

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T H.264
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Amendment 2
(04/2007)

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS
Infrastructure of audiovisual services – Coding of moving
video

Amendment 2: New profiles for professional
applications

CAUTION !

PREPUBLISHED RECOMMENDATION
This prepublication is an unedited version of a recently approved Recommendation.
It will be replaced by the published version after editing. Therefore, there will be
differences between this prepublication and the published version.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual
property, protected by patents, which may be required to implement this Recommendation. However,
implementers are cautioned that this may not represent the latest information and are therefore strongly urged
to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2007

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 1

ITU-T Recommendation H.264 Amendment 2

All-Intra and High 4:4:4 PredictiveNew profiles for professional applications

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 2

ITU-T Recommendation H.264 Amendment 2

Summary
Amendment 2 to ITU-T Rec. H.264 (a twin text Recommendation with ISO/IEC 14496-10)
“Advanced video coding for generic audiovisual services” creates a set of new video coding
profiles intended primarily for professional applications. It also defines two new types of
supplemental enhancement information (SEI) messages.

One such new profile is the High 4:4:4 Predictive profile. The High 4:4:4 Predictive profile, as
drafted herein, has two different 4:4:4 operation modes depending upon the value of a new
syntax element, separate_colour_plane_flag that is present in the sequence parameter set. When
separate_colour_plane_flag is equal to 0, each macroblock contains both luma and chroma
samples, and a decoding process similar to the luma decoding process that is used in the other
profiles is used to decode the luma and chroma samples in each such macroblock. When
separate_colour_plane_flag is equal to 1, the decoding process for monochrome sampled pictures
as found in the other profiles is used to decode each colour plane individually as a distinct
picture. In addition, a new intra decoding process that can be used by encoders to enable
relatively-efficient lossless coding is also added for use when the
qpprime_y_zero_transform_bypass_flag syntax element is equal to 1 and QP'Y is equal to 0. In
the new High 4:4:4 Predictive profile, the bit depth is also extended up to 14 bits per sample.

In addition to adding the definition of the High 4:4:4 Predictive profile, four other profiles are
also specified in this amendment. These profiles, referred to as the High 10 Intra,
High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles, serve to enable applications
demanding simple random-access and editing applications with low delay capability. Each of
these profiles contains coding capabilities that similar to those of another corresponding profile,
except for elimination of support for the decoding processes that involve inter-picture prediction
and, in the case of the CAVLC 4:4:4 Intra profile, the additional elimination of support for the
CABAC parsing process.

The two added SEI messages are the post-filter hint SEI message and the tone mapping
information SEI message. The post-filter hint SEI message provides the coefficients of a post-
filter or correlation information for the design of a post-filter for potential use in post-processing
of the output decoded pictures to obtain improved displayed quality. The tone mapping
information SEI message provides information to enable remapping of the colour samples of the
output decoded pictures for customization to particular display environments.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 3

CONTENTS

1) Subclause 0.4, “Publication and versions of this specification” ..5
2) Subclause 0.6, “Overview of the design characteristics”...6
3) Subclause 0.7, “How to read this specification”..6
4) Subclause 3.6, “arbitrary slice order” ..6
5) Subclause 3.75 “macroblock”..6
6) Subclause 3.136 “slice” ...6
7) Subclause 6.2 “Source, decoded, and output picture formats” ..7
8) Subclause 6.3 “Spatial subdivision of pictures and slices”..8
9) New subclause 6.4.3.1 “Inverse 4x4 Cb or Cr block scanning process for ChromaArrayType equal to 3”8
10) New subclause 6.4.4.1 “Inverse 8x8 Cb or Cr block scanning process for ChromaArrayType equal to 3”9
11) Subclause 6.4.8 “Derivation processes for neighbouring macroblocks, blocks, and partitions”9
12) New subclause 6.4.8.2.1 “Derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal
to 3” 9
13) Subclause 6.4.8.4 “Derivation process for neighbouring 4x4 chroma blocks”..9
14) New subclause 6.4.8.4.1 “Derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal
to 3” 10
15) Subclause 7.3.2.1 “Sequence parameter set RBSP syntax” ...10
16) Subclause 7.3.2.2 “Picture parameter set RBSP syntax” ...10
17) Subclause 7.3.2.9.2 “Slice data partition B RBSP syntax”..10
18) Subclause 7.3.2.9.3 “Slice data partition C RBSP syntax”..11
19) Subclause 7.3.3 “Slice header syntax”...11
20) Subclause 7.3.3.2 “Prediction weight table syntax” ..12
21) Subclause 7.3.5.1 “Macroblock prediction syntax”...13
22) Subclause 7.3.5.3 “Residual data syntax”..13
23) Subclause 7.3.5.3.2 “Residual block CABAC syntax”..14
24) New Subclause 7.3.5.3.3 "Residual luma data syntax” ...15
25) Subclause 7.4.1.2.5 “Order of VCL NAL units and association to coded pictures”..15
26) Subclause 7.4.2.1 “Sequence parameter set RBSP semantics”..16
27) Subclause 7.4.2.1.2 “Sequence parameter set extension RBSP semantics”...19
28) Subclause 7.4.2.2 “Picture parameter set RBSP semantics”..19
29) Subclause 7.4.2.9.1 “Slice data partition A RBSP semantics” ..19
30) Subclause 7.4.2.9.2 “Slice data partition B RBSP semantics”...20
31) Subclause 7.4.2.9.3 “Slice data partition C RBSP semantics”...20
32) Subclause 7.4.3 “Slice header semantics” ...20
33) Subclause 7.4.5 “Macroblock layer semantics”...20
34) Subclause 7.4.5.1 “Macroblock prediction semantics”..21

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 4

35) Subclause 7.4.5.3 “Residual data semantics” ..22
36) Subclause 7.4.5.3.2 “Residual block CABAC semantics”...22
37) New Subclause 7.4.5.3.3 "Residual luma data semantics” ..23
38) Clause 8 and all subclauses of clause 8 “Decoding process”...23
39) Clause 8 “Decoding process” ..23
40) Subclause 8.3.4 “Intra prediction for chroma samples”...24
41) Subclause 8.3.4.1 “Specification of Intra_Chroma_DC prediction mode”..24
42) New Subclause 8.3.4.5 “Intra prediction for chroma samples with ChromaArrayType equal to 3”25
43) Subclause 8.4 “Inter prediction process” ...26
44) Subclause 8.4.1 “Derivation process for motion vector components and reference indices”26
45) Subclause 8.4.2.1 “Reference picture selection process” ..26
46) Subclause 8.4.2.2 “Fractional sample interpolation process” ..27
47) Subclause 8.4.2.2.2 “Chroma sample interpolation process” ..28
48) Subclause 8.5 “Transform coefficient decoding process and picture construction process prior to deblocking
filter process”...28
49) Subclause 8.5.1 “Specification of transform decoding process for 4x4 luma residual blocks”28
50) Subclause 8.5.2 “Specification of transform decoding process for luma samples of Intra_16x16 macroblock
prediction mode” ...29
51) Subclause 8.5.3 “Specification of transform decoding process for 8x8 luma residual blocks”29
52) Subclause 8.5.4 “Specification of transform decoding process for chroma samples” ...29
53) New subclause 8.5.4.1 “Specification of transform decoding process for chroma samples with
ChromaArrayType equal to 3” ..30
54) Subclause 8.5.6 “Inverse scanning process for 8x8 luma transform coefficients” ..31
55) Subclause 8.5.7 “Derivation process for the chroma quantisation parameters and scaling function”31
56) Subclause 8.5.8 “Scaling and transformation process for luma DC transform coefficients for Intra_16x16
macroblock type”...32
57) Subclause 8.5.9 “Scaling and transformation process for chroma DC transform coefficients”...........................33
58) Subclause 8.5.10 “Scaling and transformation process for residual 4x4 blocks” ..35
59) Subclause 8.5.11 “Scaling and transformation process for residual 8x8 luma blocks”35
60) Subclause 8.5.12 “Picture construction process prior to deblocking filter process”..36
61) Subclause 8.5.13 “Residual colour transform process” ...37
62) Subclause 8.7 “Deblocking filter process” ..38
63) Subclause 8.7.2.3 “Filtering process for edges with bS less than 4” ...40
64) Subclause 8.7.2.4 “Filtering process for edges for bS equal to 4”...41
65) Clause 9 and all subclauses of clause 9 “Parsing process” ..42
66) Subclause 9.1.2 “Mapping process for coded block pattern” ..43
67) Subclause 9.2 “CAVLC parsing process for transform coefficient levels” ...43
68) Subclause 9.2.1 “Parsing process for total number of transform coefficient levels and trailing ones”................43
69) Subclause 9.3.1.1 “Initialisation process for context variables” ..44
70) Subclause 9.3.2 “Binarization process” ...55

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 5

71) Subclause 9.3.2.6 “Binarization process for coded block pattern” ..58
72) Subclause 9.3.3.1 “Derivation process for ctxIdx”..58
73) Subclause 9.3.3.1.1.9 “Derivation process of ctxIdxInc for the syntax element coded_block_flag”58
74) Subclause 9.3.3.1.3 “Assignment process of ctxIdxInc for syntax elements significant_coeff_flag,
last_significant_coeff_flag, and coeff_abs_level_minus1” ...60
75) Subclause A.2.4 “High profile” ...61
76) Subclause A.2.5 “High 10 profile” ..62
77) Subclause A.2.6 “High 4:2:2 profile” ..62
78) New subclause A.2.7 “High 4:4:4 Predictive profile” ...62
79) New subclause A.2.8 “High 10 Intra profile”..63
80) New subclause A.2.9 “High 4:2:2 Intra profile”..64
81) Subclause A.2.10 “High 4:4:4 Intra profile” ...64
82) Subclause A.2.11 “CAVLC 4:4:4 Intra profile” ..65
83) Subclause A.3.2 “Level limits common to the High, High 10, High 4:2:2, and High 4:4:4 profiles”65
84) Subclause A.3.3 “Profile-specific level limits” ...66
85) Subclause D.1 “SEI payload syntax”...67
86) New subclause D.1.22.1 “Post-filter hint SEI message syntax” ..68
87) New subclause D.1.22.2 “Tone mapping information SEI message syntax” ..68
88) Subclause D.2.19 “Motion-constrained slice group set SEI message semantics” ...69
89) New subclause D.2.22.1 “Post-filter hint SEI message semantics“...69
90) New subclause D.2.22.2 “Tone mapping information SEI message semantics” ...70
91) Subclause E.2.1 “VUI parameters semantics” ...72

1) Subclause 0.4, “Publication and versions of this specification”

In subclause 0.4, replace the following.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 4 (the current specification) refers to the integrated text containing
the first technical corrigendum (2004), the first amendment (the "Fidelity range extensions"), and an additional
technical corrigendum (2005). In the ITU-T, the next published version after version 2 was version 4 (due to the
completion of the drafting work for version 4 prior to the approval opportunity for a final version 3 text).

with the following.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 4 refers to the integrated text containing the first technical
corrigendum (2004), the first amendment (the "Fidelity range extensions"), and an additional technical corrigendum
(2005). In the ITU-T, the next published version after version 2 was version 4 (due to the completion of the drafting
work for version 4 prior to the approval opportunity for a final version 3 text).

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 5 refers to the integrated version 4 text with its specification of the
High 4:4:4 profile removed.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 6 refers to the integrated version 5 text after its amendment to
support additional colour space indicators. In the ITU-T, the changes for versions 5 and 6 were approved and
published as a single amendment.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 7 refers to the integrated version 6 text after its amendment to define
five new profiles intended primarily for professional applications (the High 10 Intra, High 4:2:2 Intra,
High 4:4:4 Intra, CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles) and two new types of supplemental

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 6

enhancement information (SEI) messages (the post-filter hint SEI message and the tone mapping information SEI
message).

2) Subclause 0.6, “Overview of the design characteristics”

In the second paragraph of subclause 0.6, replace the sentence

The algorithm is typically not lossless, as the exact source sample values are typically not preserved through the
encoding and decoding processes.

with

With the exception of the transform bypass mode of operation for lossless coding in the High 4:4:4 Intra,
CAVLC 4:4:4 Intra, and High 4:4:4 Predictive profiles, and the I_PCM mode of operation in all profiles, the
algorithm is typically not lossless, as the exact source sample values are typically not preserved through the
encoding and decoding processes.

3) Subclause 0.7, “How to read this specification”

In the third paragraph of subclause 0.6, replace the following sentence.

Annex A specifies six profiles (Baseline, Main, Extended, High, High 10 and High 4:2:2), each being tailored to
certain application domains, and defines the so-called levels of the profiles.

with

Annex A specifies eleven profiles (Baseline, Main, Extended, High, High 10, High 4:2:2, High 4:4:4 Predictive,
High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra), each being tailored to certain application
domains, and defines the so-called levels of the profiles.

4) Subclause 3.6, “arbitrary slice order”

Replace subclause 3.6 with the following.

3.6 arbitrary slice order: A decoding order of slices in which the macroblock address of the first macroblock
of some slice of a picture may be less than the macroblock address of the first macroblock of some other
preceding slice of the same coded picture or, in the case of a picture that is coded using three separate
colour planes, some other preceding slice of the same colour plane.

5) Subclause 3.75 “macroblock”

Replace subclause 3.75 with the following.

3.75 macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples of a
picture that has three sample arrays; or a 16x16 block of samples of a monochrome picture or a picture that
is coded using three separate colour planes. The division of a slice or a macroblock pair into macroblocks
is a partitioning.

6) Subclause 3.136 “slice”

Replace subclause 3.136 with the following.

3.136 slice: An integer number of macroblocks or macroblock pairs ordered consecutively in the raster scan
within a particular slice group. For the primary coded picture, the division of each slice group into slices
is a partitioning. Although a slice contains macroblocks or macroblock pairs that are consecutive in the
raster scan within a slice group, these macroblocks or macroblock pairs are not necessarily consecutive in

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 7

the raster scan within the picture. The addresses of the macroblocks are derived from the address of the
first macroblock in a slice (as represented in the slice header), the macroblock to slice group map, and,
when a picture is coded using three separate colour planes, a colour plane identifier.

7) Subclause 6.2 “Source, decoded, and output picture formats”

In subclause 6.2, make the following changes.

Replace the following.

The variables SubWidthC, and SubHeightC are specified in Table 6-1, depending on the chroma format sampling
structure, which is specified through chroma_format_idc. An entry marked as "-" in Table 6-1 denotes an
undefined value for SubWidthC or SubHeightC. Other values of chroma_format_idc, SubWidthC, and
SubHeightC may be specified in the future by ITU-T | ISO/IEC.

Table 6-1 –SubWidthC, and SubHeightC values derived from chroma_format_idc

chroma_format_idc Chroma Format SubWidthC SubHeightC

0 monochrome - -

1 4:2:0 2 2

2 4:2:2 2 1

3 4:4:4 1 1

with the following

The variables SubWidthC and SubHeightC are specified in Table 6-1, depending on the chroma format sampling
structure, which is specified through chroma_format_idc and separate_colour_plane_flag. An entry marked as "-"
in Table 6-1 denotes an undefined value for SubWidthC or SubHeightC. Other values of chroma_format_idc,
SubWidthC, and SubHeightC may be specified in the future by ITU-T | ISO/IEC.

Table 6-1 –SubWidthC, and SubHeightC values derived from chroma_format_idc and
separate_colour_plane_flag

chroma_format_idc separate_colour_plane_flag Chroma Format SubWidthC SubHeightC

0 0 monochrome - -

1 0 4:2:0 2 2

2 0 4:2:2 2 1

3 0 4:4:4 1 1

3 1 4:4:4 - -

Replace the following paragraph.
In 4:4:4 sampling, each of the two chroma arrays has the same height and width as the luma array.

with

In 4:4:4 sampling, depending on the value of separate_colour_plane_flag, the following applies.
– If separate_colour_plane_flag is equal to 0, each of the two chroma arrays has the same height and width as the

luma array.
– Otherwise (separate_colour_plane_flag is equal to 1), the three colour planes are separately processed as

monochrome sampled pictures.

Replace the following paragraph

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 8

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video
sequence is in the range of 8 to 12, and the number of bits used in the luma array may differ from the number of bits
used in the chroma arrays.

with

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video
sequence is in the range of 8 to 14, and the number of bits used in the luma array may differ from the number of bits
used in the chroma arrays.

Replace the following paragraph.
– If chroma_format_idc is equal to 0 (monochrome), MbWidthC and MbHeightC are both equal to 0 (as no

chroma arrays are specified for monochrome video).

with the following.
– If chroma_format_idc is equal to 0 (monochrome) or separate_colour_plane_flag is equal to 1, MbWidthC and

MbHeightC are both set equal to 0.

8) Subclause 6.3 “Spatial subdivision of pictures and slices”

In subclause 6.3, make the following changes.

Replace the following

Each macroblock is comprised of one 16x16 luma array and, when the video format is not monochrome, two
corresponding chroma sample arrays. When macroblock-adaptive frame/field decoding is not in use, each
macroblock represents a spatial rectangular region of the picture. For example, a picture may be divided into two
slices as shown in Figure 6-7.

with the following

Each macroblock is comprised of one 16x16 luma array and, when the chroma sampling format is not equal to 4:0:0
and separate_colour_plane_flag is equal to 0, two corresponding chroma sample arrays. When
separate_colour_plane_flag is equal to 1, each macroblock is comprised of one 16x16 luma or chroma sample array.
When macroblock-adaptive frame/field decoding is not in use, each macroblock represents a spatial rectangular
region of the picture. For example, a picture may be divided into two slices as shown in Figure 6-7.

When a picture is coded using three separate colour planes (separate_colour_plane_flag is equal to 1), a slice
contains only macroblocks of one colour component being identified by the corresponding value of colour_plane_id,
and each colour component array of a picture consists of slices having the same colour_plane_id value. Coded
slices with different values of colour_plane_id within an access unit can be interleaved with each other under the
constraint that for each value of colour_plane_id, the coded slice NAL units with that value colour_plane_id shall be
in the order of increasing macroblock address for the first macroblock of each coded slice NAL unit.

9) New subclause 6.4.3.1 “Inverse 4x4 Cb or Cr block scanning process for
ChromaArrayType equal to 3”

Insert a new subclause 6.4.3.1 as follows.

6.4.3.1 Inverse 4x4 Cb or Cr block scanning process for ChromaArrayType equal to 3

This process is only invoked when ChromaArrayType is equal to 3.

The inverse 4x4 chroma block scanning process is identical to inverse 4x4 luma block scanning process as specified
in subclause 6.4.3 when substituting the term “luma” with the term “Cb” or the term “Cr”, and substituting the term
“luma4x4BlkIdx” with the term “cb4x4BlkIdx” or the term “cr4x4BlkIdx” in all places in subclause 6.4.3.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 9

10) New subclause 6.4.4.1 “Inverse 8x8 Cb or Cr block scanning process for
ChromaArrayType equal to 3”

Insert a new subclause 6.4.4.1 as follows.

6.4.4.1 Inverse 8x8 Cb or Cr block scanning process for ChromaArrayType equal to 3

This process is only invoked when ChromaArrayType is equal to 3.

The inverse 8x8 chroma block scanning process is identical to inverse 8x8 luma block scanning process as specified
in subclause 6.4.4 when substituting the term “luma” with the term “Cb” or the term “Cr”, and substituting the term
“luma8x8BlkIdx” with the term “cb8x8BlkIdx” or the term “cr8x8BlkIdx” in all places in subclause 6.4.4.

11) Subclause 6.4.8 “Derivation processes for neighbouring macroblocks,
blocks, and partitions”

In subclause 6.4.8, make the following changes.

Insert the following sentence after the paragraph starting with “Subclause 6.4.8.2 specifies”.

Subclause 6.4.8.2.1 specifies the derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType
equal to 3.

Insert the following sentence after the paragraph starting with “Subclause 6.4.8.4 specifies”.

Subclause 6.4.8.4.1 specifies the derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType
equal to 3.

Replace the paragraph starting with “Table 6-2 specifies” with the following.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N
in mbAddrN, mbPartIdxN, subMbPartIdxN, luma8x8BlkIdxN, cb8x8BlkIdxN, cr8x8BlkIdxN, luma4x4BlkIdxN,
cb4x4BlkIdxN, cr4x4BlkIdxN, and chroma4x4BlkIdxN for the output. These input and output assignments are used
in subclauses 6.4.8.1 to 6.4.8.5. The variable predPartWidth is specified when Table 6-2 is referred to.

12) New subclause 6.4.8.2.1 “Derivation process for neighbouring 8x8 chroma
blocks for ChromaArrayType equal to 3”

Insert a new subclause 6.4.8.2.1 as follows.

6.4.8.2.1 Derivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3

This process is only invoked when ChromaArrayType is equal to 3.

The derivation process for neighbouring 8x8 chroma block is identical to the derivation process for neighbouring
8x8 luma block as specified in subclause 6.4.8.2 when substituting the term “luma” with the term “Cb” or the term
“Cr”, and substituting the term “luma8x8BlkIdx” with the term “cb8x8BlkIdx” or the term “cr8x8BlkIdx” in all
places in subclause 6.4.8.2.

13) Subclause 6.4.8.4 “Derivation process for neighbouring 4x4 chroma
blocks”

In subclause 6.4.8.4, make the following changes.

Replace the paragraph starting with “Depending on chroma_format_idc” with the following

The position (x, y) of the upper-left sample of the 4x4 chroma block with index chroma4x4BlkIdx is derived by

x = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (6-25)
y = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (6-26)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 10

Update all equation numbers in the subsequent subclauses due to the removal of equation 6-27 and 6-28.

14) New subclause 6.4.8.4.1 “Derivation process for neighbouring 4x4 chroma
blocks for ChromaArrayType equal to 3”

Insert a new subclause 6.4.8.4.1 as follows.

6.4.8.4.1 Derivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3

This process is only invoked when ChromaArrayType is equal to 3.

The derivation process for neighbouring 4x4 chroma block in 4:4:4 chroma format is identical to the derivation
process for neighbouring 4x4 luma block as specified in subclause 6.4.8.3 when substituting the term “luma” with
the term “Cb” or the term “Cr”, and substituting the term “luma4x4BlkIdx” with the term “cb4x4BlkIdx” or the term
“cr4x4BlkIdx” in all places in subclause 6.4.8.3.

15) Subclause 7.3.2.1 “Sequence parameter set RBSP syntax”

In subclause 7.3.2.1, make the following changes.

Replace the syntax element “residual_colour_transform_flag” with the syntax element
“separate_colour_plane_flag”.

Replace the expression “profile_idc = = 144” with “profile_idc = = 44 | | profile_idc = = 244”.

Replace the expression “i < 8” with “i < ((chroma_format_idc ! = 3) ? 8 : 12)”.

16) Subclause 7.3.2.2 “Picture parameter set RBSP syntax”

In subclause 7.3.2.2, replace the expression “i < 6 + 2* transform_8x8_mode_flag” with
“i < 6 + ((chroma_format_idc ! = 3) ? 2 : 6) * transform_8x8_mode_flag”.

