International Telecommunication Union

ITU-T H.264

TELECOMMUNICATION (03/2005)
STANDARDIZATION SECTOR
OF ITU

SERIES H: AUDIOVISUAL AND MULTIMEDIA SYSTEMS

Infrastructure of audiovisual services — Coding of moving
video

Advanced video coding for generic audiovisual
services

ITU-T Recommendation H.264

i
D Internatiorsl
Talacommunicatinm
o Ui

ITU-T H-SERIES RECOMMENDATIONS
AUDIOVISUAL AND MULTIMEDIA SYSTEMS

CHARACTERISTICS OF VISUAL TELEPHONE SYSTEMS H.100-H.199
INFRASTRUCTURE OF AUDIOVISUAL SERVICES
General H.200-H.219
Transmission multiplexing and synchronization H.220-H.229
Systems aspects H.230-H.239
Communication procedures H.240-H.259
Coding of moving video H.260-H.279
Related systems aspects H.280-H.299
Systems and terminal equipment for audiovisual services H.300-H.349
Directory services architecture for audiovisual and multimedia services H.350-H.359
Quality of service architecture for audiovisual and multimedia services H.360-H.369
Supplementary services for multimedia H.450-H.499
MOBILITY AND COLLABORATION PROCEDURES
Overview of Mobility and Collaboration, definitions, protocols and procedures H.500-H.509
Mobility for H-Series multimedia systems and services H.510-H.519
Mobile multimedia collaboration applications and services H.520-H.529
Security for mobile multimedia systems and services H.530-H.539
Security for mobile multimedia collaboration applications and services H.540-H.549
Mobility interworking procedures H.550-H.559
Mobile multimedia collaboration inter-working procedures H.560-H.569
BROADBAND AND TRIPLE-PLAY MULTIMEDIA SERVICES
Broadband multimedia services over VDSL H.610-H.619

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation H.264

Advanced video coding for generic audiovisual services

Summary

This Recommendation | International Standard represents an evolution of the existing video coding standards (H.261,
H.262, and H.263) and it was developed in response to the growing need for higher compression of moving pictures for
various applications such as videoconferencing, digital storage media, television broadcasting, Internet streaming, and
communication. It is also designed to enable the use of the coded video representation in a flexible manner for a wide
variety of network environments. The use of this Recommendation | International Standard allows motion video to be
manipulated as a form of computer data and to be stored on various storage media, transmitted and received over existing
and future networks and distributed on existing and future broadcasting channels.

The revision approved 2005-03 contains modifications of the video coding standard to add four new profiles, referred to
as the High, High 10, High 4:2:2, and High 4:4:4 profiles, to improve video quality capability and to extend the range of
applications addressed by the standard (for example, by including support for a greater range of picture sample precision
and higher-resolution chroma formats). Additionally, a definition of new types of supplemental data has been specified
to further broaden the applicability of the video coding standard. Finally, a number of corrections to errors in the
published text have been included. This revision, in addition to enhancing video coding capability, will serve to maintain
technical alignment with the corresponding jointly-developed ISO/IEC 14496-10 standard.

Corrigendum 1 to ITU-T Rec. H.264 corrected and updated various minor aspects to bring the ITU-T version of the text
up to date relative to the April 2005 output status approved as a new edition of the corresponding jointly-developed and
technically-aligned text ISO/IEC 14496-10. It additionally fixes a number of minor errors and needs for clarification and
defines three previously-reserved sample aspect ratio indicators.

This edition includes the text approved 2005-03 and its Corrigendum 1 approved 2005-09.

Source

ITU-T Recommendation H.264 was approved on 1 March 2005 by ITU-T Study Group 16 (2005-2008) under the ITU-T
Recommendation A.8 procedure. It includes modifications introduced by H.264 (2005) Cor.1 approved on 13 September
2005 by ITU-T Study Group 16 (2005-2008) under the ITU-T Recommendation A.8 procedure.

ITU-T Rec. H.264 (03/2005) i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

© ITU 2005

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

il ITU-T Rec. H.264 (03/2005)

CONTENTS

Page

Foreword xiv
0 Introduction 1
0.1 PFOLOGUE ...ttt ettt b e b e a et ae bt et nb e At ehe b e b e e nb e st e te e reeebeenneenre e 1
0.2 PUFPOSE ...ttt sttt et 1
0.3 ADPLICALIOMS ...ttt ettt ettt ettt nean 1
0.4 Publication and versions of this SPECIfICALIONcccucoueiiriiiiiiiiiiiiieeeee ettt 1
0.5 PrOfiles QRA LOVEIS.c.cccooiiiiiiiiee ettt ettt ettt ettt ettt e 2
0.6 Overview of the deSign CRAFACIEFISTICSc.occueieeieiee ettt ettt ettt et et seee e e eae e st eae e e 2
0.6.1 PrediCtiVe COMINE .. eeuvieiiiie ettt ettt ettt et e s et e et e et et es e e s e e ebe et e e teemteemeesaeenseeneesneesneesneenseenes 3
0.6.2 Coding of progressive and interlaced VIAOc.eiuiiuiririeieieiee et 3
0.6.3 Picture partitioning into macroblocks and smaller partitions............cccerererererenieieeie e 3
0.6.4 Spatial redundanCy TEAUCTION.c.iccviiieitieiieie ettt ete et e et e etae e e beesbesssesseesseesseesseesseessenssensaens 3

0.7 HOW 10 1eqd thiS SPECIfICALIONccuveveeieeiieeiieeieeie ettt ettt ettt e et e beebe e e essessaesaeesseanseenseans 3

1 Scope 4
2 Normative references 4
3 Definitions 4
4 Abbreviations 12
5 Conventions 12
5.1 AVITRIMELIC OPEFALOFS ...ttt ettt ettt et e sb e e st e et e eaeeeaeesbeesseeas e e st ebeesbeesseensesneeens 13
5.2 LOGICAL OPEIQEOFS. ...ttt ettt ettt e e e b e e ss e s st e eaeeeaeesbeesseetteessebeebeesbeensesneenns 13
5.3 REALIONAL OPEFALOTS ...ttt h ettt b e bttt ennens 13
504 Bil-WIS@ OPEFAIOFS ...ttt ettt 13
5.5 ASSIGNINEIE OPEFAIOTS ...ttt ettt ettt ettt et et 14
5.6 RANGE NOTALION ...ttt ettt et h e e bt e b et ettt e bt ettt et e ettt ebeeenbaeebeeenes 14
5.7 MatRemMALICAL JUNCHIONS.ccoeieeieeee ettt ettt ettt et e eet e et e bt et et e et e st et e enaeeneeeneennes 14
5.8 Variables, syntax elements, ANd tADIEScccociioiiiiiiiii ettt 15
5.9 Text description Of [OGICAL OPEFATIONScocccioieeiieieeee ettt 16

I L L o e T <X SRR 17

6 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships.......... 17
0.1 BIISH@AM fOFMIALS............cceeeieeeeeeie ettt ettt ettt ekttt et e et e e e eee e ehe e bt e et emteeeeeeae et e et e enteenaeeneeeneennis 17
6.2 Source, decoded, and output PiCtUFe JOFTALSc.cccooieeouiiieiieee ettt ettt 17
6.3 Spatial subdivision Of PICtUFeS ANA SIICESccocciioiiiiiieieeeeee et 22
6.4 Inverse scanning processes and derivation processes for REIGRDOUTS...............c.ccoceceeeeeeceeiiitiieeaeeeens 23
6.4.1 Inverse MacroblOCK SCANNING PIOCESScverueruertirtietietieieiiertesteatesteeteeteeteeeetestesteeteseeeseeseeneenseeebeseeeneenean 23
6.4.2 Inverse macroblock partition and sub-macroblock partition SCanNINg ProCess..........ccervververreerveerveseereeenn. 24
6.4.2.1 Inverse macroblock partition SCANNING PIOCESSccverreerreerrervereeseesseesseseeseesseesseesseessesssessaessesssessses 25

6.4.2.2 Inverse sub-macroblock partition SCANNING PrOCESS.......cuerrrerreerrerrrererereerreesseeseeeesseesseesseesessaesseessesses 25

6.4.3 Inverse 4x4 Tuma blOCK SCANNING PIOCESScvierverieriereieriieteeteestesteeteesessesssesseesseensessesseesseesseenseensensens 26
6.4.4 Inverse 8x8 uma blOCK SCANNING PIOCESScvierverierieriieriieteeteetesteeteeteesesseesseesseensessesseesseasseesseensennsens 26
6.4.5 Derivation process of the availability for macroblock addresses..........ccovevereverierieciircienieeeeeeeeeeen 26
6.4.6 Derivation process for neighbouring macroblock addresses and their availability...........c.cceccvecinieneennen. 27
6.4.7 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames 27
6.4.8 Derivation processes for neighbouring macroblocks, blocks, and partitions.............ccceeeeeeirierienencennenne 28
6.4.8.1 Derivation process for neighbouring macroblocksccccoiiiiiiiiiiiieee e 29

6.4.8.2 Derivation process for neighbouring 8x8 luma blockccociiiiiiiiiiiiiiee e 29

6.4.8.3 Derivation process for neighbouring 4x4 Tuma blockscccoeiiiiiiiiiiiii e 30

6.4.8.4 Derivation process for neighbouring 4x4 chroma BIOCKSccoevuerieiierieniiiiicieseeeee e 30

6.4.8.5 Derivation process for neighbouring Partitions.c..ecvervvereereerieesiestereesreesreeeeeseesseesseesseesesseesseeses 31

6.4.9 Derivation process for neighbouring l0CAtIONSc.cccverieriieriieieeieriesie et seesre e seeseeesreesseesseennens 33
6.4.9.1 Specification for neighbouring locations in fields and non-MBAFF frames............cccccvvvuvrcrerveneennnnnen. 33

6.4.9.2 Specification for neighbouring locations in MBAFF frames..........ccccceeeieiierieniieniieieeieeeie e 34

7 Syntax and semantics 36
7.1 Method of describing Syntax in tADULAT fOTM.............c..ccocovivuiiiieiieeiieieeeeee ettt ettt sraeeae e ense e 36
7.2 Specification of syntax functions, categories, ANd AESCTIPIOTSc..cceevvereeireeireeiseieesseeseeeesseesseese e eseens 37
7.3 SYREAX T1 EADULAT fOTM ...ttt 38
7.3.1 INAL UNIE SYIEAX.1.01tteutieiteeiiestteteeteeieseeseesstesseesteesseaseesseenseesseassesssesssesseesseensesnsesssessseseenseessesnsesssesseesseenses 38
7.3.2 Raw byte sequence payloads and RBSP trailing bits SYNtaX.........cc.cceevverieriersierierieneeneeeeseeeeeseeeeeennens 39
7.3.2.1 Sequence parameter set RBSP SYNtAX........ccciiiiiiiiiieiiieeeeeece ettt 39

ITU-T Rec. H.264 (03/2005) il

7.3.2. 1.1 SCAlING JISt SYIMEAX ..eueeuiiieiteitieteet ettt ettt ee et e et e st e s beeteeseeseens et e teeaeeaeeseeneenseneanbeseseeeneeneenes 40

7.3.2.1.2 Sequence parameter set extension RBSP SyNtax...........ccocooiiiiiiiniiiniiiiiinecececeseeeee e 40
7.3.2.2 Picture parameter Set RBSP SYNTAX......c.cccceiiiriiiiiiieiieieieeie ettt sve e e ess et seesaesaeennes 41
7.3.2.3 Supplemental enhancement information RBSP SYNtaX..........ccccovieviiriieiiiiienieiieiieieeeeseeie e 42

7.3.2.3.1 Supplemental enhancement information MesSSage SYNTAXccveevvireeriereerrieiieieeeesieenreeseeneseeennas 42
7.3.2.4 Access unit delimiter RBSP SYNtAXccoeoiiiiiriieiieieeiesieeee ettt nnas 43
7.3.2.5 End of sequence RBSP SYNTAXcccieviiiiiriiiieiieiieieeieste ittt sttt e seee st et e enseesaessaessaenseennes 43
7.3.2.6 End of stream RBSP SYNTAXcciiiiiiieiieriieie ettt ae e e sntesse et e enseensesnaessaenseennes 43
7.3.2.7 Filler data RBSP SYNEAXcc.iiiuiiiiiieitieiiee ettt ettt ettt ettt e et e et e st e st e e eneeeneesseenneennes 43
7.3.2.8 Slice layer without partitioning RBSP SYNtaX..........cccoerieiiieiiiieiieiieeee et 43
7.3.2.9 Slice data partition RBSP SYNTAXccciiiiiiiiiiii ettt 43

7.3.2.9.1 Slice data partition A RBSP SYNtaX........ccocieriiiiiiiiiieiieieeeeseeee e 43

7.3.2.9.2 Slice data partition B RBSP SYNTaX.......c.cociiiiiiiiiiiiierieiieieee ettt 44

7.3.2.9.3 Slice data partition C RBSP SYNTAX.......c.ccceriiriiririeiinieiiesieesie sttt sre e e sreesreenseessesssessaesseennas 44
7.3.2.10 RBSP slice trailing DitS SYNEAXcceeeviiriiriieriieriieiieteetesteesteesseesesaeseeesseesseessessseessesseessesssesssesseessessses 44
7.3.2.11 RBSP trailing DitS SYNTAX ...veccuieriiieiieriieriieteetestesteesteeseeseeseesteesseesseessessaesseesssesseessesssessessssesseesseeses 44

7.33 N TS T 16 [) 11 b QUSRS 45
7.3.3.1 Reference picture list reOrdering SYNTAXcccvervieriieieeieriierieeeieeeeseesseesseeaeseesseesseeseessesssesseenseesseenses 46
7.3.3.2 Prediction Weight table SYNTAXcecvieiiiiieiierieie ettt et sttt et e a e st esse e se et e ensessaessaessaesseenns 47
7.3.3.3 Decoded reference picture marking SYNtAX.........c.cecueeueeruiertierieeieeieneesteeseeeeeseeeseeeneeeeeeneesneesseeeeeneeennes 48

7.3.4 N OO I v 1L QTP 49

7.3.5 A E16 (0] o (a1 e) 1 : USSP SRRTRRO 50
7.3.5.1 Macroblock PrediCtion SYNEAX.cceiuirtirieieeeiete et se sttt ettt esee e stestesbeeteeseeseeneeneensensesseabeseeaneenean 51
7.3.5.2 Sub-macroblock Prediction SYNEAX..........ceieieierierierieee ettt ettt et e ettt et eie et e e eeeesbeseesbeseeeneeneas 52
7.3.5.3 ReESIAUAL dAA SYNTAX ...oueiiiieitietiiie ettt ettt ettt e st besaeete e st e e e seetetesbeebeeseene et enseabesaeaneenean 53

7.3.5.3.1 Residual bIoCKk CAVLC SYNTAXcvieiiiieriieiieiieieeteesieesieeseesesteesseesseessesseesseesseessesssesssessesssesssenses 54

7.3.5.3.2 Residual bIock CABAC SYNEAX........cceeierieriieiierieiesiiesteeseeseseeesseesseeseessesseesseessesssesssesssessesssesses 55

Tod SEIMGAINEIICS ...ttt ettt et ettt nae et e 56

7.4.1 INAL UNIE SEIMAITICS «..cuvevteiteiiiertieterieeteeit et st st sttt eteeat et et et e s tesae et e ebeese et e tenbestesbesbeebeeseessensentenbesueeseens 56
7.4.1.1 Encapsulation of an SODB within an RBSP (informative)ccooveviieciinienieiieececee e 58
7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences.................... 59

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation..............ccoeceeveerenenenne. 59

7.4.1.2.2 Order of access units and association to coded Video SEqQUENCEScecverrieruierireierieniereeee e 60

7.4.1.2.3 Order of NAL units and coded pictures and association to access UNitS...........cceeveerreerreeveervereeenne. 60

7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picturecceceeeeerienieneneneneeeeeeeee 62

7.4.1.2.5 Order of VCL NAL units and association to coded piCtures..........cceevveeviriesreerreeieeieieesieere e 63

7.4.2 Raw byte sequence payloads and RBSP trailing bits SEManticscceeveevveerveeciereeseenieeieereeeeseesseenens 63
7.4.2.1 Sequence parameter set RBSP SEMANTICSccocovieiieiiiieiieiieieeie ettt esbessaessaesaeennas 63

7.4.2.1.1 Scaling LISt SEMANTICSeecveerieeieiieiierieste et eteeetesteesteeseesseessesseessaesseesseeseesseesseessesssenssesssesseesseeses 68

7.4.2.1.2 Sequence parameter set extension RBSP Semanticscccvevvveierienienieiiieieeieseeeee e 69
7.4.2.2 Picture parameter set RBSP SEMANTICSceevuieiiiiiieieieiieieeiesie ettt 70
7.4.2.3 Supplemental enhancement information RBSP SeManticscceeeuerierienieciieieniesieeeie e 73

7.4.2.3.1 Supplemental enhancement information message SEMANtICScceeeerueeriierererieeienienieeeeee e 73
7.4.2.4 Access unit delimiter RBSP SEMANTICSccoiuiiiiiiiiieiieieciieieeee ettt 73
7.4.2.5 End of sequence RBSP SEMantiCs.ccouiriiriiriieiieiieiesi ettt ettt e ees 73
7.42.6 End of stream RBSP SEMANTICS.couiitiiiiieieieiesteste ettt ettt ettt ettt beseesee e eneenean 73
7.4.2.7 Filler data RBSP SEIMANTICS......c.ceteieiiitiitiitietietietie ettt sttt et teseesbesbe bt e st eseesee e e seesesseabeseeeneenean 73
7.4.2.8 Slice layer without partitioning RBSP SEMAanticscccceeerieieiieiieiisese et 73
7.4.2.9 Slice data partition RBSP SCMANTICScceriiriiiiieiieieetieieeie e eeesee e esteeaeeeeesseesseesseesseessessaesseesseenses 74

7.4.2.9.1 Slice data partition A RBSP SEMANTICSccvieiieiieiieriieiieieeee e seesieesteeseeseesreesseesseessesssessaesseennas 74

7.4.2.9.2 Slice data partition B RBSP SEMantiCs.........c..ccveiirieriieiiieiieieiieseenie et sveesreeseeesesesessaesseennas 74

7.4.2.9.3 Slice data partition C RBSP SEMANtICS........cceecuiriirieriiiiieieeie ettt seae e sseennes 74
7.4.2.10 RBSP slice trailing DitS SEMANTICS.........ccuereverieriieriieieeiestesteesieeteseeseteseeeaeenseeseesseeseenseessesssessaenseeses 74
7.4.2.11 RBSP trailing DitS SEMANTICSccueerueiieiiieitieiieete ettt et et eeeseesaeesteeeeeeeeneesseesseenseenteeneesseenseennes 75

743 STCE NEAAET SEIMANTICS ...eouvieueieeiietieteete ettt ettt et et e bt et e es e s st e sbe e teeneeemeesneesseeteenseenseeneeeneenneennes 75
7.4.3.1 Reference picture list reordering SEMANTICSc.eeouieiieuiertieieere et ece st ettt et e et et et e e eneeseeeseeennes 80
7.4.3.2 Prediction weight table SEMANTICScouiiuiiiiiei ettt ettt ettt e et et e e e sbesaeeneenean 81
7.4.3.3 Decoded reference picture marking SEMANTICS.cc.eeuereeuiririeieieie st steete ettt eeesee e et seeseeeeeeneeneas 82

744 STCE AALA SEIMANTICSeveuieuieieiete ettt ettt et et sttt ete et ee e et e te st e e teebeebeeseeneensess e teebeeeeeseentensensansesaeseeeneenean 85

7.4.5 MaCTODIOCK 1aYET SEIMANTICSicuvieeiieeieeiieitieiieieeiesee st et eteeteeteesteesbeesseessesssessaesseenseessesssesssesseensennsenssens 85
7.4.5.1 Macroblock prediCtion SEMANTICSc.eevvieverierierieeereetesteseesteesseeaesseesseesseesseesseessesseessaesseessesseesseeses 92
7.4.5.2 Sub-macroblock prediction SEMANTICSc.cccverierieriieiieiieieeseesteetesteseesseeseesseesaesseesaesseessesssesseesses 93
7.4.5.3 Residual data SEMANTICScoueeuerieeieiiiiiertenere ettt ettt et ettt st b ettt nbe e b es 95

1\ ITU-T Rec. H.264 (03/2005)

7.4.5.3.1 Residual block CAVLC SEMANTICS.ccccuviiiieeeieeiieiieeeeeeeeeeeeee e e e e eeeteeeeeaeeeseaeeesseeeessaneessrsaeeesns 96

7.4.53.2 Residual block CABAC SEMANTICSccueeuiruieuieiieieiesieeteete et eteeieenteeeseestesaestesseeseeseeneensensessesaeseeenes 96
8 Decoding process 96
8.1 NAL Uit AeCOAING PFOCESS ...ttt ettt ettt et eat e e ettt et et e st e e enaeeneeeaeenis 97
8.2 SliCE dOCOAING PIOCESSoeeeeeeeee ettt ettt e e e et ettt e et et e bt e teenaeeneeeneeens 98
8.2.1 Decoding process for picture OTAEr COUNLueiiriiriirieiie ittt ittt ettt ee e se e e seeeeeeeeeneens 98
8.2.1.1 Decoding process for picture order COUNnt tyPe 0ccooueiiriririeieieieiee et 99
8.2.1.2 Decoding process for picture order COUNnt tyPe 1ccooerieiriieienireee et 100
8.2.1.3 Decoding process for picture order COUNt tYPE 2ccvverueeruierieeierierierieeieeeeeeesreeseesseesesaesseesseesseenns 101
8.2.2 Decoding process for macroblock to SIiCe Sroup Mapc.cccvervieiieiieiienieiieie et ens 102
8.2.2.1 Specification for interleaved slice Zroup Map tYPE....c.eevvievieieriieriieiieie et sreesre s esee e 103
8.2.2.2 Specification for dispersed SliCe roup Map tYPEC......ccvervieriieierrieriieieeieeeesee st esre e seeseee e eeeeneeeeeenes 103
8.2.2.3 Specification for foreground with left-over slice group map typecceevvevvereeceeceriieeiereere e 104
8.2.2.4 Specification for box-out Slice Zroup MAP LY PES.....verueerrierieriieieeieetierte et eie et et et seeeee e seeeseeenes 104
8.2.2.5 Specification for raster scan slice Zroup map tYPEScecveeerrueeruierireiieeiesieneerteeee et see st ee e 105
8.2.2.6 Specification for wipe SliCe Zroup MAP LYPES -.eeverueerrieriieriieieeie et eite et ete e st e eseeeeeeeesneeseeeneeenes 105
8.2.2.7 Specification for explicit SliCE ZrOUP MAP LYPE...cveruirriruiriieieieie ettt sttt 105
8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map 105
8.2.3 Decoding process for slice data partitioniNg............coccererieirieieieiete ettt eee e eeeas 105
824 Decoding process for reference picture lists CONStIUCHION.ccvvervieierierieniiesieeie e see e saeereeeeeeeeseeens 106
8.2.4.1 Decoding process fOr PICtUIE NUIMDETS.cccverieerierieiieriesieeteeteeeesteesseesseesessseseesseesseesesssesseesseenss 107
8.2.4.2 Initialisation process for reference picture liStS..........ccoevuiriirieriieriieiieiereee e 107
8.2.4.2.1 Initialisation process for the reference picture list for P and SP slices in frames.........c..cccceeeueeeee 108
8.2.4.2.2 Initialisation process for the reference picture list for P and SP slices in fields........c.cccccocereeeneee 108
8.2.4.2.3 Initialisation process for reference picture lists for B slices in frames.........c.ccoceveverceiecicninenns 109
8.2.4.2.4 Initialisation process for reference picture lists for B slices in fields..........ccoccoeeeviirieiieiinienens 109
8.2.4.2.5 Initialisation process for reference picture lists in fields.........ccooeriiiiiiiiniiii s 110
8.2.4.3 Reordering process for reference picture liStS.........coooveiiriirieiiei e 110
8.2.43.1 Reordering process of reference picture lists for short-term reference pictures............ccceeeeeeencene 111
8.2.43.2 Reordering process of reference picture lists for long-term reference pictures...........c.cccceveruennee 112
8.2.5 Decoded reference picture Marking PrOCESSceueruerierieriererteeeetteieeeee e stesteseeeteeseeneeneeeesesseseeasesaeas 112
8.2.5.1 Sequence of operations for decoded reference picture marking process..........cceeeverevereereerieeeeneennenn, 113
8.2.5.2 Decoding process for gaps in frame NUML..........c.cccueivierierieniieiieieeieeeee e seesre s eeesseeeeenns 113
8.2.5.3 Sliding window decoded reference picture marking ProCessecveeverrververeereesresiueseeseesseessessnens 114
8.2.5.4 Adaptive memory control decoded reference picture marking processccoocvereererveervereereeenueennenns 114
8.2.5.4.1 Marking process of a short-term reference picture as “unused for reference”...........ccocvevvreciennne 114
8.2.5.4.2 Marking process of a long-term reference picture as “unused for reference”cceceereereenene 115
8.2.5.4.3 Assignment process of a LongTermFrameldx to a short-term reference picture............ccccceceeneeee 115
8.2.5.4.4 Decoding process for MaxLongTermFrameldX...........ccocieiiiiiiiiiiinieieeee e 115
8.2.5.4.5 Marking process of all reference pictures as “unused for reference” and setting
MaxLongTermFrameldx to “no long-term frame indiCes™..........ceriririririeieieiese et 115
8.2.5.4.6 Process for assigning a long-term frame index to the current piCtureccceerverererenesceeeenne 116
8.3 INFA PUEAICIION PFOCESS...........oceveeeeeeeieeie ettt ettt ettt be e e e e ss e s taesaeesbeesseesseesseesseeseesseenseenae s 116
8.3.1 Intra_4x4 prediction process for Tuma SAMPIESc.cccverrieriieciiiiieiieieere ettt re e 117
8.3.1.1 Derivation process for the Intradx4PredMOde.........cccvevieriiiriiiiiiiecieeeeeee e 117
8.3.1.2 Intra 4x4 SAMPIE PrEAICIONeeuieieieiieiieie ettt ettt et et et ete e e s e e se e beensesseesseesseenseeneesseenseenes 119
8.3.1.2.1 Specification of Intra_4x4 Vertical prediction MOdeeceevrereierieiieniereee e 119
8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction MOde...........ccceruereerierienierie e 119
8.3.1.2.3 Specification of Intra_4x4 DC prediction MOdecccueeieiiriirieeie e 120
8.3.1.2.4 Specification of Intra_4x4 Diagonal Down_Left prediction modeccceeviriiiiniieninienenne 120
8.3.1.2.5 Specification of Intra_4x4 Diagonal Down_Right prediction mode..........cccevvevvevinienennennnen. 120
8.3.1.2.6 Specification of Intra_4x4 Vertical Right prediction modecccceviriniiiiniieneiiiieceeee 121
8.3.1.2.7 Specification of Intra_4x4 Horizontal Down prediction Modecceeereririeieieneiereee 121
8.3.1.2.8 Specification of Intra_4x4 Vertical Left prediction mode............ccccvevrieviieciercienienieneee e 122
8.3.1.2.9 Specification of Intra_4x4 Horizontal Up prediction Modecceveevrieciercreiienieeneeneeieenenne 122
8.3.2 Intra_8x8 prediction process for Tuma SAMPIESc.cccveruiiriiiiiiiiieiieieee et be e 122
8.3.2.1 Derivation process for Intra8X8PredMOde.cc.eevviriiiiiiiei et 123
8.3.2.2 Intra 8X8 SAMPIE PrEAICION ...c.eervieiieiieieeie ettt ettt ettt e te e teebeesesaeesseesseenseeneesseenseenes 124
8.3.2.2.1 Reference sample filtering process for Intra_8x8 sample predictioncceecvevvevieriiecieniennnnns 125
8.3.2.2.2 Specification of Intra_8x8 Vertical prediction MOdececeerieiirieiienieeee e 126
8.3.2.2.3 Specification of Intra_8x8 Horizontal prediction Mmode...........cccerieiieiieiiiiieeeeeeeee e 126
8.3.2.2.4 Specification of Intra_8x8 DC prediction MOdeccceeruieiieiieiiiie e 127
8.3.2.2.5 Specification of Intra_8x8 Diagonal Down_Left prediction modeccoceeverieiieieninenenenene 127

ITU-T Rec. H.264 (03/2005) v

8.3.2.2.6 Specification of Intra_8x8 Diagonal Down_Right prediction mode...........ccccerevereninenccncencnne 127

8.3.2.2.7 Specification of Intra_8x8 Vertical Right prediction modeccccoviriiiiiieiieneiiiiseceeee 128
8.3.2.2.8 Specification of Intra_8x8 Horizontal Down prediction modeccceeevevvereeneenieeneeeeeeeenenn, 128
8.3.2.2.9 Specification of Intra_8x8 Vertical Left prediction mode............ccocvevrieviiecienieniienieneee e 129
8.3.2.2.10 Specification of Intra_8x8 Horizontal Up prediction Mmodececvevveecieeienienieenieenieereenenne 129
833 Intra_16x16 prediction process for lTuma SAMPIES..........ccevieriieiiiriierierieeeie e 129
8.3.3.1 Specification of Intra_16x16_Vertical prediction MOdE...........ceecverierierieriieieeie et 130
8.3.3.2 Specification of Intra_16x16_Horizontal prediction MOde...........cccecverierieriesiieienie et 130
8.3.3.3 Specification of Intra_16x16_DC prediction MOdecceevieiiiiiiierienieseeeee et 130
8.3.3.4 Specification of Intra_16x16_Plane prediction Mmode............ccoecuirieiieiieiiiieee et 131
834 Intra prediction process for chroma SamPIEscccoeriiiiiriiiieiee e 131
8.3.4.1 Specification of Intra_Chroma_DC prediction MOdecccceeeririeiieiieeere e 132
8.3.4.2 Specification of Intra_Chroma_Horizontal prediction mode.............ccceieririiiiieieiee e 134
8.3.4.3 Specification of Intra_Chroma_Vertical prediction MOdeceeeveveerieriieriieieeienieeeesie e 134
8.3.4.4 Specification of Intra_Chroma_Plane prediction Mmodeccoeevieiirienierieiicie e 134
83.5 Sample construction process for I PCM macrobloCKsccvecvieierierieniieiiiie e 134
8.4 INLEr PFEAICHION PFOCESS ..ottt ettt ettt ettt 135
8.4.1 Derivation process for motion vector components and reference indices...........ocoeevvereereverieneeneenieeeenne 137
8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices.................... 138
8.4.1.2 Derivation process for luma motion vectors for B_Skip, B Direct 16x16, and B_Direct 8x8........... 139
8.4.1.2.1 Derivation process for the co-located 4x4 sub-macroblock partitionsccceccveeeeeeerieninciennenne 139

8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode ... 142
8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction mode 144

8.4.1.3 Derivation process for luma motion vector PrediCtion...........c.ecveerierieeieeieieereeseere e eee e sre v enees 146
8.4.1.3.1 Derivation process for median luma motion vector predictioncceeeveeveieereenieenreeeeereeereenns 147
8.4.1.3.2 Derivation process for motion data of neighbouring partitions............ccceeeveeeverveereeneeneeeeeseeseeenns 148

8.4.1.4 Derivation process for chroma motioN VECIOTScuevverieriieriieiieteeieseereeresaesaeseesseesseessesssesseenns 149

8.4.2 Decoding process for Inter prediction SAMPIEScceevveerrieriiiiiiiesienieieere e eee e seereeseeseseeesseesseenns 149

8.4.2.1 Reference picture SEIECION PIOCESScc.eervierurriuerriertierieeteestestesstesseeseassesseesseenseessesnsesssesssesseenseenseenes 150

8.4.2.2 Fractional sample interpolation PrOCESS.ccverrerruerruerieriereeeteeteestesseesseeseesesaesseesseesseesesnsesssesseenes 151
8.4.2.2.1 Luma sample interpolation PrOCESS.........eeruierrerierierieerieeiesirestesseesseeseseesseesseesseessesssesseessesssesssens 152
8.4.2.2.2 Chroma sample interpolation PrOCESScevuieieeiertierieeieeteetiestee st eteeeeseeeseeesteeeeeneeeseesseenseeneens 155

8.4.2.3 Weighted sample prediCtion PrOCESS.ueiieriereerie ettt ettt et et e e sseeseeseeeseeeeeeneeeneeneeenes 156
8.42.3.1 Default weighted sample prediction PrOCESSeierirerieieieieieresie ettt ettt eee e e see e 156
8.4.2.3.2 Weighted sample PrediCtion PIOCESS......cc.uerteeruerrierieriienitenie et eiteette st tebe et eteseeeseeesteeeeeaeesaeesaeenee 157

85 Transform coefficient decoding process and picture construction process prior to deblocking filter process. 159
8.5.1 Specification of transform decoding process for 4x4 luma residual blocksS...........ccoeeverieviieciieiienienieennen. 160
8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
mode 160
8.5.3 Specification of transform decoding process for 8x8 luma residual blocks...........ccoocverieriieiiinienieieeene 161
8.54 Specification of transform decoding process for chroma samples.............ccoveverierieriiecienieniee e 162
8.5.5 Inverse scanning process for transform coefficientsccveeviriirierierieieee e 164
8.5.6 Inverse scanning process for 8x8 luma transform coeffiCientscecevverierierienie i 164
8.5.7 Derivation process for the chroma quantisation parameters and scaling function...........c.ccecceeeeveenne. 166
8.5.8 Scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock typel68
8.5.9 Scaling and transformation process for chroma DC transform coefficientscccceeevieieeneiencnennne 169
8.5.10 Scaling and transformation process for residual 4X4 DIOCKSceeruerierieriiiiieieieee e 171
8.5.11 Scaling and transformation process for residual 8x8 Tuma blOCKS..........ceoerireririirieieee e 173
8.5.12 Picture construction process prior to deblocking filter ProCesscceovevviecierieriereerie e 176
8.5.13 Residual colour tranSfOrmm PrOCESSc.ieveeierierieetieieitestesteesteeteesteeseesseesseesseessesssessaesseesseessesseesssesseenes 177

8.6 Decoding process for P macroblocks in SP slices or SI macroblocks................c..cccccovvvecieviniiiniienieieaienn 178
8.6.1 SP decoding process for NONn-swWitChing PICLUIESccieciirierierieiieieete sttt e e see e eeeeeneens 178

8.6.1.1 Luma transform coefficient deCOdING PIOCESSvervveruieriieriieierieriete et eteete e eieeae e sreesseenseeneenees 178

8.6.1.2 Chroma transform coefficient decOding PrOCESS........cuerueerieriieiiieieeieniieie ettt s 179

8.6.2 SP and SI slice decoding process for SWitching PICTUIESc.ceoverieriiereerieeie et 181

8.6.2.1 Luma transform coefficient deCOdING PIOCESSeerveeruierirrieiieeiieriete ettt nee e e 181

8.6.2.2 Chroma transform coefficient decoOding PrOCESS.uereerieriiriirieniientieie ettt s 181

8.7 DEBIOCKING fIllOF PIOCESS ..ottt ettt ettt ettt et e e et ebeeee e ans 182
8.7.1 Filtering process for BIOCK €dZescouiuiiiiiiiiieiee ettt 186
8.7.2 Filtering process for a set of samples across a horizontal or vertical block edge.........c.ccevveerieniieciinnnnne 188

8.7.2.1 Derivation process for the luma content dependent boundary filtering strengthcceevrrvennennn. 188

8.7.2.2 Derivation process for the thresholds for each block €dgecoovvevieriiiiieiieiiceceeee e 190

8.7.2.3 Filtering process for edges with bS less than 4cccovieriiiieiinieeee e 191

vi ITU-T Rec. H.264 (03/2005)

8.7.2.4 Filtering process for edges for bS equal t0 4..........cocieuieieieiiiie e

9 Parsing process

9.1 Parsing process for EXp-GOIOMDB COES...............ccoociioiioiiiiiiiei ettt
9.1.1 Mapping process for signed EXp-Golomb COAeScooiiiiiiiiiiiiieieeeieeee e
9.1.2 Mapping process for coded DLOCk Patternccooiiiiiiiiiiiiiieee e

9.2 CAVLC parsing process for transform COEffiCIent [eVeLS.................ccceveveneieioiiiie e
9.2.1 Parsing process for total number of transform coefficient levels and trailing ones............cccceceverenenens
922 Parsing process for level INfOrmationoccoiiiiiiiioieieeee e

9.2.2.1 Parsing process for 16Vl PrefiX.......coioiiiiiiieiiiiiciicieeteseee ettt ae e e ste b e esbeesaessaens
9.2.3 Parsing process for run information..............cceeciircieiiieiieieee ettt e e e beebesseesaeesaeese s
9.2.4 Combining level and run infOrMAation...........cvecvieiirieiierieieete ettt te e esbeeesessaesseesseesseennas

9.3 CABAC parsing process fOr SIICE QAUc.cccuiiiiiiiiiioiiiiieiit sttt

9.3.1 TNItIAlISATION PIOCESS ..uvvervrenrienrieteeiesetesteeteeteestesseesseesseeseensesnsesseesseasseenseasseassesseenseensesnsesnsesnsesnsesseensennes
9.3.1.1 Initialisation process for cONtexXt Variables...........cecieiiriirieiieiiee e
9.3.1.2 Initialisation process for the arithmetic decoding engine............cceeeeeueerieiiieiieniieniereee e

932 BiNATIZAtION PIOCESSeeettetieieeieeuieetieetteteeteeete e ee st eesseeteeteeaeeeaeeasee st enseenseenseeseenseenseenseensesneesneesneenseenes
9.3.2.1 Unary (U) DINATIZAtION PIOCESS -..cuveeuverureruieriterteenttenteeiteattesteenteenteestesstesseesseesseesaeensesseesseenseessessesseesseens
9.3.2.2 Truncated unary (TU) binariZation PrOCESSccueruerueruerrerteruieseeieieneesteasesteesesaeeseeneesessessessesseeseenens
9.3.2.3 Concatenated unary/ k-th order Exp-Golomb (UEGKk) binarization processcccceeesvereesesereeens
9.3.2.4 Fixed-length (FL) DINAriZation PrOCESS.......cc.eecvierierreerieesreeeresaesaesseesseessesssesseesssesseessesssesssesseessesssessanns
9.3.2.5 Binarization process for macroblock type and sub-macroblock typeccccceevveeviieiinienieniieiieieeenns
9.3.2.6 Binarization process for coded bloCK Patterni..........c..ccvieieeieiieniieieeie et
9.3.2.7 Binarization process for mb_qp deltacceocierieiiieiiieieeieee et

9.33 Decoding process

(03 RO

9.3.3.1 Derivation process fOr CtXIAX.......ccuirirriiiiiiieiieri ettt sttt e aesee st e sseeseesseensesnnensnens
9.3.3.1.1 Assignment process of ctxIdxInc using neighbouring syntax elements.............cceceeveererecieniennenns
9.3.3.1.1.1 Derivation process of ctxIdxInc for the syntax element mb_skip flag..........cccocceriinnnnne.
9.3.3.1.1.2 Derivation process of ctxIdxInc for the syntax element mb_field decoding_flag..................
9.3.3.1.1.3 Derivation process of ctxIdxInc for the syntax element mb_type........c.ccccevveriririeiienenennnne
9.3.3.1.1.4 Derivation process of ctxIdxInc for the syntax element coded block pattern........................
9.3.3.1.1.5 Derivation process of ctxIdxInc for the syntax element mb_qp delta..........c.ccceveininnene.
9.3.3.1.1.6 Derivation process of ctxIdxInc for the syntax elements ref idx 10 and ref idx I1...............
9.3.3.1.1.7 Derivation process of ctxIdxInc for the syntax elements mvd 10 and mvd 11
9.3.3.1.1.8 Derivation process of ctxIdxInc for the syntax element intra_chroma pred mode................
9.3.3.1.1.9 Derivation process of ctxIdxInc for the syntax element coded block flagc...ccccueene.e.
9.3.3.1.1.10 Derivation process of ctxIdxInc for the syntax element transform_size 8x8 flag...............
9.3.3.1.2 Assignment process of ctxIdxInc using prior decoded bin valuesccceveeiieiiinienieiineeene
9.3.3.1.3 Assignment process of ctxIdxInc for syntax elements significant coeff flag,
last_significant_coeff flag, and coeff abs level minuslcccocooiiiiiiiiiniiieiiee e
9.3.3.2 ArithmeticC dECOMING PIOCESS.eoueuertirtiitietietieietert ettt ettt ettt et et et e stesteseeebesaeeseeneeneensensenseaseseeanene

