HRD SEI message shall not be present in access units that do not contain VCL NAL units of the primary
coded picture with nal_unit_type equal to 5.

When present, this SEI message applies to the target access unit set that consists of the current access unit and all
subsequent access units in decoding order until, but excluding, the next access unit containing a NAL unit of the
primary coded picture with nal_unit_type equal to 5 (if present) or the end of the bitstream (otherwise).

num_of_temporal_layers_in_base_layer_minus1 plus 1 specifies the number of bitstream subsets inside the target
access unit set for which the following syntax elements are specified in the base layer temporal HRD SEI message.

 Rec. ITU-T H.264 (03/2009) 589

sei_temporal_id[i] specifies the temporal_id value of the i-th bitstream subset. sei_temporal_id[i] shall not be equal
to any of the values of sei_temporal_id[j] with j = 0..(i − 1).

Access units with temporal_id equal to sei_temporal_id[i] may or may not be present in the target access unit set.
When access units with temporal_id equal to sei_temporal_id[i] are not present in the target access unit set, the i-th
bitstream subset is considered as not existing.

When access units with temporal_id equal to sei_temporal_id[i] are present in the target access unit set, the i-th
bitstream subset is the bitstream subset that is obtained by invoking the bitstream extraction process as specified in
subclause G.8.8.1 for the target access unit set with tIdTarget equal to sei_temporal_id[i], dIdTarget equal to 0, and
qIdTarget equal to 0 as the inputs.

sei_timing_info_present_flag[i] equal to 1 specifies that sei_num_units_in_tick[i], sei_time_scale[i], and
sei_fixed_frame_rate_flag[i] are present in the base layer temporal HRD SEI message.
sei_timing_info_present_flag[i] equal to 0 specifies that sei_num_units_in_tick[i], sei_time_scale[i], and
sei_fixed_frame_rate_flag[i] are not present in the base layer temporal HRD SEI message.

The following syntax elements for the i-th bitstream subset are specified using references to Annex E. For these syntax
elements the same semantics and constraints as the ones specified in Annex E apply, as if these syntax elements
sei_num_units_in_tick[i], sei_time_scale[i], sei_fixed_frame_rate_flag[i], sei_nal_hrd_parameters_present_flag[i],
sei_vcl_hrd_parameters_present_flag[i], sei_low_delay_hrd_flag[i], and sei_pic_struct_present_flag[i] were present
as num_units_in_tick, time_scale, fixed_frame_rate_flag, nal_hrd_parameters_present_flag,
vcl_hrd_parameters_present_flag, low_delay_hrd_flag, and pic_struct_present_flag, respectively, in the VUI
parameters of the active SVC sequence parameter sets for the i−th bitstream subset.

The parameters for the i-th bitstream subset that are coded in the base layer temporal HRD SEI message shall be
correct, as if these parameters are used for conformance checking (as specified in Annex C) of the i-th bitstream subset.

sei_num_units_in_tick[i] indicates the value of num_units_in_tick, as specified in subclause E.2.1, that applies to the
i-th bitstream subset.

sei_time_scale[i] indicates the value of time_scale, as specified in subclause E.2.1, that applies to the i-th bitstream
subset.

sei_fixed_frame_rate_flag[i] indicates the value of fixed_frame_rate_flag, as specified in subclause E.2.1, that
applies to the i-th bitstream subset.

sei_nal_hrd_parameters_present_flag[i] indicates the value of nal_hrd_parameters_present_flag, as specified in
subclause E.2.1, that applies to the i-th bitstream subset. When sei_nal_hrd_parameters_present_flag[i] is equal to 1,
the NAL HRD parameters that apply to the i-th bitstream subset immediately follow the
sei_nal_hrd_parameters_present_flag[i].

sei_vcl_hrd_parameters_present_flag[i] indicates the value of vcl_hrd_parameters_present_flag, as specified in
subclause E.2.1, that applies to the i-th bitstream subset. When sei_vcl_hrd_parameters_present_flag[i] is equal to 1,
the VCL HRD parameters that apply to the i-th bitstream subset immediately follow the
sei_vcl_hrd_parameters_present_flag[i].

sei_low_delay_hrd_flag[i] indicates the value of low_delay_hrd_flag, as specified in subclause E.2.1, that applies to
the i-th bitstream subset.

sei_pic_struct_present_flag[i] indicates the value of pic_struct_present_flag, as specified in subclause E.2.1, that
applies to the i-th bitstream subset.

G.13.2.9 Quality layer integrity check SEI message semantics

The quality layer integrity check SEI message provides a mechanism for detecting whether VCL NAL units with
quality_id greater than 0 of the primary coded picture have been removed from the bitstream.

The quality layer integrity check SEI message shall not be included in a scalable nesting SEI message.

num_info_entries_minus1 plus 1 specifies the number of syntax element pairs entry_dependency_id[i] and
quality_layer_crc[i] that are present in the quality layer integrity check SEI message. The value of
num_info_entries_minus1 shall be in the range of 0 to 7, inclusive.

entry_dependency_id[i] specifies the dependency_id value of the dependency representation for which
quality_layer_crc[i] is indicated. The instances of entry_dependency_id[i] shall appear in increasing order of their
values. The dependency representation of the primary coded picture that has dependency_id equal to
entry_dependency_id[i] is referred to as target dependency representation.

The target dependency representation may or may not be present in the access unit.

590 Rec. ITU-T H.264 (03/2009)

quality_layer_crc[i] specifies the cyclic redundancy check for all the VCL NAL units with quality_id greater than 0
in the target dependency representation.

Let crcVal be a variable that is derived as specified by the following ordered steps:

1. Let the variable qNalUnits[] be the one-dimensional array of bytes that contains a concatenation, in decoding
order, of the bytes of the nal_unit() syntax structures of all VCL NAL units with quality_id greater than 0 in
the target dependency representation, in decoding order.

2. Let the variable pLen be the sum of the NumBytesInNALunit variables of all VCL NAL units with quality_id
greater than 0 in the target dependency representation.

3. The value of crcVal is derived as specified by the following pseudo-code process:

qNalUnits[pLen] = 0
qNalUnits[pLen + 1] = 0
crcVal = 65535
for(bitIdx = 0; bitIdx < (pLen + 2) * 8; bitIdx++) { (G-382)
 crcMsb = (crcVal >> 15) & 1
 bitVal = (qNalUnits[bitIdx >> 3] >> (7 − (bitIdx & 7))) & 1
 crcVal = (((crcVal << 1) + bitVal) & 65535) ^ (crcMsb * 4129)
}

When the target dependency representation is present in the access unit, a value of quality_layer_crc[i] not equal to
crcVal indicates that one or more VCL NAL units with quality_id greater than 0 of the target dependency representation
have been removed from the bitstream and that the output pictures may show undesirable visual artefacts.

G.13.2.10 Redundant picture property SEI message semantics

The redundant picture property SEI message indicates properties for layer representations of redundant coded pictures.
In the following, a layer representation of a redundant coded picture is also referred to as redundant coded layer
representation and a layer representation of the primary coded picture is also referred to as primary coded layer
representation.

The redundant picture property SEI message shall not be included in a scalable nesting SEI message.

num_dId_minus1 plus 1 specifies the number of dependency_id values for which properties of redundant coded layer
representations are indicated in the redundant picture property SEI message.

dependency_id[i] specifies the dependency_id value of the redundant coded layer representations for which properties
are indicated by the following syntax elements.

num_qId_minus1[i] plus 1 specifies the number of quality_id values for which properties of redundant coded layer
representations with dependency_id equal to dependency_id[i] are indicated by the following syntax elements.

quality_id[i][j] specifies the quality_id value of the redundant coded layer representations with dependency_id equal
to dependency_id[i] for which properties are indicated by the following syntax elements.

num_redundant_pics_minus1[i][j] plus 1 specifies the number of redundant coded layer representations with
dependency_id equal to dependency_id[i] and quality_id equal to quality_id[i][j] for which properties are indicated
by the following syntax elements.

redundant_pic_cnt_minus1[i][j][k] plus 1 specifies the redundant_pic_cnt value of the redundant coded layer
representation with dependency_id equal to dependency_id[i] and quality_id equal to quality_id[i][j] for which
properties are indicated by the following syntax elements.

The redundant coded layer representation having dependency_id equal to dependency_id[i], quality_id equal to
quality_id[i][j], and redundant_pic_cnt equal to (redundant_pic_cnt_minus1[i][j][k] + 1) is referred to as the
target redundant coded layer representation. The primary coded layer representation (redundant_pic_cnt is equal to 0)
having dependency_id equal to dependency_id[i] and quality_id equal to quality_id[i][j] is referred to as the target
primary coded layer representation.

The target redundant coded layer representation may or may not be present in the access unit. The target primary coded
layer representation may or may not be present in the access unit.

For the following specification, the picture that only consists of the target redundant coded layer representation and the
primary coded layer representations with DQId less than (dependency_id[i] << 4) + quality_id[i] is referred to as
target redundant coded picture and the picture that only consists of the target primary coded layer representation and the

 Rec. ITU-T H.264 (03/2009) 591

primary coded layer representations with DQId less than (dependency_id[i] << 4) + quality_id[i] is referred to as
target primary coded picture.

For the following specification, the arrays mbType, subMbType, predFlagL0, predFlagL1, refIdxL0, refIdxL1, mvL0,
mvL1, rSL, rSCb, rSCr, cSL, cSCb, and cSCr represent the corresponding arrays of the collective term currentVars after
completion of the target macroblock decoding process as specified in subclause G.8.1.5.6.

pic_match_flag[i][j][k] equal to 1 indicates that the target redundant coded layer representation is an exact copy of
the target primary coded layer representation, with the only difference in the value of redundant_pic_cnt.

mb_type_match_flag[i][j][k] equal to 1 indicates that the array mbType for the target redundant coded picture is
identical to the array mbType for the target primary coded picture.

motion_match_flag[i][j][k] equal to 1 indicates that, for each macroblock mbAddr in the target layer representation
of the target primary coded picture for which the derived macroblock type mbType[mbAddr] represents a P or B
macroblock type, the variables and arrays mbType[mbAddr], subMbType[mbAddr], predFlagL0[mbAddr],
predFlagL1[mbAddr], refIdxL0[mbAddr], refIdxL1[mbAddr], mvL0[mbAddr], and mvL1[mbAddr] for the target
redundant coded picture are identical to the corresponding variables and arrays for the target primary coded picture.

residual_match_flag[i][j][k] equal to 1 indicates that, for each macroblock mbAddr in the target layer
representation of the target primary coded picture for which the derived macroblock type mbType[mbAddr] represents
a P or B macroblock type, the associated reconstructed residual sample values in the arrays rSL, rSCb, and rSCr for the
target redundant coded picture are identical or close to the corresponding reconstructed residual sample values for the
target primary coded picture.

intra_samples_match_flag[i][j][k] equal to 1 indicates that, for each macroblock mbAddr in the target layer
representation of the target primary coded picture for which the derived macroblock type mbType[mbAddr] represents
an I macroblock type, the associated reconstructed sample values in the arrays cSL, cSCb, and cSCr for the target
redundant coded picture are identical or close to the corresponding reconstructed sample values for the target primary
coded picture.

G.13.2.11 Temporal level zero dependency representation index SEI message semantics

The temporal level zero dependency representation index SEI message provides a mechanism for detecting whether a
dependency representation with temporal_id equal to 0 required for decoding the current access unit is available when
NAL unit losses are expected during transport.

Let setOfDId be a set of dependency_id values that is derived as follows.

– If the temporal level zero dependency representation index SEI message is not included in a scalable nesting SEI
message, setOfDId consists of exactly one value, which is equal to 0.

– Otherwise (the temporal level zero dependency representation index SEI message is included in a scalable nesting
SEI message), setOfDId consists of the values sei_dependency_id[i] for all i in the range of 0 to
num_layer_representations_minus1, inclusive, that are present in the scalable nesting SEI message associated with
the temporal level zero dependency representation index SEI message. For the scalable nesting SEI message that
contains the temporal level zero dependency representation index SEI message,
all_layer_representations_in_au_flag shall be equal to 1 or the value of sei_quality_id[i] shall be equal to 0 for all
values of i in the range of 0 to num_layer_representations_minus1, inclusive.

All dependency representations that are referred to in the following specification inside this subclause are dependency
representations of a primary coded picture. Unless specified otherwise, all dependency representation that are referred
to in the following are dependency representations of the primary coded picture of the access unit that is associated with
the temporal level zero dependency representation index SEI message.

The dependency representations of the access unit that have dependency_id equal to any value of the set setOfDId are
also referred to as associated dependency representations.

For each value of dId in the set setOfDId, the access unit may or may not contain a dependency representation with
dependency_id equal to dId.

tl0_dep_rep_idx indicates the temporal level zero index for the associated dependency representations, if temporal_id
is equal to 0. Otherwise (temporal_id is greater than 0), tl0_dep_rep_idx indicates the temporal level zero index of the
dependency representations of the most recent access unit with temporal_id equal to 0 in decoding order that have the
same value of dependency_id as any of the associated dependency representations.

For each value of dId in the set setOfDId, the following applies.

– If the dependency representation with dependency_id equal to dId contains a NAL unit with nal_unit_type equal
to 5 or a NAL unit with nal_unit_type equal to 20 and idr_flag equal to 1, tl0_dep_rep_idx shall be equal to 0.

592 Rec. ITU-T H.264 (03/2009)

– Otherwise (the dependency representation with dependency_id equal to dId does not contain a NAL unit with
nal_unit_type equal to 5 or a NAL unit with nal_unit_type equal to 20 and idr_flag equal to 1), the following is
specified:

1. Let prevTL0AU be the most recent access unit in decoding order that has temporal_id equal to 0 and for
which the primary coded picture contains a dependency representation with dependency_id equal to dId.

2. Let prevTL0DepRep be the dependency representation with dependency_id equal to dId of the primary
coded picture in access unit prevTL0AU.

3. Let prevTL0DepRepIdx be equal to the value of tl0_dep_rep_idx that is associated with the dependency
representation prevTL0DepRep, as indicated by a corresponding temporal level zero dependency
representation index SEI message.

4. Depending on temporal_id of the current access unit, the following applies.

– If temporal_id of the current access unit is equal to 0, tl0_dep_rep_idx shall be equal to
(prevTL0DepRepIdx + 1) % 256.

– Otherwise (temporal_id of the current access unit is greater than 0), tl0_dep_rep_idx shall be equal to
prevTL0DepRepIdx.

When the temporal level zero dependency representation index SEI message is associated with a particular dependency
representation depRepA that has dependency_id equal dIdA and IdrPicFlag equal to 0, a temporal level zero
dependency representation index SEI message shall also be associated with the previous dependency representation
dIdB in decoding order that has dependency_id equal to dIdA and IdrPicFlag equal to 1 and all dependency
representations with dependency_id equal to dIdA and temporal_id equal to 0 that follow the dependency representation
dIdB and precede the dependency representation dIdA in decoding order.

NOTE – For the tl0_dep_rep_idx mechanism to be effectively used, transport mechanisms should ensure that the information is
present in every packet that carries data for the particular values of dependency_id.

effective_idr_pic_id indicates the latest value of idr_pic_id in decoding order present in this access unit or any
preceding access unit for dependency representations indicated by sei_dependency_id[i].

For each value of dId in the set setOfDId, the following applies.

– If the dependency representation with dependency_id equal to dId contains a NAL unit with nal_unit_type equal
to 5 or a NAL unit with nal_unit_type equal to 20 and idr_flag equal to 1, effective_idr_pic_id shall be equal to
idr_pic_id of the dependency representation with dependency_id equal to dId.

– Otherwise (the dependency representation with dependency_id equal to dId does not contain a NAL unit with
nal_unit_type equal to 5 or a NAL unit with nal_unit_type equal to 20 and idr_flag equal to 1),
effective_idr_pic_id shall be equal to idr_pic_id of the previous dependency representation in decoding order with
dependency_id equal to dId that contains a NAL unit with nal_unit_type equal to 5 or a NAL unit with
nal_unit_type equal to 20 and idr_flag equal to 1.

G.13.2.12 Temporal level switching point SEI message semantics

The temporal level switching point SEI message provides a mechanism for identifying temporal level switching points.
If a dependency representation is associated with a temporal level switching point SEI message, then it is a temporal
level switching point as specified subsequently and constrained by delta_frame_num. Otherwise, the dependency
representation may or may not be a temporal level switching point.

All dependency representations that are referred to in the following specification of this subclause are dependency
representations of primary coded pictures.

In the following, let tId be the value of temporal_id of the access unit that is associated with the temporal level
switching point SEI message.

NOTE 1 – Let dId be the value of dependency_id that a bitstream adaptation process has used to generate a bitstream subset
subBitstreamA that contains dependency representations with dependency_id less than or equal to dId and temporal_id less than
tId of an input bitstream (that is conforming to this Recommendation | International Standard) until the current access unit,
exclusive. The bitstream adaptation process can infer from a temporal level switching point SEI message whether or not the
bitstream subset containing subBitstreamA and the dependency representations with dependency_id less than or equal to dId and
temporal_id less than or equal to tId of the input bitstream starting from the current access unit, inclusive, is conforming to this
Recommendation | International Standard.

The temporal level switching point SEI message shall not be present in access units with temporal_id equal to 0.

 Rec. ITU-T H.264 (03/2009) 593

The temporal level switching point SEI message shall be included in a scalable nesting SEI message. For the scalable
nesting SEI message that contains the temporal level switching point SEI message,
all_layer_representations_in_au_flag shall be equal to 1 or the value of sei_quality_id[i] shall be equal to 0 for all
values of i in the range of 0 to num_layer_representations_minus1, inclusive.

The following semantics apply independently to each value of sei_dependency_id[i] indicated by the scalable nesting
SEI message containing the temporal level switching point SEI message. The current access unit, i.e., the access unit
associated with the temporal level switching point SEI message, may or may not contain a dependency representation
with dependency_id equal to sei_dependency_id[i]. When the current access unit contains a dependency representation
with dependency_id equal to sei_dependency_id[i], the following semantics apply.

The following semantics are specified in a way that they apply to a bitstream conforming to this Recommendation |
International Standard for which DependencyIdMax for the current access unit is equal to sei_dependency_id[i].

Let the switch-to dependency representation be the dependency representation in the current access unit that has
dependency_id equal to sei_dependency_id[i] and let maxFrameNum be the value of MaxFrameNum for the SVC
sequence parameter set that is the active SVC sequence parameter set for the current access unit (with
DependencyIdMax equal to sei_dependency_id[i]).

delta_frame_num indicates the difference between the frame_num values of the switch-to dependency representation
and the dependency representation with dependency_id equal to sei_dependency_id[i] in the required access unit, as
specified subsequently. The value of delta_frame_num shall be in the range of 1 − maxFrameNum to
maxFrameNum − 1, inclusive.

Let currFrameNum be the frame_num value of the switch-to dependency representation. The variable
requiredFrameNum is set equal to currFrameNum − delta_frame_num. Let lastIdrAU be the most recent access unit in
decoding order that contains a dependency representation with dependency_id equal to sei_dependency_id[i] and
IdrPicFlag equal to 1. The bitstream shall contain an access unit that succeeds the access unit lastIdrAU and precedes
the current access unit in decoding order and contains a dependency representation with frame_num equal to
requiredFrameNum and dependency_id equal to sei_dependency_id[i]. The most recent access unit in decoding order
that contains a dependency representation with frame_num equal to requiredFrameNum and dependency_id equal to
sei_dependency_id[i] is referred to as the required access unit. The required access unit shall have a value of
temporal_id that is equal to tId − 1.

The current access unit and all subsequent access units in decoding order for which temporal_id is less than or equal to
tId shall not reference any of the following access units through inter prediction in the decoding process specified in
clause G.8:

– access units that precede the required access unit in decoding order and have temporal_id equal to tId − 1,

– access units that precede the current access unit in decoding order and have temporal_id equal to tId.

NOTE 2 – The set of access units consisting of the current access unit and all access units with temporal_id less than or equal to
tId that follow the current access unit in decoding order can be decoded when all of the following access units, which precede the
current access unit in decoding order, have been decoded: all access units required for decoding the required access unit (i.e., all
access units that are directly or indirectly referenced through inter prediction in the decoding process for the required access unit),
the required access unit, and all access units with temporal_id less than tId that succeed the required access unit and precede the
current access unit in decoding order.

G.14 SVC video usability information extension

The specifications in Annex E apply with substituting SVC sequence parameter set for sequence parameter set.
Additionally, the following applies.

594 Rec. ITU-T H.264 (03/2009)

G.14.1 SVC VUI parameters extension syntax

svc_vui_parameters_extension() { C Descriptor
 vui_ext_num_entries_minus1 0 ue(v)
 for(i = 0; i <= vui_ext_num_entries_minus1; i++) {
 vui_ext_dependency_id[i] 0 u(3)
 vui_ext_quality_id[i] 0 u(4)
 vui_ext_temporal_id[i] 0 u(3)
 vui_ext_timing_info_present_flag[i] 0 u(1)
 if(vui_ext_timing_info_present_flag[i]) {
 vui_ext_num_units_in_tick[i] 0 u(32)
 vui_ext_time_scale[i] 0 u(32)
 vui_ext_fixed_frame_rate_flag[i] 0 u(1)
 }
 vui_ext_nal_hrd_parameters_present_flag[i] 0 u(1)
 if(vui_ext_nal_hrd_parameters_present_flag[i])
 hrd_parameters() 0
 vui_ext_vcl_hrd_parameters_present_flag[i] 0 u(1)
 if(vui_ext_vcl_hrd_parameters_present_flag[i])
 hrd_parameters() 0
 if(vui_ext_nal_hrd_parameters_present_flag[i] | |
 vui_ext_vcl_hrd_parameters_present_flag[i])

 vui_ext_low_delay_hrd_flag[i] 0 u(1)
 vui_ext_pic_struct_present_flag[i] 0 u(1)
 }
}

G.14.2 SVC VUI parameters extension semantics

The SVC VUI parameters extension specifies timing information, HRD parameter sets, and the presence of picture
structure information for subsets of coded video sequences (including the complete coded video sequences) conforming
one or more of the profiles specified in Annex G. In Annex C it is specified which of the HRD parameter sets specified
in the SVC VUI parameters extension are used for conformance checking.

vui_ext_num_entries_minus1 plus 1 specifies the number of information entries that are present in the SVC VUI
parameters extension syntax structure. Each information entry is associated with particular values of temporal_id,
dependency_id, and quality_id and may indicate timing information, NAL HRD parameters, VCL HRD parameters,
and the presence of picture structure information for a particular subset of coded video sequences as specified in the
following.

vui_ext_dependency_id[i] and vui_ext_quality_id[i] indicate the maximum value of DQId for the i-th subset of
coded video sequences. The maximum value of DQId for the i-th subset of coded video sequences is derived by
vui_ext_dependency_id[i] + (vui_ext_quality_id[i] << 4).

vui_ext_temporal_id[i] indicates the maximum value of temporal_id for the i-th subset of coded video sequences.

The SVC VUI parameters extension syntax structure shall not contain two or more information entries with identical
values of vui_ext_dependency_id[i], vui_ext_quality_id[i], and vui_ext_temporal_id[i].

The following syntax elements apply to the coded video sequences that are obtained by the invoking the sub-bitstream
extraction process as specified in subclause G.8.8.1 with tIdTarget equal to vui_ext_temporal_id[i], dIdTarget equal to
vui_ext_dependency_id[i], and qIdTarget equal to vui_ext_quality_id[i] as the inputs and the i-th subset of coded
video sequences as the output.

vui_ext_timing_info_present_flag[i] equal to 1 specifies that vui_ext_num_units_in_tick[i], vui_ext_time_scale[i],
and vui_ext_fixed_frame_rate_flag[i] for the i-th subset of coded video sequences are present in the SVC VUI
parameters extension. vui_ext_timing_info_present_flag[i] equal to 0 specifies that vui_ext_num_units_in_tick[i],
vui_ext_time_scale[i], and vui_ext_fixed_frame_rate_flag[i] for the i-th subset of coded video sequences are not
present in the SVC VUI parameters extension.

 Rec. ITU-T H.264 (03/2009) 595

The following syntax elements for the i-th subset of coded video sequences are specified using references to Annex E.
For these syntax elements the same semantics and constraints as the ones specified in Annex E apply, as if these syntax
elements vui_ext_num_units_in_tick[i], vui_ext_time_scale[i], vui_ext_fixed_frame_rate_flag[i],
vui_ext_nal_hrd_parameters_present_flag[i], vui_ext_vcl_hrd_parameters_present_flag[i],
vui_ext_low_delay_hrd_flag[i], and vui_ext_pic_struct_present_flag[i] were present as the syntax elements
num_units_in_tick, time_scale, fixed_frame_rate_flag, nal_hrd_parameters_present_flag,
vcl_hrd_parameters_present_flag, low_delay_hrd_flag, and pic_struct_present_flag, respectively, in the VUI
parameters of the active SVC sequence parameter sets for the i-th subset of coded video sequences.

vui_ext_num_units_in_tick[i] specifies the value of num_units_in_tick, as specified in subclause E.2.1, for the i-th
subset of coded video sequences.

vui_ext_time_scale[i] specifies the value of time_scale, as specified in subclause E.2.1, for the i-th subset of coded
video sequences.

vui_ext_fixed_frame_rate_flag[i] specifies the value of fixed_frame_rate_flag, as specified in subclause E.2.1, for
the i-th subset of coded video sequences.

vui_ext_nal_hrd_parameters_present_flag[i] specifies the value of nal_hrd_parameters_present_flag, as specified in
subclause E.2.1, for the i-th subset of coded video sequences.

When vui_ext_nal_hrd_parameters_present_flag[i] is equal to 1, NAL HRD parameters (subclauses E.1.2 and E.2.2)
for the i-th subset of coded video sequences immediately follow the flag.

The variable VuiExtNalHrdBpPresentFlag[i] is derived as follows.

– If any of the following is true, the value of VuiExtNalHrdBpPresentFlag[i] shall be set equal to 1:
– vui_ext_nal_hrd_parameters_present_flag[i] is present in the bitstream and is equal to 1,
– for the i-th subset of coded video sequences, the need for presence of buffering periods for NAL HRD

operation to be present in the bitstream in buffering period SEI messages is determined by the application, by
some means not specified in this Recommendation | International Standard.

– Otherwise, the value of VuiExtNalHrdBpPresentFlag[i] shall be set equal to 0.

vui_ext_vcl_hrd_parameters_present_flag[i] specifies the value of vcl_hrd_parameters_present_flag, as specified in
subclause E.2.1, for the i-th subset of coded video sequences.

When vui_ext_vcl_hrd_parameters_present_flag[i] is equal to 1, VCL HRD parameters (subclauses E.1.2 and E.2.2)
for the i-th subset of coded video sequences immediately follow the flag.

The variable VuiExtVclHrdBpPresentFlag[i] is derived as follows.