17) Subclause 7.3.2.9.2 “Slice data partition B RBSP syntax”

Replace the slice data partition B RBSP syntax table of subclause 7.3.2.9.2 with the following.

slice_data_partition_b_layer_rbsp() { C Descriptor
 slice_id All ue(v)
 if(separate_colour_plane_flag = = 1)
 colour_plane_id All u(2)
 if(redundant_pic_cnt_present_flag)
 redundant_pic_cnt All ue(v)
 slice_data() /* only category 3 parts of slice_data() syntax */ 3
 rbsp_slice_trailing_bits() 3
}

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 11

18) Subclause 7.3.2.9.3 “Slice data partition C RBSP syntax”

Replace the slice data partition B RBSP syntax table of subclause 7.3.2.9.3 as follows.

slice_data_partition_c_layer_rbsp() { C Descriptor
 slice_id All ue(v)
 if(separate_colour_plane_flag = = 1)
 colour_plane_id All u(2)
 if(redundant_pic_cnt_present_flag)
 redundant_pic_cnt All ue(v)
 slice_data() /* only category 4 parts of slice_data() syntax */ 4
 rbsp_slice_trailing_bits() 4
}

19) Subclause 7.3.3 “Slice header syntax”

Replace the slice header syntax table of subclause 7.3.3 with the following.

slice_header() { C Descriptor
 first_mb_in_slice 2 ue(v)
 slice_type 2 ue(v)
 pic_parameter_set_id 2 ue(v)
 if(separate_colour_plane_flag = = 1)
 colour_plane_id 2 u(2)
 frame_num 2 u(v)
 if(!frame_mbs_only_flag) {
 field_pic_flag 2 u(1)
 if(field_pic_flag)
 bottom_field_flag 2 u(1)
 }
 if(nal_unit_type = = 5)
 idr_pic_id 2 ue(v)
 if(pic_order_cnt_type = = 0) {
 pic_order_cnt_lsb 2 u(v)
 if(pic_order_present_flag && !field_pic_flag)
 delta_pic_order_cnt_bottom 2 se(v)
 }
 if(pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag) {
 delta_pic_order_cnt[0] 2 se(v)
 if(pic_order_present_flag && !field_pic_flag)
 delta_pic_order_cnt[1] 2 se(v)
 }
 if(redundant_pic_cnt_present_flag)
 redundant_pic_cnt 2 ue(v)
 if(slice_type = = B)
 direct_spatial_mv_pred_flag 2 u(1)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 12

 if(slice_type = = P | | slice_type = = SP | | slice_type = = B) {
 num_ref_idx_active_override_flag 2 u(1)
 if(num_ref_idx_active_override_flag) {
 num_ref_idx_l0_active_minus1 2 ue(v)
 if(slice_type = = B)
 num_ref_idx_l1_active_minus1 2 ue(v)
 }
 }
 ref_pic_list_reordering() 2
 if((weighted_pred_flag &&
 (slice_type = = P | | slice_type = = SP)) | |
 (weighted_bipred_idc = = 1 && slice_type = = B))

 pred_weight_table() 2
 if(nal_ref_idc != 0)
 dec_ref_pic_marking() 2
 if(entropy_coding_mode_flag && slice_type != I &&
 slice_type != SI)

 cabac_init_idc 2 ue(v)
 slice_qp_delta 2 se(v)
 if(slice_type = = SP | | slice_type = = SI) {
 if(slice_type = = SP)
 sp_for_switch_flag 2 u(1)
 slice_qs_delta 2 se(v)
 }
 if(deblocking_filter_control_present_flag) {
 disable_deblocking_filter_idc 2 ue(v)
 if(disable_deblocking_filter_idc != 1) {
 slice_alpha_c0_offset_div2 2 se(v)
 slice_beta_offset_div2 2 se(v)
 }
 }
 if(num_slice_groups_minus1 > 0 &&
 slice_group_map_type >= 3 && slice_group_map_type <= 5)

 slice_group_change_cycle 2 u(v)
}

20) Subclause 7.3.3.2 “Prediction weight table syntax”

In the syntax table of subclause 7.3.2.2, replace the syntax expression

chroma_format_idc != 0

with the following

ChromaArrayType != 0

(in all 3 occurences)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 13

21) Subclause 7.3.5.1 “Macroblock prediction syntax”

In the syntax table of subclause 7.3.5.1, replace the syntax expression

chroma_format_idc != 0

with the following

ChromaArrayType = = 1 | | ChromaArrayType = = 2

(in one occurrence)

22) Subclause 7.3.5.3 “Residual data syntax”

Replace the content of subclause 7.3.5.3 with the following.

residual() { C Descriptor
 if(!entropy_coding_mode_flag)
 residual_block = residual_block_cavlc
 else
 residual_block = residual_block_cabac
 residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8)
 Intra16x16DCLevel = i16x16DClevel
 Intra16x16ACLevel = i16x16AClevel
 LumaLevel = level
 LumaLevel8x8 = level8x8
 if(ChromaArrayType = = 1 | | ChromaArrayType = = 2) {
 NumC8x8 = 4 / (SubWidthC * SubHeightC)
 for(iCbCr = 0; iCbCr < 2; iCbCr++)
 if(CodedBlockPatternChroma & 3)
 /* chroma DC residual present*/

 residual_block(ChromaDCLevel[iCbCr], 4 * NumC8x8) 3 | 4
 else
 for(i = 0; i < 4 * NumC8x8; i++)
 ChromaDCLevel[iCbCr][i] = 0
 for(iCbCr = 0; iCbCr < 2; iCbCr++)
 for(i8x8 = 0; i8x8 < NumC8x8; i8x8++)
 for(i4x4 = 0; i4x4 < 4; i4x4++)
 if(CodedBlockPatternChroma & 2)
 /* chroma AC residual present */

 residual_block(ChromaACLevel[iCbCr][i8x8*4+i4x4],15) 3 | 4
 else
 for(i = 0; i < 15; i++)
 ChromaACLevel[iCbCr][i8x8*4+i4x4][i] = 0
 } else if(ChromaArrayType = = 3) {
 residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8)
 CbIntra16x16DCLevel = i16x16DClevel
 CbIntra16x16ACLevel = i16x16AClevel
 CbLevel = level
 CbLevel8x8 = level8x8
 residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 14

 CrIntra16x16DCLevel = i16x16DClevel
 CrIntra16x16ACLevel = i16x16AClevel
 CrLevel = level
 CrLevel8x8 = level8x8
 }
}

23) Subclause 7.3.5.3.2 “Residual block CABAC syntax”

Replace the content of subclause 7.3.5.3.2 with the following.

residual_block_cabac(coeffLevel, maxNumCoeff) { C Descriptor
 if(maxNumCoeff != 64 | | (ChromaArrayType = = 3))
 coded_block_flag 3 | 4 ae(v)
 if(coded_block_flag) {
 numCoeff = maxNumCoeff
 i = 0
 do {
 significant_coeff_flag[i] 3 | 4 ae(v)
 if(significant_coeff_flag[i]) {
 last_significant_coeff_flag[i] 3 | 4 ae(v)
 if(last_significant_coeff_flag[i]) {
 numCoeff = i + 1
 for(j = numCoeff; j < maxNumCoeff; j++)
 coeffLevel[j] = 0
 }
 }
 i++
 } while(i < numCoeff - 1)
 coeff_abs_level_minus1[numCoeff - 1] 3 | 4 ae(v)
 coeff_sign_flag[numCoeff - 1] 3 | 4 ae(v)
 coeffLevel[numCoeff - 1] =
 (coeff_abs_level_minus1[numCoeff – 1] + 1) *
 (1 – 2 * coeff_sign_flag[numCoeff – 1])

 for(i = numCoeff - 2; i >= 0; i--)
 if(significant_coeff_flag[i]) {
 coeff_abs_level_minus1[i] 3 | 4 ae(v)
 coeff_sign_flag[i] 3 | 4 ae(v)
 coeffLevel[i] = (coeff_abs_level_minus1[i] + 1) *
 (1 – 2 * coeff_sign_flag[i])

 } else
 coeffLevel[i] = 0
 } else
 for(i = 0; i < maxNumCoeff; i++)
 coeffLevel[i] = 0
}

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 15

24) New Subclause 7.3.5.3.3 "Residual luma data syntax”

Insert a new subclause 7.3.5.3.3 as follows.

7.3.5.3.3 Residual luma data syntax

residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8) { C Descriptor
 if(!entropy_coding_mode_flag)
 residual_block = residual_block_cavlc
 else
 residual_block = residual_block_cabac
 if(MbPartPredMode(mb_type, 0) = = Intra_16x16)
 residual_block(i16x16DClevel, 16) 3
 for(i8x8 = 0; i8x8 < 4; i8x8++)
 if(!transform_size_8x8_flag | | !entropy_coding_mode_flag)
 for(i4x4 = 0; i4x4 < 4; i4x4++) {
 if(CodedBlockPatternLuma & (1 << i8x8))
 if(MbPartPredMode(mb_type, 0) = = Intra_16x16)
 residual_block(i16x16AClevel[i8x8*4+ i4x4], 15) 3
 else
 residual_block(level[i8x8 * 4 + i4x4], 16) 3 | 4
 else if(MbPartPredMode(mb_type, 0) = = Intra_16x16)
 for(i = 0; i < 15; i++)
 i16x16AClevel[i8x8 * 4 + i4x4][i] = 0
 else
 for(i = 0; i < 16; i++)
 level[i8x8 * 4 + i4x4][i] = 0
 if(!entropy_coding_mode_flag && transform_size_8x8_flag)
 for(i = 0; i < 16; i++)
 level8x8[i8x8][4 * i + i4x4] = level[i8x8 * 4 + i4x4][i]
 }
 else if(CodedBlockPatternLuma & (1 << i8x8))
 residual_block(level8x8[i8x8], 64) 3 | 4
 else
 for(i = 0; i < 64; i++)
 level8x8[i8x8][i] = 0
}

25) Subclause 7.4.1.2.5 “Order of VCL NAL units and association to coded
pictures”

In subclause 7.4.1.2.5, replace the following paragraph.

- Otherwise (arbitrary slice order is not allowed), the order of coded slice of an IDR picture NAL units shall be in
the order of increasing macroblock address for the first macroblock of each coded slice of an IDR picture NAL
unit.

with

- Otherwise (arbitrary slice order is not allowed), the following applies.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 16

– If separate_colour_plane_flag is equal to 0, the order of coded slices of IDR picture NAL units shall
be in the order of increasing macroblock address for the first macroblock of each coded slice of an
IDR picture NAL unit.

– Otherwise (separate_colour_plane_flag is equal to 1), the order of coded slices of IDR picture NAL
units for each value of colour_plane_id shall be in the order of increasing macroblock address for the
first macroblock of each coded slice of the particular value of colour_plane_id of an IDR picture NAL
unit.

NOTE – When separate_colour_plane_flag is equal to 1, the relative ordering of coded slices having different
values of colour_plane_id is not constrained.

26) Subclause 7.4.2.1 “Sequence parameter set RBSP semantics”

In subclause 7.4.2.1, make the following changes

Replace the paragraphs that state as follows.

NOTE – When one or more than one of constraint_set0_flag, constraint_set1_flag, or constraint_set2_flag are equal to 1, the
bitstream must obey the constraints of all of the indicated subclauses of subclause A.2. When profile_idc is equal to 100,
110, 122, or 144, the values of constraint_set0_flag, constraint_set1_flag, and constraint_set2_flag must all be equal to 0.

constraint_set3_flag indicates the following.
– If profile_idc is equal to 66, 77, or 88 and level_idc is equal to 11, constraint_set3_flag equal to 1 indicates that the

bitstream obeys all constraints specified in Annex A for level 1b and constraint_set3_flag equal to 0 indicates that
the bitstream may or may not obey all constraints specified in Annex A for level 1b.

– Otherwise (profile_idc is equal to 100, 110, 122, or 144 or level_idc is not equal to 11), the value of 1 for
constraint_set3_flag is reserved for future use by ITU-T | ISO/IEC. constraint_set3_flag shall be equal to 0 in
bitstreams conforming to this Recommendation | International Standard when profile_idc is equal
to 100, 110, 122, or 144 or level_idc is not equal to 11. Decoders conforming to this Recommendation |
International Standard shall ignore the value of constraint_set3_flag when profile_idc is equal
to 100, 110, 122, or 144 or level_idc is not equal to 11.

with the following.

NOTE – When one or more than one of constraint_set0_flag, constraint_set1_flag, or constraint_set2_flag are equal to 1, the
bitstream must obey the constraints of all of the indicated subclauses of subclause A.2. When profile_idc is equal to 44,
100, 110, 122, or 244, the values of constraint_set0_flag, constraint_set1_flag, and constraint_set2_flag must all be equal
to 0.

constraint_set3_flag indicates the following.
– If profile_idc is equal to 66, 77, or 88 and level_idc is equal to 11, constraint_set3_flag equal to 1 indicates that the

bitstream obeys all constraints specified in Annex A for level 1b and constraint_set3_flag equal to 0 indicates that
the bitstream may or may not obey all constraints specified in Annex A for level 1b.

– Otherwise, if profile_idc is equal to 100 or 110, constraint_set3_flag equal to 1 indicates that the bitstream obeys all
constraints specified in Annex A for the High 10 Intra profile, and constraint_set3_flag equal to 0 indicates that the
bitstream may or may not obey these corresponding constraints.

– Otherwise, if profile_idc is equal to 122, constraint_set3_flag equal to 1 indicates that the bitstream obeys all
constraints specified in Annex A for the High 4:2:2 Intra profile, and constraint_set3_flag equal to 0 indicates that
the bitstream may or may not obey these corresponding constraints.

– Otherwise, if profile_idc is equal to 44, constraint_set3_flag shall be equal to 1. When profile_idc is equal to 44, the
value of 0 for constraint_set3_flag is forbidden.

– Otherwise, if profile_idc is equal to 244, constraint_set3_flag equal to 1 indicates that the bitstream obeys all
constraints specified in Annex A for the High 4:4:4 Intra profile, and constraint_set3_flag equal to 0 indicates that
the bitstream may or may not obey these corresponding constraints.

– Otherwise (profile_idc is equal to 66, 77, 88 and level_idc is not equal to 11), the value of 1 for constraint_set3_flag
is reserved for future use by ITU-T | ISO/IEC. constraint_set3_flag shall be equal to 0 in bitstreams conforming to
this Recommendation | International Standard when profile_idc is equal to 66, 77, or 88 and level_idc is not equal
to 11. Decoders conforming to this Recommendation | International Standard shall ignore the value of
constraint_set3_flag when profile_idc is equal to 66, 77, or 88 and level_idc is not equal to 11.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 17

Delete the paragraph starting with “residual_colour_transform_flag”.

Add the following paragraph before the paragraph starting with “bit_depth_luma_minus8”.

separate_colour_plane_flag equal to 1 specifies that the three colour components of the 4:4:4 chroma format are
coded separately. separate_colour_plane_flag equal to 0 specifies that the three colour components of the 4:4:4
chroma format are not coded separately. When separate_colour_plane_flag is not present, it shall be inferred to be
equal to 0. When separate_colour_plane_flag is equal to 1, the primary coded picture consists of three separate
components, each of which consists of coded samples of one colour plane (Y or Cb or Cr) that conforms to the
monochrome coding syntax. In this case, each picture is associated with a specific colour_plane_id value.

NOTE – There is no dependency in decoding processes between the colour planes having different colour_plane_id values.
For example, the decoding process of a monochrome picture with one value of colour_plane_id does not use any date from
monochrome pictures having different values of colour_plane_id for inter prediction.

Depending on the value of separate_colour_plane_flag, assign the value of the variable ChromaArrayType as
follows.
– If separate_colour_plane_flag is equal to 0, ChromaArrayType is set equal to chroma_format_idc.
– Otherwise (separate_colour_plane_flag is equal to 1), ChromaArrayType is set equal to 0.

Replace the paragraph starting with “bit_depth_luma_minus8” with the following.

bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array and the value of the luma
quantisation parameter range offset QpBdOffsetY, as specified by

BitDepthY = 8 + bit_depth_luma_minus8 (7-1)

QpBdOffsetY = 6 * bit_depth_luma_minus8 (7-2)

When bit_depth_luma_minus8 is not present, it shall be inferred to be equal to 0. bit_depth_luma_minus8 shall be
in the range of 0 to 6, inclusive.

Replace the paragraph starting with “bit_depth_chroma_minus8” with the following.

bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays and the value of the chroma
quantisation parameter range offset QpBdOffsetC, as specified by

BitDepthC = 8 + bit_depth_chroma_minus8 (7-3)

QpBdOffsetC = 6 * bit_depth_chroma_minus8 (7-4)

When bit_depth_chroma_minus8 is not present, it shall be inferred to be equal to 0. bit_depth_chroma_minus8
shall be in the range of 0 to 6, inclusive.

NOTE – The value of bit_depth_chroma_minus8 is not used in the decoding process when ChromaArrayType is equal to 0.
In particular, when separate_colour_plane_flag is equal to 1, each colour plane is decoded as a distinct monochrome picture
using the luma component decoding process (except for the selection of scaling matrices) and the luma bit depth is used for
all three colour components.

Replace the paragraph starting with “seq_scaling_matrix_present_flag equal to 1” with the following.

seq_scaling_matrix_present_flag equal to 1 specifies that the flags seq_scaling_list_present_flag[i] for i = 0..11
are present. seq_scaling_matrix_present_flag equal to 0 specifies that these flags are not present and the sequence-
level scaling list specified by Flat_4x4_16 shall be inferred for i = 0..5 and the sequence-level scaling list specified
by Flat_8x8_16 shall be inferred for i = 6..11. When seq_scaling_matrix_present_flag is not present, it shall be
inferred to be equal to 0.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 18

Replace Table 7–2 with the following.

Table 7-2 – Assignment of mnemonic names to scaling list indices and specification of fall-back rule

Value of
scaling list

index

Mnemonic name Block
size

MB
prediction

type

Component Scaling list
fall-back rule

set A

Scaling list
fall-back rule

set B

Default
scaling list

0 Sl_4x4_Intra_Y 4x4 Intra Y default
scaling list

sequence-level
scaling list

Default_4x4_Intra

1 Sl_4x4_Intra_Cb 4x4 Intra Cb scaling list
for i = 0

scaling list
for i = 0

Default_4x4_Intra

2 Sl_4x4_Intra_Cr 4x4 Intra Cr scaling list
for i = 1

scaling list
for i = 1

Default_4x4_Intra

3 Sl_4x4_Inter_Y 4x4 Inter Y default
scaling list

sequence-level
scaling list

Default_4x4_Inter

4 Sl_4x4_Inter_Cb 4x4 Inter Cb scaling list
for i = 3

scaling list
for i = 3

Default_4x4_Inter

5 Sl_4x4_Inter_Cr 4x4 Inter Cr scaling list
for i = 4

scaling list
for i = 4

Default_4x4_Inter

6 Sl_8x8_Intra_Y 8x8 Intra Y default
scaling list

sequence-level
scaling list

Default_8x8_Intra

7 Sl_8x8_Inter_Y 8x8 Inter Y default
scaling list

sequence-level
scaling list

Default_8x8_Inter

8 Sl_8x8_Intra_Cb 8x8 Intra Cb scaling list
for i = 6

scaling list
for i = 6

Default_8x8_Intra

9 Sl_8x8_Inter_Cb 8x8 Inter Cb scaling list
for i = 7

scaling list
for i = 7

Default_8x8_Inter

10 Sl_8x8_Intra_Cr 8x8 Intra Cr scaling list
for i = 8

scaling list
for i = 8

Default_8x8_Intra

11 Sl_8x8_Inter_Cr 8x8 Inter Cr scaling list
for i = 9

scaling list
for i = 9

Default_8x8_Inter

Replace the paragraph starting with “frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset,
frame_crop_bottom_offset” with the following.

frame_crop_left_offset, frame_crop_right_offset, frame_crop_top_offset, frame_crop_bottom_offset specify the
samples of the pictures in the coded video sequence that are output from the decoding process, in terms of a
rectangular region specified in frame coordinates for output.

The variables CropUnitX and CropUnitY are derived as follows:
– If ChromaArrayType is equal to 0, CropUnitX and CropUnitY are derived as

CropUnitX = 1 (7-16)
CropUnitY = 2 – frame_mbs_only_flag (7-17)

– Otherwise (ChromaArrayType is equal to 1, 2, or 3), CropUnitX and CropUnitY are derived as

CropUnitX = SubWidthC (7-18)
CropUnitY = SubHeightC * (2 – frame_mbs_only_flag) (7-19)

The frame cropping rectangle contains luma samples with horizontal frame coordinates from
CropUnitX * frame_crop_left_offset to PicWidthInSamplesL – (CropUnitX * frame_crop_right_offset + 1) and

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 19

vertical frame coordinates from CropUnitY * frame_crop_top_offset to (16 * FrameHeightInMbs) –
(CropUnitY * frame_crop_bottom_offset + 1), inclusive. The value of frame_crop_left_offset shall be in the range
of 0 to (PicWidthInSamplesL / CropUnitX) – (frame_crop_right_offset + 1), inclusive; and the value of
frame_crop_top_offset shall be in the range of 0 to (16 * FrameHeightInMbs / CropUnitY) –
(frame_crop_bottom_offset + 1), inclusive.

When frame_cropping_flag is equal to 0, the values of frame_crop_left_offset, frame_crop_right_offset,
frame_crop_top_offset, and frame_crop_bottom_offset shall be inferred to be equal to 0.

When ChromaArrayType is not equal to 0, the corresponding specified samples of the two chroma arrays are the
samples having frame coordinates (x / SubWidthC, y / SubHeightC), where (x, y) are the frame coordinates of the
specified luma samples.

For decoded fields, the specified samples of the decoded field are the samples that fall within the rectangle specified
in frame coordinates.

27) Subclause 7.4.2.1.2 “Sequence parameter set extension RBSP semantics”

In subclause 7.4.2.1 replace the text

The value of chroma_format_idc

with

The value of chroma_format_idc and the value of ChromaArrayType

(in one occurrence)

28) Subclause 7.4.2.2 “Picture parameter set RBSP semantics”

Add the following note at the end of subclause 7.4.2.2.

NOTE – The values of bit_depth_chroma_minus8, chroma_qp_index_offset and second_chroma_qp_index_offset are not
used in the decoding process when ChromaArrayType is equal to 0. In particular, when separate_colour_plane_flag is equal
to 1, each colour plane is decoded as a distinct monochrome picture using the luma component decoding process (except for
the selection of scaling matrices), including the application of the luma quantisation parameter derivation process without
application of an offset for the decoding of the pictures having colour_plane_id not equal to 0.

29) Subclause 7.4.2.9.1 “Slice data partition A RBSP semantics”

In subclause 7.4.2.9.1, replace the paragraph that states as follows.

slice_id identifies the slice associated with the data partition. Each slice shall have a unique slice_id value within
the coded picture that contains the slice. When arbitrary slice order is not allowed as specified in Annex A, the first
slice of a coded picture, in decoding order, shall have slice_id equal to 0 and the value of slice_id shall be
incremented by one for each subsequent slice of the coded picture in decoding order.

with

slice_id identifies the slice associated with the data partition. The value of slice_id is constrained as follows.

– If separate_colour_plane_flag is equal to 0, the following applies.

– If arbitrary slice order is not allowed as specified in Annex A, the first slice of a coded picture, in
decoding order, shall have slice_id equal to 0 and the value of slice_id shall be incremented by one for
each subsequent slice of the coded picture in decoding order.

– Otherwise (arbitrary slice order is allowed), each slice shall have a unique slice_id value within the set of
slices of the coded picture.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 20

– Otherwise (separate_colour_plane_flag is equal to 1), the following applies.

– If arbitrary slice order is not allowed as specified in Annex A, the first slice of a coded picture having
each value of colour_plane_id, in decoding order, shall have slice_id equal to 0 and the value of slice_id
shall be incremented by one for each subsequent slice of the coded picture having the same value of
colour_plane_id, in decoding order.

– Otherwise (arbitrary slice order is allowed) each slice shall have a unique slice_id value within each set of
slices of the coded picture that have the same value of colour_plane_id.

30) Subclause 7.4.2.9.2 “Slice data partition B RBSP semantics”

In subclause 7.4.2.9.2, insert the following after the paragraph starting with “slice_id”.

colour_plane_id specifies the colour plane associated with the current slice RBSP when separate_colour_plane_flag
is equal to 1. The value of colour_plane_id shall be in the range of 0 to 2, inclusive. colour_plane_id equal to 0, 1,
and 2 correspond to the Y, Cb, and Cr planes, respectively.

NOTE – There is no dependency between the decoding processes of pictures having different values of colour_plane_id.

31) Subclause 7.4.2.9.3 “Slice data partition C RBSP semantics”

In subclause 7.4.2.9.3, insert the following after the paragraph starting with “slice_id”.

colour_plane_id has the same semantics as specified in subclause 7.4.2.9.2.

32) Subclause 7.4.3 “Slice header semantics”

In subclause 7.4. 3, make the following changes.

Replace the following paragraph.

first_mb_in_slice specifies the address of the first macroblock in the slice. When arbitrary slice order is not allowed
as specified in Annex A, the value of first_mb_in_slice shall not be less than the value of first_mb_in_slice for any
other slice of the current picture that precedes the current slice in decoding order.

with the following.

first_mb_in_slice specifies the address of the first macroblock in the slice. When arbitrary slice order is not allowed
as specified in Annex A, the value of first_mb_in_slice is constrained as follows.

– If separate_colour_plane_flag is equal to 0, the value of first_mb_in_slice shall not be less than the value of
first_mb_in_slice for any other slice of the current picture that precedes the current slice in decoding order.

– Otherwise (separate_colour_plane_flag is equal to 1), the value of first_mb_in_slice shall not be less than the
value of first_mb_in_slice for any other slice of the current picture that precedes the current slice in decoding
order and has the same value of colour_plane_id.

Insert the following after the paragraph starting with “pic_parameter_set_id”.

colour_plane_id has the same semantics as specified in subclause 7.4.2.9.2.

33) Subclause 7.4.5 “Macroblock layer semantics”

In subclause 7.4.5, make the following changes.

Replace the paragraph starting with “transform_size_8x8_flag equal to 1” with the following.

transform_size_8x8_flag equal to 1 specifies that for the current macroblock the transform coefficient decoding
process and picture construction process prior to deblocking filter process for residual 8x8 blocks shall be invoked

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 21

for luma samples, and when ChromaArrayType = = 3 also for Cb and Cr samples. transform_size_8x8_flag equal
to 0 specifies that for the current macroblock the transform coefficient decoding process and picture construction
process prior to deblocking filter process for residual 4x4 blocks shall be invoked for luma samples, and when
ChromaArrayType = = 3 also for Cb and Cr samples. When transform_size_8x8_flag is not present in the
bitstream, it shall be inferred to be equal to 0.

Replace the paragraph starting with “To each Intra_16x16” with the following..

To each Intra_16x16 prediction macroblock, an Intra16x16PredMode is assigned, which specifies the Intra_16x16
prediction mode.

The meaning of the variables CodedBlockPatternChroma and CodedBlockPatternLuma is specified with the
semantics of coded_block_pattern.

Replace the following paragraphs.

pcm_sample_luma[i] is a sample value. The first pcm_sample_luma[i] values represent luma sample values in
the raster scan within the macroblock. The number of bits used to represent each of these samples is BitDepthY.
When profile_idc is not equal to 100, 110, 122, or 144, pcm_sample_luma[i] shall not be equal to 0.

pcm_sample_chroma[i] is a sample value. The first MbWidthC * MbHeightC pcm_sample_chroma[i] values
represent Cb sample values in the raster scan within the macroblock and the remaining MbWidthC * MbHeightC
pcm_sample_chroma[i] values represent Cr sample values in the raster scan within the macroblock. The number
of bits used to represent each of these samples is BitDepthC. When profile_idc is not equal to 100, 110, 122,
or 144, pcm_sample_chroma[i] shall not be equal to 0.

with the following.

pcm_sample_luma[i] is a sample value. The first pcm_sample_luma[i] values represent luma sample values in
the raster scan within the macroblock. The number of bits used to represent each of these samples is BitDepthY.
When profile_idc is not equal to 44, 100, 110, 122, or 244, pcm_sample_luma[i] shall not be equal to 0.

pcm_sample_chroma[i] is a sample value. The first MbWidthC * MbHeightC pcm_sample_chroma[i] values
represent Cb sample values in the raster scan within the macroblock and the remaining MbWidthC * MbHeightC
pcm_sample_chroma[i] values represent Cr sample values in the raster scan within the macroblock. The number
of bits used to represent each of these samples is BitDepthC. When profile_idc is not equal to 44, 100, 110, 122,
or 244, pcm_sample_chroma[i] shall not be equal to 0.

Delete the paragraph starting with “When coded_block_pattern is present, CodedBlockPatternLuma specifies”.

Insert the following paragraph before the paragraph starting with “mb_qb_delta”.

Depending on the value of ChromaArrayType, the following meaning is assigned to CodedBlockPatternLuma and
the following restrictions are imposed on CodedBlockPatternChroma.
– If ChromaArrayType is equal to 0, CodedBlockPatternLuma specifies whether and where, for the luma

component, non-zero AC transform coefficient levels are present and the derivation of the variable
CodedBlockPatternChroma shall result in a value that is equal to 0.