9.3.3.2.1 Arithmetic

decoding process for a binary deCiSIONccceeeeieiieiierieriee e

0.3.3.2.1.1 State tranSition PIOCESS....uierreerrrrerrreerireerreesteeetreesseessseessseesseesseessseessseesssesssseessseesssesssesnssees
9.3.3.2.2 Renormalization process in the arithmetic decoding engine............ccecveeeveviereereeriieieeieseeseennens

9.3.3.2.3 Bypass dec

oding process for binary deCISIONScccvereerieeiieieeierieereeeeeeeseesreeaesaesseesseesseenns

9.3.3.2.4 Decoding process for binary decisions before terminationcccoceevveereerreeieseeseerieecreeeenenens
9.3.4 Arithmetic encoding process (INfOrMAtIVE)c.eecviieieiierierieee ettt nee s neeenes
9.3.4.1 Initialisation process for the arithmetic encoding engine (informative)ccoevevevecierieriereeiennnens
9.3.4.2 Encoding process for a binary decision (infOrmative)cceecuerverierieneeseriieseeseeseeesieeeeeeesseeneeens
9.3.43 Renormalization process in the arithmetic encoding engine (informative)............coecveeerierieneeiennenne
9.3.4.4 Bypass encoding process for binary decisions (informative)...........cecereereereereeoieniereere e
9.3.4.5 Encoding process for a binary decision before termination (informative)...........c.ccoecvevvriinenieneenen.
9.3.4.6 Byte stuffing process (INfOIrMAatiVe)c.cueiiirieriiiiiieeiereteeeee ettt ettt sttt et saeeseeens

Annex A Profiles and levels

A.1 Requirements on video
A.2 Profiles........ccoeuenn.
A2l Baseline profile...
A2.2 Main profile.........
A23 Extended profile..
A.2.4 Highprofile.........
A.2.5 High 10 profile....
A.2.6 High4:2:2 profile
A2.7 High 4:4:4 profile

decoder CAPABILILYc.ccooiiiiieii e

ITU-T Rec. H.264 (03/2005)

194
194
195
196
198
199
201
202
203
206
206
207
208
218
219
221
221
222
222
222
225
225
225
226
228
228
228
229
229
230
230
231
232
233
234
234

235
237
238
239
241
242
242
243
243
243
244
246
246
247

249
249
249
249
250
250
250
251
251
252

vii

A.3 L@VCLS ...ttt e e e e e e e e e e i

A3.1 Level limits common to the Baseline, Main, and Extended profiles...........ccccoovvevvieeiiiiiiiinienieieeeeeee
A32 Level limits common to the High, High 10, High 4:2:2, and High 4:4:4 profiles........c.c.cccocvvvvvrvvervennnnne.
A33 Profile-specific 1EVEl LIMILSc.eecvieiieiieieciieie ettt ettt et e e b e eebesteesbe e seessesssesssesneesseenseenns
A.3.3.1 Baseline profile TMILScccccieriirieiiieiieieee ettt ettt et e ae et e sre e beesseesbessbessaessaesseesseensesnnas
A.3.3.2 Main, High, High 10, High 4:2:2, or High 4:4:4 profile imitscccceceveiiinininininenenieeieienns
A.3.3.3 Extended Profile LAMItScccocerieriieiiieiieieeiesceie ettt sttt et et et eteenteesaessaessaesseensesnsesnnas
A34 Effect of level limits on frame rate (INfOrMAative)ceecveeeierieiieriei e

Annex B Byte stream format
B.1 Byte stream NAL unit Syntax and SEMANLICScc.ccuevieeuieeiieiesiiesieeseeieeee s sieeeseesesse e eseesseessesnseesse s
B.1.1 Byte stream NAL UNIE SYNEAXccuveriieeiieeiiiieiierieesteeteeeesseesseesseeseessesssesseesseessesssesssesseessesssesssesseesssessesnes
B.1.2 Byte stream NAL UNit SEMANTICSeevereierrieiieieeiesiesiesttesteeeeetesseesseesseenseessessaessaesseesseessesssesssesseesseenes

B.2 Byte stream NAL unit deCOAiNG PrOCESScccccrciiiiiiiiiiiiiisi ettt
B.3 Decoder byte-alignment recovery (INfOFMALIVE)c.cccuiouiioieiieii ettt

Annex C Hypothetical reference decoder
C.1 Operation of coded picture DUSFEr (CPB)c..ccoooiiiiiiieiieeieeie ettt
C.1.1 Timing Of DItStrEAM AITIVAL.......cc.eeiiiiiieiicieieieee ettt ettt et e ene e st et et eesbesssesseeseenseensesnnas
C.1l.2 Timing of coded PICtUIe TEMOVAL.........cccuiviiriieiieiieie ettt ettt e e enseensesaeenseenseennas
C.2 Operation of the decoded picture BUFEr (DPB)............ccccucioiiiiriiiiiitet ettt
C2.1 Decoding of gaps in frame num and storage of "non-existing" frames.cceeceveeeriereenenienieneee
C22 Picture decoding and OULPUL..........oocuieiiiieeiece ettt ettt ettt st e s eeesbe et e eneesaeeneeenes
C23 Removal of pictures from the DPB before possible insertion of the current picturecccceeceereennenne.
c24 Current decoded picture marking and SEOTAZEceeieierieriireieeeeeteeeeee ettt ettt e e see e
C.2.4.1 Marking and storage of a reference decoded picture into the DPBc.coocooiiiiiiniiiiiiiec
C.2.4.2 Storage of a non-reference picture into the DPB..........cccoiiiiiiiiiiiiii e

C.3 BilSIF@AM CONfOFIMAICEc.oocuveeeieiieiieeieeeie ettt ettt ettt e e et e et e se e e e s b e esseetae s seesaeessesseesaeesseenseensenssenns
C.4d DeECOACT CONFOFIMANCE.ccooeceeiiiiieeiieeie ettt ettt ae e et ets e et e be e e e sb e s seesaeeeaeesseanseensensee e
C4.l Operation of the output order DPBcccoooiiiiiiiiiceceeeee ettt sae e
C4.2 Decoding of gaps in frame num and storage of "non-existing" PiCtures..........cceeverreererieervereereeneeneenne
C43 PACtUIE AECOMINEoieeiieiieiieit ettt ettt e sttt et et e et e e st e et e et eenseenseessesnsesaeesseensesnsesneenseenseenes
C44 Removal of pictures from the DPB before possible insertion of the current pictureccccveevvevennenne.
C4.5 Current decoded picture marking and STOTAZEeecueeierierieii et
C.4.5.1 Storage and marking of a reference decoded picture into the DPB............cocooiiiiiiiiiiniiieee
C.4.5.2 Storage and marking of a non-reference decoded picture into the DPB.............coociiiiiiiiiniiiiie
C4.5.3 "BUMPING" PIOCESS ...uveeutieiieetieitienteeteeteetestte st e e steeteeateeteestee st ee bt estesstesbeesbee bt e et eaeeestesbeenbeenseeneesbeenseens

Annex D Supplemental enhancement information

D.1 SEIDAYIOAA SYRIAX ...t ettt ekttt et et e e et e eae et e et e st e eneeebeeneenbeenaeenaen
D.1.1 Buffering period SEI MESSAZE SYNAXeeueeitieriirieeiieieiertierte et eteeeeesteenteenteeneesseesseesseesesneesneesneesneesseenes
D.1.2 Picture timing SEI MESSAZE SYNTAXeeuiertieitieteeieeiestiestee it et eteeseestee et enteenteeseesseesaeeaseeseeneesneesneeneeenes
D.1.3 Pan-scan rectangle SEI MESSAZE SYMIAXc.eertiruerieiiertienteeie et ettestce st et et ettesteesbee bt e beeseesseesaeesaeeneeenee
D.1.4 Filler payload SEI MESSAZE SYNEAXccueruiruiruieuieieienieeteete st eteeteesteetete e stestesbeeteeseeneesseneensessesseesesseseeanenes
D.1.5 User data registered by ITU-T Recommendation T.35 SEI message Syntaxccceceeeeereeneereeseenenennns
D.1.6 User data unregistered SEI MESSAZE SYNTAXc.eccvieierieriieriieieiieseesteesieeeeeeresseesseesseessesssesseesseessesssesses
D.1.7 Recovery point SEI MESSAZE SYNTAXccvierieiieiieiiiesiieteeteeseesseesseeseesesssesseesseessessessesseesseesseessesseesseeses
D.1.8 Decoded reference picture marking repetition SEI message SyNtaXcecveeveeververeeneenieneeseeseeenneenns
D.1.9 Spare picture SEL MESSAZE SYNTAX ...c.veruvereieriieriieieeierieteeteetestesseeseesessessaesseeseansesssesseesseenseessesssessenns
D.1.10 Scene information SET MESSAZE SYNTAX ...c..eecveriereerieriierieeiestesteseeeseteeeesesseesseesseenseessesssesseesseessesssesnnes
D.1.11 Sub-sequence information SEI MESSAZE SYNTAX......ccceeruierieriierierieriieie et eeeeeteseeeteeeeeseseaessaesseenseeseennas
D.1.12 Sub-sequence layer characteristics SEI mesSage SYNtaX..........ccevierueeiieriirienieniieieeieeie e siee e enees
D.1.13 Sub-sequence characteristics SEI MeSSAZE SYNTAXccuerueriertierieieeie et eeestee ettt eeee et eseeeeeeeeenees
D.1.14 Full-frame freeze SEI MESSAZE SYMEAXc..eeuieuiireieitietieieeteeiiesete st et eteeaeesteesteeeeeneeeneesseesseeseenseeneeeneas
D.1.15 Full-frame freeze release SEI MESSAZE SYNEAXco.eeueeieieriirierieiiieteeieeti et see et es ettt e e see e e
D.1.16 Full-frame snapshot SET MESSAZE SYNEAX.......cc.eruiruiririeiieieieie ettt ettt st be st se e e e neeseeeee e
D.1.17 Progressive refinement segment start SEI MeSSAZE SYNTAX.......ccvervireierieriiereerieenieeeeeeeseeesseesseeseenenseens
D.1.18 Progressive refinement segment end SEI MESSAZE SYNTAXeecvverrieriircierieieenieeieeeeseesreeseeneeenesseesseens
D.1.19 Motion-constrained slice group set SEI MeSSAZE SYNTAXccvervierreeiierieiierierieerieeeeeeeesteesseeseesseesnesseens
D.1.20 Film grain characteristics SEI MESSAZE SYNTAXeevverrieriieieeieeieriesiteieeee et e eteete et e eteseaessaesseenseenseennes
D.1.21 Deblocking filter display preference SEI mesSsage SYNtaXcccccevveruierirerieeienieniieieeieenesnesseesseeseennes
D.1.22 Stereo video information SEI MESSAZE SYNEAX........ccveruiriieriierierierieesieeteeeeseeeseeeteeseeseseaesseesseesseensesnnes
D.1.23 Reserved SEI MESSAZE SYNMEAXccueeuiirtieitieteeieeiteiteerteesteetestesaeeseeesteeteeneeeneesseaseenseentesseesseeaseeseensesnees

D.2 SEIPAYIOQA SEMARLICScc.eeeee ettt ettt ettt ettt et ee e e ettt et e eneeeateete e st enteenaeannens
D.2.1 Buffering period SEI MeSSage SEMANTICS.cc.eeiueerureieeieriestieiteieeeteeteeste et eteeeeseeeseeesseeeeeneesneesaeeneeenes

viii ITU-T Rec. H.264 (03/2005)

D.2.2 Picture timing SEI mMeSSAZE SEMANTICS.ecutertiertieiiiieriierttenteet e et eeteette st et ebesaesatesbeesbee et eneeeneesaeeneeenee 285

D23 Pan-scan rectangle SEI MeSSage SEMANTICScccueruirieriiiniieniieitete et ette et et etesite st e be e et et st e e eneeenee 288
D.2.4 Filler payload SEI MESSAZE SCMANTICSveeuvereierrieriieiieteeteeteesieesteessessesseesssesseesseessesssesssesseessesssenssessaens 290
D.2.5 User data registered by ITU-T Recommendation T.35 SEI message semantics............cceeeveeevereereenennn. 290
D.2.6 User data unregistered SEI MesSSage SEMANTICScc.ecverrieriierieiieiiesiesieeteeseeseesseesseeseessesssesssesseessessnes 290
D.2.7 Recovery point SET MESSaZE SEMANTICSecuveriiereeeieeieriestieteeteetesseessaesseesessessesseesseesseensesnsesseesseenes 290
D.2.8 Decoded reference picture marking repetition SEI message semantics..........occvevververveneerieeseeseeseeeneeenns 291
D.2.9 Spare picture SEI MESSaZE SCMANTICSecueerviesieiiereieriierteeteetesstesteetesetesaesseesseensesssessnesseesseensesssesssesseens 292
D.2.10 Scene information SEI MeSSAZE SEMANLICScveevereeriieriierieeee et eeieettete et enteeseesseesseesseeeeseeeneeseeenaeenees 293
D.2.11 Sub-sequence information SEI MeSSage SEMANTICScecueeruerierierieniieiieieeeeeeeesteeeeeeeenee e sseeseeeeeenees 295
D.2.12 Sub-sequence layer characteristics SEI message SEMAantiCs.........cevueeruierireireienienieeieee e see e ee e 296
D.2.13 Sub-sequence characteristics SEI message SEMAaNTICSccereruieirieierieieie sttt 297
D.2.14 Full-frame freeze SEI MeSSAZE SEMANLICS.cc.teuieuieuieieieiesteete et eteeteete et et e e seestesee et ese e st eneeeesesbeseeeaeee 299
D.2.15 Full-frame freeze release SEI MeSSage SCMANTICS.ccvievieverieriierieeieeteieeseesteesseesseesseessesseesseesseesesseens 299
D.2.16 Full-frame snapshot SEI MeSSaZE SEMANTICSccvvecviereeieeieriiesieeieeteseeseesseesseesseessesssesseesesssenssesseens 299
D.2.17 Progressive refinement segment start SEI message SEMANtiCSeeoveeeverierieereenieeieeeeseesseesseeseenessnens 299
D.2.18 Progressive refinement segment end SEI message SemMantics..........oevvverurerieeienienieenieeieeeeseeseeenseeneeennes 300
D.2.19 Motion-constrained slice group set SEI message SeMAaNtiCS..........ccueeveriereerrerieeriereenereeeeeeseeseeenseesens 300
D.2.20 Film grain characteristics SEI MeSSaZe SEMANTICSccueervierieereeierieneieiieteereseeesteeseeseseaessnesseesseensennnes 301
D.2.21 Deblocking filter display preference SEI message SemMantics.cveveerueerireienieneenieeieeieseeseeseeeneeenees 306
D.2.22 Stereo video information SEI message SEMANTICScevueeriiriirienierieieeie et etee et enees 308
D.2.23 Reserved SEI MESSAZE SEMANTICSc.veeueertierieetieieiieetiestee st et e teeateseee et eeeeneeeseesseesseeseensesneesneenseensesnees 309
Annex E Video usability information 310
E 1 VUL SYREGX ...ttt et ettt ettt et st 311
E.1.1 VUI PATAMELETS SYNEAX ...veeuvieeiiieriiieniiienitiesieesittesteesiteesibeestteesabeesateesabeesaseesabeesaseesaseesaseesaseenseesbeeenseesnses 311
E.1.2 HRD PArameters SYNEAXc.eerueeruieieeuiertiesteesteeteeeeeteesseesseenseaneeeneesseesseanseenseensesseesseenseeseensesnsesneesseenseanes 312

E.2 VUL SEIANLICS ..ottt ettt a ettt et e e e e et e ke et eebeeseeeseeese e st emeeeneeeneeeneenes 312
E.2.1 VUI PArameters SCIMAINTICSc.verueerueeereieritesteerteerteeteeneeeseesseesseenseeneeeseesseesseeaseenseansesneesseesseensesneesseenseenes 312
E.2.2 HRD Parameters SEIMANTICSueervieeueeriierieeetiesiteesreesseessseesseessseesssesssseessseessseessseessseesssessssessssssssessnses 323

LIST OF FIGURES

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame..............ccccceeueeee. 19
Figure 6-2 — Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields.................... 20
Figure 6-3 — Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame............c.ccccceeneeee. 20
Figure 6-4 — Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields...................... 21
Figure 6-5 — Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a frame..............cccceeueeee. 21
Figure 6-6 — Nominal vertical and horizontal sampling locations of 4:4:4 samples top and bottom fields..........c..c.cc...... 22
Figure 6-7 — A picture with 11 by 9 macroblocks that is partitioned into tWo SIICES.......cceeerireriririiiiieiereseseeeeeee 23
Figure 6-8 — Partitioning of the decoded frame into Macroblock PAITScceeeiriiiiiiiiiie e 23

Figure 6-9 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock

PATEIEION SCANSetetietieteenteeeteeete et ee st e e te e st e et eaeeesee st et e em s e emeeemeesseees e e st emseemseemeeeseeaseenseenseenseeseeeseeseenseenseeneesneesneenseenes 25
Figure 6-10 — Scan for 4X4 TumMa DIOCKScocuiiiiiiieiieiee ettt ettt e st eteenseenseensesnaessaesseennas 26
Figure 6-11 — Scan for 8X8 TUma DIOCKScccviiiiiieiiecieit ettt e s esaeebeesseesbaesbeesaessaesseennas 26
Figure 6-12 — Neighbouring macroblocks for a given macroblockcocoiiiiiiiiiiiee e 27
Figure 6-13 — Neighbouring macroblocks for a given macroblock in MBAFF frames............ccoocvvieiiiiieiiniecieceee, 28
Figure 6-14 — Determination of the neighbouring macroblock, blocks, and partitions (informative)cccccecevverennenne. 29

Figure 7-1 — Structure of an access unit not containing any NAL units with nal unit_type equal to 0, 7, 8, or in the

range of 12 to 18, inclusive, or in the range of 20 t0 31, INCIUSIVE.cceevviiieriieiieieeieeeeeere et 62
Figure 8-1 — Intra_4x4 prediction mode directions (INfOrMAatiVe)cceeeverierieriieriieieeiese et sae e e 118
Figure 8-2 —Example for temporal direct-mode motion vector inference (informative)c.cceceeeeererenenenenencecens 146
Figure 8-3 — Directional segmentation prediction (INfOrmative)ccceeririiirierierieieee et 147

ITU-T Rec. H.264 (03/2005) ix

Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks
with lower-case letters) for quarter sample luma INterpolation...........ccceeevieviieiiiieriieiieieee ettt 153

Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer position

SAMPIES A, B, C, QN Di..oovviiiiiiiicieceeceee ettt et ettt e b b e et e e tb e ta e te e beebeeraeeraeereesreenreenns 155
Figure 8-6 — Assignment of the indices of dcY to Tumadx4BIKIAXccecuevieriinirininiiieicicereee e 161
Figure 8-7 — Assignment of the indices of dcC to chroma4x4Blkldx: (a) chroma format idc equal to 1, (b)

chroma format idc equal to 2, (¢) chroma format _idc equal t0 3........ccoecuieiiirieiiiiieeeeee e 163
Figure 8-8 — 4x4 block scans. (a) Zig-zag scan. (b) Field scan (informative)ccecveeverienieneenieeie e 164
Figure 8-9 — 8x8 block scans. (a) 8x8 zig-zag scan. (b) 8x8 field scan (Informative)cceeerererininieieieeseee e 165
Figure 8-10 — Boundaries in @ macroblock to be filtered...........coooiieiiiiiiiiiiieiee e 183
Figure 8-11 — Convention for describing samples across a 4x4 block horizontal or vertical boundaryc..cccceveueeee. 187
Figure 9-1 — Illustration of CABAC parsing process for a syntax element SE (informative)cc.cccceceevienienicnencnennns 207
Figure 9-2 — Overview of the arithmetic decoding process for a single bin (informative)c.coccevevevcveneeneeceeeienenn, 238
Figure 9-3 — Flowchart for decoding @ deCISIONcc.eeuiiiiiieiiiitieie ettt sttt ettt sae bttt esaenaenee e 239
Figure 9-4 — Flowchart of renormaliZationcouiouiiiiieiieieee ettt ettt et bt et ete e s e saeeneeenes 241
Figure 9-5 — Flowchart of bypass deCOING PIOCESS.........ccuerieriieriieieeiesiesteerteeteeteseesseeseessesssessaesseesseesesnsesseesseenseenes 242
Figure 9-6 — Flowchart of decoding a decision before terminationc.ccueeveriereesieecieniesieesieeie e seesreeaeseeseeesseenns 243
Figure 9-7 — Flowchart for encoding & dECISIONcueiiiiiiieitietietiett ettt ettt e et be s et ebeeseeneeneenseneesaeas 244
Figure 9-8 — Flowchart of renormalization in the @nCOAEToiiiiiiiiiiiiiieiee e 245
Figure 9-9 — Flowchart Of PULBIt(B).......cccuiiiiriiiiieieeieeeieee sttt sttt et e s et e e snaessae s e enseensesnnesseenseensennns 245
Figure 9-10 — Flowchart 0f enCOAING DYPaSS......ccuiiiirieriieiiieiiiieiieseete et sttt ere et e ste e teesbeessessaesseesseessessaesseesseenseenns 246
Figure 9-11 — Flowchart of encoding a decision before terminationc.cooeeerieieieieiieree et 247
Figure 9-12 — Flowchart of flushing at terminationeecerieiierieie ettt st e e ee e 247
Figure C-1 — Structure of byte streams and NAL unit streams for HRD conformance checksc.cccccocenincncnenenne. 264
Figure C-2 — HRD BUffer MOAEL.........ccviiiiiiiiicieceeie ettt sttt ettt ettt essbessaesbaessaesbesnaesseessnenseenns 265
Figure E-1 — Location of chroma samples for top and bottom fields as a function of chroma_sample loc_type top_field

and chroma_sample loc_type bottom fIeld.........cccoiviriiiniriiiiiiicce et e 320

LIST OF TABLES
Table 6-1 —SubWidthC, and SubHeightC values derived from chroma format idc...........cceeeiiiiriiniiniiiiiieeecee 18
Table 6-2 — Specification of input and output assignments for subclauses 6.4.8.1 10 6.4.8.5......ccccccevirinininnieiccnennne 29
Table 6-3 — Specification Of MDAAAINccoiiiiiii ettt be et e saeesse e seesseesbeessesssessaesseenss 33
Table 6-4 - Specification of MBAAAIN ANA YMoouiiuiiiiiiiee ettt et eae et et nte e ebe e 35
Table 7-1 — NAL UNIE EYPE COUCS. ...nuieuiieuiitietieteee et ettt ettt ettt ee et et e e te et e et e e ste et e en s e eseees e e beenseenseenaeemeeeneesseeseenseenneas 57
Table 7-2 — Assignment of mnemonic names to scaling list indices and specification of fall-back rule..........c..c.ccoccvuence. 65
Table 7-3 — Specification of default scaling lists Default 4x4 Intra and Default 4x4 Inter...........cccocvevievriecienieneennnenne. 66
Table 7-4 — Specification of default scaling lists Default 8x8 Intra and Default 8x8 Inter...........cccceoeevieiiiiiiineicncnene 66
Table 7-5 — Meaning of PriMmary PIC TYPE ...eeoueeueeieriertierteeiteeteetiestteste e et e et eseeeseeste e te e teeneeeseesseenseenseenseeneesneesseenaeenseanseas 73
Table 7-6 — Name aSs0CIation 10 SHICE tYPE ..evveeiieiuieieeiieetieiteeieete et et ete et e etee st e teensessaessaesseeseesseensesnsesseenseanseensennsens 75
Table 7-7 — reordering_of pic nums_idc operations for reordering of reference picture lists..........ccoeveverenenencnicnenn. 81
Table 7-8 — Interpretation of adaptive ref pic_marking mode flag.........cocoioiiiiiiiiiiiiiie e 83

X ITU-T Rec. H.264 (03/2005)

Table 7-9 — Memory management control operation (memory management_control operation) values..........c..c.ccc....... 84

Table 7-10 — Allowed collective macroblock types for SIICE tyPe......covirierieiiieiiiieeieeee et 86
Table 7-11 — Macroblock tyPes fOr T SIICESvievieiieiieitieieeie ettt ettt ettt e st ae s e e enseesesnsesneesseenseenseenseensens 87
Table 7-12 — Macroblock type with value 0 fOr SISHICESecvuiiiiiiiiieciieiieie ettt e sae e 88
Table 7-13 — Macroblock type values 0 to 4 for P and SP SHCESooueiiiiriiiiieieeeeee e 89
Table 7-14 — Macroblock type values 0 t0 22 fOr B SHICES.....cueeiuiiiiiiiriieiiee et 90
Table 7-15 — Specification of CodedBlockPatternChroma Values............cceecuieiieienienieieeieeie e 92
Table 7-16 — Relationship between intra_chroma pred mode and spatial prediction modes...........cccceevviecreeienienreenenne. 92
Table 7-17 — Sub-macroblock types in P macroblOCKsS..........coiiiiiiiiieieeee et 93
Table 7-18 — Sub-macroblock types in B macroblOCKsc.oouiiiiiiiiiei e 94
Table 8-1 — Refined SIiCe Sroup MAP tYPC ...veevieiieieeiieetieiieieeteetesee st et ete et et e s seesseeseesseessesnsesseesseensesnsesnnesseesseenseenns 102
Table 8-2 — Specification of Intradx4PredMode[luma4x4BlkIdx | and associated names...........ccccoeeveeverienreceeeeennnnne 117
Table 8-3 — Specification of Intra8x8PredMode[luma8x8BlkIdx | and associated names............ccceeeveevereenienreeeennnnnn, 123
Table 8-4 — Specification of Intral 6x16PredMode and associated NAMESc.eeveeierrierieerieereeee et 130
Table 8-5 — Specification of Intra chroma prediction modes and associated NAMES............cceeveererierierieriere e 132
Table 8-6 — Specification of the Variable COIPICcuiiiiiieiieie ettt sesae e sneenseenneenes 140
Table 8-7 — Specification 0f PICCOAINZSIIUCH(X) ..uvevviirrieiieieiiesiiesieeteeteste sttt etesteesteebeesbeessessaesseesseessesssesseesseessennns 140
Table 8-8 — Specification of mbAddrCol, yM, and vertMvSCaleccueouiiuiriiiiiiieieeee et 141
Table 8-9 — Assignment of prediction UtiliZation flags..........ccoeouiriiiiiiieiie e e e 143
Table 8-10 — Derivation of the vertical component of the chroma vector in field coding modecccceeevinininennene 149
Table 8-11 — Differential full-sample Tuma 10CAtIONSc.eeviiiirieiiieie ettt se e be e s esreese s 153
Table 8-12 — Assignment of the luma prediction sample predPartLX L[Xp, YL] -oeoeeeeeeeeieenenenere e 155
Table 8-13 — Specification of mapping of idx to ¢; for zig-zag and field scan............c..occoviiiiii 164
Table 8-14 — Specification of mapping of idx to ¢;; for 8x8 zig-zag and 8x8 field scan..............cccocevviiiiiiiiiinnnn, 166
Table 8-15 — Specification of QP¢ as a function Of GPp......c.ccveviieiiieiiiiiec e 167
Table 8-16 — Derivation of offset dependent threshold variables o and ' from indexA and indexB...........cc.cccceeeenee. 191
Table 8-17 — Value of variable t'cy as a function of indexA and DSccoviiiiiiiiiiii e 192
Table 9-1 — Bit strings with “prefix” and “suffix” bits and assignment to codeNum ranges (informative)...................... 194
Table 9-2 — Exp-Golomb bit strings and codeNum in explicit form and used as ue(v) (informative)..........ccocoecereeeeennene 195
Table 9-3 — Assignment of syntax element to codeNum for signed Exp-Golomb coded syntax elements se(v).............. 196
Table 9-4 — Assignment of codeNum to values of coded block pattern for macroblock prediction modes 196
Table 9-5 — coeff _token mapping to TotalCoeff(coeff token) and TrailingOnes(coeff token)..........cccocvevvvevrneennnne. 200
Table 9-6 — Codeword table for level prefix (INfOrmative)........cooieeieeieieee e 203
Table 9-7 — total _zeros tables for 4x4 blocks with TotalCoeff(coeff token) 1 t0 7cccceevieiiiiinieiiieeee e 204
Table 9-8 — total zeros tables for 4x4 blocks with TotalCoeff(coeff token) 8 t0 15ccoiiveiirciiiiiiiieee e, 205
Table 9-9 — total_zeros tables for chroma DC 2X2 and 2X4 DIOCKSc.cccviiiiiieriieiieieeieeee e 205
Table 9-10 — Tables fOr TUN_ DETOTEciiiiiiiee ettt ettt et et e st be bt ebe et et e e e saeeeeee 206
Table 9-11 — Association of ctxIdx and syntax elements for each slice type in the initialisation process....................... 208
Table 9-12 — Values of variables m and n for ctxIdX from 0 t0 10.......cccoeoueviirininininineceeee e 209
Table 9-13 — Values of variables m and n for ctxIdx from 1110 23cccciviiiiiniiiiiniiiieceeeceeeeeeeeeee e 210

ITU-T Rec. H.264 (03/2005) xi

Table 9-14 — Values of variables m and n for ¢tXIAX from 24 £0 39uoiiiiiiiiieie et 210

Table 9-15 — Values of variables m and n for ctxIdx from 40 £0 53ccooiriiiiiniiiecee e 210
Table 9-16 — Values of variables m and n for ctxIdx from 54 t0 59, and 399 t0 401ccooeiiemiiiecieei e 211
Table 9-17 — Values of variables m and n for ctxIdx from 60 t0 69.........c.cceeveviniiiriineniiinciniceeceeeeeee e 211
Table 9-18 — Values of variables m and n for ctxIdx from 70 t0 104c..ccooeiririeininieiiiicneceeeeee s 212
Table 9-19 — Values of variables m and n for ctxIdx from 105 t0 165.....cc.coeiiririiriiiiiiiiiinreeeeceee e 213
Table 9-20 — Values of variables m and n for ctxIdX from 166 t0 226........ccceviririreiiinieiiieneneneeereeeee e 214
Table 9-21 — Values of variables m and n for ctxIdx from 227 10 275ccccevvevinirieineniiinicieinceeeeeeeee e 215
Table 9-22 — Values of variables m and n for ctxIdx from 277 t0 337ccoccoviiiiniinineiricereeereeeeree s 216
Table 9-23 — Values of variables m and n for ctxIdx from 338 t0 398c..coiiiiiiiiiiiiee e 217
Table 9-24 — Values of variables m and n for ctxIdx from 402 t0 459c..coiiiriririiiieie e 218
Table 9-25 — Syntax elements and associated types of binarization, maxBinldxCtx, and ctxIdxOffset...........ccccocenuenene. 220
Table 9-26 — Bin string of the unary binarization (INfOrMAtIVE)........ceeevireiiicieriieriieie ettt eee e sae e ens 221
Table 9-27 — Binarization for macroblock types in I SHCEScc.eiuiririeieieiee et 223
Table 9-28 — Binarization for macroblock types in P, SP, and B SICeS.........cceoieiieiiiieiieieececeeeee e 224
Table 9-29 — Binarization for sub-macroblock types in P, SP, and B SIiCES.........cccccuerierieriieiiiierieeeeee e 225
Table 9-30 — Assignment of ctxIdxInc to binldx for all ctxIdxOffset values except those related to the syntax elements
coded block flag, significant coeff flag, last significant coeff flag, and coeff abs level minusl..................... 227
Table 9-31 — Assignment of ctxIdxBlockCatOffset to ctxBlockCat for syntax elements coded block flag,
significant coeff flag, last significant coeff flag, and coeff abs level minuslc.ccocooviniiiiiiiiieniniicneeee, 228
Table 9-32 — Specification of ctxIdxInc for specific values of ctxIdxOffset and binldX.........ccoeceveeeriinieniniiiieee 235
Table 9-33 — Specification of ctxBlockCat for the different blOCKScoeieriieriieiiieieieeee e 235
Table 9-34 — Mapping of scanning position to ctxIdxInc for ctxBlockCat == 5......cccccceviiiiiiinininieeee e 236
Table 9-35 — Specification of rangeTabLPS depending on pStateldx and qCodIRangeldX...........cccecuevereiiienincnenenns 240
Table 9-36 — State transition tADIEccceiiiiiiriiiie ettt et 241
Table A-1 — LeVel LIMIES....c..cciiiiiiieiiicieieee ettt sttt s e eae s 254
Table A-2 — Specification of cpbBrVclFactor and cpbBrNalFaCtOr.........cc.ovviiieriieiieiieiecieieee e 256
Table A-3 — Baseline profile eVel MLceccvieiieiiiiiiieeie ettt ettt ettt b et s b e te e beebeesseesaessnesseeseenseenns 257
Table A-4 — Main, High, High 10, High 4:2:2, or High 4:4:4 profile level Imits.........c.ccoooiiieiiniiieieeee e 257
Table A-5 — Extended profile 1eVel TIMILS.c.ieiirieriieieiecie ettt b e se e sneesneesseenseenes 258
Table A-6 — Maximum frame rates (frames per second) for some example frame SiZes..........ccocvveveeeiereereenieneeeeennenn, 259
Table D-1 — INterpretation Of PIC SEIUCTcc.iiuiitiitieeieeieieie ettt ettt ettt be bt e s e et eae et et e sbesbeebesseeseeneensensenseeees 286
Table D-2 — Mapping of Ct_type tO SOUICE PICTUIE SCAMNeeiueeeerieeiierteerteeteeteeteeseeesteeeeenteeneesseeseeseenseeneesneesneesseenseenes 287
Table D-3 — Definition of cOUNtiNg_tyPe VAIUESccc.eeiuieiieiieieeiieieete ettt ettt ettt e ae e s e saeesaeeeeenes 287
Table D-4 — scene_transition tYPE VALUES.ccueeeieriieriieiieiieeieetesttesteeteeeesetesteesseeseanseesseeseesseessaesseessesnsesnsesseesseensennes 294
Table D-5 — MOAEL 10 VAIUES......ccviiiiiiiieiiiie ettt ettt ete e st e st e e beesaesseesseeseesseesseessassaesseessaansesssesseesseensennns 301
Table D-6 — blending mMOde 1d VAIUESoouiiiiiiiiiiieeee ettt sttt ettt e st e et eeebe e e e s e e e sseneees 302
Table E-1 — Meaning of sample aspect ratio iNAICALOTccuieruiriirieiieie ettt ettt e ee et e e e 313
Table E-2 — Meaning of VIAE0 fOIMAL............ceeciiriiriieiieieeie ettt ettt sttt et e e s e e e s e essesnsesnnesneesseenseenes 314
Table E-3 — COLOUL PIIMATICSecvvertierteereeieitesteesteeteetesseesseeseesseessesseesseessesssesssesssesseesseessesssesssesssessesssesssessesseessesssennes 315

xii ITU-T Rec. H.264 (03/2005)

Table E-4 — Transfer CharaCTEIISTICScoiouviiiieeeie ittt ee ettt e e et e e et e e eaee e e e e et e seaeeessraaeeessteeesenaaeessneeessneeessnnnees 316
BI:10) (S SR I V) B 15 b Qo0 13 5§ (63 (=3 01 -SSR 319

Table E-6 — Divisor for computation of At gpb(1) c.ooveveeiiiiiiiiiiiiiiiiicii s 321

ITU-T Rec. H.264 (03/2005) Xiii

Foreword

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T
is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view
to standardising telecommunications on a world-wide basis. The World Telecommunication Standardization Assembly
(WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups that, in turn, produce
Recommendations on these topics. The approval of ITU-T Recommendations is covered by the procedure laid down in
WTSA Resolution 1. In some areas of information technology that fall within ITU-T's purview, the necessary standards
are prepared on a collaborative basis with ISO and IEC.

ISO (the International Organization for Standardization) and IEC (the International Electrotechnical Commission) form
the specialised system for world-wide standardisation. National Bodies that are members of ISO and IEC participate in
the development of International Standards through technical committees established by the respective organisation to
deal with particular fields of technical activity. ISO and IEC technical committees collaborate in fields of mutual
interest. Other international organisations, governmental and non-governmental, in liaison with ISO and IEC, also take
part in the work. In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circulated to national bodies
for voting. Publication as an International Standard requires approval by at least 75% of the national bodies casting a
vote.

This Recommendation | International Standard was prepared jointly by ITU-T SG 16 Q.6, also known as VCEG (Video
Coding Experts Group), and by ISO/IEC JTC 1/SC 29/WG 11, also known as MPEG (Moving Picture Experts Group).
VCEG was formed in 1997 to maintain prior ITU-T video coding standards and develop new video coding standard(s)
appropriate for a wide range of conversational and non-conversational services. MPEG was formed in 1988 to establish
standards for coding of moving pictures and associated audio for various applications such as digital storage media,
distribution, and communication.

In this Recommendation | International Standard Annexes A through E contain normative requirements and are an
integral part of this Recommendation | International Standard.

xiv ITU-T Rec. H.264 (03/2005)

ITU-T Recommendation H.264

Advanced video coding for generic audiovisual services

0 Introduction

This clause does not form an integral part of this Recommendation | International Standard.

0.1 Prologue
This subclause does not form an integral part of this Recommendation | International Standard.

As the costs for both processing power and memory have reduced, network support for coded video data has
diversified, and advances in video coding technology have progressed, the need has arisen for an industry standard for
compressed video representation with substantially increased coding efficiency and enhanced robustness to network
environments. Toward these ends the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture
Experts Group (MPEG) formed a Joint Video Team (JVT) in 2001 for development of a new
Recommendation | International Standard.

0.2 Purpose
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard was developed in response to the growing need for higher compression
of moving pictures for various applications such as videoconferencing, digital storage media, television broadcasting,
internet streaming, and communication. It is also designed to enable the use of the coded video representation in a
flexible manner for a wide variety of network environments. The use of this Recommendation | International Standard
allows motion video to be manipulated as a form of computer data and to be stored on various storage media,
transmitted and received over existing and future networks and distributed on existing and future broadcasting channels.

0.3 Applications
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to cover a broad range of applications for video content
including but not limited to the following:

CATV Cable TV on optical networks, copper, etc.

DBS Direct broadcast satellite video services

DSL Digital subscriber line video services

DTTB Digital terrestrial television broadcasting

ISM Interactive storage media (optical disks, etc.)

MMM Multimedia mailing

MSPN Multimedia services over packet networks

RTC Real-time conversational services (videoconferencing, videophone, etc.)
RVS Remote video surveillance

SSM Serial storage media (digital VTR, etc.)

0.4 Publication and versions of this specification
This subclause does not form an integral part of this Recommendation | International Standard.

This specification has been jointly developed by ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Moving
Picture Experts Group. It is published as technically-aligned twin text in both organizations ITU-T and ISO/IEC.

ITU-T Rec. H.264 (03/2005)

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 1 refers to the first (2003) approved version of this Recommendation |
International Standard.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 2 refers to the integrated text containing the corrections specified in the
first technical corrigendum.

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 3 refers to the integrated text containing both the first technical
corrigendum (2004) and the first amendment, which is referred to as the "Fidelity range extensions".

ITU-T Rec. H.264 | ISO/IEC 14496-10 version 4 (the current specification) refers to the integrated text containing the
first technical corrigendum (2004), the first amendment (the "Fidelity range extensions"), and an additional technical
corrigendum (2005). In the ITU-T, the next published version after version 2 was version 4 (due to the completion of
the drafting work for version 4 prior to the approval opportunity for a final version 3 text).

0.5 Profiles and levels
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard is designed to be generic in the sense that it serves a wide range of
applications, bit rates, resolutions, qualities, and services. Applications should cover, among other things, digital storage
media, television broadcasting and real-time communications. In the course of creating this Specification, various
requirements from typical applications have been considered, necessary algorithmic elements have been developed, and
these have been integrated into a single syntax. Hence, this Specification will facilitate video data interchange among
different applications.

Considering the practicality of implementing the full syntax of this Specification, however, a limited number of subsets
of the syntax are also stipulated by means of "profiles" and "levels". These and other related terms are formally defined
in clause 3.

A "profile" is a subset of the entire bitstream syntax that is specified by this Recommendation | International Standard.
Within the bounds imposed by the syntax of a given profile it is still possible to require a very large variation in the
performance of encoders and decoders depending upon the values taken by syntax elements in the bitstream such as the
specified size of the decoded pictures. In many applications, it is currently neither practical nor economic to implement
a decoder capable of dealing with all hypothetical uses of the syntax within a particular profile.