– If any of the following is true, the value of VuiExtVclHrdBpPresentFlag[i] shall be set equal to 1:
– vui_ext_vcl_hrd_parameters_present_flag[i] is present in the bitstream and is equal to 1,
– for the i-th subset of coded video sequences, the need for presence of buffering periods for VCL HRD

operation to be present in the bitstream in buffering period SEI messages is determined by the application, by
some means not specified in this Recommendation | International Standard.

– Otherwise, the value of VuiExtVclHrdBpPresentFlag[i] shall be set equal to 0.

The variable VuiExtCpbDpbDelaysPresentFlag[i] is derived as follows.

– If any of the following is true, the value of VuiExtCpbDpbDelaysPresentFlag[i] shall be set equal to 1:
– vui_ext_nal_hrd_parameters_present_flag[i] is present in the bitstream and is equal to 1,
– vui_ext_vcl_hrd_parameters_present_flag[i] is present in the bitstream and is equal to 1,
– for the i-th subset of coded video sequences, the need for presence of CPB and DPB output delays to be

present in the bitstream in picture timing SEI messages is determined by the application, by some means not
specified in this Recommendation | International Standard.

– Otherwise, the value of VuiExtCpbDpbDelaysPresentFlag[i] shall be set equal to 0.

vui_ext_low_delay_hrd_flag[i] specifies the value of low_delay_hrd_flag, as specified in subclause E.2.1, for the i-th
subset of coded video sequences.

vui_ext_pic_struct_present_flag[i] specifies the value of pic_struct_present_flag, as specified in subclause E.2.1, for
the i-th subset of coded video sequences.

596 Rec. ITU-T H.264 (03/2009)

Annex H

Multiview video coding

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies multiview video coding, referred to as MVC.

H.1 Scope

Bitstreams and decoders conforming to the profile specified in this annex are completely specified in this annex with
reference made to clauses 2-9 and Annexes A-E.

H.2 Normative references

The specifications in clause 2 apply.

H.3 Definitions

For the purpose of this annex, the following definitions apply in addition to the definitions in clause 3. These definitions
are either not present in clause 3 or replace definitions in clause 3.

H.3.1 access unit: A set of NAL units that are consecutive in decoding order and contain exactly one primary coded
picture consisting of one or more view components. In addition to the primary coded picture, an access unit
may also contain one or more redundant coded pictures, one auxiliary coded picture, or other NAL units not
containing slices or slice data partitions of a coded picture. The decoding of an access unit always results in
one decoded picture consisting of one or more decoded view components. All slices or slice data partitions in
an access unit have the same value of picture order count.

H.3.2 anchor access unit: An access unit in which the primary coded picture is an anchor picture.

H.3.3 anchor picture: A coded picture in which all slices reference only slices within the same access unit, i.e., no
inter prediction is used, and all following coded pictures in output order do not use inter prediction from any
picture prior to the coded picture in decoding order. An anchor picture has anchor_pic_flag to 1 for all the
prefix NAL units and all the slice extension NAL units.

H.3.4 anchor view component: A view component in an anchor picture. All view components in an anchor picture
are anchor view components.

H.3.5 associated NAL unit: A NAL unit that immediately follows a prefix NAL unit in decoding order.

H.3.6 base view: A view that has the minimum value of view order index in a coded video sequence. The base view
can be decoded independently of other views, does not use inter-view prediction, and contains VCL NAL units
only with nal_unit_type equal to 1 or 5. The base view bitstream conforms to one or more profiles specified in
Annex A. There is only one base view in a coded video sequence.

H.3.7 bitstream subset: A bitstream that is derived as a subset from a bitstream by discarding zero or more NAL
units. A bitstream subset is also referred to as a sub-bitstream.

H.3.8 coded slice MVC extension NAL unit: A coded slice NAL unit that has nal_unit_type equal to 20.

H.3.9 decoded view component: A decoded view component is derived by decoding a view component. A decoded
view component is either a decoded frame view component, or a decoded field view component.

H.3.10 direct prediction: An inter prediction or inter-view prediction for a block for which no motion vector is
decoded. Two direct prediction modes are specified that are referred to as spatial direct prediction mode and
temporal direct prediction mode.

H.3.11 field view component: A view component of a field.

H.3.12 frame view component: A view component of a frame.

 Rec. ITU-T H.264 (03/2009) 597

H.3.13 instantaneous decoding refresh (IDR) picture: A coded picture in which all slices have IdrPicFlag equal to 1
that causes the decoding process to mark all reference pictures as "unused for reference" immediately after
decoding the IDR picture. After the decoding of an IDR picture all following coded pictures in decoding order
can be decoded without inter prediction from any picture decoded prior to the IDR picture. The first picture of
each coded video sequence is an IDR picture.

H.3.14 instantaneous decoding refresh (IDR) view component: A view component in an IDR picture. All view
components in an IDR picture are IDR view components.

H.3.15 inter-view coding: Coding of a block, macroblock, slice, or picture that uses inter-view prediction.

H.3.16 inter-view only reference component: A decoded view component with nal_ref_idc equal to 0 and
inter_view_flag equal to 1. An inter-view only reference component is used for inter-view prediction in the
decoding process of subsequent view components in decoding order, but is not used for inter prediction by any
view components. Inter-view only reference components are non-reference pictures.

H.3.17 inter-view prediction: A prediction derived from decoded samples of inter-view reference pictures or
inter-view only reference components for decoding another view component in the same access unit.

H.3.18 inter-view prediction reference: A collective term for inter-view reference picture or inter-view only
reference components.

H.3.19 inter-view reference index: An index into a list of view components for inter-view prediction in an initialised
reference picture list in decoding all the anchor view components or all the non-anchor view components of
any particular view as specified in the sequence parameter set MVC extension.

H.3.20 inter-view reference picture: A decoded view component with nal_ref_idc greater than 0 and inter_view_flag
equal to 1. An inter-view reference picture contains samples that may be used for inter prediction and inter-
view prediction in the decoding process of subsequent pictures in decoding order. Inter-view reference
pictures are reference pictures.

H.3.21 list 0 (list 1) prediction: Inter prediction or inter-view prediction of the content of a slice using a reference
index pointing into reference picture list 0 (list 1).

H.3.22 macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a macroblock for inter prediction or inter-view prediction.

H.3.23 motion vector: A two-dimensional vector used for inter prediction or inter-view prediction that provides an
offset from the coordinates in the decoded view component to the coordinates in a reference picture or
inter-view only reference component.

H.3.24 MVC sequence parameter set: A collective term for sequence parameter set or subset sequence parameter
set.

H.3.25 MVC sequence parameter set RBSP: A collective term for sequence parameter set RBSP or subset sequence
parameter set RBSP.

H.3.26 non-anchor access unit: An access unit that is not an anchor access unit.

H.3.27 non-anchor picture: A coded picture that is not an anchor picture.

H.3.28 non-anchor view component: A view component that is not an anchor view component.

H.3.29 non-base view: A view that is not the base view. VCL NAL units of a non-base view have nal_unit_type equal
to 20. Decoding of view components in a non-base view may require the use of inter-view prediction.

H.3.30 non-reference picture: A view component coded with nal_ref_idc equal to 0. A non-reference picture is not
used for inter prediction in decoding any other view components.

H.3.31 operation point: An operation point is identified by a temporal_id value representing the target temporal level
and a set of view_id values representing the target output views. One operation point is associated with a
bitstream subset, which consists of the target output views and all other views the target output views depend
on, that is derived using the sub-bitstream extraction process as specified in subclause H.8.5.3 with tIdTarget
equal to the temporal_id value and viewIdTargetList consisting of the set of view_id values as inputs. More
than one operation point may be associated with the same bitstream subset. When the specification states "an
operation point is decoded" it refers to the decoding of a bitstream subset corresponding to the operation point
and subsequent output of the target output views.

598 Rec. ITU-T H.264 (03/2009)

H.3.32 picture order count: A variable that applies to each view independently having a value that is non-decreasing
(except for wrap-around) with increasing view component position in output order relative to the previous IDR
view component in decoding order or relative to the previous view component containing the memory
management control operation that marks all reference pictures in the same view as "unused for reference".

H.3.33 prefix NAL unit: A NAL unit with nal_unit_type equal to 14 that immediately precedes in decoding order a
NAL unit with nal_unit_type equal to 1 or 5. The NAL unit that immediately follows in decoding order the
prefix NAL unit is referred to as the associated NAL unit. The prefix NAL unit contains data associated with
the associated NAL unit, which are considered to be part of the associated NAL unit.

H.3.34 reference picture: A view component coded with nal_ref_idc greater than 0. A reference picture may be used
for inter prediction or inter-view prediction in decoding the following view components in decoding order.

H.3.35 reference picture list: A list of reference pictures and inter-view only reference components that are used for
inter prediction or inter-view prediction of a P, B, or SP slice. For the decoding process of a P or SP slice,
there is one reference picture list. For the decoding process of a B slice, there are two reference picture lists.

H.3.36 reference picture list 0: A reference picture list used for inter prediction or inter-view prediction of a P, B, or
SP slice. All inter prediction or inter-view prediction used for P and SP slices uses reference picture list 0.
Reference picture list 0 is one of two reference picture lists used for inter prediction for a B slice, with the
other being reference picture list 1.

H.3.37 reference picture list 1: A reference picture list used for inter prediction or inter-view prediction of a B slice.
Reference picture list 1 is one of two reference picture lists used for inter prediction or inter-view prediction
for a B slice, with the other being reference picture list 0.

H.3.38 reference picture marking: Specifies the means by which decoded view components are marked for inter
prediction or inter-view prediction.

H.3.39 sub-bitstream: A subset of a bitstream. A sub-bitstream is also referred to as a bitstream subset.

H.3.40 subset: A subset contains only elements that are also contained in the set from which the subset is derived. The
subset may be identical to the set from which it is derived.

H.3.41 target output view: A view that is to be output. The target output views are either indicated by external means
or, when not indicated by external means, the target output view is the base view.
NOTE – The output views may be requested by a receiver and may be negotiated between the receiver and the sender.

H.3.42 target temporal level: The target temporal level of an operation point is the greatest value of temporal_id of
all VCL NAL units in the bitstream subset associated with the operation point.

H.3.43 view: A sequence of view components associated with an identical value of view_id.

H.3.44 view component: A coded representation of a view in a single access unit.

H.3.45 view order index: An index that indicates the decoding order of view components in an access unit.

H.4 Abbreviations

The specifications in clause 4 apply.

H.5 Conventions

The specifications in clause 5 apply.

H.6 Source, coded, decoded and output data formats, scanning processes, and neighbouring
relationships

The specifications in clause 6 apply with substitution of MVC sequence parameter set for sequence parameter set.

H.7 Syntax and semantics

This clause specifies syntax and semantics for coded video sequences that conform to one or more of the profiles
specified in this annex.

H.7.1 Method of specifying syntax in tabular form

The specifications in subclause 7.1 apply.

 Rec. ITU-T H.264 (03/2009) 599

H.7.2 Specification of syntax functions, categories, and descriptors

The specifications in subclause 7.2 apply.

H.7.3 Syntax in tabular form

H.7.3.1 NAL unit syntax

The syntax table is specified in subclause 7.3.1.

H.7.3.1.1 NAL unit header MVC extension syntax

nal_unit_header_mvc_extension() { C Descriptor
 non_idr_flag All u(1)
 priority_id All u(6)
 view_id All u(10)
 temporal_id All u(3)
 anchor_pic_flag All u(1)
 inter_view_flag All u(1)
 reserved_one_bit All u(1)
}

H.7.3.2 Raw byte sequence payloads and RBSP trailing bits syntax

H.7.3.2.1 Sequence parameter set RBSP syntax

The syntax table is specified in subclause 7.3.2.1.

H.7.3.2.1.1 Sequence parameter set data syntax

The syntax table is specified in subclause 7.3.2.1.1.

H.7.3.2.1.1.1 Scaling list syntax

The syntax table is specified in subclause 7.3.2.1.1.1.

H.7.3.2.1.2 Sequence parameter set extension RBSP syntax

The syntax table is specified in subclause 7.3.2.1.2.

H.7.3.2.1.3 Subset sequence parameter set RBSP syntax

The syntax table is specified in subclause 7.3.2.1.3.

600 Rec. ITU-T H.264 (03/2009)

H.7.3.2.1.4 Sequence parameter set MVC extension syntax

seq_parameter_set_mvc_extension() { C Descriptor
 num_views_minus1 0 ue(v)
 for(i = 0; i <= num_views_minus1; i++)
 view_id[i] 0 ue(v)
 for(i = 1; i <= num_views_minus1; i++) {
 num_anchor_refs_l0[i] 0 ue(v)
 for(j = 0; j < num_anchor_refs_l0[i]; j++)
 anchor_ref_l0[i][j] 0 ue(v)
 num_anchor_refs_l1[i] 0 ue(v)
 for(j = 0; j < num_anchor_refs_l1[i]; j++)
 anchor_ref_l1[i][j] 0 ue(v)
 }
 for(i = 1; i <= num_views_minus1; i++) {
 num_non_anchor_refs_l0[i] 0 ue(v)
 for(j = 0; j < num_non_anchor_refs_l0[i]; j++)
 non_anchor_ref_l0[i][j] 0 ue(v)
 num_non_anchor_refs_l1[i] 0 ue(v)
 for(j = 0; j < num_non_anchor_refs_l1[i]; j++)
 non_anchor_ref_l1[i][j] 0 ue(v)
 }
 num_level_values_signalled_minus1 0 ue(v)
 for(i = 0; i <= num_level_values_signalled_minus1; i++) {
 level_idc[i] 0 u(8)
 num_applicable_ops_minus1[i] 0 ue(v)
 for(j = 0; j <= num_applicable_ops_minus1[i]; j++) {
 applicable_op_temporal_id[i][j] 0 u(3)
 applicable_op_num_target_views_minus1[i][j] 0 ue(v)
 for(k = 0; k <= applicable_op_num_target_views_minus1[i][j]; k++)
 applicable_op_target_view_id[i][j][k] 0 ue(v)
 applicable_op_num_views_minus1[i][j] 0 ue(v)
 }
 }
}

H.7.3.2.2 Picture parameter set RBSP syntax

The syntax table is specified in subclause 7.3.2.2.

H.7.3.2.3 Supplemental enhancement information RBSP syntax

The syntax table is specified in subclause 7.3.2.3.

H.7.3.2.3.1 Supplemental enhancement information message syntax

The syntax table is specified in subclause 7.3.2.3.1.

H.7.3.2.4 Access unit delimiter RBSP syntax

The syntax table is specified in subclause 7.3.2.4.

 Rec. ITU-T H.264 (03/2009) 601

H.7.3.2.5 End of sequence RBSP syntax

The syntax table is specified in subclause 7.3.2.5.

H.7.3.2.6 End of stream RBSP syntax

The syntax table is specified in subclause 7.3.2.6.

H.7.3.2.7 Filler data RBSP syntax

The syntax table is specified in subclause 7.3.2.7.

H.7.3.2.8 Slice layer without partitioning RBSP syntax

The syntax table is specified in subclause 7.3.2.8.

H.7.3.2.9 Slice data partition RBSP syntax

Slice data partition syntax is not present in coded video sequences conforming to one or more of the profiles specified
in this annex.

H.7.3.2.10 RBSP slice trailing bits syntax

The syntax table is specified in subclause 7.3.2.10.

H.7.3.2.11 RBSP trailing bits syntax

The syntax table is specified in subclause 7.3.2.11.

H.7.3.2.12 Prefix NAL unit RBSP syntax

The syntax table is specified in subclause 7.3.2.12.

H.7.3.2.13 Slice layer extension RBSP syntax

The syntax table is specified in subclause 7.3.2.13.

H.7.3.3 Slice header syntax

The syntax table is specified in subclause 7.3.3.

H.7.3.3.1 Reference picture list modification syntax

The syntax table is specified in subclause 7.3.3.1.

602 Rec. ITU-T H.264 (03/2009)

H.7.3.3.1.1 Reference picture list MVC modification syntax

ref_pic_list_mvc_modification() { C Descriptor
 if(slice_type % 5 != 2 && slice_type % 5 != 4) {
 ref_pic_list_modification_flag_l0 2 u(1)
 if(ref_pic_list_modification_flag_l0)
 do {
 modification_of_pic_nums_idc 2 ue(v)
 if(modification_of_pic_nums_idc = = 0 | |
 modification_of_pic_nums_idc = = 1)

 abs_diff_pic_num_minus1 2 ue(v)
 else if(modification_of_pic_nums_idc = = 2)
 long_term_pic_num 2 ue(v)
 else if (modification_of_pic_nums_idc = = 4 | |
 modification_of_pic_nums_idc = = 5)

 abs_diff_view_idx_minus1 2 ue(v)
 } while(modification_of_pic_nums_idc != 3)
 }
 if(slice_type % 5 = = 1) {
 ref_pic_list_modification_flag_l1 2 u(1)
 if(ref_pic_list_modification_flag_l1)
 do {
 modification_of_pic_nums_idc 2 ue(v)
 if(modification_of_pic_nums_idc = = 0 | |
 modification_of_pic_nums_idc = = 1)

 abs_diff_pic_num_minus1 2 ue(v)
 else if(modification_of_pic_nums_idc = = 2)
 long_term_pic_num 2 ue(v)
 else if (modification_of_pic_nums_idc = = 4 | |
 modification_of_pic_nums_idc = = 5)

 abs_diff_view_idx_minus1 2 ue(v)
 } while(modification_of_pic_nums_idc != 3)
 }
}

H.7.3.3.2 Prediction weight table syntax

The syntax table is specified in subclause 7.3.3.2.

H.7.3.3.3 Decoded reference picture marking syntax

The syntax table is specified in subclause 7.3.3.3.

H.7.3.4 Slice data syntax

The syntax table is specified in subclause 7.3.4.

H.7.3.5 Macroblock layer syntax

The syntax table is specified in subclause 7.3.5.

H.7.3.5.1 Macroblock prediction syntax

The syntax table is specified in subclause 7.3.5.1.

 Rec. ITU-T H.264 (03/2009) 603

H.7.3.5.2 Sub-macroblock prediction syntax

The syntax table is specified in subclause 7.3.5.2.

H.7.3.5.3 Residual data syntax

The syntax table is specified in subclause 7.3.5.3.

H.7.3.5.3.1 Residual luma syntax

The syntax table is specified in subclause 7.3.5.3.1.

H.7.3.5.3.2 Residual block CAVLC syntax

The syntax table is specified in subclause 7.3.5.3.2.

H.7.3.5.3.3 Residual block CABAC syntax

The syntax table is specified in subclause 7.3.5.3.3.

H.7.4 Semantics

Semantics associated with the syntax structures and syntax elements within these structures (in subclause H.7.3 and in
subclause 7.3 by reference in subclause H.7.3) are specified in this subclause and by reference to subclause 7.4. When
the semantics of a syntax element are specified using a table or a set of tables, any values that are not specified in the
table(s) shall not be present in the bitstream unless otherwise specified in this Recommendation | International Standard.

H.7.4.1 NAL unit semantics

The semantics for the syntax elements in subclause H.7.3.1 are specified in subclause 7.4.1. The following
specifications additionally apply.

For NAL units with nal_unit_type equal to 14, nal_ref_idc shall be identical to the value of nal_ref_idc for the
associated NAL unit, which follows the NAL unit with nal_unit_type equal to 14 in decoding order.

The value of nal_ref_idc shall be identical for all VCL NAL units of a view component.

H.7.4.1.1 NAL unit header MVC extension semantics

The syntax elements non_idr_flag, priority_id, view_id, temporal_id, anchor_pic_flag, and inter_view_flag, when
present in a prefix NAL unit, are considered to apply to the associated NAL unit.

non_idr_flag equal to 0 specifies that the current access unit is an IDR access unit.

The value of non_idr_flag shall be the same for all VCL NAL units of an access unit. When non_idr_flag is equal to 0
for a prefix NAL unit, the associated NAL unit shall have nal_unit_type equal to 5. When non_idr_flag is equal to 1 for
a prefix NAL unit, the associated NAL unit shall have nal_unit_type equal to 1.

When nal_ref_idc is equal to 0, the value of non_idr_flag shall be equal to 1.

For NAL units in which non_idr_flag is present, the variable IdrPicFlag derived in subclause 7.4.1 is modified by
setting it equal to 1 when non_idr_flag is equal to 0, and setting it equal to 0 when non_idr_flag is equal to 1.

priority_id specifies a priority identifier for the NAL unit. A lower value of priority_id specifies a higher priority. The
assignment of values to priority_id is constrained by the sub-bitstream extraction process as specified in
subclause H.8.5.3.

NOTE 1 – The syntax element priority_id is not used by the decoding process specified in this Recommendation | International
Standard. The syntax element priority_id may be used as determined by the application within the specified constraints.

view_id specifies a view identifier for the NAL unit. NAL units with the same value of view_id belong to the same
view. The assignment of values to view_id is constrained by the sub-bitstream extraction process as specified in
subclause H.8.5.3.

The variable VOIdx, representing the view order index of the view identified by view_id, is set equal to the value of i
for which the syntax element view_id[i] included in the referred subset sequence parameter set is equal to view_id.

temporal_id specifies a temporal identifier for the NAL unit.

The value of temporal_id shall be the same for all prefix and coded slice MVC extension NAL units of an access unit.
When an access unit contains any NAL unit with nal_unit_type equal to 5 or non_idr_flag equal to 0, temporal_id shall
be equal to 0.

604 Rec. ITU-T H.264 (03/2009)

The assignment of values to temporal_id is further constrained by the sub-bitstream extraction process as specified in
subclause H.8.5.3.

anchor_pic_flag equal to 1 specifies that the current access unit is an anchor access unit.

When non_idr_flag is equal to 0, anchor_pic_flag shall be equal to 1.

When nal_ref_idc is equal to 0, the value of anchor_pic_flag shall be equal to 0.

The value of anchor_pic_flag shall be the same for all VCL NAL units of an access unit.

inter_view_flag equal to 0 specifies that the current view component is not used for inter-view prediction by any other
view component in the current access unit. inter_view_flag equal to 1 specifies that the current view component may be
used for inter-view prediction by other view components in the current access unit.

The value of inter_view_flag shall be the same for all VCL NAL units of a view component.

reserved_one_bit shall be equal to 1. The value 0 for reserved_one_bit may be specified by future extension of this
Recommendation | International Standard. Decoders shall ignore the value of reserved_one_bit.

H.7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences

This subclause specifies constraints on the order of NAL units in the bitstream. Any order of NAL units in the bitstream
obeying these constraints is referred to in the text as the decoding order of NAL units. Within a NAL unit, the syntax in
subclauses 7.3, D.1, E.1, H.7.3, H.13.1, and H.14.1 specifies the decoding order of syntax elements. Decoders shall be
capable of receiving NAL units and their syntax elements in decoding order.

H.7.4.1.2.1 Order of MVC sequence parameter set RBSPs and picture parameter set RBSPs and their
activation

NOTE 1 – The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information
from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed
"out-of-band" using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units of one or more
view components of one or more coded pictures.

Each picture parameter set RBSP is initially considered not active at the start of the operation of the decoding process.
At most one picture parameter set RBSP is considered as the active picture parameter set RBSP at any given moment
during the operation of the decoding process, and when any particular picture parameter set RBSP becomes the active
picture parameter set RBSP, the previously-active picture parameter set RBSP (if any) is deactivated.

In addition to the active picture parameter set RBSP, zero or more picture parameter set RBSPs may be specifically
active for view components (with a particular value of VOIdx less than VOIdxMax) that may be referred to through
inter-view prediction in decoding the view component with VOIdx equal to VOIdxMax. Such a picture parameter set
RBSP is referred to as active view picture parameter set RBSP for the particular value of VOIdx. The restrictions on
active picture parameter set RBSPs also apply to active view picture parameter set RBSPs for a particular value of
VOIdx less than VOIdxMax.

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) is not the active picture parameter
set RBSP and it is referred to by a coded slice NAL unit with VOIdx equal to VOIdxMax (using that value of
pic_parameter_set_id), it is activated. This picture parameter set RBSP is called the active picture parameter set RBSP
until it is deactivated when another picture parameter set RBSP becomes the active picture parameter set RBSP. A
picture parameter set RBSP, with that particular value of pic_parameter_set_id, shall be available to the decoding
process prior to its activation.

When a picture parameter set RBSP (with a particular value of pic_parameter_set_id) is not the active view picture
parameter set for a particular value of VOIdx less than VOIdxMax and it is referred to by a coded slice NAL unit with
the particular value of VOIdx (using that value of pic_parameter_set_id), it is activated for view components with the
particular value of VOIdx. This picture parameter set RBSP is called the active view picture parameter set RBSP for the
particular value of VOIdx until it is deactivated when another picture parameter set RBSP becomes the active view
picture parameter set RBSP for the particular value of VOIdx. A picture parameter set RBSP, with that particular value
of pic_parameter_set_id, shall be available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter_set_id for the active picture parameter set
RBSP for a coded picture shall have the same content as that of the active picture parameter set RBSP for this coded
picture unless it follows the last VCL NAL unit of this coded picture and precedes the first VCL NAL unit of another
coded picture. Any picture parameter set NAL unit containing the value of pic_parameter_set_id for the active view
picture parameter set RBSP for a particular value of VOIdx less than VOIdxMax for a coded picture shall have the
same content as that of the active view picture parameter set RBSP for the particular value of VOIdx for this coded

 Rec. ITU-T H.264 (03/2009) 605

picture unless it follows the last VCL NAL unit of this coded picture and precedes the first VCL NAL unit of another
coded picture.

An MVC sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set
RBSPs or one or more buffering period SEI messages.

Each MVC sequence parameter set RBSP is initially considered not active at the start of the operation of the decoding
process. At most one MVC sequence parameter set RBSP is considered as the active MVC sequence parameter set
RBSP at any given moment during the operation of the decoding process, and when any particular MVC sequence
parameter set RBSP becomes the active MVC sequence parameter set RBSP, the previously-active MVC sequence
parameter set RBSP (if any) is deactivated.

In addition to the active MVC sequence parameter set RBSP, zero or more MVC sequence parameter set RBSPs may be
specifically active for view components (with a particular value of VOIdx less than VOIdxMax) that may be referred to
through inter-view prediction in decoding the view component with VOIdx equal to VOIdxMax. Such an MVC
sequence parameter set RBSP is referred to as the active view MVC sequence parameter set RBSP for the particular
value of VOIdx. The restrictions on active MVC sequence parameter set RBSPs also apply to active view MVC
sequence parameter set RBSPs for a particular value of VOIdx less than VOIdxMax.

For the following specification, the activating buffering period SEI message is specified as follows.

– If VOIdxMax is equal to VOIdxMin and the access unit contains a buffering period SEI message not included in
an MVC scalable nesting SEI message, this buffering period SEI message is the activating buffering period SEI
message.