– Otherwise, if ChromaArrayType is equal to 1 or 2, CodedBlockPatternLuma specifies whether, for the luma
component, non-zero AC transform coefficient levels are present and CodedBlockPatternChroma may be in the
range of 0 to 2, inclusive.

– Otherwise (ChromaArrayType is equal to 3), CodedBlockPatternLuma specifies whether and where, for the
luma and the Cb and Cr component, non-zero AC transform coefficient levels are present and the derivation of
the variable CodedBlockPatternChroma shall result in a value that is equal to 0.

34) Subclause 7.4.5.1 “Macroblock prediction semantics”

In subclause 7.4.5.1, make the following changes.

Replace the paragraph starting with “prev_intra4x4_pred_mode_flag” with the following.

prev_intra4x4_pred_mode_flag[luma4x4BlkIdx] and rem_intra4x4_pred_mode[luma4x4BlkIdx] specify the
Intra_4x4 prediction of the 4x4 luma block with index luma4x4BlkIdx = 0..15. When ChromaArrayType is equal
to 3, prev_intra4x4_pred_mode_flag[luma4x4BlkIdx] and rem_intra4x4_pred_mode[luma4x4BlkIdx] also

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 22

specify the Intra_4x4 prediction of the 4x4 Cb block and 4x4 Cr block with luma4x4BlkIdx equal to index
cb4x4BlkIdx = 0..15 or cr4x4BlkIdx = 0..15.

Replace the paragraph starting with “prev_intra8x8_pred_mode_flag” with the following.

prev_intra8x8_pred_mode_flag[luma8x8BlkIdx] and rem_intra8x8_pred_mode[luma8x8BlkIdx] specify the
Intra_8x8 prediction of the 8x8 luma block with index luma8x8BlkIdx = 0..3. When ChromaArrayType is equal to
3, prev_intra8x8_pred_mode_flag[luma8x8BlkIdx] and rem_intra8x8_pred_mode[luma8x8BlkIdx] also specify
the Intra_8x8 prediction of the 8x8 Cb block and 8x8 Cr block with index luma8x8BlkIdx equal to cb8x8BlkIdx =
0..3 or cr8x8BlkIdx = 0..3.

35) Subclause 7.4.5.3 “Residual data semantics”

Replace the content of subclause 7.4.5.3 with the following.

The syntax structure residual_block(), which is used for parsing the transform coefficient levels, is assigned as
follows.

– If entropy_coding_mode_flag is equal to 0, residual_block is set equal to residual_block_cavlc, which is used
for parsing the syntax elements for transform coefficient levels.

– Otherwise (entropy_coding_mode_flag is equal to 1), residual_block is set equal to residual_block_cabac,
which is used for parsing the syntax elements for transform coefficient levels.

The syntax structure residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8) is used with the variables in
brackets being its output and being assigned as follows. Intra16x16DCLevel is set equal to i16x16DClevel,
Intra16x16ACLevel is set equal to i16x16AClevel, LumaLevel is set equal to level, and LumaLevel8x8 is set equal
to level8x8.

When ChromaArrayType is equal to 1 or 2, the following applies.

– For each chroma component, indexed by iCbCr = 0..1, the DC transform coefficient levels of the 4 * NumC8x8
4x4 chroma blocks are parsed into the iCbCr-th list ChromaDCLevel[iCbCr].

– For each of the 4x4 chroma blocks, indexed by i4x4 = 0..3 and i8x8 = 0..NumC8x8 − 1, of each chroma
component, indexed by iCbCr = 0..1, the 15 AC transform coefficient levels are parsed into the
(i8x8*4 + i4x4)-th list of the iCbCr-th chroma component ChromaACLevel[iCbCr][i8x8*4 + i4x4].

When ChromaArrayType is equal to 3, the following applies.

– The syntax structure residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8) is used for the Cb
component with the variables in brackets being its output and being assigned as follows. CbIntra16x16DCLevel
is set equal to i16x16DClevel, CbIntra16x16ACLevel is set equal to i16x16AClevel, CbLevel is set equal to
level, and CbLevel8x8 is set equal to level8x8.

– The syntax structure residual_luma(i16x16DClevel, i16x16AClevel, level, level8x8) is used for the Cr
component with the variables in brackets being its output and being assigned as follows. CrIntra16x16DCLevel
is set equal to i16x16DClevel, CrIntra16x16ACLevel is set equal to i16x16AClevel, CrLevel is set equal to
level, and CrLevel8x8 is set equal to level8x8.

36) Subclause 7.4.5.3.2 “Residual block CABAC semantics”

In subclause 7.4.5.3.2, replace the paragraph starting with “coded_block_flag” with the following.

coded_block_flag specifies whether the block contains non-zero transform coefficient levels as follows.

– If coded_block_flag is equal to 0, the block contains no non-zero transform coefficient levels.

– Otherwise (coded_block_flag is equal to 1), the block contains at least one non-zero transform coefficient level.

When maxNumCoeff is equal to 64 and ChromaArrayType is not equal to 3, coded_block_flag is set equal to 1.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 23

37) New Subclause 7.4.5.3.3 "Residual luma data semantics”

Insert a new subclause 7.4.5.3.3 as follows.

7.3.5.3.3 Residual luma data semantics

Output of this syntax structure are the variables i16x16DClevel, i16x16AClevel, level, and level8x8.

The syntax structure residual_block(), which is used for parsing the transform coefficient levels, is assigned as
follows.

– If entropy_coding_mode_flag is equal to 0, residual_block is set equal to residual_block_cavlc, which is used
for parsing the syntax elements for transform coefficient levels.

– Otherwise (entropy_coding_mode_flag is equal to 1), residual_block is set equal to residual_block_cabac,
which is used for parsing the syntax elements for transform coefficient levels.

Depending on mb_type the syntax structure residual_block(coeffLevel, maxNumCoeff) is used with the arguments
coeffLevel, which is a list containing the maxNumCoeff transform coefficient levels that are parsed in
residual_block() and maxNumCoeff as follows. Depending on MbPartPredMode(mb_type, 0), the following
applies.

– If MbPartPredMode(mb_type, 0) is equal to Intra_16x16, the transform coefficient levels are parsed into the
list i16x16DClevel and into the 16 lists i16x16AClevel[i]. i16x16DClevel contains the 16 transform
coefficient levels of the DC transform coefficient levels for each 4x4 luma block. For each of the 16 4x4 luma
blocks indexed by i = 0..15, the 15 AC transform coefficients levels of the i-th block are parsed into the i-th list
i16x16AClevel[i].

– Otherwise (MbPartPredMode(mb_type, 0) is not equal to Intra_16x16), the following applies.

– If transform_size_8x8_flag is equal to 0, for each of the 16 4x4 luma blocks indexed by i = 0..15, the 16
transform coefficient levels of the i-th block are parsed into the i-th list level[i].

– Otherwise (transform_size_8x8_flag is equal to 1), for each of the 4 8x8 luma blocks indexed by
i8x8 = 0..3, the following applies.

– If entropy_coding_mode_flag is equal to 0, first for each of the 4 4x4 luma blocks indexed by
i4x4 = 0..3, the 16 transform coefficient levels of the i4x4-th block are parsed into the
(i8x8 * 4 + i4x4)-th list level[i8x8 * 4 + i4x4]. Then, the 64 transform coefficient levels of the
i8x8-th 8x8 luma block which are indexed by 4 * i + i4x4, where i = 0..15 and i4x4 = 0..3, are
derived as level8x8[i8x8][4 * i + i4x4] = level[i8x8 * 4 + i4x4][i].

NOTE – The 4x4 luma blocks with luma4x4BlkIdx = i8x8 * 4 + i4x4 containing every fourth transform
coefficient level of the corresponding i8x8-th 8x8 luma block with offset i4x4 are assumed to represent spatial
locations given by the inverse 4x4 luma block scanning process in subclause 6.4.3.

– Otherwise (entropy_coding_mode_flag is equal to 1), the 64 transform coefficient levels of the i8x8-
th block are parsed into the i8x8-th list level8x8[i8x8].

38) Clause 8 and all subclauses of clause 8 “Decoding process”

In clause 8 and all subclauses of clause 8, make the following changes.

Replace all occurences of “chroma_format_idc” with “ChromaArrayType”.

Delete all occurences of “(monochrome)”.

39) Clause 8 “Decoding process”

In clause 8, make the following changes.

After the first sentence, insert the following.

Depending on the value of chroma_format_idc, the number of sample arrays of the current picture is as follows.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 24

– If chroma_format_idc is equal to 0, the current picture consists of 1 sample array SL.

– Otherwise (chroma_format_idc is not equal to 0), the current picture consists of 3 sample arrays SL, SCb, SCr.

Replace the paragraph that starts with “Each picture referred” with the following

Each picture referred to in this clause is a complete or part of a primary coded picture. Each slice referred to in this
clause is a slice of a primary picture. Each slice data partition referred to in this clause is a slice data partition of a
primary picture.

Depending on the value of separate_colour_plane_flag, the decoding process is structured as follows.

– If separate_colour_plane_flag is equal to 0, the decoding process is invoked a single time with the current
picture being the output.

– Otherwise (separate_colour_plane_flag is equal to 1), the decoding process is invoked three times. Inputs to the
decoding process are all NAL units of the primary coded picture with identical value of colour_plane_id. The
decoding process of NAL units with a particular value of colour_plane_id is specified as if only a coded video
sequence with monochrome colour format with that particular value of colour_plane_id would be present in the
bitstream. The output of each of the three decoding processes is assigned to the 3 sample arrays of the current
picture with the NAL units with colour_plane_id equal to 0 being assigned to SL, the NAL units with
colour_plane_id equal to 1 being assigned to SCb, and the NAL units with colour_plane_id equal to 2 being
assigned to SCr.

NOTE - The variable ChromaArrayType is derived as 0 when separate_colour_plane_flag is equal to 1 and
chroma_format_idc is equal to 3. In the decoding process, the value of this variable is evaluated resulting in operations
identical to that of monochrome pictures with chroma_format_idc being equal to 0.

40) Subclause 8.3.4 “Intra prediction for chroma samples”

In subclause 8.3.4, after the second paragraph, insert the following.

Depending on the value of ChromaArrayType, the following applies.

– If ChromaArrayType is equal to 3, the Intra prediction chroma samples for the current macroblock
predCb[x, y] and predCr[x, y] are derived using the Intra prediction process for chroma samples with
ChromaArrayType equal to 3 as specified in subclause 8.3.4.5.

– Otherwise (ChromaArrayType is equal to 1 or 2), the following text specifies the Intra prediction chroma
samples for the current macroblock predCb[x, y] and predCr[x, y].

41) Subclause 8.3.4.1 “Specification of Intra_Chroma_DC prediction mode”

In subclause 8.3.4.1, make the following changes.

Replace the following

– Depending on chroma_format_idc, the position of the upper-left sample of a 4x4 chroma block with index
chroma4x4BlkIdx is derived as follows

– If chroma_format_idc is equal to 1 or 2, the following applies

xO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (8-124)

yO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (8-125)

– Otherwise (chroma_format_idc is equal to 3), the following applies

xO = InverseRasterScan(chroma4x4BlkIdx / 4, 8, 8, 16, 0) +
 InverseRasterScan(chroma4x4BlkIdx % 4, 4, 4, 8, 0) (8-126)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 25

yO = InverseRasterScan(chroma4x4BlkIdx / 4, 8, 8, 16, 1) +
 InverseRasterScan(chroma4x4BlkIdx % 4, 4, 4, 8, 1) (8-127)

with

– The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx is derived as

xO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (8-124)

yO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (8-125)

– Depending on the values of xO and yO, the following applies.

Indent all succeeding If/Otherwise statements as necessary.

Update all following equation numbers in clause 8 as necessary.

42) New Subclause 8.3.4.5 “Intra prediction for chroma samples with
ChromaArrayType equal to 3”

Insert a new subclause 8.3.4.5 as follows.

8.3.4.5 Intra prediction for chroma samples with ChromaArrayType equal to 3

This process is invoked when ChromaArrayType is equal to 3. This process is invoked for I and SI macroblock
types. It specifies how the Intra prediction chroma samples for the current macroblock are derived when
ChromaArrayType is equal to 3.

Inputs to this process are constructed samples prior to the deblocking filter process from neighbouring Cb and Cr
blocks and for Intra_NxN (where NxN is equal to 4x4 or 8x8) prediction mode, the associated values of
IntraNxNPredMode from neighbouring macroblocks.

Outputs of this process are the Intra prediction samples of the Cb and Cr components of the macroblock or in case of
the Intra_NxN prediction process, the outputs are NxN Cb sample arrays as part of the 16x16 Cb array of prediction
samples of the macroblock, and NxN Cb sample arrays as part of the 16x16 Cb array of prediction samples of the
macroblock.

Each Cb, Cr, and luma block with the same block index of the macroblock shall use the same prediction mode.
The prediction mode is applied to each of the Cb and Cr blocks separately. The process specified in this subclause is
invoked for each Cb and Cr block.

Depending on the macroblock prediction mode, the following applies.

– If the macroblock prediction mode is equal to Intra_4x4, the following applies.

– The same process described in subclause 8.3.1 shall also be applied to Cb or Cr samples, substituting
luma with Cb or Cr, substituting luma4x4BlkIdx with cb4x4BlkIdx or cr4x4BlkIdx, and substituting
pred4x4L with pred4x4Cb or pred4x4Cr.

– The output variable Intra4x4PredMode[luma4x4BlkIdx] from the process described in subclause 8.3.1.1
shall also be used for the 4x4 Cb or 4x4 Cr blocks with index luma4x4BlkIdx equal to index cb4x4BlkIdx
or cr4x4BlkIdx.

– The process to derive prediction Cb or Cr samples shall be identical to the process described in subclause
8.3.1.2 and its subsequent subclauses when substituting luma with Cb or Cr, and substituting pred4x4L
with pred4x4Cb or pred4x4Cr.

– Otherwise, if the macroblock prediction mode is equal to Intra_8x8, the following applies.

– The same process described in subclause 8.3.2 shall also be applied to Cb or Cr samples, substituting
luma with Cb or Cr, substituting luma8x8BlkIdx with cb8x8BlkIdx or cr8x8BlkIdx, and substituting
pred8x8L with pred8x8Cb or pred8x8Cr.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 26

– The output variable Intra8x8PredMode[luma8x8BlkIdx] from the process described in subclause 8.3.2.1
shall also be used for the 8x8 Cb or 8x8 Cr blocks with index luma8x8BlkIdx equal to index cb8x8BlkIdx
or cr8x8BlkIdx.

– The process to derive prediction Cb or Cr samples shall be identical to the process described in subclause
8.3.2.2 and its subsequent subclauses when substituting luma with Cb or Cr, and substituting pred8x8L
with pred8x8Cb or pred8x8Cr.

– Otherwise, if the macroblock prediction mode is equal to Intra_16x16, the following applies.

– The same process described in subclause 8.3.3 and in the subsequent subclause 8.3.3.1 to 8.3.3.4 shall
also be applied to Cb or Cr samples, substituting luma with Cb or Cr, and substituting predL with predCb
or predCr.

43) Subclause 8.4 “Inter prediction process”

In subclause 8.4, replace the paragraph starting with “Outputs of this process are” with the following

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array predL of luma
samples and when ChromaArrayType is not equal to 0 two (MbWidthC)x(MbHeightC) arrays predCr and predCb of
chroma samples, one for each of the chroma components Cb and Cr.

44) Subclause 8.4.1 “Derivation process for motion vector components and
reference indices”

In subclause 8.4.1, replace the paragraph starting with “Outputs of this process are” with the following.

Outputs of this process are

– luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion
vectors mvCL0 and mvCL1

Replace the paragraph starting with “For the derivation of the variables for the chroma motion vectors” with the
following

When ChromaArrayType is not equal to 0 and predFlagLX (with X being either 0 or 1) is equal to 1, the derivation
process for chroma motion vectors in subclause 8.4.1.4 is invoked with mvLX and refIdxLX as input and the output
being mvCLX.

45) Subclause 8.4.2.1 “Reference picture selection process”

In subclause 8.4.2.1, make the following changes.

Replace the paragraph starting with “Output of this process” with the following

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicLXL and
when ChromaArrayType is not equal to 0, two two-dimensional arrays of chroma samples refPicLXCb and
refPicLXCr.

Replace the paragraph starting with “The reference picture sample arrays” with the following

Depending on separate_colour_plane_flag the following applies.

- If separate_colour_plane_flag is equal to 0, the reference picture sample arrays refPicLXL, refPicLXCb (if
available), and refPicLXCr (if available) correspond to decoded sample arrays SL, SCb (if available), SCr (if
available) derived in subclause 8.7 for a previously-decoded reference field or reference frame or complementary
reference field pair or field of a reference frame.

- Otherwise (separate_colour_plane_flag is equal to 1), the following applies.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 27

- If colour_plane_id is equal to 0, the reference picture sample array refPicLXL corresponds to the decoded
sample array SL derived in subclause 8.7 for a previously-decoded reference field or reference frame or
complementary reference field pair or field of a reference frame.

- Otherwise, if colour_plane_id is equal to 1, the reference picture sample array refPicLXL corresponds to the
decoded sample array SCb derived in subclause 8.7 for a previously-decoded reference field or reference
frame or complementary reference field pair or field of a reference frame.

- Otherwise (colour_plane_id is equal to 2), the reference picture sample array refPicLXL corresponds to the
decoded sample array SCb derived in subclause 8.7 for a previously-decoded reference field or reference
frame or complementary reference field pair or field of a reference frame.

46) Subclause 8.4.2.2 “Fractional sample interpolation process”

In subclause 8.4.2.2, make the following changes.

Replace the paragraphs

- a chroma motion vector mvCLX given in eighth-chroma-sample units, and

- the selected reference picture sample arrays refPicLXL, and refPicLXCb, and refPicLXCb

with the following

- when ChromaArrayType is not equal to 0, a chroma motion vector mvCLX with a precision of (4*SubWidthC)
chroma-sample units horizontally and (4*SubHeightC) chroma-sample units vertically, and

- the selected reference picture sample arrays refPicLXL, and when ChromaArrayType is not equal to 0,
refPicLXCb, and refPicLXCb

Replace the paragraph starting with “Let (xIntC, yIntC) be a chroma location” with the following

Let (xIntC, yIntC) be a chroma location given in full-sample units and (xFracC, yFracC) be an offset given in
(4*SubWidthC) chroma-sample units horizontally and (4*SubHeightC) chroma-sample units vertically. These
variables are used only inside this subclause for specifying general fractional-sample locations inside the reference
sample arrays refPicLXCb, and refPicLXCr.

Replace the 4 equations following the paragraph staring with “Otherwise (chroma_format_idc is equal to 3)” with
the following

xIntC = xAC + (mvLX[0] >> 2) + xC (8-232)
yIntL = yAC + (mvLX[1] >> 2) + yC (8-233)

xFracC = mvLX[0] & 3 (8-234)
yFracC = mvLX[1] & 3 (8-235)

Replace the following paragraphs

– The prediction sample value predPartLXCb[xC, yC] is derived by invoking the process specified in subclause
8.4.2.2.2 with (xIntC, yIntC), (xFracC, yFracC) and refPicLXCb given as input.

– The prediction sample value predPartLXCr[xC, yC] is derived by invoking the process specified in subclause
8.4.2.2.2 with (xIntC, yIntC), (xFracC, yFracC) and refPicLXCr given as input.

with the following

– Depedending on ChromaArrayType the following applies.

– If ChromaArrayType is not equal to 3, the following applies.

- The prediction sample value predPartLXCb[xC, yC] is derived by invoking the process specified
in subclause 8.4.2.2.2 with (xIntC, yIntC), (xFracC, yFracC) and refPicLXCb given as input.

- The prediction sample value predPartLXCr[xC, yC] is derived by invoking the process specified
in subclause 8.4.2.2.2 with (xIntC, yIntC), (xFracC, yFracC) and refPicLXCr given as input.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 28

– Otherwise (ChromaArrayType is equal to 3), the following applies.

- The prediction sample value predPartLXCb[xC, yC] is derived by invoking the process specified
in subclause 8.4.2.2.1 with (xIntC, yIntC), (xFracC, yFracC) and refPicLXCb given as input.

- The prediction sample value predPartLXCr[xC, yC] is derived by invoking the process specified
in subclause 8.4.2.2.1 with (xIntC, yIntC), (xFracC, yFracC) and refPicLXCr given as input.

47) Subclause 8.4.2.2.2 “Chroma sample interpolation process”

In subclause 8.4.2.2.2, replace the first paragraph, which states as follows.

This process shall only be invoked when chroma_format_idc is not equal to 0.

with the following.

This process shall only be invoked when ChromaArrayType is equal to 1 or 2.

48) Subclause 8.5 “Transform coefficient decoding process and picture
construction process prior to deblocking filter process”

Replace the content of subclause 8.5 with the following

Inputs to this process are Intra16x16DCLevel (if available), Intra16x16ACLevel (if available),
CbIntra16x16DCLevel (if available), CbIntra16x16ACLevel (if available), CrIntra16x16DCLevel (if available),
CrIntra16x16ACLevel (if available), LumaLevel (if available), LumaLevel8x8 (if available), ChromaDCLevel (if
available), ChromaACLevel (if available), CbLevel (if available), CrLevel (if available), CbLevel8x8 (if available),
CrLevel8x8 (if available), and available Inter or Intra prediction sample arrays for the current macroblock for the
applicable components predL, predCb, or predCr

NOTE – When decoding a macroblock in Intra_4x4 (or Intra_8x8) prediction mode, the luma component of the macroblock
prediction array may not be complete, since for each 4x4 (or 8x8) luma block, the Intra_4x4 (or Intra_8x8) prediction process
for luma samples as specified in subclause 8.3.1 (or 8.3.2) and the process specified in this subclause are iterated. For the
same reason, the Cb and Cr component of the macroblock prediction array may not be complete when ChromaArrayType is
equal to 3.

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable
components S’L, S’Cb, S’Cr.

NOTE – When decoding a macroblock in Intra_4x4 (or Intra_8x8) prediction mode, the luma component of the macroblock
constructed sample arrays prior to the deblocking filter process may not be complete, since for each 4x4 (or 8x8) luma block,
the Intra_4x4 (or Intra_8x8) prediction process for luma samples as specified in subclause 8.3.1 (or 8.3.2) and the process
specified in this subclause are iterated. For the same reason, the Cb and Cr component of the macroblock constructed sample
arrays prior to the deblocking filter process may not be complete when ChromaArrayType is equal to 3.

This subclause specifies transform coefficient decoding and picture construction prior to the deblocking filter
process.

When the current macroblock is coded as P_Skip or B_Skip, all values of LumaLevel, LumaLevel8x8, CbLevel,
CbLevel8x8, CrLevel, CrLevel8x8, ChromaDCLevel, ChromaACLevel are set equal to 0 for the current
macroblock.

49) Subclause 8.5.1 “Specification of transform decoding process for 4x4 luma
residual blocks”

In subclause 8.5.1, replace the paragraph starting with “When residual_colour_transform_flag” with the following

When qpprime_y_zero_transform_bypass_flag is equal to 1, QP'Y is equal to 0, the macroblock prediction mode is
equal to Intra_4x4, and Intra4x4PredMode[luma4x4BlkIdx] is equal to 0 or 1, the intra residual transform-bypass
decoding process as specified in subclause 8.5.13 is invoked with nMax equal to 4, horPredFlag equal to

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 29

Intra4x4PredMode[luma4x4BlkIdx], and the 4x4 array r as inputs, and the output is a modified version of the 4x4
array r.

50) Subclause 8.5.2 “Specification of transform decoding process for luma
samples of Intra_16x16 macroblock prediction mode”

In subclause 8.5.2, replace the paragraph starting with “When residual_colour_transform_flag” with the following

When qpprime_y_zero_transform_bypass_flag is equal to 1, QP'Y is equal to 0, the macroblock prediction mode is
equal to Intra_16x16, and Intra16x16PredMode is equal to 0 or 1, intra residual transform-bypass decoding process
as specified in subclause 8.5.13 is invoked with nMax equal to 4, horPredFlag equal to Intra16x16PredMode, and
the 4x4 array r as inputs, and the output is a modified version of the 4x4 array r.

51) Subclause 8.5.3 “Specification of transform decoding process for 8x8 luma
residual blocks”

In subclause 8.5.3, replace the paragraph starting with “When residual_colour_transform_flag” with the following

When qpprime_y_zero_transform_bypass_flag is equal to 1, QP'Y is equal to 0, the macroblock prediction mode is
equal to Intra_8x8, and Intra8x8PredMode[luma8x8BlkIdx] is equal to 0 or 1, the intra residual transform-bypass
decoding process as specified in subclause 8.5.13 is invoked with nMax equal to 8, horPredFlag equal to
Intra8x8PredMode[luma8x8BlkIdx], and the 8x8 array r as inputs, and the output is a modified version of the 8x8
array r.

52) Subclause 8.5.4 “Specification of transform decoding process for chroma
samples”

In subclause 8.5.4, make the following changes.

Replace the first paragraph of the subclause with the following.

This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is not equal to 0.

Depending on ChromaArrayType, the following applies.

- If ChromaArrayType is equal to 3, the transform decoding process for chroma samples with ChromaArrayType
equal to 3 as specified in subclause 8.5.4.1 is invoked.

- Otherwise (ChromaArrayType is not equal to 3), the following text specifies the transform decoding process for
chroma samples.

Replace the sentence

Otherwise, if chroma_format_idc is equal to 2, the 2x4 array c is derived using the inverse raster scanning process
applied to ChromaDCLevel as follows

with the following.

Otherwise (ChromaArrayType is equal to 2), the 2x4 array c is derived using the inverse raster scanning process
applied to ChromaDCLevel as follows

Delete the paragraph starting with “- Otherwise (chroma_format_idc is equal to 3),”.

Delete the case (c) from Figure 8-7 including the corresponding part of the caption.

Replace the following

Depending on the variable chroma_format_idc, the The position of the upper-left sample of a 4x4 chroma block
with index chroma4x4BlkIdx inside the macroblock is derived as followsby.