In order to deal with this problem, "levels" are specified within each profile. A level is a specified set of constraints
imposed on values of the syntax elements in the bitstream. These constraints may be simple limits on values.
Alternatively they may take the form of constraints on arithmetic combinations of values (e.g. picture width multiplied
by picture height multiplied by number of pictures decoded per second).

Coded video content conforming to this Recommendation | International Standard uses a common syntax. In order to
achieve a subset of the complete syntax, flags, parameters, and other syntax elements are included in the bitstream that
signal the presence or absence of syntactic elements that occur later in the bitstream.

0.6 Overview of the design characteristics
This subclause does not form an integral part of this Recommendation | International Standard.

The coded representation specified in the syntax is designed to enable a high compression capability for a desired image
quality. With the exception of the transform bypass mode of operation for lossless coding in the High 4:4:4 profile and
the I PCM mode of operation in all profiles, the algorithm is typically not lossless, as the exact source sample values
are typically not preserved through the encoding and decoding processes. A number of techniques may be used to
achieve highly efficient compression. Encoding algorithms (not specified in this
Recommendation | International Standard) may select between inter and intra coding for block-shaped regions of each
picture. Inter coding uses motion vectors for block-based inter prediction to exploit temporal statistical dependencies
between different pictures. Intra coding uses various spatial prediction modes to exploit spatial statistical dependencies
in the source signal for a single picture. Motion vectors and intra prediction modes may be specified for a variety of
block sizes in the picture. The prediction residual is then further compressed using a transform to remove spatial
correlation inside the transform block before it is quantised, producing an irreversible process that typically discards
less important visual information while forming a close approximation to the source samples. Finally, the motion
vectors or intra prediction modes are combined with the quantised transform coefficient information and encoded using
either variable length codes or arithmetic coding.

2 ITU-T Rec. H.264 (03/2005)

0.6.1 Predictive coding
This subclause does not form an integral part of this Recommendation | International Standard.

Because of the conflicting requirements of random access and highly efficient compression, two main coding types are
specified. Intra coding is done without reference to other pictures. Intra coding may provide access points to the coded
sequence where decoding can begin and continue correctly, but typically also shows only moderate compression
efficiency. Inter coding (predictive or bi-predictive) is more efficient using inter prediction of each block of sample
values from some previously decoded picture selected by the encoder. In contrast to some other video coding standards,
pictures coded using bi-predictive inter prediction may also be used as references for inter coding of other pictures.

The application of the three coding types to pictures in a sequence is flexible, and the order of the decoding process is
generally not the same as the order of the source picture capture process in the encoder or the output order from the
decoder for display. The choice is left to the encoder and will depend on the requirements of the application. The
decoding order is specified such that the decoding of pictures that use inter-picture prediction follows later in decoding
order than other pictures that are referenced in the decoding process.

0.6.2 Coding of progressive and interlaced video
This subclause does not form an integral part of this Recommendation | International Standard.

This Recommendation | International Standard specifies a syntax and decoding process for video that originated in
either progressive-scan or interlaced-scan form, which may be mixed together in the same sequence. The two fields of
an interlaced frame are separated in capture time while the two fields of a progressive frame share the same capture
time. Each field may be coded separately or the two fields may be coded together as a frame. Progressive frames are
typically coded as a frame. For interlaced video, the encoder can choose between frame coding and field coding. Frame
coding or field coding can be adaptively selected on a picture-by-picture basis and also on a more localized basis within
a coded frame. Frame coding is typically preferred when the video scene contains significant detail with limited motion.
Field coding typically works better when there is fast picture-to-picture motion.

0.6.3 Picture partitioning into macroblocks and smaller partitions
This subclause does not form an integral part of this Recommendation | International Standard.

As in previous video coding Recommendations and International Standards, a macroblock, consisting of a 16x16 block
of luma samples and two corresponding blocks of chroma samples, is used as the basic processing unit of the video
decoding process.

A macroblock can be further partitioned for inter prediction. The selection of the size of inter prediction partitions is a
result of a trade-off between the coding gain provided by using motion compensation with smaller blocks and the
quantity of data needed to represent the data for motion compensation. In this Recommendation | International Standard
the inter prediction process can form segmentations for motion representation as small as 4x4 luma samples in size,
using motion vector accuracy of one-quarter of the luma sample grid spacing displacement. The process for inter
prediction of a sample block can also involve the selection of the picture to be used as the reference picture from a
number of stored previously-decoded pictures. Motion vectors are encoded differentially with respect to predicted
values formed from nearby encoded motion vectors.

Typically, the encoder calculates appropriate motion vectors and other data elements represented in the video data
stream. This motion estimation process in the encoder and the selection of whether to use inter prediction for the
representation of each region of the video content is not specified in this Recommendation | International Standard.

0.6.4 Spatial redundancy reduction
This subclause does not form an integral part of this Recommendation | International Standard.

Both source pictures and prediction residuals have high spatial redundancy. This
Recommendation | International Standard is based on the use of a block-based transform method for spatial redundancy
removal. After inter prediction from previously-decoded samples in other pictures or spatial-based prediction from
previously-decoded samples within the current picture, the resulting prediction residual is split into 4x4 blocks. These
are converted into the transform domain where they are quantised. After quantisation many of the transform coefficients
are zero or have low amplitude and can thus be represented with a small amount of encoded data. The processes of
transformation and quantisation in the encoder are not specified in this Recommendation | International Standard.

0.7 How to read this specification

This subclause does not form an integral part of this Recommendation | International Standard.

ITU-T Rec. H.264 (03/2005) 3

It is suggested that the reader starts with clause 1 (Scope) and moves on to clause 3 (Definitions). Clause 6 should be
read for the geometrical relationship of the source, input, and output of the decoder. Clause 7 (Syntax and semantics)
specifies the order to parse syntax elements from the bitstream. See subclauses 7.1-7.3 for syntactical order and see
subclause 7.4 for semantics; i.e., the scope, restrictions, and conditions that are imposed on the syntax elements. The
actual parsing for most syntax elements is specified in clause 9 (Parsing process). Finally, clause 8 (Decoding process)
specifies how the syntax elements are mapped into decoded samples. Throughout reading this specification, the reader
should refer to clauses 2 (Normative references), 4 (Abbreviations), and 5 (Conventions) as needed. Annexes A through
E also form an integral part of this Recommendation | International Standard.

Annex A specifies seven profiles (Baseline, Main, Extended, High, High 10, High 4:2:2 and High 4:4:4), each being
tailored to certain application domains, and defines the so-called levels of the profiles. Annex B specifies syntax and
semantics of a byte stream format for delivery of coded video as an ordered stream of bytes. Annex C specifies the
hypothetical reference decoder and its use to check bitstream and decoder conformance. Annex D specifies syntax and
semantics for supplemental enhancement information message payloads. Finally, Annex E specifies syntax and
semantics of the video usability information parameters of the sequence parameter set.

Throughout this specification, statements appearing with the preamble "NOTE -" are informative and are not an integral
part of this Recommendation | International Standard.

1 Scope

This document specifies ITU-T Recommendation H.264 | ISO/IEC International Standard ISO/IEC 14496-10 video
coding.

2 Normative references

The following Recommendations and International Standards contain provisions which, through reference in this text,
constitute provisions of this Recommendation | International Standard. At the time of publication, the editions indicated
were valid. All Recommendations and Standards are subject to revision, and parties to agreements based on this
Recommendation | International Standard are encouraged to investigate the possibility of applying the most recent
edition of the Recommendations and Standards listed below. Members of IEC and ISO maintain registers of currently
valid International Standards. The Telecommunication Standardization Bureau of the ITU maintains a list of currently
valid ITU-T Recommendations.

— ITU-T Recommendation T.35 (2000), Procedure for the allocation of ITU-T defined codes for non-
standard facilities.

— ISO/IEC 11578:1996, Annex A, Universal Unique Identifier.
— ISO/CIE 10527:1991, Colorimetric Observers.

3 Definitions
For the purposes of this Recommendation | International Standard, the following definitions apply.

31 access unit: A set of NAL units always containing exactly one primary coded picture. In addition to the
primary coded picture, an access unit may also contain one or more redundant coded pictures or other NAL
units not containing slices or slice data partitions of a coded picture. The decoding of an access unit always
results in a decoded picture.

3.2 AC transform coefficient: Any transform coefficient for which the frequency index in one or both
dimensions is non-zero.

33 adaptive binary arithmetic decoding process: An entropy decoding process that derives the values of bins
from a bitstream produced by an adaptive binary arithmetic encoding process.

34 adaptive binary arithmetic encoding process: An entropy encoding process, not normatively specified in
this Recommendation | International Standard, that codes a sequence of bins and produces a bitstream that can
be decoded using the adaptive binary arithmetic decoding process.

35 alpha blending: A process not specified by this Recommendation | International Standard, in which an
auxiliary coded picture is used in combination with a primary coded picture and with other data not specified
by this Recommendation | International Standard in the display process. In an alpha blending process, the
samples of an auxiliary coded picture are interpreted as indications of the degree of opacity (or, equivalently,
the degrees of transparency) associated with the corresponding luma samples of the primary coded picture.

4 ITU-T Rec. H.264 (03/2005)

3.6

3.7

3.8

3.9
3.10
3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

3.21

3.22
3.23

3.24

3.25

arbitrary slice order: A decoding order of slices in which the macroblock address of the first macroblock of
some slice of a picture may be less than the macroblock address of the first macroblock of some other
preceding slice of the same coded picture.

auxiliary coded picture: A picture that supplements the primary coded picture that may be used in
combination with other data not specified by this Recommendation | International Standard in the display
process. An auxiliary coded picture has the same syntactic and semantic restrictions as a monochrome
redundant coded picture. An auxiliary coded picture must contain the same number of macroblocks as the
primary coded picture. Auxiliary coded pictures have no normative effect on the decoding process. See also
primary coded picture and redundant coded picture.

B slice: A slice that may be decoded using intra prediction from decoded samples within the same slice or
inter prediction from previously-decoded reference pictures, using at most two motion vectors and reference
indices to predict the sample values of each block.

bin: One bit of a bin string.
binarization: A set of bin strings for all possible values of a syntax element.

binarization process: A unique mapping process of all possible values of a syntax element onto a set of bin
Strings.

bin string: A string of bins. A bin string is an intermediate binary representation of values of syntax elements
from the binarization of the syntax element.

bi-predictive slice: See B slice.

bitstream: A sequence of bits that forms the representation of coded pictures and associated data forming one
or more coded video sequences. Bitstream is a collective term used to refer either to a NAL unit stream or a
byte stream.

block: An MxN (M-column by N-row) array of samples, or an MxN array of transform coefficients.

bottom field: One of two fields that comprise a frame. Each row of a botfom field is spatially located
immediately below a corresponding row of a top field.

bottom macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the bottom row of samples for the macroblock pair. For a field macroblock pair, the bottom
macroblock represents the samples from the region of the bottom field of the frame that lie within the spatial
region of the macroblock pair. For a frame macroblock pair, the bottom macroblock represents the samples of
the frame that lie within the bottom half of the spatial region of the macroblock pair.

broken link: A location in a bitstream at which it is indicated that some subsequent pictures in decoding
order may contain serious visual artefacts due to unspecified operations performed in the generation of the
bitstream.

byte: A sequence of 8 bits, written and read with the most significant bit on the left and the least significant
bit on the right. When represented in a sequence of data bits, the most significant bit of a byte is first.

byte-aligned: A position in a bitstream is byte-aligned when the position is an integer multiple of 8 bits from
the position of the first bit in the bitstream. A bit or byte or syntax element is said to be byte-aligned when the
position at which it appears in a bitstream is byte-aligned.

byte stream: An encapsulation of a NAL unit stream containing start code prefixes and NAL units as specified
in Annex B.

can: A term used to refer to behaviour that is allowed, but not necessarily required.

category: A number associated with each syntax element. The category is used to specify the allocation of
syntax elements to NAL units for slice data partitioning. It may also be used in a manner determined by the
application to refer to classes of syntax elements in a manner not specified in this
Recommendation | International Standard.

chroma: An adjective specifying that a sample array or single sample is representing one of the two colour
difference signals related to the primary colours. The symbols used for a chroma array or sample are Cb and
Cr.

NOTE - The term chroma is used rather than the term chrominance in order to avoid the implication of the use of
linear light transfer characteristics that is often associated with the term chrominance.

coded field: A coded representation of a field.

ITU-T Rec. H.264 (03/2005) 5

3.26

3.27

3.28

3.29

3.30

331

3.32

3.33

3.34

3.35

3.36
3.37

3.38

3.39
3.40
341

3.42

3.43

3.44

3.45

3.46

3.47

3.48

3.49

coded frame: A coded representation of a frame.

coded picture: A coded representation of a picture. A coded picture may be either a coded field or a coded
frame. Coded picture is a collective term referring to a primary coded picture or a redundant coded picture,
but not to both together.

coded picture buffer (CPB): A first-in first-out buffer containing access units in decoding order specified in
the hypothetical reference decoder in Annex C.

coded representation: A data element as represented in its coded form.

coded video sequence: A sequence of access units that consists, in decoding order, of an IDR access unit
followed by zero or more non-IDR access units including all subsequent access units up to but not including
any subsequent /DR access unit.

component: An array or single sample from one of the three arrays (luma and two chroma) that make up a
field or frame.

complementary field pair: A collective term for a complementary reference field pair or a complementary
non-reference field pair.

complementary non-reference field pair: Two non-reference fields that are in consecutive access units in
decoding order as two coded fields of opposite parity where the first field is not already a paired field.

complementary reference field pair: Two reference fields that are in consecutive access units in decoding
order as two coded fields and share the same value of the frame num syntax element, where the second field
in decoding order is not an IDR picture and does not include a memory management control operation
syntax element equal to 5.

context variable: A variable specified for the adaptive binary arithmetic decoding process of a bin by an
equation containing recently decoded bins.

DC transform coefficient: A transform coefficient for which the frequency index is zero in all dimensions.

decoded picture: A decoded picture is derived by decoding a coded picture. A decoded picture is either a
decoded frame, or a decoded field. A decoded field is either a decoded top field or a decoded bottom field.

decoded picture buffer (DPB): A buffer holding decoded pictures for reference, output reordering, or output
delay specified for the hypothetical reference decoder in Annex C.

decoder: An embodiment of a decoding process.
decoding order: The order in which syntax elements are processed by the decoding process.

decoding process: The process specified in this Recommendation | International Standard that reads a
bitstream and derives decoded pictures from it.

direct prediction: An inter prediction for a block for which no motion vector is decoded. Two direct
prediction modes are specified that are referred to as spatial direct prediction and temporal prediction mode.

display process: A process not specified in this Recommendation | International Standard having, as its input,
the cropped decoded pictures that are the output of the decoding process.

decoder under test (DUT): A decoder that is tested for conformance to this Recommendation | International
Standard by operating the hypothetical stream scheduler to deliver a conforming bitstream to the decoder and
to the hypothetical reference decoder and comparing the values and timing of the output of the two decoders.

emulation prevention byte: A byte equal to 0x03 that may be present within a NAL unit. The presence of
emulation prevention bytes ensures that no sequence of consecutive byte-aligned bytes in the NAL unit
contains a start code prefix.

encoder: An embodiment of an encoding process.

encoding process: A process, not specified in this Recommendation | International Standard, that produces a
bitstream conforming to this Recommendation | International Standard.

field: An assembly of alternate rows of a frame. A frame is composed of two fields, a top field and a bottom
field.

field macroblock: A macroblock containing samples from a single field. All macroblocks of a coded field are
field macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded
frame may be field macroblocks.

ITU-T Rec. H.264 (03/2005)

3.50
3.51

3.52
3.53

3.54

3.55
3.56

3.57

3.58

3.59

3.60

3.61

3.62

3.63
3.64

3.65

3.66

3.67

3.68

3.69

3.70

3.71

field macroblock pair: A macroblock pair decoded as two field macroblocks.

field scan: A specific sequential ordering of transform coefficients that differs from the zig-zag scan by
scanning columns more rapidly than rows. Field scan is used for transform coefficients in field macroblocks.

flag: A variable that can take one of the two possible values 0 and 1.

frame: A frame contains an array of luma samples and two corresponding arrays of chroma samples. A frame
consists of two fields, a top field and a bottom field.

frame macroblock: A macroblock representing samples from the two fields of a coded frame. When
macroblock-adaptive frame/field decoding is not in use, all macroblocks of a coded frame are frame
macroblocks. When macroblock-adaptive frame/field decoding is in use, some macroblocks of a coded frame
may be frame macroblocks.

frame macroblock pair: A macroblock pair decoded as two frame macroblocks.

frequency index: A one-dimensional or two-dimensional index associated with a transform coefficient prior
to an inverse transform part of the decoding process.

hypothetical reference decoder (HRD): A hypothetical decoder model that specifies constraints on the
variability of conforming NAL unit streams or conforming byte streams that an encoding process may
produce.

hypothetical stream scheduler (HSS): A hypothetical delivery mechanism for the timing and data flow of
the input of a bitstream into the hypothetical reference decoder. The HSS is used for checking the
conformance of a bitstream or a decoder.

I slice: A slice that is not an S7 slice that is decoded using prediction only from decoded samples within the
same slice.

informative: A term used to refer to content provided in this Recommendation | International Standard that is
not an integral part of this Recommendation | International Standard. Informative content does not establish
any mandatory requirements for conformance to this Recommendation | International Standard.

instantaneous decoding refresh (IDR) access unit: An access unit in which the primary coded picture is an
IDR picture.

instantaneous decoding refresh (IDR) picture: A coded picture in which all slices are I or SI slices that
causes the decoding process to mark all reference pictures as "unused for reference" immediately after
decoding the IDR picture. After the decoding of an IDR picture all following coded pictures in decoding
order can be decoded without inter prediction from any picture decoded prior to the IDR picture. The first
picture of each coded video sequence is an IDR picture.

inter coding: Coding of a block, macroblock, slice, or picture that uses inter prediction.

inter prediction: A prediction derived from decoded samples of reference pictures other than the current
decoded picture.

interpretation sample value: A possibly-altered value corresponding to a decoded sample value of an
auxiliary coded picture that may be generated for use in the display process. Interpretation sample values are
not used in the decoding process and have no normative effect on the decoding process.

intra coding: Coding of a block, macroblock, slice, or picture that uses intra prediction.
intra prediction: A prediction derived from the decoded samples of the same decoded s/ice.
intra slice: See / slice.

inverse transform: A part of the decoding process by which a set of transform coefficients are converted into
spatial-domain values, or by which a set of transform coefficients are converted into DC transform
coefficients.

layer: One of a set of syntactical structures in a non-branching hierarchical relationship. Higher layers contain
lower layers. The coding layers are the coded video sequence, picture, slice, and macroblock layers.

level: A defined set of constraints on the values that may be taken by the syntax elements and variables of this
Recommendation | International Standard. The same set of levels is defined for all profiles, with most aspects
of the definition of each level being in common across different profiles. Individual implementations may,
within specified constraints, support a different level for each supported profile. In a different context, level is
the value of a transform coefficient prior to scaling.

ITU-T Rec. H.264 (03/2005) 7

3.72

3.73

3.74

3.75

3.76

3.77

3.78

3.79

3.80

3.81

3.82

3.83

3.84
3.85

3.86

3.87

3.88
3.89
3.90

list 0 (list 1) motion vector: A motion vector associated with a reference index pointing into reference picture
list 0 (list 1).

list 0 (list 1) prediction: Inter prediction of the content of a slice using a reference index pointing into
reference picture list 0 (list I).

luma: An adjective specifying that a sample array or single sample is representing the monochrome signal
related to the primary colours. The symbol or subscript used for luma is Y or L.
NOTE — The term luma is used rather than the term luminance in order to avoid the implication of the use of linear

light transfer characteristics that is often associated with the term luminance. The symbol L is sometimes used instead
of the symbol Y to avoid confusion with the symbol y as used for vertical location.

macroblock: A 16x16 block of luma samples and two corresponding blocks of chroma samples. The division
of a slice or a macroblock pair into macroblocks is a partitioning.

macroblock-adaptive frame/field decoding: A decoding process for coded frames in which some
macroblocks may be decoded as frame macroblocks and others may be decoded as field macroblocks.

macroblock address: When macroblock-adaptive frame/field decoding is not in use, a macroblock address is
the index of a macroblock in a macroblock raster scan of the picture starting with zero for the top-left
macroblock in a picture. When macroblock-adaptive frame/field decoding is in use, the macroblock address
of the top macroblock of a macroblock pair is two times the index of the macroblock pair in a macroblock
pair raster scan of the picture, and the macroblock address of the bottom macroblock of a macroblock pair is
the macroblock address of the corresponding top macroblock plus 1. The macroblock address of the fop
macroblock of each macroblock pair is an even number and the macroblock address of the bottom
macroblock of each macroblock pair is an odd number.

macroblock location: The two-dimensional coordinates of a macroblock in a picture denoted by (x,y). For
the top left macroblock of the picture (x,y) is equal to (0, 0). x is incremented by 1 for each macroblock
column from left to right. When macroblock-adaptive frame/field decoding is not in use, y is incremented by
1 for each macroblock row from top to bottom. When macroblock-adaptive frame/field decoding is in use, y
is incremented by 2 for each macroblock pair row from top to bottom, and is incremented by an additional 1
when a macroblock is a bottom macroblock.

macroblock pair: A pair of vertically contiguous macroblocks in a frame that is coupled for use in
macroblock-adaptive frame/field decoding. The division of a slice into macroblock pairs is a partitioning.

macroblock partition: A block of luma samples and two corresponding blocks of chroma samples resulting
from a partitioning of a macroblock for inter prediction.

macroblock to slice group map: A means of mapping macroblocks of a picture into slice groups. The
macroblock to slice group map consists of a list of numbers, one for each coded macroblock, specifying the
slice group to which each coded macroblock belongs.

map unit to slice group map: A means of mapping slice group map units of a picture into slice groups. The
map unit to slice group map consists of a list of numbers, one for each slice group map unit, specifying the
slice group to which each coded slice group map unit belongs.

may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the
optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used
to provide emphasis.

memory management control operation: Seven operations that control reference picture marking.

motion vector: A two-dimensional vector used for inter prediction that provides an offset from the
coordinates in the decoded picture to the coordinates in a reference picture.

must: A term used in expressing an observation about a requirement or an implication of a requirement that is
specified elsewhere in this Recommendation | International Standard. This term is used exclusively in an
informative context.

NAL unit: A syntax structure containing an indication of the type of data to follow and byfes containing that
data in the form of an RBSP interspersed as necessary with emulation prevention bytes.

NAL unit stream: A sequence of NAL units.
non-paired field: A collective term for a non-paired reference field or a non-paired non-reference field.

non-paired non-reference field: A decoded non-reference field that is not part of a complementary non-
reference field pair.

ITU-T Rec. H.264 (03/2005)

3.91

3.92
3.93
3.94

3.95

3.96

3.97

3.98

3.99

3.100
3.101

3.102
3.103

3.104

3.105
3.106

3.107
3.108

3.109

3.110
3.111
3.112

3.113

3.114

3.115

non-paired reference field: A decoded reference field that is not part of a complementary reference field
pair.

non-reference field: A field coded with nal _ref idc equal to 0.
non-reference frame: A frame coded with nal_ref idc equal to 0.

non-reference picture: A picture coded with nal ref idc equal to 0. A non-reference picture is not used for
inter prediction of any other pictures.

note: A term used to prefix informative remarks. This term is used exclusively in an informative context.
opposite parity: The opposite parity of top is bottom, and vice versa.
output order: The order in which the decoded pictures are output from the decoded picture buffer.

P slice: A slice that may be decoded using intra prediction from decoded samples within the same slice or
inter prediction from previously-decoded reference pictures, using at most one motion vector and reference
index to predict the sample values of each block.

parameter: A syntax element of a sequence parameter set or a picture parameter set. Parameter is also used
as part of the defined term quantisation parameter.

parity: The parity of a field can be fop or bottom.

partitioning: The division of a set into subsets such that each element of the set is in exactly one of the
subsets.

picture: A collective term for a field or a frame.

picture parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded
pictures as determined by the pic_parameter set id syntax element found in each slice header.

picture order count: A variable having a value that is non-decreasing with increasing picture position in
output order relative to the previous IDR picture in decoding order or relative to the previous picture
containing the memory management control operation that marks all reference pictures as “unused for
reference”.

prediction: An embodiment of the prediction process.

prediction process: The use of a predictor to provide an estimate of the sample value or data element
currently being decoded.

predictive slice: See P slice.

predictor: A combination of specified values or previously decoded sample values or data elements used in
the decoding process of subsequent sample values or data elements.

primary coded picture: The coded representation of a picture to be used by the decoding process for a
bitstream conforming to this Recommendation | International Standard. The primary coded picture contains
all macroblocks of the picture. The only pictures that have a normative effect on the decoding process are
primary coded pictures. See also redundant coded picture.

profile: A specified subset of the syntax of this Recommendation | International Standard.
quantisation parameter: A variable used by the decoding process for scaling of transform coefficient levels.

random access: The act of starting the decoding process for a bitstream at a point other than the beginning of
the stream.

raster scan: A mapping of a rectangular two-dimensional pattern to a one-dimensional pattern such that the
first entries in the one-dimensional pattern are from the first top row of the two-dimensional pattern scanned
from left to right, followed similarly by the second, third, etc. rows of the pattern (going down) each scanned
from left to right.

raw byte sequence payload (RBSP): A syntax structure containing an integer number of bytes that is
encapsulated in a NAL unit. An RBSP is either empty or has the form of a string of data bits containing syntax
elements followed by an RBSP stop bit and followed by zero or more subsequent bits equal to 0.

raw byte sequence payload (RBSP) stop bit: A bit equal to 1 present within a raw byte sequence payload
(RBSP) after a string of data bits. The location of the end of the string of data bits within an RBSP can be
identified by searching from the end of the RBSP for the RBSP stop bit, which is the last non-zero bit in the
RBSP.

ITU-T Rec. H.264 (03/2005) 9

3.116

3.117

3.118

3.119

3.120
3.121

3.122

3.123

3.124

3.125

3.126

3.127
3.128

3.129

3.130
3.131

3.132

3.133

10

recovery point: A point in the bitstream at which the recovery of an exact or an approximate representation
of the decoded pictures represented by the bitstream is achieved after a random access or broken link.

redundant coded picture: A coded representation of a picture or a part of a picture. The content of a
redundant coded picture shall not be used by the decoding process for a bitstream conforming to this
Recommendation | International Standard. A redundant coded picture is not required to contain all
macroblocks in the primary coded picture. Redundant coded pictures have no normative effect on the
decoding process. See also primary coded picture.

reference field: A reference field may be used for inter prediction when P, SP, and B slices of a coded field
or field macroblocks of a coded frame are decoded. See also reference picture.

reference frame: A reference frame may be used for inter prediction when P, SP, and B slices of a coded
frame are decoded. See also reference picture.

reference index: An index into a reference picture list.

reference picture: A picture with nal ref idc not equal to 0. A reference picture contains samples that may
be used for inter prediction in the decoding process of subsequent pictures in decoding order.

reference picture list: A list of reference pictures that is used for inter prediction of a P, B, or SP slice. For
the decoding process of a P or SP slice, there is one reference picture list. For the decoding process of a B
slice, there are two reference picture lists.

reference picture list 0: A reference picture list used for inter prediction of a P, B, or SP slice. All inter
prediction used for P and SP slices uses reference picture list 0. Reference picture list 0 is one of two
reference picture lists used for inter prediction for a B slice, with the other being reference picture list 1.

reference picture list 1: A reference picture list used for inter prediction of a B slice. Reference picture list 1
is one of two lists of reference picture lists used for inter prediction for a B slice, with the other being
reference picture list 0.

reference picture marking: Specifies, in the bitstream, how the decoded pictures are marked for inter
prediction.

reserved: The term reserved, when used in the clauses specifying some values of a particular syntax element,
are for future use by ITU-T | ISO/IEC. These values shall not be used in bitstreams conforming to this
Recommendation | International Standard, but may be wused in future extensions of this
Recommendation | International Standard by ITU-T | ISO/IEC.

residual: The decoded difference between a prediction of a sample or data element and its decoded value.

run: A number of consecutive data elements represented in the decoding process. In one context, the number
of zero-valued transform coefficient levels preceding a non-zero transform coefficient level in the list of
transform coefficient levels generated by a zig-zag scan or a field scan. In other contexts, run refers to a
number of macroblocks.

sample aspect ratio: Specifies, for assisting the display process, which is not specified in this
Recommendation | International Standard, the ratio between the intended horizontal distance between the
columns and the intended vertical distance between the rows of the /uma sample array in a frame. Sample
aspect ratio is expressed as /:v, where / is horizontal width and v is vertical height (in arbitrary units of spatial
distance).

scaling: The process of multiplying transform coefficient levels by a factor, resulting in transform coefficients.

sequence parameter set: A syntax structure containing syntax elements that apply to zero or more entire
coded video sequences as determined by the content of a seq parameter set id synfax element found in the
picture parameter set referred to by the pic_parameter_set_id syntax element found in each slice header.

shall: A term used to express mandatory requirements for conformance to this Recommendation |
International Standard. When used to express a mandatory constraint on the values of syntax elements or on
the results obtained by operation of the specified decoding process, it is the responsibility of the encoder to
ensure that the constraint is fulfilled. When used in reference to operations performed by the decoding
process, any decoding process that produces identical results to the decoding process described herein
conforms to the decoding process requirements of this Recommendation | International Standard.

should: A term used to refer to behaviour of an implementation that is encouraged to be followed under
anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this
Recommendation | International Standard.

ITU-T Rec. H.264 (03/2005)

3.134

3.135

3.136

3.137

3.138

3.139

3.140

3.141

3.142

3.143

3.144

3.145

3.146

3.147
3.148
3.149
3.150
3.151

3.152

3.153

SI slice: A slice that is coded using prediction only from decoded samples within the same slice and using
quantisation of the prediction samples. An SI slice can be coded such that its decoded samples can be
constructed identically to an SP slice.

skipped macroblock: A macroblock for which no data is coded other than an indication that the macroblock
is to be decoded as "skipped". This indication may be common to several macroblocks.

slice: An integer number of macroblocks or macroblock pairs ordered consecutively in the raster scan within
a particular slice group. For the primary coded picture, the division of each slice group into slices is a
partitioning. Although a slice contains macroblocks or macroblock pairs that are consecutive in the raster
scan within a slice group, these macroblocks or macroblock pairs are not necessarily consecutive in the raster
scan within the picture. The addresses of the macroblocks are derived from the address of the first
macroblock in a slice (as represented in the slice header) and the macroblock to slice group map.

slice data partitioning: A method of partitioning selected syntax elements into syntax structures based on a
category associated with each syntax element.

slice group: A subset of the macroblocks or macroblock pairs of a picture. The division of the picture into
slice groups is a partitioning of the picture. The partitioning is specified by the macroblock to slice group
map.

slice group map units: The units of the map unit to slice group map.

slice header: A part of a coded slice containing the data elements pertaining to the first or all macroblocks
represented in the slice.

source: Term used to describe the video material or some of its attributes before encoding.

SP slice: A slice that is coded using inter prediction from previously-decoded reference pictures, using at
most one motion vector and reference index to predict the sample values of each block. An SP slice can be
coded such that its decoded samples can be constructed identically to another SP slice or an S/ slice.

start code prefix: A unique sequence of three bytes equal to 0x000001 embedded in the byte stream as a
prefix to each NAL unit. The location of a start code prefix can be used by a decoder to identify the beginning
of a new NAL unit and the end of a previous NAL unit. Emulation of start code prefixes is prevented within
NAL units by the inclusion of emulation prevention bytes.

string of data bits (SODB): A sequence of some number of bits representing syntax elements present within
a raw byte sequence payload prior to the raw byte sequence payload stop bit. Within an SODB, the left-most
bit is considered to be the first and most significant bit, and the right-most bit is considered to be the last and
least significant bit.

sub-macroblock: One quarter of the samples of a macroblock, i.e., an 8x8 luma block and two corresponding
chroma blocks of which one corner is located at a corner of the macroblock.

sub-macroblock partition: A block of luma samples and two corresponding blocks of chroma samples
resulting from a partitioning of a sub-macroblock for inter prediction.

switching I slice: See S slice.

switching P slice: See SP slice.

syntax element: An element of data represented in the bitstream.

syntax structure: Zero or more syntax elements present together in the bitstream in a specified order.

top field: One of two fields that comprise a frame. Each row of a top field is spatially located immediately
above the corresponding row of the bottom field.

top macroblock (of a macroblock pair): The macroblock within a macroblock pair that contains the
samples in the top row of samples for the macroblock pair. For a field macroblock pair, the top macroblock
represents the samples from the region of the top field of the frame that lie within the spatial region of the
macroblock pair. For a frame macroblock pair, the top macroblock represents the samples of the frame that
lie within the top half of the spatial region of the macroblock pair.

transform coefficient: A scalar quantity, considered to be in a frequency domain, that is associated with a
particular one-dimensional or two-dimensional frequency index in an inverse transform part of the decoding
process.

ITU-T Rec. H.264 (03/2005) 11

3.154

3.155

3.156

3.157

3.158

4

transform coefficient level: An integer quantity representing the value associated with a particular two-
dimensional frequency index in the decoding process prior to scaling for computation of a transform
coefficient value.

universal unique identifier (UUID): An identifier that is unique with respect to the space of all universal
unique identifiers.

unspecified: The term unspecified, when used in the clauses specifying some values of a particular syntax
element, indicates that the values have no specified meaning in this Recommendation | International Standard
and will not have a specified meaning in the future as an integral part of this Recommendation | International
Standard.

variable length coding (VLC): A reversible procedure for entropy coding that assigns shorter bit strings to
symbols expected to be more frequent and longer bit strings to symbols expected to be less frequent.

zig-zag scan: A specific sequential ordering of transform coefficient levels from (approximately) the lowest
spatial frequency to the highest. Zig-zag scan is used for transform coefficient levels in _frame macroblocks.

Abbreviations

For the purposes of this Recommendation | International Standard, the following abbreviations apply.

CABAC
CAVLC
CBR
CPB
DPB
DUT
FIFO
HRD
HSS
IDR
LSB
MB
MBAFF
MSB
NAL
RBSP
SEI
SODB
UUID
VBR
VCL
VLC
VUI

Context-based Adaptive Binary Arithmetic Coding
Context-based Adaptive Variable Length Coding
Constant Bit Rate

Coded Picture Buffer

Decoded Picture Buffer

Decoder under test

First-In, First-Out

Hypothetical Reference Decoder
Hypothetical Stream Scheduler
Instantaneous Decoding Refresh

Least Significant Bit

Macroblock

Macroblock-Adaptive Frame-Field Coding
Most Significant Bit

Network Abstraction Layer

Raw Byte Sequence Payload
Supplemental Enhancement Information
String Of Data Bits

Universal Unique Identifier

Variable Bit Rate

Video Coding Layer

Variable Length Coding

Video Usability Information

Conventions

NOTE — The mathematical operators used in this Specification are similar to those used in the C programming language.
However, integer division and arithmetic shift operations are specifically defined. Numbering and counting conventions
generally begin from 0.

12

ITU-T Rec. H.264 (03/2005)

5.1 Arithmetic operators

The following arithmetic operators are defined as follows.
+ Addition
- Subtraction (as a two-argument operator) or negation (as a unary prefix operator)
* Multiplication

Exponentiation. Specifies x to the power of y. In other contexts, such notation is used for
superscripting not intended for interpretation as exponentiation.

/ Integer division with truncation of the result toward zero. For example, 7/4 and —7/—4 are truncated
to 1 and —7/4 and 7/—4 are truncated to —1.

= Used to denote division in mathematical equations where no truncation or rounding is intended.
X

y

Used to denote division in mathematical equations where no truncation or rounding is intended.

y
Z f (i) The summation of f(i) with i taking all integer values from x up to and including y.

X%y Modulus. Remainder of x divided by y, defined only for integers x and y with x >=0 and y > 0.

When order of precedence is not indicated explicitly by use of parenthesis, the following rules apply:
— multiplication and division operations are considered to take place before addition and subtraction;
— multiplication and division operations in sequence are evaluated sequentially from left to right;

— addition and subtraction operations in sequence are evaluated sequentially from left to right.

5.2 Logical operators

The following logical operators are defined as follows:
x && y Boolean logical "and" of x and y
x || y Boolean logical "or" of x and y
! Boolean logical "not"

x ?y:z Ifxis TRUE or not equal to 0, evaluates to the value of y; otherwise, evaluates to the value of z

5.3 Relational operators

The following relational operators are defined as follows:

> Greater than

>= Greater than or equal to
< Less than

<= Less than or equal to
== Equal to

1= Not equal to

When a relational operator is applied to a syntax element or variable that has been assigned the value "na" (not
applicable), the value "na" is treated as a distinct value for the syntax element or variable. The value "na" is considered
not to be equal to any other value.

5.4 Bit-wise operators

The following bit-wise operators are defined as follows:

& Bit-wise "and". When operating on integer arguments, operates on a two's complement representation
of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

ITU-T Rec. H.264 (03/2005) 13

Bit-wise "or". When operating on integer arguments, operates on a two's complement representation
of the integer value. When operating on a binary argument that contains fewer bits than another
argument, the shorter argument is extended by adding more significant bits equal to 0.

x>>y Arithmetic right shift of a two’s complement integer representation of x by y binary digits. This
function is defined only for positive integer values of y. Bits shifted into the MSBs as a result of the
right shift have a value equal to the MSB of x prior to the shift operation.

X <<y Arithmetic left shift of a two’s complement integer representation of x by y binary digits. This
function is defined only for positive integer values of y. Bits shifted into the LSBs as a result of the
left shift have a value equal to 0.

5.5 Assignment operators

The following arithmetic operators are defined as follows:
= Assignment operator.

++ Increment, i.e., x++ is equivalent to x = x + 1; when used in an array index, evaluates to the value of
the variable prior to the increment operation.

—_ Decrement, i.e., x—— is equivalent to x = x — 1; when used in an array index, evaluates to the value of
the variable prior to the decrement operation.

+= Increment by amount specified, i.e., x += 3 is equivalent to x = x + 3, and x += (-3) is equivalent
tox =x +(-3).
—= Decrement by amount specified, i.e., x — 3 is equivalent to x = x — 3, and x —= (-3) is equivalent
tox =x—(-3).
5.6 Range notation

The following notation is used to specify a range of values

x =y ..z x takes on integer values starting from y to z inclusive, with x, y, and z being integer numbers.

5.7 Mathematical functions

The following mathematical functions are defined as follows:

Abs(x)z{x ; x>=0 (5-1)

-x ; x<0

Ceil(x) the smallest integer greater than or equal to x. (5-2)

Cliply(x)=Clip3(0, (1 <<BitDepthy)— 1, x) (5-3)

Cliplc(x)= Clip3(0, (1 << BitDepthc) — 1, x) (5-4)
x 5 z<Xx

Clip3(x,y,z)= y z>y (5-5)

z ; otherwise

b

Floor(x) the greatest integer less than or equal to x. (5-6)

(a%(d /b)) *b; e==
InverseRasterScan(a, b, c,d, e)= (5-7)
(al(d/b)*c; e==

14 ITU-T Rec. H.264 (03/2005)

Log2(x) returns the base-2 logarithm of x. (5-8)

Logl0(x) returns the base-10 logarithm of x. (5-9)

Median(x,y,z)=x+y+z—Min(x, Min(y, z)) — Max(x, Max(y,z)) (5-10)

Min(x,y)=% * *<°Y (5-11)
y 5 X>Yy

Max(x,y) =" > XEY (5-12)
y ; X<Yy

Round(x) = Sign(x) * Floor(Abs(x)+0.5) (5-13)

sign(x)=) 1+ x>=0 (5-14)

-1 ; x<0
Sqrt(x) = Vx (5-15)
5.8 Variables, syntax elements, and tables

Syntax elements in the bitstream are represented in bold type. Each syntax element is described by its name (all lower
case letters with underscore characters), its one or two syntax categories, and one or two descriptors for its method of
coded representation. The decoding process behaves according to the value of the syntax element and to the values of
previously decoded syntax elements. When a value of a syntax element is used in the syntax tables or the text, it appears
in regular (i.e., not bold) type.

In some cases the syntax tables may use the values of other variables derived from syntax elements values. Such
variables appear in the syntax tables, or text, named by a mixture of lower case and upper case letter and without any
underscore characters. Variables starting with an upper case letter are derived for the decoding of the current syntax
structure and all depending syntax structures. Variables starting with an upper case letter may be used in the decoding
process for later syntax structures mentioning the originating syntax structure of the variable. Variables starting with a
lower case letter are only used within the subclause in which they are derived.