– Otherwise if VOIdxMax is not equal to VOIdxMin and the access unit contains a buffering period SEI message
included in an MVC scalable nesting SEI message and associated with the operation point being decoded, this
buffering period SEI message is the activating buffering period SEI message.

– Otherwise, the access unit does not contain an activating buffering period SEI message.

When a sequence parameter set RBSP (nal_unit_type is equal to 7) with a particular value of seq_parameter_set_id is
not already the active MVC sequence parameter set RBSP and it is referred to by activation of a picture parameter set
RBSP (using that value of seq_parameter_set_id) and the picture parameter set RBSP is activated by a coded slice NAL
unit with nal_unit_type equal to 1 or 5 (the picture parameter set RBSP becomes the active picture parameter set RBSP
and VOIdxMax is equal to VOIdxMin) and the access unit does not contain an activating buffering period SEI message,
it is activated. This sequence parameter set RBSP is called the active MVC sequence parameter set RBSP until it is
deactivated when another MVC sequence parameter set RBSP becomes the active MVC sequence parameter set RBSP.
A sequence parameter set RBSP, with that particular value of seq_parameter_set_id, shall be available to the decoding
process prior to its activation.

When a sequence parameter set RBSP (nal_unit_type is equal to 7) with a particular value of seq_parameter_set_id is
not already the active MVC sequence parameter set RBSP and it is referred to by an activating buffering period SEI
message (using that value of seq_parameter_set_id) that is not included in an MVC scalable nesting SEI message and
VOIdxMax is equal to VOIdxMin, it is activated. This sequence parameter set RBSP is called the active MVC sequence
parameter set RBSP until it is deactivated when another MVC sequence parameter set RBSP becomes the active MVC
sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of seq_parameter_set_id,
shall be available to the decoding process prior to its activation.

When a subset sequence parameter set RBSP (nal_unit_type is equal to 15) with a particular value of
seq_parameter_set_id is not already the active MVC sequence parameter set RBSP and it is referred to by activation of
a picture parameter set RBSP (using that value of seq_parameter_set_id) and the picture parameter set RBSP is
activated by a coded slice MVC extension NAL unit (nal_unit_type is equal to 20) with VOIdx equal to VOIdxMax (the
picture parameter set RBSP becomes the active picture parameter set RBSP) and the access unit does not contain an
activating buffering period SEI message, it is activated. This subset sequence parameter set RBSP is called the active
MVC sequence parameter set RBSP until it is deactivated when another MVC sequence parameter set RBSP becomes
the active MVC sequence parameter set RBSP. A subset sequence parameter set RBSP, with that particular value of
seq_parameter_set_id, shall be available to the decoding process prior to its activation.

When a subset sequence parameter set RBSP (nal_unit_type is equal to 15) with a particular value of
seq_parameter_set_id is not already the active MVC sequence parameter set RBSP and it is referred to by an activating
buffering period SEI message (using that value of seq_parameter_set_id) that is included in an MVC scalable nesting
SEI message, it is activated. This subset sequence parameter set RBSP is called the active MVC sequence parameter set
RBSP until it is deactivated when another MVC sequence parameter set RBSP becomes the active MVC sequence
parameter set RBSP. A subset sequence parameter set RBSP, with that particular value of seq_parameter_set_id, shall
be available to the decoding process prior to its activation.

606 Rec. ITU-T H.264 (03/2009)

NOTE 2 – The active MVC sequence parameter set RBSP is either a sequence parameter set RBSP or a subset sequence
parameter set RBSP. Sequence parameter set RBSPs are activated by coded slice NAL units with nal_unit_type equal to 1 or 5 or
buffering period SEI messages that are not included in an MVC scalable nesting SEI message. Subset sequence parameter sets
are activated by coded slice MVC extension NAL units (nal_unit_type equal to 20) or buffering period SEI messages that are
included in an MVC scalable nesting SEI message. A sequence parameter set RBSP and a subset sequence parameter set RBSP
may have the same value of seq_parameter_set_id.

For the following specification, the activating view buffering period SEI message for a particular value of VOIdx is
specified as follows.

– If the access unit contains one or more than one buffering period SEI message included in an MVC scalable
nesting SEI message and associated with an operation point for which the greatest VOIdx in the associated
bitstream subset is equal to the particular value of VOIdx, the first of these buffering period SEI messages, in
decoding order, is the activating view buffering period SEI message for the particular value of VOIdx.

– Otherwise, if the access unit contains a buffering period SEI message not included in an MVC scalable nesting SEI
message, this buffering period SEI message is the activating view buffering period SEI message for the particular
value of VOIdx equal to VOIdxMin.

– Otherwise, the access unit does not contain an activating buffering period SEI message for the particular value of
VOIdx.

When a sequence parameter set RBSP (nal_unit_type is equal to 7) with a particular value of seq_parameter_set_id is
not already the active view MVC sequence parameter set RBSP for VOIdx equal to VOIdxMin and VOIdxMax is
greater than VOIdxMin and it is referred to by activation of a picture parameter set RBSP (using that value of
seq_parameter_set_id) and the picture parameter set RBSP is activated by a coded slice NAL unit with nal_unit_type
equal to 1 or 5 (the picture parameter set RBSP becomes the active view picture parameter set RBSP for VOIdx equal to
VOIdxMin), it is activated for view components with VOIdx equal to VOIdxMin. This sequence parameter set RBSP is
called the active view MVC sequence parameter set RBSP for VOIdx equal to VOIdxMin until it is deactivated when
another MVC sequence parameter set RBSP becomes the active view MVC sequence parameter set RBSP for VOIdx
equal to VOIdxMin or when decoding an access unit with VOIdxMax equal to VOIdxMin, whichever is earlier. A
sequence parameter set RBSP, with that particular value of seq_parameter_set_id, shall be available to the decoding
process prior to its activation.

When a sequence parameter set RBSP (nal_unit_type is equal to 7) with a particular value of seq_parameter_set_id is
not already the active view MVC sequence parameter set RBSP for VOIdx equal to VOIdxMin and VOIdxMax is
greater than VOIdxMin and it is referred to by an activating view buffering period SEI message (using that value of
seq_parameter_set_id) that is not included in an MVC scalable nesting SEI message, the sequence parameter set RBSP
is activated for view components with VOIdx equal to VOIdxMin. This sequence parameter set RBSP is called the
active view MVC sequence parameter set RBSP for VOIdx equal to VOIdxMin until it is deactivated when another
MVC sequence parameter set RBSP becomes the active view MVC sequence parameter set RBSP for VOIdx equal to
VOIdxMin or when decoding an access unit with VOIdxMax equal to VOIdxMin. A sequence parameter set RBSP,
with that particular value of seq_parameter_set_id, shall be available to the decoding process prior to its activation.

When a subset sequence parameter set RBSP (nal_unit_type is equal to 15) with a particular value of
seq_parameter_set_id is not already the active view MVC sequence parameter set RBSP for a particular value of VOIdx
less than VOIdxMax and it is referred to by activation of a picture parameter set RBSP (using that value of
seq_parameter_set_id) and the picture parameter set RBSP is activated by a coded slice MVC extension NAL unit
(nal_unit_type equal to 20) with the particular value of VOIdx (the picture parameter set RBSP becomes the active view
picture parameter set RBSP for the particular value of VOIdx), it is activated for view components with the particular
value of VOIdx. This subset sequence parameter set RBSP is called the active view MVC sequence parameter set RBSP
for the particular value of VOIdx until it is deactivated when another MVC sequence parameter set RBSP becomes the
active view MVC sequence parameter set RBSP for the particular value of VOIdx or when decoding an access unit with
VOIdxMax less than or equal to the particular value of VOIdx. A subset sequence parameter set RBSP, with that
particular value of seq_parameter_set_id, shall be available to the decoding process prior to its activation.

When a subset sequence parameter set RBSP (nal_unit_type is equal to 15) with a particular value of
seq_parameter_set_id is not already the active view MVC sequence parameter set RBSP for a particular value of VOIdx
less than VOIdxMax and it is referred to by an activating view buffering period SEI message (using that value of
seq_parameter_set_id) that is included in an MVC scalable nesting SEI message and associated with the particular
value of VOIdx, this subset sequence parameter set RBSP is activated for view components with the particular value of
VOIdx. This subset sequence parameter set RBSP is called the active view MVC sequence parameter set RBSP for the
particular value of VOIdx until it is deactivated when another MVC sequence parameter set RBSP becomes the active
view MVC sequence parameter set RBSP for the particular value of VOIdx or when decoding an access unit with
VOIdxMax less than or equal to the particular value of VOIdx. A subset sequence parameter set RBSP, with that
particular value of seq_parameter_set_id, shall be available to the decoding process prior to its activation.

 Rec. ITU-T H.264 (03/2009) 607

An MVC sequence parameter set RBSP that includes a value of profile_idc not specified in Annex A or Annex H shall
not be referred to by activation of a picture parameter set RBSP as the active picture parameter set RBSP or as active
view picture parameter set RBSP (using that value of seq_parameter_set_id) or referred to by a buffering period SEI
message (using that value of seq_parameter_set_id). An MVC sequence parameter set RBSP including a value of
profile_idc not specified in Annex A or Annex H is ignored in the decoding for profiles specified in Annex A or
Annex H.

It is a requirement of bitstream conformance that the following constraints are obeyed:

– For each particular value of VOIdx, all coded slice NAL units of a coded video sequence shall refer to the same
value of seq_parameter_set_id (via the picture parameter set RBSP that is referred to by the value of
pic_parameter_set_id).

– The value of seq_parameter_set_id in a buffering period SEI message that is not included in an MVC scalable
nesting SEI message shall be identical to the value of seq_parameter_set_id in the picture parameter set RBSP that
is referred to by coded slice NAL units (with nal_unit_type equal to 1 or 5) (via the value of pic_parameter_set_id)
in the same access unit.

– The value of seq_parameter_set_id in a buffering period SEI message that is included in an MVC scalable nesting
SEI message and is associated with a particular value of VOIdx shall be identical to the value of
seq_parameter_set_id in the picture parameter set RBSP that is referred to by coded slice NAL units with the
particular value of VOIdx (via the value of pic_parameter_set_id) in the same access unit.

The active view MVC sequence parameter set RBSPs for different values of VOIdx may be the same MVC sequence
parameter set RBSP. The active MVC sequence parameter set RBSP and an active view MVC sequence parameter set
RBSP for a particular value of VOIdx may be the same MVC sequence parameter set RBSP.

When the active MVC sequence parameter set RBSP for a coded picture is a sequence parameter set RBSP, any
sequence parameter set RBSP in the coded video sequence containing this coded picture and with the value of
seq_parameter_set_id for the active MVC sequence parameter set RBSP shall have the same content as that of the
active MVC sequence parameter set RBSP.

When the active MVC sequence parameter set RBSP for a coded picture is a subset sequence parameter set RBSP, any
subset sequence parameter set RBSP in the coded video sequence containing this coded picture and with the value of
seq_parameter_set_id for the active MVC sequence parameter set RBSP shall have the same content as that of the
active MVC sequence parameter set RBSP.

For each particular value of VOIdx, the following applies:

– When the active view MVC sequence parameter set RBSP for a coded picture is a sequence parameter set RBSP,
any sequence parameter set RBSP in the coded video sequence containing this coded picture and with the value of
seq_parameter_set_id for the active view MVC sequence parameter set RBSP shall have the same content as that
of the active view MVC sequence parameter set RBSP.

– When the active view MVC sequence parameter set RBSP for a coded picture is a subset sequence parameter set
RBSP, any subset sequence parameter set RBSP in the coded video sequence containing this coded picture and
with the value of seq_parameter_set_id for the active view MVC sequence parameter set RBSP shall have the
same content as that of the active view MVC sequence parameter set RBSP.

NOTE 3 – If picture parameter set RBSPs or MVC sequence parameter set RBSPs are conveyed within the bitstream, these
constraints impose an order constraint on the NAL units that contain the picture parameter set RBSPs or MVC sequence
parameter set RBSPs, respectively. Otherwise (picture parameter set RBSPs or MVC sequence parameter set RBSPs are
conveyed by other means not specified in this Recommendation | International Standard), they must be available to the decoding
process in a timely fashion such that these constraints are obeyed.

When present, a sequence parameter set extension RBSP includes parameters having a similar function to those of a
sequence parameter set RBSP. For purposes of establishing constraints on the syntax elements of the sequence
parameter set extension RBSP and for purposes of determining activation of a sequence parameter set extension RBSP,
the sequence parameter set extension RBSP shall be considered part of the preceding sequence parameter set RBSP
with the same value of seq_parameter_set_id. When a sequence parameter set RBSP is present that is not followed by a
sequence parameter set extension RBSP with the same value of seq_parameter_set_id prior to the activation of the
sequence parameter set RBSP, the sequence parameter set extension RBSP and its syntax elements shall be considered
not present for the active MVC sequence parameter set RBSP. The contents of sequence parameter set extension RBSPs
only apply when the base view, which conforms to one or more of the profiles specified in Annex A, of a coded video
sequence conforming to one or more profiles specified in Annex H is decoded. Subset sequence parameter set RBSPs
shall not be followed by a sequence parameter set extension RBSP.

NOTE 4 – Sequence parameter sets extension RBSPs are not considered to be part of a subset sequence parameter set RBSP and
subset sequence parameter set RBSPs must not be followed by a sequence parameter set extension RBSP.

608 Rec. ITU-T H.264 (03/2009)

For view components with VOIdx equal to VOIdxMax, all constraints that are expressed on the relationship between
the values of the syntax elements (and the values of variables derived from those syntax elements) in MVC sequence
parameter sets and picture parameter sets and other syntax elements are expressions of constraints that apply only to the
active MVC sequence parameter set and the active picture parameter set. For view components with a particular value
of VOIdx less than VOIdxMax, all constraints that are expressed on the relationship between the values of the syntax
elements (and the values of variables derived from those syntax elements) in MVC sequence parameter sets and picture
parameter sets and other syntax elements are expressions of constraints that apply only to the active view MVC
sequence parameter set and the active view picture parameter set for the particular value of VOIdx. If any MVC
sequence parameter set RBSP having profile_idc equal to the value of one of the profile_idc values specified in
Annex A or Annex H is present that is never activated in the bitstream (i.e., it never becomes the active MVC sequence
parameter set or an active view MVC sequence parameter set), its syntax elements shall have values that would conform
to the specified constraints if it were activated by reference in an otherwise-conforming bitstream. If any picture
parameter set RBSP is present that is never activated in the bitstream (i.e., it never becomes the active picture parameter
set or an active view picture parameter set), its syntax elements shall have values that would conform to the specified
constraints if it were activated by reference in an otherwise-conforming bitstream.

During operation of the decoding process (see subclause H.8), for view components with VOIdx equal to VOIdxMax,
the values of parameters of the active picture parameter set and the active MVC sequence parameter set shall be
considered in effect. For view components with a particular value of VOIdx less than VOIdxMax, the values of the
parameters of the active view picture parameter set and the active view MVC sequence parameter set for the particular
value of VOIdx shall be considered in effect. For interpretation of SEI messages that apply to the entire access unit or
the view component with VOIdx equal to VOIdxMax, the values of the parameters of the active picture parameter set
and the active MVC sequence parameter set for the same access unit shall be considered in effect unless otherwise
specified in the SEI message semantics. For interpretation of SEI messages that apply to view components with a
particular value of VOIdx less than VOIdxMax, the values of the parameters of the active view picture parameter set
and the active view MVC sequence parameter set for the particular value of VOIdx for the same access unit shall be
considered in effect unless otherwise specified in the SEI message semantics.

H.7.4.1.2.2 Order of access units and association to coded video sequences

The specification of subclause 7.4.1.2.2 applies with the following modifications.

The first access unit of the bitstream shall only contain coded slice NAL units with nal_unit_type equal to 5 or
non_idr_flag equal to 0.

The order of NAL units and coded pictures and their association to access units is described in subclause H.7.4.1.2.3.

H.7.4.1.2.3 Order of NAL units and coded pictures and association to access units

The specification of subclause 7.4.1.2.3 applies with the following modifications.

The association of VCL NAL units to primary or redundant coded pictures is specified in subclause H.7.4.1.2.5.

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in
subclause H.7.4.1.2.4.

The constraint expressed in subclause 7.4.1.2.3 on the order of a buffering period SEI message is replaced by the
following constraints.

– When an SEI NAL unit containing a buffering period SEI message is present, the following applies.

– If the buffering period SEI message is the only buffering period SEI message in the access unit and it is not
included in an MVC scalable nesting SEI message, the buffering period SEI message shall be the first SEI
message payload of the first SEI NAL unit in the access unit.

– Otherwise (the buffering period SEI message is not the only buffering period SEI message in the access unit
or it is included in an MVC scalable nesting SEI message), the following constraints are specified:

– When a buffering period SEI message that is not included in an MVC scalable nesting SEI message is
present, this buffering period SEI message shall be the only SEI message payload of the first SEI NAL
unit in the access unit.

– An MVC scalable nesting SEI message that includes a buffering period SEI message shall not include
any other SEI messages and shall be the only SEI message inside the SEI NAL unit.

– All SEI NAL units that precede an SEI NAL unit that contains an MVC scalable nesting SEI message
with a buffering period SEI message as payload in an access unit shall only contain buffering period SEI
messages or MVC scalable nesting SEI messages with a buffering period SEI message as payload.

 Rec. ITU-T H.264 (03/2009) 609

The following additional constraints shall be obeyed:

– Each NAL unit with nal_unit_type equal to 1 or 5 shall be immediately preceded by a prefix NAL unit.

– Each prefix NAL unit shall be immediately followed by a NAL unit with nal_unit_type equal to 1 or 5.

H.7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

This subclause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL
NAL unit of each primary coded picture.

The first VCL NAL unit of the primary coded picture of the current access unit, in decoding order, shall be different
from the last VCL NAL unit of the primary coded picture of the previous access unit, in decoding order, in one or more
of the following ways:

– view_id of the first VCL NAL unit of the primary coded picture of the current access unit is different from view_id
of the last VCL NAL unit of the primary coded picture of the previous access unit, and VOIdx of the first VCL
NAL unit of the primary coded picture of the current access unit is smaller than VOIdx of the last VCL NAL unit
of the primary coded picture of the previous access unit

– view_id of the first VCL NAL unit of the primary coded picture of the current access unit and the last VCL NAL
unit of the primary coded picture of the previous access unit is identical, and any of the conditions specified in
subclause 7.4.1.2.4 is fulfilled

H.7.4.1.2.5 Order of VCL NAL units and association to coded pictures

Each VCL NAL unit is part of a coded picture.

Let voIdx be the value of VOIdx of any particular VCL NAL unit. The order of the VCL NAL units within a coded
picture is constrained as follows:

– For all VCL NAL units following this particular VCL NAL unit, the value of VOIdx shall be greater than or equal
to voIdx.

For each set of VCL NAL units within a view component, the following applies.

– If arbitrary slice order, as specified in Annex A or subclause H.10, is allowed, coded slice NAL units of a view
component may have any order relative to each other.

– Otherwise (arbitrary slice order is not allowed), coded slice NAL units of a slice group shall not be interleaved
with coded slice NAL units of another slice group and the order of coded slice NAL units within a slice group shall
be in the order of increasing macroblock address for the first macroblock of each coded slice NAL unit of the same
slice group.

NAL units having nal_unit_type equal to 12 may be present in the access unit but shall not precede the first VCL NAL
unit of the primary coded picture within the access unit.

NAL units having nal_unit_type equal to 0 or in the range of 24 to 31, inclusive, which are unspecified, may be present
in the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal_unit_type in the range of 21 to 23, inclusive, which are reserved, shall not precede the first VCL
NAL unit of the primary coded picture within the access unit (when specified in the future by ITU-T | ISO/IEC).

H.7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics

H.7.4.2.1 Sequence parameter set RBSP semantics

The semantics specified in subclause 7.4.2.1 apply.

H.7.4.2.1.1 Sequence parameter set data semantics

For all syntax elements other than constraint_set4_flag and max_num_ref_frames, the semantics specified in
subclause 7.4.2.1.1 apply with the substitution of MVC sequence parameter set for sequence parameter set. All
constraints specified in subclause 7.4.2.1.1 apply only to the view components for which the MVC sequence parameter
set is the active MVC sequence parameter set or the active view MVC sequence parameter set as specified in
subclause H.7.4.1.2.1.

For each coded video sequence, the active MVC sequence parameter set and all active view MVC sequence parameter
sets (if any) shall have the same values of pic_width_in_mbs_minus1 and pic_height_in_map_units_minus1.

For the syntax elements constraint_set4_flag and max_num_ref_frames, the following applies.

610 Rec. ITU-T H.264 (03/2009)

constraint_set4_flag equal to 1 indicates that the coded video sequence obeys all constraints specified in
subclause H.10.1. constraint_set4_flag equal to 0 indicates that the coded video sequence may or may not obey all
constraints specified in subclause H.10.1.

If max_num_ref_frames is included in a sequence parameter set, the semantics specified in subclause 7.4.2.1.1 apply.
Otherwise (max_num_ref_frames is included in a subset sequence parameter set), the following is specified:

max_num_ref_frames specifies the maximum number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields that may be used by the decoding process for inter prediction of
any view component in the coded video sequence. max_num_ref_frames also determines the sliding window size of the
sliding window operation as specified in subclause H.8.3. The value of max_num_ref_frames shall be in the range of 0
to 16, inclusive.

H.7.4.2.1.1.1 Scaling list semantics

The semantics specified in subclause 7.4.2.1.1.1 apply.

H.7.4.2.1.2 Sequence parameter set extension RBSP semantics

The semantics specified in subclause 7.4.2.1.2 apply. Additionally, the following applies.

Sequence parameter set extension RBSPs can only follow sequence parameter set RBSPs in decoding order. Subset
sequence parameter set RBSPs shall not be followed by a sequence parameter set extension RBSP. The contents of
sequence parameter set extension RBSPs only apply when the base view, which conforms to one or more of the profiles
specified in Annex A, of a coded video sequence conforming to one or more profiles specified in Annex H is decoded.

H.7.4.2.1.3 Subset sequence parameter set RBSP semantics

The semantics specified in subclause 7.4.2.1.3 apply.

H.7.4.2.1.4 Sequence parameter set MVC extension semantics

The sequence parameter set MVC extension specifies inter-view dependency relationships for the coded video
sequence. The sequence parameter set MVC extension also specifies level values for a subset of the operation points for
the coded video sequence. All sequence parameter set MVC extensions that are referred to by a coded video sequence
shall be identical.

Some views identified by view_id[i] may be not present in the coded video sequence.

NOTE 1 – Some views or temporal subsets described by the sequence parameter set MVC extension may have been removed
from the original coded video sequence, hence may be not present in the coded video sequence. However, the information in the
sequence parameter set MVC extension always applies to the remaining views and temporal subsets.

num_views_minus1 plus 1 specifies the maximum number of coded views in the coded video sequence. The value of
num_view_minus1 shall be in the range of 0 to 1023, inclusive.

NOTE 2 – The actual number of views in the coded video sequence may be less than num_views_minus1 plus 1.

view_id[i] specifies the view_id of the view with VOIdx equal to i.

num_anchor_refs_l0[i] specifies the number of view components for inter-view prediction in the initialised
RefPicList0 in decoding anchor view components with VOIdx equal to i. The value of num_anchor_refs_l0[i] shall not
be greater than 15. The value of num_anchor_refs_l0[0] shall be equal to 0.

anchor_ref_l0[i][j] specifies the view_id of the j-th view component for inter-view prediction in the initialised
RefPicList0 in decoding anchor view components with VOIdx equal to i.

num_anchor_refs_l1[i] specifies the number of view components for inter-view prediction in the initialised
RefPicList1 in decoding anchor view components with VOIdx equal to i. The value of num_anchor_refs_l1[i] shall not
be greater than 15. The value of num_anchor_refs_l1[0] shall be equal to 0.

anchor_ref_l1[i][j] specifies the view_id of the j-th view component for inter-view prediction in the initialised
RefPicList1 in decoding an anchor view component with VOIdx equal to i.

num_non_anchor_refs_l0[i] specifies the number of view components for inter-view prediction in the initialised
RefPicList0 in decoding non-anchor view components with VOIdx equal to i. The value of
num_non_anchor_refs_l0[i] shall not be greater than 15. The value of num_non_anchor_refs_l0[0] shall be equal
to 0.

non_anchor_ref_l0[i][j] specifies the view_id of the j-th view component for inter-view prediction in the initialised
RefPicList0 in decoding non-anchor view components with VOIdx equal to i.

 Rec. ITU-T H.264 (03/2009) 611

num_non_anchor_refs_l1[i] specifies the number of view components for inter-view prediction in the initialised
RefPicList1 in decoding non-anchor view components with VOIdx equal to i. The value of
num_non_anchor_refs_l1[i] shall not be greater than 15. The value of num_non_anchor_refs_l1[0] shall be equal
to 0.

non_anchor_ref_l1[i][j] specifies the view_id of the j-th view component for inter-view prediction in the initialised
RefPicList1 in decoding non-anchor view components with VOIdx equal to i.

For any particular view with view_id equal to vId1 and VOIdx equal to vOIdx1 and another view with view_id equal to
vId2 and VOIdx equal to vOIdx2, when vId2 is equal to the value of one of non_anchor_ref_l0[vOIdx1][j] for all j in
the range of 0 to num_non_anchor_refs_l0[vOIdx1], exclusive, or one of non_anchor_ref_l1[vOIdx1][j] for all j in
the range of 0 to num_non_anchor_refs_l1[vOIdx1], exclusive, vId2 shall also be equal to the value of one of
anchor_ref_l0[vOIdx1][j] for all j in the range of 0 to num_anchor_refs_l0[vOIdx1], exclusive, or one of
anchor_ref_l1[vOIdx1][j] for all j in the range of 0 to num_anchor_refs_l1[vOIdx1], exclusive.

NOTE 3 – The inter-view dependency for non-anchor view components is a subset of that for anchor view components.

num_level_values_signalled_minus1 plus 1 specifies the number of level values signalled for the coded video
sequence. The value of num_level_values_signalled_minus1 shall be in the range of 0 to 63, inclusive.

level_idc[i] specifies the i-th level value signalled for the coded video sequence.

num_applicable_ops_minus1[i] plus 1 specifies the number of operation points to which the level indicated by
level_idc[i] applies. The value of num_applicable_ops_minus1[i] shall be in the range of 0 to 1023, inclusive.

applicable_op_temporal_id[i][j] specifies the temporal_id of the j-th operation point to which the the level indicated
by level_idc[i] applies.

applicable_op_num_target_views_minus1[i][j] plus 1 specifies the number of target output views for the j-th
operation point to which the level indicated by level_idc[i] applies. The value of
applicable_op_num_target_views_minus1[i][j] shall be in the range of 0 to 1023, inclusive.

applicable_op_target_view_id[i][j][k] specifies the k-th target output view for the j-th operation point to which the
the level indicated by level_idc[i] applies. The value of applicable_op_target_view_id[i][j][k] shall be in the range
of 0 to 1023, inclusive.