– If chroma_format_idc is equal to 1 or 2, the following applies.

xO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (8-302)

yO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (8-303)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 30

– Otherwise (chroma_format_idc is equal to 3), the following applies.

xO = InverseRasterScan(chroma4x4BlkIdx / 4, 8, 8, 16, 0) +
 InverseRasterScan(chroma4x4BlkIdx % 4, 4, 4, 8, 0) (8-304)

yO =InverseRasterScan(chroma4x4BlkIdx / 4, 8, 8, 16, 1) +
 InverseRasterScan(chroma4x4BlkIdx % 4, 4, 4, 8, 1) (8-305)

with the following

The position of the upper-left sample of a 4x4 chroma block with index chroma4x4BlkIdx inside the
macroblock is derived by.

xO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (8-302)

yO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (8-303)

Update all following equation numbers in clause 8 as necessary.

Replace the paragraph starting with “When residual_colour_transform_flag” with the following

When qpprime_y_zero_transform_bypass_flag is equal to 1, QP'Y is equal to 0, the macroblock prediction mode is
equal to Intra_4x4, Intra_8x8, or Intra_16x16, and intra_chroma_pred_mode is equal to 1 or 2, the intra residual
transform-bypass decoding process as specified in subclause 8.5.13 is invoked with nMax equal to 4, horPredFlag
equal to (intra_chroma_pred_mode – 1), and the 4x4 array r as inputs, and the output is a modified version of the
4x4 array r.

53) New subclause 8.5.4.1 “Specification of transform decoding process for
chroma samples with ChromaArrayType equal to 3”

Insert a new subclause 8.5.4.1 as follows.

8.5.4.1 Specification of transform decoding process for chroma samples with ChromaArrayType equal
to 3

This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is equal to 3.

Depending on the macroblock prediction mode and transform_size_8x8_flag, the following applies.

– If the macroblock prediction mode is equal to Intra_16x16, the transform decoding process for Cb or Cr residual
blocks shall be identical to the process described in subclause 8.5.2 when substituting luma with Cb or Cr,
substituting Intra16x16DCLevel with CbIntra16x16DCLevel or CrIntra16x16DCLevel, substituting
Intra16x16ACLevel with CbIntra16x16ACLevel or CrIntra16x16ACLevel, and substituting predL with predCb
or predCr, substituting luma4x4BlkIdx with cb4x4BlkIdx or cr4x4BlkIdx, substituting lumaList with CbList or
CrList, and substituting Clip1Y with Clip1C.

– Otherwise, if transform_size_8x8_flag is equal to 1, the transform decoding process for 8x8 Cb or 8x8 Cr
residual blocks shall be identical to the process described in subclause 8.5.3 when substituting luma with Cb or
Cr, substituting LumaLevel8x8 with CbLevel8x8 or CrLevel8x8, substituting predL with predCb or predCr,
substituting luma8x8BlkIdx with cb8x8BlkIdx or cr8x8BlkIdx, and substituting Clip1Y with Clip1C.

– Otherwise (the macroblock prediction mode is not equal to Intra_16x16 and transform_size_8x8_flag is equal
to 0), the transform decoding process for 4x4 Cb or 4x4 Cr residual blocks shall be identical to the process
described in subclause 8.5.1 when substituting luma with Cb or Cr, substituting LumaLevel with CbLevel or
CrLevel, substituting predL with predCb or predCr, substituting luma4x4BlkIdx with cb4x4BlkIdx or
cr4x4BlkIdx, and substituting Clip1Y with Clip1C.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 31

54) Subclause 8.5.6 “Inverse scanning process for 8x8 luma transform
coefficients”

Replace the title of subclause 8.5.6 with the following.

8.5.6 Inverse scanning process for 8x8 transform coefficients

55) Subclause 8.5.7 “Derivation process for the chroma quantisation
parameters and scaling function”

In subclause 8.5.7, make the following changes.

Delete the following.

The value of BitDepth'C for the chroma components is derived as

BitDepth'C = BitDepthC + residual_colour_transform_flag (8-311)

Replace the following

– The variable iYCbCr derived as follows.

– If the input array c relates to a luma residual block, iYCbCr is set equal to 0.

– Otherwise, if the input array c relates to a chroma residual block and the chroma component is equal
to Cb, iYCbCr is set equal to 1.

– Otherwise (the input array c relates to a chroma residual block and the chroma component is equal
to Cr), iYCbCr is set equal to 2.

with the following.

– The variable iYCbCr derived as follows.

– If separate_colour_plane_flag is equal to 1, iYCbCr is set equal to colour_plane_id.

– Otherwise (separate_colour_plane_flag is equal to 0), the following applies.

– If the input array c relates to a luma residual block, iYCbCr is set equal to 0.

– Otherwise, if the input array c relates to a chroma residual block and the chroma component is
equal to Cb, iYCbCr is set equal to 1.

– Otherwise (the input array c relates to a chroma residual block and the chroma component is
equal to Cr), iYCbCr is set equal to 2.

Replace the paragraph starting with “The inverse scanning process for 8x8 luma transform coefficients” with the
following

– The variable iYCbCr is derived as follows.

– If separate_colour_plane_flag is equal to 1, iYCbCr is set equal to colour_plane_id.

– Otherwise (separate_colour_plane_flag is equal to 0), the following applies.

– If the input array c relates to a luma residual block, iYCbCr is set equal to 0.

– Otherwise, if the input array c relates to a chroma residual block and the chroma component is
equal to Cb, iYCbCr is set equal to 1.

– Otherwise (the input array c relates to a chroma residual block and the chroma component is
equal to Cr), iYCbCr is set equal to 2.

– The inverse scanning process for 8x8 luma transform coefficients as specified in subclause 8.5.6 is
invoked with ScalingList8x8[2 * iYCbCr + mbIsInterFlag] as the input and the output is assigned to the
8x8 matrix weightScale8x8.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 32

56) Subclause 8.5.8 “Scaling and transformation process for luma DC
transform coefficients for Intra_16x16 macroblock type”

In subclause 8.5.8, make the following changes.

Change the title of the subclause to

8.5.8 Scaling and transformation process for DC transform coefficients for Intra_16x16 macroblock type

Replace the following
Inputs to this process are transform coefficient level values for luma DC transform coefficients of Intra_16x16
macroblocks as a 4x4 array c with elements cij, where i and j form a two-dimensional frequency index. The array c is
either an array relating to a residual block of the luma component or an array relating to a residual block of a chroma
component when chroma_format_idc is equal to 3.
Outputs of this process are 16 scaled DC values for luma 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY
with elements dcYij.

with the following
Inputs to this process are transform coefficient level values for DC transform coefficients of Intra_16x16
macroblocks as a 4x4 array c with elements cij, where i and j form a two-dimensional frequency index.
Outputs of this process are 16 scaled DC values for 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY with
elements dcYij.
The variables bitDepth and qP are derived as follows.

– If the input array c relates to a luma residual block, bitDepth is set equal to BitDepthY and QP is set equal to
QP'Y.

– Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthC and QP is set
equal to QP'C.

NOTE – When separate_colour_plane_flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each colour component of a picture.

Replace the following

The bitstream shall not contain data that results in any element fij of f with i, j = 0..3 that exceeds the range of integer
values from –2(7 + BitDepth

Y
) to 2(7 + BitDepth

Y
)–1, inclusive.

After the inverse transform, scaling is performed as follows.

– If qP is greater than or equal to 36, the scaled result is derived as

dcYij = (fij * LevelScale(QP'Y % 6, 0, 0)) << (QP'Y / 6 – 6), with i, j = 0...3. (8-320)

– Otherwise (QP'Y is less than 36), the scaled result is derived as

dcYij = (fij * LevelScale(QP'Y % 6, 0, 0) + (1 << (5 – QP'Y / 6))) << (qP / 6 – 6),
 with i, j = 0...3 (8-321)

The bitstream shall not contain data that results in any element dcYij of dcY with i, j = 0..3 that exceeds the range of
integer values from –2(7 + BitDepth

Y
) to 2(7 + BitDepth

Y
)–1, inclusive.

NOTE – When entropy_coding_mode_flag is equal to 0 and QP'Y is less than 10 and profile_idc is equal to 66, 77, or 88, the
range of values that can be represented for the elements cij of c is not sufficient to represent the full range of values of the
elements dcYij of dcY that could be necessary to form a close approximation of the content of any possible source picture by
use of the Intra_16x16 macroblock type.

with the following

The bitstream shall not contain data that results in any element fij of f with i, j = 0..3 that exceeds the range of integer
values from –2(7 + bitDepth) to 2(7 + bitDepth)–1, inclusive.

After the inverse transform, scaling is performed as follows.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 33

– If qP is greater than or equal to 36, the scaled result is derived as

dcYij = (fij * LevelScale(qP % 6, 0, 0)) << (qP / 6 – 6), with i, j = 0...3. (8-320)

– Otherwise (qP is less than 36), the scaled result is derived as

dcYij = (fij * LevelScale(qP % 6, 0, 0) + (1 << (5 – qP / 6))) << (qP / 6 – 6),
 with i, j = 0...3 (8-321)

The bitstream shall not contain data that results in any element dcYij of dcY with i, j = 0..3 that exceeds the range of
integer values from –2(7 + bitDepth) to 2(7 + bitDepth)–1, inclusive.

NOTE – When entropy_coding_mode_flag is equal to 0 and qP is less than 10 and profile_idc is equal to 66, 77, or 88, the
range of values that can be represented for the elements cij of c is not sufficient to represent the full range of values of the
elements dcYij of dcY that could be necessary to form a close approximation of the content of any possible source picture by
use of the Intra_16x16 macroblock type.

57) Subclause 8.5.9 “Scaling and transformation process for chroma DC
transform coefficients”

In subclause 8.5.9, make the following changes.

Add the following paragraph to the beginning of this subclause.

This process is only invoked when ChromaArrayType is equal to 1 or 2.

Replace the following
– Otherwise, if chroma_format_idc is equal to 2, the inverse transform for the 2x4 chroma DC transform

coefficients is specified as

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

11
11

cc
cc
cc
cc

1111
1111
1111
1111

f

3130

2120

1110

0100

 (8-324)

– Otherwise (chroma_format_idc is equal to 3), the inverse transform for the 4x4 chroma DC transform
coefficients is specified as follows.
– If residual_colour_transform_flag is equal to 1 and the current macroblock prediction mode

MbPartPredMode(mb_type, 0) is Intra_4x4 or Intra_8x8, the inverse transform for the 4x4 chroma DC
transform coefficients is specified as

fij = cij << 2 with i, j = 0..3 (8-325)

– Otherwise, the inverse transform for the 4x4 chroma DC transform coefficients is specified as

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

1111
1111
1111
1111

cccc
cccc
cccc
cccc

1111
1111
1111
1111

f

33323130

23222120

13121110

03020100

 (8-326)

The bitstream shall not contain data that results in any element fij of f with i, j = 0..3 that exceeds the range of integer
values from –2(7 + BitDepth'C) to 2(7 + BitDepth'C)–1, inclusive.

with the following.
– Otherwise (ChromaArrayType is equal to 2), the inverse transform for the 2x4 chroma DC transform

coefficients is specified as

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 34

⎥
⎦

⎤
⎢
⎣

⎡
−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

11
11

cc
cc
cc
cc

1111
1111
1111
1111

f

3130

2120

1110

0100

 (8-324)

The bitstream shall not contain data that results in any element fij of f with i, j = 0..3 that exceeds the range of integer
values from –2(7 + bitDepthC) to 2(7 + bitDepthC)–1, inclusive.

Update all following equation numbers in clause 8 as necessary.

Replace the following
– If chroma_format_idc is equal to 2, the following applies.

– The variable QP'C,DC is derived as

QP'C,DC = QP'C + 3 (8-328)

– Depending on the value of QP'C,DC, the following applies.
– If QP'C,DC is greater than or equal to 36, the scaled result is derived as

0,1j0..3, iwith), 6 6 / QP' ()) 0 0, %6,QP' (LevelScale*f (dcC DCC,DCC,ijij ==−<<= (8-329)

– Otherwise (QP'C,DC is less than 36), the scaled result is derived as

0,1j0..3, i with), 6 / QP' 6 () 2) 0 0, 6, % QP' (LevelScale*f (dcC DCC,
/6QP'5

DCC,ijij
DCC, ==−>>+= − (8-330)

– Otherwise (chroma_format_idc is equal to 3), the following applies.
– If QP'C is greater than or equal to 36, the scaled result is derived as

0..3. ji,with), 6 6 / QP' ()) 0 0, %6,QP' (LevelScale*f (dcC CCijij =−<<= (8-331)

– Otherwise (QP'C is less than 36), the scaled result is derived as

0..3. ji, with), 6 / QP' 6 () 2) 0 0, 6, % QP' (LevelScale*f (dcC C
/6QP'5

Cijij
C =−>>+= − (8-332)

The bitstream shall not contain data that results in any element dcCij of dcC with i, j = 0..3 that exceeds the range of
integer values from –2(7 + BitDepth'C) to 2(7 + BitDepth'C)–1, inclusive.

with the following.
– Otherwise (ChromaArrayType is equal to 2), the following applies.

– The variable QP'C,DC is derived as

QP'C,DC = QP'C + 3 (8-328)

– Depending on the value of QP'C,DC, the following applies.
– If QP'C,DC is greater than or equal to 36, the scaled result is derived as

0,1j0..3, iwith), 6 6 / QP' ()) 0 0, %6,QP' (LevelScale*f (dcC DCC,DCC,ijij ==−<<= (8-329)

– Otherwise (QP'C,DC is less than 36), the scaled result is derived as

0,1j0..3, i with), 6 / QP' 6 () 2) 0 0, 6, % QP' (LevelScale*f (dcC DCC,
/6QP'5

DCC,ijij
DCC, ==−>>+= − (8-330)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 35

The bitstream shall not contain data that results in any element dcCij of dcC with i, j = 0..3 that exceeds the range of
integer values from –2(7 + bitDepthC) to 2(7 + bitDepthC)–1, inclusive.

Update all following equation numbers in clause 8 as necessary.

58) Subclause 8.5.10 “Scaling and transformation process for residual 4x4
blocks”

In subclause 8.5.10, replace the following

– Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepth'C.

with

– Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthC.

59) Subclause 8.5.11 “Scaling and transformation process for residual 8x8
luma blocks”

In subclause 8.5.11, make the following changes.

Replace the title of the subclause with the following

8.5.11 Scaling and transformation process for residual 8x8 blocks

Replace the following
Input to this process is an 8x8 array c with elements cij which is an array relating to an 8x8 residual block of the
luma component.

Outputs of this process are residual sample values as 8x8 array r with elements rij.

with the following.

Input to this process is an 8x8 array c with elements cij which is either an array relating to a residual block of the
luma component or an array relating to a residual block of a chroma component when ChromaArrayType is equal
to 3.

NOTE – When separate_colour_plane_flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each coded picture (prior to the final assignment of the decoded picture to
a particular luma or chroma picture array according to the value of colour_plane_id).

Outputs of this process are residual sample values as 8x8 array r with elements rij.
The variables bitDepth and qP are derived as follows.

– If the input array c relates to a luma residual block, bitDepth is set equal to BitDepthY and QP is set equal to
QP'Y.

– Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthC and QP is set
equal to QP'C.

NOTE – When separate_colour_plane_flag is equal to 1, all residual blocks are considered to be associated with the luma
component for purposes of the decoding process of each colour component of a picture.

Replace the following.

The bitstream shall not contain data that results in any element cij of c with i, j = 0..7 that exceeds the range of
integer values from –2(7 + BitDepthY) to 2(7 + BitDepthY)–1, inclusive.

The scaling process for 8x8 block transform coefficient levels cij proceeds as follows.

– If QP'Y is greater than or equal to 36, the scaled result is derived as

0..7.ji,with), 6 6 / QP' ()) j i, %6,QP' 8x8(LevelScale*c (d YYijij =−<<= (8-359)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 36

– Otherwise (QP'Y is less than 36), the scaled result is derived as

0..7. ji, with), 6 / QP' 6 () 2) j i, 6, % QP' (LevelScale*c (d Y
/6QP'5

Yijij
Y =−>>+= − (8-360)

The bitstream shall not contain data that results in any element dij of d with i, j = 0..7 that exceeds the range of
integer values from -2(7 + BitDepthY) to 2(7 + BitDepthY)–1, inclusive.

with the following.

The bitstream shall not contain data that results in any element cij of c with i, j = 0..7 that exceeds the range of
integer values from –2(7 + BitDepth) to 2(7 + BitDepth)–1, inclusive.

The scaling process for 8x8 block transform coefficient levels cij proceeds as follows.

– If qP is greater than or equal to 36, the scaled result shall be derived as

0..7.ji,with), 6 6 / qP ()) j i, qP%6, 8x8(LevelScale*c (d ijij =−<<= (8-359)

– Otherwise (qP is less than 36), the scaled result shall be derived as

0..7. ji, with), 6 / qP 6 () 2) j i, 6, % qP (LevelScale*c (d qP/65
ijij =−>>+= − (8-360)

The bitstream shall not contain data that results in any element dij of d with i, j = 0..7 that exceeds the range of
integer values from -2(7 + BitDepth) to 2(7 + BitDepth)–1, inclusive.

Replace the following paragraphs.

The bitstream shall not contain data that results in any element eij, fij, gij, hij, or kij for i and j in the range of 0..7,
inclusive, that exceeds the range of integer values from –2(7 + BitDepthY) to 2(7 + BitDepthY) – 1, inclusive.

The bitstream shall not contain data that results in any element mij for i and j in the range of 0..7, inclusive, that
exceeds the range of integer values from –2(7 + BitDepthY) to 2(7 + BitDepthY) – 33, inclusive.

with the following

The bitstream shall not contain data that results in any element eij, fij, gij, hij, or kij for i and j in the range of 0..7,
inclusive, that exceeds the range of integer values from –2(7 + BitDepth) to 2(7 + BitDepth) – 1, inclusive.

The bitstream shall not contain data that results in any element mij for i and j in the range of 0..7, inclusive, that
exceeds the range of integer values from –2(7 + BitDepth) to 2(7 + BitDepth) – 33, inclusive.

60) Subclause 8.5.12 “Picture construction process prior to deblocking filter
process”

In subclause 8.5.12, make the following changes.

Replace the first paragraph with the following.

Inputs to this process are
– luma4x4BlkIdx or chroma4x4BlkIdx or luma8x8BlkIdx or cb4x4BlkIdx or cr4x4BlkIdx or cb8x8BlkIdx or

cr8x8BlkIdx
– a sample array u with elements uij which is either a 4x4 luma block or a 4x4 chroma block or an 8x8 luma block

or an 8x8 chroma block when ChromaArrayType is equal to 3.

Replace the paragraph starting with “When u is a chroma block” and all subparagraphs with the following

When u is a chroma block, for each sample uij of the chroma block, the following applies.

– The subscript C in the variable S’C is replaced with Cb for the Cb chroma component and with Cr for the Cr
chroma component.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 37

– Depending on the size of the block u, the following applies.

– If u is an 4x4 luma block, the variable nE is set equal to 4 and depending on the variable
ChromaArrayType, the position of the upper-left sample of a 4x4 chroma block inside the macroblock is
derived as follows.

– If ChromaArrayType is equal to 1 or 2, the following applies.

xO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 0) (8-411)

yO = InverseRasterScan(chroma4x4BlkIdx, 4, 4, 8, 1) (8-412)

– Otherwise (ChromaArrayType is equal to 3), the position of the upper-left sample of the 4x4 Cb block
with index cb4x4BlkIdx or the 4x4 Cr block with index cr4x4BlkIdx inside the macroblock is derived
by invoking the inverse 4x4 Cb or Cr block scanning process in subclause 6.4.3.1 with cb4x4BlkIdx or
cr4x4BlkIdx as the input and the output being assigned to (xO, yO).

– Otherwise (u is an 8x8 Cb or Cr block when ChromaArrayType is equal to 3), the position of the upper-left
sample of the 8x8 Cb block with index cb8x8BlkIdx or the Cr block with index cr8x8BlkIdx inside the
macroblock is derived by invoking the inverse 8x8 Cb or Cr block scanning process in subclause 6.4.4.1
with cb8x8BlkIdx or cr8x8BlkIdx as the input and the output being assigned to (xO, yO), and the variable
nE is set equal to 8.

– Depending on the variable MbaffFrameFlag and the current macroblock, the following applies.

– If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

S'C[(xP / SubWidthC) + xO + j, ((yP + SubHeightC – 1) / SubHeightC) + 2 * (yO + i)] = uij
 with i, j = 0..nE – 1 (8-416)

– Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

S'C[(xP/ SubWidthC) + xO + j, (yP / SubHeightC) + yO + i] = uij with i, j = 0..nE – 1 (8-417)

61) Subclause 8.5.13 “Residual colour transform process”

Replace subclause 8.5.13 with the following.

8.5.13 Intra residual transform-bypass decoding process

This process is invoked when qpprime_y_zero_transform_bypass_flag is equal to 1, QP'Y is equal to 0, the
macroblock prediction mode is equal to Intra_4x4, Intra_8x8 or Intra_16x16, and the applicable intra prediction
mode is equal to the vertical or horizontal mode. The process for the Cb and Cr components is applied in the same
way as for the luma (L or Y) component.

Inputs to this process are

– a variable nMax

– a variable horPredFlag

– an (nMax)x(nMax) array r with elements ri,j which is either an array relating to a residual transform-bypass
block of the luma component or an array relating to a residual transform-bypass block of the Cb and Cr
component.

Output of this process is a modified version of the (nMax)x(nMax) array r with elements ri,j containing the result of
the intra residual transform-bypass decoding process.

Let f be a temporary (nMax)x(nMax) array with elements fij, which are derived by

fij = rij with i, j = 0..nMax – 1 (8-417)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 38

Depending on horPredFlag, the following applies.

– If horPredFlag is equal to 0, the modified array r is derived by.

∑
=

=
i

0k
kjij fr with i, j = 0..nMax – 1 (8-417)

– Otherwise (horPredFlag is equal to 1), the modified array r is derived by

∑
=

=
j

0k
ikij fr with i, j = 0..nMax – 1 (8-417)

Update all following equation numbers in clause 8 as necessary.

62) Subclause 8.7 “Deblocking filter process”

In subclause 8.7, make the following changes.

Replace the first paragraph, which states as follows.

A conditional filtering process is applied to all NxN (where N = 4 or N = 8 for luma, and N = 4 for chroma) block
edges of a picture, except edges at the boundary of the picture and any edges for which the deblocking filter process
is disabled by disable_deblocking_filter_idc, as specified below. This filtering process is performed on a
macroblock basis after the completion of the picture construction process prior to deblocking filter process (as
specified in subclauses 8.5 and 8.6) for the entire decoded picture, with all macroblocks in a picture processed in
order of increasing macroblock addresses.

with the following.

A conditional filtering process is specified in this subclause that is an integral part of the decoding process which
shall be applied by decoders conforming to the Baseline, Extended, Main, High, High 10, High 4:2:2, and
High 4:4:4 Predictive profiles. For decoders conforming to the High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra,
and CAVLC 4:4:4 Intra profiles, the filtering process specified in this subclause, or one similar to it, should be
applied but is not required.

The conditional filtering is applied to all NxN (where N = 4 or N = 8 for luma and for chroma when
ChromaArrayType is equal to 3, and N = 4 for chroma when ChromaArrayType is equal to 1 or 2) block edges of a
picture, except edges at the boundary of the picture and any edges for which the deblocking filter process is disabled
by disable_deblocking_filter_idc, as specified below. This filtering process is performed on a macroblock basis after
the completion of the picture construction process prior to deblocking filter process (as specified in subclauses 8.5
and 8.6) for the entire decoded picture, with all macroblocks in a picture processed in order of increasing
macroblock addresses.

Replace the following

– Otherwise, if chroma_format_idc is equal to 3, both types, the solid bold and dashed bold chroma edges are
filtered.

with the following.

– Otherwise, if ChromaArrayType is equal to 3, depending on the transform_size_8x8_flag, the following
applies.

– If transform_size_8x8_flag is equal to 0, both types, the solid bold and dashed bold chroma edges are
filtered.

– Otherwise (transform_size_8x8_flag is equal to 1), only the solid bold chroma edges are filtered.

Replace the paragraph starting with “For the filtering of both chroma components” with the following

When ChromaArrayType is not equal to 0, for the filtering of both chroma components with iCbCr = 0 for Cb and
iCbCr = 1 for Cr, the following applies.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 39

Replace the paragraph starting with “When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical
chroma edge is specified as follows” with the following.

– When filterInternalEdgesFlag is equal to 1, the filtering of the internal vertical chroma edge is
specified as follows.

– When ChromaArrayType is not equal to 3 or when transform_size_8x8_flag is equal to 0, the
process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, and (xEk, yEk) = (4, k) with
k = 0..MbHeightC – 1 as input and S’C with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbCr = 1 as output.

– When ChromaArrayType is equal to 3, the process specified in subclause 8.7.1 is invoked with
mbAddr, chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 1,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEk, yEk) = (8, k) with k = 0..MbHeightC – 1
as input and S’C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for
iCbCr = 1 as output.

– When ChromaArrayType is equal to 3 and when transform_size_8x8_flag is equal to 0, the
process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 1, fieldModeFilteringFlag = fieldModeMbFlag, and (xEk, yEk) = (12, k) with
k = 0..MbHeightC – 1 as input and S’C with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbCr = 1 as output.

Replace the paragraph starting with “filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal
chroma edge is specified as follows” with the following.

– When filterInternalEdgesFlag is equal to 1, the filtering of the internal horizontal chroma edge is
specified as follows.

– When ChromaArrayType is not equal to 3 or when transform_size_8x8_flag is equal to 0, the
process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and (xEk, yEk) = (k, 4) with
k = 0..MbWidthC – 1 as input and S’C with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbCr = 1 as output.

– When ChromaArrayType is not equal to 1, the process specified in subclause 8.7.1 is invoked with
mbAddr, chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEk, yEk) = (k, 8) with k = 0..MbWidthC – 1 as
input and S’C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for
iCbCr = 1 as output.