In some cases, "mnemonic" names for syntax element values or variable values are used interchangeably with their
numerical values. Sometimes "mnemonic" names are used without any associated numerical values. The association of
values and names is specified in the text. The names are constructed from one or more groups of letters separated by an
underscore character. Each group starts with an upper case letter and may contain more upper case letters.

NOTE — The syntax is described in a manner that closely follows the C-language syntactic constructs.

Functions are described by their names, which are constructed as syntax element names, with left and right round
parentheses including zero or more variable names (for definition) or values (for usage), separated by commas (if more
than one variable).

A one-dimensional array is referred to as a list. A two-dimensional array is referred to as a matrix. Arrays can either be
syntax elements or variables. Subscripts or square parentheses are used for the indexing of arrays. In reference to a
visual depiction of a matrix, the first subscript is used as a row (vertical) index and the second subscript is used as a
column (horizontal) index. The indexing order is reversed when using square parentheses rather than subscripts for
indexing. Thus, an element of a matrix s at horizontal position x and vertical position y may be denoted either as
s[X, y] or as sy.

Binary notation is indicated by enclosing the string of bit values by single quote marks. For example, '01000001'
represents an eight-bit string having only its second and its last bits equal to 1.

ITU-T Rec. H.264 (03/2005) 15

Hexadecimal notation, indicated by prefixing the hexadecimal number by "0x", may be used instead of binary notation
when the number of bits is an integer multiple of 4. For example, 0x41 represents an eight-bit string having only its
second and its last bits equal to 1.

Numerical values not enclosed in single quotes and not prefixed by "0x" are decimal values.

A value equal to 0 represents a FALSE condition in a test statement. The value TRUE is represented by any other value
different than zero.

5.9 Text description of logical operations
In the text, a statement of logical operations as would be described in pseudo-code as
if(condition 0)
statement 0

else if (condition 1)
statement 1

else /* informative remark on remaining condition */
statement n

may be described in the following manner:

... as follows / ... the following applies.

If condition 0, statement O

Otherwise, if condition 1, statement 1

Otherwise (informative remark on remaining condition), statement n

Each "If...Otherwise, if...Otherwise, ..." statement in the text is introduced with "... as follows" or "... the following
applies” immediately followed by "If ... ". The last condition of the "If...Otherwise, if...Otherwise, ..." is always an
"Otherwise, ...". Interleaved "If...Otherwise, if...Otherwise, ..." statements can be identified by matching "... as follows"
or "... the following applies" with the ending "Otherwise, ...".

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0a && condition Ob)
statement 0

else if (condition la || condition 1b)
statement 1

else
statement n

may be described in the following manner:

... as follows / ... the following applies.

— Ifall of the following conditions are true, statement 0
— condition Oa
— condition 0b

— Otherwise, if any of the following conditions are true, statement 1
— condition la

— condition 1b

— Otherwise, statement n

16 ITU-T Rec. H.264 (03/2005)

In the text, a statement of logical operations as would be described in pseudo-code as

if(condition 0)
statement 0

if (condition 1)
statement 1

may be described in the following manner:
When condition 0, statement 0

When condition 1, statement 1

5.10 Processes

Processes are used to describe the decoding of syntax elements. A process has a separate specification and invoking. All
syntax elements and upper case variables that pertain to the current syntax structure and depending syntax structures are
available in the process specification and invoking. A process specification may also have a lower case variable
explicitly specified as the input. Each process specification has explicitly specified an output. The output is a variable
that can either be an upper case variable or a lower case variable.

The assignment of variables is specified as follows.

— If invoking a process, variables are explicitly assigned to lower case input or output variables of the
process specification in case these do not have the same name.

— Otherwise (when the variables at the invoking and specification have the same name), assignment is
implied.

In the specification of a process, a specific macroblock may be referred to by the variable name having a value equal to
the address of the specific macroblock.

6 Source, coded, decoded and output data formats, scanning processes, and
neighbouring relationships

6.1 Bitstream formats

This subclause specifies the relationship between the NAL unit stream and byte stream, either of which are referred to
as the bitstream.

The bitstream can be in one of two formats: the NAL unit stream format or the byte stream format. The NAL unit
stream format is conceptually the more "basic" type. It consists of a sequence of syntax structures called NAL units.
This sequence is ordered in decoding order. There are constraints imposed on the decoding order (and contents) of the
NAL units in the NAL unit stream.

The byte stream format can be constructed from the NAL unit stream format by ordering the NAL units in decoding
order and prefixing each NAL unit with a start code prefix and zero or more zero-valued bytes to form a stream of
bytes. The NAL unit stream format can be extracted from the byte stream format by searching for the location of the
unique start code prefix pattern within this stream of bytes. Methods of framing the NAL units in a manner other than
use of the byte stream format are outside the scope of this Recommendation | International Standard. The byte stream
format is specified in Annex B.

6.2 Source, decoded, and output picture formats
This subclause specifies the relationship between source and decoded frames and fields that is given via the bitstream.

The video source that is represented by the bitstream is a sequence of either or both frames or fields (called collectively
pictures) in decoding order.

The source and decoded pictures (frames or fields) are each comprised of one or more sample arrays:
— Luma (Y) only (monochrome), with or without an auxiliary array.
— Luma and two Chroma (YCbCr or YCgCo), with or without an auxiliary array.
— Green, Blue and Red (GBR, also known as RGB), with or without an auxiliary array.

ITU-T Rec. H.264 (03/2005) 17

— Arrays representing other unspecified monochrome or tri-stimulus colour samplings (for example, YZX,
also known as XYZ), with or without an auxiliary array.

For convenience of notation and terminology in this specification, the variables and terms associated with these arrays
are referred to as luma (or L or Y) and chroma, where the two chroma arrays are referred to as Cb and Cr; regardless of
the actual colour representation method in use. The actual colour representation method in use can be indicated in
syntax that is specified in Annex E. The (monochrome) auxiliary arrays, which may or may not be present as auxiliary
pictures in a coded video sequence, are optional for decoding and can be used for such purposes as alpha blending.

The variables SubWidthC, and SubHeightC are specified in Table 6-1, depending on the chroma format sampling
structure, which is specified through chroma format idc. An entry marked as "-" in Table 6-1 denotes an undefined
value for SubWidthC or SubHeightC. Other values of chroma format idc, SubWidthC, and SubHeightC may be
specified in the future by ITU-T | ISO/IEC.

Table 6-1 — SubWidthC, and SubHeightC values derived from chroma_format_idc

chroma_format_idc |Chroma Format |SubWidthC |SubHeightC
0 monochrome - -
1 4:2:0 2 2
2 4:2:2 2 1
3 4:4:4 1 1

In monochrome sampling there is only one sample array, which is nominally considered the luma array.
In 4:2:0 sampling, each of the two chroma arrays has half the height and half the width of the luma array.
In 4:2:2 sampling, each of the two chroma arrays has the same height and half the width of the luma array.
In 4:4:4 sampling, each of the two chroma arrays has the same height and width as the luma array.

The width and height of the luma sample arrays are each an integer multiple of 16. In bitstreams using 4:2:0 chroma
sampling, the width and height of chroma sample arrays are each an integer multiple of 8. In bitstreams using 4:2:2
sampling, the width of the chroma sample arrays is an integer multiple of 8 and the height is an integer multiple of 16.
The height of a luma array that is coded as two separate fields or in macroblock-adaptive frame-field coding (see below)
is an integer multiple of 32. In bitstreams using 4:2:0 chroma sampling, the height of each chroma array that is coded as
two separate fields or in macroblock-adaptive frame-field coding (see below) is an integer multiple of 16. The width or
height of pictures output from the decoding process need not be an integer multiple of 16 and can be specified using a
cropping rectangle.

The syntax for the luma and (when present) chroma arrays are ordered such when data for all three colour components
is present, the data for the luma array is first, followed by any data for the Cb array, followed by any data for the Cr
array, unless otherwise specified.

The width of fields coded referring to a specific sequence parameter set is the same as that of frames coded referring to
the same sequence parameter set (see below). The height of fields coded referring to a specific sequence parameter set
is half that of frames coded referring to the same sequence parameter set (see below).

The number of bits necessary for the representation of each of the samples in the luma and chroma arrays in a video
sequence is in the range of 8 to 12, and the number of bits used in the luma array may differ from the number of bits
used in the chroma arrays.

When the value of chroma_ format_idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in frames are shown in Figure 6-1. Alternative chroma sample relative locations may be indicated in
video usability information (see Annex E).

18 ITU-T Rec. H.264 (03/2005)

X X X X X X ¢
O O O

X X X X X X

X X X X X X

O O O Frame
X X X X X X

X X X X X X

O O O

X X X X X X

Guide:
X — Location of luma sample
O — Location of chroma sample

Figure 6-1 — Nominal vertical and horizontal locations of 4:2:0 luma and chroma samples in a frame

A frame consists of two fields as described below. A coded picture may represent a coded frame or an individual coded
field. A coded video sequence conforming to this Recommendation | International Standard may contain arbitrary
combinations of coded frames and coded fields. The decoding process is also specified in a manner that allows smaller
regions of a coded frame to be coded either as a frame or field region, by use of macroblock-adaptive frame-field
coding.

Source and decoded fields are one of two types: top field or bottom field. When two fields are output at the same time,
or are combined to be used as a reference frame (see below), the two fields (which shall be of opposite parity) are
interleaved. The first (i.e., top), third, fifth, etc. rows of a decoded frame are the top field rows. The second, fourth,
sixth, etc. rows of a decoded frame are the bottom field rows. A top field consists of only the top field rows of a
decoded frame. When the top field or bottom field of a decoded frame is used as a reference field (see below) only the
even rows (for a top field) or the odd rows (for a bottom field) of the decoded frame are used.

When the value of chroma format idc is equal to 1, the nominal vertical and horizontal relative locations of luma and
chroma samples in top and bottom fields are shown in Figure 6-2. The nominal vertical sampling relative locations of
the chroma samples in a top field are specified as shifted up by one-quarter luma sample height relative to the
field-sampling grid. The vertical sampling locations of the chroma samples in a bottom field are specified as shifted
down by one-quarter luma sample height relative to the field-sampling grid. Alternative chroma sample relative
locations may be indicated in the video usability information (see Annex E).

NOTE - The shifting of the chroma samples is in order for these samples to align vertically to the usual location relative to the
full-frame sampling grid as shown in Figure 6-1.

ITU-T Rec. H.264 (03/2005) 19

OX
OX
OX

Top

Field O O Fleld
X X X

OX
OX
OX

X X X X X X

. ®e . ®e
] L] ° L[]
L] ° L]
Guide: Guide:
X — Location of luma sample X — Location of luma sample
O — Location of chroma sample O — Location of chroma sample

Figure 6-2 — Nominal vertical and horizontal sampling locations of 4:2:0 samples in top and bottom fields

When the value of chroma_format idc is equal to 2, the chroma samples are co-sited with the corresponding luma
samples and the nominal locations in a frame and in fields are as shown in Figure 6-3 — Nominal vertical and horizontal
locations of 4:2:2 luma and chroma samples in a frameandFigure 6-4, respectively.

BX B X @ X e
® X B X ® X
® X B X ® X
B X B X & X
B X B X B X
B X B X B X

Guide:
X = Location of luma sample
O - Location of chroma sample

Figure 6-3 — Nominal vertical and horizontal locations of 4:2:2 luma and chroma samples in a frame

20 ITU-T Rec. H.264 (03/2005)

R X & X & X e

B X & X & X

Top
Field
R X & X & X

Guide:
X — Location of luma sample
O — Location of chroma sample

Bottom
Field

Guide:
X — Location of luma sample
O — Location of chroma sample

Figure 6-4 — Nominal vertical and horizontal sampling locations of 4:2:2 samples top and bottom fields

When the value of chroma format idc is equal to 3, all array samples are co-sited for all cases of frames and fields and
the nominal locations in a frame and in fields are as shown in Figures 6-5 and 6-6, respectively.

RRYIIRIA
RYIIRIA
RYIIIRIA

Guide:

RN
KRR

&

Frame

R

X — Location of luma sample
O — Location of chroma sample

Figure 6-5 — Nominal vertical and horizontal locations of 4:4:4 luma and chroma samples in a frame

ITU-T Rec. H.264 (03/2005) 21

BRI R R e
R
BRI

Top Bottom
Field Field

RN

O T T S S R
YRR

° ° b .
] (] °]
L] . L]
Guide: Guide:
X — Location of luma sample X — Location of luma sample
O — Location of chroma sample O — Location of chroma sample

Figure 6-6 — Nominal vertical and horizontal sampling locations of 4:4:4 samples top and bottom fields

The samples are processed in units of macroblocks. The luma array for each macroblock is 16 samples in both width
and height. The variables MbWidthC and MbHeightC, which specify the width and height, respectively, of the chroma
arrays for each macroblock, are derived as follows.

— If chroma format_idc is equal to 0 (monochrome), MbWidthC and MbHeightC are both equal to 0 (as no chroma
arrays are specified for monochrome video).

— Otherwise, MbWidthC and MbHeightC are derived as

MbWidthC = 16 / SubWidthC (6-1)
MbHeightC = 16 / SubHeightC (6-2)
6.3 Spatial subdivision of pictures and slices

This subclause specifies how a picture is partitioned into slices and macroblocks. Pictures are divided into slices. A
slice is a sequence of macroblocks, or, when macroblock-adaptive frame/field decoding is in use, a sequence of
macroblock pairs.

Each macroblock is comprised of one 16x16 luma array and, when the video format is not monochrome, two
corresponding chroma sample arrays. When macroblock-adaptive frame/field decoding is not in use, each macroblock
represents a spatial rectangular region of the picture. For example, a picture may be divided into two slices as shown in
Figure 6-7.

22 ITU-T Rec. H.264 (03/2005)

Figure 6-7 — A picture with 11 by 9 macroblocks that is partitioned into two slices

When macroblock-adaptive frame/field decoding is in use, the picture is partitioned into slices containing an integer
number of macroblock pairs as shown in Figure 6-8. Each macroblock pair consists of two macroblocks.

AN

A macroblock pair

Figure 6-8 — Partitioning of the decoded frame into macroblock pairs

6.4 Inverse scanning processes and derivation processes for neighbours

This subclause specifies inverse scanning processes; i.e., the mapping of indices to locations, and derivation processes
for neighbours.

6.4.1 Inverse macroblock scanning process
Input to this process is a macroblock address mbAddr.

Output of this process is the location (X,y) of the upper-left luma sample for the macroblock with address mbAddr
relative to the upper-left sample of the picture.

ITU-T Rec. H.264 (03/2005) 23

The inverse macroblock scanning process is specified as follows.
— If MbaffFrameFlag is equal to 0,

x = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples;, 0) (6-3)

y = InverseRasterScan(mbAddr, 16, 16, PicWidthInSamples;, 1) (6-4)

— Otherwise (MbaffFrameFlag is equal to 1), the following applies.

xO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples;, 0) (6-5)

yO = InverseRasterScan(mbAddr / 2, 16, 32, PicWidthInSamples;, 1) (6-6)

Depending on the current macroblock the following applies.

- If the current macroblock is a frame macroblock

x =x0 (6-7)

y=y0 + (mbAddr % 2) * 16 (6-8)

- Otherwise (the current macroblock is a field macroblock),

x=x0 (6-9)

y=y0 + (mbAddr % 2) (6-10)

6.4.2 Inverse macroblock partition and sub-macroblock partition scanning process

Macroblocks or sub-macroblocks may be partitioned, and the partitions are scanned for inter prediction as shown in
Figure 6-9. The outer rectangles refer to the samples in a macroblock or sub-macroblock, respectively. The rectangles
refer to the partitions. The number in each rectangle specifies the index of the inverse macroblock partition scan or
inverse sub-macroblock partition scan.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width
and height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-13, 7-14, 7-17, and 7-18.
MbPartWidth() and MbPartHeight() are set to appropriate values for each macroblock, depending on the macroblock
type. SubMbPartWidth() and SubMbPartHeight() are set to appropriate values for each sub-macroblock of a
macroblock with mb_type equal to P_8x8, P_8x8ref0, or B_8x8, depending on the sub-macroblock type.

24 ITU-T Rec. H.264 (03/2005)

Macroblock
partitions

1 macroblock partition of
16*16 luma samples and
associated chroma samples

2 macroblock partitions of
16*8 luma samples and
associated chroma samples

2 macroblock partitions of
8*16 luma samples and
associated chroma samples

4 sub-macroblocks of
8*8 luma samples and
associated chroma samples

Sub-macroblock
partitions

1 sub-macroblock partition
of 8*8 luma samples and
associated chroma samples

2 sub-macroblock partitions
of 8*4 luma samples and
associated chroma samples

2 sub-macroblock partitions
of 4*8 luma samples and
associated chroma samples

4 sub-macroblock partitions
of 4*4 luma samples and
associated chroma samples

Figure 6-9 — Macroblock partitions, sub-macroblock partitions, macroblock partition scans, and sub-macroblock
partition scans

6.4.2.1

Inverse macroblock partition scanning process

Input to this process is the index of a macroblock partition mbPartIdx.

Output of this process is the location (X,y) of the upper-left luma sample for the macroblock partition mbPartldx
relative to the upper-left sample of the macroblock.

The inverse macroblock partition scanning process is specified by

x = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16,0)

y = InverseRasterScan(mbPartldx, MbPartWidth(mb_type), MbPartHeight(mb_type), 16, 1)

6.4.2.2

Inverse sub-macroblock partition scanning process

(6-11)

(6-12)

Inputs to this process are the index of a macroblock partition mbPartldx and the index of a sub-macroblock partition

subMbPartIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the sub-macroblock partition
subMbPartldx relative to the upper-left sample of the sub-macroblock.

The inverse sub-macroblock partition scanning process is specified as follows.

— Ifmb typeis equal to P_8x8, P 8x8ref0, or B 8x8,

x = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),

SubMbPartHeight(sub_mb_type[mbPartldx]), 8, 0)

(6-13)

y = InverseRasterScan(subMbPartldx, SubMbPartWidth(sub_mb_type[mbPartldx]),

— Otherwise,

SubMbPartHeight(sub_mb_type[mbPartldx]), 8, 1)

x = InverseRasterScan(subMbPartldx, 4, 4, 8,0)

y = InverseRasterScan(subMbPartldx, 4,4, 8, 1)

ITU-T Rec. H.264 (03/2005)

(6-14)

(6-15)

(6-16)

25

6.4.3 Inverse 4x4 luma block scanning process
Input to this process is the index of a 4x4 luma block luma4x4BlkIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the 4x4 luma block with index
luma4x4BIlkldx relative to the upper-left luma sample of the macroblock.

Figure 6-10 shows the scan for the 4x4 luma blocks.

0|1 4 |5

213|167

8 19 1213

1011)14 |15

Figure 6-10 — Scan for 4x4 luma blocks

The inverse 4x4 luma block scanning process is specified by

x = InverseRasterScan(luma4x4BlkIdx / 4, 8, 8, 16, 0) + InverseRasterScan(luma4x4Blkldx % 4, 4, 4, 8,0) (6-17)

y = InverseRasterScan(luma4x4BlkIdx / 4, 8, 8, 16, 1) + InverseRasterScan(luma4x4Blkldx % 4, 4,4, 8, 1) (6-18)

6.4.4 Inverse 8x8 luma block scanning process
Input to this process is the index of an 8x8 luma block luma8x8BIkIdx.

Output of this process is the location (x,y) of the upper-left luma sample for the 8x8 luma block with index
luma8x8BIkIdx relative to the upper-left luma sample of the macroblock.

Figure 6-11 shows the scan for the 8x8 luma blocks.

Figure 6-11 — Scan for 8x8 luma blocks

The inverse 8x8 luma block scanning process is specified by

x = InverseRasterScan(luma8x8Blkldx, 8, 8, 16, 0) (6-19)

y = InverseRasterScan(luma8x8BIkldx, 8, 8, 16, 1) (6-20)

6.4.5 Derivation process of the availability for macroblock addresses
Input to this process is a macroblock address mbAddr.

Output of this process is the availability of the macroblock mbAddr.
NOTE — The meaning of availability is determined when this process is invoked.

26 ITU-T Rec. H.264 (03/2005)

The macroblock is marked as available, unless one of the following conditions is true in which case the macroblock is
marked as not available:

— mbAddr<o0
— mbAddr > CurrMbAddr
— the macroblock with address mbAddr belongs to a different slice than the macroblock with address CurrMbAddr

6.4.6 Derivation process for neighbouring macroblock addresses and their availability
This process can only be invoked when MbaffFrameFlag is equal to O.

The outputs of this process are

— mbAddrA: the address and availability status of the macroblock to the left of the current macroblock.
— mbAddrB: the address and availability status of the macroblock above the current macroblock.

— mbAddrC: the address and availability status of the macroblock above-right of the current macroblock.

— mbAddrD: the address and availability status of the macroblock above-left of the current macroblock.

Figure 6-12 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and
mbAddrD relative to the current macroblock with CurrMbAddr.

mbAddrD | mbAddrB mbAddrC

mbAddrA | CurrMbAddr

Figure 6-12 — Neighbouring macroblocks for a given macroblock

Input to the process in subclause 6.4.5 is mbAddrA = CurrMbAddr — 1 and the output is whether the macroblock
mbAddrA is available. In addition, mbAddrA is marked as not available when CurrMbAddr % PicWidthInMbs is equal
to 0.

Input to the process in subclause 6.4.5 is mbAddrB = CurrMbAddr — PicWidthInMbs and the output is whether the
macroblock mbAddrB is available.

Input to the process in subclause 6.4.5 is mbAddrC = CurrMbAddr — PicWidthInMbs + 1 and the output is whether the
macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.5 is mbAddrD = CurrMbAddr — PicWidthInMbs - 1 and the output is whether the
macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
CurrMbAddr % PicWidthInMbs is equal to 0.

6.4.7 Derivation process for neighbouring macroblock addresses and their availability in MBAFF frames
This process can only be invoked when MbaffFrameFlag is equal to 1.

The outputs of this process are

— mbAddrA: the address and availability status of the top macroblock of the macroblock pair to the left of the current
macroblock pair.

— mbAddrB: the address and availability status of the top macroblock of the macroblock pair above the current
macroblock pair.

ITU-T Rec. H.264 (03/2005) 27

— mbAddrC: the address and availability status of the top macroblock of the macroblock pair above-right of the
current macroblock pair.

— mbAddrD: the address and availability status of the top macroblock of the macroblock pair above-left of the
current macroblock pair.

Figure 6-13 shows the relative spatial locations of the macroblocks with mbAddrA, mbAddrB, mbAddrC, and
mbAddrD relative to the current macroblock with CurrMbAddr.

mbAddrA, mbAddrB, mbAddrC, and mbAddrD have identical values regardless whether the current macroblock is the
top or the bottom macroblock of a macroblock pair.

mbAddrD mbAddrB mbAddrC

CurrMbAddr

Figure 6-13 — Neighbouring macroblocks for a given macroblock in MBAFF frames

Input to the process in subclause 6.4.5 is mbAddrA =2 * (CurrMbAddr/2—1) and the output is whether the
macroblock mbAddrA is available. In addition, mbAddrA is marked as not available when
(CurrMbAddr / 2) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.5 is mbAddrB =2 * (CurrMbAddr / 2 — PicWidthInMbs) and the output is
whether the macroblock mbAddrB is available.

Input to the process in subclause 6.4.5 is mbAddrC =2 * (CurrMbAddr / 2 — PicWidthInMbs + 1) and the output is
whether the macroblock mbAddrC is available. In addition, mbAddrC is marked as not available when
(CurrMbAddr / 2 + 1) % PicWidthInMbs is equal to 0.

Input to the process in subclause 6.4.5 is mbAddrD =2 * (CurrMbAddr / 2 — PicWidthInMbs - 1) and the output is
whether the macroblock mbAddrD is available. In addition, mbAddrD is marked as not available when
(CurrMbAddr / 2) % PicWidthInMbs is equal to 0.

6.4.8 Derivation processes for neighbouring macroblocks, blocks, and partitions
Subclause 6.4.8.1 specifies the derivation process for neighbouring macroblocks.
Subclause 6.4.8.2 specifies the derivation process for neighbouring 8x8 luma blocks.
Subclause 6.4.8.3 specifies the derivation process for neighbouring 4x4 luma blocks.
Subclause 6.4.8.4 specifies the derivation process for neighbouring 4x4 chroma blocks.
Subclause 6.4.8.5 specifies the derivation process for neighbouring partitions.

Table 6-2 specifies the values for the difference of luma location (xD, yD) for the input and the replacement for N in
mbAddrN, mbPartldxN, subMbPartldxN, luma8x8BlkIdxN, luma4x4BIkIdxN, and chroma4x4BlkIdxN for the output.
These input and output assignments are used in subclauses 6.4.8.1 to 6.4.8.5. The variable predPartWidth is specified
when Table 6-2 is referred to.

28 ITU-T Rec. H.264 (03/2005)

Table 6-2 — Specification of input and output assignments for subclauses 6.4.8.1 to 6.4.8.5

N xD yD
A -1 0
B 0 -1
C | predPartWidth -1
D -1 -1

Figure 6-14 illustrates the relative location of the neighbouring macroblocks, blocks, or partitions A, B, C, and D to the
current macroblock, partition, or block, when the current macroblock, partition, or block is in frame coding mode.

D B C
A Current
Macroblock
or Partition
or Block

Figure 6-14 — Determination of the neighbouring macroblock, blocks, and partitions (informative)

6.4.8.1 Derivation process for neighbouring macroblocks

Outputs of this process are

mbAddrA: the address of the macroblock to the left of the current macroblock and its availability status and
mbAddrB: the address of the macroblock above the current macroblock and its availability status.
mbAddrN (with N being A or B) is derived as follows.

The difference of luma location (xD, yD) is set according to Table 6-2.

The derivation process for neighbouring locations as specified in subclause 6.4.9 is invoked for luma locations
with (xN, yN) equal to (xD, yD), and the output is assigned to mbAddrN.

6.4.8.2 Derivation process for neighbouring 8x8 luma block

Input to this process is an 8x8 luma block index luma8x8BIkIdx.

The luma8x8Blkldx specifies the 8x8 luma blocks of a macroblock in a raster scan.

Outputs of this process are

mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and
its availability status,

luma8x8BIkIdxA: the index of the 8x8 luma block to the left of the 8x8 block with index luma8x8BIlkIdx and its
availability status,

mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

luma8x8BlkIdxB: the index of the 8x8 luma block above the 8x8 block with index luma8x8Blkldx and its
availability status.

ITU-T Rec. H.264 (03/2005) 29

mbAddrN and luma8x8BIlkIdxN (with N being A or B) are derived as follows.
— The difference of luma location (xD, yD) is set according to Table 6-2.
— The luma location (xN, yN) is specified by

xN = (luma8x8BIlkldx % 2) * 8 + xD (6-21)

yN = (luma8x8Blkldx /2) * 8 + yD (6-22)

— The derivation process for neighbouring locations as specified in subclause 6.4.9 is invoked for luma locations
with (XN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

— The variable luma8x8BIkIdxN is derived as follows.
— If mbAddrN is not available, luma8x8BlkIdxN is marked as not available.

— Otherwise (mbAddrN is available), the 8x8 luma block in the macroblock mbAddrN covering the luma
location (xW, yW) is assigned to luma8x8BIlkIdxN.

6.4.8.3 Derivation process for neighbouring 4x4 luma blocks
Input to this process is a 4x4 luma block index luma4x4BIkIdx.

Outputs of this process are

— mbAddrA: either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock and
its availability status,

— luma4x4BIkIdxA: the index of the 4x4 luma block to the left of the 4x4 block with index luma4x4BlkIdx and its
availability status,

— mbAddrB: either equal to CurrMbAddr or the address of the macroblock above the current macroblock and its
availability status,

— luma4x4BIkldxB: the index of the 4x4 luma block above the 4x4 block with index luma4x4Blkldx and its
availability status.

mbAddrN and luma4x4BIlkIdxN (with N being A or B) are derived as follows.
— The difference of luma location (xD, yD) is set according to Table 6-2.

— The inverse 4x4 luma block scanning process as specified in subclause 6.4.3 is invoked with luma4x4BlkIdx as the
input and (x, y) as the output.

— The luma location (xN, yN) is specified by

xN=x+xD (6-23)

yN=y+yD (6-24)

— The derivation process for neighbouring locations as specified in subclause 6.4.9 is invoked for luma locations
with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

— The variable luma4x4BIkIdxN is derived as follows.
— If mbAddrN is not available, luma4x4BIlkIdxN is marked as not available.

— Otherwise (mbAddrN is available), the 4x4 luma block in the macroblock mbAddrN covering the luma
location (xW, yW) is assigned to luma4x4BIkIdxN.

6.4.8.4 Derivation process for neighbouring 4x4 chroma blocks
Input to this process is a 4x4 chroma block index chroma4x4BlkIdx.

Outputs of this process are

— mbAddrA (either equal to CurrMbAddr or the address of the macroblock to the left of the current macroblock) and
its availability status,

— chroma4x4BIlkIdxA (the index of the 4x4 chroma block to the left of the 4x4 chroma block with index
chroma4x4BlkIdx) and its availability status,

30 ITU-T Rec. H.264 (03/2005)

— mbAddrB (either equal to CurrMbAddr or the address of the macroblock above the current macroblock) and its
availability status,

— chroma4x4BlkIdxB (the index of the 4x4 chroma block above the 4x4 chroma block with index chroma4x4BlkIdx)
and its availability status.

mbAddrN and chroma4x4BlkIdxN (with N being A or B) are derived as follows.
— The difference of chroma location (XD, yD) is set according to Table 6-2.

— Depending on chroma_format idc, the position (x,y) of the upper-left sample of the 4x4 chroma block with
index chroma4x4BIkldx is derived as follows

- If chroma_format idc is equal to 1 or 2, the following applies

x = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8, 0) (6-25)

y = InverseRasterScan(chroma4x4Blkldx, 4,4, 8, 1) (6-26)

- Otherwise (chroma_format_idc is equal to 3), the following applies

x = InverseRasterScan(chroma4x4Blkldx / 4, 8, 8,16,0) +
InverseRasterScan(chroma4x4Blkldx % 4,4, 4, 8,0) (6-27)

y = InverseRasterScan(chroma4x4Blkldx / 4, 8, 8, 16, 1) +
InverseRasterScan(chroma4x4Blkldx % 4,4, 4,8, 1) (6-28)

— The chroma location (XN, yN) is specified by

xN=x+xD (6-29)

yN=y+yD (6-30)

— The derivation process for neighbouring locations as specified in subclause 6.4.9 is invoked for chroma locations
with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

— The variable chroma4x4BIkIdxN is derived as follows.
— If mbAddrN is not available, chroma4x4BlkIdxN is marked as not available.

— Otherwise (mbAddrN is available), the 4x4 chroma block in the macroblock mbAddrN covering the chroma
location (xW, yW) is assigned to chroma4x4BIkIdxN.

6.4.8.5 Derivation process for neighbouring partitions
Inputs to this process are

— amacroblock partition index mbPartldx

— acurrent sub-macroblock type currSubMbType

— asub-macroblock partition index subMbPartldx
Outputs of this process are

— mbAddrA\mbPartldxA\subMbPartldxA: specifying the macroblock or sub-macroblock partition to the left of the
current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

ITU-T Rec. H.264 (03/2005) 31

mbAddrB\mbPartldxB\subMbPartldxB: specifying the macroblock or sub-macroblock partition above the current
macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartldx\subMbPartldx and
its availability status,

mbAddrC\mbPartldxC\subMbPartldxC: specifying the macroblock or sub-macroblock partition to the right-above
of the current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status,

mbAddrD\mbPartldxD\subMbPartldxD: specifying the macroblock or sub-macroblock partition to the left-above
of the current macroblock and its availability status, or the sub-macroblock partition
CurrMbAddr\mbPartldx\subMbPartldx and its availability status.

mbAddrN, mbPartldxN, and subMbPartldx (with N being A, B, C, or D) are derived as follows.

32

The inverse macroblock partition scanning process as described in subclause 6.4.2.1 is invoked with mbPartldx as
the input and (x, y) as the output.

The location of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows.

— If mb_type is equal to P_8x8, P_8x8ref0 or B_8x8, the inverse sub-macroblock partition scanning process as
described in subclause 6.4.2.2 is invoked with subMbPartldx as the input and (xS, yS) as the output.

— Otherwise, (xS, yS)are setto (0, 0).

The variable predPartWidth in Table 6-2 is specified as follows.

— Ifmb type is equal to P_Skip, B_Skip, or B Direct 16x16, predPartWidth = 16.
— Otherwise, if mb_type is equal to B_8x8, the following applies.

— If currSubMbType is equal to B_Direct 8x8, predPartWidth = 16.

NOTE 1 — When currSubMbType is equal to B Direct 8x8 and direct spatial mv_pred flag is equal to 1, the
predicted motion vector is the predicted motion vector for the complete macroblock.

— Otherwise, predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

— Otherwise, if mb_type is equal to P 8x8 or P_8x8ref0,
predPartWidth = SubMbPartWidth(sub_mb_type[mbPartldx]).

— Otherwise, predPartWidth = MbPartWidth(mb_type).
The difference of luma location (xD, yD) is set according to Table 6-2.

The neighbouring luma location (XN, yN) is specified by

xN=x+xS+xD (6-31)

yN=y+yS+yD (6-32)

The derivation process for neighbouring locations as specified in subclause 6.4.9 is invoked for luma locations with
(xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

Depending on mbAddrN, the following applies.

— If mbAddrN is not available, the macroblock or sub-macroblock partition —
mbAddrN\mbPartIdxN\subMbPartIdxN is marked as not available.

— Otherwise (mbAddrN is available), the following applies.

— The macroblock partition in the macroblock mbAddrN covering the luma location (xW, yW) is assigned
to mbPartIdxN and the sub-macroblock partition inside the macroblock partition mbPartIdxN covering the
sample (xW, yW) in the macroblock mbAddrN is assigned to subMbPartIdxN.

— When the partition given by mbPartldxN and subMbPartIdxN is not yet decoded, the macroblock partition
mbPartldxN and the sub-macroblock partition subMbPartldxN are marked as not available.

NOTE 2 — The latter condition is, for example, the case when mbPartldx = 2, subMbPartldx = 3, xD = 4, yD=-1, i.e.,
when neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

ITU-T Rec. H.264 (03/2005)

6.4.9 Derivation process for neighbouring locations

Input to this process is a luma or chroma location (XN, yN) expressed relative to the upper left corner of the current
macroblock.

Outputs of this process are

— mbAddrN: either equal to CurrMbAddr or to the address of neighbouring macroblock that contains (xN, yN) and its
availability status,

— (xW, yW): the location (xN, yN) expressed relative to the upper-left corner of the macroblock mbAddrN (rather
than relative to the upper-left corner of the current macroblock).

Let maxW and maxH be variables specifying maximum values of the location components xN, xW, and yN, yW,
respectively. maxW and maxH are derived as follows.

— If this process is invoked for neighbouring luma locations,

maxW =maxH = 16 (6-33)

— Otherwise (this process is invoked for neighbouring chroma locations),

maxW = MbWidthC (6-34)

maxH = MbHeightC (6-35)

Depending on the variable MbaffFrameFlag, the neighbouring locations are derived as follows.

— If MbaffFrameFlag is equal to 0, the specification for neighbouring locations in fields and non-MBAFF frames as
described in subclause 6.4.9.1 is applied.

— Otherwise (MbaffFrameFlag is equal to 1), the specification for neighbouring locations in MBAFF frames as
described in subclause 6.4.9.2 is applied.

6.4.9.1 Specification for neighbouring locations in fields and non-MBAFF frames
The specifications in this subclause are applied when MbaffFrameFlag is equal to 0.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.6 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-3 specifies mbAddrN depending on (XN, yN).

Table 6-3 — Specification of mbAddrN

xN yN mbAddrN
<0 <0 mbAddrD
<0 0..maxH-1 mbAddrA
0 .. maxW -1 <0 mbAddrB

0 .. maxW -1 0. maxH-1 CurrMbAddr

>maxW -1 <0 mbAddrC
>maxW -1 0. maxH-1 not available
>maxH - 1 not available

The neighbouring location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxW) % maxW (6-36)

yW = (yN + maxH) % maxH (6-37)

ITU-T Rec. H.264 (03/2005) 33

6.4.9.2 Specification for neighbouring locations in MBAFF frames
The specifications in this subclause are applied when MbaffFrameFlag is equal to 1.

The derivation process for neighbouring macroblock addresses and their availability in subclause 6.4.7 is invoked with
mbAddrA, mbAddrB, mbAddrC, and mbAddrD as well as their availability status as the output.

Table 6-4 specifies the macroblock addresses mbAddrN and yM in two ordered steps:
1. Specification of a macroblock address mbAddrX depending on (xN, yN) and the following variables:
— The variable currMbFrameFlag is derived as follows.
- If the macroblock with address CurrMbAddr is a frame macroblock, currMbFrameFlag is set equal to 1,

— Otherwise (the macroblock with address CurrMbAddr is a field macroblock), currMbFrameFlag is set
equal to 0.

— The variable mblsTopMbFlag is derived as follows.

— If the macroblock with address CurrMbAddr is a top macroblock (CurrMbAddr % 2 is equal to 0),
mblsTopMbFlag is set equal to 1;

- Otherwise (the macroblock with address CurrMbAddr is a bottom macroblock, CurrMbAddr % 2 is
equal to 1), mbIsTopMbFlag is set equal to 0.

2. Depending on the availability of mbAddrX, the following applies.
— If mbAddrX is not available, mbAddrN is marked as not available.

— Otherwise (mbAddrX is available), mbAddrN is marked as available and Table 6-4 specifies mbAddrN and
yM depending on (xN, yN), currMbFrameFlag, mblsTopMbFlag, and the variable mbAddrXFrameFlag,
which is derived as follows.

- If the macroblock mbAddrX is a frame macroblock, mbAddrXFrameFlag is set equal to 1,
- Otherwise (the macroblock mbAddrX is a field macroblock), mbAddrXFrameFlag is set equal to 0.

Unspecified values (na) of the above flags in Table 6-4 indicate that the value of the corresponding flag is not relevant
for the current table rows.

34 ITU-T Rec. H.264 (03/2005)

Table 6-4 — Specification of mbAddrN and yM

o0
— < (0] _a
5| = % =)
e R 3
217 oz |% E z
2L i s} IS =l
S| &= o o 2 o
. | o= [EE] § O|E| ¢ : -
> > 5| E = = & = >
1 |mbAddrD mbAddrD+1 |[yN
1 1 mbAddrA yN
0 [mbAddrA 5 MbAddrA + 1 |(yN + maxH) >> 1
<0 <0 1 mbAddrD + 1 [2*yN
bAddrD
A i mbAddD ___ [yN
0 |mbAddrD mbAddrD +1 [yN
1 mbAddrA yN
1 |mbAddrA 0 yN%2== mbAddrA yN>> |
yN %2 !1=0 mbAddrA +1 |yN>>1
1 1 mbAddrA + 1 |[yN
0 |mbAddrA yN %2 == mbAddrA (yN +maxH)>> 1
0 [yN%21=0 mbAddrA + 1 |(yN + maxH) >> 1
<0 0. maxH - 1 | [N <(maxt/2) [mbAddrA yN <<1
1 |mbAddrA yN >= (maxH /2)|mbAddrA +1 |(yN<<1)- maxH
0 mbAddrA yN
0 yN < (maxH /2) |mbAddrA (yN<<1)+1
0 [mbAddra |! [yN>=(maxH/2)[mbAddrA +1 [(yN<<l)+ 1— maxH
0 mbAddrA+1 |yN
1 |mbAddrB mbAddrB+1 |yN
U o [currMbAddr CurrMbAddr - 1[yN
0 .. maxW — 1l<0 mbAddrB+1 |2 *yN
0 1 jmbAddrB bAddD N
0 |mbAddrB mbAddrB+1 [yN
0..maxW —1]0 .. maxH - 1 CurrMbAddr CurrMbAddr |yN
1 |mbAddrC mbAddrC+1 |yN
I o not available not available |na
>maxW—1 [<0 A mbAddrC+1 (2 *yN
o |1 [roadac mbAddrC yN
0 |mbAddrC mbAddrC+1 |yN
>maxW—1 |0.. maxH-1 not available not available |na
>maxH - 1 not available not available |na

The neighbouring luma location (xW, yW) relative to the upper-left corner of the macroblock mbAddrN is derived as

xW = (xN + maxW) % maxW

yW = (yM + maxH) % maxH

(6-38)

(6-39)

ITU-T Rec. H.264 (03/2005)

35

7

7.1

The syntax tables specify a superset of the syntax of all allowed bitstreams. Additional constraints on the syntax may be

Syntax and semantics

Method of specifying syntax in tabular form

specified, either directly or indirectly, in other clauses.