Let maxTId be the greatest temporal_id of all NAL units in the coded video sequence, and vId be view_id of any view
in the coded video sequence. There shall be one set of applicable_op_temporal_id[i][j],
applicable_op_num_target_views_minus1[i][j], and applicable_op_target_view_id[i][j][k], for any i and j and all
k for the i and j, in which applicable_op_temporal_id[i][j] is equal to maxTId,
applicable_op_num_target_views_minus1[i][j] is equal to 0, and applicable_op_target_view_id[i][j][k] is equal to
vId.

NOTE 4 – The above constraint ensures that the level that applies to each operation point consisting of only one target output
view with the greatest highest temporal_id in the coded video sequence is signalled by one of the level_idc[i] for all i.

NOTE 5 – Some operation points identified by applicable_op_temporal_id[i][j],
applicable_op_num_target_views_minus1[i][j], and applicable_op_target_view_id[i][j][k], for all i, j, and k, may be not
present in the coded video sequence.

applicable_op_num_views_minus1[i][j] plus 1 specifies the number of views required for decoding the target
output views corresponding to the j-th operation point to which the level indicated by level_idc[i] applies. The number
of views specified by applicable_op_num_views_minus1 includes the target output views and the views that the target
output views depend on as specified by the sub-bitstream extraction process in subclause H.8.5 with tIdTarget equal to
applicable_op_temporal_id[i][j] and viewIdTargetList equal to the list of applicable_op_target_view_id[i][j][k]
for all k in the range of 0 to applicable_op_num_target_views_minus1[i][j], inclusive, as inputs. The value of
applicable_op_num_views_minus1[i][j] shall be in the range of 0 to 1023, inclusive.

H.7.4.2.2 Picture parameter set RBSP semantics

The semantics specified in subclause 7.4.2.2 apply while substituting MVC sequence parameter set for sequence
parameter set. All constraints specified in subclause 7.4.2.2 apply only to the view components for which the picture
parameter set is the active picture parameter set or the active view picture parameter set as specified in
subclause H.7.4.1.2.1.

weighted_bipred_idc has the same semantics as specified in subclause 7.4.2.2 with the following modification.

When there is at least one inter-view prediction reference, which belongs to the same access unit as the current view
component, in RefPicList0 or RefPicList1, weighted_bipred_idc shall not be equal to 2.

612 Rec. ITU-T H.264 (03/2009)

H.7.4.2.3 Supplemental enhancement information RBSP semantics

The semantics specified in subclause 7.4.2.3 apply.

H.7.4.2.3.1 Supplemental enhancement information message semantics

The semantics specified in subclause 7.4.2.3.1 apply.

H.7.4.2.4 Access unit delimiter RBSP semantics

The semantics specified in subclause 7.4.2.4 apply.

H.7.4.2.5 End of sequence RBSP semantics

The semantics specified in subclause 7.4.2.5 apply.

H.7.4.2.6 End of stream RBSP semantics

The semantics specified in subclause 7.4.2.6 apply.

H.7.4.2.7 Filler data RBSP semantics

The semantics specified in subclause 7.4.2.7 apply with the following addition.

Filler data NAL units shall be considered to contain the syntax elements priority_id, view_id, and temporal_id with
values that are inferred as follows.

1. Let prevMvcNalUnit be the most recent NAL unit in decoding order that has nal_unit_type equal to 14 or 20.
NOTE – The most recent NAL unit in decoding order with nal_unit_type equal to 14 or 20 always belongs to the same
access unit as the filler data NAL unit.

2. The values of priority_id, view_id, and temporal_id for the filler data NAL unit are inferred to be equal to the
values of priority_id, view_id, and temporal_id, respectively, of the NAL unit prevMvcNalUnit.

H.7.4.2.8 Slice layer without partitioning RBSP semantics

The semantics specified in subclause 7.4.2.8 apply.

H.7.4.2.9 Slice data partition RBSP semantics

Slice data partition syntax is not present in bitstreams conforming to one or more of the profiles specified in Annex H.

H.7.4.2.10 RBSP slice trailing bits semantics

The semantics specified in subclause 7.4.2.10 apply with the following modifications.

Let NumBytesInVclNALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a view
component and let BinCountsInNALunits be the number of times that the parsing process function DecodeBin(),
specified in subclause 9.3.3.2, is invoked to decode the contents of all VCL NAL units of the view component. When
entropy_coding_mode_flag is equal to 1, BinCountsInNALunits shall not exceed (32 ÷ 3) * NumBytesInVclNALunits
+ (RawMbBits * PicSizeInMbs) ÷ 32.

NOTE – The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units of a
view component can be met by inserting a number of cabac_zero_word syntax elements to increase the value of
NumBytesInVclNALunits. Each cabac_zero_word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result
of the constraints on NAL unit contents that result in requiring inclusion of an emulation_prevention_three_byte for each
cabac_zero_word).

H.7.4.2.11 RBSP trailing bits semantics

The semantics specified in subclause 7.4.2.11 apply.

H.7.4.2.12 Prefix NAL unit RBSP semantics

The semantics specified in subclause 7.4.2.12 apply.

H.7.4.2.13 Slice layer extension RBSP semantics

The semantics specified in subclause 7.4.2.13 apply.

H.7.4.3 Slice header semantics

The semantics specified in subclause 7.4.3 apply with the following modifications.

 Rec. ITU-T H.264 (03/2009) 613

All constraints specified in subclause 7.4.3 apply only to the view components with the same value of VOIdx.

The value of the following MVC sequence parameter set syntax elements shall be the same across all coded slice NAL
units of an access unit: chroma_format_idc.

frame_num is used as an identifier for view components and is represented by log2_max_frame_num_minus4 + 4 bits
in the bitstream.

frame_num is constrained as specified in subclause 7.4.3 where this constraint applies to view components with
view_id equal to the current value of view_id.

direct_spatial_mv_pred_flag has the same semantics as specified in subclause 7.4.3 with the following modification.

When RefPicList1[0] points to an inter-view reference picture or an inter-view only reference component, which
belongs to the same access unit as the current view component, direct_spatial_mv_pred_flag shall be equal to 1.

num_ref_idx_l0_active_minus1 has the same semantics as specified in subclause 7.4.3 with the following
modification.

The range of num_ref_idx_l0_active_minus1 is specified as follows.

– If num_views_minus1 is equal to 1, the following applies.

– If field_pic_flag is equal to 0, num_ref_idx_l0_active_minus1 shall be in the range of 0 to 7, inclusive. When
MbaffFrameFlag is equal to 1, num_ref_idx_l0_active_minus1 is the maximum index value for the decoding
of frame macroblocks and 2 * num_ref_idx_l0_active_minus1 + 1 is the maximum index value for the
decoding of field macroblocks.

– Otherwise (field_pic_flag is equal to 1), num_ref_idx_l0_active_minus1 shall be in the range of 0 to 15,
inclusive.

– Otherwise (num_views_minus1 is greater than 1), the following applies.

– If field_pic_flag is equal to 0, num_ref_idx_l0_active_minus1 shall be in the range of 0 to 15, inclusive. When
MbaffFrameFlag is equal to 1, num_ref_idx_l0_active_minus1 is the maximum index value for the decoding
of frame macroblocks and 2 * num_ref_idx_l0_active_minus1 + 1 is the maximum index value for the
decoding of field macroblocks.

– Otherwise (field_pic_flag is equal to 1), num_ref_idx_l0_active_minus1 shall be in the range of 0 to 31,
inclusive.

num_ref_idx_l1_active_minus1 has the same semantics as specified in subclause 7.4.3 with the following
modification.

The range of num_ref_idx_l1_active_minus1 is constrained as specified in the semantics for
num_ref_idx_l0_active_minus1 in this subclause with l0 and list 0 replaced by l1 and list 1, respectively.

H.7.4.3.1 Reference picture list modification semantics

The semantics specified in subclause 7.4.3.1 apply.

H.7.4.3.1.1 Reference picture list MVC modification semantics

The semantics specified in subclause 7.4.3.1 apply with the following modified semantics of
modification_of_pic_nums_idc. In addition, the semantics of abs_diff_view_idx_minus1 specified below apply.

modification_of_pic_nums_idc together with abs_diff_pic_num_minus1, long_term_pic_num, or
abs_diff_view_idx_minus1 specifies which of the reference pictures or inter-view only reference components are
re-mapped. The values of modification_of_pic_nums_idc are specified in Table H-1. The value of the first
modification_of_pic_nums_idc that follows immediately after ref_pic_list_modification_flag_l0 or
ref_pic_list_modification_flag_l1 shall not be equal to 3.

614 Rec. ITU-T H.264 (03/2009)

Table H-1 – modification_of_pic_nums_idc operations for modification of reference picture lists

modification_of_pic_nums_idc Modification specified

0 abs_diff_pic_num_minus1 is present and corresponds to a difference to subtract from
a picture number prediction value

1 abs_diff_pic_num_minus1 is present and corresponds to a difference to add to a
picture number prediction value

2 long_term_pic_num is present and specifies the long-term picture number for a
reference picture

3 End loop for modification of the initial reference picture list

4 abs_diff_view_idx_minus1 is present and corresponds to a difference to subtract from
a prediction value of the inter-view reference index

5 abs_diff_view_idx_minus1 is present and corresponds to a difference to add to a
prediction value of the inter-view reference index

abs_diff_view_idx_minus1 plus 1 specifies the absolute difference between the inter-view reference index to put to the
current index in the reference picture list and the prediction value of the inter-view reference index.

Let currVOIdx be the VOIdx of the current view component, and let intViewIdx be the inter-view reference index of
the target inter-view prediction reference to put to the current index in RefPicListX (X is 0 or 1). Depending on whether
the current view component is an anchor view component, the following applies.

– If the current view component is an anchor view component, the view_id of the target inter-view prediction
reference is equal to anchor_ref_lX[currVOIdx][intViewIdx]. For anchor view components with VOIdx equal to
currVOIdx, abs_diff_view_idx_minus1 shall be in the range of 0 to max(0,
num_anchor_refs_lX[currVOIdx] − 1), inclusive.

– Otherwise (the current view component is not an anchor view component), the view_id of the target inter-view
prediction reference is equal to non_anchor_ref_lX[currVOIdx] [intViewIdx]. For non-anchor view components
with VOIdx equal to currVOIdx, abs_diff_view_idx_minus1 shall be in the range of 0 to max(0,
num_non_anchor_refs_lX[currVOIdx] − 1), inclusive.

The allowed values of abs_diff_view_idx_minus1 are further restricted as specified in subclause H.8.2.2.3.

H.7.4.3.2 Prediction weight table semantics

The semantics specified in subclause 7.4.3.2 apply.

H.7.4.3.3 Decoded reference picture marking semantics

The semantics specified in subclause 7.4.3.3 apply to each view independently, with "sequence parameter set" being
replaced by "MVC sequence parameter set", and "primary coded picture" being replaced by "primary view component".

H.7.4.4 Slice data semantics

The semantics specified in subclause 7.4.4 apply.

H.7.4.5 Macroblock layer semantics

The semantics specified in subclause 7.4.5 apply.

H.7.4.5.1 Macroblock prediction semantics

The semantics specified in subclause 7.4.5.1 apply.

H.7.4.5.2 Sub-macroblock prediction semantics

The semantics specified in subclause 7.4.5.2 apply.

H.7.4.5.3 Residual data semantics

The semantics specified in subclause 7.4.5.3 apply.

 Rec. ITU-T H.264 (03/2009) 615

H.7.4.5.3.1 Residual luma semantics

The semantics specified in subclause 7.4.5.3.1 apply.

H.7.4.5.3.2 Residual block CAVLC semantics

The semantics specified in subclause 7.4.5.3.2 apply.

H.7.4.5.3.3 Residual block CABAC semantics

The semantics specified in subclause 7.4.5.3.3 apply.

H.8 MVC decoding process

This subclause specifies the decoding process for an access unit of a coded video sequence conforming to one or more
of the profiles specified in Annex H. Specifically, this subclause specifies how the decoded picture with multiple view
components is derived from syntax elements and global variables that are derived from NAL units in an access unit
when the decoder is decoding the operation point identified by the target temporal level and the target output views.

The decoding process is specified such that all decoders shall produce numerically identical results for the target output
views. Any decoding process that produces identical results for the target output views to the process described here
conforms to the decoding process requirements of this Recommendation | International Standard.

Unless stated otherwise, the syntax elements and derived upper-case variables that are referred to by the decoding
process specified in this subclause and all child processes invoked from the process specified in this subclause are the
syntax elements and derived upper-case variables for the current access unit.

The target output views are either specified by external means not specified in this Specification, or, when not specified
by external means, there shall be one target output view which is the base view. Let OutputVOIdxList be the list of
VOIdx values, in increasing order of VOIdx, of all the target output views in one access unit. The list OutputVOIdxList
shall not change within a coded video sequence.

All sub-bitstreams that can be derived using the sub-bitstream extraction process with pIdTarget equal to any value in
the range of 0 to 63, inclusive, tIdTarget equal to any value in the range of 0 to 7, inclusive, viewIdTargetList consisting
of any one or more viewIdTarget's identifying the views in the bitstream as inputs as specified in subclause H.8.5 shall
result in a set of coded video sequences, with each coded video sequence conforming to one or more of the profiles
specified in Annex A and Annex H.

Let vOIdxList be a list of integer values specifying the VOIdx values of the view components of the access unit. The
variable VOIdxMax is set equal to the maximum value of the entries in the list vOIdxList, and the variable vOIdxMin is
set to the minimum value of the entries in the list vOIdxList. VOIdxMax shall be the same for all access units within a
coded video sequence. vOIdxMin shall be the same for all anchor access units within a coded video sequence. When the
current access unit is an anchor access unit, the variable VOIdxMin is set to vOIdxMin.

The multiview video decoding process specified in this subclause is repeatedly invoked for each view component with
VOIdx from vOIdxMin to VOIdxMax, inclusive, which is present in the list vOIdxList, in increasing order of VOIdx.

Outputs of the multiview video decoding process are decoded samples of the current primary coded picture including all
decoded view components.

The specifications in clause 8 apply, with the decoding processes for picture order count, reference picture lists
construction and decoded reference picture marking being modified in subclauses H.8.1, H.8.2 and H.8.3, respectively.
The MVC inter prediction and inter-view prediction process is specified in subclause H.8.4. Additionally, the
specification of bitstream subsets is specified in subclause H.8.5.

H.8.1 MVC decoding process for picture order count

The specifications in subclause 8.2.1 apply independently for each view.

H.8.2 MVC decoding process for reference picture lists construction

This process is invoked at the beginning of the decoding process for each P, SP or B slice.

Duing the invocation of this process, when subclauses 8.2.4.1 and 8.2.4.2 are invoked, only the reference pictures
having the same value of view_id as the current slice are considered.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified
in subclause H.8.3. Short-term reference pictures are identified by the values of frame_num and view_id, and, for
inter-view reference pictures, additionally by PicOrderCnt(). Long-term reference pictures are assigned a long-term
frame index as specified in subclause H.8.3 and identified by the values long-term frame index, view_id, and, for

616 Rec. ITU-T H.264 (03/2009)

inter-view reference pictures, additionally by PicOrderCnt().

In addition to reference pictures, inter-view only reference components (which are non-reference pictures and not
marked by the reference picture marking process) may also be included in a reference picture list. Inter-view only
reference components are identified by the value of view_id and by PicOrderCnt().

Subclause 8.2.4.1 is invoked to specify

– the assignment of variables FrameNum, FrameNumWrap, and PicNum to each of the short-term reference pictures,
and

– the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures and, when present, inter-view only reference components, are addressed through reference indices as
specified in subclause 8.2.4.1. A reference index is an index into a reference picture list. When decoding a P or SP slice,
there is a single reference picture list RefPicList0. When decoding a B slice, there is a second independent reference
picture list RefPicList1 in addition to RefPicList0.

At the beginning of the decoding process for each slice, reference picture list RefPicList0, and for B slices RefPicList1,
are derived as specified by the following ordered steps:

1. The initial reference picture list RefPicList0 and for B slices RefPicList1 are derived as specified in
subclause 8.2.4.2.

2. Inter-view reference pictures or inter-view only reference components are appended to the initial reference
picture list RefPicList0 and for B slices RefPicList1 as specified in subclause H.8.2.1.

3. When ref_pic_list_modification_flag_l0 is equal to 1 or, when decoding a B slice,
ref_pic_list_modification_flag_l1 is equal to 1, the reference picture list RefPicList0 and for B slices
RefPicList1 are modified as specified in subclause H.8.2.2.

NOTE – The modification process for reference picture lists specified in subclause H.8.2.2 allows the contents of
RefPicList0 and for B slices RefPicList1 to be modified in a flexible fashion. In particular, it is possible for a reference
picture that is currently marked "used for reference" to be inserted into RefPicList0 and for B slices RefPicList1 even
when the reference picture is not in the initial reference picture list derived as specified in subclauses 8.2.4.2 and
H.8.2.1.

The number of entries in the modified reference picture list RefPicList0 is num_ref_idx_l0_active_minus1 + 1, and for
B slices the number of entries in the modified reference picture list RefPicList1 is num_ref_idx_l1_active_minus1 + 1.
A reference picture or inter-view only reference component may appear at more than one index in the modified
reference picture lists RefPicList0 or RefPicList1.

During the invocation of the process specified in subclause H.8.2.1, an inter-view prediction reference appended to
RefPicListX (with X being 0 or 1) may not exist. However, an inter-view prediction reference that does not exist shall
not be in the modified RefPicListX after the invocation of the process specified in subclause H.8.2.2.

H.8.2.1 Initialisation process for reference picture list for inter-view prediction references

Inputs to this process are a reference picture list RefPicListX (with X being 0 or 1), inter_view_flag and view
dependency information that has been decoded from the seq_parameter_set_mvc_extension().

The output of this process is a possibly modified reference picture list RefPicListX, which is still referred to as the
initial reference picture list RefPicListX.

With i being the value of VOIdx for the current slice, inter-view reference pictures and inter-view only reference
components are appended to the reference picture list as specified in the following.

– If the current slice has anchor_pic_flag equal to 1, for each value of inter-view reference index j from 0 to
num_anchor_refs_lX[i] − 1, inclusive, in ascending order of j, the inter-view prediction reference with view_id
equal to anchor_ref_lX[i][j] from the same access unit as the current slice is appended to RefPicListX.

– Otherwise (the current slice has anchor_pic_flag equal to 0), for each value of inter-view reference index j from 0
to num_non_anchor_refs_lX[i] − 1, inclusive, in ascending order of j, the inter-view prediction reference with
view_id equal to non_anchor_ref_lX[i][j] from the same access unit as the current slice is appended to
RefPicListX.

H.8.2.2 Modification process for reference picture lists

Input to this process is reference picture list RefPicList0 and, when decoding a B slice, also reference picture list
RefPicList1.

Outputs of this process are a possibly modified reference picture list RefPicList0 and, when decoding a B slice, also a

 Rec. ITU-T H.264 (03/2009) 617

possibly modified reference picture list RefPicList1.

When ref_pic_list_modification_flag_l0 is equal to 1, the following ordered steps are specified:

1. Let refIdxL0 be an index into the reference picture list RefPicList0. It is initially set equal to 0.

2. The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

– If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in subclause H.8.2.2.1 is
invoked with RefPicList0 and refIdxL0 given as input, and the output is assigned to RefPicList0 and
refIdxL0.

– Otherwise, if modification_of_pic_nums_idc is equal to 2, the process specified in subclause H.8.2.2.2 is
invoked with RefPicList0 and refIdxL0 given as input, and the output is assigned to RefPicList0 and
refIdxL0.

– Otherwise, if modification_of_pic_nums_idc is equal to 4 or equal to 5, the process specified in
subclause H.8.2.2.3 is invoked with RefPicList0 and refIdxL0 given as input, and the output is assigned to
RefPicList0 and refIdxL0.

– Otherwise (modification_of_pic_nums_idc is equal to 3), the modification process for reference picture list
RefPicList0 is finished.

When ref_pic_list_modification_flag_l1 is equal to 1, the following ordered steps are specified:

1. Let refIdxL1 be an index into the reference picture list RefPicList1. It is initially set equal to 0.

2. The corresponding syntax elements modification_of_pic_nums_idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

– If modification_of_pic_nums_idc is equal to 0 or equal to 1, the process specified in subclause H.8.2.2.1 is
invoked with RefPicList1 and refIdxL1 given as input, and the output is assigned to RefPicList1 and
refIdxL1.

– Otherwise, if modification_of_pic_nums_idc is equal to 2, the process specified in subclause H.8.2.2.2 is
invoked with RefPicList1 and refIdxL1 given as input, and the output is assigned to RefPicList1 and
refIdxL1.

– Otherwise, if modification_of_pic_nums_idc is equal to 4 or equal to 5, the process specified in
subclause H.8.2.2.3 is invoked with RefPicList1 and refIdxL1 given as input, and the output is assigned to
RefPicList1 and refIdxL1.

– Otherwise (modification_of_pic_nums_idc is equal to 3), the modification process for reference picture list
RefPicList1 is finished.

H.8.2.2.1 Modification process of reference picture lists for short-term reference pictures for inter prediction

Inputs to this process are an index refIdxLX and a reference picture list RefPicListX (with X being 0 or 1).

Outputs of this process are an incremented index refIdxLX and a modified reference picture list RefPicListX.

The variable picNumLXNoWrap is derived as follows.

– If modification_of_pic_nums_idc is equal to 0,

if(picNumLXPred − (abs_diff_pic_num_minus1 + 1) < 0)
 picNumLXNoWrap = picNumLXPred − (abs_diff_pic_num_minus1 + 1) + MaxPicNum (H-1)
else
 picNumLXNoWrap = picNumLXPred − (abs_diff_pic_num_minus1 + 1)

– Otherwise (modification_of_pic_nums_idc is equal to 1),

if(picNumLXPred + (abs_diff_pic_num_minus1 + 1) >= MaxPicNum)
 picNumLXNoWrap = picNumLXPred + (abs_diff_pic_num_minus1 + 1) − MaxPicNum (H-2)
else
 picNumLXNoWrap = picNumLXPred + (abs_diff_pic_num_minus1 + 1)

picNumLXPred is the prediction value for the variable picNumLXNoWrap. When the process specified in this
subclause is invoked the first time for a slice (that is, for the first occurrence of modification_of_pic_nums_idc equal
to 0 or 1 in the ref_pic_list_modification() syntax), picNumL0Pred and picNumL1Pred are initially set equal to
CurrPicNum. After each assignment of picNumLXNoWrap, the value of picNumLXNoWrap is assigned to

618 Rec. ITU-T H.264 (03/2009)

picNumLXPred.

The variable picNumLX is derived as specified by the following pseudo-code:

if(picNumLXNoWrap > CurrPicNum)
 picNumLX = picNumLXNoWrap − MaxPicNum (H-3)
else
 picNumLX = picNumLXNoWrap

picNumLX shall be equal to the PicNum of a reference picture that is marked as "used for short-term reference" and
shall not be equal to the PicNum of a short-term reference picture that is marked as "non-existing".

The following procedure is conducted to place the picture with short-term picture number picNumLX into the index
position refIdxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refIdxLX:

for(cIdx = num_ref_idx_lX_active_minus1 + 1; cIdx > refIdxLX; cIdx− −)
 RefPicListX[cIdx] = RefPicListX[cIdx − 1]
RefPicListX[refIdxLX++] = short-term reference picture with PicNum equal to picNumLX
nIdx = refIdxLX
for(cIdx = refIdxLX; cIdx <= num_ref_idx_lX_active_minus1 + 1; cIdx++) (H-4)
 if(PicNumF(RefPicListX[cIdx]) != picNumLX | | viewID(RefPicListX[cIdx]) != currViewID)
 RefPicListX[nIdx++] = RefPicListX[cIdx]

In the above, the function viewID(refpic) returns the view_id of the reference picture refpic, the variable currViewID is
equal to the view_id of the current slice, and the function PicNumF(RefPicListX[cIdx]) is derived as follows.

– If the reference picture RefPicListX[cIdx] is marked as "used for short-term reference",
PicNumF(RefPicListX[cIdx]) is the PicNum of the picture RefPicListX[cIdx].

– Otherwise (the reference picture RefPicListX[cIdx] is not marked as "used for short-term reference"),
PicNumF(RefPicListX[cIdx]) is equal to MaxPicNum.

NOTE 1 – The value of picNumLX can never be equal to MaxPicNum.

NOTE 2 – Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than
the length needed for the final list. After the execution of this procedure, only elements 0 through
num_ref_idx_lX_active_minus1 of the list need to be retained.

H.8.2.2.2 Modification process of reference picture lists for long-term reference pictures for inter prediction

Inputs to this process are an index refIdxLX (with X being 0 or 1) and reference picture list RefPicListX.

Outputs of this process are an incremented index refIdxLX and a modified reference picture list RefPicListX.

The following procedure is conducted to place the picture with long-term picture number long_term_pic_num into the
index position refIdxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refIdxLX:

for(cIdx = num_ref_idx_lX_active_minus1 + 1; cIdx > refIdxLX; cIdx− −)
 RefPicListX[cIdx] = RefPicListX[cIdx − 1]
RefPicListX[refIdxLX++] = long-term reference picture with LongTermPicNum equal to long_term_pic_num
nIdx = refIdxLX
for(cIdx = refIdxLX; cIdx <= num_ref_idx_lX_active_minus1 + 1; cIdx++) (H-5)
 if(LongTermPicNumF(RefPicListX[cIdx]) != long_term_pic_num | |
 viewID(RefPicListX[cIdx]) != currViewID)
 RefPicListX[nIdx++] = RefPicListX[cIdx]

In the above, the function viewID(refpic) returns the view_id of the reference picture refpic, the variable currViewID is
equal to the view_id of the current slice, and the function LongTermPicNumF(RefPicListX[cIdx]) is derived as
follows.

– If the reference picture RefPicListX[cIdx] is marked as "used for long-term reference",
LongTermPicNumF(RefPicListX[cIdx]) is the LongTermPicNum of the picture RefPicListX[cIdx].

– Otherwise (the reference picture RefPicListX[cIdx] is not marked as "used for long-term reference"),
LongTermPicNumF(RefPicListX[cIdx]) is equal to 2 * (MaxLongTermFrameIdx + 1).

NOTE 1 – The value of long_term_pic_num can never be equal to 2 * (MaxLongTermFrameIdx + 1).

 Rec. ITU-T H.264 (03/2009) 619

NOTE 2 – Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than
the length needed for the final list. After the execution of this procedure, only elements 0 through
num_ref_idx_lX_active_minus1 of the list need to be retained.

H.8.2.2.3 Modification process for reference picture lists for inter-view prediction references

Inputs to this process are reference picture list RefPicListX (with X being 0 or 1) and an index refIdxLX into this list.