– When ChromaArrayType is equal to 2, the process specified in subclause 8.7.1 is invoked with
mbAddr, chromaEdgeFlag = 1, iCbCr, verticalEdgeFlag = 0,
fieldModeFilteringFlag = fieldModeMbFlag, and (xEk, yEk) = (k, 12) with k = 0..MbWidthC – 1
as input and S’C with C being replaced by Cb for iCbCr = 0 and C being replaced by Cr for
iCbCr = 1 as output.

– When ChromaArrayType is equal to 3 and when transform_size_8x8_flag is equal to 0, the
process specified in subclause 8.7.1 is invoked with mbAddr, chromaEdgeFlag = 1, iCbCr,
verticalEdgeFlag = 0, fieldModeFilteringFlag = fieldModeMbFlag, and (xEk, yEk) = (k, 12) with
k = 0..MbWidthC – 1 as input and S’C with C being replaced by Cb for iCbCr = 0 and C being
replaced by Cr for iCbCr = 1 as output.

Replace the paragraph that begins with “Finally, the arrays” with the following

Depending on separate_colour_plane_flag the following applies.

- If separate_colour_plane_flag is equal to 0, the arrays S’L, S’Cb, S’Cr are assigned to the arrays SL, SCb, SCr (which
represent the decoded picture), respectively.

- Otherwise (separate_colour_plane_flag is equal to 1), the following applies.

- If colour_plane_id is equal to 0, the arrays S’L is assigned to the array SL (which represent the luma
component of the decoded picture).

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 40

- Otherwise, if colour_plane_id is equal to 1, the arrays S’L is assigned to the array SCb (which represents the
Cb component of the decoded picture).

- Otherwise (colour_plane_id is equal to 2), the arrays S’L is assigned to the array SCr (which represents the Cr
component of the decoded picture).

63) Subclause 8.7.2.3 “Filtering process for edges with bS less than 4”

In subclause 8.7.2.3, make the following changes.

Replace the paragraph starting with “The filtered result samples p'0 and q'0 are derived by” with the following

The filtered result samples p'0 and q'0 are derived by

∆ = Clip3(–tC, tC, ((((q0 – p0) << 2) + (p1 – q1) + 4) >> 3)) (8-469)

p'0 = Clip1(p0 + ∆) (8-470)

q'0 = Clip1(q0 – ∆) (8-471)

where the threshold tC is determined as follows.

– If chromaEdgeFlag is equal to 0,

tC = tC0 + ((ap < β) ? 1 : 0) + ((aq < β) ? 1 : 0) (8-472)

– Otherwise (chromaEdgeFlag is equal to 1), the following applies.

– When ChromaArrayType is equal to 3,

tC = tC0 + ((ap < β) ? 1 : 0) + ((aq < β) ? 1 : 0) (8-472a)

– Otherwise

tC = tC0 + 1 (8-473)

Update all following equation numbers in clause 8 as necessary.

Replace the paragraph starting with “The filtered result sample p'1” with the following.

The filtered result sample p'1 is derived as follows

– If chromaEdgeFlag is equal to 0 and ap is less than β,

p'1 = p1 + Clip3(–tC0, tC0, (p2 + ((p0 + q0 + 1) >> 1) – (p1 << 1)) >> 1) (8-478)

– Otherwise, if chromaEdgeFlag is equal to 1, ChromaArrayType is equal to 3, and ap is less than β,

p'1 = p1 + Clip3(–tC0, tC0, (p2 + ((p0 + q0 + 1) >> 1) – (p1 << 1)) >> 1) (8-478a)

– Otherwise (chromaEdgeFlag is equal to 1 and ChromaArrayType is not equal to 3, or ap is greater than or equal
to β),

p'1 = p1 (8-479)

Replace the paragraph starting with “The filtered result sample q'1” with the following.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 41

The filtered result sample q'1 is derived as follows

– If chromaEdgeFlag is equal to 0 and aq is less than β,

q'1 = q1 + Clip3(–tC0, tC0, (q2 + ((p0 + q0 + 1) >> 1) – (q1 << 1)) >> 1) (8-480)

– Otherwise, if chromaEdgeFlag is equal to 1, ChromaArrayType is equal to 3, and aq is less than β,

q'1 = q1 + Clip3(–tC0, tC0, (q2 + ((p0 + q0 + 1) >> 1) – (q1 << 1)) >> 1) (8-480a)

– Otherwise (chromaEdgeFlag is equal to 1 and ChromaArrayType is not equal to 3, or aq is greater than or equal
to β),

q'1 = q1 (8-481)

Update all following equation numbers in clause 8 as necessary.

64) Subclause 8.7.2.4 “Filtering process for edges for bS equal to 4”

In subclause 8.7.2.4, make the following changes.

Replace the paragraph starting with “The filtered result samples p'i (i = 0..2) are derived as follows” with the
following.

The filtered result samples p'i (i = 0..2) are derived as follows.

– If chromaEdgeFlag is equal to 0 and the following condition holds,

ap < β && Abs(p0 – q0) < ((α >> 2) + 2) (8-484)

then the variables p'0, p'1, and p'2 are derived by

p'0 = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3 (8-485)

p'1 = (p2 + p1 + p0 + q0 + 2) >> 2 (8-486)

p'2 = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3 (8-487)

– Otherwise, if chromaEdgeFlag is equal to 1, ChromaArrayType is equal to 3, and the condition in Equation 8-
484 holds, the variables p'0, p'1, and p'2 are derived by

p'0 = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3 (8-485a)

p'1 = (p2 + p1 + p0 + q0 + 2) >> 2 (8-486a)

p'2 = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3 (8-487a)

– Otherwise (chromaEdgeFlag is equal to 1 and ChromaArrayType is not equal to 3, or the condition in Equation
8-484 does not hold), the variables p'0, p'1, and p'2 are derived by

p'0 = (2*p1 + p0 + q1 + 2) >> 2 (8-488)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 42

p'1 = p1 (8-489)

p'2 = p2 (8-490)

Update all following equation numbers in clause 8 as necessary.

Replace the paragraph starting with “The filtered result samples q'i (i = 0..2) are derived as follows” with the
following.

The filtered result samples q'i (i = 0..2) are derived as follows.

– If chromaEdgeFlag is equal to 0 and the following condition holds,

aq < β && Abs(p0 – q0) < ((α >> 2) + 2) (8-491)

then the variables q'0, q'1, and q'2 are derived by

q'0 = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3 (8-492)

q'1 = (p0 + q0 + q1 + q2 + 2) >> 2 (8-493)

q'2 = (2*q3 + 3*q2 + q1 + q0 + p0 + 4) >> 3 (8-494)

– If chromaEdgeFlag is equal to 1, ChromaArrayType is equal to 3, and the condition in Equation 8-491 holds,
the variables q'0, q'1, and q'2 are derived by

q'0 = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3 (8-492a)

q'1 = (p0 + q0 + q1 + q2 + 2) >> 2 (8-493a)

q'2 = (2*q3 + 3*q2 + q1 + q0 + p0 + 4) >> 3 (8-494a)

– Otherwise (chromaEdgeFlag is equal to 1 and ChromaArrayType is not equal to 3, or the condition in Equation
8-491 does not hold), the variables q'0, q'1, and q'2 are derived by

q'0 = (2*q1 + q0 + p1 + 2) >> 2 (8-495)

q'1 = q1 (8-496)

q'2 = q2 (8-497)

Update all following equation numbers in clause 8 as necessary.

65) Clause 9 and all subclauses of clause 9 “Parsing process”

In clause 9 and all subclauses of clause 9, make the following changes.

Replace all occurences of “chroma_format_idc” with “ChromaArrayType”.

Delete all occurences of “(monochrome)”.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 43

66) Subclause 9.1.2 “Mapping process for coded block pattern”

In subclause 9.1.2, make the following changes.

Replace the title of the first part of Table 9-4 “(a) chroma_format_idc is not equal to 0“ with the following.

(a) ChromaArrayType is equal to 1, or 2

Replace the title of the second part of Table 9-4 “(b) chroma_format_idc is equal to 0“ with the following.

(b) ChromaArrayType is equal to 0, or 3

67) Subclause 9.2 “CAVLC parsing process for transform coefficient levels”

In subclause 9.2, make the following changes.

Replace the paragraph starting with “Inputs to this process” with the following.

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index luma4x4BlkIdx or the chroma block index chroma4x4BlkIdx or index
cb4x4BlkIdx or index cr4x4BlkIdx of the current block of transform coefficient levels.

Replace the paragraph starting with “Outputs to this process” with the following.

Output of this process is the list coeffLevel containing transform coefficient levels of the luma block with block
index luma4x4BlkIdx or the chroma block with block index chroma4x4BlkIdx or index cb4x4BlkIdx or index
cr4x4BlkIdx.

68) Subclause 9.2.1 “Parsing process for total number of transform coefficient
levels and trailing ones”

In subclause 9.2.1, make the following changes.

Replace the paragraph starting with “ inputs to this process” with the following.

Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels
maxNumCoeff, the luma block index luma4x4BlkIdx or the chroma block index chroma4x4BlkIdx or index
cb4x4BlkIdx or index cr4x4BlkIdx of the current block of transform.

Delete the paragraph “Otherwise (chroma_format_idc is equal to 3), nC is set equal to 0.”

Add two new paragraphs after the paragraph starting with “When the CAVLC parsing process is invoked for
Intra16x16DCLevel” with the following

When the CAVLC parsing process is invoked for CbIntra16x16DCLevel, cb4x4BlkIdx is set equal to 0.

When the CAVLC parsing process is invoked for CrIntra16x16DCLevel, cr4x4BlkIdx is set equal to 0.

Add two new paragraphs after the paragraph starting with “If the CAVLC parsing process is invoked for
Intra16x16DCLevel” with the following

Otherwise, if the CAVLC parsing process is invoked for CbIntra16x16DCLevel, CbIntra16x16ACLevel, or
CbLevel, the process specified in subclause 6.4.8.4.1 is invoked with cb4x4BlkIdx as the input, and the output is
assigned to mbAddrA, mbAddrB, cb4x4BlkIdxA, and cb4x4BlkIdxB. The 4x4 Cb block specified by
mbAddrA\cb4x4BlkIdxA is assigned to blkA, and the 4x4 Cb block specified by mbAddrB\cb4x4BlkIdxB is
assigned to blkB.

Otherwise, if the CAVLC parsing process is invoked for CrIntra16x16DCLevel, CrIntra16x16ACLevel, or CrLevel,
the process specified in subclause 6.4.8.4.1 is invoked with cr4x4BlkIdx as the input, and the output is assigned to
mbAddrA, mbAddrB, cr4x4BlkIdxA, and cr4x4BlkIdxB. The 4x4 Cr block specified by mbAddrA\cr4x4BlkIdxA is
assigned to blkA, and the 4x4 Cr block specified by mbAddrB\cr4x4BlkIdxB is assigned to blkB.

Replace the paragraph starting with “NOTE - When parsing for Intra16x16DCLevel,” with the following

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 44

NOTE - When parsing for Intra16x16DCLevel, CbIntra16x16DCLevel, or CrIntra16x16DCLevel, the values nA and nB are
based on the number of non-zero transform coefficient levels in adjacent 4x4 blocks and not on the number of non-zero DC
transform coefficient levels in adjacent 16x16 blocks.

69) Subclause 9.3.1.1 “Initialisation process for context variables”

In subclause 9.3.1.1, make the following changes.

Replace Table 9-11 with the following.

Table 9-11 – Association of ctxIdx and syntax elements for each slice type in the initialisation process

Slice type
 Syntax element Table

SI I P, SP B

mb_skip_flag Table 9-13
Table 9-14 11-13 24-26

slice_data()

mb_field_decoding_flag Table 9-18 70-72 70-72 70-72 70-72

mb_type
Table 9-12
Table 9-13
Table 9-14

0-10 3-10 14-20 27-35

transform_size_8x8_flag Table 9-16 na 399-401 399-401 399-401

coded_block_pattern (luma) Table 9-18 73-76 73-76 73-76 73-76

coded_block_pattern (chroma) Table 9-18 77-84 77-84 77-84 77-84

macroblock_layer()

mb_qp_delta Table 9-17 60-63 60-63 60-63 60-63

prev_intra4x4_pred_mode_flag Table 9-17 68 68 68 68

rem_intra4x4_pred_mode Table 9-17 69 69 69 69

prev_intra8x8_pred_mode_flag Table 9-17 na 68 68 68

rem_intra8x8_pred_mode Table 9-17 na 69 69 69

mb_pred()

intra_chroma_pred_mode Table 9-17 64-67 64-67 64-67 64-67

ref_idx_l0 Table 9-16 54-59 54-59

ref_idx_l1 Table 9-16 54-59

mvd_l0[][][0] Table 9-15 40-46 40-46

mvd_l1[][][0] Table 9-15 40-46

mvd_l0[][][1] Table 9-15 47-53 47-53

mb_pred() and
sub_mb_pred()

mvd_l1[][][1] Table 9-15 47-53

sub_mb_pred() sub_mb_type
Table 9-13

Table 9-14
 21-23 36-39

residual_block_cabac() coded_block_flag

Table 9-18
Table 9-24a

Table 9-24i

85-104
460-483

85-104
460-483

1012-1023

85-104
460-483

1012-1023

85-104
460-483

1012-1023

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 45

significant_coeff_flag[]

Table 9-19
Table 9-22
Table 9-24
Table 9-24

Table 9-24b
Table 9-22f
Table 9-24d
Table 9-24e

105-165
277-337

105-165
277-337
402-416
436-450
484-571
776-863
660-689
718-747

105-165
277-337
402-416
436-450
484-571
776-863
660-689
718-747

105-165
277-337
402-416
436-450
484-571
776-863
660-689
718-747

last_significant_coeff_flag[]

Table 9-20
Table 9-23
Table 9-24
Table 9-24
Table 9-24c
Table 9-24g
Table 9-24d
Table 9-24e

166-226
338-398

166-226
338-398
417-425
451-459
572-659
864-951
690-707
748-765

166-226
338-398
417-425
451-459
572-659
864-951
690-707
748-765

166-226
338-398
417-425
451-459
572-659
864-951
690-707
748-765

coeff_abs_level_minus1[]

Table 9-21
Table 9-24

Table 9-24h
Table 9-24d
Table 9-24e

227-275

227-275
426-435
952-1011
708-717
766-775

227-275
426-435
952-1011
708-717
766-775

227-275
426-435
952-1011
708-717
766-775

Insert a new Table 9-24a as follows.

Table 9-24a – Values of variables m and n for ctxIdx from 460 to 483
Value of cabac_init_idc Value of cabac_init_idc I and SI

slices
0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

460 -17 123 -7 92 0 80 11 80 472 -17 123 -7 92 0 80 11 80

461 -12 115 -5 89 -5 89 5 76 473 -12 115 -5 89 -5 89 5 76

462 -16 122 -7 96 -7 94 2 84 474 -16 122 -7 96 -7 94 2 84

463 -11 115 -13 108 -4 92 5 78 475 -11 115 -13 108 -4 92 5 78

464 -12 63 -3 46 0 39 -6 55 476 -12 63 -3 46 0 39 -6 55

465 -2 68 -1 65 0 65 4 61 477 -2 68 -1 65 0 65 4 61

466 -15 84 -1 57 -15 84 -14 83 478 -15 84 -1 57 -15 84 -14 83

467 -13 104 -9 93 -35 127 -37 127 479 -13 104 -9 93 -35 127 -37 127

468 -3 70 -3 74 -2 73 -5 79 480 -3 70 -3 74 -2 73 -5 79

469 -8 93 -9 92 -12 104 -11 104 481 -8 93 -9 92 -12 104 -11 104

470 -10 90 -8 87 -9 91 -11 91 482 -10 90 -8 87 -9 91 -11 91

471 -30 127 -23 126 -31 127 -30 127 483 -30 127 -23 126 -31 127 -30 127

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 46

Insert a new Table 9-24b as follows.

Table 9-24b – Values of variables m and n for ctxIdx from 484 to 571
Value of cabac_init_idc Value of cabac_init_idc I and SI

slices
0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

484 -7 93 -2 85 -13 103 -4 86 528 -7 93 -2 85 -13 103 -4 86

485 -11 87 -6 78 -13 91 -12 88 529 -11 87 -6 78 -13 91 -12 88

486 -3 77 -1 75 -9 89 -5 82 530 -3 77 -1 75 -9 89 -5 82

487 -5 71 -7 77 -14 92 -3 72 531 -5 71 -7 77 -14 92 -3 72

488 -4 63 2 54 -8 76 -4 67 532 -4 63 2 54 -8 76 -4 67

489 -4 68 5 50 -12 87 -8 72 533 -4 68 5 50 -12 87 -8 72

490 -12 84 -3 68 -23 110 -16 89 534 -12 84 -3 68 -23 110 -16 89

491 -7 62 1 50 -24 105 -9 69 535 -7 62 1 50 -24 105 -9 69

492 -7 65 6 42 -10 78 -1 59 536 -7 65 6 42 -10 78 -1 59

493 8 61 -4 81 -20 112 5 66 537 8 61 -4 81 -20 112 5 66

494 5 56 1 63 -17 99 4 57 538 5 56 1 63 -17 99 4 57

495 -2 66 -4 70 -78 127 -4 71 539 -2 66 -4 70 -78 127 -4 71

496 1 64 0 67 -70 127 -2 71 540 1 64 0 67 -70 127 -2 71

497 0 61 2 57 -50 127 2 58 641 0 61 2 57 -50 127 2 58

498 -2 78 -2 76 -46 127 -1 74 542 -2 78 -2 76 -46 127 -1 74

499 1 50 11 35 -4 66 -4 44 543 1 50 11 35 -4 66 -4 44

500 7 52 4 64 -5 78 -1 69 544 7 52 4 64 -5 78 -1 69

501 10 35 1 61 -4 71 0 62 545 10 35 1 61 -4 71 0 62

502 0 44 11 35 -8 72 -7 51 546 0 44 11 35 -8 72 -7 51

503 11 38 18 25 2 59 -4 47 547 11 38 18 25 2 59 -4 47

504 1 45 12 24 -1 55 -6 42 548 1 45 12 24 -1 55 -6 42

505 0 46 13 29 -7 70 -3 41 549 0 46 13 29 -7 70 -3 41

506 5 44 13 36 -6 75 -6 53 550 5 44 13 36 -6 75 -6 53

507 31 17 -10 93 -8 89 8 76 551 31 17 -10 93 -8 89 8 76

508 1 51 -7 73 -34 119 -9 78 552 1 51 -7 73 -34 119 -9 78

509 7 50 -2 73 -3 75 -11 83 553 7 50 -2 73 -3 75 -11 83

510 28 19 13 46 32 20 9 52 554 28 19 13 46 32 20 9 52

511 16 33 9 49 30 22 0 67 555 16 33 9 49 30 22 0 67

512 14 62 -7 100 -44 127 -5 90 556 14 62 -7 100 -44 127 -5 90

513 -13 108 9 53 0 54 1 67 557 -13 108 9 53 0 54 1 67

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 47

514 -15 100 2 53 -5 61 -15 72 558 -15 100 2 53 -5 61 -15 72

515 -13 101 5 53 0 58 -5 75 559 -13 101 5 53 0 58 -5 75

516 -13 91 -2 61 -1 60 -8 80 560 -13 91 -2 61 -1 60 -8 80

517 -12 94 0 56 -3 61 -21 83 561 -12 94 0 56 -3 61 -21 83

518 -10 88 0 56 -8 67 -21 64 562 -10 88 0 56 -8 67 -21 64

519 -16 84 -13 63 -25 84 -13 31 563 -16 84 -13 63 -25 84 -13 31

520 -10 86 -5 60 -14 74 -25 64 564 -10 86 -5 60 -14 74 -25 64

521 -7 83 -1 62 -5 65 -29 94 565 -7 83 -1 62 -5 65 -29 94

522 -13 87 4 57 5 52 9 75 566 -13 87 4 57 5 52 9 75

523 -19 94 -6 69 2 57 17 63 567 -19 94 -6 69 2 57 17 63

524 1 70 4 57 0 61 -8 74 568 1 70 4 57 0 61 -8 74

525 0 72 14 39 -9 69 -5 35 569 0 72 14 39 -9 69 -5 35

526 -5 74 4 51 -11 70 -2 27 570 -5 74 4 51 -11 70 -2 27

527 18 59 13 68 18 55 13 91 571 18 59 13 68 18 55 13 91

Insert a new Table 9-24c as follows.

Table 9-24c – Values of variables m and n for ctxIdx from 572 to 659
Value of cabac_init_idc Value of cabac_init_idc I and SI

slices
0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

572 24 0 11 28 4 45 4 39 616 24 0 11 28 4 45 4 39

573 15 9 2 40 10 28 0 42 617 15 9 2 40 10 28 0 42

574 8 25 3 44 10 31 7 34 618 8 25 3 44 10 31 7 34

575 13 18 0 49 33 -11 11 29 619 13 18 0 49 33 -11 11 29

576 15 9 0 46 52 -43 8 31 620 15 9 0 46 52 -43 8 31

577 13 19 2 44 18 15 6 37 621 13 19 2 44 18 15 6 37

578 10 37 2 51 28 0 7 42 622 10 37 2 51 28 0 7 42

579 12 18 0 47 35 -22 3 40 623 12 18 0 47 35 -22 3 40

580 6 29 4 39 38 -25 8 33 624 6 29 4 39 38 -25 8 33

581 20 33 2 62 34 0 13 43 625 20 33 2 62 34 0 13 43

582 15 30 6 46 39 -18 13 36 626 15 30 6 46 39 -18 13 36

583 4 45 0 54 32 -12 4 47 627 4 45 0 54 32 -12 4 47

584 1 58 3 54 102 -94 3 55 628 1 58 3 54 102 -94 3 55

585 0 62 2 58 0 0 2 58 629 0 62 2 58 0 0 2 58

586 7 61 4 63 56 -15 6 60 630 7 61 4 63 56 -15 6 60

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 48

587 12 38 6 51 33 -4 8 44 631 12 38 6 51 33 -4 8 44

588 11 45 6 57 29 10 11 44 632 11 45 6 57 29 10 11 44

589 15 39 7 53 37 -5 14 42 633 15 39 7 53 37 -5 14 42

590 11 42 6 52 51 -29 7 48 634 11 42 6 52 51 -29 7 48

591 13 44 6 55 39 -9 4 56 635 13 44 6 55 39 -9 4 56

592 16 45 11 45 52 -34 4 52 636 16 45 11 45 52 -34 4 52

593 12 41 14 36 69 -58 13 37 637 12 41 14 36 69 -58 13 37

594 10 49 8 53 67 -63 9 49 638 10 49 8 53 67 -63 9 49

595 30 34 -1 82 44 -5 19 58 639 30 34 -1 82 44 -5 19 58

596 18 42 7 55 32 7 10 48 640 18 42 7 55 32 7 10 48

597 10 55 -3 78 55 -29 12 45 641 10 55 -3 78 55 -29 12 45

598 17 51 15 46 32 1 0 69 642 17 51 15 46 32 1 0 69

599 17 46 22 31 0 0 20 33 643 17 46 22 31 0 0 20 33

600 0 89 -1 84 27 36 8 63 644 0 89 -1 84 27 36 8 63

601 26 -19 25 7 33 -25 35 -18 645 26 -19 25 7 33 -25 35 -18

602 22 -17 30 -7 34 -30 33 -25 646 22 -17 30 -7 34 -30 33 -25

603 26 -17 28 3 36 -28 28 -3 647 26 -17 28 3 36 -28 28 -3

604 30 -25 28 4 38 -28 24 10 648 30 -25 28 4 38 -28 24 10

605 28 -20 32 0 38 -27 27 0 649 28 -20 32 0 38 -27 27 0

606 33 -23 34 -1 34 -18 34 -14 650 33 -23 34 -1 34 -18 34 -14

607 37 -27 30 6 35 -16 52 -44 651 37 -27 30 6 35 -16 52 -44

608 33 -23 30 6 34 -14 39 -24 652 33 -23 30 6 34 -14 39 -24

609 40 -28 32 9 32 -8 19 17 653 40 -28 32 9 32 -8 19 17

610 38 -17 31 19 37 -6 31 25 654 38 -17 31 19 37 -6 31 25

611 33 -11 26 27 35 0 36 29 655 33 -11 26 27 35 0 36 29

612 40 -15 26 30 30 10 24 33 656 40 -15 26 30 30 10 24 33

613 41 -6 37 20 28 18 34 15 657 41 -6 37 20 28 18 34 15

614 38 1 28 34 26 25 30 20 658 38 1 28 34 26 25 30 20

615 41 17 17 70 29 41 22 73 659 41 17 17 70 29 41 22 73

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 49

Insert a new Table 9-24d as follows.

Table 9-24d– Values of variables m and n for ctxIdx from 660 to 717
Value of cabac_init_idc Value of cabac_init_idc I

slices
0 1 2

I
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

660 -17 120 -4 79 -5 85 -3 78 689 2 59 2 59 2 58 -11 68

661 -20 112 -7 71 -6 81 -8 74 690 23 -13 9 -2 17 -10 9 -2

662 -18 114 -5 69 -10 77 -9 72 691 26 -13 26 -9 32 -13 30 -10

663 -11 85 -9 70 -7 81 -10 72 692 40 -15 33 -9 42 -9 31 -4

664 -15 92 -8 66 -17 80 -18 75 693 49 -14 39 -7 49 -5 33 -1

665 -14 89 -10 68 -18 73 -12 71 694 44 3 41 -2 53 0 33 7

666 -26 71 -19 73 -4 74 -11 63 695 45 6 45 3 64 3 31 12

667 -15 81 -12 69 -10 83 -5 70 696 44 34 49 9 68 10 37 23

668 -14 80 -16 70 -9 71 -17 75 697 33 54 45 27 66 27 31 38

669 0 68 -15 67 -9 67 -14 72 698 19 82 36 59 47 57 20 64

670 -14 70 -20 62 -1 61 -16 67 699 21 -10 21 -13 17 -10 9 -2

671 -24 56 -19 70 -8 66 -8 53 700 24 -11 33 -14 32 -13 30 -10

672 -23 68 -16 66 -14 66 -14 59 701 28 -8 39 -7 42 -9 31 -4

673 -24 50 -22 65 0 59 -9 52 702 28 -1 46 -2 49 -5 33 -1

674 -11 74 -20 63 2 59 -11 68 703 29 3 51 2 53 0 33 7

675 -14 106 -5 85 -3 81 -3 78 704 29 9 60 6 64 3 31 12

676 -13 97 -6 81 -3 76 -8 74 705 35 20 61 17 68 10 37 23

677 -15 90 -10 77 -7 72 -9 72 706 29 36 55 34 66 27 31 38

678 -12 90 -7 81 -6 78 -10 72 707 14 67 42 62 47 57 20 64

679 -18 88 -17 80 -12 72 -18 75 708 -3 75 -6 66 -5 71 -9 71

680 -10 73 -18 73 -14 68 -12 71 709 -1 23 -7 35 0 24 -7 37

681 -9 79 -4 74 -3 70 -11 63 710 1 34 -7 42 -1 36 -8 44

682 -14 86 -10 83 -6 76 -5 70 711 1 43 -8 45 -2 42 -11 49

683 -10 73 -9 71 -5 66 -17 75 712 0 54 -5 48 -2 52 -10 56

684 -10 70 -9 67 -5 62 -14 72 713 -2 55 -12 56 -9 57 -12 59

685 -10 69 -1 61 0 57 -16 67 714 0 61 -6 60 -6 63 -8 63

686 -5 66 -8 66 -4 61 -8 53 715 1 64 -5 62 -4 65 -9 67

687 -9 64 -14 66 -9 60 -14 59 716 0 68 -8 66 -4 67 -6 68

688 -5 58 0 59 1 54 -9 52 717 -9 92 -8 76 -7 82 -10 79

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 50

Insert a new Table 9-24e as follows.