The following table lists examples of pseudo code used to describe the syntax. When syntax_element appears, it
specifies that a syntax element is parsed from the bitstream and the bitstream pointer is advanced to the next position

beyond the syntax element in the bitstream parsing process.

36

NOTE — An actual decoder should implement means for identifying entry points into the bitstream and means to identify and
handle non-conforming bitstreams. The methods for identifying and handling errors and other such situations are not specified

C | Descriptor
/* A statement can be a syntax element with an associated syntax category and
descriptor or can be an expression used to specify conditions for the existence,
type, and quantity of syntax elements, as in the following two examples */
syntax_element 3 | ue(v)

conditioning statement

/* A group of statements enclosed in curly brackets is a compound statement and
is treated functionally as a single statement. */

{

statement

statement

/* A “while” structure specifies a test of whether a condition is true, and if true,
specifies evaluation of a statement (or compound statement) repeatedly until the
condition is no longer true */

while(condition)

statement

/* A “do ... while” structure specifies evaluation of a statement once, followed by
a test of whether a condition is true, and if true, specifies repeated evaluation of
the statement until the condition is no longer true */

do

statement

while(condition)

/* An “if ... else” structure specifies a test of whether a condition is true, and if
the condition is true, specifies evaluation of a primary statement, otherwise,
specifies evaluation of an alternative statement. The “else” part of the structure
and the associated alternative statement is omitted if no alternative statement
evaluation is needed */

if(condition)

primary statement

else

alternative statement

/* A “for” structure specifies evaluation of an initial statement, followed by a test
of a condition, and if the condition is true, specifies repeated evaluation of a
primary statement followed by a subsequent statement until the condition is no
longer true. */

for(initial statement; condition; subsequent statement)

primary statement

ITU-T Rec. H.264 (03/2005)

7.2 Specification of syntax functions, categories, and descriptors

The functions presented here are used in the syntactical description. These functions assume the existence of a bitstream
pointer with an indication of the position of the next bit to be read by the decoding process from the bitstream.

byte aligned() is specified as follows.

— If'the current position in the bitstream is on a byte boundary, i.e., the next bit in the bitstream is the first bit in a
byte, the return value of byte aligned() is equal to TRUE.

— Otherwise, the return value of byte aligned() is equal to FALSE.

more_data_in_byte stream(), which is used only in the byte stream NAL unit syntax structure specified in Annex B, is
specified as follows.

— If more data follow in the byte stream, the return value of more data_in_byte stream() is equal to TRUE.
— Otherwise, the return value of more_data in_byte stream() is equal to FALSE.
more_rbsp_data() is specified as follows.

— If there is more data in an RBSP before rbsp_trailing bits(), the return value of more rbsp data() is equal to
TRUE.

— Otherwise, the return value of more rbsp_data() is equal to FALSE.

The method for enabling determination of whether there is more data in the RBSP is specified by the application
(or in Annex B for applications that use the byte stream format).

more_rbsp_trailing_data() is specified as follows.
— If'there is more data in an RBSP, the return value of more rbsp_trailing_data() is equal to TRUE.
— Otherwise, the return value of more rbsp_trailing_data() is equal to FALSE.

next_bits(n) provides the next bits in the bitstream for comparison purposes, without advancing the bitstream pointer.
Provides a look at the next n bits in the bitstream with n being its argument. When used within the byte stream as
specified in Annex B, next_bits(n) returns a value of 0 if fewer than n bits remain within the byte stream.

read bits(n) reads the next n bits from the bitstream and advances the bitstream pointer by n bit positions. When n is
equal to 0, read_bits(n) is specified to return a value equal to 0 and to not advance the bitstream pointer.

Categories (labelled in the table as C) specify the partitioning of slice data into at most three slice data partitions. Slice
data partition A contains all syntax elements of category 2. Slice data partition B contains all syntax elements of
category 3. Slice data partition C contains all syntax elements of category 4. The meaning of other category values is
not specified. For some syntax elements, two category values, separated by a vertical bar, are used. In these cases, the
category value to be applied is further specified in the text. For syntax structures used within other syntax structures, the
categories of all syntax elements found within the included syntax structure are listed, separated by a vertical bar. A
syntax element or syntax structure with category marked as "All" is present within all syntax structures that include that
syntax element or syntax structure. For syntax structures used within other syntax structures, a numeric category value
provided in a syntax table at the location of the inclusion of a syntax structure containing a syntax element with
category marked as "All" is considered to apply to the syntax elements with category "All".

The following descriptors specify the parsing process of each syntax element. For some syntax elements, two
descriptors, separated by a vertical bar, are used. In these cases, the left descriptors apply when
entropy coding mode flag is equal to 0 and the right descriptor applies when entropy coding mode flag is equal to 1.

— ae(v): context-adaptive arithmetic entropy-coded syntax element. The parsing process for this descriptor is
specified in subclause 9.3.

— b(8): byte having any pattern of bit string (8 bits). The parsing process for this descriptor is specified by the
return value of the function read bits(8).

— ce(v): context-adaptive variable-length entropy-coded syntax element with the left bit first. The parsing process
for this descriptor is specified in subclause 9.2.

— f(n): fixed-pattern bit string using n bits written (from left to right) with the left bit first. The parsing process
for this descriptor is specified by the return value of the function read bits(n).

— i(n): signed integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the

ITU-T Rec. H.264 (03/2005) 37

7.3

7.3.1

38

return value of the function read bits(n) interpreted as a two’s complement integer representation with most
significant bit written first.

me(v): mapped Exp-Golomb-coded syntax element with the left bit first. The parsing process for this descriptor
is specified in subclause 9.1.

se(v): signed integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

te(v): truncated Exp-Golomb-coded syntax element with left bit first. The parsing process for this descriptor is
specified in subclause 9.1.

u(n): unsigned integer using n bits. When n is "v" in the syntax table, the number of bits varies in a manner
dependent on the value of other syntax elements. The parsing process for this descriptor is specified by the
return value of the function read bits(n) interpreted as a binary representation of an unsigned integer with
most significant bit written first.

ue(v): unsigned integer Exp-Golomb-coded syntax element with the left bit first. The parsing process for this
descriptor is specified in subclause 9.1.

Syntax in tabular form

NAL unit syntax

nal_unit(NumBytesInNALunit) { C | Descriptor
forbidden_zero_bit All | (1)
nal_ref ide All | u(2)
nal_unit_type All | u(5)

NumBytesInRBSP = 0

for(1=1;1<NumBytesInNALunit; i++) {

if(i + 2 < NumBytesInNALunit && next_bits(24) = = 0x000003) {

rbsp_byte[NumBytesInRBSP++ | All | b(8)

rbsp_byte[NumBytesInRBSP++ | All | b(8)

i+=2

emulation_prevention_three_byte /* equal to 0x03 */ All | f(8)
} else

rbsp_byte[NumBytesInRBSP++ | All | b(8)

ITU-T Rec. H.264 (03/2005)

Raw byte sequence payloads and RBSP trailing bits syntax

Sequence parameter set RBSP syntax

seq_parameter_set rbsp() { C | Descriptor
profile_idc 0 | u®)
constraint_set0) flag 0 | ul)
constraint_setl flag 0 | ul)
constraint_set2 flag 0 | ul)
constraint_set3 flag 0 | ul)
reserved_zero_4bits /* equal to 0 */ 0 | u@
level idc 0 | u®)
seq_parameter_set_id 0 | ue(v)
if(profile idc == 100 || profile idc == 110 ||
profile idc == 122 || profile idc == 144) {
chroma_format_idc 0 | ue(v)
if(chroma_format idc == 3)
residual_colour_transform_flag 0 | u(l)
bit_depth luma_minus8 0 | ue(v)
bit_depth_chroma_minus8 0 | ue(v)
gpprime_y_zero_transform_bypass_flag 0 | ul)
seq_scaling_matrix_present flag 0 | ul)
if(seq_scaling_matrix_present flag)
for(i=0;1<8;it+) {
seq_scaling_list_present_flag[i] 0 |u(l)
if(seq_scaling_list present flag[i])
if(1<6)
scaling_list(ScalingList4x4[1], 16, 0
UseDefaultScalingMatrix4x4Flag[i])
else
scaling_list(ScalingList8x8[i—6], 64, 0
UseDefaultScalingMatrix8x8Flag[i—6])
}
}
log2 max_frame num_minus4 0 | ue(v)
pic_order_cnt_type 0 | ue(v)
if(pic_order cnt type == 0)
log2_max_pic_order_cnt_Isb_minus4 0 | ue(v)
else if(pic_order cnt type == 1) {
delta_pic_order_always zero_flag 0 |ul)
offset_for non_ref pic 0 | se(v)
offset_for_top_to_bottom_field 0 | se(v)
num_ref frames_in_pic_order_cnt_cycle 0 | ue(v)
for(1=0; 1 <num ref frames in pic order cnt cycle; it++)
offset_for_ref frame[i] 0 | se(v)
}
num_ref frames 0 | ue(v)
gaps_in_frame_num_value_allowed_flag 0 | ul)
pic_width_in_mbs_minusl 0 | ue(v)
pic_height_in_map_units_minusl 0 | ue(v)

ITU-T Rec. H.264 (03/2005)

39

frame _mbs_only_flag 0 |u)
if(frame mbs only flag)
mb_adaptive_frame_field_flag 0 |ul)
direct_8x8 inference flag 0 |u(l)
frame_cropping flag 0 | ul)
if(frame cropping_flag) {
frame_crop_left offset 0 | ue(v)
frame_crop_right offset 0 | ue(v)
frame_crop_top_offset 0 | ue(v)
frame_crop_bottom_offset 0 | ue(v)
}
vui_parameters_present_flag 0 |u(l)
if(vui_parameters_present flag)
vui_parameters() 0
rbsp_trailing_bits() 0
}
7.3.2.1.1 Scaling list syntax
scaling_list(scalingList, sizeOfScalingList, useDefaultScalingMatrixFlag) { C | Descriptor

lastScale = 8

nextScale = 8

for(j = 0; j <sizeOfScalingList; j++) {

if(nextScale =0) {

delta_scale 0]1 | se(v)

nextScale = (lastScale + delta_scale + 256) % 256

useDefaultScalingMatrixFlag = (j == 0 && nextScale == 0)

i

scalingList[j] = (nextScale == 0) ? lastScale : nextScale

lastScale = scalingList[j]

i

7.3.2.1.2 Sequence parameter set extension RBSP syntax

seq_parameter_set extension_rbsp() { C Descriptor
seq_parameter_set_id 10 | ue(v)
aux_format _idc 10 | ue(v)
if(aux_format idc != 0) {
bit_depth_aux_minus8 10 | ue(v)
alpha_incr_flag 10 | u(l)
alpha_opaque_value 10 | u(v)
alpha_transparent_value 10 | u(v)
}
additional_extension_flag 10 | u(l)
rbsp_trailing_bits() 10
b

40 ITU-T Rec. H.264 (03/2005)

7.3.2.2

Picture parameter set RBSP syntax

pic_parameter_set rbsp() { C | Descriptor
pic_parameter_set_id 1 | ue(v)
seq_parameter_set_id 1 | ue(v)
entropy_coding mode_flag 1 | u(l)
pic_order_present_flag 1| uwl)
num_slice_groups_minusl 1 | ue(v)
if(num_slice_groups_minusl >0) {
slice_group_map_type 1 | ue(v)
if(slice_group map type == 0)
for(iGroup = 0; iGroup <= num_slice_groups_minusl; iGroup++)
run_length minus1[iGroup | 1 | ue(v)
else if(slice_group_map _type == 2)
for(iGroup = 0; iGroup < num_slice_groups_minus1; iGroup++) {
top_left] iGroup] 1 | ue(v)
bottom_right[iGroup | 1 | ue(v)
H
else if(slice_group map type == 3 ||
slice_group map type == 4 ||
slice group map type == 5) {
slice_group_change_direction_flag 1| u(l)
slice_group_change rate _minusl1 1 | ue(v)
} else if(slice_group map type == 6) {
pic_size_in_map_units_minusl 1 | ue(v)
for(1=0;1<=pic_size in map units minusl; i++)
slice_group_id[i] 1 | u®v)
H
H
num_ref idx_10_active_minusl 1 | ue(v)
num_ref idx 11_active_minusl 1 | ue(v)
weighted_pred_flag 1 | ul)
weighted_bipred_idc 1 | u®?)
pic_init qp_minus26 /* relative to 26 */ 1 | se(v)
pic_init_qs_minus26 /* relative to 26 */ 1 | se(v)
chroma_qp_index_offset 1 | se(v)
deblocking_filter_control_present flag 1| ul)
constrained_intra_pred_flag 1 | u(l)
redundant_pic_cnt_present flag 1| ul)
if(more_rbsp data()) {
transform_8x8 mode_flag 1| ul)
pic_scaling_matrix_present_flag 1 | u(l)
if(pic_scaling_matrix_present flag)
for(1=0;1 <6+ 2* transform_8x8 mode flag; i++) {
pic_scaling_list present_flag[i | 1 | u(l)

if(pic_scaling_list present flag[i])

if(i<6)

ITU-T Rec. H.264 (03/2005)

41

scaling_list(ScalingList4x4[1], 16, 1
UseDefaultScalingMatrix4x4Flag[i])
else
scaling_list(ScalingList8x8[i—6], 64, 1
UseDefaultScalingMatrix8x8Flag[i—6])
}
second_chroma_qp_index_offset 1 | se(v)
}
rbsp_trailing_bits() 1
}

7.3.2.3 Supplemental enhancement information RBSP syntax

sei_rbsp() { C | Descriptor

do

sei_message() 5

while(more_rbsp data())

rbsp_trailing_bits() 5

7.3.2.3.1 Supplemental enhancement information message syntax

sei_message() { C | Descriptor

payloadType =0

while(next_bits(8) == OXFF) {

ff byte /* equal to OxFF */ 5 | f(8)
payloadType += 255

}

last_payload_type byte 5 u(8)

payloadType += last_payload type byte

payloadSize = 0

while(next_bits(8) == OxFF) {

ff_byte /* equal to OxFF */ 5 f(8)
payloadSize += 255

h

last_payload_size byte 5 u(8)

payloadSize += last_payload_size byte

sei_payload(payloadType, payloadSize) 5

42 ITU-T Rec. H.264 (03/2005)

7.3.2.4

7.3.2.5

7.3.2.6

7.3.2.7

7.3.2.8

7.3.2.9

Access unit delimiter RBSP syntax

access_unit delimiter rbsp() { C | Descriptor
primary_pic_type 6 | u@B)
rbsp_trailing_bits() 6

}

End of sequence RBSP syntax

end of seq rbsp() {

C | Descriptor

}

End of stream RBSP syntax

end_of stream_rbsp() {

C | Descriptor

}

Filler data RBSP syntax

filler data rbsp() {

C | Descriptor

while(next_bits(8) == 0xFF)

ff_byte /* equal to OxFF */

9 [f(8)

rbsp_trailing_bits()

Slice layer without partitioning RBSP syntax

slice_layer without partitioning rbsp() {

C Descriptor

slice_header() 2
slice_data() /* all categories of slice data() syntax */ 21314
rbsp_slice_trailing_bits() 2

Slice data partition RBSP syntax

7.3.2.9.1 Slice data partition A RBSP syntax

slice_data_partition a layer rbsp() {

C | Descriptor

slice_header() 2
slice_id All | ue(v)
slice_data() /* only category 2 parts of slice_data() syntax */ 2
rbsp_slice_trailing_bits() 2

ITU-T Rec. H.264 (03/2005)

43

7.3.2.9.2 Slice data partition B RBSP syntax

slice_data partition b _layer rbsp() { C | Descriptor
slice_id All | ue(v)
if(redundant_pic_cnt present flag)
redundant_pic_cnt All | ue(v)
slice_data() /* only category 3 parts of slice_data() syntax */ 3
rbsp_slice_trailing_bits() 3

7.3.2.9.3 Slice data partition C RBSP syntax

slice_data_partition ¢ layer rbsp() { C | Descriptor
slice_id All | ue(v)
if(redundant_pic_cnt present flag)
redundant_pic_cnt All | ue(v)
slice_data() /* only category 4 parts of slice_data() syntax */ 4
rbsp_slice_trailing_bits() 4

7.3.2.10 RBSP slice trailing bits syntax

tbsp_slice trailing_bits() { C | Descriptor

rbsp_trailing_bits() All

if(entropy coding mode flag)

while(more rbsp_trailing_data())

cabac_zero_word /* equal to 0x0000 */ All | f(16)

7.3.2.11 RBSP trailing bits syntax

rbsp_trailing_bits() { C | Descriptor
rbsp_stop_one_bit /* equal to 1 */ All | f(1)
while(!byte aligned())
rbsp_alignment_zero_bit /* equal to 0 */ All | f(1)
}

44 ITU-T Rec. H.264 (03/2005)

7.3.3

Slice header syntax

slice_header() { C | Descriptor
first_ mb_in_slice 2 ue(v)
slice_type 2 | ue(v)
pic_parameter_set_id 2 ue(v)
frame_num 2 | uv)
if(!frame mbs_only flag) {
field pic_flag 2 [u(l)
if(field pic flag)
bottom_field_flag 2 [u(l)
)
if(nal unit type == 5)
idr_pic_id 2 | ue(v)
if(pic_order cnt type == 0) {
pic_order_cnt_lIsb 2 | uv)
if(pic_order present flag && !field pic_flag)
delta_pic_order_cnt_bottom 2 | se(v)
§
if(pic_order_cnt_type == 1 && !delta_pic_order always zero flag) {
delta_pic_order_cnt[0] 2 se(v)
if(pic_order present flag && !field pic flag)
delta_pic_order_cnt[1] 2 se(v)
)
if(redundant_pic_cnt present flag)
redundant_pic_cnt 2 | ue(v)
if(slice_type == B)
direct_spatial_ mv_pred_flag 2 | u(l)
if(slice_type ==P || slice_type == SP | |slice type==B) {
num_ref idx_active_override flag 2 | u(l)
if(num_ref idx active override flag) {
num_ref _idx_10_active_minusl 2 | ue(v)
if(slice_type == B)
num_ref _idx_11_active_minusl 2 | ue(v)
§
)
ref pic_list reordering() 2
if((weighted pred flag && (slice type==P || slice type==SP)) ||
(weighted bipred idc == 1 && slice type == B))
pred weight table() 2
if(nal_ref idc !=0)
dec ref pic_marking() 2
if(entropy coding mode flag && slice type != I && slice type != SI)
cabac_init_idc ue(v)
slice_qp_delta se(v)
if(slice type == SP || slice type == SI) {
if(slice_type == SP)
sp_for_switch_flag 2 | ul)

ITU-T Rec. H.264 (03/2005)

45

7.3.3.1

46

slice_qs_delta

se(v)

}

if(deblocking_filter control present flag) {

disable_deblocking_filter idc ue(v)
if(disable deblocking_filter idc != 1) {
slice_alpha_c0_offset_div2 se(v)
slice_beta_offset_div2 se(v)
}
§
if(num_slice groups minusl >0 &&
slice_group map type >=3 && slice group map type <=5)
slice_group_change_cycle u(v)
}
Reference picture list reordering syntax
ref pic_list reordering() { Descriptor
if(slice type != 1 && slice type != SI) {
ref pic_list_reordering flag 10 u(l)
if(ref pic_list reordering flag 10)
do {
reordering of pic_nums_idc ue(v)
if(reordering of pic nums idc == 0 ||
reordering_of pic nums idc == 1)
abs_diff pic_ num_minusl ue(v)
else if(reordering_of pic nums idc == 2)
long_term_pic_num ue(v)
} while(reordering_of pic nums idc != 3)
!
if(slice_type == B) {
ref pic_list_reordering_ flag 11 u(l)
if(ref pic_list reordering flag 11)
do {
reordering of pic_nums_idc ue(v)
if(reordering of pic nums idc == 0 ||
reordering of pic nums idc == 1)
abs_diff pic_num_minusl ue(v)
else if(reordering_of pic nums idc == 2)
long_term_pic_num ue(v)

} while(reordering_of pic_nums_idc != 3)

ITU-T Rec. H.264 (03/2005)

7.3.3.2 Prediction weight table syntax

pred_weight table() { Descriptor
luma_log2 weight denom 2 | ue(v)
if(chroma_format idc != 0)
chroma_log2 weight_denom 2 | ue(v)
for(i=0;1i<=num_ref idx 10 active minusl; i++) {
luma_weight 10 _flag 2 | u(l)
if(luma_weight 10 flag) {
luma_weight 10[1] se(v)
luma_offset _10[1] se(v)
H
if (chroma_format idc != 0) {
chroma_weight 10 flag 2 | u(l)
if(chroma_weight 10 flag)
for(j=0;j<2;j++) {
chroma_weight 10[i][]] 2 | se(v)
chroma_offset 10[i][j] 2 | se(v)
H
H
H
if(slice type == B)
for(1=0;1<=num_ref idx 11 _active minusl;i++) {
luma_weight 11_flag 2 | u(l)
if(luma_weight 11 flag) {
luma_weight 11 1] se(v)
luma_offset 11] i | se(v)
H
if(chroma_format idc != 0) {
chroma_weight 11 _flag 2 | u(l)
if(chroma_weight 11 _flag)
for(j=0;j<2;j++) {
chroma_weight 11[1i][]] se(v)
chroma_offset 11[i][j] se(v)
H
}
H
H

ITU-T Rec. H.264 (03/2005)

47

7.3.3.3 Decoded reference picture marking syntax

dec ref pic_marking() { C | Descriptor
if(nal_unit_type == 5) {
no_output_of prior_pics_flag 2|5 | u(l)
long_term_reference flag 215 {ul)
} else {
adaptive_ref pic_marking mode flag 215 {ul)
if(adaptive _ref pic_marking mode flag)
do {
memory_management_control_operation 2|5 | ue(v)
if(memory management control operation == 1 ||
memory management control operation == 3)
difference_of pic_nums_minusl 2|5 | ue(v)
if(memory _management control operation == 2)
long_term_pic_num 2|5 | ue(v)
if(memory management control operation == 3 ||
memory management control operation == 6)
long_term_frame_idx 215 | ue(v)
if(memory management control operation == 4)
max_long_term_frame idx_plusl 215 | ue(v)

}+ while(memory management control operation != 0)

48 ITU-T Rec. H.264 (03/2005)

7.3.4

Slice data syntax

slice_data() {

Descriptor

if(entropy coding_mode flag)

while(!byte aligned())

cabac_alignment_one_bit

f(1)

CurrMbAddr = first mb_in_slice * (1 + MbaffFrameFlag)

moreDataFlag = 1

prevMbSkipped = 0

do {

if(slice type != I && slice type != SI)

if(lentropy coding mode flag) {

mb_skip_run

ue(v)

prevMbSkipped = (mb_skip run>0)

for(1i=0; i<mb_skip run; i++)

CurrMbAddr = NextMbAddress(CurrMbAddr)

moreDataFlag = more rbsp data()

} else {

mb_skip_flag

ae(v)

moreDataFlag = !mb_skip flag

}

if(moreDataFlag) {

if(MbaffFrameFlag && (CurrMbAddr % 2 == 0 ||
(CurrMbAddr % 2 == 1 && prevMbSkipped)))

mb_field_decoding flag

u(l) | ae(v)

macroblock layer()

21314

}

if(lentropy coding mode flag)

moreDataFlag = more rbsp data()

else {

if(slice type != I && slice type != SI)

prevMbSkipped = mb_skip flag

if(MbaffFrameFlag && CurrMbAddr %2 == 0)

moreDataFlag = 1

else {

end_of slice flag

ae(v)

moreDataFlag = lend of slice flag

}

CurrMbAddr = NextMbAddress(CurrMbAddr)

} while(moreDataFlag)

ITU-T Rec. H.264 (03/2005)

49

7.3.5

50

Macroblock layer syntax

macroblock layer() { C | Descriptor
mb_type 2 ue(v) | ae(v)
if(mb_type == 1 PCM) {
while(!byte aligned())
pcm_alignment_zero_bit 2 (1)
for(1=0;1<256;it++)
pem_sample lumafi] 2 u(v)
for(i=0;1i<2* MbWidthC * MbHeightC; i++)
pem_sample _chromali | 2 u(v)
} else {
noSubMbPartSizeLessThan8x8Flag = 1
if(mb_type != I NxN &&
MbPartPredMode(mb _type, 0) != Intra 16x16 &&
NumMbPart(mb_type) == 4) {
sub_mb_pred(mb_type) 2
for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)
if(sub_mb_type[mbPartldx] != B_Direct 8x8) {
if NumSubMbPart(sub_mb_type[mbPartldx]) > 1)
noSubMbPartSizeLessThan8x8Flag = 0
} else if(!direct 8x8 inference flag)
noSubMbPartSizeLessThan8x8Flag = 0
} else {
if(transform 8x8 mode flag && mb type == 1 NxN)
transform_size 8x8 flag 2 u(l) | ae(v)
mb_pred(mb_type) 2
b
if(MbPartPredMode(mb_type, 0) != Intra 16x16) {
coded_block_pattern 2 | me(v) | ae(v)
if(CodedBlockPatternLuma > 0 &&
transform_8x8 mode flag && mb type != I NxN &&
noSubMbPartSizeLessThan8x8Flag &&
(mb type != B Direct 16x16 || direct 8x8 inference flag))
transform_size 8x8 flag 2 u(l) | ae(v)
}
if(CodedBlockPatternLuma >0 || CodedBlockPatternChroma >0 | |
MbPartPredMode(mb type, 0) == Intra 16x16) {
mb_qp_delta 2 se(v) | ae(v)
residual() 3|4

ITU-T Rec. H.264 (03/2005)

7.3.5.1

Macroblock prediction syntax

mb_pred(mb_type) {

Descriptor

if(MbPartPredMode(mb_type, 0) == Intra 4x4 ||
MbPartPredMode(mb_type, 0) == Intra 8x8 ||
MbPartPredMode(mb type, 0) == Intra 16x16) {

if(MbPartPredMode(mb_type, 0) == Intra 4x4)

for(luma4x4BIlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++) {

prev_intradx4 pred_mode_flag| luma4x4Blkldx |

u(l) | ae(v)

if(!prev_intra4x4 pred mode flag| luma4x4BIkldx |)

rem_intra4x4 pred_mode| luma4x4BlkIdx]

u(3) | ae(v)

}

if(MbPartPredMode(mb_type, 0) == Intra_8x8)

for(luma8x8BIkIdx=0; luma8x8Blkldx<4; luma8x8BIlkIdx++) {

prev_intra8x8 pred_mode_flag| luma8x8BIkldx]

u(l) | ae(v)

if(!prev_intra8x8 pred mode flag[luma8x8BIkldx])

rem_intra8x8 pred_mode[luma8x8BIkIdx]

u(3) | ae(v)

}

if(chroma_format idc != 0)

intra_chroma_pred_mode

ue(v) | ae(v)

} else if(MbPartPredMode(mb_type, 0) != Direct) {

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref idx 10 active minusl >0 ||
mb_field decoding flag) &&
MbPartPredMode(mb_type, mbPartldx) != Pred L1)

ref_idx_l0[mbPartldx |

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if((num_ref idx 11 _active minusl > 0 ||
mb_field decoding flag) &&
MbPartPredMode(mb_type, mbPartldx) != Pred LO)

ref_idx_11[mbPartldx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode (mb_type, mbPartldx) != Pred L1)

for(compldx = 0; compldx < 2; compldx++)

mvd_10[mbPartldx |[O][compldx]

se(v) | ae(v)

for(mbPartldx = 0; mbPartldx < NumMbPart(mb_type); mbPartldx++)

if(MbPartPredMode(mb_type, mbPartldx) != Pred LO)

for(compldx = 0; compldx < 2; compldx++)

mvd_11[mbPartldx][0][compldx]

se(v) | ae(v)

ITU-T Rec. H.264 (03/2005)

51

7.3.5.2 Sub-macroblock prediction syntax

52

sub mb pred(mb type) {

Descriptor

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

sub_mb_type[mbPartldx |

ue(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if((num_ref idx_10_active minusl > 0 || mb_field decoding flag) &&
mb_type != P_8x8ref0 &&
sub_mb_type[mbPartldx] != B_Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred L1)

ref idx 10] mbPartIdx]

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if((num_ref idx 11 _active minusl > 0 || mb_field decoding flag) &&
sub_mb_type[mbPartldx] != B Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred L0)

ref_idx_11[mbPartldx |

te(v) | ae(v)

for(mbPartldx = 0; mbPartldx < 4; mbPartldx++)

if(sub_mb_type[mbPartldx] != B Direct 8x8 &&
SubMbPredMode(sub_mb_type[mbPartldx]) != Pred L1)

for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub mb_type[mbPartldx]);
subMbPartldx++)

for(compldx = 0; compldx < 2; compldx++)

mvd_10] mbPartldx][subMbPartldx][compldx]

se(v) | ae(v)

for(mbPartldx = 0; mbPartldx <4; mbPartldx++)

if(sub_mb_type[mbPartldx] != B Direct 8x8 &&
SubMbPredMode(sub_mb type[mbPartldx]) != Pred LO)

for(subMbPartldx = 0;
subMbPartldx < NumSubMbPart(sub_mb_type[mbPartldx]);
subMbPartldx++)

for(compldx = 0; compldx < 2; compldx++)

mvd_11] mbPartldx][subMbPartldx][compldx]

se(v) | ae(v)

ITU-T Rec. H.264 (03/2005)

7.3.5.3

Residual data syntax

residual() {

Descriptor

if(!entropy coding mode flag)

residual block = residual_block cavlc

else

residual_block = residual_block cabac

if(MbPartPredMode(mb_type, 0) == Intra 16x16)

residual block(Intral6x16DCLevel, 16)

for(i8x8 = 0; i8x8 < 4; i8x8++) /* each luma 8x8 block */

if(Itransform_size 8x8 flag || !entropy coding mode flag)

for(14x4 = 0; i4x4 < 4; i4x4++) { /* each 4x4 sub-block of block */

if(CodedBlockPatternLuma & (1 <<i8x8))

if(MbPartPredMode(mb_type, 0) == Intra_16x16)

residual_block(Intral6x16ACLevel[i8x8 * 4 +14x4], 15)

else

residual_block(LumaLevel[i8x8 * 4 +14x4], 16)

314

else if(MbPartPredMode(mb_type, 0) == Intra_16x16)

for(i=0;1<15;i++)

Intral6x16ACLevel[i8x8 * 4 + i4x4][] =0

else

for(i=0;1<16; i++)

LumaLevel[i8x8 * 4 +i4x4 J[1]=0

if(!entropy _coding mode flag && transform size 8x8 flag)

for(i=0;1<16;i++)

LumaLevel8x8[i8x8][4 * i + i4x4 | =
LumaLevel[i8x8 * 4 + i4x4][]

}

else if(CodedBlockPatternLuma & (1 <<i8x8))

residual block(LumaLevel8x8§[i8x8], 64)

314

else

for(1=0;1<64;i++)

LumaLevel8x8[i8x8 J[1]=0

if(chroma_format idc != 0) {

NumC8x8 = 4 / (SubWidthC * SubHeightC)

for(iCbCr = 0; iCbCr < 2; iCbCr++)

if(CodedBlockPatternChroma & 3) /* chroma DC residual present */

residual_block(ChromaDCLevel[iCbCr], 4 * NumC8x8)

314

else

for(i=0;1<4 * NumC8x8; it++)

ChromaDCLevel[iCbCr]J[1]=0

for(iCbCr = 0; iCbCr < 2; iCbCr++)

for(18x8 = 0; 18x8 < NumC8xS8; i8x8++)

for(i4x4 = 0; i4x4 < 4; idx4++)

if(CodedBlockPatternChroma & 2)
/* chroma AC residual present */

residual_block(ChromaACLevel[iCbCr][i8x8*4+i4x4], 15)

314

else

for(i=0;1<15;i++)

ChromaACLevel[iCbCr][i8x8*4+i4x4][1]=0

ITU-T Rec. H.264 (03/2005)

53

7.3.5.3.1 Residual block CAVLC syntax

54

residual_block cavlc(coeffLevel, maxNumCoeff') {

Descriptor

for(1= 0; i < maxNumCoeff; i++)

coeffLevel[1]=0

coeff _token

314

ce(v)

if(TotalCoeff(coeff token)>0) {

if(TotalCoeff(coeff token)> 10 && TrailingOnes(coeff token)<3)

suffixLength = 1

else

suffixLength = 0

for(1= 0; i < TotalCoeff(coeff token); i++)

if(1 < TrailingOnes(coeff token)) {

trailing_ones_sign_flag

314

u(l)

level[i]=1—-2 * trailing_ones _sign flag

}else {

level prefix

3|4

ce(v)

levelCode = (Min(15, level prefix) << suffixLength)

if(suffixLength >0 || level prefix >=14) {

level suffix

314

u(v)

levelCode += level suffix

}

if(level prefix >= 15 && suffixLength == 0)

levelCode += 15

if(level prefix >= 16)

levelCode += (1 << (level prefix —3))—4096

if(1 == TrailingOnes(coeff token) &&
TrailingOnes(coeff token)<3)

levelCode +=2

if(levelCode % 2 == 0)

level[i]=(levelCode +2)>>1

else

level[i]=(-levelCode —1)>>1

if(suffixLength == 0)

suffixLength = 1

if(Abs(level[i]) > (3 <<(suffixLength—1)) &&
suffixLength < 6)

suffixLength++

}

if(TotalCoeff(coeff token) < maxNumCoeff') {

total_zeros

314

ce(v)

zerosLeft = total _zeros

} else

zerosLeft =0

for(i=0; i< TotalCoeff(coeff token)—1;i++) {

if(zerosLeft>0) {

run_before

314

ce(v)

run[i] = run_before

} else

run[i]=0

ITU-T Rec. H.264 (03/2005)

zerosLeft = zerosLeft — run[i]

}

run[TotalCoeff(coeff token)— 1] = zerosLeft

coeffNum = -1

for(1 = TotalCoeff(coeff token)—1;1>=0;1i--) {

coeffNum+=run[i]+1

coeffLevel[coeffNum] = level[i]

}

7.3.5.3.2 Residual block CABAC syntax

residual block cabac(coeffLevel, maxNumCoeff') { C | Descriptor
if(maxNumCoeff == 64)
coded block flag=1
else
coded_block_flag 314 | ae(v)
if(coded block flag) {
numCoeff = maxNumCoeff
i=0
do {
significant_coeff flag|i] 314 | ae(v)
if(significant coeff flag[i]) {
last_significant_coeff flag[i] 314 | ae(v)
if(last_significant coeff flag[i]) {
numCoeff=1+1
for(j = numCoeff; j < maxNumCoeff; j++)
coeffLevel[j]=0
¥
§
it++
} while(1 < numCoeff- 1)
coeff_abs_level minusl| numCoeff- 1 | 314 | ae(v)
coeff sign_flag| numCoeff- 1] 314 | ae(v)
coeffLevel[numCoeff- 1]=
(coeff abs_level minusl[numCoeff—1]+1)*
(1 -2 * coeff sign flag] numCoeff—1 1)
for(1 =numCoeff - 2;1>=0;i--)
if(significant coeff flag[i]) {
coeff_abs_level minusl|[i] 314 | ae(v)
coeff _sign_flag[i|] 314 | ae(v)
coeffLevel[i] = (coeff abs level minusl[i]+1)*
(1—2* coeff sign flag[i])
} else
coeffLevel[1]=0
} else
for(i=0; 1 <maxNumCoeff; i++)
coeffLevel[1]=0

ITU-T Rec. H.264 (03/2005)

55

7.4 Semantics

Semantics associated with the syntax structures and with the syntax elements within these structures are specified in this
subclause. When the semantics of a syntax element are specified using a table or a set of tables, any values that are not
specified in the table(s) shall not be present in the bitstream unless otherwise specified in this Recommendation |
International Standard.

7.4.1 NAL unit semantics

NOTE 1 — The VCL is specified to efficiently represent the content of the video data. The NAL is specified to format that data
and provide header information in a manner appropriate for conveyance on a variety of communication channels or storage
media. All data are contained in NAL units, each of which contains an integer number of bytes. A NAL unit specifies a generic
format for use in both packet-oriented and bitstream systems. The format of NAL units for both packet-oriented transport and
byte stream is identical except that each NAL unit can be preceded by a start code prefix and extra padding bytes in the byte
stream format.

NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit.
Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such
demarcation method is specified in Annex B for the byte stream format. Other methods of demarcation may be
specified outside of this Recommendation | International Standard.

forbidden_zero_bit shall be equal to 0.

nal_ref idc not equal to 0 specifies that the content of the NAL unit contains a sequence parameter set or a picture
parameter set or a slice of a reference picture or a slice data partition of a reference picture.

nal_ref idc equal to O for a NAL unit containing a slice or slice data partition indicates that the slice or slice data
partition is part of a non-reference picture.

nal_ref idc shall not be equal to 0 for sequence parameter set or sequence parameter set extension or picture parameter
set NAL units. When nal ref idc is equal to O for one slice or slice data partition NAL unit of a particular picture, it
shall be equal to O for all slice and slice data partition NAL units of the picture.

nal_ref idc shall not be equal to 0 for IDR NAL units, i.e., NAL units with nal unit_type equal to 5.
nal_ref idc shall be equal to 0 for all NAL units having nal unit type equal to 6, 9, 10, 11, or 12.

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 7-1. VCL NAL
units are specified as those NAL units having nal unit type equal to 1 to 5, inclusive. All remaining NAL units are
called non-VCL NAL units.

The column marked "C" in Table 7-1 lists the categories of the syntax elements that may be present in the NAL unit. In
addition, syntax elements with syntax category "All" may be present, as determined by the syntax and semantics of the
RBSP data structure. The presence or absence of any syntax elements of a particular listed category is determined from
the syntax and semantics of the associated RBSP data structure. nal unit_type shall not be equal to 3 or 4 unless at least
one syntax element is present in the RBSP data structure having a syntax element category value equal to the value of
nal_unit type and not categorized as "All".

56 ITU-T Rec. H.264 (03/2005)

Table 7-1 — NAL unit type codes

nal_unit_type Content of NAL unit and RBSP syntax structure C

0 Unspecified

1 Coded slice of a non-IDR picture 2,3,4
slice_layer without partitioning_rbsp()

2 Coded slice data partition A 2
slice_data_partition_a layer rbsp()

3 Coded slice data partition B 3
slice_data_partition_b_layer rbsp()

4 Coded slice data partition C 4
slice_data partition c layer rbsp()

5 Coded slice of an IDR picture 2,3
slice_layer without partitioning rbsp()

6 Supplemental enhancement information (SEI) 5
sei_rbsp()

7 Sequence parameter set 0

seq_parameter_set rbsp()

8 Picture parameter set |
pic_parameter_set_rbsp()

9 Access unit delimiter 6
access_unit_delimiter_rbsp()

10 End of sequence 7
end of seq rbsp()
11 End of stream 8
end of stream rbsp()
12 Filler data 9
filler_data_rbsp()
13 Sequence parameter set extension 10
seq_parameter_set extension_rbsp()
14..18 Reserved
19 Coded slice of an auxiliary coded picture without partitioning | 2, 3, 4
slice_layer without partitioning_rbsp()
20..23 Reserved
24.31 Unspecified

NAL units having nal unit type equal to 13 and 19 may be discarded by decoders without affecting the decoding
process for NAL units having nal unit type not equal to 13 or 19 and without affecting conformance to this
Recommendation | International Standard.

NAL units that use nal unit type equal to 0 or in the range of 24..31, inclusive, shall not affect the decoding process
specified in this Recommendation | International Standard.
NOTE 2 — NAL unit types 0 and 24..31 may be used as determined by the application. No decoding process for these values of
nal_unit_type is specified in this Recommendation | International Standard.

Decoders shall ignore (remove from the bitstream and discard) the contents of all NAL units that use reserved values of
nal_unit_type.
NOTE 3 — This requirement allows future definition of compatible extensions to this Recommendation | International Standard.

In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice
of an IDR picture NAL unit.

ITU-T Rec. H.264 (03/2005) 57

When the value of nal unit type is equal to 5 for a NAL unit containing a slice of a coded picture, the value of
nal_unit_type shall be 5 in all other VCL NAL units of the same coded picture. Such a picture is referred to as an IDR
picture.