Outputs of this process are a modified reference picture list RefPicListX (with X being 0 or 1) and an incremented
index refIdxLX.

Let currVOIdx be the variable VOIdx of the current slice. The variable maxViewIdx is derived as follows.

– If the current slice has anchor_pic_flag equal to 1, maxViewIdx is set equal to num_anchor_refs_lX[currVOIdx].

– Otherwise (the current slice has anchor_pic_flag equal to 0), maxViewIdx is set equal to
num_non_anchor_refs_lX[currVOIdx].

The variable picViewIdxLX is derived as follows.

– If modification_of_pic_nums_idc is equal to 4,

if(picViewIdxLXPred − (abs_diff_view_idx_minus1 + 1) < 0)
picViewIdxLX = picViewIdxLXPred − (abs_diff_view_idx_minus1 + 1) + maxViewIdx (H-6)

else
picViewIdxLX = picViewIdxLXPred − (abs_diff_view_idx_minus1 + 1)

– Otherwise (modification_of_pic_nums_idc is equal to 5),

if(picViewIdxLXPred + (abs_diff_view_idx_minus1 + 1) >= maxViewIdx)
picViewIdxLX = picViewIdxLXPred + (abs_diff_view_idx_minus1 + 1) − maxViewIdx (H-7)

else
picViewIdxLX = picViewIdxLXPred + (abs_diff_view_idx_minus1 + 1)

picViewIdxLXPred is the prediction value for the variable picViewIdxLX. When the process specified in this
subclause is invoked the first time for a slice (that is, for the first occurrence of modification_of_pic_nums_idc equal
to 4 or 5 in the ref_pic_list_modification() syntax), picViewIdxL0Pred and picViewIdxL1Pred are initially set equal
to −1. After each assignment of picViewIdxLX, the value of picViewIdxLX is assigned to picViewIdxLXPred.

The bitstream shall not contain data that result in picViewIdxLX less than 0 or picViewIdxLX greater than
maxViewIdx.

The variable targetViewID is derived as follows.

– If the current slice has anchor_pic_flag equal to 1,

targetViewID = anchor_refs_lX[currVOIdx][picViewIdxLX] (H-8)

– Otherwise (the current slice has anchor_pic_flag equal to 0),

targetViewID = non_anchor_refs_lX[currVOIdx][picViewIdxLX] (H-9)

The following procedure is conducted to place the inter-view prediction reference with inter-view reference index equal
to picViewIdxLX into the index position refIdxLX and shift the position of any other remaining pictures to later in the
list:

for(cIdx = num_ref_idx_lX_active_minus1 + 1; cIdx > refIdxLX; cIdx− −)
 RefPicListX[cIdx] = RefPicListX[cIdx − 1]
RefPicListX[refIdxLX++] = inter-view prediction reference with view_id equal to targetViewID
nIdx = refIdxLX
for(cIdx = refIdxLX; cIdx <= num_ref_idx_lX_active_minus1 + 1; cIdx++) (H-10)
 if(viewID(RefPicListX[cIdx]) != targetViewID | | PictureOrderCnt(RefPicListX[cIdx]) != currPOC)
 RefPicListX[nIdx++] = RefPicListX[cIdx]

In the above, the function viewID(refpic) returns the view_id of the reference picture refpic, the variable currViewID is
equal to the view_id of the current slice, and the variable currPOC is equal to PicOrderCnt() of the current slice.

H.8.3 MVC decoded reference picture marking process

The specifications in subclause 8.2.5 apply independently for each view, with "picture" being replaced by "view
component", "frame" being replaced by "frame view component", and "field" being replaced by "field view
component".

620 Rec. ITU-T H.264 (03/2009)

H.8.4 MVC inter prediction and inter-view prediction process

For both inter-prediction and inter-view prediction, the specifications in subclause 8.4 apply.

H.8.5 Specification of bitstream subsets

Subclauses H.8.5.1 and H.8.5.2 specify the processes for deriving required anchor and non-anchor view components,
respectively, that are used in the sub-bitstream extraction process. Subclause H.8.5.3 specifies the sub-bitstream
extraction process. Subclause H.8.5.4 specifies the base view bitstream subset. Subclause H.8.5.5 gives an informative
example for creation of a base view in case the orignal base view in the input bitstream to the bitstream extraction
process is not included in the output bitstream subset.

H.8.5.1 Derivation process for required anchor view components

This process is recursively invoked to derive the set of required anchor view components for a specified view. The
view_id's of all views for which the anchor view components are required for the specified view are marked as
"required for anchor" and their corresponding VOIdx values are included in VOIdxList.

Input to this process is a variable viewId, representing a view with view_id equal to viewId, with its corresponding view
order index denoted by vOIdx.

Outputs of this process are the view_id equal to viewId being marked as "required for anchor", a possibly updated
VOIdxList, and additional invocations of the derivation process based on the inter-view dependency for anchor view
components in the view with view_id equal to viewId as specified in the sequence parameter set MVC extension.

The following ordered steps are specified:

1. Mark the view_id equal to viewId as "required for anchor" and add vOIdx to VOIdxList if the same value is
not already included in VOIdxList.

2. Depending on num_anchor_refs_l0[vOIdx] and num_anchor_refs_l1[vOIdx], the following applies.

– If both num_anchor_refs_l0[vOIdx] and num_anchor_refs_l1[vOIdx] are equal to 0, terminate this
process.

– Otherwise (num_anchor_refs_l0[vOIdx] or num_anchor_refs_l1[vOIdx] is not equal to 0), the
following ordered steps are specified:

a. When num_anchor_refs_l0[vOIdx] is not equal to 0, invoke the process specified in
subclause H.8.5.1 for each viewId equal to anchor_ref_l0[vOIdx][i] for all i in the range of 0 to
num_anchor_refs_l0[vOIdx] − 1, inclusive, in ascending order of i.

b. When num_anchor_refs_l1[vOIdx] is not equal to 0, invoke the process specified in
subclause H.8.5.1 for each viewId equal to anchor_ref_l1[vOIdx][i] for all i in the range of 0 to
num_anchor_refs_l1[vOIdx] − 1, inclusive, in ascending order of i.

H.8.5.2 Derivation process for required non-anchor view components

This process is recursively invoked to derive the set of required non-anchor view components for a specified view. The
view_id's of all views for which the non-anchor view components are required for the specified view are marked as
"required for non-anchor".

Input to this process is a variable viewId, representing a view with view_id equal to viewId, with its corresponding view
order index denoted by vOIdx.

Outputs of this process are the view_id equal to viewId being marked as "required for non-anchor" and additional
invocations of the derivation process based on the inter-view dependency for non-anchor view components in the view
with view_id equal to viewId as specified in the sequence parameter set MVC extension.

The following ordered steps are specified:

1. Mark the view_id equal to viewId as "required for non-anchor".

2. Depending on num_non_anchor_refs_l0[vOIdx] and num_non_anchor_refs_l1[vOIdx], the following
applies.

– If both num_non_anchor_refs_l0[vOIdx] and num_non_anchor_refs_l1[vOIdx] are equal to 0,
terminate this process.

 Rec. ITU-T H.264 (03/2009) 621

– Otherwise (num_non_anchor_refs_l0[vOIdx] or num_non_anchor_l1[vOIdx] is not equal to 0), the
following ordered steps are specified:

a. When num_non_anchor_refs_l0[vOIdx] is not equal to 0, invoke the process specified in
subclause H.8.5.2 for each viewId equal to non_anchor_ref_l0[vOIdx][i] for all i in the range of 0
to num_non_anchor_l0[vOIdx] − 1, inclusive, in ascending order of i.

b. When num_non_anchor_refs_l1[vOIdx] is not equal to 0, invoke the process specified in
subclause H.8.5.2 for each viewId equal to non_anchor_ref_l1[vOIdx][i] for all i in the range of 0
to num_non_anchor_l1[vOIdx] − 1, inclusive, in ascending order of i.

H.8.5.3 Sub-bitstream extraction process

It is requirement of bitstream conformance that any sub-bitstream that is the output of the process specified in this
subclause with pIdTarget equal to any value in the range of 0 to 63, inclusive, tIdTarget equal to any value in the range
of 0 to 7, inclusive, viewIdTargetList consisting of any one or more viewIdTargets identifying the views in the
bitstream, shall be conforming to this Recommendation | International Standard.

NOTE 1 – A conforming bitstream contains one or more coded slice NAL units with priority_id equal to 0 and temporal_id equal
to 0.
NOTE 2 – It is possible that not all operation points of sub-bitstreams resulting from the sub-bitstream extraction process have an
applicable level_idc or level_idc[i]. In this case, each coded video sequence in a sub-bitstream must still conform to one or more
of the profiles specified in Annex A and Annex H, but may not satisfy the level constraints specified in subclauses A.3 and
H.10.2, respectively.

Inputs to this process are

– a variable pIdTarget (when present),

– a variable tIdTarget (when present),

– a list viewIdTargetList consisting of one or more viewIdTargets (when present).

Outputs of this process are a sub-bitstream and a list of VOIdx values VOIdxList.

When pIdTarget is not present as input to this subclause, pIdTarget is inferred to be equal to 63.

When tIdTarget is not present as input to this subclause, tIdTarget is inferred to be equal to 7.

When viewIdTargetList is not present as input to this subclause, there shall be one viewIdTarget inferred in
viewIdTargetList and the value of viewIdTarget is inferred to be equal to view_id of the base view.

The sub-bitstream is derived by applying the following operations in sequential order:

1. Let VOIdxList be empty and minVOIdx be the VOIdx value of the base view.

2. For each viewIdTarget included in viewIdTargetList, invoke the process specified in subclause H.8.5.1 with
the viewIdTarget as input.

3. For each viewIdTarget included in viewIdTargetList, invoke the process specified in subclause H.8.5.2 with
the viewIdTarget as input.

4. Mark all VCL NAL units and filler data NAL units for which any of the following conditions is true as "to be
removed from the bitstream":

– priority_id is greater than pIdTarget,

– temporal_id is greater than tIdTarget,

– anchor_pic_flag is equal to 1 and view_id is not marked as "required for anchor",

– anchor_pic_flag is equal to 0 and view_id is not marked as "required for non-anchor",

– nal_ref_idc is equal to 0 and inter_view_flag is equal to 0 and view_id is not equal to any value in the list
OutputVOIdxList.

5. Remove all access units for which all VCL NAL units are marked as "to be removed from the bitstream".

6. Remove all VCL NAL units and filler data NAL units that are marked as "to be removed from the bitstream".

7. When VOIdxList contains only one value of VOIdx that is equal to minVOIdx, remove the following NAL
units:

– all NAL units with nal_unit_type equal to 14 or 15,

622 Rec. ITU-T H.264 (03/2009)

– all NAL units with nal_unit_type equal to 6 in which the first SEI message has payloadType in the range
of 36 to 44, inclusive.

NOTE 3 – When VOIdxList contains only one value of VOIdx equal to minVOIdx, the sub-bitstream contains only the
base view or only a temporal subset of the base view.

8. Let maxTId be the maximum temporal_id of all the remaining VCL NAL units. Remove all NAL units with
nal_unit_type equal to 6 that only contain SEI messages that are part of an MVC scalable nesting SEI message
with any of the following properties:

– operation_point_flag is equal to 0 and all_view_components_in_au_flag is equal to 0 and none of
sei_view_id[i] for all i in the range of 0 to num_view_components_minus1, inclusive, corresponds to a
VOIdx value included in VOIdxList,

– operation_point_flag is equal to 1 and either sei_op_temporal_id is greater than maxTId or the list of
sei_op_view_id[i] for all i in the range of 0 to num_view_components_op_minus1, inclusive, is not a
subset of viewIdTargetList (i.e., it is not sure that sei_op_view_id[i] for any i in the range of 0 to
num_view_components_op_minus1, inclusive, is equal to a value in viewIdTargetList).

9. Remove each view scalability information SEI message and each operation point not present SEI message,
when present.

10. When VOIdxList does not contain a value of VOIdx equal to minVOIdx, the view with VOIdx equal to the
minimum VOIdx value included in VOIdxList is converted to the base view of the extracted sub-bitstream. An
informative procedure that outlines key processing steps to create a base view is described in
subclause H.8.5.5.

NOTE 4 – When VOIdxList does not contain a value of VOIdx equal to minVOIdx, the resulting sub-bitstream
according to the operation steps 1-9 above does not contain a base view that conforms to one or more profiles
specified in Annex A. In this case, by this operation step, the remaining view with the new minimum VOIdx value is
converted to be the new base view that conforms to one or more profiles specified in Annex A.

H.8.5.4 Specification of the base view bitstream

A bitstream that conforms to one or more profiles as specified in Annex H shall contain a base view bitstream that
conforms to one or more of the profiles specified in Annex A. This base view bitstream is derived by invoking the
sub-bitstream extraction process as specified in subclause H.8.5.3 with no input and the base view bitstream being the
output.

H.8.5.5 Creation of a base view during sub-bitstream extraction (informative)

According to the sub-bitstream extraction process specified in subclause H.8.5.3, the resulting sub-bitstream shall
contain a base view. When the resulting bitstream does not contain a base view, the following procedure may be used to
create a base view during sub-bitstream extraction.

When VOIdxList does not contain a value of VOIdx equal to minVOIdx, let newBaseViewId be equal to the view_id
for which the VOIdx value is equal to the minimum VOIdx value included in VOIdxList, and apply the following
operations in sequential order:

1. Remove all NAL units with nal_unit_type equal to 7.

2. For all subset sequence parameter set NAL units (with nal_unit_type equal to 15) that are referred to by at
least one remaining VCL NAL unit with view_id equal to newBaseViewId, apply the following operations in
sequential order:

a. Set nal_unit_type to 7.

b. Set profile_idc to 100.

c. Set level_idc to level_idc[i], with i equal to the value that for one value of j in the range of 0 to
num_applicable_ops_minus1[i], inclusive, applicable_op_temporal_id[i][j] is equal to maxTId,
applicable_op_num_target_views_minus1[i][j] is equal to 0, and
applicable_op_target_view_id[i][j][k] for k equal to 0 is equal to newBaseViewId.

d. Remove all the syntax elements after the syntax structure seq_parameter_set_data() and before the
syntax structure rbsp_trailing_bits(), and change RBSP trailing bits appropriately.

3. Remove all SEI NAL units (with nal_unit_type equal to 6) for which the first contained SEI message has
payloadType in the range of 0 to 23, inclusive.

 Rec. ITU-T H.264 (03/2009) 623

4. For each SEI NAL unit (with nal_unit_type equal to 6) containing an MVC scalable nesting SEI message, the
following operations are applied in sequential order:

a. When none of the following properties is true for the MVC scalable nesting SEI message, the SEI NAL
unit is removed:

– operation_point_flag is equal to 0 and all_view_components_in_au_flag is equal to 1,

– operation_point_flag is equal to 0, all_view_components_in_au_flag is equal to 0, and at least one of
the values of sei_view_id[i] for all i in the range of 0 to num_view_components_minus1, inclusive,
is equal to the value of one of the viewIdTarget's in viewIdTargetList,

– operation_point_flag is equal to 1, sei_op_temporal_id is equal to or less than maxtIdT, and the list
of sei_op_view_id[i] for all i in the range of 0 to num_view_components_op_minus1, inclusive, is
a subset of viewIdTargetList (i.e., it is true that sei_op_view_id[i] for any i in the range of 0 to
num_view_components_op_minus1, inclusive, is equal to a value in viewIdTargetList).

b. When the SEI NAL unit is not removed, the following applies.

– If VOIdxList contains only one VOIdx value, the SEI NAL unit is replaced by an SEI NAL unit
containing only the original nested SEI message not as part of an MVC scalable nesting SEI
message.

– Otherwise (VOIdxList contains more than one VOIdx value), when any of the following properties
is true for the MVC scalable nesting SEI message, a new SEI NAL unit containing only the nested
SEI message not as part of an MVC scalable nesting SEI message is generated and inserted
immediately before the original SEI NAL unit in decoding order:

– operation_point_flag is equal to 0 and all_view_components_in_au_flag is equal to 1,

– operation_point_flag is equal to 0, all_view_components_in_au_flag is equal to 0, and for the
values of sei_view_id[i] for all i in the range of 0 to num_view_components_minus1,
inclusive, one is equal to newBaseViewId, and at least another one is equal to the value of one
of the viewIdTarget's in viewIdTargetList.

5. When VOIdxList contains only one value of VOIdx, remove the following NAL units:

– all NAL units with nal_unit_type equal to 15,

– all NAL units with nal_unit_type equal to 6 in which the first SEI message has payloadType in the range
of 36 to 44, inclusive.

6. For each NAL unit nalUnit with nal_unit_type equal to 20 and view_id equal to newBaseViewId, the
following operations are applied in sequential order:

a. Depending on non_idr_flag, the following applies.

– If non_idr_flag is equal to 0, set nal_unit_type equal to 5.

– Otherwise (non_idr_flag is equal to 1), set nal_unit_type equal to 1.

b. When VOIdxList contains more than one VOIdx value, generate a prefix NAL unit with the same NAL
unit header (including NAL unit header MVC extension) as the NAL unit nalUnit, except that
nal_unit_type is set to 14 and priority_id may be changed, and insert the prefix NAL unit immediately
before the NAL unit nalUnit in decoding order. After the last application of this operation, at least one of
all the inserted prefix NAL units by the applications of this operation shall have priority_id equal to 0.

c. Remove the NAL unit header MVC extension of nalUnit.

H.9 Parsing process

The specifications in clause 9 apply.

H.10 Profiles and levels

The specifications in Annex A apply. An additional profile and a specific value of profile_idc are specified in the
following.

The profile that is specified in subclause H.10.1 is also referred to as the profile specified in Annex H.

624 Rec. ITU-T H.264 (03/2009)

H.10.1 Multiview High profile

All constraints for picture parameter sets that are specified in the following are constraints for picture parameter sets
that become the active picture parameter set or an active view picture parameter set inside the bitstream. All constraints
for MVC sequence parameter sets that are specified in the following are constraints for MVC sequence parameter sets
that become the active MVC sequence parameter set or an active view MVC sequence parameter set inside the
bitstream.

Bitstreams conforming to the Multiview High profile shall obey the following constraints:
– The base view bitstream as specified in subclause H.8.5.4 shall obey all the constraints of the High profile

specified in subclause A.2.4.
– Only I, P, and B slice types may be present.
– NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
– MVC sequence parameter sets shall have frame_mbs_only_flag equal to 1.
– Arbitrary slice order is not allowed.
– Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.
– Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.
– MVC sequence parameter sets shall have chroma_format_idc in the range of 0 to 1 inclusive.
– MVC sequence parameter sets shall have bit_depth_luma_minus8 equal to 0 only.
– MVC sequence parameter sets shall have bit_depth_chroma_minus8 equal to 0 only.
– MVC sequence parameter sets shall have qpprime_y_zero_transform_bypass_flag equal to 0 only.
– The level constraints specified for the Multiview High profile in subclause H.10.2 shall be fulfilled.

Conformance of a bitstream to the Multiview High profile is specified by profile_idc being equal to 118.

Decoders conforming to the Multiview High profile at a specific level shall be capable of decoding all bitstreams in
which both of the following conditions are true:
a) All active MVC sequence parameter sets have any of the following:

– profile_idc equal to 118,
– profile_idc equal to 100 or 77 and constraint_set4_flag is equal to 1,
– profile_idc equal to 88 and constraint_set1_flag equal to 1 and constraint_set4_flag is equal to 1,
– profile_idc equal to 66 and constraint_set1_flag equal to 1.

b) All active MVC sequence parameter sets have any of the following.
– level_idc or (level_idc and constraint_set3_flag) represent a level less than or equal to the specific level,
– level_idc[i] or (level_idc[i] and constraint_set3_flag) represent a level less than or equal to the specific

level.
NOTE – When profile_idc is equal to 100, 77 or 88 and constraint_set4_flag is equal to 1, the bitstream conforms to the High
profile and additionally conforms to the constraints specified for the Multiview High profile specified in this subclause. For
example, such a bitstream must have frame_mbs_only_flag equal to 1.

H.10.2 Levels

The following is specified for expressing the constraints in this subclause:

– Let access unit n be the n-th access unit in decoding order with the first access unit being access unit 0.

– Let picture n be the primary coded picture or the corresponding decoded picture of access unit n.

Let the variable fR be derived as follows.

– If picture n is a frame, fR is set equal to 1 ÷ 172.

– Otherwise (picture n is a field), fR is set equal to 1 ÷ (172 * 2).

The value of mvcScaleFactor is set equal to 2.

The value of NumViews is set equal to applicable_op_num_views_minus1[i][j]] plus 1, which indicates the number
of views required for decoding the target output views corresponding to the j-th operation point for level_idc[i] as
signalled in the subset sequence parameter set.

 Rec. ITU-T H.264 (03/2009) 625

Bitstreams conforming to the Multiview High profile at a specified level shall obey the following constraints:

a) The nominal removal time of access unit n (with n > 0) from the CPB as specified in subclause C.1.2, satisfies
the constraint that tr,n(n) − tr(n − 1) is greater than or equal
to Max(NumViews * PicSizeInMbs ÷ (mvcScaleFactor * MaxMBPS), fR), where MaxMBPS is the value
specified in Table A-1 that applies to picture n − 1, and PicSizeInMbs is the number of macroblocks in a single
view component of picture n − 1.

b) The difference between consecutive output times of pictures from the DPB as specified in subclause C.2.2,
satisfies the constraint that Δto,dpb(n) >= Max(NumViews * PicSizeInMbs ÷ (mvcScaleFactor * MaxMBPS),
fR), where MaxMBPS is the value specified in Table A-1 for picture n, and PicSizeInMbs is the number of
macroblocks of a single view component of picture n, provided that picture n is a picture that is output and is
not the last picture of the bitstream that is output.

c) PicWidthInMbs * FrameHeightInMbs <= MaxFS, where MaxFS is specified in Table A-1.

d) PicWidthInMbs <= Sqrt(MaxFS * 8), where MaxFS is specified in Table A-1.

e) FrameHeightInMbs <= Sqrt(MaxFS * 8), where MaxFS is specified in Table A-1.

f) max_dec_frame_buffering <= MaxDpbFrames, where MaxDpbFrames is equal to
Min(mvcScaleFactor * MaxDpbMbs / (PicWidthInMbs * FrameHeightInMbs),
Max(1, Ceil(log2(NumViews))) * 16) and MaxDpbMbs is specified in Table A-1.

g) Vertical motion vector component range does not exceed MaxVmvR in units of luma frame samples, where
MaxVmvR is specified in Table A-1.

h) Horizontal motion vector range does not exceed the range of −2048 to 2047.75, inclusive, in units of luma
samples.

i) Let setOf2Mb be the set of unsorted pairs of macroblocks that contains the unsorted pairs of macroblocks
(mbA, mbB) of a coded video sequence for which any of the following conditions is true:

– mbA and mbB are macroblocks that belong to the same slice and are consecutive in decoding order,

– separate_colour_plane_flag is equal to 0, mbA is the last macroblock (in decoding order) of a slice, and
mbB is the first macroblock (in decoding order) of the next slice in decoding order,

– separate_colour_plane_flag is equal to 1, mbA is the last macroblock (in decoding order) of a slice with a
particular value of colour_plane_id, and mbB is the first macroblock (in decoding order) of the next slice
with the same value of colour_plane_id in decoding order.

NOTE 1 – In the two above conditions, the macroblocks mbA and mbB can belong to different pictures.

For each unsorted pair of macroblocks (mbA, mbB) of the set setOf2Mb, the total number of motion vectors
(given by the sum of the number of motion vectors for macroblock mbA and the number of motion vectors for
macroblock mbB) does not exceed MaxMvsPer2Mb, where MaxMvsPer2Mb is specified in Table A-1. The
number of motion vectors for each macroblock is the value of the variable MvCnt after the completion of the
intra or inter prediction process for the macroblock.

NOTE 2 – When separate_colour_plane_flag is equal to 0, the constraint specifies that the total number of
motion vectors for two consecutive macroblocks in decoding order must not exceed MaxMvsPer2Mb. When
separate_colour_plane_flag is equal to 1, the constraint specifies that the total number of motion vectors for
two consecutive macroblocks with the same value of colour_plane_id in decoding order must not exceed
MaxMvsPer2Mb. For macroblocks that are consecutive in decoding order but are associated with a different
value of colour_plane_id, no constraint for the total number of motion vectors is specified.

j) Number of bits of macroblock_layer() data for any macroblock is not greater than 128 + RawMbBits.
Depending on entropy_coding_mode_flag, the bits of macroblock_layer() data are counted as follows.

– If entropy_coding_mode_flag is equal to 0, the number of bits of macroblock_layer() data is given by
the number of bits in the macroblock_layer() syntax structure for a macroblock.

– Otherwise (entropy_coding_mode_flag is equal to 1), the number of bits of macroblock_layer() data for
a macroblock is given by the number of times read_bits(1) is called in subclauses 9.3.3.2.2 and 9.3.3.2.3
when parsing the macroblock_layer() associated with the macroblock.

k) In bitstreams conforming to the Multiview High profile, the removal time of access unit 0 shall satisfy the
constraint that the number of slices in picture 0 is less than or equal to mvcScaleFactor *
(Max(PicSizeInMbs, fR * MaxMBPS) + MaxMBPS * (tr(0) − tr,n(0))) ÷ SliceRate, where MaxMBPS

626 Rec. ITU-T H.264 (03/2009)

and SliceRate are the values specified in Tables A-1 and A-4, respectively, that apply to picture 0 and
PicSizeInMbs is the number of macroblocks in a single view component of picture 0.

l) In bitstreams conforming to the Multiview High profile, the removal time of access unit 0 shall satisfy the
constraint that the number of slices in each view component of picture 0 is less than or equal to
(Max(PicSizeInMbs, fR * MaxMBPS) + MaxMBPS * (tr(0) − tr,n(0))) ÷ SliceRate, where MaxMBPS
and SliceRate are the values specified in Tables A-1 and A-4, respectively, that apply to picture 0 and
PicSizeInMbs is the number of macroblocks in a single view component of picture 0.

m) In bitstreams conforming to the Multiview High profile, the difference between consecutive removal time of
access units n and n − 1 with n > 0 shall satisfy the constraint that the number of slices in picture n is less than
or equal to mvcScaleFactor * MaxMBPS * (tr(n) − tr(n − 1)) ÷ SliceRate, where SliceRate is the value
specified in Table A-4 that applies to picture n.

n) In bitstreams conforming to the Multiview High profile, the difference between consecutive removal time of
access units n and n − 1 with n > 0 shall satisfy the constraint that the number of slices in each view component
of picture n is less than or equal to MaxMBPS * (tr(n) − tr(n − 1)) ÷ SliceRate, where SliceRate is the value
specified in Table A-4 that applies to picture n.

o) In bitstreams conforming to the Multiview High profile, MVC sequence parameter sets shall have
direct_8x8_inference_flag equal to 1 for the levels specified in Table A-4.

p) In bitstreams conforming to the Multiview High profile, MVC sequence parameter sets shall have
frame_mbs_only_flag equal to 1 for all levels.

q) In bitstreams conforming to the Multiview High profile, the value of sub_mb_type[mbPartIdx] with
mbPartIdx = 0..3 in B macroblocks with mb_type equal to B_8x8 shall not be equal to B_Bi_8x4, B_Bi_4x8,
or B_Bi_4x4 for the levels in which MinLumaBiPredSize is shown as 8x8 in Table A-4.

r) In bitstreams conforming to the Multiview High profile, for the VCL HRD parameters,
BitRate[SchedSelIdx] <= cpbBrVclFactor * MaxBR and CpbSize[SchedSelIdx] <= cpbBrVclFactor *
MaxCPB for at least one value of SchedSelIdx, where cpbBrVclFactor is equal to 1250. With
vui_mvc_vcl_hrd_parameters_present_flag[i] being the syntax element, in the MVC VUI parameters
extension of the active MVC sequence parameter set, that is associated with the VCL HRD parameters that are
used for conformance checking (as specified in Annex C), BitRate[SchedSelIdx] and CpbSize[SchedSelIdx]
are given as follows.
– If vui_mvc_vcl_hrd_parameters_present_flag equal to 1, BitRate[SchedSelIdx] and

CpbSize[SchedSelIdx] are given by Equations E-37 and E-38, respectively, using the syntax elements
of the hrd_parameters() syntax structure that immediately follows
vui_mvc_vcl_hrd_parameters_present_flag.