Table 9-24e– Values of variables m and n for ctxIdx from 718 to 775
Value of cabac_init_idc Value of cabac_init_idc I

slices
0 1 2

I
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

718 -17 120 -4 79 -5 85 -3 78 747 2 59 2 59 2 58 -11 68

719 -20 112 -7 71 -6 81 -8 74 748 23 -13 9 -2 17 -10 9 -2

720 -18 114 -5 69 -10 77 -9 72 749 26 -13 26 -9 32 -13 30 -10

721 -11 85 -9 70 -7 81 -10 72 750 40 -15 33 -9 42 -9 31 -4

722 -15 92 -8 66 -17 80 -18 75 751 49 -14 39 -7 49 -5 33 -1

723 -14 89 -10 68 -18 73 -12 71 752 44 3 41 -2 53 0 33 7

724 -26 71 -19 73 -4 74 -11 63 753 45 6 45 3 64 3 31 12

725 -15 81 -12 69 -10 83 -5 70 754 44 34 49 9 68 10 37 23

726 -14 80 -16 70 -9 71 -17 75 755 33 54 45 27 66 27 31 38

727 0 68 -15 67 -9 67 -14 72 756 19 82 36 59 47 57 20 64

728 -14 70 -20 62 -1 61 -16 67 757 21 -10 21 -13 17 -10 9 -2

729 -24 56 -19 70 -8 66 -8 53 758 24 -11 33 -14 32 -13 30 -10

730 -23 68 -16 66 -14 66 -14 59 759 28 -8 39 -7 42 -9 31 -4

731 -24 50 -22 65 0 59 -9 52 760 28 -1 46 -2 49 -5 33 -1

732 -11 74 -20 63 2 59 -11 68 761 29 3 51 2 53 0 33 7

733 -14 106 -5 85 -3 81 -3 78 762 29 9 60 6 64 3 31 12

734 -13 97 -6 81 -3 76 -8 74 763 35 20 61 17 68 10 37 23

735 -15 90 -10 77 -7 72 -9 72 764 29 36 55 34 66 27 31 38

736 -12 90 -7 81 -6 78 -10 72 765 14 67 42 62 47 57 20 64

737 -18 88 -17 80 -12 72 -18 75 766 -3 75 -6 66 -5 71 -9 71

738 -10 73 -18 73 -14 68 -12 71 767 -1 23 -7 35 0 24 -7 37

739 -9 79 -4 74 -3 70 -11 63 768 1 34 -7 42 -1 36 -8 44

740 -14 86 -10 83 -6 76 -5 70 769 1 43 -8 45 -2 42 -11 49

741 -10 73 -9 71 -5 66 -17 75 770 0 54 -5 48 -2 52 -10 56

742 -10 70 -9 67 -5 62 -14 72 771 -2 55 -12 56 -9 57 -12 59

743 -10 69 -1 61 0 57 -16 67 772 0 61 -6 60 -6 63 -8 63

744 -5 66 -8 66 -4 61 -8 53 773 1 64 -5 62 -4 65 -9 67

745 -9 64 -14 66 -9 60 -14 59 774 0 68 -8 66 -4 67 -6 68

746 -5 58 0 59 1 54 -9 52 775 -9 92 -8 76 -7 82 -10 79

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 51

Insert a new Table 9-24f as follows.

Table 9-24f – Values of variables m and n for ctxIdx from 776 to 863
Value of cabac_init_idc Value of cabac_init_idc I and SI

slices
0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

776 -6 93 -13 106 -21 126 -22 127 820 -6 93 -13 106 -21 126 -22 127

777 -6 84 -16 106 -23 124 -25 127 821 -6 84 -16 106 -23 124 -25 127

778 -8 79 -10 87 -20 110 -25 120 822 -8 79 -10 87 -20 110 -25 120

779 0 66 -21 114 -26 126 -27 127 823 0 66 -21 114 -26 126 -27 127

780 -1 71 -18 110 -25 124 -19 114 824 -1 71 -18 110 -25 124 -19 114

781 0 62 -14 98 -17 105 -23 117 825 0 62 -14 98 -17 105 -23 117

782 -2 60 -22 110 -27 121 -25 118 826 -2 60 -22 110 -27 121 -25 118

783 -2 59 -21 106 -27 117 -26 117 827 -2 59 -21 106 -27 117 -26 117

784 -5 75 -18 103 -17 102 -24 113 828 -5 75 -18 103 -17 102 -24 113

785 -3 62 -21 107 -26 117 -28 118 829 -3 62 -21 107 -26 117 -28 118

786 -4 58 -23 108 -27 116 -31 120 830 -4 58 -23 108 -27 116 -31 120

787 -9 66 -26 112 -33 122 -37 124 831 -9 66 -26 112 -33 122 -37 124

788 -1 79 -10 96 -10 95 -10 94 832 -1 79 -10 96 -10 95 -10 94

789 0 71 -12 95 -14 100 -15 102 833 0 71 -12 95 -14 100 -15 102

790 3 68 -5 91 -8 95 -10 99 834 3 68 -5 91 -8 95 -10 99

791 10 44 -9 93 -17 111 -13 106 835 10 44 -9 93 -17 111 -13 106

792 -7 62 -22 94 -28 114 -50 127 836 -7 62 -22 94 -28 114 -50 127

793 15 36 -5 86 -6 89 -5 92 837 15 36 -5 86 -6 89 -5 92

794 14 40 9 67 -2 80 17 57 838 14 40 9 67 -2 80 17 57

795 16 27 -4 80 -4 82 -5 86 839 16 27 -4 80 -4 82 -5 86

796 12 29 -10 85 -9 85 -13 94 840 12 29 -10 85 -9 85 -13 94

797 1 44 -1 70 -8 81 -12 91 841 1 44 -1 70 -8 81 -12 91

798 20 36 7 60 -1 72 -2 77 842 20 36 7 60 -1 72 -2 77

799 18 32 9 58 5 64 0 71 843 18 32 9 58 5 64 0 71

800 5 42 5 61 1 67 -1 73 844 5 42 5 61 1 67 -1 73

801 1 48 12 50 9 56 4 64 845 1 48 12 50 9 56 4 64

802 10 62 15 50 0 69 -7 81 846 10 62 15 50 0 69 -7 81

803 17 46 18 49 1 69 5 64 847 17 46 18 49 1 69 5 64

804 9 64 17 54 7 69 15 57 848 9 64 17 54 7 69 15 57

805 -12 104 10 41 -7 69 1 67 849 -12 104 10 41 -7 69 1 67

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 52

806 -11 97 7 46 -6 67 0 68 850 -11 97 7 46 -6 67 0 68

807 -16 96 -1 51 -16 77 -10 67 851 -16 96 -1 51 -16 77 -10 67

808 -7 88 7 49 -2 64 1 68 852 -7 88 7 49 -2 64 1 68

809 -8 85 8 52 2 61 0 77 853 -8 85 8 52 2 61 0 77

810 -7 85 9 41 -6 67 2 64 854 -7 85 9 41 -6 67 2 64

811 -9 85 6 47 -3 64 0 68 855 -9 85 6 47 -3 64 0 68

812 -13 88 2 55 2 57 -5 78 856 -13 88 2 55 2 57 -5 78

813 4 66 13 41 -3 65 7 55 857 4 66 13 41 -3 65 7 55

814 -3 77 10 44 -3 66 5 59 858 -3 77 10 44 -3 66 5 59

815 -3 76 6 50 0 62 2 65 859 -3 76 6 50 0 62 2 65

816 -6 76 5 53 9 51 14 54 860 -6 76 5 53 9 51 14 54

817 10 58 13 49 -1 66 15 44 861 10 58 13 49 -1 66 15 44

818 -1 76 4 63 -2 71 5 60 862 -1 76 4 63 -2 71 5 60

819 -1 83 6 64 -2 75 2 70 863 -1 83 6 64 -2 75 2 70

Insert a new Table 9-24g as follows.

Table 9-24g – Values of variables m and n for ctxIdx from 864 to 951
Value of cabac_init_idc Value of cabac_init_idc I and SI

slices
0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m n m n

864 15 6 14 11 19 -6 17 -13 908 15 6 14 11 19 -6 17 -13

865 6 19 11 14 18 -6 16 -9 909 6 19 11 14 18 -6 16 -9

866 7 16 9 11 14 0 17 -12 910 7 16 9 11 14 0 17 -12

867 12 14 18 11 26 -12 27 -21 911 12 14 18 11 26 -12 27 -21

868 18 13 21 9 31 -16 37 -30 912 18 13 21 9 31 -16 37 -30

869 13 11 23 -2 33 -25 41 -40 913 13 11 23 -2 33 -25 41 -40

870 13 15 32 -15 33 -22 42 -41 914 13 15 32 -15 33 -22 42 -41

871 15 16 32 -15 37 -28 48 -47 915 15 16 32 -15 37 -28 48 -47

872 12 23 34 -21 39 -30 39 -32 916 12 23 34 -21 39 -30 39 -32

873 13 23 39 -23 42 -30 46 -40 917 13 23 39 -23 42 -30 46 -40

874 15 20 42 -33 47 -42 52 -51 918 15 20 42 -33 47 -42 52 -51

875 14 26 41 -31 45 -36 46 -41 919 14 26 41 -31 45 -36 46 -41

876 14 44 46 -28 49 -34 52 -39 920 14 44 46 -28 49 -34 52 -39

877 17 40 38 -12 41 -17 43 -19 921 17 40 38 -12 41 -17 43 -19

878 17 47 21 29 32 9 32 11 922 17 47 21 29 32 9 32 11

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 53

879 24 17 45 -24 69 -71 61 -55 923 24 17 45 -24 69 -71 61 -55

880 21 21 53 -45 63 -63 56 -46 924 21 21 53 -45 63 -63 56 -46

881 25 22 48 -26 66 -64 62 -50 925 25 22 48 -26 66 -64 62 -50

882 31 27 65 -43 77 -74 81 -67 926 31 27 65 -43 77 -74 81 -67

883 22 29 43 -19 54 -39 45 -20 927 22 29 43 -19 54 -39 45 -20

884 19 35 39 -10 52 -35 35 -2 928 19 35 39 -10 52 -35 35 -2

885 14 50 30 9 41 -10 28 15 929 14 50 30 9 41 -10 28 15

886 10 57 18 26 36 0 34 1 930 10 57 18 26 36 0 34 1

887 7 63 20 27 40 -1 39 1 931 7 63 20 27 40 -1 39 1

888 -2 77 0 57 30 14 30 17 932 -2 77 0 57 30 14 30 17

889 -4 82 -14 82 28 26 20 38 933 -4 82 -14 82 28 26 20 38

890 -3 94 -5 75 23 37 18 45 934 -3 94 -5 75 23 37 18 45

891 9 69 -19 97 12 55 15 54 935 9 69 -19 97 12 55 15 54

892 -12 109 -35 125 11 65 0 79 936 -12 109 -35 125 11 65 0 79

893 36 -35 27 0 37 -33 36 -16 937 36 -35 27 0 37 -33 36 -16

894 36 -34 28 0 39 -36 37 -14 938 36 -34 28 0 39 -36 37 -14

895 32 -26 31 -4 40 -37 37 -17 939 32 -26 31 -4 40 -37 37 -17

896 37 -30 27 6 38 -30 32 1 940 37 -30 27 6 38 -30 32 1

897 44 -32 34 8 46 -33 34 15 941 44 -32 34 8 46 -33 34 15

898 34 -18 30 10 42 -30 29 15 942 34 -18 30 10 42 -30 29 15

899 34 -15 24 22 40 -24 24 25 943 34 -15 24 22 40 -24 24 25

900 40 -15 33 19 49 -29 34 22 944 40 -15 33 19 49 -29 34 22

901 33 -7 22 32 38 -12 31 16 945 33 -7 22 32 38 -12 31 16

902 35 -5 26 31 40 -10 35 18 946 35 -5 26 31 40 -10 35 18

903 33 0 21 41 38 -3 31 28 947 33 0 21 41 38 -3 31 28

904 38 2 26 44 46 -5 33 41 948 38 2 26 44 46 -5 33 41

905 33 13 23 47 31 20 36 28 949 33 13 23 47 31 20 36 28

906 23 35 16 65 29 30 27 47 950 23 35 16 65 29 30 27 47

907 13 58 14 71 25 44 21 62 951 13 58 14 71 25 44 21 62

Insert a new Table 9-24h as follows.

Table 9-24h – Values of variables m and n for ctxIdx from 952 to 1011
ctxIdx I and SI Value of cabac_init_idc ctxIdx I and SI Value of cabac_init_idc

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 54

slices 0 1 2 slices 0 1 2

m n m n m n m n m n m n m n m n

952 -3 71 -6 76 -23 112 -24 115 982 -3 71 -6 76 -23 112 -24 115

953 -6 42 -2 44 -15 71 -22 82 983 -6 42 -2 44 -15 71 -22 82

954 -5 50 0 45 -7 61 -9 62 984 -5 50 0 45 -7 61 -9 62

955 -3 54 0 52 0 53 0 53 985 -3 54 0 52 0 53 0 53

956 -2 62 -3 64 -5 66 0 59 986 -2 62 -3 64 -5 66 0 59

957 0 58 -2 59 -11 77 -14 85 987 0 58 -2 59 -11 77 -14 85

958 1 63 -4 70 -9 80 -13 89 988 1 63 -4 70 -9 80 -13 89

959 -2 72 -4 75 -9 84 -13 94 989 -2 72 -4 75 -9 84 -13 94

960 -1 74 -8 82 -10 87 -11 92 990 -1 74 -8 82 -10 87 -11 92

961 -9 91 -17 102 -34 127 -29 127 991 -9 91 -17 102 -34 127 -29 127

962 -5 67 -9 77 -21 101 -21 100 992 -5 67 -9 77 -21 101 -21 100

963 -5 27 3 24 -3 39 -14 57 993 -5 27 3 24 -3 39 -14 57

964 -3 39 0 42 -5 53 -12 67 994 -3 39 0 42 -5 53 -12 67

965 -2 44 0 48 -7 61 -11 71 995 -2 44 0 48 -7 61 -11 71

966 0 46 0 55 -11 75 -10 77 996 0 46 0 55 -11 75 -10 77

967 -16 64 -6 59 -15 77 -21 85 997 -16 64 -6 59 -15 77 -21 85

968 -8 68 -7 71 -17 91 -16 88 998 -8 68 -7 71 -17 91 -16 88

969 -10 78 -12 83 -25 107 -23 104 999 -10 78 -12 83 -25 107 -23 104

970 -6 77 -11 87 -25 111 -15 98 1000 -6 77 -11 87 -25 111 -15 98

971 -10 86 -30 119 -28 122 -37 127 1001 -10 86 -30 119 -28 122 -37 127

972 -12 92 1 58 -11 76 -10 82 1002 -12 92 1 58 -11 76 -10 82

973 -15 55 -3 29 -10 44 -8 48 1003 -15 55 -3 29 -10 44 -8 48

974 -10 60 -1 36 -10 52 -8 61 1004 -10 60 -1 36 -10 52 -8 61

975 -6 62 1 38 -10 57 -8 66 1005 -6 62 1 38 -10 57 -8 66

976 -4 65 2 43 -9 58 -7 70 1006 -4 65 2 43 -9 58 -7 70

977 -12 73 -6 55 -16 72 -14 75 1007 -12 73 -6 55 -16 72 -14 75

978 -8 76 0 58 -7 69 -10 79 1008 -8 76 0 58 -7 69 -10 79

979 -7 80 0 64 -4 69 -9 83 1009 -7 80 0 64 -4 69 -9 83

980 -9 88 -3 74 -5 74 -12 92 1010 -9 88 -3 74 -5 74 -12 92

981 -17 110 -10 90 -9 86 -18 108 1011 -17 110 -10 90 -9 86 -18 108

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 55

Insert a new Table 9-24i as follows.

Table 9-24i – Values of variables m and n for ctxIdx from 1012 to 1023

Value of cabac_init_idc Value of cabac_init_idc I and SI
slices

0 1 2

I and SI
slices

0 1 2 ctxIdx

m n m n m n m n

ctxIdx

m n m n m N m n

1012 -3 70 -3 74 -2 73 -5 79 1018 -10 90 -8 87 -9 91 -11 91

1013 -8 93 -9 92 -12 104 -11 104 1019 -30 127 -23 126 -31 127 -30 127

1014 -10 90 -8 87 -9 91 -11 91 1020 -3 70 -3 74 -2 73 -5 79

1015 -30 127 -23 126 -31 127 -30 127 1021 -8 93 -9 92 -12 104 -11 104

1016 -3 70 -3 74 -2 73 -5 79 1022 -10 90 -8 87 -9 91 -11 91

1017 -8 93 -9 92 -12 104 -11 104 1023 -30 127 -23 126 -31 127 -30 127

70) Subclause 9.3.2 “Binarization process”

In subclause 9.3.2, make the following changes.

Replace the paragraph starting with “The possible values of the context index ctxIdx” with the following.

The possible values of the context index ctxIdx are in the range 0 to 1023, inclusive. The value assigned to
ctxIdxOffset specifies the lower value of the range of ctxIdx assigned to the corresponding binarization or
binarization part of a syntax element.

Replace Table 9-25 with the following.

Table 9-25 – Syntax elements and associated types of binarization, maxBinIdxCtx, and ctxIdxOffset
Syntax element Type of binarization maxBinIdxCtx ctxIdxOffset

mb_type
(SI slices only)

prefix and suffix
as specified in subclause 9.3.2.5

prefix: 0
suffix: 6

prefix: 0
suffix: 3

mb_type (I slices only) as specified in subclause 9.3.2.5 6 3

mb_skip_flag
(P, SP slices only) FL, cMax=1 0 11

mb_type (P, SP slices only) prefix and suffix
as specified in subclause 9.3.2.5

prefix: 2
suffix: 5

prefix: 14
suffix: 17

sub_mb_type
(P, SP slices only) as specified in subclause 9.3.2.5 2 21

mb_skip_flag
(B slices only) FL, cMax=1 0 24

mb_type (B slices only) prefix and suffix
as specified in subclause 9.3.2.5

prefix: 3
suffix: 5

prefix: 27
suffix: 32

sub_mb_type (B slices only) as specified in subclause 9.3.2.5 3 36

mvd_l0[][][0], mvd_l1[][][0] prefix and suffix as given by UEG3
with signedValFlag=1, uCoff=9

prefix: 4
suffix: na

prefix: 40
suffix: na (uses DecodeBypass)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 56

mvd_l0[][][1], mvd_l1[][][1] prefix: 4
suffix: na

prefix: 47
suffix: na (uses DecodeBypass)

ref_idx_l0, ref_idx_l1 U 2 54

mb_qp_delta as specified in subclause 9.3.2.7 2 60

intra_chroma_pred_mode TU, cMax=3 1 64

prev_intra4x4_pred_mode_flag,
prev_intra8x8_pred_mode_flag FL, cMax=1 0 68

rem_intra4x4_pred_mode,
rem_intra8x8_pred_mode FL, cMax=7 0 69

mb_field_decoding_flag FL, cMax=1 0 70

coded_block_pattern prefix and suffix
as specified in subclause 9.3.2.6

prefix: 3
suffix: 1

prefix: 73
suffix: 77

coded_block_flag
(ctxBlockCat < 5) FL, cMax=1 0 85

significant_coeff_flag
(frame coded blocks with ctxBlockCat < 5) FL, cMax=1 0 105

last_significant_coeff_flag
(frame coded blocks with ctxBlockCat < 5) FL, cMax=1 0 166

coeff_abs_level_minus1
(blocks with ctxBlockCat < 5)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 227
suffix: na, (uses DecodeBypass)

coeff_sign_flag FL, cMax=1 0 na, (uses DecodeBypass)

end_of_slice_flag FL, cMax=1 0 276

significant_coeff_flag
(field coded blocks with ctxBlockCat < 5) FL, cMax=1 0 277

last_significant_coeff_flag
(field coded blocks with ctxBlockCat < 5) FL, cMax=1 0 338

transform_size_8x8_flag FL, cMax=1 0 399

significant_coeff_flag
(frame coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 402

last_significant_coeff_flag
(frame coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 417

coeff_abs_level_minus1
(blocks with ctxBlockCat = = 5)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 426
suffix: na, (uses DecodeBypass)

significant_coeff_flag
(field coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 436

last_significant_coeff_flag
(field coded blocks with ctxBlockCat = = 5) FL, cMax=1 0 451

coded_block_flag

(5 < ctxBlockCat < 9)
FL, cMax=1 0 460

coded_block_flag

(9 < ctxBlockCat < 13)
FL, cMax=1 0 472

coded_block_flag

(ctxBlockCat = = 5, 9, or 13)
FL, cMax=1 0 1012

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 57

significant_coeff_flag
(frame coded blocks with 5<ctxBlockCat<9) FL, cMax=1 0 484

significant_coeff_flag
(frame coded blocks with 9<ctxBlockCat<13) FL, cMax=1 0 528

last_significant_coeff_flag
(frame coded blocks with 5<ctxBlockCat<9) FL, cMax=1 0 572

last_significant_coeff_flag
(frame coded blocks with 9<ctxBlockCat<13) FL, cMax=1 0 616

coeff_abs_level_minus1
(blocks with 5<ctxBlockCat<9)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 952
suffix: na, (uses DecodeBypass)

coeff_abs_level_minus1
(blocks with 9<ctxBlockCat<13)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 982
suffix: na, (uses DecodeBypass)

significant_coeff_flag
(field coded blocks with 5<ctxBlockCat< 9) FL, cMax=1 0 776

significant_coeff_flag
(field coded blocks with 9<ctxBlockCat<13) FL, cMax=1 0 820

last_significant_coeff_flag
(field coded blocks with 5<ctxBlockCat<9) FL, cMax=1 0 864

last_significant_coeff_flag
(field coded blocks with 9<ctxBlockCat<13) FL, cMax=1 0 908

significant_coeff_flag
(frame coded blocks with ctxBlockCat = = 9) FL, cMax=1 0 660

significant_coeff_flag
(frame coded blocks with

ctxBlockCat = = 13)
FL, cMax=1 0 718

last_significant_coeff_flag
(frame coded blocks with ctxBlockCat = = 9) FL, cMax=1 0 690

last_significant_coeff_flag
(frame coded blocks with

ctxBlockCat = = 13)
FL, cMax=1 0 748

coeff_abs_level_minus1
(blocks with ctxBlockCat = = 9)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 708
suffix: na, (uses DecodeBypass)

coeff_abs_level_minus1
(blocks with ctxBlockCat = = 13)

prefix and suffix as given by UEG0
with signedValFlag=0, uCoff=14

prefix: 1
suffix: na

prefix: 766
suffix: na, (uses DecodeBypass)

significant_coeff_flag
(field coded blocks with ctxBlockCat = = 9) FL, cMax=1 0 675

significant_coeff_flag
(field coded blocks with ctxBlockCat = = 13) FL, cMax=1 0 733

last_significant_coeff_flag
(field coded blocks with ctxBlockCat = = 9) FL, cMax=1 0 699

last_significant_coeff_flag
(field coded blocks with ctxBlockCat = = 13) FL, cMax=1 0 757

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 58

71) Subclause 9.3.2.6 “Binarization process for coded block pattern”

In subclause 9.3.2.6, replace the paragraph starting with “ The binarization of coded_block_pattern consists of…”
with the following.

The binarization of coded_block_pattern consists of a prefix part and (when present) a suffix part. The prefix part of
the binarization is given by the FL binarization of CodedBlockPatternLuma with cMax = 15. When
ChromaArrayType is not equal to 0 or 3, the suffix part is present and consists of the TU binarization of
CodedBlockPatternChroma with cMax = 2. The relationship between the value of the syntax element
coded_block_pattern and the values of CodedBlockPatternLuma and CodedBlockPatternChroma is given as
specified in subclause 7.4.5.

72) Subclause 9.3.3.1 “Derivation process for ctxIdx”

In subclause 9.3.3.1, replace Table 9-31 with the following.

Table 9-31 – Assignment of ctxIdxBlockCatOffset to ctxBlockCat for syntax elements coded_block_flag,
significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minus1

ctxBlockCat (as specified in Table 9-33) Syntax element

0 1 2 3 4 5 6 7 8 9 10 11 12 13

coded_block_flag 0 4 8 12 16 0 0 4 8 4 0 4 8 8

significant_coeff_flag 0 15 29 44 47 0 0 15 29 0 0 15 29 0

last_significant_coeff_flag 0 15 29 44 47 0 0 15 29 0 0 15 29 0

coeff_abs_level_minus1 0 10 20 30 39 0 0 10 20 0 0 10 20 0

73) Subclause 9.3.3.1.1.9 “Derivation process of ctxIdxInc for the syntax
element coded_block_flag”

In subclause 9.3.3.1.1.9, make the following changes.