NOTE 4 — Slice data partitioning cannot be used for IDR pictures.

rbsp_byte|[i] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows.
— Ifthe SODB is empty (i.e., zero bits in length), the RBSP is also empty.
— Otherwise, the RBSP contains the SODB as follows.

1) The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of
the RBSP shall contain the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2) rbsp trailing bits() are present after the SODB as follows:

i) The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the
SODB, (if any)

ii) The next bit consists of a single rbsp_stop_one_bit equal to 1, and

iii) When the rbsp stop one bit is not the last bit of a byte-aligned byte, one or more
rbsp _alignment zero_bit is present to result in byte alignment.

3) One or more cabac _zero word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after
the rbsp_trailing_bits() at the end of the RBSP.

n

Syntax structures having these RBSP properties are denoted in the syntax tables using an " rbsp" suffix. These
structures shall be carried within NAL units as the content of the rbsp_byte[i] data bytes. The association of the RBSP
syntax structures to the NAL units shall be as specified in Table 7-1.

NOTE 5 — When the boundaries of the RBSP are known, the decoder can extract the SODB from the RBSP by concatenating the
bits of the bytes of the RBSP and discarding the rbsp_stop_one bit, which is the last (least significant, right-most) bit equal to 1,
and discarding any following (less significant, farther to the right) bits that follow it, which are equal to 0. The data necessary for
the decoding process is contained in the SODB part of the RBSP.

emulation_prevention_three_byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the
NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:
- 0x000000
- 0x000001
- 0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not
occur at any byte-aligned position:

— 0x00000300
- 0x00000301
- 0x00000302
— 0x00000303

NOTE 6 — When nal_unit type is equal to 0, particular care must be exercised in the design of encoders to avoid the presence of
the above-listed three-byte and four-byte patterns at the beginning of the NAL unit syntax structure, as the syntax element
emulation_prevention_three byte cannot be the third byte of a NAL unit.

7.4.1.1 Encapsulation of an SODB within an RBSP (informative)
This subclause does not form an integral part of this Recommendation | International Standard.

The form of encapsulation of an SODB within an RBSP and the use of the emulation prevention three byte for
encapsulation of an RBSP within a NAL unit is specified for the following purposes:

— to prevent the emulation of start codes within NAL units while allowing any arbitrary SODB to be represented
within a NAL unit,

— to enable identification of the end of the SODB within the NAL unit by searching the RBSP for the
rbsp_stop_one_bit starting at the end of the RBSP, and

58 ITU-T Rec. H.264 (03/2005)

— to enable a NAL unit to have a size larger than that of the SODB under some circumstances (using one or more
cabac_zero word).

The encoder can produce a NAL unit from an RBSP by the following procedure:
The RBSP data is searched for byte-aligned bits of the following binary patterns:

‘00000000 00000000 000000xx' (where xx represents any 2 bit pattern: 00, 01, 10, or 11),
and a byte equal to 0x03 is inserted to replace these bit patterns with the patterns

‘00000000 00000000 00000011 000000xx",

and finally, when the last byte of the RBSP data is equal to 0x00 (which can only occur when the RBSP ends in a
cabac_zero_word), a final byte equal to 0x03 is appended to the end of the data.

The resulting sequence of bytes is then prefixed with the first byte of the NAL unit containing the indication of the type
of RBSP data structure it contains. This results in the construction of the entire NAL unit.

This process can allow any SODB to be represented in a NAL unit while ensuring that
— no byte-aligned start code prefix is emulated within the NAL unit, and

— no sequence of 8 zero-valued bits followed by a start code prefix, regardless of byte-alignment, is emulated within
the NAL unit.

7.4.1.2 Order of NAL units and association to coded pictures, access units, and video sequences

This subclause specifies constraints on the order of NAL units in the bitstream. Any order of NAL units in the bitstream
obeying these constraints is referred to in the text as the decoding order of NAL units. Within a NAL unit, the syntax in
subclauses 7.3, D.1, and E.1 specifies the decoding order of syntax elements. Decoders conforming to this
Recommendation | International Standard shall be capable of receiving NAL units and their syntax elements in
decoding order.

7.4.1.2.1 Order of sequence and picture parameter set RBSPs and their activation

NOTE 1 — The sequence and picture parameter set mechanism decouples the transmission of infrequently changing information
from the transmission of coded macroblock data. Sequence and picture parameter sets may, in some applications, be conveyed
"out-of-band" using a reliable transport mechanism.

A picture parameter set RBSP includes parameters that can be referred to by the coded slice NAL units or coded slice
data partition A NAL units of one or more coded pictures. Each picture parameter set RBSP is initially considered not
active at the start of the operation of the decoding process. At most one picture parameter set RBSP is considered active
at any given moment during the operation of the decoding process, and the activation of any particular picture
parameter set RBSP results in the deactivation of the previously-active picture parameter set RBSP (if any).

When a picture parameter set RBSP (with a particular value of pic_parameter _set id) is not active and it is referred to
by a coded slice NAL unit or coded slice data partition A NAL unit (using that value of pic_parameter_set id), it is
activated. This picture parameter set RBSP is called the active picture parameter set RBSP until it is deactivated by the
activation of another picture parameter set RBSP. A picture parameter set RBSP, with that particular value of
pic_parameter set id, shall be available to the decoding process prior to its activation.

Any picture parameter set NAL unit containing the value of pic_parameter_set id for the active picture parameter set
RBSP shall have the same content as that of the active picture parameter set RBSP unless it follows the last VCL NAL
unit of a coded picture and precedes the first VCL NAL unit of another coded picture.

A sequence parameter set RBSP includes parameters that can be referred to by one or more picture parameter set
RBSPs or one or more SEI NAL units containing a buffering period SEI message. Each sequence parameter set RBSP
is initially considered not active at the start of the operation of the decoding process. At most one sequence parameter
set RBSP is considered active at any given moment during the operation of the decoding process, and the activation of
any particular sequence parameter set RBSP results in the deactivation of the previously-active sequence parameter set
RBSP (if any).

When a sequence parameter set RBSP (with a particular value of seq parameter_set id) is not already active and it is
referred to by activation of a picture parameter set RBSP (using that value of seq_parameter_set _id) or is referred to by
an SEI NAL unit containing a buffering period SEI message (using that value of seq_parameter_set_id), it is activated.
This sequence parameter set RBSP is called the active sequence parameter set RBSP until it is deactivated by the
activation of another sequence parameter set RBSP. A sequence parameter set RBSP, with that particular value of
seq_parameter_set id, shall be available to the decoding process prior to its activation. An activated sequence parameter
set RBSP shall remain active for the entire coded video sequence.

ITU-T Rec. H.264 (03/2005) 59

NOTE 2 — Because an IDR access unit begins a new coded video sequence and an activated sequence parameter set RBSP must
remain active for the entire coded video sequence, a sequence parameter set RBSP can only be activated by a buffering period
SEI message when the buffering period SEI message is part of an IDR access unit.

Any sequence parameter set NAL unit containing the value of seq parameter set id for the active sequence parameter
set RBSP shall have the same content as that of the active sequence parameter set RBSP unless it follows the last access
unit of a coded video sequence and precedes the first VCL NAL unit and the first SEI NAL unit containing a buffering
period SEI message (when present) of another coded video sequence.
NOTE 3 — If picture parameter set RBSP or sequence parameter set RBSP are conveyed within the bitstream, these constraints
impose an order constraint on the NAL units that contain the picture parameter set RBSP or sequence parameter set RBSP,
respectively. Otherwise (picture parameter set RBSP or sequence parameter set RBSP are conveyed by other means not specified
in this Recommendation | International Standard), they must be available to the decoding process in a timely fashion such that
these constraints are obeyed.

When present, a sequence parameter set extension RBSP includes parameters having a similar function to those of a
sequence parameter set RBSP. For purposes of establishing constraints on the syntax elements of the sequence
parameter set extension RBSP and for purposes of determining activation of a sequence parameter set extension RBSP,
the sequence parameter set extension RBSP shall be considered part of the preceding sequence parameter set RBSP
with the same value of seq_parameter_set id. When a sequence parameter set RBSP is present that is not followed by a
sequence parameter set extension RBSP with the same value of seq parameter set id prior to the activation of the
sequence parameter set RBSP, the sequence parameter set extension RBSP and its syntax elements shall be considered
not present for the active sequence parameter set RBSP.

All constraints that are expressed on the relationship between the values of the syntax elements (and the values of
variables derived from those syntax elements) in sequence parameter sets and picture parameter sets and other syntax
elements are expressions of constraints that apply only to the active sequence parameter set and the active picture
parameter set. If any sequence parameter set RBSP is present that is not activated in the bitstream, its syntax elements
shall have values that would conform to the specified constraints if it were activated by reference in an otherwise-
conforming bitstream. If any picture parameter set RBSP is present that is not ever activated in the bitstream, its syntax
elements shall have values that would conform to the specified constraints if it were activated by reference in an
otherwise-conforming bitstream.

During operation of the decoding process (see clause 8), the values of parameters of the active picture parameter set and
the active sequence parameter set shall be considered in effect. For interpretation of SEI messages, the values of the
parameters of the picture parameter set and sequence parameter set that are active for the operation of the decoding
process for the VCL NAL units of the primary coded picture in the same access unit shall be considered in effect unless
otherwise specified in the SEI message semantics.

7.4.1.2.2 Order of access units and association to coded video sequences

A Ditstream conforming to this Recommendation | International Standard consists of one or more coded video
sequences.

A coded video sequence consists of one or more access units. The order of NAL units and coded pictures and their
association to access units is described in subclause 7.4.1.2.3.

The first access unit of each coded video sequence is an IDR access unit. All subsequent access units in the coded video
sequence are non-IDR access units.

The values of picture order count for the coded pictures in consecutive access units in decoding order containing non-
reference pictures shall be non-decreasing.

When present, an access unit following an access unit that contains an end of sequence NAL unit shall be an IDR access
unit.

When an SEI NAL unit contains data that pertain to more than one access unit (for example, when the SEI NAL unit
has a coded video sequence as its scope), it shall be contained in the first access unit to which it applies.

When an end of stream NAL unit is present in an access unit, this access unit shall be the last access unit in the
bitstream and the end of stream NAL unit shall be the last NAL unit in that access unit.

7.4.1.2.3 Order of NAL units and coded pictures and association to access units

An access unit consists of one primary coded picture, zero or more corresponding redundant coded pictures, and zero or
more non-VCL NAL units. The association of VCL NAL units to primary or redundant coded pictures is described in
subclause 7.4.1.2.5.

The first access unit in the bitstream starts with the first NAL unit of the bitstream.

60 ITU-T Rec. H.264 (03/2005)

The first of any of the following NAL units after the last VCL NAL unit of a primary coded picture specifies the start of
a new access unit.

— access unit delimiter NAL unit (when present)

— sequence parameter set NAL unit (when present)

— picture parameter set NAL unit (when present)

— SEINAL unit (when present)

— NAL units with nal_unit_type in the range of 14 to 18, inclusive
— first VCL NAL unit of a primary coded picture (always present)

The constraints for the detection of the first VCL NAL unit of a primary coded picture are specified in subclause
7.4.1.2.4.

The following constraints shall be obeyed by the order of the coded pictures and non-VCL NAL units within an access
unit.

— When an access unit delimiter NAL unit is present, it shall be the first NAL unit. There shall be at most one access
unit delimiter NAL unit in any access unit.

— When any SEI NAL units are present, they shall precede the primary coded picture.

— When an SEI NAL unit containing a buffering period SEI message is present, the buffering period SEI message
shall be the first SEI message payload of the first SEI NAL unit in the access unit

— The primary coded picture shall precede the corresponding redundant coded pictures.

— When redundant coded pictures are present, they shall be ordered in ascending order of the value of
redundant_pic_cnt.

— When a sequence parameter set extension NAL unit is present, it shall be the next NAL unit after a sequence
parameter set NAL unit having the same value of seq_parameter_set_id as in the sequence parameter set extension
NAL unit.

— When one or more coded slice of an auxiliary coded picture without partitioning NAL units is present, they shall
follow the primary coded picture and all redundant coded pictures (if any).

— When an end of sequence NAL unit is present, it shall follow the primary coded picture and all redundant coded
pictures (if any) and all coded slice of an auxiliary coded picture without partitioning NAL units (if any).

— When an end of stream NAL unit is present, it shall be the last NAL unit.

— NAL units having nal unit type equal to 0, 12, or in the range of 20 to 31, inclusive, shall not precede the first
VCL NAL unit of the primary coded picture.

NOTE 1 — Sequence parameter set NAL units or picture parameter set NAL units may be present in an access unit, but cannot
follow the last VCL NAL unit of the primary coded picture within the access unit, as this condition would specify the start of a
new access unit.

NOTE 2 — When a NAL unit having nal _unit_type equal to 7 or 8 is present in an access unit, it may or may not be referred to in
the coded pictures of the access unit in which it is present, and may be referred to in coded pictures of subsequent access units.

The structure of access units not containing any NAL units with nal unit type equal to 0, 7, 8, or in the range of 12
to 18, inclusive, or in the range of 20 to 31, inclusive, is shown in Figure 7-1.

ITU-T Rec. H.264 (03/2005) 61

start

A

access unit delimiter

-
-

A

A

primary coded picture

Y

redundant coded picture

-
-

A

auxiliary coded picture

-

A

end of sequence

-
-

end of stream

X

end

Figure 7-1 — Structure of an access unit not containing any NAL units with nal_unit_type equal to 0, 7, 8, or in
the range of 12 to 18, inclusive, or in the range of 20 to 31, inclusive

7.4.1.2.4 Detection of the first VCL NAL unit of a primary coded picture

This subclause specifies constraints on VCL NAL unit syntax that are sufficient to enable the detection of the first VCL
NAL unit of each primary coded picture.

Any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded picture of the current access
unit shall be different from any coded slice NAL unit or coded slice data partition A NAL unit of the primary coded
picture of the previous access unit in one or more of the following ways.

— frame_num differs in value. The value of frame num used to test this condition is the value of frame num that
appears in the syntax of the slice header, regardless of whether that value is inferred to have been equal to 0 for
subsequent use in the decoding process due to the presence of memory management_control operation equal to 5.

NOTE 1 — A consequence of the above statement is that a primary coded picture having frame num equal to 1 cannot
contain a memory management_control_operation equal to 5 unless some other condition listed below is fulfilled for
the next primary coded picture that follows after it (if any).

— pic_parameter set id differs in value.

— field pic flag differs in value.

62 ITU-T Rec. H.264 (03/2005)

— Dbottom_field flag is present in both and differs in value.
— nal_ref idc differs in value with one of the nal_ref idc values being equal to 0.

— pic order cnt type is equal to0 for both and either pic order cnt Isb differs in value, or
delta pic order cnt bottom differs in value.

— pic order cnt type is equal tol for both and either delta pic order cnt[0] differs in value, or
delta pic order cnt[1] differs in value.

— nal_unit_type differs in value with one of the nal_unit_type values being equal to 5.

— nal unit_type is equal to 5 for both and idr_pic_id differs in value.

NOTE 2 — Some of the VCL NAL units in redundant coded pictures or some non-VCL NAL units (e.g. an access unit delimiter
NAL unit) may also be used for the detection of the boundary between access units, and may therefore aid in the detection of the
start of a new primary coded picture.

7.4.1.2.5 Order of VCL NAL units and association to coded pictures
Each VCL NAL unit is part of a coded picture.
The order of the VCL NAL units within a coded IDR picture is constrained as follows.

— If arbitrary slice order is allowed as specified in Annex A, coded slice of an IDR picture NAL units may have any
order relative to each other.

— Otherwise (arbitrary slice order is not allowed), the order of coded slice of an IDR picture NAL units shall be in the
order of increasing macroblock address for the first macroblock of each coded slice of an IDR picture NAL unit.

The order of the VCL NAL units within a coded non-IDR picture is constrained as follows.

— If arbitrary slice order is allowed as specified in Annex A, coded slice of a non-IDR picture NAL units or coded
slice data partition A NAL units may have any order relative to each other. A coded slice data partition A NAL unit
with a particular value of slice id shall precede any present coded slice data partition B NAL unit with the same
value of slice id. A coded slice data partition A NAL unit with a particular value of slice id shall precede any
present coded slice data partition C NAL unit with the same value of slice_id. When a coded slice data partition B
NAL unit with a particular value of slice id is present, it shall precede any present coded slice data partition C
NAL unit with the same value of slice_id.

— Otherwise (arbitrary slice order is not allowed), the order of coded slice of a non-IDR picture NAL units or coded
slice data partition A NAL units shall be in the order of increasing macroblock address for the first macroblock of
each coded slice of a non-IDR picture NAL unit or coded slice data partition A NAL unit. A coded slice data
partition A NAL unit with a particular value of slice id shall immediately precede any present coded slice data
partition B NAL unit with the same value of slice id. A coded slice data partition A NAL unit with a particular
value of slice id shall immediately precede any present coded slice data partition C NAL unit with the same value
of slice_id, when a coded slice data partition B NAL unit with the same value of slice_id is not present. When a
coded slice data partition B NAL unit with a particular value of slice id is present, it shall immediately precede any
present coded slice data partition C NAL unit with the same value of slice id.

NAL units having nal unit_type equal to 12 may be present in the access unit but shall not precede the first VCL NAL
unit of the primary coded picture within the access unit.

NAL units having nal unit_type equal to 0 or in the range of 24 to 31, inclusive, which are unspecified, may be present
in the access unit but shall not precede the first VCL NAL unit of the primary coded picture within the access unit.

NAL units having nal unit type in the range of 20 to 23, inclusive, which are reserved, shall not precede the first VCL
NAL unit of the primary coded picture within the access unit (when specified in the future by ITU-T | ISO/IEC).

7.4.2 Raw byte sequence payloads and RBSP trailing bits semantics
7.4.2.1 Sequence parameter set RBSP semantics

profile_idc and level_idc indicate the profile and level to which the bitstream conforms, as specified in Annex A.

constraint_set) flag equal to | indicates that the bitstream obeys all constraints specified in subclause A.2.1.
constraint_set0_flag equal to 0 indicates that the bitstream may or may not obey all constraints specified in subclause
A2.1.

ITU-T Rec. H.264 (03/2005) 63

constraint_setl flag equal to 1 indicates that the bitstream obeys all constraints specified in subclause A.2.2.
constraint_setl flag equal to 0 indicates that the bitstream may or may not obey all constraints specified in subclause
A22.

constraint_set2 flag equal to 1 indicates that the bitstream obeys all constraints specified in subclause A.2.3.
constraint_set2 flag equal to 0 indicates that the bitstream may or may not obey all constraints specified in subclause
A23.

NOTE 1 — When one or more than one of constraint_set0_flag, constraint_setl flag, or constraint_set2 flag are equal to 1, the

bitstream must obey the constraints of all of the indicated subclauses of subclause A.2. When profile_idc is equal to 100, 110,
122, or 144, the values of constraint set0 flag, constraint _setl flag, and constraint set2 flag must all be equal to 0.

constraint_set3_flag indicates the following.

— Ifprofile_idc is equal to 66, 77, or 88 and level idc is equal to 11, constraint_set3 flag equal to 1 indicates that the
bitstream obeys all constraints specified in Annex A for level 1b and constraint_set3 flag equal to 0 indicates that
the bitstream may or may not obey all constraints specified in Annex A for level 1b.

— Otherwise (profile idc is equal to 100, 110, 122, or 144 or level idc is not equal to 11), the value of 1 for
constraint set3 flag is reserved for future use by ITU-T | ISO/IEC. constraint set3 flag shall be equal to 0 in
bitstreams conforming to this Recommendation | International Standard when profile idc is equal
to 100, 110, 122, or 144 or level idc is not equal to 11. Decoders conforming to this Recommendation |
International Standard shall ignore the value of constraint set3 flag when profile idc is equal
to 100, 110, 122, or 144 or level _idc is not equal to 11.

reserved_zero_4bits shall be equal to 0. Other values of reserved zero_4bits may be specified in the future by ITU-T |
ISO/TEC. Decoders shall ignore the value of reserved zero_4bits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value
of seq parameter set id shall be in the range of 0 to 31, inclusive.

NOTE 2 — When feasible, encoders should use distinct values of seq parameter set id when the values of other sequence
parameter set syntax elements differ rather than changing the values of the syntax elements associated with a specific value of
seq_parameter_set id.

chroma_format_idc specifies the chroma sampling relative to the luma sampling as specified in subclause 6.2. The
value of chroma format idc shall be in the range of 0 to 3, inclusive. When chroma format idc is not present, it shall
be inferred to be equal to 1 (4:2:0 chroma format).

residual_colour_transform_flag equal to 1 specifies that the residual colour transform is applied as specified in
subclause 8.5. residual colour transform flag equal to O specifies that the residual colour transform is not applied.
When residual colour transform_flag is not present, it shall be inferred to be equal to 0.

bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array and the value of the luma quantisation
parameter range offset QpBdOffsety, as specified by

BitDepthy = 8 + bit_depth luma minus8 (7-1)

QpBdOffsety = 6 * bit_depth_luma_minus8 (7-2)

When bit_depth_luma minus8 is not present, it shall be inferred to be equal to 0. bit_depth luma minus8 shall be in
the range of 0 to 4, inclusive.

bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays and the value of the chroma
quantisation parameter range offset QpBdOffsetc, as specified by

BitDepthe = 8 + bit_depth_chroma_minus8 (7-3)
QpBdOffsetc = 6 * (bit_depth chroma minus8 + residual colour transform flag) (7-4)
When bit_depth _chroma_minus8 is not present, it shall be inferred to be equal to 0. bit_depth _chroma minus8 shall be

in the range of 0 to 4, inclusive.

The variable RawMbBits is derived as

RawMbBits = 256 * BitDepthy + 2 * MbWidthC * MbHeightC * BitDepthc (7-5)

64 ITU-T Rec. H.264 (03/2005)

gpprime_y_zero_transform_bypass flag equal to 1 specifies that, when QP'y is equal to 0, a transform bypass
operation for the transform coefficient decoding process and picture construction process prior to deblocking filter
process as specified in subclause 8.5 shall be applied. qpprime_y_zero_transform_bypass_flag equal to 0 specifies that
the transform coefficient decoding process and picture construction process prior to deblocking filter process shall not
use the transform bypass operation. When qpprime_y_zero_transform_bypass_flag is not present, it shall be inferred to
be equal to 0.

seq_scaling_matrix_present_flag equal to 1 specifies that the flags seq_scaling list present flag[i] for i = 0..7 are
present. seq_scaling matrix_present_flag equal to 0 specifies that these flags are not present and the sequence-level
scaling list specified by Flat 4x4 16 shall be inferred for i = 0..5 and the sequence-level scaling list specified by
Flat 8x8 16 shall be inferred for i = 6..7. When seq_scaling matrix_present flag is not present, it shall be inferred to
be equal to 0.

The scaling lists Flat 4x4 16 and Flat 8x8 16 are specified as follows:

Flat 4x4 16[i]=16, withi=0..15, (7-6)

Flat 8x8 16[i]=16, withi=0..63. (7-7)

seq_scaling_list present flag| i | equal to 1 specifies that the syntax structure for scaling list i is present in the
sequence parameter set. seq_scaling_list present flag[i] equal to 0 specifies that the syntax structure for scaling list i
is not present in the sequence parameter set and the scaling list fall-back rule set A specified in Table 7-2 shall be used
to infer the sequence-level scaling list for index i.

Table 7-2 — Assignment of mnemonic names to scaling list indices and specification of fall-back rule

Value of Mnemonic name | Block MB Component Scaling list Scaling list Default
scaling list size prediction fall-back rule fall-back rule scaling list
index type set A set B
0 Sl 4x4 Intra Y 4x4 Intra Y default sequence-level | Default 4x4 Intra
scaling list scaling list
1 S1 4x4 Intra_Cb 4x4 Intra Cb scaling list scaling list Default 4x4 Intra
fori=0 fori=0
2 S1 4x4 Intra_Cr 4x4 Intra Cr scaling list scaling list Default 4x4 Intra
fori=1 fori=1
3 Sl 4x4 Inter Y 4x4 Inter Y default sequence-level | Default 4x4 Inter
scaling list scaling list
4 S1 4x4 Inter Cb 4x4 Inter Cb scaling list scaling list Default 4x4 Inter
fori=3 fori=3
5 S1 4x4 Inter Cr 4x4 Inter Cr scaling list scaling list Default 4x4 Inter
fori=4 fori=4
6 S1 8x8 Intra Y 8x8 Intra Y default sequence-level | Default 8x8 Intra
scaling list scaling list
7 S1 8x8 Inter Y 8x8 Inter Y default sequence-level | Default 8x8 Inter
scaling list scaling list

Table 7-3 specifies the default scaling lists Default 4x4 Intra and Default 4x4 Inter. Table 7-4 specifies the default
scaling lists Default 8x8 Intra and Default 8x8 Inter.

ITU-T Rec. H.264 (03/2005) 65

log2 max_frame num_minus4 specifies the value of the variable MaxFrameNum that is used in frame num related

Table 7-3 — Specification of default scaling lists Default 4x4 Intra and Default_4x4_Inter

idx 0| 1|2 |3|4|5|6|7 |89 1011|1213 |14 |15
Default 4x4 Intra[idx] | 6 | 13| 13 |20 |20 | 20 | 28 | 28 | 28 | 28 | 32 | 32 | 32 | 37 | 37 | 42
Default_4x4 Inter[idx] | 10 | 14 | 14 | 20 | 20 | 20 | 24 | 24 | 24 | 24 | 27 | 27 | 27 | 30 | 30 | 34

Table 7-4 — Specification of default scaling lists Default 8x8 Intra and Default_8x8 Inter

idx 0| 1|23 |4 |56 /|7 |89 |10|11 1213|1415
Default 8x8 Intra[idx] |6 |10 | 10 |13 |11 |13 |16 |16 | 16|16 | 18| 18| 18| 18| 18 |23
Default 8x8 Inter[idx] |9 |13 |13 (15|13 | 15|17 |17 |17 |17 (19(19]19| 19| 19|21

Table 7-4 (continued) — Specification of default scaling lists Default 8x8 Intra and Default 8x8 Inter

idx 16 | 17 | 18 | 19 | 20 | 21 |22 |23 |24 | 25|26 |27 |28 29|30 31
Default_8x8 Intra[idx | |23 |23 |23 |23 |23 |25 |25|25|25|25|25|25 |27 |27 27|27
Default 8x8 Inter[idx] |21 | 21 | 21 |21 |21 |22 |22 (2222 |22|22|22|24 |24 |24 |24

Table 7-4 (continued) — Specification of default scaling lists Default 8x8 Intra and Default 8x8 Inter

idx 32 (3334353637 |38(39|40 |41 |42 |43 |44 |45 |46 |47
Default 8x8 Intra[idx] |27 |27 |27 |27 |29 (29(29]29|29|29|29|31|31]|31]|31]3l
Default 8x8 Inter[idx] |24 |24 |24 |24 |25 |25 |25 (2525|2525 |27 |27 |27 |27 |27
Table 7-4 (concluded) — Specification of default scaling lists Default 8x8 Intra and Default 8x8 Inter

idx 48 | 49 |50 | 51 |52 |53 |54 |55|56|57|58|59|60]|61]|62]|63
Default_8x8 Intra[idx] | 31|33 |33 |33 |33 |33|36|36|36|36|38|38|38]|40]|40 |42
Default_8x8 Inter[idx] |27 | 28 | 28 | 28 | 28 | 28 | 30 | 30 | 30 | 30 |32 (32|32 |33 33|35

derivations as follows:

The value of log2 max frame num minus4 shall be in the range of 0 to 12, inclusive.

pic_order_cnt_type specifies the method to decode picture order count (as specified in subclause 8.2.1). The value of
pic_order cnt type shall be in the range of 0 to 2, inclusive.

MaxFrameNum =

2(log2_max_frame_num_minus4 + 4)

pic_order cnt_type shall not be equal to 2 in a coded video sequence that contains any of the following

66

reference picture;

access units.

ITU-T Rec. H.264 (03/2005)

an access unit containing a non-reference frame followed immediately by an access unit containing a non-

two access units each containing a field with the two fields together forming a complementary non-reference
field pair followed immediately by an access unit containing a non-reference picture;

an access unit containing a non-reference field followed immediately by an access unit containing another
non-reference picture that does not form a complementary non-reference field pair with the first of the two

log2 _max_pic_order_cnt_Isb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the
decoding process for picture order count as specified in subclause 8.2.1 as follows:

MaxPicOrderCntLsb = 2(log2_max_pic_order_cnt_Isb_minus4 + 4) (7_9)

The value of log2 max pic_order cnt Isb_minus4 shall be in the range of 0 to 12, inclusive.

delta_pic_order_always zero_flag equal to 1 specifies that delta pic_order cnt[0] and delta pic_order cnt[1] are
not present in the slice headers of the sequence and shall be inferred to be equal to 0. delta_pic_order always zero flag
equal to O specifies that delta pic order cnt[0] is present in the slice headers of the sequence and
delta pic_order cnt[1] may be present in the slice headers of the sequence.

offset_for_non_ref pic is used to calculate the picture order count of a non-reference picture as specified in 8.2.1. The
value of offset_for non_ref pic shall be in the range of -2*' to 2°*' - 1, inclusive.

offset_for_top_to_bottom_field is used to calculate the picture order count of a bottom field as specified in subclause
8.2.1. The value of offset_for top_to_bottom_field shall be in the range of -2*' to 2°*' - 1, inclusive.

num_ref frames in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in
subclause 8.2.1. The value of num_ref frames in pic order cnt cycle shall be in the range of 0 to 255, inclusive.

offset_for ref frame[i] is an element of a list of num ref frames in pic order cnt cycle values used in the
decoding process for picture order count as specified in subclause 8.2.1. The value of offset for ref frame[i] shall be
in the range of -2*' to 2*' - 1, inclusive.

num_ref frames specifies the maximum number of short-term and long-term reference frames, complementary
reference field pairs, and non-paired reference fields that may be used by the decoding process for inter prediction of
any picture in the sequence. num_ref frames also determines the size of the sliding window operation as specified in
subclause 8.2.5.3. The value of num_ref frames shall be in the range of 0 to MaxDpbSize (as specified in subclause
A.3.1 or A.3.2), inclusive.

gaps_in_frame_num_value_allowed_flag specifies the allowed values of frame num as specified in subclause 7.4.3
and the decoding process in case of an inferred gap between values of frame num as specified in subclause 8.2.5.2.

pic_width_in_mbs_minus1 plus 1 specifies the width of each decoded picture in units of macroblocks.

The variable for the picture width in units of macroblocks is derived as follows

PicWidthInMbs = pic_width_in_mbs_minus1 + 1 (7-10)

The variable for picture width for the luma component is derived as follows

PicWidthInSamples, = PicWidthInMbs * 16 (7-11)

The variable for picture width for the chroma components is derived as follows

PicWidthInSamplesc = PicWidthInMbs * MbWidthC (7-12)

pic_height_in_map_units_minus]1 plus 1 specifies the height in slice group map units of a decoded frame or field.

The variables PicHeightInMapUnits and PicSizeInMapUnits are derived as follows

PicHeightInMapUnits = pic_height in_map_units_minus1 + 1 (7-13)

PicSizeInMapUnits = PicWidthInMbs * PicHeightInMapUnits (7-14)

frame_mbs_only_flag equal to 0 specifies that coded pictures of the coded video sequence may either be coded fields
or coded frames. frame mbs only flag equal to 1 specifies that every coded picture of the coded video sequence is a
coded frame containing only frame macroblocks.

The allowed range of wvalues for pic width in mbs minusl, pic_height in map units minusl, and
frame_mbs_only flag is specified by constraints in Annex A.

ITU-T Rec. H.264 (03/2005) 67

Depending on frame_mbs_only flag, semantics are assigned to pic_height in_map units minus] as follows.

— If frame_mbs_only flag is equal to 0, pic_height in_map units minusl plus 1 is the height of a field in units of
macroblocks.

— Otherwise (frame_mbs_only flag is equal to 1), pic_height in _map units minus]l plus 1 is the height of a frame
in units of macroblocks.

The variable FrameHeightInMbs is derived as follows

FrameHeightInMbs = (2 — frame mbs_only flag) * PicHeightInMapUnits (7-15)

mb_adaptive_frame_field flag equal to 0 specifies no switching between frame and field macroblocks within a
picture. mb_adaptive frame field flag equal to 1 specifies the possible use of switching between frame and field
macroblocks within frames. When mb_adaptive frame field flag is not present, it shall be inferred to be equal to 0.

direct_8x8 inference flag specifies the method used in the derivation process for luma motion vectors for B_Skip,
B Direct 16x16 and B Direct 8x8 as specified in subclause 8.4.1.2. When frame mbs only flag is equal to 0,
direct 8x8 inference flag shall be equal to 1.

frame_cropping_flag equal to 1 specifies that the frame cropping offset parameters follow next in the sequence
parameter set. frame_cropping_flag equal to 0 specifies that the frame cropping offset parameters are not present.

frame_crop_left offset, frame crop_right offset, frame crop top_offset, frame_crop_bottom_offset specify the
samples of the pictures in the coded video sequence that are output from the decoding process, in terms of a rectangular
region specified in frame coordinates for output.

The variables CropUnitX and CropUnitY are derived as follows:
— If chroma format idc is equal to 0, CropUnitX and CropUnitY are derived as

CropUnitX =1 (7-16)
CropUnitY =2 — frame mbs_only flag (7-17)

— Otherwise (chroma_format_idc is equal to 1, 2, or 3), CropUnitX and CropUnitY are derived as

CropUnitX = SubWidthC (7-18)
CropUnitY = SubHeightC * (2 — frame_mbs_only flag) (7-19)

The frame cropping rectangle contains luma samples with horizontal frame coordinates from
CropUnitX * frame crop left offset to PicWidthInSamples, — (CropUnitX * frame crop right offset+1) and
vertical frame coordinates from CropUnitY * frame crop top offset to (16 * FrameHeightInMbs) —
(CropUnitY * frame crop bottom_offset + 1), inclusive. The value of frame crop left offset shall be in the range of
0 to (PicWidthInSamples; / CropUnitX) — (frame crop right offset+ 1), inclusive; and the value of
frame crop top offset shall be in the range of 0 to (16 * FrameHeightiInMbs/CropUnitY)—
(frame_crop_bottom_offset + 1), inclusive.

When frame cropping flag is equal to 0, the values of frame crop left offset, frame crop right offset,
frame crop_top_offset, and frame crop_bottom_offset shall be inferred to be equal to 0.

When chroma format idc is not equal to 0, the corresponding specified samples of the two chroma arrays are the
samples having frame coordinates (x / SubWidthC, y / SubHeightC), where (x, y) are the frame coordinates of the
specified luma samples.

For decoded fields, the specified samples of the decoded field are the samples that fall within the rectangle specified in
frame coordinates.

vui_parameters_present flag equal to 1 specifies that the vui_parameters() syntax structure as specified in Annex E
is present. vui_parameters_present_flag equal to 0 specifies that the vui_parameters() syntax structure as specified in
Annex E is not present.

7.4.2.1.1 Scaling list semantics

delta_scale is used to derive the j-th element of the scaling list for j in the range of 0 to sizeOfScalingList - 1, inclusive.
The value of delta_scale shall be in the range of -128 to +127, inclusive.

When useDefaultScalingMatrixFlag is derived to be equal to 1, the scaling list shall be inferred to be equal to the
default scaling list as specified in Table 7-2.

68 ITU-T Rec. H.264 (03/2005)

7.4.2.1.2 Sequence parameter set extension RBSP semantics

seq_parameter_set_id identifies the sequence parameter set associated with the sequence parameter set extension. The
value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.

aux_format_idc equal to 0 indicates that there are no auxiliary coded pictures in the coded video sequence.
aux_format idc equal to 1 indicates that exactly one auxiliary coded picture is present in each access unit of the coded
video sequence, and that for alpha blending purposes the decoded samples of the associated primary coded picture in
each access unit should be multiplied by the interpretation sample values of the auxiliary coded picture in the access
unit in the display process after output from the decoding process. aux_format idc equal to 2 indicates that exactly one
auxiliary coded picture exists in each access unit of the coded video sequence, and that for alpha blending purposes the
decoded samples of the associated primary coded picture in each access unit should not be multiplied by the
interpretation sample values of the auxiliary coded picture in the access unit in the display process after output from the
decoding process. aux_format idc equal to 3 indicates that exactly one auxiliary coded picture exists in each access unit
of the coded video sequence, and that the usage of the auxiliary coded pictures is unspecified. The value of
aux_format idc shall be in the range of 0 to 3, inclusive. Values greater than 3 for aux format idc are reserved to
indicate the presence of exactly one auxiliary coded picture in each access unit of the coded video sequence for
purposes to be specified in the future by ITU-T | ISO/IEC. When aux_format idc is not present, it shall be inferred to be
equal to 0.

NOTE 1 — Decoders conforming to this Recommendation | International Standard are not required to decode auxiliary coded
pictures.

bit_depth_aux minus8 specifies the bit depth of the samples of the sample array of the auxiliary coded picture.
bit_depth _aux_minus8 shall be in the range of 0 to 4, inclusive.

alpha_incr_flag equal to 0 indicates that the interpretation sample value for each decoded auxiliary coded picture
sample value is equal to the decoded auxiliary coded picture sample value for purposes of alpha blending.
alpha incr flag equal to 1 indicates that, for purposes of alpha blending, after decoding the auxiliary coded picture
samples, any auxiliary coded picture sample value that is greater than Min(alpha opaque value,
alpha transparent value) should be increased by one to obtain the interpretation sample value for the auxiliary coded
picture sample, and any auxiliary coded picture sample value that is less than or equal to Min(alpha opaque value,
alpha transparent value) should be used without alteration as the interpretation sample value for the decoded auxiliary
coded picture sample value.

alpha_opaque_value specifies the interpretation sample value of an auxiliary coded picture sample for which the
associated luma and chroma samples of the same access unit are considered opaque for purposes of alpha blending. The
number of bits used for the representation of the alpha opaque value syntax element is bit depth aux_minus8 + 9 bits.

alpha_transparent_value specifies the interpretation sample value of an auxiliary coded picture sample for which the
associated luma and chroma samples of the same access unit are considered transparent for purposes of alpha blending.
The number of bits used for the representation of the alpha transparent value syntax element is
bit depth aux minus8 + 9 bits.

When alpha _incr flag is equal to 1, alpha transparent value shall not be equal to alpha opaque value and
Log2(Abs(alpha_opaque value — alpha_transparent value)) shall have an integer value. A value of
alpha transparent value that is equal to alpha opaque value indicates that the auxiliary coded picture is not intended
for alpha blending purposes.

NOTE 2 — For alpha blending purposes, alpha_opaque_value may be greater than alpha_transparent_value, or it may be less than
alpha_transparent_value. Interpretation sample values should be clipped to the range of alpha opaque value to
alpha_transparent_value, inclusive.

The decoding of the sequence parameter set extension and the decoding of auxiliary coded pictures is not required for
conformance with this Recommendation | International Standard.

The syntax of each coded slice of an auxiliary coded picture shall obey the same constraints as a coded slice of a
redundant picture, with the following differences of constraints.

— The following applies in regard to whether the primary coded picture is an IDR picture.

— If the primary coded picture is an IDR picture, the auxiliary coded slice syntax shall correspond to that of a
slice having nal_unit_type equal to 5 (a slice of an IDR picture);

— Otherwise (the primary coded picture is not an IDR picture), the auxiliary coded slice syntax shall correspond
to that of a slice having nal unit_type equal to 1 (a slice of a non-IDR picture).

— The slices of an auxiliary coded picture (when present) shall contain all macroblocks corresponding to those of the
primary coded picture.

— redundant pic cnt shall be equal to 0 in all auxiliary coded slices.

ITU-T Rec. H.264 (03/2005) 69

The (optional) decoding process for the decoding of auxiliary coded pictures is the same as if the auxiliary coded
pictures were primary coded pictures in a separate coded video stream that differs from the primary coded pictures in
the current coded video stream in the following ways.

— The IDR or non-IDR status of each auxiliary coded picture shall be inferred to be the same as the IDR or non-IDR
status of the primary picture in the same access unit, rather than being inferred from the value of nal_ref idc.

— The value of chroma_format idc shall be inferred to be equal to 0 for the decoding of the auxiliary coded pictures.

— The value of bit_depth luma_minus8 shall be inferred to be equal to bit_depth aux minus8 for the decoding of
the auxiliary coded pictures.