– Otherwise (vui_mvc_vcl_hrd_parameters_present_flag equal to 0), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.2 for VCL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of cpbBrVclFactor bits/s and cpbBrVclFactor bits,
respectively. The bitstream shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to
cpb_cnt_minus1, inclusive.

s) In bitstreams conforming to the Multiview High profile, for the NAL HRD parameters,
BitRate[SchedSelIdx] <= cpbBrNalFactor * MaxBR and CpbSize[SchedSelIdx] <= cpbBrNalFactor *
MaxCPB for at least one value of SchedSelIdx, where cpbBrNalFactor is equal to 1500. With
vui_mvc_nal_hrd_parameters_present_flag[i] being the syntax element, in the MVC VUI parameters
extension of the active MVC sequence parameter set, that is associated with the NAL HRD parameters that are
used for conformance checking (as specified in Annex C), BitRate[SchedSelIdx] and CpbSize[SchedSelIdx]
are given as follows.
– If vui_mvc_nal_hrd_parameters_present_flag equal to 1, BitRate[SchedSelIdx] and

CpbSize[SchedSelIdx] are given by Equations E-37 and E-38, respectively, using the syntax elements
of the hrd_parameters() syntax structure that immediately follows
vui_mvc_nal_hrd_parameters_present_flag.

– Otherwise (vui_mvc_nal_hrd_parameters_present_flag equal to 0), BitRate[SchedSelIdx] and
CpbSize[SchedSelIdx] are inferred as specified in subclause E.2.2 for NAL HRD parameters.

MaxBR and MaxCPB are specified in Table A-1 in units of cpbBrNalFactor bits/s and cpbBrNalFactor bits,
respectively. The bitstream shall satisfy these conditions for at least one value of SchedSelIdx in the range 0 to
cpb_cnt_minus1, inclusive.

 Rec. ITU-T H.264 (03/2009) 627

t) In bitstreams conforming to the Multiview High profile, the sum of the NumBytesInNALunit variables for
access unit 0 is less than or equal to 384 * mvcScaleFactor * (Max(PicSizeInMbs, fR * MaxMBPS) +
MaxMBPS * (tr(0) − tr,n(0))) ÷ MinCR, where MaxMBPS and MinCR are the values specified in
Table A-1 that apply to picture 0 and PicSizeInMbs is the number of macroblocks in a single view component
of picture 0.

u) In bitstreams conforming to the Multiview High profile, the sum of the NumBytesInNALunit variables for
each view component of access unit 0 is less than or equal to 384 * (Max(PicSizeInMbs, fR * MaxMBPS) +
MaxMBPS * (tr(0) − tr,n(0))) ÷ MinCR, where MaxMBPS and MinCR are the values specified in
Table A-1 that apply to picture 0 and PicSizeInMbs is the number of macroblocks in a single view component
of picture 0.

v) In bitstreams conforming to the Multiview High profile, the sum of the NumBytesInNALunit variables for
access unit n with n > 0 is less than or equal to 384 * mvcScaleFactor * MaxMBPS * (tr(n) − tr(n − 1)) ÷
MinCR, where MaxMBPS and MinCR are the values specified in Table A-1 that apply to picture n.

w) In bitstreams conforming to the Multiview High profile, the sum of the NumBytesInNALunit variables for
each view component of access unit n with n > 0 is less than or equal to
384 * MaxMBPS * (tr(n) − tr(n − 1)) ÷ MinCR, where MaxMBPS and MinCR are the values specified in
Table A-1 that apply to picture n.

x) In bitstreams conforming to the Multiview High profile, when PicSizeInMbs is greater than 1620, the number
of macroblocks in any coded slice shall not exceed MaxFS / 4, where MaxFS is specified in Table A-1.

y) In bitstreams conforming to the Multiview High profile, max_num_ref_frames shall be less than or equal to
MaxDpbFrames / mvcScaleFactor for each view component, where MaxDpbFrames is specified in item f).

Table A-1 specifies the limits for each level. Entries marked "-" in Table A-1 denote the absence of a corresponding
limit.

Table A-4 specifies limits for each level that are specific to bitstreams conforming to the Multiview High profile.
Entries marked "-" in Table A-4 denote the absence of a corresponding limit.

For coded video sequences conforming to the Multiview High profile, the level_idc value is specified as follows.

– If level_idc is not equal to 0, level_idc indicates the level that applies to the coded video sequence operating with
all the views being target output views.

NOTE 3 – A level_idc value that is not equal to zero may indicate a higher level than necessary to decode the coded video
sequence operating with all the views being target output views. This may occur when a subset of views or temporal
subsets are removed from a coded video sequence according to the sub-bitstream extraction process specified in H.8.5.3,
and the level_idc value is not updated accordingly.

– Otherwise (level_idc is equal to 0), the level that applies to the coded video sequence operating with all the views
being target output views is unspecified.

NOTE 4 – When profile_idc is equal to 118 and level_idc is equal to 0, there may exist a level indicated by level_idc[i]
that is applicable to the coded video sequence operating with all the views being target output views. This may occur when
a subset of views or temporal subsets are removed from a coded video sequence according to the sub-bitstream extraction
process specified in H.8.5.3, and a particular value of level_idc[i] corresponds to the resulting coded video sequence.

A level to which the bitstream conforms shall be indicated by the syntax element level_idc or level_idc[i] as follows.

– If level_idc or level_idc[i] is equal to 9, the indicated level is level 1b.

– Otherwise (level_idc or level_idc[i] is not equal to 9), the indicated level number is equal to level_idc or
level_idc[i] divided by 10.

H.11 Byte stream format

The specifications in Annex B apply.

H.12 MVC hypothetical reference decoder

The specifications in Annex C apply with substituting MVC sequence parameter set for sequence parameter set.

H.13 MVC SEI messages

The specifications in Annex D together with the extensions and modifications specified in this subclause apply.

628 Rec. ITU-T H.264 (03/2009)

H.13.1 SEI message syntax

H.13.1.1 Parallel decoding information SEI message syntax

parallel_decoding_info(payloadSize) { C Descriptor
 seq_parameter_set_id 5 ue(v)
 for(i = 1; i <= num_views_minus1; i++) {
 if(anchor_pic_flag) {
 for(j = 0; j <= num_anchor_refs_l0[i]; j++)
 pdi_init_delay_anchor_minus2_l0[i][j] 5 ue(v)
 for(j = 0; j <= num_anchor_refs_l1[i]; j++)
 pdi_init_delay_anchor_minus2_l1[i][j] 5 ue(v)
 }
 else {
 for(j = 0; j <= num_non_anchor_refs_l0[i]; j++)
 pdi_init_delay_non_anchor_minus2_l0[i][j] 5 ue(v)
 for(j = 0; j <= num_non_anchor_refs_l1[i]; j++)
 pdi_init_delay_non_anchor_minus2_l1[i][j] 5 ue(v)
 }
 }
}

H.13.1.2 MVC scalable nesting SEI message syntax

mvc_scalable_nesting(payloadSize) { C Descriptor
 operation_point_flag 5 u(1)
 if (!operation_point_flag) {
 all_view_components_in_au_flag 5 u(1)
 if(!all_view_components_in_au_flag) {
 num_view_components_minus1 5 ue(v)
 for(i = 0; i <= num_view_components_minus1; i++)
 sei_view_id[i] 5 u(10)
 }
 } else {
 num_view_components_op_minus1 5 ue(v)
 for(i = 0; i <= num_view_components_op_minus1; i++)
 sei_op_view_id[i] 5 u(10)
 sei_op_temporal_id 5 u(3)
 }
 while(!byte_aligned())
 sei_nesting_zero_bit /* equal to 0 */ 5 f(1)
 sei_message() 5
}

 Rec. ITU-T H.264 (03/2009) 629

H.13.1.3 View scalability information SEI message syntax

view_scalability_info(payloadSize) { C Descriptor
 num_operation_points_minus1 5 ue(v)
 for(i = 0; i <= num_operation_points_minus1; i++) {
 operation_point_id[i] 5 ue(v)
 priority_id[i] 5 u(5)
 temporal_id[i] 5 u(3)
 num_target_output_views_minus1[i] 5 ue(v)
 for(j = 0; j <= num_target_output_views_minus1[i]; j++)
 view_id[i][j] 5 ue(v)
 profile_level_info_present_flag[i] 5 u(1)
 bitrate_info_present_flag[i] 5 u(1)
 frm_rate_info_present_flag[i] 5 u(1)
 if(!num_target_output_views_minus1[i])
 view_dependency_info_present_flag[i] 5 u(1)
 parameter_sets_info_present_flag[i] 5 u(1)
 bitstream_restriction_info_present_flag[i] 5 u(1)
 if (profile_level_info_present_flag[i])
 op_profile_level_idc[i] 5 u(24)
 if(bitrate_info_present_flag[i]) {
 avg_bitrate[i] 5 u(16)
 max_bitrate[i] 5 u(16)
 max_bitrate_calc_window[i] 5 u(16)
 }
 if(frm_rate_info_present_flag[i]) {
 constant_frm_rate_idc[i] 5 u(2)
 avg_frm_rate[i] 5 u(16)
 }
 if(view_dependency_info_present_flag[i]) {
 num_directly_dependent_views[i] 5 ue(v)
 for(j = 0; j < num_directly_dependent_views[i]; j++) {
 directly_dependent_view_id[i][j] 5 ue(v)
 } else
 view_dependency_info_src_op_id[i] 5 ue(v)
 if(parameter_sets_info_present_flag[i]) {
 num_seq_parameter_set_minus1[i] 5 ue(v)
 for(j = 0; j <= num_seq_parameter_set_minus1[i]; j++)
 seq_parameter_set_id_delta[i][j] 5 ue(v)
 num_subset_seq_parameter_set_minus1[i] 5 ue(v)
 for(j = 0; j <= num_subset_seq_parameter_set_minus1[i]; j++)
 subset_seq_parameter_set_id_delta[i][j] 5 ue(v)
 num_pic_parameter_set_minus1[i] 5 ue(v)
 for(j = 0; j <= num_init_pic_parameter_set_minus1[i]; j++)
 pic_parameter_set_id_delta[i][j] 5 ue(v)
 } else
 parameter_sets_info_src_op_id[i] 5 ue(v)

630 Rec. ITU-T H.264 (03/2009)

 if(bitstream_restriction_info_present_flag[i]) {
 motion_vectors_over_pic_boundaries_flag[i] 5 u(1)
 max_bytes_per_pic_denom[i] 5 ue(v)
 max_bits_per_mb_denom[i] 5 ue(v)
 log2_max_mv_length_horizontal[i] 5 ue(v)
 log2_max_mv_length_vertical[i] 5 ue(v)
 num_reorder_frames[i] 5 ue(v)
 max_dec_frame_buffering[i] 5 ue(v)
 }
 }
}

H.13.1.4 Multiview scene information SEI message syntax

multiview_scene_info(payloadSize) { C Descriptor
 max_disparity 5 ue(v)
}

H.13.1.5 Multiview acquisition information SEI message syntax

multiview_acquisition_info(payloadSize) { C Descriptor
 num_views_minus1 ue(v)
 intrinsic_param_flag 5 u(1)
 extrinsic_param_flag 5 u(1)
 if (instrinsic_param_flag) {
 intrinsic_params_equal 5 u(1)
 prec_focal_length 5 ue(v)
 prec_principal_point 5 ue(v)
 prec_skew_factor 5 ue(v)
 if(intrinsic_params_equal)
 num_of_param_sets = 1
 else
 num_of_param_sets = num_views_minus1 + 1
 for(i = 0; i < num_of_param_sets; i++) {
 sign_focal_length_x[i] 5 u(1)
 exponent_focal_length_x[i] 5 u(6)
 mantissa_focal_length_x[i] 5 u(v)
 sign_focal_length_y[i] 5 u(1)
 exponent_focal_length_y[i] 5 u(6)
 mantissa_focal_length_y[i] 5 u(v)
 sign_principal_point_x[i] 5 u(1)
 exponent_principal_point_x[i] 5 u(6)
 mantissa_principal_point_x[i] 5 u(v)
 sign_principal_point_y[i] 5 u(1)
 exponent_principal_point_y[i] 5 u(6)
 mantissa_principal_point_y[i] 5 u(v)

 Rec. ITU-T H.264 (03/2009) 631

 sign_skew_factor[i] 5 u(1)
 exponent_skew_factor[i] 5 u(6)
 mantissa_skew_factor[i] 5 u(v)
 }
 }
 if(extrinsic_param_flag) {
 prec_rotation_param 5 ue(v)
 prec_translation_param 5 ue(v)
 for(i = 0; i <= num_views_minus1; i++) {
 for (j = 1; j <= 3; j++) { /* row */
 for (k = 1; k <= 3; k++) { /* column */
 sign_r[i][j][k] 5 u(1)
 exponent_r[i][j][k] 5 u(6)
 mantissa_r[i][j][k] 5 u(v)
 }
 sign_t[i][j] 5 u(1)
 exponent_t[i][j] 5 u(6)
 mantissa_t[i][j] 5 u(v)
 }
 }
 }
}

H.13.1.6 Non-required view component SEI message syntax

non_required_view_component(payloadSize) { C Descriptor
 num_info_entries_minus1 5 ue(v)
 for(i = 0; i <= num_info_entries_minus1; i++) {
 view_order_index[i] 5 ue(v)
 num_non_required_view_components_minus1[i] 5 ue(v)
 for(j = 0; j <= num_non_required_view_components_minus1[i]; j++)
 index_delta_minus1[i][j] 5 ue(v)
 }
}

632 Rec. ITU-T H.264 (03/2009)

H.13.1.7 View dependency change SEI message syntax

view_dependency_change(payloadSize) { C Descriptor
 seq_parameter_set_id 5 ue(v)
 anchor_update_flag 5 u(1)
 non_anchor_update_flag 5 u(1)
 if(anchor_update_flag)
 for(i = 1; i <= num_views_minus1; i++) {
 for(j = 0; j < num_anchor_refs_l0[i]; j++)
 anchor_ref_l0_flag[i][j] 5 u(1)
 for(j = 0; j < num_anchor_refs_l1[i]; j++)
 anchor_ref_l1_flag[i][j] 5 u(1)
 }
 if(non_anchor_update_flag)
 for(i = 1; i <= num_views_minus1; i++) {
 for(j = 0; j < num_non_anchor_refs_l0[i]; j++)
 non_anchor_ref_l0_flag[i][j] 5 u(1)
 for(j = 0; j < num_non_anchor_refs_l1[i]; j++)
 non_anchor_ref_l1_flag[i][j] 5 u(1)
 }
}

H.13.1.8 Operation point not present SEI message syntax

operation_point_not_present(payloadSize) { C Descriptor
 num_operation_points 5 ue(v)
 for(k = 0; k < num_operation_points; k++)
 operation_point_not_present_id[k] 5 ue(v)
}

 Rec. ITU-T H.264 (03/2009) 633

H.13.1.9 Base view temporal HRD SEI message syntax

base_view_temporal_hrd (payloadSize) { C Descriptor
 num_of_temporal_layers_in_base_view_minus1 5 ue(v)
 for(i = 0; i < num_of_temporal_layers_in_base_view_minus1; i++) {

 sei_mvc_temporal_id[i] 5 u(3)
 sei_mvc_timing_info_present_flag[i] 5 u(1)
 if(sei_mvc_timing_info_present_flag[i]) {
 sei_mvc_num_units_in_tick[i] 5 u(32)
 sei_mvc_time_scale[i] 5 u(32)
 sei_mvc_fixed_frame_rate_flag[i] 5 u(1)
 }
 sei_mvc_nal_hrd_parameters_present_flag[i] 5 u(1)
 if(sei_mvc_nal_hrd_parameters_present_flag[i])
 hrd_parameters() 5
 sei_mvc_vcl_hrd_parameters_present_flag[i] 5 u(1)
 if(sei_mvc_vcl_hrd_parameters_present_flag[i])
 hrd_parameters() 5
 if(sei_mvc_nal_hrd_parameters_present_flag[i] | |
 sei_mvc_vcl_hrd_parameters_present_flag[i])

 sei_mvc_low_delay_hrd_flag[i] 5 u(1)
 sei_mvc_pic_struct_present_flag[i] 5 u(1)
 }
}

H.13.2 SEI message semantics

Depending on payloadType, the corresponding SEI message semantics are extended as follows.

– If payloadType is equal to 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 or 23, the following
applies.

– If the SEI message is not included in an MVC scalable nesting SEI message, it applies to the view component
of the current access unit with VOIdx equal to VOIdxMin.

– Otherwise (the SEI message is included in an MVC scalable nesting SEI message), it applies to all view
components of the current access unit when all_view_components_in_au_flag is equal to 1, or it applies to all
view components of the current access unit with view_id equal to sei_view_id[i] for any i in the range of 0 to
num_view_components_minus1, inclusive, when all_view_components_in_au_flag is equal to 0. When
payloadType is equal to 10 for the SEI message that is included in an MVC scalable nesting SEI message, the
semantics for sub_seq_layer_num of the sub-sequence information SEI message is modified as follows:

sub_seq_layer_num specifies the sub-sequence layer number of the current picture. When the current
picture resides in a sub-sequence whose first picture in decoding order is an IDR picture, the value of
sub_seq_layer_num shall be equal to 0. For a non-paired reference field, the value of sub_seq_layer_num
shall be equal to 0. sub_seq_layer_num shall be in the range of 0 to 255, inclusive.

– Otherwise, if payloadType is equal to 0 or 1, the following applies.

– If the SEI message is not included in an MVC scalable nesting SEI message, the following applies. When the
SEI message and all other SEI messages with payloadType equal to 0 or 1 not included in an MVC scalable
nesting SEI message are used as the buffering period and picture timing SEI messages for checking the
bitstream conformance according to Annex C and the decoding process specified in clauses 2-9 is used, the
bitstream shall be conforming to this Recommendation | International Standard.

– Otherwise (the SEI message is included in an MVC scalable nesting SEI message), the following applies.
When the SEI message and all other SEI messages with payloadType equal to 0 or 1 included in an MVC
scalable nesting SEI message with identical values of sei_op_temporal_id and sei_op_view_id[i] for all i in

634 Rec. ITU-T H.264 (03/2009)

the range of 0 to num_view_components_op_minus1, inclusive, are used as the buffering period and picture
timing SEI messages for checking the bitstream conformance according to Annex C, the bitstream that would
be obtained by invoking the bitstream extraction process as specified in subclause H.8.3 with tIdTarget equal
to sei_op_temporal_id and viewIdTargetList equal to sei_op_view_id[i] for all i in the range of 0 to
num_view_components_op_minus1, inclusive, shall be conforming to this Recommendation |
International Standard.

In the semantics of subclauses D.2.1 and D.2.2, the syntax elements num_units_in_tick, time_scale,
fixed_frame_rate_flag, nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag,
low_delay_hrd_flag, and pic_struct_present_flag and the derived variables NalHrdBpPresentFlag,
VclHrdBpPresentFlag, and CpbDpbDelaysPresentFlag are substituted with the syntax elements
vui_mvc_num_units_in_tick[i], vui_mvc_time_scale[i], vui_mvc_fixed_frame_rate_flag[i],
vui_mvc_nal_hrd_parameters_present_flag[i], vui_mvc_vcl_hrd_parameters_present_flag[i],
vui_mvc_low_delay_hrd_flag[i], and vui_mvc_pic_struct_present_flag[i] and the derived variables
VuiMvcNalHrdBpPresentFlag[i], VuiMvcVclHrdBpPresentFlag[i], and
VuiMvcCpbDpbDelaysPresentFlag[i].

The values of seq_parameter_set_id's in all buffering period SEI messages included in MVC scalable nesting
SEI messages and associated with operation points for which the greatest VOIdx values in the associated
bitstream subsets are identical shall be identical.

– Otherwise (all remaining payloadType values), the corresponding SEI message semantics are not extended.

For the semantics of SEI messages with payloadType in the range of 0 to 23, inclusive, which are specified in
subclause D.2, MVC sequence parameter set is substituted for sequence parameter set; the parameters of MVC
sequence parameter set RBSP and picture parameter set RBSP that are in effect are specified in subclauses H.7.4.2.1
and H.7.4.2.2, respectively.

Coded video sequences conforming to one or more of the profiles specified in Annex H shall not include SEI NAL units
that contain SEI messages with payloadType in the range of 24 to 35, inclusive.

When an SEI NAL unit contains an SEI message with payloadType in the range of 36 to 44, inclusive, it shall not
contain any SEI messages with payloadType less than 36 and the first SEI message in the SEI NAL unit shall have
payloadType in the range of 36 to 44, inclusive.

When an MVC scalable nesting SEI message (payloadType equal to 37) or a view scalability information SEI message
(payloadType equal to 38) or an operation point not present SEI message (payloadType equal to 43) is present in an SEI
NAL unit, it shall be the only SEI message in the SEI NAL unit.

H.13.2.1 Parallel decoding information SEI message semantics

The parallel decoding information SEI message may be associated with any access unit. The information signalled in
the SEI message applies to all the access units from the access unit the SEI message is associated with to the next access
unit, in decoding order, containing an SEI message of the same type, exclusively, or to the end of the coded video
sequence, whichever is earlier in decoding order.

Some view components for which the parallel decoding information is signalled in a parallel decoding information SEI
message may be not present in the coded video sequence.

seq_parameter_set_id specifies a subset sequence parameter set that contains the inter-view dependency relationship
information. The value of seq_parameter_set_id shall be equal to the value of seq_parameter_set_id in the picture
parameter set referenced by a view component of the primary coded picture of the access unit containing the parallel
decoding information SEI message. The value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

NOTE 1 – The inter-view dependency relationship is signalled in the sequence parameter set MVC extension, which is identical
for all subset sequence parameter sets that may be activated during the decoding process for the coded video sequence.

pdi_init_delay_anchor_minus2_l0[i][j] specifies the unavailable reference area in the view component with
view_id equal to anchor_ref_l0[i][j] that shall not be used for inter-view reference by the coded anchor view
component with view_id equal to view_id[i], where anchor_ref_l0[i][j] and view_id[i] are both from the MVC
sequence parameter set whose identifier is equal to the syntax element seq_parameter_set_id contained in the current
SEI message. The unavailable reference area is a rectangular area with coordinates (0,
(CurrMbAddr / PicWidthInMbs + pdi_init_delay_anchor_minus2_l0[i][j] + 2) * 16) as the top left corner and
(PicWidthInSamples,PicHeightInSamples) as the bottom right corner. When decoding the coded view component with
view_id equal to view_id[i], samples from the unavailable reference area from the view component with view_id equal
to anchor_ref_l0[i][j] shall not be referred to by the inter-view prediction process. The value of
pdi_init_delay_anchor_minus2_l0[i][j] shall be in the range of 0 to PicHeightInMbs − 2, inclusive.

pdi_init_delay_anchor_minus2_l1[i][j] specifies the unavailable reference area in the view component with

 Rec. ITU-T H.264 (03/2009) 635

view_id equal to anchor_ref_l1[i][j] that shall not be used for inter-view reference by the coded anchor view
component with view_id equal to view_id[i], where anchor_ref_lX[i][j] and view_id[i] are both from the MVC
sequence parameter set whose identifier is equal to the syntax element seq_parameter_set_id contained in the current
SEI message. The unavailable reference area is a rectangular area with coordinates (0,
(CurrMbAddr / PicWidthInMbs + pdi_init_delay_anchor_minus2_l1[i][j] + 2) * 16) as the top left corner and
(PicWidthInSamples,PicHeightInSamples) as the bottom right corner. When decoding the coded view component with
view_id equal to view_id[i], samples from the unavailable reference area from the view component with view_id equal
to anchor_ref_l1[i][j] shall not be referred to by the inter-view prediction process. The value of
pdi_init_delay_anchor_minus2_l1[i][j] shall be in the range of 0 to PicHeightInMbs − 2, inclusive.

pdi_init_delay_non_anchor_minus2_l0[i][j] specifies the unavailable reference area in the view component with
view_id equal to non_anchor_ref_l0[i][j] that shall not be used for inter-view reference by the coded non-anchor
view component with view_id equal to view_id[i], where non_anchor_ref_l0[i][j] and view_id[i] are both from the
MVC sequence parameter set whose identifier is equal to the syntax element seq_parameter_set_id contained in the
current SEI message. The unavailable reference area is a rectangular area with coordinates (0,
(CurrMbAddr / PicWidthInMbs + pdi_init_delay_non_anchor_minus2_l0[i][j] + 2) * 16) as the top left corner and
(PicWidthInSamples,PicHeightInSamples) as the bottom right corner. When decoding the coded view component with
view_id equal to view_id[i], samples from the unavailable reference area from the view component with view_id equal
to non_anchor_ref_l0[i][j] shall not be referred to by the inter-view prediction process. The value of
pdi_init_delay_non_anchor_minus2_l0[i][j] shall be in the range of 0 to PicHeightInMbs − 2, inclusive.

pdi_init_delay_non_anchor_minus2_l1[i][j] specifies the unavailable reference area in the view component with
view_id equal to non_anchor_ref_l1[i][j] that shall not be used for inter-view reference by the coded anchor view
component with view_id equal to view_id[i], where non_anchor_ref_lX[i][j] and view_id[i] are both from the
MVC sequence parameter set whose identifier is equal to the syntax element seq_parameter_set_id contained in the
current SEI message. The unavailable reference area is a rectangular area with coordinates (0,
(CurrMbAddr / PicWidthInMbs + pdi_init_delay_non_anchor_minus2_l1[i][j] + 2) * 16) as the top left corner and
(PicWidthInSamples,PicHeightInSamples) as the bottom right corner. When decoding the coded view component with
view_id equal to view_id[i], samples from the unavailable reference area from the view component with view_id equal
to non_anchor_ref_l1[i][j] shall not be referred to by the inter-view prediction process. The value of
pdi_init_delay_non_anchor_minus2_l1[i][j] shall be in the range of 0 to PicHeightInMbs − 2, inclusive.