Replace the first paragraph with the following.

Input to this process is ctxBlockCat and additional input is specified as follows.

– If ctxBlockCat is equal to 0, 6, or 10, no additional input

– Otherwise, if ctxBlockCat is equal to 1 or 2, luma4x4BlkIdx

– Otherwise, if ctxBlockCat is equal to 3, the chroma component index iCbCr

– Otherwise, if ctxBlockCat is equal to 4, chroma4x4BlkIdx and the chroma component index iCbCr

– Otherwise, if ctxBlockCat is equal to 5, luma8x8BlkIdx

– Otherwise, if ctxBlockCat is equal to 7 or 8, cb4x4BlkIdx

– Otherwise, if ctxBlockCat is equal to 9, cb8x8BlkIdx

– Otherwise, if ctxBlockCat is equal to 11 or 12, cr4x4BlkIdx

– Otherwise, (ctxBlockCat is equal to 13), cr8x8BlkIdx

Replace the paragraph starting with “If ctxBlockCat is equal to 0” with the following.

– If ctxBlockCat is equal to 0, 6, or 10, the following applies.

– The derivation process for neighbouring macroblocks specified in subclause 6.4.8.1 is invoked and the
output is assigned to mbAddrN (with N being either A or B).

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 59

– The variable transBlockN is derived as follows.

– If mbAddrN is available and the macroblock mbAddrN is coded in Intra_16x16 prediction mode, the
following applies.

– When ctxBlockCat is equal to 0, the luma DC block of macroblock mbAddrN is assigned to
transBlockN

– When ctxBlockCat is equal to 6, the Cb DC block of macroblock mbAddrN is assigned to
transBlockN

– When ctxBlockCat is equal to 10, the Cr DC block of macroblock mbAddrN is assigned to
transBlockN

– Otherwise, transBlockN is marked as not available.

Replace the sentence “Otherwise (ctxBlockCat is equal to 4), the following applies” with the following.

Otherwise, if ctxBlockCat is equal to 4, the following applies

Insert the following paragraphs before the paragraph starting with “Let the variable condTermFlagN (with N being
either A or B) be derived as follows”.

- Otherwise, if ctxBlockCat is equal to 5, the following applies.

- The derivation process for neighbouring 8x8 luma blocks specified in subclause 6.4.8.2 is invoked with
luma8x8BlkIdx as input and the output is assigned to mbAddrN, luma8x8BlkIdxN (with N being either A
or B).

- The variable transBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip,
or I_PCM, ((CodedBlockPatternLuma >>luma8x8BlkIdx) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the 8x8 luma
block with index luma8x8BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

- Otherwise, transBlockN is marked as not available.

- Otherwise, if ctxBlockCat is equal to7 or 8, the following applies.

- The derivation process for neighbouring 4x4 Cb blocks specified in subclause 6.4.8.4.1 is invoked with
cb4x4BlkIdx as input and the output is assigned to mbAddrN, cb4x4BlkIdxN (with N being either A or B).

- The variable transBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip,
or I_PCM, ((CodedBlockPatternLuma >> (cb4x4BlkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size_8x8_flag is equal to 0 for the macroblock mbAddrN, the
4x4 Cb block with index cb4x4BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

- Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip
or B_Skip, ((CodedBlockPatternLuma >> (cb4x4BlkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the
8x8 Cb block with index (cb4x4BlkIdxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

- Otherwise, transBlockN is marked as not available.

- Otherwise, if ctxBlockCat is equal to 9, the following applies.

- The derivation process for neighbouring 8x8 Cb blocks specified in subclause 6.4.8.2.1 is invoked with
cb8x8BlkIdx as input and the output is assigned to mbAddrN, cb8x8BlkIdxN (with N being either A or B).

- The variable transBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip,
or I_PCM, ((CodedBlockPatternLuma >>cb8x8BlkIdx) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cb block
with index cb8x8BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

- Otherwise, transBlockN is marked as not available.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 60

- Otherwise, if ctxBlockCat is equal to 11 or 12, the following applies.

- The derivation process for neighbouring 4x4 Cr blocks specified in subclause 6.4.8.4.1 is invoked with
cr4x4BlkIdx as input and the output is assigned to mbAddrN, cr4x4BlkIdxN (with N being either A or B).

- The variable transBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip,
or I_PCM, ((CodedBlockPatternLuma >> (cr4x4BlkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size_8x8_flag is equal to 0 for the macroblock mbAddrN, the
4x4 Cr block with index cr4x4BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

- Otherwise, if mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip
or B_Skip, ((CodedBlockPatternLuma >> (cr4x4BlkIdxN >>2)) & 1) is not equal to 0 for the
macroblock mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the
8x8 Cr block with index (cr4x4BlkIdxN >> 2) of macroblock mbAddrN is assigned to transBlockN.

- Otherwise, transBlockN is marked as not available.

- Otherwise (ctxBlockCat is equal to 13), the following applies.

- The derivation process for neighbouring 8x8 Cr blocks specified in subclause 6.4.8.2.1 is invoked with
cr8x8BlkIdx as input and the output is assigned to mbAddrN, cr8x8BlkIdxN (with N being either A or B).

- The variable transBlockN is derived as follows.

- If mbAddrN is available, the macroblock mbAddrN does not have mb_type equal to P_Skip, B_Skip,
or I_PCM,, ((CodedBlockPatternLuma >>cr8x8BlkIdx) & 1) is not equal to 0 for the macroblock
mbAddrN, and transform_size_8x8_flag is equal to 1 for the macroblock mbAddrN, the 8x8 Cr block
with index cr8x8BlkIdxN of macroblock mbAddrN is assigned to transBlockN.

- Otherwise, transBlockN is marked as not available.

74) Subclause 9.3.3.1.3 “Assignment process of ctxIdxInc for syntax elements
significant_coeff_flag, last_significant_coeff_flag, and
coeff_abs_level_minus1”

In subclause 9.3.3.1.1, make the following changes.

Replace Table 9-33 with the following

Table 9-33 – Specification of ctxBlockCat for the different blocks
Block description maxNumCoeff ctxBlockCat

block of luma DC transform coefficient levels (i.e., list Intra16x16DCLevel as described
in subclause 7.4.5.3) 16 0

block of luma AC transform coefficient levels (i.e., list Intra16x16ACLevel[i] as
described in subclause 7.4.5.3) 15 1

block of 16 luma transform coefficient levels (i.e., list LumaLevel[i] as described in
subclause 7.4.5.3) 16 2

block of chroma DC transform coefficient levels when ChromaArrayType is equal to 1 or
2 (i.e., list ChromaDCLevel as described in subclause 7.4.5.3) 4 * NumC8x8 3

block of chroma AC transform coefficient levels when ChromaArrayType is equal to 1 or
2 (i.e., list ChromaACLevel as described in subclause 7.4.5.3) 15 4

block of 64 luma transform coefficient levels (i.e., list LumaLevel8x8[i] as described in
subclause 7.4.5.3) 64 5

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 61

block of Cb DC transform coefficient levels when ChromaArrayType is equal to 3 (i.e.,
list CbIntra16x16DCLevel as described in subclause 7.4.5.3) 16 6

block of Cb AC transform coefficient levels when ChromaArrayType is equal to 3 (i.e.,
list CbIntra16x16ACLevel[i] as described in subclause 7.4.5.3) 15 7

block of 16 Cb transform coefficient levels when ChromaArrayType is equal to 3 (i.e., list
CbLevel[i] as described in subclause 7.4.5.3) 16 8

block of 64 Cb transform coefficient levels when ChromaArrayType is equal to 3 (i.e., list
CbLevel8x8[i] as described in subclause 7.4.5.3) 64 9

block of Cr DC transform coefficient levels when ChromaArrayType is equal to 3 (i.e.,
list CrIntra16x16DCLevel as described in subclause 7.4.5.3) 16 10

block of Cr AC transform coefficient levels when ChromaArrayType is equal to 3 (i.e.,
list CrIntra16x16ACLevel[i] as described in subclause 7.4.5.3) 15 11

block of 16 Cr transform coefficient levels when ChromaArrayType is equal to 3 (i.e., list
CrLevel[i] as described in subclause 7.4.5.3) 16 12

block of 64 Cr transform coefficient levels when ChromaArrayType is equal to 3 (i.e., list
CrLevel8x8[i] as described in subclause 7.4.5.3) 64 13

Replace the sentence starting with “For the syntax elements significant_coeff_flag and last_significant_coeff_flag
in blocks with ctxBlockCat < 5” with the following

For the syntax elements significant_coeff_flag and last_significant_coeff_flag in blocks with ctxBlockCat not equal
to 3, 5, 9, and 13, the variable ctxIdxInc is derived by

Replace the paragraph starting with “For the syntax elements significant_coeff_flag and last_significant_coeff_flag
in 8x8 luma blocks” with the following.

For the syntax elements significant_coeff_flag and last_significant_coeff_flag in 8x8 luma, Cb, or Cr blocks with
ctxBlockCat = = 5, 9, or 13, Table 9-34 contains the specification of ctxIdxInc for the given values of levelListIdx,
where levelListIdx ranges from 0 to 62, inclusive.

Change the title of Table 9-34 to “Mapping of scanning position to ctxIdxInc for ctxBlockCat = = 5, 9, or 13”.

75) Subclause A.2.4 “High profile”
In subclause A.2.4, replace the following.

Conformance of a bitstream to the High profile is specified by profile_idc being equal to 100. Decoders conforming
to the High profile at a specific level shall be capable of decoding all bitstreams in which level_idc and
constraint_set3_flag represents a level less than or equal to the specified level and either or both of the following
conditions are true:

– profile_idc is equal to 77 or 100, or

– constraint_set1_flag is equal to 1.
with

Conformance of a bitstream to the High profile is specified by profile_idc being equal to 100. Decoders conforming
to the High profile at a specific level shall be capable of decoding all bitstreams in which either or both of the
following conditions are true:

– profile_idc is equal to 77 or constraint_set1_flag is equal to 1 and the combination of level_idc and
constraint_set3_flag represent a level less than or equal to the specified level.

– profile_idc is equal to 100 and level_idc represents a level less than or equal to the specified level.

NOTE – The value 100 for profile_idc indicates that the bitstream conforms to the High profile as specified in this subclause.
When profile_idc is equal to 100 and constraint_set3_flag is equal to 1, this indicates that the bitstream conforms to the High

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 62

profile and additionally conforms to the constraints specified for the High 10 Intra profile in subclause A.2.8. For example,
such a bitstream must have bit_depth_luma_minus8 equal to 0, have bit_depth_chroma_minus8 equal to 0, obey the MinCr,
MaxBR and MaxCPB constraints of the High profile, contain only IDR pictures, have num_ref_frames equal to 0, have
dpb_output_delay equal to 0, and obey the maximum slice size constraint of the High 10 Intra profile.

76) Subclause A.2.5 “High 10 profile”
In subclause A.2.5, replace the following.

Conformance of a bitstream to the High 10 profile is specified by profile_idc being equal to 110. Decoders
conforming to the High 10 profile at a specific level shall be capable of decoding all bitstreams in which level_idc
and constraint_set3_flag represent a level less than or equal to the specified level and either or both of the following
conditions are true:

– profile_idc is equal to 77, 100, or 110, or

– constraint_set1_flag is equal to 1.
with

Conformance of a bitstream to the High 10 profile is specified by profile_idc being equal to 110. Decoders
conforming to the High 10 profile at a specific level shall be capable of decoding all bitstreams in which either or
both of the following conditions are true:

– profile_idc is equal to 77 or constraint_set1_flag is equal to 1 and the combination of level_idc and
constraint_set3_flag represent a level less than or equal to the specified level.

– profile_idc is equal to 100 or 110 and level_idc represents a level less than or equal to the specified level.

77) Subclause A.2.6 “High 4:2:2 profile”
In subclause A.2.6, replace the following.

Conformance of a bitstream to the High 4:2:2 profile is specified by profile_idc being equal to 122. Decoders
conforming to the High 4:2:2 profile at a specific level shall be capable of decoding all bitstreams in which either or
both of the following conditions are true:
– profile_idc is equal to 77, 100, 110, or 122, or
– constraint_set1_flag is equal to 1.
with

Conformance of a bitstream to the High 4:2:2 profile is specified by profile_idc being equal to 122. Decoders
conforming to the High 4:2:2 profile at a specific level shall be capable of decoding all bitstreams in which either or
both of the following conditions are true:
– profile_idc is equal to 77 or constraint_set1_flag is equal to 1 and the combination of level_idc and

constraint_set3_flag represent a level less than or equal to the specified level.
– profile_idc is equal to 100, 110, or 122 and level_idc represents a level less than or equal to the specified level.

78) New subclause A.2.7 “High 4:4:4 Predictive profile”

Add a new subclause A.2.7 as follows.

A.2.7 High 4:4:4 Predictive profile

Bitstreams conforming to the High 4:4:4 Predictive profile shall obey the following constraints:
– Only I, P, B slice types may be present.
– NAL unit streams shall not contain nal_unit_type values in the range of 2 to 4, inclusive.
– Arbitrary slice order is not allowed.
– Picture parameter sets shall have num_slice_groups_minus1 equal to 0 only.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 63

– Picture parameter sets shall have redundant_pic_cnt_present_flag equal to 0 only.
– Sequence parameter sets shall have bit_depth_luma_minus8 in the range of 0 to 6 inclusive.
– Sequence parameter sets shall have bit_depth_chroma_minus8 in the range of 0 to 6 inclusive.
– The level constraints specified for the High 4:4:4 Predictive profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the High 4:4:4 Predictive profile is specified by profile_idc being equal to 244.
Decoders conforming to the High 4:4:4 Predictive profile at a specific level shall be capable of decoding all
bitstreams in which either or both of the following conditions are true:
– profile_idc is equal to 77 or constraint_set1_flag is equal to 1 and the combination of level_idc and

constraint_set3_flag represent a level less than or equal to the specified level
– profile_idc is equal to 44, 100, 110, 122, or 244 and the value of level_idc represents a level less than or equal

to the specified level

79) New subclause A.2.8 “High 10 Intra profile”

Add a new subclause A.2.8 as follows.

A.2.8 High 10 Intra profile

Bitstreams conforming to the High 10 Intra profile shall obey the following constraints:
– All constraints specified in subclause A.2.5 for the High 10 profile shall be obeyed.
– All pictures shall be IDR pictures.
– Sequence parameter sets shall have num_ref_frames equal to 0.
– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence

parameter sets shall have num_reorder_frames equal to 0.
– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence

parameter sets shall have max_dec_frame_buffering equal to 0.
– Picture timing SEI messages, whether present in the bitstream (by non-VCL NAL units) or conveyed

equivalently by other means not specified in this Recommendation | International Standard, shall have
dpb_output_delay equal to 0.

– The level constraints specified for the High 10 Intra profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the High 10 Intra profile is specified by constraint_set3_flag being equal to 1 with
profile_idc equal to 110. Decoders conforming to the High 10 Intra profile at a specific level shall be capable of
decoding all bitstreams in which all of the following conditions are true.
– profile_idc is equal to 100 or 110.
– constraint_set3_flag is equal to 1.
– level_idc represents a level less than or equal to the specified level.

NOTE – The value 100 for profile_idc indicates that the bitstream conforms to the High profile as specified in subclause
A.2.4. When profile_idc is equal to 100 and constraint_set3_flag is equal to 1, this indicates that the bitstream conforms to
the High profile and additionally conforms to the constraints specified for the High 10 Intra profile in this subclause. For
example, such a bitstream must have bit_depth_luma_minus8 equal to 0, have bit_depth_chroma_minus8 equal to 0, obey the
MinCr, MaxBR and MaxCPB constraints of the High profile, contain only IDR pictures, have num_ref_frames equal to 0,
have dpb_output_delay equal to 0, and obey the maximum slice size constraint of the High 10 Intra profile.

The operation of the deblocking filter process specified in subclause 8.7 is not required for decoder conformance to
the High 10 Intra profile.

NOTE – The deblocking filter process specified in subclause 8.7 or some similar post-processing filter should be performed,
although this is not a requirement for decoder conformance to the High 10 Intra profile. The syntax elements sent by an
encoder for control of the deblocking filter process specified in subclause 8.7 are considered only as advisory information for
decoders conformance to the High 10 Intra profile. However, the application of the deblocking filter process specified in
subclause 8.7 is required for decoder conformance to the High 10, High 4:2:2, and High 4:4:4 Predictive profiles when
decoding bitstreams that conform to the High 10 Intra profile.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 64

80) New subclause A.2.9 “High 4:2:2 Intra profile”

Add a new subclause A.2.9 as follows.

A.2.9 High 4:2:2 Intra profile

Bitstreams conforming to the High 4:2:2 Intra profile shall obey the following constraints:
– All constraints specified in subclause A.2.6 for the High 4:2:2 profile shall be obeyed.
– All pictures shall be IDR pictures.
– Sequence parameter sets shall have num_ref_frames equal to 0.
– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence

parameter sets shall have num_reorder_frames equal to 0.
– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence

parameter sets shall have max_dec_frame_buffering equal to 0.
– Picture timing SEI messages, whether present in the bitstream (by non-VCL NAL units) or conveyed

equivalently by other means not specified in this Recommendation | International Standard, shall have
dpb_output_delay equal to 0.

– The level constraints specified for the High 4:2:2 Intra profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the High 4:2:2 Intra profile is specified by constraint_set3_flag being equal to 1 with
profile_idc equal to 122. Decoders conforming to the High 4:2:2 Intra profile at a specific level shall be capable of
decoding all bitstreams in which all of the following conditions are true:
– profile_idc is equal to 100, 110, or 122.
– constraint_set3_flag is equal to 1.
– level_idc represents a level less than or equal to the specified level.

The operation of the deblocking filter process specified in subclause 8.7 is not required for decoder conformance to
the High 4:2:2 Intra profile.

NOTE – The deblocking filter process specified in subclause 8.7 or some similar post-processing filter should be performed,
although this is not a requirement for decoder conformance to the High 4:2:2 Intra profile. The syntax elements sent by an
encoder for control of the deblocking filter process specified in subclause 8.7 are considered only as advisory information for
decoders conformance to the High 4:2:2 Intra profile. However, the application of the deblocking filter process specified in
subclause 8.7 is required for decoder conformance to the High 4:2:2, and High 4:4:4 Predictive profiles when decoding
bitstreams that conform to the High 4:2:2 Intra profile.

81) Subclause A.2.10 “High 4:4:4 Intra profile”

Add a new subclause A.2.10 as follows.

A.2.10 High 4:4:4 Intra profile

Bitstreams conforming to the High 4:4:4 Intra profile shall obey the following constraints:
– All constraints specified in subclause A.2.7 for the High 4:4:4 Predictive profile shall be obeyed.
– All pictures shall be IDR pictures.
– Sequence parameter sets shall have num_ref_frames equal to 0.
– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence

parameter sets shall have num_reorder_frames equal to 0.
– When vui_parameters_present_flag is equal to 1 and bitstream_restriction_flag is equal to 1, sequence

parameter sets shall have max_dec_frame_buffering equal to 0.
– Picture timing SEI messages, whether present in the bitstream (by non-VCL NAL units) or conveyed

equivalently by other means not specified in this Recommendation | International Standard, shall have
dpb_output_delay equal to 0.

– The level constraints specified for the High 4:4:4 Intra profile in subclause A.3 shall be fulfilled.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 65

Conformance of a bitstream to the High 4:4:4 Intra profile is specified by constraint_set3_flag being equal to 1 with
profile_idc equal to 244. Decoders conforming to the High 4:4:4 Intra profile at a specific level shall be capable of
decoding all bitstreams in which all of the following conditions are true:
– profile_idc is equal to 44, 100, 110, 122, or 244.
– constraint_set3_flag is equal to 1.
– level_idc represents a level less than or equal to the specified level.

The operation of the deblocking filter process specified in subclause 8.7 is not required for decoder conformance to
the High 4:4:4 Intra profile.

NOTE – The deblocking filter process specified in subclause 8.7 or some similar post-processing filter should be performed,
although this is not a requirement for decoder conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. The
syntax elements sent by an encoder for control of the deblocking filter process specified in subclause 8.7 are considered only
as advisory information for decoders conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. However, the
application of the deblocking filter process specified in subclause 8.7 is required for decoder conformance to the
High 4:4:4 Predictive profile when decoding bitstreams that conform to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles.

82) Subclause A.2.11 “CAVLC 4:4:4 Intra profile”

Add a new subclause A.2.11 as follows.

A.2.11 CAVLC 4:4:4 Intra profile

Bitstreams conforming to the CAVLC 4:4:4 Intra profile shall obey the following constraints:
– All constraints specified in subclause A.2.10 for the High 4:4:4 Intra profile shall be obeyed.
– Picture parameter sets shall have entropy_coding_mode_flag equal to 0.
– The level constraints specified for the CAVLC 4:4:4 Intra profile in subclause A.3 shall be fulfilled.

Conformance of a bitstream to the CAVLC 4:4:4 Intra profile is specified by profile_idc being equal to 44. Decoders
conforming to the CAVLC 4:4:4 Intra profile at a specific level shall be capable of decoding all bitstreams in which
all of the following conditions are true:
– profile_idc is equal to 44.
– level_idc represents a level less than or equal to the specified level.

The operation of the deblocking filter process specified in subclause 8.7 is not required for decoder conformance to
the CAVLC 4:4:4 Intra profile.

NOTE – The deblocking filter process specified in subclause 8.7 or some similar post-processing filter should be performed,
although this is not a requirement for decoder conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. The
syntax elements sent by an encoder for control of the deblocking filter process specified in subclause 8.7 are considered only
as advisory information for decoders conformance to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles. However, the
application of the deblocking filter process specified in subclause 8.7 is required for decoder conformance to the
High 4:4:4 Predictive profile when decoding bitstreams that conform to the High 4:4:4 Intra and CAVLC 4:4:4 Intra profiles.

83) Subclause A.3.2 “Level limits common to the High, High 10, High 4:2:2, and
High 4:4:4 profiles”

In the title and text of subclause A.3.2, make the following changes.

Replace the title of the subclause with “Level limits common to the High, High 10, High 4:2:2, High 4:4:4
Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles”.

Replace all occurrences of the phrase “High, High 10, High 4:2:2, or High 4:4:4 profiles” with “High, High 10,
High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles”.

Replace the paragraph which states as follows.

Table A-1 specifies the limits for each level. Entries marked "-" in Table A-1 denote the absence of a corresponding
limit.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 66

with the following.

Table A-1 specifies the limits for each level. Entries marked "-" in Table A-1 denote the absence of a corresponding
limit. The use of the MinCR parameter column of Table A-1 for these profiles is specified in subclause A.3.3.

84) Subclause A.3.3 “Profile-specific level limits”

In subclause A.3.3, make the following changes.

Replace all occurrences of the phrase “Main, High, High 10, High 4:2:2, or High 4:4:4 profiles” with “Main, High,
High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, or CAVLC 4:4:4 Intra
profiles”.

Replace all occurrences of the phrase “Main, High, High 10, High 4:2:2, and High 4:4:4 profiles” with “Main,
High, High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and
CAVLC 4:4:4 Intra profiles”.

Insert the following paragraphs.

i) In bitstreams conforming to the High profile, the sum of the NumBytesInNALunit variables for access
unit 0 is less than or equal to 384 * (PicSizeInMbs + MaxMBPS * (tr(0) - tr,n(0))) ÷ MinCR, where
MaxMBPS and MinCR are the values specified in Table A-1 that apply to picture 0 and PicSizeInMbs is
the number of macroblocks in picture 0.

NOTE – Such a limit involving MinCR is not imposed for bitstream conformance to the High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles.

j) In bitstreams conforming to the High profile, the sum of the NumBytesInNALunit variables for access
unit n (with n > 0) is less than or equal to 384 * MaxMBPS * (tr(n) - tr(n – 1)) ÷ MinCR, where
MaxMBPS and MinCR are the values specified in Table A-1 that apply to picture n.

NOTE – Such a limit involving MinCR is not imposed for bitstream conformance to the High 10, High 4:2:2,
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles.

k) In bitstreams conforming to the High 10, High 4:2:2, High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra,
High 4:4:4 Intra, or CAVLC 4:4:4 Intra profiles, when PicSizeInMbs is greater than 1620, the number of
macroblocks in any coded slice shall not exceed MaxFS / 4, where MaxFS is specified in Table A-1.

NOTE – Items i), j), and k) above are included herein for purposes of specification of the
High 4:4:4 Predictive, High 10 Intra, High 4:2:2 Intra, High 4:4:4 Intra, and CAVLC 4:4:4 Intra profiles. The
aspects of these items as they relate to the High, High 10, and High 4:2:2 profiles are included herein for
completeness, and reflect corrections of the intended specification of these profiles.

Replace Table A-2 with the following.