NOTE 3 — Alpha blending composition is normally performed with a background picture B, a foreground picture F, and a
decoded auxiliary coded picture A, all of the same size. Assume for purposes of example illustration that the chroma resolution
of B and F have been upsampled to the same resolution as the luma. Denote corresponding samples of B, F and A by b, fand a,
respectively. Denote luma and chroma samples by subscripts Y, Cb and Cr.

Define the variables alphaRange, alphaFwt and alphaBwt as follows:
alphaRange = Abs(alpha_opaque value - alpha_transparent value)
alphaFwt = Abs(a - alpha_transparent_value)
alphaBwt = Abs(a - alpha_opaque_value)
Then, in alpha blending composition, samples d of the displayed picture D may be calculated as
dy = (alphaFwt*fy + alphaBwt*by + alphaRange/2) / alphaRange
dcp = (alphaFwt*fcp + alphaBwt*bcp + alphaRange/2) / alphaRange
dcr = (alphaFwt*fcp + alphaBwt*bcg + alphaRange/2) / alphaRange

The samples of pictures D, F and B could also represent red, green, and blue component values (see subclause E.2.1). Here we
have assumed Y, Cb and Cr component values. Each component, e.g. Y, is assumed for purposes of example illustration above to
have the same bit depth in each of the pictures D, F and B. However, different components, e.g. Y and Cb, need not have the
same bit depth in this example.

When aux_format_idc is equal to 1, F would be the decoded picture obtained from the decoded luma and chroma, and A would
be the decoded picture obtained from the decoded auxiliary coded picture. In this case, the indicated example alpha blending
composition involves multiplying the samples of F by factors obtained from the samples of A.

A picture format that is useful for editing or direct viewing, and that is commonly used, is called pre-multiplied-black video. If
the foreground picture was F, then the pre-multiplied-black video S is given by

sy = (alphaFwt*fy)/ alphaRange

scg = (alphaFwt*fcp) / alphaRange

scr = (alphaFwt*fcy) / alphaRange
Pre-multiplied-black video has the characteristic that the picture S will appear correct if displayed against a black background.
For a non-black background B, the composition of the displayed picture D may be calculated as

dy =sy + (alphaBwt*by + alphaRange/2) / alphaRange

dcp = scp * (alphaBwt*bep + alphaRange/2) / alphaRange

dcr = scr (alphaBwt*bcg + alphaRange/2) / alphaRange
When aux_format _idc is equal to 2, S would be the decoded picture obtained from the decoded luma and chroma, and A would

again be the decoded picture obtained from the decoded auxiliary coded picture. In this case, alpha blending composition does
not involve multiplication of the samples of S by factors obtained from the samples of A.

additional_extension_flag equal to O indicates that no additional data follows within the sequence parameter set
extension syntax structure prior to the RBSP trailing bits. The value of additional extension flag shall be equal to O.
The value of 1 for additional extension_flag is reserved for future use by ITU-T | ISO/IEC. Decoders that conform to
this Recommendation | International Standard shall ignore all data that follows the value of 1 for
additional extension_flag in a sequence parameter set extension NAL unit.

7.4.2.2 Picture parameter set RBSP semantics

pic_parameter_set_id identifies the picture parameter set that is referred to in the slice header. The value of
pic_parameter_set_id shall be in the range of 0 to 255, inclusive.

seq_parameter_set_id refers to the active sequence parameter set. The value of seq parameter set id shall be in the
range of 0 to 31, inclusive.

entropy_coding mode_flag selects the entropy decoding method to be applied for the syntax elements for which two
descriptors appear in the syntax tables as follows.

— Ifentropy_coding_mode flag is equal to 0, the method specified by the left descriptor in the syntax table is applied
(Exp-Golomb coded, see subclause 9.1 or CAVLC, see subclause 9.2).

— Otherwise (entropy_coding mode flag is equal to 1), the method specified by the right descriptor in the syntax
table is applied (CABAC, see subclause 9.3).

70 ITU-T Rec. H.264 (03/2005)

pic_order_present_flag equal to 1 specifies that the picture order count related syntax elements are present in the slice
headers as specified in subclause 7.3.3. pic_order present flag equal to 0 specifies that the picture order count related
syntax elements are not present in the slice headers.

num_slice_groups_minus1 plus 1 specifies the number of slice groups for a picture. When num_slice groups minus1
is equal to 0, all slices of the picture belong to the same slice group. The allowed range of num_slice _groups_minus1 is
specified in Annex A.

slice_group_map_type specifies how the mapping of slice group map units to slice groups is coded. The value of
slice_group_map_type shall be in the range of 0 to 6, inclusive.

slice_group_map_type equal to 0 specifies interleaved slice groups.
slice_group _map_type equal to 1 specifies a dispersed slice group mapping.
slice_group map_type equal to 2 specifies one or more “foreground” slice groups and a “leftover” slice group.

slice_group map_type values equal to 3, 4, and 5 specify changing slice groups. When num_slice _groups minus1 is
not equal to 1, slice_group_map_type shall not be equal to 3, 4, or 5.

slice_group map_type equal to 6 specifies an explicit assignment of a slice group to each slice group map unit.

Slice group map units are specified as follows.

— If frame_mbs _only flag is equal to 0 and mb_adaptive frame field flag is equal to 1 and the coded picture is a
frame, the slice group map units are macroblock pair units.

— Otherwise, if frame _mbs_only flag is equal to 1 or a coded picture is a field, the slice group map units are units of
macroblocks.

— Otherwise (frame mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and the coded
picture is a frame), the slice group map units are units of two macroblocks that are vertically contiguous as in a
frame macroblock pair of an MBAFF frame.

run_length minus1[i] is used to specify the number of consecutive slice group map units to be assigned to the i-th
slice group in raster scan order of slice group map units. The value of run_length minus1[i] shall be in the range of 0
to PicSizeInMapUnits - 1, inclusive.

top_left| i | and bottom_right][i | specify the top-left and bottom-right corners of a rectangle, respectively. top left[i]
and bottom_right[i] are slice group map unit positions in a raster scan of the picture for the slice group map units. For
each rectangle 1, all of the following constraints shall be obeyed by the values of the syntax elements top left[i | and
bottom_right[i]

— top_left[i] shall be less than or equal to bottom right[i] and bottom right[i] shall be less than
PicSizeInMapUnits.

— (top_left[i] % PicWidthInMbs) shall be less than or equal to the value of (bottom_right[i | % PicWidthInMbs).

slice_group_change_direction_flag is used with slice group map type to specify the refined map type when
slice_group map typeis 3, 4, or 5.

slice_group_change rate_minusl is used to specify the variable SliceGroupChangeRate. SliceGroupChangeRate
specifies the multiple in number of slice group map units by which the size of a slice group can change from one picture
to the next. The value of slice group change rate minusl shall be in the range of 0 to PicSizeInMapUnits — 1,
inclusive. The SliceGroupChangeRate variable is specified as follows:

SliceGroupChangeRate = slice_group change rate minusl + 1 (7-20)

pic_size_in_map_units_minusl is used to specify the number of slice group map units in the picture.
pic_size in _map units minus! shall be equal to PicSizeInMapUnits - 1.

slice_group_id[i] identifies a slice group of the i-th slice group map unit in raster scan order. The size of the
slice_group id[i] syntax element is Ceil(Log2(num_slice groups minusl + 1)) bits. The value of slice group id[1i]
shall be in the range of 0 to num_slice groups minusl, inclusive.

num_ref _idx_l0_active_minus]1 specifies the maximum reference index for reference picture list 0 that shall be used to
decode each slice of the picture in which list O prediction is used when num_ref idx active override flag is equal to 0
for the slice. When MbaffFrameFlag is equal to 1, num_ref idx 10 active minusl is the maximum index value for the
decoding of frame macroblocks and 2 * num ref idx 10 active minusl + 1 is the maximum index value for the
decoding of field macroblocks. The value of num_ref idx 10 active minusl shall be in the range of 0 to 31, inclusive.

ITU-T Rec. H.264 (03/2005) 71

num_ref idx_11_active_minus1 has the same semantics as num_ref idx 10 _active minus1 with 10 and list O replaced
by 11 and list 1, respectively.

weighted pred_flag equal to O specifies that weighted prediction shall not be applied to P and SP slices.
weighted pred flag equal to 1 specifies that weighted prediction shall be applied to P and SP slices.

weighted bipred_idc equal to O specifies that the default weighted prediction shall be applied to B slices.
weighted bipred idc equal to 1 specifies that explicit weighted prediction shall be applied to B slices.
weighted bipred_idc equal to 2 specifies that implicit weighted prediction shall be applied to B slices. The value of
weighted bipred idc shall be in the range of 0 to 2, inclusive.

pic_init_qp_minus26 specifies the initial value minus 26 of SliceQPy for each slice. The initial value is modified at the
slice layer when a non-zero value of slice_qp_delta is decoded, and is modified further when a non-zero value of
mb_qp_delta is decoded at the macroblock layer. The value of pic_init qp_minus26 shall be in the range of
-(26 + QpBdOffsety) to +25, inclusive.

pic_init_qs_minus26 specifies the initial value minus 26 of SliceQSy for all macroblocks in SP or SI slices. The initial
value is modified at the slice layer when a non-zero value of slice qs delta is decoded. The value of
pic_init_gs_minus26 shall be in the range of -26 to +25, inclusive.

chroma_qp_index_offset specifies the offset that shall be added to QPy and QSy for addressing the table of QP¢
values for the Cb chroma component. The value of chroma qp_index offset shall be in the range of -12 to +12,
inclusive.

deblocking _filter _control_present_flag equal to 1 specifies that a set of syntax elements controlling the characteristics
of the deblocking filter is present in the slice header. deblocking_filter control present flag equal to 0 specifies that the
set of syntax elements controlling the characteristics of the deblocking filter is not present in the slice headers and their
inferred values are in effect.

constrained_intra_pred_flag equal to O specifies that intra prediction allows usage of residual data and decoded
samples of neighbouring macroblocks coded using Inter macroblock prediction modes for the prediction of
macroblocks coded using Intra macroblock prediction modes. constrained intra pred flag equal to 1 specifies
constrained intra prediction, in which case prediction of macroblocks coded using Intra macroblock prediction modes
only uses residual data and decoded samples from I or SI macroblock types.

redundant_pic_cnt_present_flag equal to 0 specifies that the redundant pic_cnt syntax element is not present in slice
headers, data partitions B, and data partitions C that refer (either directly or by association with a corresponding data
partition A) to the picture parameter set. redundant pic_cnt present flag equal to 1 specifies that the redundant pic_cnt
syntax element is present in all slice headers, data partitions B, and data partitions C that refer (either directly or by
association with a corresponding data partition A) to the picture parameter set.

transform_8x8 mode flag equal to 1 specifies that the 8x8 transform decoding process may be in use (see
subclause 8.5). transform 8x8 mode flag equal to O specifies that the 8x8 transform decoding process is not in use.
When transform 8x8 mode flag is not present, it shall be inferred to be 0.

pic_scaling_matrix_present_flag equal to | specifies that parameters are present to modify the scaling lists specified
in the sequence parameter set. pic_scaling matrix_present flag equal to O specifies that the scaling lists used for the
picture shall be inferred to be equal to those specified by the sequence parameter set. When
pic_scaling matrix_present flag is not present, it shall be inferred to be equal to 0.

pic_scaling_list_present flag[i] equal to 1 specifies that the scaling list syntax structure is present to specify the
scaling list for index i. pic_scaling_list present flag[i] equal to O specifies that the syntax structure for scaling list i is
not present in the picture parameter set and that depending on the value of seq scaling matrix_present flag, the
following applies.

— Ifseq_scaling_matrix_present flag is equal to 0, the scaling list fall-back rule set A as specified in Table 7-2 shall
be used to derive the picture-level scaling list for index i.

— Otherwise (seq_scaling_matrix_present flag is equal to 1), the scaling list fall-back rule set B as specified in
Table 7-2 shall be used to derive the picture-level scaling list for index i.

second_chroma_qp_index_offset specifies the offset that shall be added to QPy and QSy for addressing the table of
QP values for the Cr chroma component. The value of second chroma qp_index offset shall be in the range of -12 to
+12, inclusive.

When second _chroma qp_index offset is not present, it shall be inferred to be equal to chroma_qp_index_offset.

72 ITU-T Rec. H.264 (03/2005)

7.4.2.3 Supplemental enhancement information RBSP semantics

Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of
coded pictures from VCL NAL units.

7.4.2.3.1 Supplemental enhancement information message semantics

An SEI NAL unit contains one or more SEI messages. Each SEI message consists of the variables specifying the type
payloadType and size payloadSize of the SEI payload. SEI payloads are specified in Annex D. The derived SEI payload
size payloadSize is specified in bytes and shall be equal to the number of bytes in the SEI payload.

ff_byte is a byte equal to OxFF identifying a need for a longer representation of the syntax structure that it is used
within.

last_payload_type_byte is the last byte of the payload type of an SEI message.

last_payload_size_byte is the last byte of the size of an SEI message.

7.4.2.4 Access unit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify
the detection of the boundary between access units. There is no normative decoding process associated with the access
unit delimiter.

primary_pic_type indicates that the slice_type values for all slices of the primary coded picture are members of the set
listed in Table 7-5 for the given value of primary_pic_type.

Table 7-5 — Meaning of primary_pic_type

primary_pic_type | slice_type values that may be present in the primary coded picture
0 I

1 ILP

2 ILP,B

3 SI

4 SI, SP

5 I, SI

6 I, SI, P, SP

7 I, S, P, SP, B

7.4.2.5 End of sequence RBSP semantics

The end of sequence RBSP specifies that the next subsequent access unit in the bitstream in decoding order (if any)
shall be an IDR access unit. The syntax content of the SODB and RBSP for the end of sequence RBSP are empty. No
normative decoding process is specified for an end of sequence RBSP.

7.4.2.6 End of stream RBSP semantics

The end of stream RBSP indicates that no additional NAL units shall be present in the bitstream that are subsequent to
the end of stream RBSP in decoding order. The syntax content of the SODB and RBSP for the end of stream RBSP are
empty. No normative decoding process is specified for an end of stream RBSP.

7.4.2.7 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to 0xFF. No normative decoding process is specified for
a filler data RBSP.

ff byte is a byte equal to OxFF.

7.4.2.8 Slice layer without partitioning RBSP semantics

The slice layer without partitioning RBSP consists of a slice header and slice data.

ITU-T Rec. H.264 (03/2005) 73

7.4.2.9 Slice data partition RBSP semantics

7.4.2.9.1 Slice data partition A RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Partition
A contains all syntax elements of category 2.

Category 2 syntax elements include all syntax elements in the slice header and slice data syntax structures other than the
syntax elements in the residual() syntax structure.

slice_id identifies the slice associated with the data partition. Each slice shall have a unique slice id value within the
coded picture that contains the slice. When arbitrary slice order is not allowed as specified in Annex A, the first slice of
a coded picture, in decoding order, shall have slice id equal to 0 and the value of slice id shall be incremented by one
for each subsequent slice of the coded picture in decoding order.

The range of slice_id is specified as follows.
— If MbaftFrameFlag is equal to O, slice_id shall be in the range of 0 to PicSizeInMbs - 1, inclusive.
— Otherwise (MbaftFrameFlag is equal to 1), slice id shall be in the range of 0 to PicSizeInMbs / 2 - 1, inclusive.

7.4.2.9.2 Slice data partition B RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into one to three separate partitions.
Slice data partition B contains all syntax elements of category 3.

Category 3 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types I and SI as specified in Table 7-10.

slice_id has the same semantics as specified in subclause 7.4.2.9.1.

redundant_pic_cnt shall be equal to O for slices and slice data partitions belonging to the primary coded picture. The
redundant pic_cnt shall be greater than 0 for coded slices and coded slice data partitions in redundant coded pictures.
When redundant pic_cnt is not present, its value shall be inferred to be equal to 0. The value of redundant_pic_cnt shall
be in the range of 0 to 127, inclusive.

The presence of a slice data partition B RBSP is specified as follows.

— If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 3
in the slice data for a slice, a slice data partition B RBSP shall be present having the same value of slice id and
redundant_pic_cnt as in the slice data partition A RBSP.

— Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax
elements of category 3 in the slice data for a slice), no slice data partition B RBSP shall be present having the same
value of slice_id and redundant pic_cnt as in the slice data partition A RBSP.

7.4.2.9.3 Slice data partition C RBSP semantics

When slice data partitioning is in use, the coded data for a single slice is divided into three separate partitions. Slice data
partition C contains all syntax elements of category 4.

Category 4 syntax elements include all syntax elements in the residual() syntax structure and in syntax structures used
within that syntax structure for collective macroblock types P and B as specified in Table 7-10.

slice_id has the same semantics as specified in subclause 7.4.2.9.1.
redundant_pic_cnt has the same semantics as specified in subclause 7.4.2.9.2.
The presence of a slice data partition C RBSP is specified as follows.

— If the syntax elements of a slice data partition A RBSP indicate the presence of any syntax elements of category 4
in the slice data for a slice, a slice data partition C RBSP shall be present having the same value of slice id and
redundant pic_cnt as in the slice data partition A RBSP.

— Otherwise (the syntax elements of a slice data partition A RBSP do not indicate the presence of any syntax
elements of category 4 in the slice data for a slice), no slice data partition C RBSP shall be present having the same
value of slice_id and redundant pic_cnt as in the slice data partition A RBSP.

7.4.2.10 RBSP slice trailing bits semantics

cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000.

74 ITU-T Rec. H.264 (03/2005)

Let NumBytesInVcINALunits be the sum of the values of NumBytesInNALunit for all VCL NAL units of a coded
picture.

Let BinCountsInNALunits be the number of times that the parsing process function DecodeBin(), specified in
subclause 9.3.3.2, is invoked to decode the contents of all VCL NAL units of a coded picture. When
entropy_coding mode flag is equal to 1, BinCountsInNALunits shall not exceed (32 + 3) * NumBytesInVcINALunits
+ (RawMbBits * PicSizeInMbs) + 32.
NOTE — The constraint on the maximum number of bins resulting from decoding the contents of the slice layer NAL units can be
met by inserting a number of cabac zero word syntax elements to increase the value of NumBytesInVcINALunits. Each

cabac_zero word is represented in a NAL unit by the three-byte sequence 0x000003 (as a result of the constraints on NAL unit
contents that result in requiring inclusion of an emulation_prevention_three byte for each cabac_zero word).

7.4.2.11 RBSP trailing bits semantics
rbsp_stop_one_bit shall be equal to 1.

rbsp_alignment_zero_bit shall be equal to 0.

7.4.3 Slice header semantics

When present, the value of the slice header syntax elements pic _parameter set id, frame num, field pic flag,
bottom_field flag, idr_pic _id, pic_order cnt_Isb, delta_pic_order_cnt bottom, delta_pic_order cnt[0],
delta_pic_order cnt[1], sp_for switch flag, and slice_group change cycle shall be the same in all slice headers of a
coded picture.

first_ mb_in_slice specifies the address of the first macroblock in the slice. When arbitrary slice order is not allowed as
specified in Annex A, the value of first mb_in_slice shall not be less than the value of first mb_in_slice for any other
slice of the current picture that precedes the current slice in decoding order.

The first macroblock address of the slice is derived as follows.

— If MbaffFrameFlag is equal to 0, first mb in_slice is the macroblock address of the first macroblock in the slice,
and first mb_in_slice shall be in the range of 0 to PicSizeInMbs - 1, inclusive.

— Otherwise (MbaffFrameFlag is equal to 1), first mb_in_slice * 2 is the macroblock address of the first macroblock
in the slice, which is the top macroblock of the first macroblock pair in the slice, and first mb_in_slice shall be in
the range of 0 to PicSizeInMbs / 2 - 1, inclusive.

slice_type specifies the coding type of the slice according to Table 7-6.

Table 7-6 — Name association to slice_type

slice_type Name of slice_type
0 P (P slice)
1 B (B slice)
2 I (I slice)
3 SP (SP slice)
4 SI (SI slice)
5 P (P slice)
6 B (B slice)
7 I (I slice)
8 SP (SP slice)
9 SI (SI slice)

slice_type values in the range 5..9 specify, in addition to the coding type of the current slice, that all other slices of the
current coded picture shall have a value of slice type equal to the current value of slice_type or equal to the current
value of slice_type — 5.

When nal_unit_type is equal to 5 (IDR picture), slice _type shall be equal to 2, 4, 7, or 9.
When num_ref frames is equal to 0, slice type shall be equal to 2, 4, 7, or 9.

pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter set id shall be in the
range of 0 to 255, inclusive.

ITU-T Rec. H.264 (03/2005) 75

frame_num is used as an identifier for pictures and shall be represented by log2 max frame num_minus4 + 4 bits in
the bitstream. frame num is constrained as follows:

The variable PrevRefFrameNum is derived as follows.

If the current picture is an IDR picture, PrevRefFrameNum is set equal to 0.

Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set as follows.

If the decoding process for gaps in frame num specified in subclause 8.2.5.2 was invoked by the decoding
process for an access unit that contained a non-reference picture that followed the previous access unit in
decoding order that contained a reference picture, PrevRefFrameNum is set equal to the value of frame num
for the last of the "non-existing" reference frames inferred by the decoding process for gaps in frame num
specified in subclause 8.2.5.2.

Otherwise, PrevRefFrameNum is set equal to the value of frame num for the previous access unit in
decoding order that contained a reference picture.

The value of frame_num is constrained as follows.

If the current picture is an IDR picture, frame num shall be equal to 0.

Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access
unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame num
for the current picture shall not be equal to PrevRefFrameNum unless all of the following three conditions are true.

the current picture and the preceding reference picture belong to consecutive access units in decoding order
the current picture and the preceding reference picture are reference fields having opposite parity

one or more of the following conditions is true
— the preceding reference picture is an IDR picture

— the preceding reference picture includes a memory management control operation syntax element equal
to5

NOTE 1 — When the preceding reference picture includes a memory management control_operation syntax
element equal to 5, PrevRefFrameNum is equal to 0.

— there is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture does not have frame num equal to
PrevRefFrameNum

— there is a primary coded picture that precedes the preceding reference picture and the primary coded
picture that precedes the preceding reference picture is not a reference picture

When the value of frame num is not equal to PrevRefFrameNum, the following applies.

76

There shall not be any previous field or frame in decoding order that is currently marked as "used for short-term
reference" that has a value of frame num equal to any value taken on by the variable UnusedShortTermFrameNum
in the following:

UnusedShortTermFrameNum = (PrevRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame num) (7-21)

UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

The value of frame_num is constrained as follows.

If gaps_in_frame num value allowed flag is equal to 0, the value of frame num for the current picture shall
be equal to (PrevRefFrameNum + 1) % MaxFrameNum.

Otherwise (gaps_in_frame num value allowed flag is equal to 1), the following applies.

— If frame num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the
bitstream that follow the previous reference picture and precede the current picture in decoding order in
which either of the following conditions is true.

— The value of frame num for the non-reference picture is less than PrevRefFrameNum.

— The value of frame num for the non-reference picture is greater than the value of frame num for
the current picture.

ITU-T Rec. H.264 (03/2005)

— Otherwise (frame_num is less than PrevRefFrameNum), there shall not be any non-reference pictures in
the bitstream that follow the previous reference picture and precede the current picture in decoding order
in which both of the following conditions are true.

— The value of frame num for the non-reference picture is less than PrevRefFrameNum.

— The value of frame num for the non-reference picture is greater than the value of frame num for
the current picture.

A picture including a memory management control operation equal to5 shall have frame num constraints as
described above and, after the decoding of the current picture and the processing of the memory management control
operations, the picture shall be inferred to have had frame num equal to O for all subsequent use in the decoding
process, except as specified in subclause 7.4.1.2.4.

NOTE 2 — When the primary coded picture is not an IDR picture and does not contain memory management_control operation
syntax element equal to 5, the value of frame num of a corresponding redundant coded picture is the same as the value of
frame num in the primary coded picture. Alternatively, the redundant coded picture includes a
memory_management_control operation syntax element equal to 5 and the corresponding primary coded picture is an IDR
picture.

field_pic_flag equal to 1 specifies that the slice is a slice of a coded field. field pic_flag equal to O specifies that the
slice is a slice of a coded frame. When field pic flag is not present it shall be inferred to be equal to 0.

The variable MbaffFrameFlag is derived as follows.

MbaffFrameFlag = (mb_adaptive frame field flag && !field pic flag) (7-22)

The variable for the picture height in units of macroblocks is derived as follows

PicHeightInMbs = FrameHeightInMbs / (1 + field pic flag) (7-23)

The variable for picture height for the luma component is derived as follows

PicHeightInSamples; = PicHeightInMbs * 16 (7-24)

The variable for picture height for the chroma component is derived as follows

PicHeightInSamplesc = PicHeightInMbs * MbHeightC (7-25)

The variable PicSizeInMbs for the current picture is derived according to:

PicSizeInMbs = PicWidthInMbs * PicHeightInMbs (7-26)

The variable MaxPicNum is derived as follows.

— Iffield pic flag is equal to 0, MaxPicNum is set equal to MaxFrameNum.

— Otherwise (field pic_flag is equal to 1), MaxPicNum is set equal to 2*MaxFrameNum.
The variable CurrPicNum is derived as follows.

— Iffield pic_flag is equal to 0, CurrPicNum is set equal to frame num.

— Otherwise (field pic_flag is equal to 1), CurrPicNum is set equal to 2 * frame num + 1.

bottom_field_flag equal to 1 specifies that the slice is part of a coded bottom field. bottom field flag equal to 0
specifies that the picture is a coded top field. When this syntax element is not present for the current slice, it shall be
inferred to be equal to 0.

idr_pic_id identifies an IDR picture. The values of idr pic id in all the slices of an IDR picture shall remain
unchanged. When two consecutive access units in decoding order are both IDR access units, the value of idr_pic id in
the slices of the first such IDR access unit shall differ from the idr pic_id in the second such IDR access unit. The value
of idr_pic_id shall be in the range of 0 to 65535, inclusive.

pic_order_cnt_Isb specifies the picture order count modulo MaxPicOrderCntLsb for the top field of a coded frame or
for a coded field. The size of the pic_order cnt Isb syntax element is log2 max pic_order cnt Isb minus4 + 4 bits.
The value of the pic_order cnt Isb shall be in the range of 0 to MaxPicOrderCntLsb — 1, inclusive.

ITU-T Rec. H.264 (03/2005) 77

delta_pic_order_cnt_bottom specifies the picture order count difference between the bottom field and the top field of
a coded frame as follows.

— If the current picture includes a memory management control operation equal to 5, the value of
delta_pic_order _cnt_bottom shall be in the range of (1 — MaxPicOrderCntLsb) to 2*' - 1, inclusive.

— Otherwise (the current picture does not include a memory_management_control _operation equal to 5), the value of
delta_pic_order_cnt_bottom shall be in the range of —2*' to 2°! - 1, inclusive.

When this syntax element is not present in the bitstream for the current slice, it shall be inferred to be equal to 0.

delta_pic_order_cnt[0 | specifies the picture order count difference from the expected picture order count for the top
field of a coded frame or for a coded field as specified in subclause 8.2.1. The value of delta_pic_order cnt[0] shall be
in the range of -2°' to 2°' - 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it
shall be inferred to be equal to 0.

delta_pic_order_cnt[1 | specifies the picture order count difference from the expected picture order count for the
bottom field of a coded frame specified in subclause 8.2.1. The value of delta pic_order cnt[1] shall be in the range of
-2*"to 2°' - 1, inclusive. When this syntax element is not present in the bitstream for the current slice, it shall be inferred
to be equal to 0.

redundant_pic_cnt shall be equal to 0 for slices and slice data partitions belonging to the primary coded picture. The
value of redundant pic cnt shall be greater than 0 for coded slices or coded slice data partitions of a redundant coded
picture. When redundant pic_cnt is not present in the bitstream, its value shall be inferred to be equal to 0. The value of
redundant pic_cnt shall be in the range of 0 to 127, inclusive.

NOTE 3 — Any area of the decoded primary picture and the corresponding area that would result from application of the
decoding process specified in clause 8 for any redundant picture in the same access unit should be visually similar in appearance.

The value of pic_parameter set id in a coded slice or coded slice data partition of a redundant coded picture shall be
such that the value of pic_order present flag in the picture parameter set in use in a redundant coded picture is equal to
the value of pic_order present flag in the picture parameter set in use in the corresponding primary coded picture.

When present in the primary coded picture and any redundant coded picture, the following syntax elements shall have
the same value: field pic flag, bottom field flag, and idr pic_id.

When the value of nal_ref idc in one VCL NAL unit of an access unit is equal to 0, the value of nal_ref idc in all other
VCL NAL units of the same access unit shall be equal to 0.
NOTE 4 — The above constraint also has the following implications. If the value of nal ref idc for the VCL NAL units of the
primary coded picture is equal to 0, the value of nal ref idc for the VCL NAL units of any corresponding redundant coded

picture are equal to 0; otherwise (the value of nal ref idc for the VCL NAL units of the primary coded picture is greater than 0),
the value of nal_ref idc for the VCL NAL units of any corresponding redundant coded picture are also greater than 0.

The marking status of reference pictures and the value of frame num after the decoded reference picture marking
process as specified in subclause 8.2.5 is invoked for the primary coded picture or any redundant coded picture of the
same access unit shall be identical regardless whether the primary coded picture or any redundant coded picture (instead
of the primary coded picture) of the access unit would be decoded.

NOTE 5 — The above constraint also has the following implications.

If a primary coded picture is not an IDR picture, the contents of the dec_ref pic_marking() syntax structure must be identical in

all slice headers of the primary coded picture and all redundant coded pictures corresponding to the primary coded picture.

Otherwise (a primary coded picture is an IDR picture), the following applies.

If a redundant coded picture corresponding to the primary coded picture is an IDR picture, the contents of the

dec_ref pic_marking() syntax structure must be identical in all slice headers of the primary coded picture and the redundant
coded picture corresponding to the primary coded picture.

Otherwise (a redundant picture corresponding to the primary coded picture is not an IDR picture), all slice headers of the
redundant picture must contain a dec_ref pic_marking syntax() structure including a memory management control operation
syntax element equal to 5, and the following applies.

If the value of long_term_reference flag in the primary coded picture is equal to 0, the dec_ref pic_marking syntax structure of
the redundant coded picture must not include a memory _management_control_operation syntax element equal to 6.

Otherwise (the value of long term_reference flag in the primary coded picture is equal to 1), the dec_ref pic_marking syntax
structure of the redundant coded picture must include memory management _control_operation syntax elements equal to 5, 4, and
6 in decoding order, and the value of max long term frame idx plusl must be equal to1l, and the value of
long_term frame idx must be equal to 0.

The values of TopFieldOrderCnt and BottomFieldOrderCnt (if applicable) that result after completion of the decoding
process for any redundant coded picture or the primary coded picture of the same access unit shall be identical
regardless whether the primary coded picture or any redundant coded picture (instead of the primary coded picture) of
the access unit would be decoded.

78 ITU-T Rec. H.264 (03/2005)

There is no required decoding process for a coded slice or coded slice data partition of a redundant coded picture. When
the redundant_pic_cnt in the slice header of a coded slice is greater than 0, the decoder may discard the coded slice.
However, a coded slice or coded slice data partition of any redundant coded picture shall obey the same constraints as a
coded slice or coded slice data partition of a primary picture.
NOTE 6 — When some of the samples in the decoded primary picture cannot be correctly decoded due to errors or losses in
transmission of the sequence and a coded redundant slice can be correctly decoded, the decoder should replace the samples of the
decoded primary picture with the corresponding samples of the decoded redundant slice. When more than one redundant slice
covers the relevant region of the primary picture, the redundant slice having the lowest value of redundant pic_cnt should be
used.

Redundant slices and slice data partitions having the same value of redundant pic_cnt belong to the same redundant
picture. Decoded slices within the same redundant picture need not cover the entire picture area and shall not overlap.

direct_spatial mv_pred_flag specifies the method used in the decoding process to derive motion vectors and reference
indices for inter prediction as follows.

— If direct_spatial mv_pred flag is equal to 1, the derivation process for luma motion vectors for B_Skip,
B _Direct 16x16, and B_Direct 8x8 in subclause 8.4.1.2 shall use spatial direct mode prediction as specified in
subclause 8.4.1.2.2.

— Otherwise (direct_spatial mv_pred flag is equal to 0), the derivation process for luma motion vectors for B_Skip,
B _Direct 16x16, and B_Direct 8x8 in subclause 8.4.1.2 shall use temporal direct mode prediction as specified in
subclause 8.4.1.2.3.

num_ref idx_ active_override flag equal to0O specifies that the values of the syntax -elements
num_ref idx 10 active minusl and num_ref idx 11 active _minus] specified in the referred picture parameter set are
in effect. num_ref idx active override flag equal to 1 specifies that the num ref idx 10 active minusl and
num_ref idx 11 _active minus] specified in the referred picture parameter set are overridden for the current slice (and
only for the current slice) by the following values in the slice header.

When the current slice is a P, SP, or B slice and field pic flag is equal to0 and the value of
num_ref idx 10 active minusl in the picture parameter set exceeds 15, num ref idx active override flag shall be
equal to 1.

When the current slice is a B slice and field pic flag is equal to 0 and the value of num_ref idx 11 active minusl in
the picture parameter set exceeds 15, num_ref idx active override flag shall be equal to 1.

num_ref idx 10 _active_minusl1 specifies the maximum reference index for reference picture list 0 that shall be used to
decode the slice.

The range of num ref idx 10 active minus] is specified as follows.

— If field pic flag is equal to 0, num_ref idx 10 active minusl shall be in the range of 0 to 15, inclusive. When
MbaffFrameFlag is equal to 1, num_ref idx 10 active minusl is the maximum index value for the decoding of
frame macroblocks and 2 * num ref idx 10 active minusl + 1 is the maximum index value for the decoding of
field macroblocks.

— Otherwise (field pic flag is equal to 1), num_ref idx 10 active minusl shall be in the range of 0 to 31, inclusive.

num_ref idx_11_active_minus1 has the same semantics as num_ref idx 10 active minus1 with 10 and list O replaced
by 11 and list 1, respectively.

cabac_init_idc specifies the index for determining the initialisation table used in the initialisation process for context
variables. The value of cabac_init idc shall be in the range of 0 to 2, inclusive.

slice_qp_delta specifies the initial value of QPy to be used for all the macroblocks in the slice until modified by the
value of mb_qp_delta in the macroblock layer. The initial QPy quantisation parameter for the slice is computed as:

SliceQPy = 26 + pic_init_qp_minus26 + slice qp_delta (7-27)

The value of slice_qp_delta shall be limited such that SliceQPy is in the range of -QpBdOffsety to +51, inclusive.
sp_for_switch_flag specifies the decoding process to be used to decode P macroblocks in an SP slice as follows.

— If sp_for_switch_flag is equal to 0, the P macroblocks in the SP slice shall be decoded using the SP decoding
process for non-switching pictures as specified in subclause 8.6.1.

— Otherwise (sp_for _switch_flag is equal to 1), the P macroblocks in the SP slice shall be decoded using the SP and
SI decoding process for switching pictures as specified in subclause 8.6.2.

ITU-T Rec. H.264 (03/2005) 79

slice_qs_delta specifies the value of QSy for all the macroblocks in SP and SI slices. The QSy quantisation parameter
for the slice is computed as:

QSy =26 + pic_init_qs minus26 + slice_gs_delta (7-28)

The value of slice_gs_delta shall be limited such that QSy is in the range of 0 to 51, inclusive. This value of QSy is used
for the decoding of all macroblocks in SI slices with mb_type equal to SI and all macroblocks in SP slices with
prediction mode equal to inter.

disable_deblocking_filter idc specifies whether the operation of the deblocking filter shall be disabled across some
block edges of the slice and specifies for which edges the filtering is disabled. When disable deblocking_filter idc is
not present in the slice header, the value of disable deblocking_filter idc shall be inferred to be equal to 0.

The value of disable deblocking_filter idc shall be in the range of 0 to 2, inclusive.

slice_alpha_c0_offset_div2 specifies the offset used in accessing the a and tcy deblocking filter tables for filtering
operations controlled by the macroblocks within the slice. From this value, the offset that shall be applied when
addressing these tables shall be computed as:

FilterOffsetA = slice_alpha c0 offset div2 <<1 (7-29)

The value of slice_alpha cO_offset_div2 shall be in the range of -6 to +6, inclusive. When slice_alpha c0_offset div2
is not present in the slice header, the value of slice_alpha c0 offset div2 shall be inferred to be equal to 0.

slice_beta_offset_div2 specifies the offset used in accessing the B deblocking filter table for filtering operations
controlled by the macroblocks within the slice. From this value, the offset that is applied when addressing the 3 table of
the deblocking filter shall be computed as:

FilterOffsetB = slice beta offset div2 <<'1 (7-30)

The value of slice beta offset div2 shall be in the range of -6 to +6, inclusive. When slice beta_offset div2 is not
present in the slice header the value of slice_beta offset div2 shall be inferred to be equal to 0.

slice_group_change cycle is used to derive the number of slice group map units in slice group 0 when
slice_group _map _type is equal to 3, 4, or 5, as specified by

MapUnitsInSliceGroup0 = Min(slice_group_change cycle * SliceGroupChangeRate, PicSizeInMapUnits) (7-31)

The value of slice_group change cycle is represented in the bitstream by the following number of bits

Ceil(Log2(PicSizeInMapUnits + SliceGroupChangeRate + 1)) (7-32)

The value of slice_group change cycle shall be in the range of 0
to Ceil(PicSizeInMapUnits+SliceGroupChangeRate), inclusive.

7.4.3.1 Reference picture list reordering semantics

The syntax elements reordering of pic nums idc, abs diff pic num minusl, and long term pic num specify the
change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref_pic_list_reordering_flag 10 equal to 1 specifies that the syntax element reordering of pic nums_idc is present for
specifying reference picture list 0. ref pic list reordering_flag 10 equal to 0 specifies that this syntax element is not
present.

When ref pic list reordering flag 10 is equal to 1, the number of times that reordering of pic nums_idc is not equal
to 3 following ref pic_list reordering flag 10 shall not exceed num_ref idx 10 active minusl + 1.

When RefPicListO[num_ref idx 10 active minusl] in the initial reference picture list produced as specified in
subclause 8.2.4.2 is equal to "no reference picture", ref pic list reordering flag 10 shall be equal to1 and
reordering_of pic nums_idc shall not be equal to3 until RefPicListO] num ref idx 10 active minusl | in the
reordered list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture".

80 ITU-T Rec. H.264 (03/2005)

ref pic_list_reordering flag 11 equal to 1 specifies that the syntax element reordering_of pic_nums_idc is present for
specifying reference picture list 1. ref pic list reordering flag 11 equal to O specifies that this syntax element is not
present.

When ref pic_list_reordering flag 11 is equal to 1, the number of times that reordering_of pic nums_idc is not equal
to 3 following ref pic_list reordering_flag 11 shall not exceed num_ref idx 11 active minusl + 1.

When decoding a B slice and RefPicList][num_ref idx 11 _active minusl] in the initial reference picture list produced
as specified in subclause 8.2.4.2 is equal to "no reference picture", ref pic_list reordering flag 11 shall be equal to 1
and reordering_of pic nums_idc shall not be equal to 3 until RefPicList][num_ref idx 11 active minusl] in the
reordered list produced as specified in subclause 8.2.4.3 is not equal to "no reference picture".

reordering_of pic nums_ide together with abs_diff pic num minusl or long term_ pic_num specifies which of the
reference pictures are re-mapped. The values of reordering_of pic_nums_idc are specified in Table 7-7. The value of
the first reordering of pic nums idc that follows immediately after ref pic list reordering flag 10 or
ref pic_list reordering_flag 11 shall not be equal to 3.

Table 7-7 — reordering_of pic_nums_idc operations for reordering of reference picture lists

reordering_of pic_nums_idc Reordering specified

0 abs_diff pic num_minusl is present and corresponds to a difference to
subtract from a picture number prediction value

1 abs_diff pic_num minusl is present and corresponds to a difference to
add to a picture number prediction value

2 long_term pic_num is present and specifies the long-term picture number
for a reference picture

3 End loop for reordering of the initial reference picture list

abs_diff pic_ num_minusl plus 1 specifies the absolute difference between the picture number of the picture being
moved to the current index in the list and the picture number prediction value. abs_diff pic num_minusl1 shall be in the
range of 0 to MaxPicNum — 1. The allowed values of abs_diff pic num_minus]l are further restricted as specified in
subclause 8.2.4.3.1.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list.
When decoding a coded frame, long term pic num shall be equal to a LongTermPicNum assigned to one of the
reference frames or complementary reference field pairs marked as "used for long-term reference". When decoding a
coded field, long_term pic_num shall be equal to a LongTermPicNum assigned to one of the reference fields marked as
"used for long-term reference".