H.13.2.2 MVC scalable nesting SEI message semantics

An MVC nesting SEI message shall contain one and only one SEI message of payloadType less than or equal to 23,
which is referred to as the nested SEI message. The scope to which the nested SEI message applies is indicated by the
syntax elements operation_point_flag, all_view_components_in_au_flag, num_view_components_minus1,
sei_view_id[i] for all i, num_view_components_op_minus1, sei_op_view_id[i] for all i, and sei_op_temporal_id.

Some view components to which the nested SEI message applies may be not present in the access unit containing the
MVC scalable nesting SEI message.

operation_point_flag equal to 1 specifies that the nested SEI message applies to the current access unit when the
associated operation point identified by sei_op_temporal_id and sei_op_view_id[i] for all i in the range of 0 to
num_view_components_op_minus1, inclusive, is decoded. operation_point_flag equal to 0 specifies that the nested SEI
message applies to the view components identified by all_view_components_in_au_flag,
num_view_components_minus1, and sei_view_id[i] for all i in the range of 0 to num_view_components_minus1,
inclusive, regardless of which operation point is decoded.

If the nested SEI message has payloadType equal to 0 or 1, operation_point_flag shall be equal to 1. Otherwise (the
nested SEI message has payloadType not equal to 0 or 1), operation_point_flag shall be equal to 0.

all_view_components_in_au_flag equal to 1 specifies that the nested SEI message applies to all view components of
the access unit. all_view_components_in_au_flag equal to 0 specifies that the applicable scope of the nested SEI
message is signalled by the syntax elements num_view_components_minus1 and sei_view_id[i] for all i in the range
of 0 to num_view_components_minus1, inclusive.

num_view_components_minus1 plus 1 specifies the number of view components to which the nested SEI message
applies when operation_point_flag is equal to 0 and all_view_components_in_au_flag is equal to 0. The value of
num_view_components_minus1 shall be in the range of 0 to 1023, inclusive.

sei_view_id[i] specifies the view_id of the i-th view component to which the nested SEI message applies when
operation_point_flag is equal to 0 and all_view_components_in_au_flag is equal to 0.

636 Rec. ITU-T H.264 (03/2009)

num_view_components_op_minus1 plus 1 specifies the number of view components of the operation point to which
the nested SEI message applies when operation_point_flag is equal to 1. The value of
num_view_components_op_minus1 shall be in the range of 0 to 1023, inclusive.

sei_op_view_id[i] specifies the view_id of the i-th view component to which the nested SEI message applies when
operation_point_flag is equal to 1.

sei_op_temporal_id specifies the maximum temporal_id of the bitstream subset to which the nested SEI message
applies when operation_point_flag is equal to 1.

sei_nesting_zero_bit is equal to 0.

H.13.2.3 View scalability information SEI message semantics

When present, this SEI message shall be associated with an IDR access unit. The semantics of the message are valid for
the current coded video sequence. A view scalability information SEI message contains view and scalability
information for a subset of the operation points in the coded video sequence. Each operation point is associated with an
operation point identifier. The sub-bitstream for an operation point is referred to as the operation point representation or
the representation of the operation point. Information such as bit rate and frame rate, among others, are signalled for the
representations of the subset of the operation points.

NOTE 1 – Any operation point for which view and scalability information is signalled in a view scalability information SEI
message (i.e. identified by a value of operation_point_id[i]) must be present in the coded video sequence. When an application
keeps a view scalability information SEI message in a sub-bitstream extracted according to the process specified in
subclause H.8.5.3, and after the extraction any operation point for which view and scalability information is signalled in the
original SEI message becomes not present in the coded video sequence, the application must change the content of the view
scalability information SEI message to fulfil the condition stated by the first sentence in this note.

num_operation_point_minus1 plus 1 specifies the number of operation points that are present in the coded video
sequence and for which the view scalability information is signalled by the following syntax elements. The value of
num_operation_point_minus1 shall be in the range of 0 to 65535, inclusive.

The bitstream subset corresponding to an operation point is defined as the operation point representation or the
representation of the operation point. The representation of the operation point identified by operation_point_id[i] is
the output of the sub-bitstream extraction process specified in subclause H.8.5.3 with tIdTarget equal to temporal_id[i]
and viewIdTargetList consisting of view_id[i][j] for all j in the range of 0 to num_target_output_views_minus1[i],
inclusive, as the inputs.

operation_point_id[i] specifies the identifier of the operation point. Each operation point is associated with a unique
operation point identifier. The value of operation_point_id[i] shall be in the range of 0 to 65535, inclusive.

In the following semantics in this subclause, the operation point with identifier equal to operation_point_id[i] is
referred to as the current operation point.

priority_id[i] and temporal_id[i] specify the maximum value of priority_id and temporal_id, respectively, of the
NAL units in the representation of the current operation point.

num_target_output_views_minus1[i] plus 1 specifies the number of target output views for the current operation
point. The value of num_target_output_views_minus1[i] shall be in the range of 0 to 1023, inclusive.

view_id[i][j] specifies the identifier of the j-th target output view for the current operation point. The value of
view_id[i][j] shall be in the range of 0 to 1023, inclusive.

profile_level_info_present_flag[i] equal to 1 specifies that the profile and level information for the representation of
the current operation point is present in the SEI message. profile_level_info_present_flag[i] equal to 0 specifies that
the profile and level information for the current operation point is not present in the SEI message.

bitrate_info_present_flag[i] equal to 1 specifies that the bitrate information for the current operation point is present
in the SEI message. bitrate_info_present_flag[i] equal to 0 specifies that the bitrate information for the current
operation point is not present in the SEI message.

frm_rate_info_present_flag[i] equal to 1 specifies that the frame rate information for the current operation point is
present in the SEI message. frm_rate_info_present_flag[i] equal to 0 specifies that the frame rate information for the
current operation point is not present in the SEI message.

 Rec. ITU-T H.264 (03/2009) 637

view_dependency_info_present_flag[i] equal to 1 specifies that information on the views the target output view of
the current operation point directly depends on is present in the SEI message. View A is directly dependent on view
point B if there is at least one view component of view A using a view component of view B for inter-view prediction
reference. view_dependency_info_present_flag[i] equal to 0 specifies that view_dependency_info_src_op_id[i] is
present in the SEI message. When not present, view_dependency_info_present_flag[i] shall be inferred to be equal
to 0.

NOTE 2 – The inter-view dependency relationship signalled in sequence parameter set MVC extension is an upper limit, in the
sense that whenever view A may depend on view B at any access unit, it is specified as view A depends on view B. Therefore,
the dependency relationship is indicated by sequence parameter set MVC extension when view A depends on view B at only
one of all access units in the coded video sequence, or even when view A actually does not depend on view B at any access unit
but when generating the sequence parameter set MVC extension the encoder thought view A might depend on view B. The
dependency relationship signalled here can be more refined. For example, when view A depends on view B at access units with
temporal_id equal to 0 but not at other access units, this can be indicated through the view dependency information signalled in
this SEI message for operation points with view A as the target output view and with different maximum values of temporal_id.

parameter_sets_info_present_flag[i] equal to 1 specifies that the values of seq_parameter_set_id of the sequence
parameter sets and subset sequence parameter sets and the values of pic_parameter_set_id of the picture parameter sets
that are referred to by the VCL NAL units of the representation of the current operation point are present in the SEI
message. parameter_sets_info_present_flag[i] equal to 0 specifies that parameter_sets_info_src_op_id[i] is present in
the SEI message.

bitstream_restriction_info_present_flag[i] equal to 1 specifies that the bitstream restriction information for the
representation of the current operation point is present in the SEI message. bitstream_restriction_info_present_flag[i]
equal to 0 specifies that the bitstream restriction information for the representation of the current operation point is not
present in the SEI message.

op_profile_level_idc[i] specifies the profile and level compliancy of the representation of the current operation point.
op_profile_level_idc[i] is the exact copy of the three bytes comprised of profile_idc, constraint_set0_flag,
constraint_set1_flag, constraint_set2_flag, constraint_set3_flag, constraint_set4_flag, reserved_zero_3bits and
level_idc, if these syntax elements were used to specify the profile and level compliancy of the representation of the
current operation point as specified in Annexes A and H.

avg_bitrate[i] specifies the average bit rate of the representation of the current operation point. The average bit rate
for the representation of the current operation point in bits per second is given by BitRateBPS(avg_bitrate[i]) with the
function BitRateBPS() being specified by the following equation.

BitRateBPS(x) = (x & (214 − 1)) * 10(2 + (x >> 14)) (H-11)

All NAL units of the representation of the current operation point are taken into account in the calculation. The average
bit rate is derived according to the access unit removal time specified in Annex C. In the following, bTotal is the
number of bits in all NAL units of the representation of the current operation point in the current coded video sequence.
t1 is the removal time (in seconds) of the current access unit, and t2 is the removal time (in seconds) of the last access
unit (in decoding order) of the current coded video sequence.

With x specifying the value of avg_bitrate[i], the following appplies.

– If t1 is not equal to t2, the following condition shall be true.

(x & (214 − 1)) = = Round(bTotal ÷ ((t2 − t1) * 10(2 + (x >> 14)))) (H-12)

– Otherwise (t1 is equal to t2), the following condition shall be true.

(x & (214 − 1)) = = 0 (H-13)

max_bitrate[i] specifies the maximum bit rate of the representation of the current operation point, given by
BitRateBPS(max_bitrate_layer_representation[i]), in bits per second, with the function BitRateBPS() being specified
in Equation H-11. The maximum bit rate of the representation of the current operation point is calculated based on a
time window specified by max_bitrate_calc_window[i].

max_bitrate_calc_window[i] specifies the length of the time window, in units of 1/100 second, based on which
max_bitrate[i] is calculated.

constant_frm_rate_idc[i] specifies whether the frame rate of the representation of the current operation point is
constant. If the value of avg_frm_rate as specified below is constant whichever a temporal section of the operation point
representation is used for the calculation, the frame rate is constant, otherwise the frame rate is non-constant.
constant_frm_rate_idc[i] equal to 0 specifies that the frame rate is not constant, constant_frm_rate_idc[i] equal to 1
specifies that the frame rate is constant, and constant_frm_rate_idc[i] equal to 2 specifies that the frame rate may be or
may not be constant. The value of constant_frm_rate_idc[i] shall be in the range of 0 to 2, inclusive.

638 Rec. ITU-T H.264 (03/2009)

avg_frm_rate[i] specifies the average frame rate, in units of frames per 256 seconds, of the representation of the
current operation point. The semantics of avg_frm_rate[i] is identical to the semantics of average_frame_rate in
sub-sequence layer characteristics SEI message when accurate_statistics_flag is equal to 1, except that herein the set of
NAL units in the range of sub-sequence layers is replaced by the set of NAL units of the representation of the current
operation point.

num_directly_dependent_views[i] specifies the number of views that the target output view of the current operation
point is directly dependent on within the representation of the current operation point. The value of
num_directly_dependent_views[i] shall be in the range of 0 to 16, inclusive.

directly_dependent_view_id[i][j] specifies the view_id of the j-th view that the target output view of the current
operation point is directly dependent on within the representation of the current operation point. The value of
directly_dependent_view_id[i][j] shall be in the range of 0 to 1023, inclusive.

view_dependency_info_src_op_id[i] specifies that the views the target output view of the current operation point
directly depends on within the representation of the current operation point are the same as the views the target output
view of the operation point with identifier equal to view_dependency_info_src_op_id[i] directly depends on within the
representation of the operation point with identifier equal to view_dependency_info_src_op_id[i], if
view_dependency_info_src_op_id[i] is not equal to operation_point_id[i]. Otherwise
(view_dependency_info_src_op_id[i] is equal to operation_point_id[i]), information on the views the target output
view of the current operation point directly depends on is not present in the SEI message. The value of
view_dependency_info_src_op_id[i] shall be in the range of 0 to 65535, inclusive.

num_seq_parameter_set_minus1[i] plus 1 specifies the number of different sequence parameter sets that are referred
to by the VCL NAL units of the representation of the current operation point. The value of
num_seq_parameter_set_minus1[i] shall be in the range of 0 to 31, inclusive.

seq_parameter_set_id_delta[i][j] specifies the smallest value of the seq_parameter_set_id of all sequence parameter
sets required for decoding the representation of the current operation point, if j is equal to 0. Otherwise (j is greater
than 0), seq_parameter_set_id_delta[i][j] specifies the difference between the value of the seq_parameter_set_id of
the j-th required sequence parameter set and the value of the seq_parameter_set_id of the (j−1)-th required sequence
parameter set for decoding the representation of the current operation point. The sequence parameter sets are logically
ordered in ascending order of the value of seq_parameter_set_id. The value of seq_parameter_set_id_delta[i][j] shall
be in the range of 0 to 31, inclusive.

num_subset_seq_parameter_set_minus1[i] plus 1 specifies the number of different subset sequence parameter sets
that are referred to by the VCL NAL units of the representation of the current operation point. The value of
num_subset_seq_parameter_set_minus1[i] shall be in the range of 0 to 31, inclusive.

subset_seq_parameter_set_id_delta[i][j] specifies the smallest value of the seq_parameter_set_id of all subset
sequence parameter sets required for decoding the representation of the current operation point, if j is equal to 0.
Otherwise (j is greater than 0), subset_seq_parameter_set_id_delta[i][j] specifies the difference between the value of
the seq_parameter_set_id of the j-th required subset sequence parameter set and the value of the seq_parameter_set_id
of the (j−1)-th required subset sequence parameter set for decoding the representation of the current operation point.
The subset sequence parameter sets are logically ordered in ascending order of the value of seq_parameter_set_id. The
value of subset_seq_parameter_set_id_delta[i][j] shall be in the range of 0 to 31, inclusive.

num_pic_parameter_set_minus1[i] plus 1 specifies the number of different picture parameter sets that are referred to
by the VCL NAL units of the representation of the current operation point. The value of
num_pic_parameter_set_minus1[i] shall be in the range of 0 to 255, inclusive.

pic_parameter_set_id_delta[i][j] specifies the smallest value of the pic_parameter_set_id of all picture parameter
sets required for decoding the representation of the current operation point, if j is equal to 0. Otherwise (j is greater
than 0), pic_parameter_set_id_delta[i][j] specifies the difference between the value of the pic_parameter_set_id of
the j-th required picture parameter set and the value of the pic_parameter_set_id of the (j−1)-th required picture
parameter set for decoding the representation of the current operation point. The picture parameter sets are logically
ordered in ascending order of the value of pic_parameter_set_id. The value of pic_parameter_set_id_delta[i][j] shall
be in the range of 0 to 255, inclusive.

parameter_sets_info_src_op_id[i] specifies that the values of seq_parameter_set_id of the sequence parameter sets
and subset sequence parameter sets and the values of pic_parameter_set_id of the picture parameter sets that are
referred to by the VCL NAL units of the representation of the current operation point are the same as those for the
representation of the operation point with identifier equal to parameter_sets_info_src_op_id[i], if
parameter_sets_info_src_op_id[i] is not equal to operation_point_id[i]. Otherwise
(parameter_sets_info_src_op_id[i] is equal to operation_point_id[i]), parameter_sets_info_src_op_id[i] specifies
that the values of seq_parameter_set_id of the sequence parameter sets and subset sequence parameter sets and the
values of pic_parameter_set_id of the picture parameter sets that are referred to by the VCL NAL units of the

 Rec. ITU-T H.264 (03/2009) 639

representation of the current operation point are not present in the SEI message. The value of
parameter_sets_info_src_op_id[i] shall be in the range of 0 to 65535, inclusive.

motion_vectors_over_pic_boundaries_flag[i] specifies the value of motion_vectors_over_pic_boundaries_flag, as
specified in subclause E.2.1, for the current operation point representation. When the
motion_vectors_over_pic_boundaries_flag[i] syntax element is not present, motion_vectors_over_pic_boundaries_flag
value for the current operation point representation shall be inferred to be equal to 1.

max_bytes_per_pic_denom[i] specifies the max_bytes_per_pic_denom value, as specified in subclause E.2.1, for the
current operation point representation. When the max_bytes_per_pic_denom[i] syntax element is not present, the value
of max_bytes_per_pic_denom for the current operation point representation shall be inferred to be equal to 2. The value
of max_bytes_per_pic_denom[i] shall be in the range of 0 to 16, inclusive.

max_bits_per_mb_denom[i] specifies the max_bits_per_mb_denom value, as specified in subclause E.2.1, for the
current operation point representation. When the max_bits_per_mb_denom[i] is not present, the value of
max_bits_per_mb_denom for the current operation point representation shall be inferred to be equal to 1. The value of
max_bits_per_mb_denom[i] shall be in the range of 0 to 16, inclusive.

log2_max_mv_length_horizontal[i] and log2_max_mv_length_vertical[i] specify the values of
log2_max_mv_length_horizontal and log2_max_mv_length_vertical, as specified in subclause E.2.1, for the current
operation point representation. When log2_max_mv_length_horizontal[i] is not present, the values of
log2_max_mv_length_horizontal and log2_max_mv_length_vertical for the current operation point representation shall
be inferred to be equal to 16. The value of log2_max_mv_length_horizontal[i] shall be in the range of 0 to 16,
inclusive. The value of log2_max_mv_length_vertical[i] shall be in the range of 0 to 16, inclusive.

NOTE 3 – The maximum absolute value of a decoded vertical or horizontal motion vector component is also constrained by
profile and level limits as specified in Annex A or subclause H.10.2.

num_reorder_frames[i] specifies the value of num_reorder_frames, as specified in subclause E.2.1, for the current
operation point representation. The value of num_reorder_frames[i] shall be in the range of 0 to 16, inclusive. When
the num_reorder_frames[i] syntax element is not present, the value of num_reorder_frames for the current operation
point representation shall be inferred to be equal to 16.

max_dec_frame_buffering[i] specifies the value of max_dec_frame_buffering, as specified in subclause E.2.1, for
the current operation point representation. The value of max_dec_frame_buffering[i] shall be in the range of 0 to
MaxDpbFrames (as specified in subclauses A.3.1, A.3.2, or H.10.2), inclusive. When the max_dec_frame_buffering[i]
syntax element is not present, the value of max_dec_frame_buffering for the current operation point representation shall
be inferred to be equal to MaxDpbFrames.

H.13.2.4 Multiview scene information SEI message semantics

The multiview scene information SEI message indicates the maximum disparity among multiple view components in an
access unit. The maximum disparity could be used for processing the decoded view components prior to rendering on a
3D display. When present, the multiview scene information SEI message shall be associated with an IDR access unit.
The information signalled in the SEI message applies to the coded video sequence.

The actual maximum disparity value may be smaller than the one signalled in the multiview scene information SEI
message, due to that some views in the coded video sequence may have been removed from the original bitstream to
produce an extracted sub-bitstream according to the process specified in subclause H.8.5.3.

max_disparity specifies the maximum disparity, in units of luma samples, between spatially adjacent view components
among the total set of view components in an access unit. The value of max_disparity shall be in the range of 0 to 1023,
inclusive.

NOTE – The maximum disparity depends on the baseline distance between spatially adjacent views and the spatial resolution of
each view. Therefore, if either the number of views or spatial resolution is changed, the maximum disparity should also be
changed accordingly.

H.13.2.5 Multiview acquisition information SEI message semantics

The multiview acquisition information SEI message specifies various parameters of the acquisition environment.
Specifically, intrinsic and extrinsic camera parameters are specified. These parameters could be used for processing the
decoded view components prior to rendering on a 3D display. When present, the multiview acquisition information SEI
message shall be associated with an IDR access unit. The information signalled in the SEI message applies to the coded
video sequence.

Some of the views for which the multiview acquisition information is included in a multiview acquisition information
SEI message may be not present in the coded video sequence.

The extrinsic camera parameters are specified according to a right-handed coordinate system, where the upper left

640 Rec. ITU-T H.264 (03/2009)

corner of the image is the origin, i.e., the (0, 0) coordinate, with the other corners of the image having non-negative
coordinates. With these specifications, a 3-dimensional world point, wP=[x y z] is mapped to a 2-dimensional camera
point, cP[i] = [u v 1], for the i-th camera according to:

s * cP[i] = A[i] * R−1[i] * (wP − T[i]) (H-14)

where A[i] denotes the intrinsic camera parameter matrix, R−1[i] denotes the inverse of the rotation matrix R[i],
T[i] denotes the translation vector, and s (a scalar value) is an arbitrary scale factor chosen to make the third coordinate
of cP[i] equal to 1. The elements of A[i], R[i], T[i] are determined according to the syntax elements signalled in
this SEI message and as specified below.

num_views_minus1 shall be equal to the value of the syntax element num_views_minus1 in the active MVC sequence
parameter set for the coded video sequence. The value of num_views_minus1 shall be in the range of 0 to 1023,
inclusive.

intrinsic_param_flag equal to 1 indicates the presence of intrinsic camera parameters. intrinsic_param_flag equal to 0
indicates the absence of intrinsic camera parameters.

extrinsic_param_flag equal to 1 indicates the presence of extrinsic camera parameters. extrinsic_param_flag equal to 0
indicates the absence of extrinsic camera parameters.

intrinsic_params_equal equal to 1 indicates that the intrinsic camera parameters are equal for all cameras and only one
set of intrinsic camera parameters are present. intrinsic_params_equal equal to 0 indicates that the intrinsic camera
parameters are different for each camera and that a set of intrinsic camera parameters are present for each camera.

prec_focal_length specifies the exponent of the maximum allowable truncation error for focal_length_x[i] and
focal_length_y[i] as given by 2−prec_focal_length. The value of prec_focal_length shall be in the range of 0 to 31, inclusive.

prec_principal_point specifies the exponent of the maximum allowable truncation error for principal_point_x[i] and
principal_point_y[i] as given by 2−prec_principal_point. The value of prec_principal_point shall be in the range of 0 to 31,
inclusive.

prec_skew_factor specifies the exponent of the maximum allowable truncation error for skew factor as given by
2-prec_skew_factor. The value of prec_skew_factor shall be in the range of 0 to 31, inclusive.

sign_focal_length_x[i] equal to 0 indicates that the sign of the focal length of the i-th camera in the horizontal
direction is positive. sign_focal_length_x[i] equal to 1 indicates that the sign is negative.

exponent_focal_length_x[i] specifies the exponent part of the focal length of the i-th camera in the horizontal
direction. The value of exponent_focal_length_x[i] shall be in the range of 0 to 62, inclusive. The value 63 is reserved
for future use by ITU-T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified focal length.

mantissa_focal_length_x[i] specifies the mantissa part of the focal length of the i-th camera in the horizontal
direction. The length of the mantissa_focal_length_x[i] syntax element is variable and determined as follows.

– If exponent_focal_length_x[i] = = 0, the length is max(0, prec_focal_length − 30).

– Otherwise (0 < exponent_focal_length_x[i] < 63), the length is max(0, exponent_focal_length_x[i] +
prec_focal_length − 31).

sign_focal_length_y[i] equal to 0 indicates that the sign of the focal length of the i-th camera in the vertical direction
is positive. sign_focal_length_y[i] equal to 1 indicates that the sign is negative.

exponent_focal_length_y[i] specifies the exponent part of the focal length of the i-th camera in the vertical direction.
The value of exponent_focal_length_y[i] shall be in the range of 0 to 62, inclusive. The value 63 is reserved for future
use by ITU-T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified focal length.

mantissa_focal_length_y[i] specifies the mantissa part of the focal length of the i-th camera in the vertical direction.
The length of the mantissa_focal_length_y[i] syntax element is variable and determined as follows.

– If exponent_focal_length_y[i] = = 0, the length is max(0, prec_focal_length − 30).

– Otherwise (0 < exponent_focal_length_y[i] < 63), the length is max(0, exponent_focal_length_y[i] +
prec_focal_length − 31).

sign_principal_point_x[i] equal to 0 indicates that the sign of the principal point of the i-th camera in the horizontal
direction is positive. sign_principal_point_x[i] equal to 1 indicates that the sign is negative.

 Rec. ITU-T H.264 (03/2009) 641

exponent_principal_point_x[i] specifies the exponent part of the principal point of the i-th camera in the horizontal
direction. The value of exponent_principal_point_x[i] shall be in the range of 0 to 62, inclusive. The value 63 is
reserved for future use by ITU-T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified principal
point.

mantissa_principal_point_x[i] specifies the mantissa part of the principal point of the i-th camera in the horizontal
direction. The length of the mantissa_principal_point_x[i] syntax element in units of bits is variable and is determined
as follows.

– If exponent_principal_point_x[i] = = 0, the length is max(0, prec_principal_point − 30).

– Otherwise (0 < exponent_principal_point_x[i] < 63), the length is max(0, exponent_principal_point_x[i] +
prec_principal_point − 31).

sign_principal_point_y[i] equal to 0 indicates that the sign of the principal point of the i-th camera in the vertical
direction is positive. sign_principal_point_y[i] equal to 1 indicates that the sign is negative.

exponent_principal_point_y[i] specifies the exponent part of the principal point of the i-th camera in the vertical
direction. The value of exponent_principal_point_y[i] shall be in the range of 0 to 62, inclusive. The value 63 is
reserved for future use by ITU-T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified principal
point.

mantissa_principal_point_y[i] specifies the mantissa part of the principal point of the i-th camera in the vertical
direction. The length of the mantissa_principal_point_y[i] syntax element in units of bits is variable and is determined
as follows.

– If exponent_principal_point_y[i] = = 0, the length is max(0, prec_principal_point − 30).

– Otherwise (0 < exponent_principal_point_y[i] < 63), the length is max(0, exponent_principal_point_y[i] +
prec_principal_point − 31).

sign_skew_factor[i] equal to 0 indicates that the sign of the skew factor of the i-th camera is positive.
sign_skew_factor[i] equal to 1 indicates that the sign is negative.

exponent_skew_factor[i] specifies the exponent part of the skew factor of the i-th camera. The value of
exponent_skew_factor[i] shall be in the range of 0 to 62, inclusive. The value 63 is reserved for future use by
ITU-T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified skew factor.

mantissa_skew_factor[i] specifies the mantissa part of the skew factor of the i-th camera. The length of the
mantissa_skew_factor[i] syntax element is variable and determined as follows.

– If exponent_skew_factor[i] = = 0, the length is max(0, prec_skew_factor − 30).