Table A-2 – Specification of cpbBrVclFactor and cpbBrNalFactor

Profile cpbBrVclFactor cpbBrNalFactor

High 1 250 1 500

High 10 or
High 10 Intra 3 000 3 600

High 4:2:2 or
High 4:2:2 Intra 4 000 4 800

High 4:4:4 Predictive,
High 4:4:4 Intra, or
CAVLC 4:4:4 Intra

4 000 4 800

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 67

85) Subclause D.1 “SEI payload syntax”

Replace the content of subclause D.1 with the following.

sei_payload(payloadType, payloadSize) { C Descriptor

if(payloadType = = 0)
buffering_period(payloadSize) 5

else if(payloadType = = 1)
pic_timing(payloadSize) 5

else if(payloadType = = 2)
pan_scan_rect(payloadSize) 5

else if(payloadType = = 3)
 filler_payload(payloadSize) 5
else if(payloadType = = 4)
 user_data_registered_itu_t_t35(payloadSize) 5
else if(payloadType = = 5)
 user_data_unregistered(payloadSize) 5
else if(payloadType = = 6)
 recovery_point(payloadSize) 5
else if(payloadType = = 7)
 dec_ref_pic_marking_repetition(payloadSize) 5
else if(payloadType = = 8)
 spare_pic(payloadSize) 5
else if(payloadType = = 9)
 scene_info(payloadSize) 5
else if(payloadType = = 10)
 sub_seq_info(payloadSize) 5
else if(payloadType = = 11)
 sub_seq_layer_characteristics(payloadSize) 5
else if(payloadType = = 12)
 sub_seq_characteristics(payloadSize) 5
else if(payloadType = = 13)
 full_frame_freeze(payloadSize) 5
else if(payloadType = = 14)
 full_frame_freeze_release(payloadSize) 5
else if(payloadType = = 15)
 full_frame_snapshot(payloadSize) 5
else if(payloadType = = 16)
 progressive_refinement_segment_start(payloadSize) 5
else if(payloadType = = 17)
 progressive_refinement_segment_end(payloadSize) 5
else if(payloadType = = 18)
 motion_constrained_slice_group_set(payloadSize) 5
else if(payloadType = = 19)
 film_grain_characteristics(payloadSize) 5
else if(payloadType = = 20)
 deblocking_filter_display_preference(payloadSize) 5
else if(payloadType = = 21)

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 68

 stereo_video_info(payloadSize) 5
else if(payloadType = = 22)
 post_filter_hint(payloadSize) 5
else if(payloadType = = 23)
 tone_mapping_info(payloadSize) 5
else
 reserved_sei_message(payloadSize) 5
if(!byte_aligned()) {

bit_equal_to_one /* equal to 1 */ 5 f(1)
while(!byte_aligned())

bit_equal_to_zero /* equal to 0 */ 5 f(1)
}

}

86) New subclause D.1.22.1 “Post-filter hint SEI message syntax”

Add a new subclause D.1.22.1 “Post-filter hint SEI message syntax” as follows.

D.1.22.1 Post-filter hint SEI message syntax

post_filter_hint(payloadSize) { C Descriptor
 filter_hint_size_y 5 ue(v)
 filter_hint_size_x 5 ue(v)
 filter_hint_type 5 u(2)
 for(colour_component = 0; colour_component < 3; colour_component ++)
 for(cy = 0; cy < filter_hint_size_y; cy ++)
 for(cx = 0; cx < filter_hint_size_x; cx ++)
 filter_hint[colour_component][cy][cx] 5 se(v)
 additional_extension_flag 5 u(1)
}

87) New subclause D.1.22.2 “Tone mapping information SEI message syntax”

Add a new subclause D.1.22.2 “Tone mapping information SEI message syntax” as follows.

D.1.22.2 Tone mapping information SEI message syntax

tone_mapping_info(payloadSize) { C Descriptor
 tone_map_id 5 ue(v)
 tone_map_cancel_flag 5 u(1)
 if(!tone_map_cancel_flag) {
 tone_map_repetition_period 5 ue(v)
 coded_data_bit_depth 5 u(8)
 target_bit_depth 5 u(8)
 model_id 5 ue(v)
 if(model_id = = 0) {

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 69

 min_value 5 u(32)
 max_value 5 u(32)
 }
 if(model_id = = 1) {
 sigmoid_midpoint 5 u(32)
 sigmoid_width 5 u(32)
 }
 if(model_id = = 2)
 for(i = 0; i < (1 << target_bit_depth); i++)
 start_of_coded_interval[i] 5 u(v)
 if(model_id = = 3) {
 num_pivots 5 u(16)
 for(i=0; i < num_pivots; i++) {
 coded_pivot_value[i] 5 u(v)
 target_pivot_value[i] 5 u(v)
 }
 }
 }
}

88) Subclause D.2.19 “Motion-constrained slice group set SEI message
semantics”

In subclause D.2.19, replace the paragraph starting with “The target picture set for” with the following.

The target picture set for this SEI message contains all consecutive primary coded pictures in decoding order starting
with the associated primary coded IDR picture (inclusive) and ending with the following primary coded IDR picture
(exclusive) or with the very last primary coded picture in the bitstream (inclusive) in decoding order when there is
no following primary coded IDR picture. The slice group set is a collection of one or more slice groups, identified
by the slice_group_id[i] syntax element. When separate_colour_plane_flag is equal to 1, the term “primary coded
pictures” represents the parts of the corresponding primary coded pictures that correspond to the NAL units having
the same colour_plane_id.

89) New subclause D.2.22.1 “Post-filter hint SEI message semantics“

Add a new subclause D.2.22.1 as follows.

D.2.22.1 Post-filter hint SEI message semantics

This SEI message provides the coefficients of a post-filter or correlation information for the design of a post-filter
for potential use in post-processing of the output decoded pictures to obtain improved displayed quality.

filter_hint_size_y specifies the vertical size of the filter coefficient or correlation array. The value of
filter_hint_size_y shall be in the range of 1 to 15, inclusive.

filter_hint_size_x specifies the horizontal size of the filter coefficient or correlation array. The value of
filter_hint_size_x shall be in the range of 1 to 15, inclusive.

filter_hint_type identifies the type of the transmitted filter hints as specified in Table D-7. The value of
filter_hint_type shall be in the range of 0 to 2, inclusive.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 70

Table D-7 – filter_hint_type values

Value Description

0 coefficients of a 2D FIRfilter

1 coefficients of two 1D FIR filters

2 cross-correlation matrix

3 Reserved

filter_hint[colour_component][cy][cx] specifies a filter coefficient or an element of a cross-correlation matrix
between original and decoded signal with 16-bit precision. colour_component specifies the related colour
component. cy represents a counter in vertical direction, cx represents a counter in horizontal direction. Depending
on filter_hint_type, the following applies.

– If filter_hint_type is equal to 0, the coefficients of a 2-dimensional FIR filter with the size of filter_hint_size_y
* filter_hint_size_x are transmitted.

– Otherwise, if filter_hint_type is equal to 1, the filter coefficients of two 1-dimensional FIR filters are
transmitted. In this case, filter_hint_size_y shall be equal to 2. The index cy = 0 specifies the filter coefficients
of the horizontal filter and cy = 1 specifies the filter coefficients of the vertical filter. In the filtering process, the
horizontal filter shall be applied first and the result shall be filtered by the vertical filter.

– Otherwise (filter_hint_type is equal to 2), the transmitted hints specify a cross-correlation matrix between the
original signal s and the decoded signal s’.

NOTE 1 - The cross-correlation matrix for a related colour component with the size of filter_hint_size_y *
filter_hint_size_x is defined as follows:

∑ ∑
−

=

−

=
−+−+′⋅

⋅
=

1h

0m

1w

0n
xoffsetnyoffsetmsnms

wh
1)_cx,_cy(),()cxcy,(t filter_hin (D-26)

where s denotes the original frame, s’ denotes the decoded frame, h denotes the vertical height of the related colour
component, w denotes the horizontal width of the related colour component, offset_y is equal to (filter_hint_size_y
>> 1), offset_x is equal to (filter_hint_size_x >> 1), 0 <= cy < filter_hint_size_y and 0 <= cx < filter_hint_size_x.

NOTE 2 - A decoder can derive a Wiener post-filter from the cross-correlation matrix of original and decoded signal
and the auto-correlation matrix of the decoded signal.

additional_extension_flag equal to 0 indicates that no additional data follows within the post-filter hint SEI
message. The value of additional_extension_flag shall be equal to 0. The value of 1 for additional_extension_flag is
reserved for future use by ITU-T | ISO/IEC. Decoders that conform to this Recommendation | International Standard
shall ignore all data that follows the value of 1 for additional_extension_flag in a post-filter hint SEI message.

90) New subclause D.2.22.2 “Tone mapping information SEI message
semantics”

Add a new subclause D.2.22.2 “Tone mapping information SEI message semantics” as follows.

D.2.22.2 Tone mapping information SEI message semantics

This SEI message provides information to enable remapping of the colour samples of the output decoded pictures
for customization to particular display environments. The remapping process maps coded sample values in the
RGB colour space (specified in Annex E) to target sample values. All mappings are expressed in the RGB colour
space and should be applied to each RGB component separately.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 71

tone_map_id contains an identifying number that may be used to identify the purpose of the tone mapping model.
The value of tone_map_id shall be in the range of 0 to 232 – 1, inclusive.

Values of tone_map_id from 0 to 255 and from 512 to 231 – 1 may be used as determined by the application.
Values of tone_map_id from 256 to 511 and from 231 to 232 – 1 are reserved for future use by ITU-T | ISO/IEC.
Decoders shall ignore (remove from the bitstream and discard) all tone mapping information SEI messages
containing a value of tone_map_id in the range of 256 to 511 or in the range of 231 to 232 – 1, and bitstreams shall
not contain such values.

NOTE – The tone_map_id can be used to support tone mapping operations that are suitable for different display scenarios.
For example, different values of tone_map_id may correspond to different display bit depths.

tone_map_cancel_flag equal to 1 indicates that the tone mapping information SEI message cancels the persistence
of any previous tone mapping information SEI message in output order. tone_map_cancel_flag equal to 0 indicates
that tone mapping information follows.

tone_map_repetition_period specifies the persistence of the tone mapping information SEI message and may
specify a picture order count interval within which another tone mapping information SEI message with the same
value of tone_map _id or the end of the coded video sequence shall be present in the bitstream. The value of
tone_map_repetition_period shall be in the range of 0 to 16 384, inclusive.

tone_map_repetition_period equal to 0 specifies that the tone map information applies to the current decoded picture
only.

tone_map_repetition_period equal to 1 specifies that the tone map information persists in output order until any of
the following conditions are true.
– A new coded video sequence begins
– A picture in an access unit containing a tone mapping information SEI message with the same value of

tone_map_id is output having PicOrderCnt() greater than PicOrderCnt(CurrPic).

tone_map_repetition_period equal to 0 or equal to 1 indicates that another tone mapping information SEI message
with the same value of tone_map_id may or may not be present.

tone_map_repetition_period greater than 1 specifies that the tone map information persists until any of the following
conditions are true.
– A new coded video sequence begins
– A picture in an access unit containing a tone mapping information SEI message with the same value of

tone_map_id is output having PicOrderCnt() greater than PicOrderCnt(CurrPic) and less than or equal to
PicOrderCnt(CurrPic) + tone_map_repetition_period.

tone_map_repetition_period greater than 1 indicates that another tone mapping information SEI message with the
same value of tone_map_id shall be present for a picture in an access unit that is output having PicOrderCnt()
greater than PicOrderCnt(CurrPic) and less than or equal to PicOrderCnt(CurrPic) + tone_map_repetition_period;
unless the bitstream ends or a new coded video sequence begins without output of such a picture.

coded_data_bit_depth specifies the BitDepthY of the luma component of the coded video sequence. It is used to
identify the tone mapping information SEI message that is intended for use with the coded video sequence. If tone
mapping information SEI messages are present that have coded_data_bit_depth that is not equal to BitDepthY, these
refer to the hypothetical result of a transcoding operation performed to convert the coded video to the BitDepthY
corresponding to the value of coded_data_bit_depth.

The value of coded_data_bit_depth shall be in the range of 8 to 14, inclusive. Values of coded_data_bit_depth
from 0 to 7 and from 15 to 255 are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore (remove
from the bitstream and discard) all tone mapping SEI messages that contain a coded_data_bit_depth in the range of
0 to 7 or in the range of 15 to 255, and bitstreams shall not contain such values.

target_bit_depth specifies the bit depth of the output of the dynamic range mapping function (or tone mapping
function) described by the tone mapping information SEI message. The tone mapping function specified with a
particular target_bit_depth is suggested to be reasonable for all display bit depths that are equal to or less than the
target_bit_depth.

The value of target_bit_depth shall be in the range of 1 to 16, inclusive. Values of target_bit_depth equal to 0 and
in the range of 17 to 255 are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore (remove from the
bitstream and discard) all tone mapping SEI messages that contain a value of target_bit_depth equal to 0 or in the
range of 17 to 255, and bitstreams shall not contain such values.

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 72

model_id specifies the model utilized for mapping the coded data into the target_bit_depth range. Values greater
than 3 are reserved for future use by ITU-T | ISO/IEC. Decoders shall ignore (remove from the bitstream and
discard) all tone mapping SEI messages that contain a value of model_id greater than 3, and bitstreams shall not
contain such values.

NOTE – A model_id of 0 corresponds to a linear mapping with clipping; a model_id of 1 corresponds to a
sigmoidal mapping; a model_id of 2 corresponds to a user-defined table mapping, and a model_id of 3
corresponds to a piece-wise linear mapping.

min_value specfies the RGB sample value in the coded data that maps to the minimum value in the signaled
target_bit_depth. It is used in combination with the max_value parameter. All values in the coded data that are less
than or equal to min_value are mapped to this minimum value in the target_bit_depth representation.

max_value specifies the RGB sample value in the coded data that maps to the maximum value in the signaled
target_bit_depth. It is used in combination with the min_value parameter. All values in the coded data that are
larger than or equal to max_value are mapped to this maximum value in the target_bit_depth representation.

sigmoid_midpoint specifies the RGB sample value of the coded data that is mapped to the center point of the
target_bit_depth representation. It is used in combination with the sigmoid_width parameter.

sigmoid_width specifies the distance between two coded data values that approximately correspond to the 5% and
95% values of the target_bit_depth representation, respectively. It is used in combination with the sigmoid_midpoint
parameter and is interpreted according to the following function:

())12(,,0
*6exp1

12)(__
__arg

−=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−+

−= depthbitcoded
depthbitett

ifor

dthsigmoid_wi
dpointsigmoid_mii

Roundif L

 (D-27)

where f(i) denotes the function that maps an RGB sample value from the coded data to a resulting RGB sample
value in the target_bit_depth representation.

start_of_coded_interval[i] specifies the beginning point of an interval in the coded data such that all RGB sample
values that are greater than or equal to start_of_coded_interval[i] and less than start_of_coded_interval[i + 1] are
mapped to i in the target bit depth representation. The value of start_of_coded_interval[2target_bit_depth] is equal to
2coded_bit_depth. The number of bits used for the representation of the start_of_coded_interval is
((coded_data_bit_depth + 7) >> 3) << 3.

num_pivots specifies the number of pivot points in the piece-wise linear mapping function without counting the two
default end points, (0, 0) and (2coded_data_bit_depth – 1, 2target_bit_depth – 1) .

coded_pivot_value[i] specifies the value in the coded_bit_depth corresponding to the i-th pivot point. The
number of bits used for the representation of the coded_pivot_value is ((coded_data_bit_depth + 7) >> 3) << 3.

target_pivot_value[i] specifies the value in the reference target_bit_depth corresponding to the i-th pivot point.
The number of bits used for the representation of the target_pivot_value is ((target_bit_depth + 7) >> 3) << 3.

91) Subclause E.2.1 “VUI parameters semantics”

In subclause E.2.1, replace the following paragraphs.

num_reorder_frames indicates the maximum number of frames, complementary field pairs, or non-paired fields
that precede any frame, complementary field pair, or non-paired field in the coded video sequence in decoding order
and follow it in output order. The value of num_reorder_frames shall be in the range of 0 to
max_dec_frame_buffering, inclusive. When the num_reorder_frames syntax element is not present, the value of
num_reorder_frames value shall be inferred to be equal to max_dec_frame_buffering.

max_dec_frame_buffering specifies the required size of the HRD decoded picture buffer (DPB) in units of frame
buffers. The coded video sequence shall not require a decoded picture buffer with size of more than
Max(1, max_dec_frame_buffering) frame buffers to enable the output of decoded pictures at the output times
specified by dpb_output_delay of the picture timing SEI messages. The value of max_dec_frame_buffering shall be
in the range of num_ref_frames to MaxDpbSize (as specified in subclause A.3.1 or A.3.2), inclusive. When the

ITU-T Rec. H.264 (2005)/Amd.2 (06/2007) – Prepublished version 73

max_dec_frame_buffering syntax element is not present, the value of max_dec_frame_buffering shall be inferred to
be equal to MaxDpbSize.

with

num_reorder_frames indicates the maximum number of frames, complementary field pairs, or non-paired fields
that precede any frame, complementary field pair, or non-paired field in the coded video sequence in decoding order
and follow it in output order. The value of num_reorder_frames shall be in the range of 0 to
max_dec_frame_buffering, inclusive. When the num_reorder_frames syntax element is not present, the value of
num_reorder_frames value shall be inferred as follows.

– If profile_idc is equal to 44, 100, 110, 122, or 244 and constraint_set3_flag is equal to 1, the value of
num_reorder_frames shall be inferred to be equal to 0.

– Otherwise (profile_idc is not equal to 44, 100, 110, 122, or 244 or constraint_set3_flag is equal to 0), the value
of num_reorder_frames shall be inferred to be equal to MaxDpbSize.

max_dec_frame_buffering specifies the required size of the HRD decoded picture buffer (DPB) in units of frame
buffers. The coded video sequence shall not require a decoded picture buffer with size of more than
Max(1, max_dec_frame_buffering) frame buffers to enable the output of decoded pictures at the output times
specified by dpb_output_delay of the picture timing SEI messages. The value of max_dec_frame_buffering shall be
in the range of num_ref_frames to MaxDpbSize (as specified in subclause A.3.1 or A.3.2), inclusive. When the
max_dec_frame_buffering syntax element is not present, the value of max_dec_frame_buffering shall be inferred as
follows.

– If profile_idc is equal to 44 or 244 and constraint_set3_flag is equal to 1, the value of
max_dec_frame_buffering shall be inferred to be equal to 0.

– Otherwise (profile_idc is not equal to 44 or 244 or constraint_set3_flag is equal to 0), the value of
max_dec_frame_buffering shall be inferred to be equal to MaxDpbSize.

	ITU-T Recommendation H.264 Amendment 2
	All-Intra and High 4:4:4 PredictiveNew profiles for professional applications
	ITU-T Recommendation H.264 Amendment 2
	Summary
	CONTENTS
	Subclause 0.4, ﬁPublication and versions of this specificationﬂ
	Subclause 0.6, ﬁOverview of the design characteristicsﬂ
	Subclause 0.7, ﬁHow to read this specificationﬂ
	Subclause 3.6, ﬁarbitrary slice orderﬂ
	Subclause 3.75 ﬁmacroblockﬂ
	Subclause 3.136 ﬁsliceﬂ
	Subclause 6.2 ﬁSource, decoded, and output picture formatsﬂ
	Subclause 6.3 ﬁSpatial subdivision of pictures and slicesﬂ
	New subclause 6.4.3.1 ﬁInverse 4x4 Cb or Cr block scanning process for ChromaArrayType equal to 3ﬂ
	New subclause 6.4.4.1 ﬁInverse 8x8 Cb or Cr block scanning process for ChromaArrayType equal to 3ﬂ
	Subclause 6.4.8 ﬁDerivation processes for neighbouring macroblocks, blocks, and partitionsﬂ
	New subclause 6.4.8.2.1 ﬁDerivation process for neighbouring 8x8 chroma blocks for ChromaArrayType equal to 3ﬂ
	Subclause 6.4.8.4 ﬁDerivation process for neighbouring 4x4 chroma blocksﬂ
	New subclause 6.4.8.4.1 ﬁDerivation process for neighbouring 4x4 chroma blocks for ChromaArrayType equal to 3ﬂ
	Subclause 7.3.2.1 ﬁSequence parameter set RBSP syntaxﬂ
	Subclause 7.3.2.2 ﬁPicture parameter set RBSP syntaxﬂ
	Subclause 7.3.2.9.2 ﬁSlice data partition B RBSP syntaxﬂ
	Subclause 7.3.2.9.3 ﬁSlice data partition C RBSP syntaxﬂ
	Subclause 7.3.3 ﬁSlice header syntaxﬂ
	Subclause 7.3.3.2 ﬁPrediction weight table syntaxﬂ
	Subclause 7.3.5.1 ﬁMacroblock prediction syntaxﬂ
	Subclause 7.3.5.3 ﬁResidual data syntaxﬂ
	Subclause 7.3.5.3.2 ﬁResidual block CABAC syntaxﬂ
	New Subclause 7.3.5.3.3 "Residual luma data syntaxﬂ
	Subclause 7.4.1.2.5 ﬁOrder of VCL NAL units and association to coded picturesﬂ
	Subclause 7.4.2.1 ﬁSequence parameter set RBSP semanticsﬂ
	Subclause 7.4.2.1.2 ﬁSequence parameter set extension RBSP semanticsﬂ
	Subclause 7.4.2.2 ﬁPicture parameter set RBSP semanticsﬂ
	Subclause 7.4.2.9.1 ﬁSlice data partition A RBSP semanticsﬂ
	Subclause 7.4.2.9.2 ﬁSlice data partition B RBSP semanticsﬂ
	Subclause 7.4.2.9.3 ﬁSlice data partition C RBSP semanticsﬂ
	Subclause 7.4.3 ﬁSlice header semanticsﬂ
	Subclause 7.4.5 ﬁMacroblock layer semanticsﬂ
	Subclause 7.4.5.1 ﬁMacroblock prediction semanticsﬂ
	Subclause 7.4.5.3 ﬁResidual data semanticsﬂ
	Subclause 7.4.5.3.2 ﬁResidual block CABAC semanticsﬂ
	New Subclause 7.4.5.3.3 "Residual luma data semanticsﬂ
	Clause 8 and all subclauses of clause 8 ﬁDecoding processﬂ
	Clause 8 ﬁDecoding processﬂ
	Subclause 8.3.4 ﬁIntra prediction for chroma samplesﬂ
	Subclause 8.3.4.1 ﬁSpecification of Intra_Chroma_DC prediction modeﬂ
	New Subclause 8.3.4.5 ﬁIntra prediction for chroma samples with ChromaArrayType equal to 3ﬂ
	Subclause 8.4 ﬁInter prediction processﬂ
	Subclause 8.4.1 ﬁDerivation process for motion vector components and reference indicesﬂ
	Subclause 8.4.2.1 ﬁReference picture selection processﬂ
	Subclause 8.4.2.2 ﬁFractional sample interpolation processﬂ
	Subclause 8.4.2.2.2 ﬁChroma sample interpolation processﬂ
	Subclause 8.5 ﬁTransform coefficient decoding process and picture construction process prior to deblocking filter p...
	Subclause 8.5.1 ﬁSpecification of transform decoding process for 4x4 luma residual blocksﬂ
	Subclause 8.5.2 ﬁSpecification of transform decoding process for luma samples of Intra_16x16 macroblock prediction ...
	Subclause 8.5.3 ﬁSpecification of transform decoding process for 8x8 luma residual blocksﬂ
	Subclause 8.5.4 ﬁSpecification of transform decoding process for chroma samplesﬂ
	New subclause 8.5.4.1 ﬁSpecification of transform decoding process for chroma samples with ChromaArrayType equal to...
	Subclause 8.5.6 ﬁInverse scanning process for 8x8 luma transform coefficientsﬂ
	8.5.6 Inverse scanning process for 8x8 transform coefficients

	Subclause 8.5.7 ﬁDerivation process for the chroma quantisation parameters and scaling functionﬂ
	Subclause 8.5.8 ﬁScaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock t...
	Subclause 8.5.9 ﬁScaling and transformation process for chroma DC transform coefficientsﬂ
	Subclause 8.5.10 ﬁScaling and transformation process for residual 4x4 blocksﬂ
	Subclause 8.5.11 ﬁScaling and transformation process for residual 8x8 luma blocksﬂ
	8.5.11 Scaling and transformation process for residual 8x8 blocks

	Subclause 8.5.12 ﬁPicture construction process prior to deblocking filter processﬂ
	Subclause 8.5.13 ﬁResidual colour transform processﬂ
	Subclause 8.7 ﬁDeblocking filter processﬂ
	Subclause 8.7.2.3 ﬁFiltering process for edges with bS less than 4ﬂ
	Subclause 8.7.2.4 ﬁFiltering process for edges for bS equal to 4ﬂ
	Clause 9 and all subclauses of clause 9 ﬁParsing processﬂ
	Subclause 9.1.2 ﬁMapping process for coded block patternﬂ
	Subclause 9.2 ﬁCAVLC parsing process for transform coefficient levelsﬂ
	Subclause 9.2.1 ﬁParsing process for total number of transform coefficient levels and trailing onesﬂ
	Subclause 9.3.1.1 ﬁInitialisation process for context variablesﬂ
	Subclause 9.3.2 ﬁBinarization processﬂ
	Subclause 9.3.2.6 ﬁBinarization process for coded block patternﬂ
	Subclause 9.3.3.1 ﬁDerivation process for ctxIdxﬂ
	Subclause 9.3.3.1.1.9 ﬁDerivation process of ctxIdxInc for the syntax element coded_block_flagﬂ
	Subclause 9.3.3.1.3 ﬁAssignment process of ctxIdxInc for syntax elements significant_coeff_flag, last_significant_c...
	Subclause A.2.4 ﬁHigh profileﬂ
	Subclause A.2.5 ﬁHigh 10 profileﬂ
	Subclause A.2.6 ﬁHigh 4:2:2 profileﬂ
	New subclause A.2.7 ﬁHigh 4:4:4 Predictive profileﬂ
	New subclause A.2.8 ﬁHigh 10 Intra profileﬂ
	A.2.8 High 10 Intra profile

	New subclause A.2.9 ﬁHigh 4:2:2 Intra profileﬂ
	A.2.9 High 4:2:2 Intra profile

	Subclause A.2.10 ﬁHigh 4:4:4 Intra profileﬂ
	A.2.10 High 4:4:4 Intra profile

	Subclause A.2.11 ﬁCAVLC 4:4:4 Intra profileﬂ
	A.2.11 CAVLC 4:4:4 Intra profile

	Subclause A.3.2 ﬁLevel limits common to the High, High 10, High 4:2:2, and High 4:4:4 profilesﬂ
	Subclause A.3.3 ﬁProfile-specific level limitsﬂ
	Subclause D.1 ﬁSEI payload syntaxﬂ
	New subclause D.1.22.1 ﬁPost-filter hint SEI message syntaxﬂ
	New subclause D.1.22.2 ﬁTone mapping information SEI message syntaxﬂ
	Subclause D.2.19 ﬁMotion-constrained slice group set SEI message semanticsﬂ
	New subclause D.2.22.1 ﬁPost-filter hint SEI message semanticsﬁ
	New subclause D.2.22.2 ﬁTone mapping information SEI message semanticsﬂ
	Subclause E.2.1 ﬁVUI parameters semanticsﬂ