– Otherwise (0 < exponent_skew_factor[i] < 63), the length is max(0, exponent_skew_factor[i] +
prec_skew_factor − 31).

The intrinsic matrix A[i] for i-th camera is represented by

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
]iointY[principalP]i hY[focalLengt0
]iointX[principalP]i[skewFactor]ihX[focalLengt

 (H-15)

prec_rotation_param specifies the exponent of the maximum allowable truncation error for r[i][j][k] as given by
2−prec_rotation_param. The value of prec_rotation_param shall be in the range of 0 to 31, inclusive.

prec_translation_param specifies the exponent of the maximum allowable truncation error for t[i][j] as given by
2−prec_translation_param. The value of prec_ translation_param shall be in the range of 0 to 31, inclusive.

sign_r[i][j][k] equal to 0 indicates that the sign of (j, k) component of the rotation matrix for the i-th camera is
positive. sign_r[i][j][k] equal to 1 indicates that the sign is negative.

exponent_r[i][j][k] specifies the exponent part of (j, k) component of the rotation matrix for the i-th camera. The
value of exponent_r[i][j][k] shall be in the range of 0 to 62, inclusive. The value 63 is reserved for future use by
ITU-T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified rotation matrix.

mantissa_r[i][j][k] specifies the mantissa part of (j, k) component of the rotation matrix for the i-th camera. The
length of the mantissa_r[i][j][k] syntax element in units of bits is variable and determined as follows.

– If exponent_r[i] = = 0, the length is max(0, prec_rotation_param − 30).

– Otherwise (0 < exponent_r[i] < 63), the length is max(0, exponent_r[i] + prec_rotation_param − 31).

642 Rec. ITU-T H.264 (03/2009)

The rotation matrix R[i] for i-th camera is represented as follows:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

]2][2][irE[]1][2][irE[] 0][2][i rE[
]2][1][irE[]1][1][irE[] 0][1][i rE[
]2][0][irE[]1][0][irE[]0][0][irE[

 (H-16)

sign_t[i][j] equal to 0 indicates that the sign of the j-th component of the translation vector for the i-th camera is
positive. sign_t[i][j] equal to 1 indicates that the sign is negative.

exponent_t[i][j] specifies the exponent part of the j-th component of the translation vector for the i-th camera. The
value of exponent_t[i][j] shall be in the range of 0 to 62, inclusive. The value 63 is reserved for future use by
ITU-T | ISO/IEC. Decoders shall treat the value 63 as indicating an unspecified translation vector.

mantissa_t[i][j] specifies the mantissa part of the j-th component of the translation vector for the i-th camera. The
length v of the mantissa_t[i][j] syntax element in units of bits is variable and is determined as follows.

– If exponent_t[i] = = 0, the length v = max(0, prec_translation_param − 30).

– Otherwise (0 < exponent_t[i] < 63), the length v = max(0, exponent_t[i] + prec_translation_param − 31).

The translation vector T[i] for the i-th camera is represented by

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

] 2][i tE[
] 1][i tE[
] 0][i tE[

 (H-17)

The association between the camera parameter variables and corresponding syntax elements is specified by Table H-2.
Each component of the intrinsic and rotation matrices and the translation vector is obtained from the variables specified
in Table H-2 as the variable x computed as follows.

– If 0 < e < 63, x = (−1)s * 2e−31 * (1 + n ÷ 2v).

– Otherwise (e is equal to 0), x = (−1)s * 2−(30+v) * n.

NOTE – The above specification is similar to that found in IEC 60559:1989, Binary floating-point arithmetic for microprocessor
systems.

Table H-2 – Association between camera parameter variables and syntax elements.

x s e n
focalLengthX[i] sign_focal_length_x[i] exponent_focal_length_x[i] mantissa_focal_length_x[i]
focalLengthY[i] sign_focal_length_y[i] exponent_focal_length_y[i] mantissa_focal_length_y[i]

principalPointX[i] sign_principal_point_x[i] exponent_principal_point_x[i] mantissa_principal_point_x[i]
principalPointY[i] sign_principal_point_y[i] exponent_principal_point_y[i] mantissa_principal_point_y[i]

skewFactor[i] sign_skew_factor[i] exponent_skew_factor[i] mantissa_skew_factor[i]
rE[i][j][k] sign_r[i][j][k] exponent_r[i][j][k] mantissa_r[i][j][k]

tE[i][j] sign_t[i][j] exponent_t[i][j] mantissa_t[i][j]

H.13.2.6 Non-required view component SEI message semantics

This SEI message indicates non-required view components within the associated access unit. A view component is a
non-required view component for a target view component if it is not needed for decoding the target view component
and subsequent view components with the same view_id in decoding order within the coded video sequence.

Some of the view components indicated by view_order_index[i] or index_delta_minus1[i][j] may not be present in
the associated access unit.

num_info_entries_minus1 plus 1 specifies the number of target view components for which non-required view
components are indicated. The value of num_info_entries_minus1 shall be in the range of 0 to num_views_minus1 − 1,
inclusive.

view_order_index[i] specifies the view order index of the i-th target view component for which non-required view
components are indicated. The i-th target view component has view_id equal to view_id[view_order_index [i]]. The
value of view_order_index[i] shall be in the range of 1 to num_views_minus1, inclusive.

 Rec. ITU-T H.264 (03/2009) 643

num_non_required_view_components_minus1[i] plus 1 specifies the number of non-required view components for
the i-th target view component. The value of num_non_required_view_components_minus1[i] shall be in the range
of 0 to view_order_index[i] − 1, inclusive.

index_delta_minus1[i][j] plus 1 specifies the difference between the view order index of the i-th target view
component and the view order index of the j-th non-required view component for the i-th target view component. The
view order index of the j-th non-required view component for the i-th target view component is
view_order_index[i] − index_delta_minus1[i][j] − 1. The value of index_delta_minus1[i][j] shall be in the range
of 0 to view_order_index[i] − 1, inclusive.

H.13.2.7 View dependency change SEI message semantics

This SEI message indicates that the view dependency information changes starting with the current access unit
containing the SEI message and is always interpreted with respect to the active MVC sequence parameter set. When
present, the view dependency change SEI message applies to the target access unit set that consists of the current access
unit and all the subsequent access units, in decoding order, until the next view dependency change SEI message or the
end of the coded video sequence, whichever is earlier in decoding order.

If, according to the view dependency information indicated in the active MVC sequence parameter set, view component
A does not directly or indirectly depend on view component B and vice versa, the view dependency change SEI
message shall not specify view dependency relationship between view components A and B.

NOTE 1 – The dependent views for any view are always a subset of those indicated by the active MVC sequence parameter set.
NOTE 2 – View dependency change SEI messages do not have a cumulative effect.

Some of the views indicated by the following syntax elements may not be present in the target access unit set.

seq_parameter_set_id specifies a subset sequence parameter set that contains the inter-view dependency relationship
information. The value of seq_parameter_set_id shall be equal to the value of seq_parameter_set_id in the picture
parameter set referenced by a view component of the primary coded picture of the access unit containing the view
dependency change SEI message. The value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

anchor_update_flag equal to 1 indicates that there are updates for the dependencies for anchor view components
relative to the dependencies defined in the active MVC sequence parameter set. anchor_update_flag equal to 0 indicates
that there is no change for the dependencies for anchor view components relative to the dependencies defined in the
active MVC sequence parameter set.

non_anchor_update_flag equal to 1 indicates that there are updates for the dependencies for non-anchor view
components relative to the dependencies defined in the active MVC sequence parameter set. non_anchor_update_flag
equal to 0 indicates that there is no change for the dependencies for non-anchor view components relative to the
dependencies defined in the active MVC sequence parameter set.

anchor_ref_l0_flag[i][j] equal to 0 indicates that the j-th inter-view prediction reference in the initialised
RefPicList0 for any anchor view component with view order index equal to i will not be present in the final RefPicList0
after reference picture list modification for the anchor view component. anchor_ref_l0_flag[i][j] equal to 1 indicates
that the j-th inter-view prediction reference in the initialised RefPicList0 for at least one anchor view component with
view order index equal to i will be present in the final RefPicList0 after reference picture list modification for the
anchor view component.

anchor_ref_l1_flag[i][j] equal to 0 indicates that the j-th inter-view prediction reference in the initialised
RefPicList1 for any anchor view component with view order index equal to i will not be present in the final RefPicList1
after reference picture list modification for the anchor view component. anchor_ref_l1_flag[i][j] equal to 1 indicates
that the j-th inter-view prediction reference in the initialised RefPicList1 for at least one anchor view component with
view order index equal to i will be present in the final RefPicList1 after reference picture list modification for the
anchor view component.

non_anchor_ref_l0_flag[i][j] equal to 0 indicates that the j-th inter-view prediction reference in the initialised
RefPicList0 for any non-anchor view component with view order index equal to i will not be present in the final
RefPicList0 after reference picture list modification for the non-anchor view component. non-anchor_ref_l0_flag[i][j]
equal to 1 indicates that the j-th inter-view prediction reference in the initialised RefPicList0 for at least one non-anchor
view component with view order index equal to i will be present in the final RefPicList0 after reference picture list
modification for the non-anchor view component.

non_anchor_ref_l1_flag[i][j] equal to 0 indicates that the j-th inter-view prediction reference in the initialised
RefPicList1 for any non-anchor view component with view order index equal to i will not be present in the final
RefPicList1 after reference picture list modification for the non-anchor view component. non-anchor_ref_l1_flag[i][j]
equal to 1 indicates that the j-th inter-view prediction reference in the initialised RefPicList1 for at least one non-anchor

644 Rec. ITU-T H.264 (03/2009)

view component with view order index equal to i will be present in the final RefPicList1 after reference picture list
modification for the non-anchor view component.

H.13.2.8 Operation point not present SEI message semantics

This SEI message indicates operation points that are not present in the bitstream starting with the current access unit,
and is interpreted with respect to the previous view scalability information SEI message in decoding order. The message
remains effective until the next SEI message of the same type or the end of the coded video sequence, whichever is
earlier in decoding order.

NOTE 1– Operation point not present SEI messages do not have a cumulative effect.

NOTE 2 – Any operation point identified by a value of operation_point_id[i] in the previous view scalability information SEI
message, in decoding order, and not identified by a value of operation_point_not_present_id[k] must be present in the coded
video sequence. Therefore, when an application keeps an operation point not present SEI message in a sub-bitstream extracted
according to the process specified in subclause H.8.5.3, the application may need to change the content of the operation point
not present SEI message according to the semantics.

num_operation_points specifies the number of operation points that are indicated not to be present by the SEI
message. num_operation_points equal to 0 indicates that all operation points indicated by the view scalability
information SEI message are present. The value of num_operation_points shall be in the range of 0 to the value of
num_operation_points_minus1 in the previous view scalability information SEI message in decoding order, inclusive.

operation_point_not_present_id[k] identifies an operation point that is not present.
operation_point_not_present_id[k] shall be equal to the value of one of the operation_point_id[i] syntax elements of
the previous view scalability information SEI message in decoding order. The value of
operation_point_not_present_id[k] shall be in the range of 0 to 65535, inclusive.

H.13.2.9 Base view temporal HRD SEI message semantics

When present, this SEI message shall be associated with an IDR access unit. The SEI message applies to the coded
video sequence. Some temporal subsets identified by sei_mvc_temporal_id[i] may be not present in the coded video
sequence.

num_of_temporal_layers_in_base_view_minus1 plus 1 specifies the number of temporal bitstream subsets in the
coded video sequence for which the following syntax elements apply. The value of
num_of_temporal_layers_in_base_view_minus1 shall be in the range of 0 to 7, inclusive.

sei_mvc_temporal_id[i] specifies the temporal_id value of the i-th temporal bitstream subset.

Let the i-th bitstream subset for the coded video sequence that is obtained by invoking the sub-bitstream extraction
process as specified in subclause H.8.5.3 with tIdTarget equal to sei_mvc_temporal_id[i] as input.

sei_mvc_timing_info_present_flag[i] equal to 1 specifies that sei_mvc_num_units_in_tick[i],
sei_mvc_time_scale[i], and sei_mvc_fixed_frame_rate_flag[i] are present in the base view temporal HRD SEI
message. sei_mvc_timing_info_present_flag[i] equal to 0 specifies that sei_mvc_num_units_in_tick[i],
sei_mvc_time_scale[i], and sei_mvc_fixed_frame_rate_flag[i] are not present in the base view temporal HRD SEI
message.

The following syntax elements for the i-th bitstream subset are specified using references to Annex E. For these syntax
elements the same semantics and constraints as the ones specified in Annex E apply, as if these syntax elements
sei_mvc_num_units_in_tick[i], sei_mvc_time_scale[i], sei_mvc_fixed_frame_rate_flag[i],
sei_mvc_nal_hrd_parameters_present_flag[i], sei_mvc_vcl_hrd_parameters_present_flag[i],
sei_mvc_low_delay_hrd_flag[i], and sei_mvc_pic_struct_present_flag[i] were present as num_units_in_tick,
time_scale, fixed_frame_rate_flag, nal_hrd_parameters_present_flag, vcl_hrd_parameters_present_flag,
low_delay_hrd_flag, and pic_struct_present_flag, respectively, in the VUI parameters of the active MVC sequence
parameter sets for the i-th bitstream subset.

The parameters for the i-th bitstream subset that are coded in the base view temporal HRD SEI message shall be correct,
as if these parameters are used for conformance checking (as specified in Annex C) of the i-th bitstream subset.

sei_mvc_num_units_in_tick[i] indicates the value of num_units_in_tick, as specified in subclause E.2.1, that applies
to the i-th bitstream subset.

sei_mvc_time_scale[i] indicates the value of time_scale, as specified in subclause E.2.1, that applies to the i-th
bitstream subset.

sei_mvc_fixed_frame_rate_flag[i] indicates the value of fixed_frame_rate_flag, as specified in subclause E.2.1, that
applies to the i-th bitstream subset.

 Rec. ITU-T H.264 (03/2009) 645

sei_mvc_nal_hrd_parameters_present_flag[i] indicates the value of nal_hrd_parameters_present_flag, as specified
in subclause E.2.1, that applies to the i-th bitstream subset. When sei_mvc_nal_hrd_parameters_present_flag[i] is
equal to 1, the NAL HRD parameters that apply to the i-th bitstream subset immediately follow the
sei_mvc_nal_hrd_parameters_present_flag[i].

sei_mvc_vcl_hrd_parameters_present_flag[i] indicates the value of vcl_hrd_parameters_present_flag, as specified
in subclause E.2.1, that applies to the i-th bitstream subset. When sei_mvc_vcl_hrd_parameters_present_flag[i] is
equal to 1, the VCL HRD parameters that apply to the i-th bitstream subset immediately follow the
sei_mvc_vcl_hrd_parameters_present_flag[i].

sei_mvc_low_delay_hrd_flag[i] indicates the value of low_delay_hrd_flag, as specified in subclause E.2.1, that
applies to the i-th bitstream subset.

sei_mvc_pic_struct_present_flag[i] indicates the value of pic_struct_present_flag, as specified in subclause E.2.1,
that applies to the i-th bitstream subset.

H.14 MVC video usability information extension
The specifications in Annex E apply with substituting MVC sequence parameter set for sequence parameter set.
Additionally, the following applies.

H.14.1 MVC VUI parameters extension syntax

mvc_vui_parameters_extension() { C Descriptor
 vui_mvc_num_ops_minus1 0 ue(v)
 for(i = 0; i <= vui_mvc_num_ops_minus1; i++) {
 vui_mvc_temporal_id[i] 0 u(3)
 vui_mvc_num_target_output_views_minus1[i] 5 ue(v)
 for(j = 0; j <= vui_mvc_num_target_output_views_minus1[i]; j++)
 vui_mvc_view_id[i][j] 5 ue(v)
 vui_mvc_timing_info_present_flag[i] 0 u(1)
 if(vui_mvc_timing_info_present_flag[i]) {
 vui_mvc_num_units_in_tick[i] 0 u(32)
 vui_mvc_time_scale[i] 0 u(32)
 vui_mvc_fixed_frame_rate_flag[i] 0 u(1)
 }
 vui_mvc_nal_hrd_parameters_present_flag[i] 0 u(1)
 if(vui_mvc_nal_hrd_parameters_present_flag[i])
 hrd_parameters() 0
 vui_mvc_vcl_hrd_parameters_present_flag[i] 0 u(1)
 if(vui_mvc_vcl_hrd_parameters_present_flag[i])
 hrd_parameters() 0
 if(vui_mvc_nal_hrd_parameters_present_flag[i] | |
 vui_mvc_vcl_hrd_parameters_present_flag[i])

 vui_mvc_low_delay_hrd_flag[i] 0 u(1)
 vui_mvc_pic_struct_present_flag[i] 0 u(1)
 }
}

H.14.2 MVC VUI parameters extension semantics

The MVC VUI parameters extension specifies VUI parameters that apply to one or more operation points for the coded
video sequence. In Annex C it is specified which of the HRD parameter sets specified in the MVC VUI parameters
extension are used for conformance checking. All MVC VUI parameters extensions that are referred to by a coded
video sequence shall be identical.

646 Rec. ITU-T H.264 (03/2009)

Some views identified by vui_mvc_view_id[i][j] may be not present in the coded video sequence. Some temporal
subsets identified by vui_mvc_temporal_id[i] may be not present in the coded video sequence.

vui_mvc_num_ops_minus1 plus 1 specifies the number of operation points for which timing information, NAL HRD
parameters, VCL HRD parameters, and the pic_struct_present_flag may be present. The value of
vui_mvc_num_ops_minus1 shall be in the range of 0 to 65535, inclusive.

vui_mvc_temporal_id[i] indicates the maximum value of temporal_id for all VCL NAL units in the representation of
the i-th operation point.

vui_mvc_num_target_output_views_minus1[i] plus one specifies the number of target output views for the i-th
operation point. The value of vui_mvc_num_target_output_views_minus1[i] shall be in the range of 0 to 1023,
inclusive.

vui_mvc_view_id[i][j] indicates the j-th target output view in the i-th operation point. The value of
vui_mvc_view_id[i] shall be in the range of 0 to 1023, inclusive.

The following syntax elements apply to the coded video sequence that is obtained by the sub-bitstream extraction
process as specified in subclause H.8.5.3 with tIdTarget equal to vui_mvc_temporal_id[i] and viewIdTargetList
containing vui_mvc_view_id[i][j] for all j in the range of 0 to vui_mvc_num_target_output_views_minus1[i],
inclusive, as the inputs and the i-th sub-bitstream as the output.

vui_mvc_timing_info_present_flag[i] equal to 1 specifies that vui_mvc_num_units_in_tick[i],
vui_mvc_time_scale[i], and vui_mvc_fixed_frame_rate_flag[i] for the i-th sub-bitstream are present in the MVC VUI
parameters extension. vui_mvc_timing_info_present_flag[i] equal to 0 specifies that vui_mvc_num_units_in_tick[i],
vui_mvc_time_scale[i], and vui_mvc_fixed_frame_rate_flag[i] for the i-th sub-bitstream are not present in the MVC
VUI parameters extension.

The following syntax elements for the i-th sub-bitstream are specified using references to Annex E. For these syntax
elements the same semantics and constraints as the ones specified in Annex E apply, as if these syntax elements
vui_mvc_num_units_in_tick[i], vui_mvc_time_scale[i], vui_mvc_fixed_frame_rate_flag[i],
vui_mvc_nal_hrd_parameters_present_flag[i], vui_mvc_vcl_hrd_parameters_present_flag[i],
vui_mvc_low_delay_hrd_flag[i], and vui_mvc_pic_struct_present_flag[i] were present as the syntax elements
num_units_in_tick, time_scale, fixed_frame_rate_flag, nal_hrd_parameters_present_flag,
vcl_hrd_parameters_present_flag, low_delay_hrd_flag, and pic_struct_present_flag, respectively, in the VUI
parameters of the active MVC sequence parameter sets for the i-th sub-bitstream.

vui_mvc_num_units_in_tick[i] specifies the value of num_units_in_tick, as specified in subclause E.2.1, for the i-th
sub-bitstream.

vui_mvc_time_scale[i] specifies the value of time_scale, as specified in subclause E.2.1, for the i-th sub-bitstream.

vui_mvc_fixed_frame_rate_flag[i] specifies the value of fixed_frame_rate_flag, as specified in subclause E.2.1, for
the i-th sub-bitstream.

vui_mvc_nal_hrd_parameters_present_flag[i] specifies the value of nal_hrd_parameters_present_flag, as specified
in subclause E.2.1, for the i-th sub-bitstream.

When vui_mvc_nal_hrd_parameters_present_flag[i] is equal to 1, NAL HRD parameters (subclauses E.1.2 and E.2.2)
for the i-th sub-bitstream immediately follow the flag.

The variable VuiMvcNalHrdBpPresentFlag[i] is derived as follows.

– If any of the following is true, the value of VuiMvcNalHrdBpPresentFlag[i] shall be set equal to 1:
– vui_mvc_nal_hrd_parameters_present_flag[i] is present in the bitstream and is equal to 1,
– for the i-th sub-bitstream, the need for presence of buffering periods for NAL HRD operation to be present in

the bitstream in buffering period SEI messages is determined by the application, by some means not specified
in this Recommendation | International Standard.

– Otherwise, the value of VuiMvcNalHrdBpPresentFlag[i] shall be set equal to 0.

vui_mvc_vcl_hrd_parameters_present_flag[i] specifies the value of vcl_hrd_parameters_present_flag, as specified
in subclause E.2.1, for the i-th sub-bitstream.

When vui_mvc_vcl_hrd_parameters_present_flag[i] is equal to 1, VCL HRD parameters (subclauses E.1.2 and E.2.2)
for the i-th sub-bitstream immediately follow the flag.

 Rec. ITU-T H.264 (03/2009) 647

The variable VuiMvcVclHrdBpPresentFlag[i] is derived as follows.

– If any of the following is true, the value of VuiMvcVclHrdBpPresentFlag[i] shall be set equal to 1:
– vui_mvc_vcl_hrd_parameters_present_flag[i] is present in the bitstream and is equal to 1,
– for the i-th sub-bitstream, the need for presence of buffering periods for VCL HRD operation to be present in

the bitstream in buffering period SEI messages is determined by the application, by some means not specified
in this Recommendation | International Standard.

– Otherwise, the value of VuiMvcVclHrdBpPresentFlag[i] shall be set equal to 0.

The variable VuiMvcCpbDpbDelaysPresentFlag[i] is derived as follows.

– If any of the following is true, the value of VuiMvcCpbDpbDelaysPresentFlag[i] shall be set equal to 1:
– vui_mvc_nal_hrd_parameters_present_flag[i] is present in the bitstream and is equal to 1,
– vui_mvc_vcl_hrd_parameters_present_flag[i] is present in the bitstream and is equal to 1,
– for the i-th sub-bitstream, the need for presence of CPB and DPB output delays to be present in the bitstream

in picture timing SEI messages is determined by the application, by some means not specified in this
Recommendation | International Standard.

– Otherwise, the value of VuiMvcCpbDpbDelaysPresentFlag[i] shall be set equal to 0.

vui_mvc_low_delay_hrd_flag[i] specifies the value of low_delay_hrd_flag, as specified in subclause E.2.1, for the
i-th sub-bitstream.

vui_mvc_pic_struct_present_flag[i] specifies the value of pic_struct_present_flag, as specified in subclause E.2.1,
for the i-th sub-bitstream.

Printed in Switzerland
Geneva, 2009

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. H.264 (03/2009) – Advanced video coding for generic audiovisual services
	Summary
	Source
	FOREWORD
	CONTENTS
	0 Introduction
	0.1 Prologue
	0.2 Purpose
	0.3 Applications
	0.4 Publication and versions of this specification
	0.5 Profiles and levels
	0.6 Overview of the design characteristics

	1 Scope
	3 Definitions
	2 Normative references
	4 Abbreviations
	5 Conventions
	5.1 Arithmetic operators
	5.2 Logical operators
	5.3 Relational operators
	5.4 Bit-wise operators
	5.5 Assignment operators
	5.6 Range notation
	5.7 Mathematical functions
	5.8 Order of operation precedence
	5.9 Variables, syntax elements, and tables
	5.10 Text description of logical operations
	5.11 Processes

	6 Source, coded, decoded and output data formats, scanning processes, andneighbouring relationships
	6.1 Bitstream formats
	6.2 Source, decoded, and output picture formats
	6.3 Spatial subdivision of pictures and slices
	6.4 Inverse scanning processes and derivation processes for neighbours

	7 Syntax and semantics
	7.1 Method of specifying syntax in tabular form
	7.2 Specification of syntax functions, categories, and descriptors
	7.3 Syntax in tabular form
	7.4 Semantics

	8 Decoding process
	8.1 NAL unit decoding process
	8.2 Slice decoding process
	8.3 Intra prediction process
	8.4 Inter prediction process
	8.5 Transform coefficient decoding process and picture construction process prior to deblockingfilter process
	8.6 Decoding process for P macroblocks in SP slices or SI macroblocks
	8.7 Deblocking filter process

	9 Parsing process
	9.1 Parsing process for Exp-Golomb codes
	9.2 CAVLC parsing process for transform coefficient levels
	9.3 CABAC parsing process for slice data

	Annex A – Profiles and levels
	A.1 Requirements on video decoder capability
	A.2 Profiles
	A.3 Levels

	Annex B – Byte stream format
	B.1 Byte stream NAL unit syntax and semantics
	B.2 Byte stream NAL unit decoding process
	B.3 Decoder byte-alignment recovery (informative)

	Annex C – Hypothetical reference decoder
	C.1 Operation of coded picture buffer (CPB)
	C.2 Operation of the decoded picture buffer (DPB)
	C.3 Bitstream conformance

	Annex D – Supplemental enhancement information
	D.1 SEI payload syntax
	D.2 SEI payload semantics

	Annex E – Video usability information
	E.1 VUI syntax
	E.2 VUI semantics

	Annex G – Scalable video coding
	G.1 Scope
	G.2 Normative references
	G.3 Definitions
	G.4 Abbreviations
	G.5 Conventions
	G.6 Source, coded, decoded and output data formats, scanning processes, neighbouring andreference layer relationships
	G.7 Syntax and semantics
	G.8 SVC decoding process
	G.9 Parsing process
	G.10 Profiles and levels
	G.11 Byte stream format
	G.12 Hypothetical reference decoder
	G.13 Supplemental enhancement information
	G.14 SVC video usability information extension

	Annex H – Multiview video coding
	H.1 Scope
	H.2 Normative references
	H.3 Definitions
	H.4 Abbreviations
	H.5 Conventions
	H.6 Source, coded, decoded and output data formats, scanning processes, and neighbouringrelationships
	H.7 Syntax and semantics
	H.8 MVC decoding process
	H.9 Parsing process
	H.10 Profiles and levels
	H.11 Byte stream format
	H.12 MVC hypothetical reference decoder
	H.13 MVC SEI messages
	H.14 MVC video usability information extension