7.4.3.2 Prediction weight table semantics

luma_log2_weight_denom is the base 2 logarithm of the denominator for all luma weighting factors. The value of
luma log2 weight denom shall be in the range of 0 to 7, inclusive.

chroma_log2 weight_denom is the base 2 logarithm of the denominator for all chroma weighting factors. The value of
chroma log2 weight denom shall be in the range of 0 to 7, inclusive.

luma_weight_10_flag equal to 1 specifies that weighting factors for the luma component of list 0 prediction are present.
luma_weight 10 flag equal to O specifies that these weighting factors are not present.

luma_weight 10[1] is the weighting factor applied to the luma prediction value for list 0 prediction using
RefPicListO[i]. When luma_ weight 10 flag is equal to 1, the value of luma weight 10[i] shall be in the range of
—128 to 127, inclusive. When luma_weight 10 flag is equal to 0, luma weight 10[i] shall be inferred to be equal
to 2Mma-log2 weight denom £, R ofPicListO[i].

luma_offset 10[i | is the additive offset applied to the luma prediction value for list 0 prediction using RefPicList0[i].
The value of luma_offset 10[i] shall be in the range of —128 to 127, inclusive. When luma_weight 10 flag is equal
to 0, luma_offset 10[i] shall be inferred as equal to 0 for RefPicList0[i].

chroma_weight 10 _flag equal to 1 specifies that weighting factors for the chroma prediction values of list 0 prediction
are present. chroma_weight 10 flag equal to 0 specifies that these weighting factors are not present.

ITU-T Rec. H.264 (03/2005) 81

chroma_weight 10[i][]] is the weighting factor applied to the chroma prediction values for list 0 prediction using
RefPicListO[i] with j equal to 0 for Cb and j equal to 1 for Cr. When chroma_weight 10 flag is equal to 1, the value of
chroma weight 10[i][j] shall be in the range of —128 to 127, inclusive. When chroma weight 10 flag is equal to 0,
chroma_weight 10[i][j] shall be inferred to be equal to 2¢Mome-leg2weight denom £ R ofPicListO[i].

chroma_offset 10[i][j] is the additive offset applied to the chroma prediction values for list O prediction using
RefPicListO[i] with j equal to 0 for Cb and j equal to 1 for Cr. The value of chroma_offset 10[i][j] shall be in the
range of -128 to 127, inclusive. When chroma weight 10 flag is equal to 0, chroma offset 10[i][j] shall be inferred
to be equal to 0 for RefPicListO[i].

luma_weight 11_flag, luma_weight_I1, luma_offset 11, chroma_weight 11 _flag, chroma_weight 11,
chroma_offset 11 have the same semantics as luma weight 10 flag, luma weight 10, luma offset 10,
chroma_weight 10 flag, chroma_weight 10, chroma_ offset 10, respectively, with 10, list 0, and ListO replaced by 11,
list 1, and List1, respectively.

7.4.3.3 Decoded reference picture marking semantics

The syntax elements no output of prior pics flag, long term reference flag, adaptive ref pic marking mode flag,
memory management control operation, difference of pic nums minusl, long term frame idx,
long term pic num, and max long term frame idx plusl specify marking of the reference pictures.

nn

The marking of a reference picture can be "unused for reference", "used for short-term reference", or "used for long-
term reference", but only one among these three. When a reference picture is referred to as being marked as "used for
reference", this collectively refers to the picture being marked as "used for short-term reference" or "used for long-term
reference" (but not both). A reference picture that is marked as "used for short-term reference" is referred to as a short-
term reference picture. A reference picture that is marked as "used for long-term reference" is referred to as a long-term
reference picture.

The syntax element adaptive ref pic_marking mode flag and the content of the decoded reference picture marking
syntax structure shall be identical for all coded slices of a coded picture.

The syntax category of the decoded reference picture marking syntax structure shall be inferred as follows.

— If the decoded reference picture marking syntax structure is in a slice header, the syntax category of the decoded
reference picture marking syntax structure shall be inferred to be equal to 2.

— Otherwise (the decoded reference picture marking syntax structure is in a decoded reference picture marking
repetition SEI message as specified in Annex D), the syntax category of the decoded reference picture marking
syntax structure shall be inferred to be equal to 5.

no_output_of prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated
after decoding of an IDR picture. See Annex C. When the IDR picture is the first IDR picture in the bitstream, the value
of no_output_of prior pics flag has no effect on the decoding process. When the IDR picture is not the first IDR
picture in the bitstream and the value of PicWidthinMbs, FrameHeightinMbs, or max_dec frame buffering derived
from the active sequence parameter set is different from the value of PicWidthInMbs, FrameHeightInMbs, or
max_dec_frame buffering derived from the sequence parameter set active for the preceding sequence,
no_output_of prior pics flag equal to 1 may be inferred by the decoder, regardless of the actual value of
no_output_of prior pics flag.

long_term_reference_flag equal to 0 specifies that the MaxLongTermFrameldx variable is set equal to “no long-term
frame indices” and that the IDR picture is marked as “used for short-term reference”. long_term_reference flag equal
to 1 specifies that the MaxLongTermFrameldx variable is set equal to 0 and that the current IDR picture is marked
“used for long-term reference” and is assigned LongTermFrameldx equal to 0. When num_ref frames is equal to 0,
long_term reference flag shall be equal to 0.

adaptive_ref pic_marking_mode_flag selects the reference picture marking mode of the currently decoded picture as
specified in Table 7-8. adaptive ref pic marking mode flag shall be equal to 1 when the number of frames,
complementary field pairs, and non-paired fields that are currently marked as "used for long-term reference" is equal to
Max(num_ref frames, 1).

82 ITU-T Rec. H.264 (03/2005)

Table 7-8 — Interpretation of adaptive_ref pic_marking mode_flag

adaptive_ref pic_marking_mode_flag | Reference picture marking mode specified

0 Sliding window reference picture marking mode: A marking mode
providing a first-in first-out mechanism for short-term reference
pictures.

1 Adaptive reference picture marking mode: A reference picture

marking mode providing syntax elements to specify marking of
reference pictures as “unused for reference” and to assign long-term
frame indices.

memory_management_control_operation specifies a control operation to be applied to affect the reference picture
marking. The memory management control operation syntax element is followed by data necessary for the operation
specified by the value of memory management control operation. The values and control operations associated with
memory management control operation are specified in Table 7-9. The memory management control operation
syntax elements are processed by the decoding process in the order in which they appear in the slice header, and the
semantics constraints expressed for each memory management control operation apply at the specific position in that
order at which that individual memory management_control operation is processed.

For interpretation of memory management_control_operation, the term reference picture is interpreted as follows.

— If the current picture is a frame, the term reference picture refers either to a reference frame or a complementary
reference field pair.

— Otherwise (the current picture is a field), the term reference picture refers either to a reference field or a field of a
reference frame.

memory_management_control operation shall not be equal to 1 in a slice header unless the specified reference picture
is marked as "used for short-term reference" when the memory management control operation is processed by the
decoding process.

memory_management_control operation shall not be equal to 2 in a slice header unless the specified long-term picture
number refers to a reference picture that is marked as "used for long-term reference" when the
memory_management_control _operation is processed by the decoding process.

memory management control operation shall not be equal to 3 in a slice header unless the specified reference picture
is marked as "used for short-term reference" when the memory management control operation is processed by the
decoding process.

memory management control operation shall not be equal to 3 or 6 if the value of the wvariable
MaxLongTermFrameldx is equal to "no long-term frame indices" when the memory management control_operation is
processed by the decoding process.

Not more than one memory management control operation equal to 4 shall be present in a slice header.
Not more than one memory management_control_operation equal to 5 shall be present in a slice header.
Not more than one memory management control operation equal to 6 shall be present in a slice header.

memory management_control operation shall not be equal to 5 in a slice header wunless no
memory_management_control operation in the range of 1 to 3 is present in the same decoded reference picture marking
syntax structure.

A memory_management control_operation equal to 5 shall not follow a memory management control operation equal
to 6 in the same slice header.

When a memory management control operation equal to 6 is present, any memory management control operation
equal to 2, 3, or 4 that follows the memory management control operation equal to 6 within the same slice header
shall not specify the current picture to be marked as "unused for reference".

NOTE 1 — These constraints prohibit any combination of multiple memory management control operation syntax elements that
would specify the current picture to be marked as "unused for reference". However, some other combinations of
memory_management control operation syntax elements are permitted that may affect the marking status of other reference
pictures more than once in the same slice header. In particular, it is permitted for a memory management control operation
equal to 3 that specifies a long-term frame index to be assigned to a particular short-term reference picture to be followed in the
same slice header by a memory management_control_operation equal to 2, 3, 4 or 6 that specifies the same reference picture to
subsequently be marked as "unused for reference".

ITU-T Rec. H.264 (03/2005) 83

Table 7-9 — Memory management control operation (memory_management_control_operation) values

memory_management_control_operation | Memory Management Control Operation

0 End memory_management control operation
syntax element loop

1 Mark a short-term reference picture as
“unused for reference”

2 Mark a long-term reference picture as
“unused for reference”

3 Mark a short-term reference picture as
"used for long-term reference" and assign a
long-term frame index to it

4 Specify the maximum long-term frame index
and mark all long-term reference pictures
having long-term frame indices greater than
the maximum value as "unused for reference"

5 Mark all reference pictures as
"unused for reference" and set the
MaxLongTermFrameldx variable to
"no long-term frame indices"

6 Mark the current picture as
"used for long-term reference" and assign a
long-term frame index to it

When decoding a field and a memory_management control operation command equal to 3 is present that assigns a
long-term frame index to a field that is part of a short-term reference frame or part of a short-term complementary
reference field pair, another memory management control operation command to assign the same long-term frame
index to the other field of the same frame or complementary reference field pair shall be present in the same decoded
reference picture marking syntax structure.
NOTE 2 - The above requirement must be fulfilled even when the field referred to by the
memory management_control operation equal to 3 is subsequently marked as "unused for reference" (for example when a

memory_ management control operation equal to 2 is present in the same slice header that causes the field to be marked as
"unused for reference").

When the first field (in decoding order) of a complementary reference field pair includes a long_term reference flag
equal to 1 or a memory management_control_operation command equal to 6, the decoded reference picture marking
syntax structure for the other field of the complementary reference field pair shall contain a
memory_management_control operation command equal to 6 that assigns the same long-term frame index to the other
field.
NOTE 3 — The above requirement must be fulfilled even when the first field of the complementary reference field pair is
subsequently marked as "unused for reference" (for example, when a memory management control operation equal to 2 is
present in the slice header of the second field that causes the first field to be marked as "unused for reference").

difference_of pic_nums_minusl is used (with memory management control operation equal to 3 or 1) to assign a
long-term frame index to a short-term reference picture or to mark a short-term reference picture as “unused for
reference”. When the associated memory management control operation is processed by the decoding process, the
resulting picture number derived from difference of pic_nums_minusl shall be a picture number assigned to one of the
reference pictures marked as "used for reference" and not previously assigned to a long-term frame index.

The resulting picture number is constrained as follows.

— If field pic flag is equal to 0, the resulting picture number shall be one of the set of picture numbers assigned to
reference frames or complementary reference field pairs.
NOTE 4 — When field_pic_flag is equal to 0, the resulting picture number must be a picture number assigned to a
complementary reference field pair in which both fields are marked as "used for reference" or a frame in which both
fields are marked as "used for reference". In particular, when field pic_flag is equal to 0, the marking of a non-paired
field or a frame in which a single field is marked as "used for reference" cannot be affected by a
memory_management_control operation equal to 1.

— Otherwise (field pic_flag is equal to 1), the resulting picture number shall be one of the set of picture numbers
assigned to reference fields.

84 ITU-T Rec. H.264 (03/2005)

long_term_pic_num is used (with memory management_control operation equal to 2) to mark a long-term reference
picture as "unused for reference". When the associated memory management control operation is processed by the
decoding process, long_term pic_num shall be equal to a long-term picture number assigned to one of the reference
pictures that is currently marked as "used for long-term reference".

The resulting long-term picture number is constrained as follows.

— If field pic_flag is equal to 0, the resulting long-term picture number shall be one of the set of long-term picture
numbers assigned to reference frames or complementary reference field pairs.
NOTE 5 — When field pic_flag is equal to 0, the resulting long-term picture number must be a long-term picture
number assigned to a complementary reference field pair in which both fields are marked as "used for reference"” or a
frame in which both fields are marked as "used for reference". In particular, when field pic_flag is equal to 0, the
marking of a non-paired field or a frame in which a single field is marked as "used for reference" cannot be affected
by a memory management_control operation equal to 2.

— Otherwise (field pic_flag is equal to 1), the resulting long-term picture number shall be one of the set of long-term
picture numbers assigned to reference fields.

long_term_frame idx is used (with memory management control operation equal to 3 or 6) to assign a long-term
frame index to a picture. When the associated memory management control operation is processed by the decoding
process, the value of long_term_frame idx shall be in the range of 0 to MaxLongTermFrameldx, inclusive.

max_long_term_frame_idx_plusl minus 1 specifies the maximum value of long-term frame index allowed for long-
term reference pictures (until receipt of another value of max long term frame idx plusl). The value of
max_long term_frame idx plusl shall be in the range of 0 to num_ref frames, inclusive.

7.4.4 Slice data semantics
cabac_alignment_one_bit is a bit equal to 1.

mb_skip_run specifies the number of consecutive skipped macroblocks for which, when decoding a P or SP slice,
mb_type shall be inferred to be P_Skip and the macroblock type is collectively referred to as a P macroblock type, or
for which, when decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively
referred to as a B macroblock type. The value of mb_skip run shall be in the range of 0 to PicSizeInMbs —
CurrMbAddr, inclusive.

mb_skip_flag equal to 1 specifies that for the current macroblock, when decoding a P or SP slice, mb_type shall be
inferred to be P_Skip and the macroblock type is collectively referred to as P macroblock type, or for which, when
decoding a B slice, mb_type shall be inferred to be B_Skip and the macroblock type is collectively referred to as B
macroblock type. mb_skip flag equal to 0 specifies that the current macroblock is not skipped.

mb_field decoding_flag equal to O specifies that the current macroblock pair is a frame macroblock pair.
mb_field decoding flag equal to 1 specifies that the macroblock pair is a field macroblock pair. Both macroblocks of a
frame macroblock pair are referred to in the text as frame macroblocks, whereas both macroblocks of a field
macroblock pair are referred to in the text as field macroblocks.

When mb _field decoding flag is not present for either macroblock of a macroblock pair, the value of
mb_field decoding_flag is derived as follows.

— If there is a neighbouring macroblock pair immediately to the left of the current macroblock pair in the same slice,
the value of mb_field decoding_ flag shall be inferred to be equal to the value of mb_field decoding_flag for the
neighbouring macroblock pair immediately to the left of the current macroblock pair,

— Otherwise, if there is no neighbouring macroblock pair immediately to the left of the current macroblock pair in
the same slice and there is a neighbouring macroblock pair immediately above the current macroblock pair in the
same slice, the value of mb field decoding flag shall be inferred to be equal to the wvalue of
mb_field decoding_flag for the neighbouring macroblock pair immediately above the current macroblock pair,

— Otherwise (there is no neighbouring macroblock pair either immediately to the left or immediately above the
current macroblock pair in the same slice), the value of mb_field decoding_flag shall be inferred to be equal to 0.

end_of slice flag equal to 0 specifies that another macroblock is following in the slice. end of slice flag equal to 1
specifies the end of the slice and that no further macroblock follows.

The function NextMbAddress() used in the slice data syntax table is specified in subclause 8.2.2.

7.4.5 Macroblock layer semantics

mb_type specifies the macroblock type. The semantics of mb_type depend on the slice type.

ITU-T Rec. H.264 (03/2005) 85

Tables and semantics are specified for the various macroblock types for I, SI, P, SP, and B slices. Each table presents
the value of mb type, the name of mb_type, the number of macroblock partitions used (given by the
NumMbPart(mb_type) function), the prediction mode of the macroblock (when it is not partitioned) or the first
partition (given by the MbPartPredMode(mb_type, 0) function) and the prediction mode of the second partition (given
by the MbPartPredMode(mb_type, 1) function). When a value is not applicable it is designated by “na”. In the text, the
value of mb_type may be referred to as the macroblock type and a value X of MbPartPredMode() may be referred to in
the text by "X macroblock (partition) prediction mode" or as “X prediction macroblocks”.

Table 7-10 shows the allowed collective macroblock types for each slice type.
NOTE 1 — There are some macroblock types with Pred L0 prediction mode that are classified as B macroblock types.

Table 7-10 — Allowed collective macroblock types for slice_type

slice_type allowed collective macroblock types
I (slice) I (see Table 7-11) (macroblock types)
P (slice) P (see Table 7-13) and I (see Table 7-11) (macroblock types)
B (slice) B (see Table 7-14) and I (see Table 7-11) (macroblock types)
SI (slice) SI (see Table 7-12) and I (see Table 7-11) (macroblock types)
SP (slice) P (see Table 7-13) and I (see Table 7-11) (macroblock types)

transform_size 8x8_flag equal to 1 specifies that for the current macroblock the transform coefficient decoding
process and picture construction process prior to deblocking filter process for residual 8x8 blocks shall be invoked for
luma samples. transform size 8x8 flag equal to O specifies that for the current macroblock the transform coefficient
decoding process and picture construction process prior to deblocking filter process for residual 4x4 blocks shall be
invoked for luma samples. When transform_size 8x8 flag is not present in the bitstream, it shall be inferred to be equal
to 0.

NOTE 2 — When the current macroblock prediction mode MbPartPredMode(mb_type, 0) is equal to Intra 16x16,
transform_size 8x8 flag is not present in the bitstream and then inferred to be equal to 0.

When sub_mb_type[mbPartldx | (see subclause 7.4.5.2) is present in the bitstream for all 8x8 blocks indexed by
mbPartldx = 0..3, the variable noSubMbPartSizel.essThan8x8Flag indicates whether for each of the four 8x8 blocks the
corresponding SubMbPartWidth(sub_mb_type[mbPartldx]) and SubMbPartHeight(sub_mb_type[mbPartldx |) are
both equal to 8.

NOTE 3 — When noSubMbPartSizeLessThan8x8Flag is equal to 0 and the current macroblock type is not equal to I NxN,
transform_size 8x8 flag is not present in the bitstream and then inferred to be equal to 0.

Macroblock types that may be collectively referred to as I macroblock types are specified in Table 7-11.

The macroblock types for I slices are all I macroblock types.

86 ITU-T Rec. H.264 (03/2005)

Table 7-11 — Macroblock types for I slices

=
=
H 2 : :
w 1 =
@ by ® =< S £ s
=3 = o L= & o s
z £ N g = -» = &
| P 7] A = o a v
= =) | e ke v]
=] o = == o) S
s)~ it £ = =
8 : 8 E g ;:
& Q Q
Q
0 I NxN 0 Intra_4x4 na Equation 7-33 | Equation 7-33
0 I NxN 1 Intra_8x8 na Equation 7-33 | Equation 7-33
1 I 16x16_0_0 0 na Intra_16x16 0 0 0
2 I 16x16_1 00 na Intra_16x16 1 0 0
3 [16x16 2 0 0 na Intra_16x16 2 0 0
4 I 16x16_3 0 0 na Intra_16x16 3 0 0
5 [16x16 0 1 0 na Intra_16x16 0 1 0
6 [16x16 1 1 0 na Intra_16x16 1 1 0
7 [16x16 2 10 na Intra_16x16 2 1 0
8 [16x16 3 1 0 na Intra_16x16 3 1 0
9 I 16x16_0_2 0 na Intra_16x16 0 2 0
10 [16x16_1 2 0 na Intra_16x16 1 2 0
11 [16x16 2 2 0 na Intra_16x16 2 2 0
12 I 16x16. 3 2 0 na Intra_16x16 3 2 0
13 I 16x16 0 01 na Intra_16x16 0 0 15
14 I 16x16 1 01 na Intra_16x16 1 0 15
15 I 16x16_2 01 na Intra_16x16 2 0 15
16 I 16x16 3 0 1 na Intra_16x16 3 0 15
17 I 16x16_0_1_1 na Intra_16x16 0 1 15
18 I 16x16_1_1 1 na Intra_16x16 1 1 15
19 I 16x16 2 11 na Intra_16x16 2 1 15
20 I 16x16_3 11 na Intra_16x16 3 1 15
21 I 16x16 0 2 1 na Intra_16x16 0 2 15
22 [16x16 1 2 1 na Intra_16x16 1 2 15
23 I 16x16 2 2 1 na Intra_16x16 2 2 15
24 I 16x16 3 2 1 na Intra_16x16 3 2 15
25 I PCM na na na na na

ITU-T Rec. H.264 (03/2005)

87

The following semantics are assigned to the macroblock types in Table 7-11.

I NxN: A mnemonic name for mb_type equal to 0 with MbPartPredMode(mb_type, 0) equal to Intra 4x4 or
Intra_8x8.

I 16x16 0 0 0,1 16x16 1 0 0,1 16x16 2 0 0,1 16x16 3 0 0,1 16x16 0 1 0,1 16x16 1 1 0,1 16x16 2 1 0,
[16x16 3 1 0,1 16x16 0 2 0,1 16x16 1 2 0,1 16x16 2 2 0,1 16x16 3 2 0,1 16x16 0 0 1,1 16x16 1 0 1,
I 16x16 2 0 1,1 16x16 3 0 1,1 16x16 0 1 1,1 16x16 1 1 1,1 16x16 2 1 1,1 16x16 3 1 1,1 16x16 0 2 1,
[16x16 1 2 1,1 16x16 2 2 1,1 16x16 3 2 1:the macroblock is coded as an Intra 16x16 predlctlon mode
macroblock.

To each Intra_16x16 prediction macroblock, an Intral6x16PredMode is assigned, which specifies the Intra 16x16
prediction mode. CodedBlockPatternChroma contains the coded block pattern value for chroma as specified in
Table 7-15. When chroma format idc is equal to0, CodedBlockPatternChroma shall be equal toO0.
CodedBlockPatternLuma specifies whether, for the luma component, non-zero AC transform coefficient levels are
present. CodedBlockPatternLuma equal to 0 specifies that all AC transform coefficient levels in the luma component of
the macroblock are equal to 0. CodedBlockPatternLuma equal to 15 specifies that at least one of the AC transform
coefficient levels in the luma component of the macroblock is non-zero, requiring scanning of AC transform coefficient
levels for all 16 of the 4x4 blocks in the 16x16 block.

Intra_4x4 specifies the macroblock prediction mode and specifies that the Intra 4x4 prediction process is invoked as
specified in subclause 8.3.1. Intra_4x4 is an Intra macroblock prediction mode.

Intra_8x8 specifies the macroblock prediction mode and specifies that the Intra_ 8x8 prediction process is invoked as
specified in subclause 8.3.2. Intra_8x8 is an Intra macroblock prediction mode.

Intra_16x16 specifies the macroblock prediction mode and specifies that the Intra_16x16 prediction process is invoked
as specified in subclause 8.3.3. Intra_16x16 is an Intra macroblock prediction mode.

For a macroblock coded with mb_type equal to I PCM, the Intra macroblock prediction mode shall be inferred.

A macroblock type that may be referred to as SI macroblock type is specified in Table 7-12.

The macroblock types for SI slices are specified in Tables 7-12 and 7-11. The mb_type value 0 is specified in
Table 7-12 and the mb_type values 1 to 26 are specified in Table 7-11, indexed by subtracting 1 from the value of
mb_type.

Table 7-12 — Macroblock type with value 0 for SI slices

g =
% 2 :
3] 3 = 3
= S~ = o =
Al E = = = —
o | S 51 - L
[= L= bt 2 =]
o) E L o -9 = <
k= = 5 = &
2 = &~ = < a =
=] o 52 3 ﬁ =
£ e E = S =
< = E) =
“ | = E £ =
]
0 SI Intra_4x4 na Equation 7-33 | Equation 7-33

The following semantics are assigned to the macroblock type in Table 7-12. The SI macroblock is coded as Intra 4x4
prediction macroblock.

Macroblock types that may be collectively referred to as P macroblock types are specified in Table 7-13.

The macroblock types for P and SP slices are specified in Tables 7-13 and 7-11. mb_type values 0 to 4 are specified in
Table 7-13 and mb_type values 5 to 30 are specified in Table 7-11, indexed by subtracting 5 from the value of mb_type.

88 ITU-T Rec. H.264 (03/2005)

Table 7-13 — Macroblock type values 0 to 4 for P and SP slices

g 3 3
z £~ So o | £~ | B~
v | S o E - E _', = =
= = A2 S 9 S @ = 2 L
i = sz g e g e z & Tz
| = = &z o it 7
) S - € _| € _|) s 2
E @ EE 2 =<2 AE | &E
b= Z - & E & E SZ | &2
= - = E E
z = =
0 P_LO_16x16 1 Pred_LO na 16 16
1 P_LO_LO _16x8 2 Pred LO Pred_LO 16 8
2 P LO LO 8x16 2 Pred LO Pred LO 8 16
3 P 8x8 4 na na 8 8
4 P_8x8ref0 4 na na 8 8
inferred P_Skip 1 Pred LO na 16 16

The following semantics are assigned to the macroblock types in Table 7-13.

P_LO_16x16: the samples of the macroblock are predicted with one luma macroblock partition of size 16x16 luma
samples and associated chroma samples.

— P _LO LO MxN, with MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using
two luma partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated

chroma samples, respectively.

— P 8x8: for each sub-macroblock an additional syntax element (sub_mb type) is present in the bitstream that
specifies the type of the corresponding sub-macroblock (see subclause 7.4.5.2).

— P _8x8ref0: has the same semantics as P_8x8 but no syntax element for the reference index (ref idx 10) is present
in the bitstream and ref idx 10[mbPartldx] shall be inferred to be equal to O for all sub-macroblocks of the
macroblock (with indices mbPartldx equal to 0..3).

— P_Skip: no further data is present for the macroblock in the bitstream.
The following semantics are assigned to the macroblock prediction modes (MbPartPredMode()) in Table 7-13.

— Pred LO: specifies that the inter prediction process is invoked using list 0 prediction. Pred LO is an Inter
macroblock prediction mode.

Macroblock types that may be collectively referred to as B macroblock types are specified in Table 7-14.

The macroblock types for B slices are specified in Tables 7-14 and 7-11. The mb_type values 0 to 22 are specified in
Table 7-14 and the mb_type values 23 to 48 are specified in Table 7-11, indexed by subtracting 23 from the value of

mb_type.

ITU-T Rec. H.264 (03/2005) &9

Table 7-14 — Macroblock type values 0 to 22 for B slices

g = <
I~ - S ~ S~ s = -
) e ; @ E e, E —L =R 200y
2 = A~ =S 9 = 9 2 S
z E 2z °e °e zz| E2
| = =7 &z ol il £
= o =2 € €) =2
g v SE << << HE| &E
g Z— & E & E | &2
< - = E E
z = =
0 B Direct _16x16 na Direct na 8 8
1 B LO 16x16 1 Pred LO na 16 16
2 B L1 16x16 1 Pred L1 na 16 16
3 B_Bi_l6x16 1 BiPred na 16 16
4 B _LO _LO_16x8 2 Pred_LO Pred LO 16 8
5 B L0 LO 8x16 2 Pred LO Pred LO 8 16
6 B L1_L1 _16x8 2 Pred L1 Pred L1 16 8
7 B L1 L1 8x16 2 Pred L1 Pred L1 8 16
8 B L0 L1 _16x8 2 Pred L0 Pred L1 16 8
9 B LO_L1 8x16 2 Pred_LO Pred L1 8 16
10 B L1 _LO_16x8 2 Pred L1 Pred_LO 16 8
11 B L1 L0 8x16 2 Pred L1 Pred L0 8 16
12 B _LO_Bi_16x8 2 Pred_LO BiPred 16 8
13 B _LO Bi_8x16 2 Pred_LO BiPred 8 16
14 B L1 Bi 16x8 2 Pred L1 BiPred 16 8
15 B _L1_Bi_8x16 2 Pred L1 BiPred 8 16
16 B Bi LO_16x8 2 BiPred Pred LO 16 8
17 B_Bi L0 8x16 2 BiPred Pred L0 8 16
18 B Bi_L1_16x8 2 BiPred Pred L1 16 8
19 B Bi L1 _8x16 2 BiPred Pred L1 8 16
20 B_Bi_Bi_16x8 2 BiPred BiPred 16 8
21 B_Bi_Bi_8x16 2 BiPred BiPred 8 16
22 B 8x8 4 na na 8 8
inferred B _Skip na Direct na 8 8

The following semantics are assigned to the macroblock types in Table 7-14:

90

B_Direct_16x16: no motion vector differences or reference indices are present for the macroblock in the bitstream.
The functions MbPartWidth(B_Direct 16x16), and MbPartHeight(B_Direct 16x16) are used in the derivation
process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

B X 16x16 with X being replaced by L0, L1, or Bi: the samples of the macroblock are predicted with one luma
macroblock partition of size 16x16 luma samples and associated chroma samples. For a macroblock with type
B_X 16x16 with X being replaced by either LO or L1, one motion vector difference and one reference index is

ITU-T Rec. H.264 (03/2005)

present in the bitstream for the macroblock. For a macroblock with type B_ X 16x16 with X being replaced by Bi,
two motion vector differences and two reference indices are present in the bitstream for the macroblock.

— B_X0 X1 MxN, with X0, X1 referring to the first and second macroblock partition and being replaced by LO, L1,
or Bi, and MxN being replaced by 16x8 or 8x16: the samples of the macroblock are predicted using two luma
partitions of size MxN equal to 16x8, or two luma partitions of size MxN equal to 8x16, and associated chroma
samples, respectively. For a macroblock partition X0 or X1 with X0 or X1 being replaced by either LO or L1, one
motion vector difference and one reference index is present in the bitstream. For a macroblock partition X0 or X1
with X0 or X1 being replaced by Bi, two motion vector differences and two reference indices are present in the
bitstream for the macroblock partition.

— B _8x8: for each sub-macroblock an additional syntax element (sub_mb type) is present in the bitstream that
specifies the type of the corresponding sub-macroblock (see subclause 7.4.5.2).

— B_Skip: no further data is present for the macroblock in the bitstream. The functions MbPartWidth(B_Skip), and
MbPartHeight(B_Skip) are used in the derivation process for motion vectors and reference frame indices in
subclause 8.4.1 for direct mode prediction.

The following semantics are assigned to the macroblock prediction modes (MbPartPredMode()) in Table 7-14.

— Direct: no motion vector differences or reference indices are present for the macroblock (in case of B_Skip or
B_Direct_16x16) in the bitstream. Direct is an Inter macroblock prediction mode.

— Pred LO: see semantics for Table 7-13.

— Pred L1: specifies that the Inter prediction process is invoked using list 1 prediction. Pred L1 is an Inter
macroblock prediction mode.

— BiPred: specifies that the Inter prediction process is invoked using list 0 and list 1 prediction. BiPred is an Inter
macroblock prediction mode.

pem_alignment_zero_bit is a bit equal to 0.

pem_sample luma[i] is a sample value. The first pcm_sample luma] i] values represent luma sample values in the
raster scan within the macroblock. The number of bits used to represent each of these samples is BitDepthy. When
profile_idc is not equal to 100, 110, 122, or 144, pcm_sample luma[i] shall not be equal to 0.

pem_sample chroma[i] is a sample value. The first MbWidthC * MbHeightC pcm_sample chroma[i] values
represent Cb sample values in the raster scan within the macroblock and the remaining MbWidthC * MbHeightC
pcm_sample chroma[i | values represent Cr sample values in the raster scan within the macroblock. The number of
bits used to represent each of these samples is BitDepthc. When profile idc is not equal to 100, 110, 122, or 144,
pecm_sample_chroma] i] shall not be equal to 0.

coded_block pattern specifies which of the four 8x8 luma blocks and associated chroma blocks of a macroblock may
contain non-zero transform coefficient levels. For macroblocks with prediction mode not equal to Intra 16x16,
coded block pattern is present in the bitstream and the variables CodedBlockPatternLuma and
CodedBlockPatternChroma are derived as follows.

CodedBlockPatternLuma = coded block pattern % 16
CodedBlockPatternChroma = coded block pattern/ 16 (7-33)

When coded block pattern is present, CodedBlockPatternL.uma specifies, for each of the four 8x8 luma blocks of the
macroblock, one of the following cases.

— All transform coefficient levels of the four 4x4 luma blocks in the 8x8 luma block are equal to zero

— One or more transform coefficient levels of one or more of the 4x4 luma blocks in the 8x8 luma block shall be non-
zero valued.

The meaning of CodedBlockPatternChroma is specified in Table 7-15.

ITU-T Rec. H.264 (03/2005) 91

Table 7-15 — Specification of CodedBlockPatternChroma values

CodedBlockPatternChroma | Description

0 All chroma transform coefficient levels are equal to 0.

1 One or more chroma DC transform coefficient levels shall be non-zero valued.
All chroma AC transform coefficient levels are equal to 0.

2 Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels shall be non-zero valued.

mb_qp_delta can change the value of QPy in the macroblock layer. The decoded value of mb_qp_delta shall be in the
range of —(26 + QpBdOffsety / 2) to +(25 + QpBdOffsety / 2), inclusive. mb_qp_delta shall be inferred to be equal
to 0 when it is not present for any macroblock (including P_Skip and B_Skip macroblock types).

The value of QPy is derived as

QPy = ((QPyprey + mb_qgp_delta + 52 + 2 * QpBdOffsety) % (52 + QpBdOffsety)) - QpBdOffsety (7-34)

where QPy prev 1s the luma quantisation parameter, QPy, of the previous macroblock in decoding order in the current
slice. For the first macroblock in the slice QPy prgy is initially set equal to SliceQPy derived in Equation 7-27 at the start
of each slice.

The value of QP'y is derived as

QP'y = QPy + QpBdOffsety (7-35)

7.4.5.1 Macroblock prediction semantics
All samples of the macroblock are predicted. The prediction modes are derived using the following syntax elements.

prev_intrad4x4 pred_mode_flag| luma4x4Blkldx | and rem_intrad4x4 pred_mode[luma4x4Blkldx | specify the
Intra_4x4 prediction of the 4x4 luma block with index luma4x4Blkldx = 0..15.

prev_intra8x8 pred_mode_flag[luma8x8Blkldx] and rem_intra8x8 pred_mode[luma8x8Blkldx] specify the
Intra_8x8 prediction of the 8x8 luma block with index luma8x8Blkldx = 0..3.

intra_chroma_pred_mode specifies the type of spatial prediction used for chroma in macroblocks using Intra_4x4 or
Intra_16x16 prediction, as shown in Table 7-16. The value of intra_chroma pred _mode shall be in the range of 0 to 3,
inclusive.

Table 7-16 — Relationship between intra_chroma_pred_mode and spatial prediction modes

intra_chroma_pred_mode Intra Chroma Prediction Mode
0 DC
1 Horizontal
2 Vertical
3 Plane

ref_idx_l0[mbPartldx | when present, specifies the index in reference picture list O of the reference picture to be used
for prediction.

The range of ref idx 10[mbPartldx], the index in list O of the reference picture, and, if applicable, the parity of the
field within the reference picture used for prediction are specified as follows.

— If MbaftFrameFlag is equal to 0 or mb_field decoding_flag is equal to 0, the value of ref idx 10[mbPartldx] shall
be in the range of 0 to num_ref idx 10 active minusl, inclusive.

92 ITU-T Rec. H.264 (03/2005)

— Otherwise (MbaffFrameFlag is equal tol and mb field decoding flag is equal to1l), the value of
ref idx 10[mbPartldx] shall be in the range of 0 to 2 * num_ref idx 10 active_minusl1 + 1, inclusive.

When only one reference picture is used for inter prediction, the values of ref idx 10[mbPartldx] shall be inferred to
be equal to 0.

ref_idx_11[mbPartldx] has the same semantics as ref_idx_10, with 10 and list O replaced by 11 and list 1, respectively.

mvd_10[mbPartldx][0][compldx | specifies the difference between a vector component to be used and its prediction.
The index mbPartldx specifies to which macroblock partition mvd 10 is assigned. The partitioning of the macroblock is
specified by mb_type. The horizontal motion vector component difference is decoded first in decoding order and is
assigned Compldx = 0. The vertical motion vector component is decoded second in decoding order and is assigned
Compldx = 1. The range of the components of mvd 10[mbPartldx][0][compldx] is specified by constraints on the
motion vector variable values derived from it as specified in Annex A.

mvd_I1[mbPartldx][O][compldx | has the same semantics as mvd 10, with 10 and LO replaced by 11 and L1,
respectively.

7.4.5.2 Sub-macroblock prediction semantics
sub_mb_type[mbPartldx | specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P, and B macroblock types. Each table
presents the value of sub_mb_type, the name of sub_mb_type, the number of sub-macroblock partitions used (given by
the NumSubMbPart(sub_mb_type) function), and the prediction mode of the sub-macroblock (given by the
SubMbPredMode(sub_mb_type) function). In the text, the value of sub_mb type may be referred to by “sub-
macroblock type”. In the text, the value of SubMbPredMode() may be referred to by “sub-macroblock prediction
mode”.

The interpretation of sub_mb_type[mbPartldx] for P macroblock types is specified in Table 7-17, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartldx] is not present.

Table 7-17 — Sub-macroblock types in P macroblocks

" " " " " e
g g g) g = g = g
N

5 5 tE | £ $F | Bf

A~ A & S & = A 3 A&
= =2 == = -3 = 2
g o E S E T E T 8 -

) ET 23 ol iy iy
=3 S & Z 2 = = = = &

z zz UE’ z sz =E= = z
2 2 =P = 2 2 2 Z 2
El EI z El) El) El 7 El

))))))
z Z Z Z Z Z

inferred na na na na na
0 P L0 8x8 1 Pred L0 8 8

1 P L0 8x4 2 Pred L0 8 4

2 P LO 4x8 2 Pred LO 4 8

3 P L0 4x4 4 Pred L0 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-17.

— P_LO_MxN, with MxN being replaced by 8x8, 8x4, 4x8, or 4x4: the samples of the sub-macroblock are predicted
using one luma partition of size MxN equal to 8x8, two luma partitions of size MxN equal to 8x4, or two luma
partitions of size MxN equal to 4x8, or four luma partitions of size MxN equal to 4x4, and associated chroma
samples, respectively.

The following semantics are assigned to the sub-macroblock prediction modes (SubMbPredMode()) in Table 7-17.

— Pred_LO: see semantics for Table 7-13.

ITU-T Rec. H.264 (03/2005) 93

The interpretation of sub_mb_type[mbPartldx] for B macroblock types is specified in Table 7-18, where the row for
"inferred" specifies values inferred when sub_mb_type[mbPartldx] is not present, and the inferred value "mb_type"
specifies that the name of sub_mb_type[mbPartldx] is the same as the name of mb_type for this case.

Table 7-18 — Sub-macroblock types in B macroblocks

" n " P T =

= = = = = =

= = - = =% =%

5 5 EE g5 £% | &%

A A A A s A 2 A O R

= w2 5= = -3 T =

= o & S E TE ! -

% EQ =3 iy iy &9

=9 = & e = & = & = a

| 75 | 25| £8 | 25 22

))) £ S = o)

El El z El @ El 7 El 3 El

= = = = = =

2 2 2 H H H
inferred mb_type 4 Direct 4 4

0 B_Direct_8x8 4 Direct 4 4

1 B_LO 8x8 1 Pred L0 8 8

2 B L1 8x8 1 Pred_L1 8 8

3 B Bi_8x8 1 BiPred 8 8

4 B_LO 8x4 2 Pred L0 8 4

5 B L0 _4x8 2 Pred_LO 4 8

6 B L1 8x4 2 Pred L1 8 4

7 B L1 4x8 2 Pred L1 4 8

8 B_Bi_8x4 2 BiPred 8 4

9 B Bi_4x8 2 BiPred 4 8

10 B L0 4x4 4 Pred LO 4 4

11 B L1 4x4 4 Pred_L1 4 4

12 B Bi_4x4 4 BiPred 4 4

The following semantics are assigned to the sub-macroblock types in Table 7-18:

— B _Skip and B_Direct 16x16: no motion vector differences or reference indices are present for the sub-macroblock
in the bitstream. The functions SubMbPartWidth() and SubMbPartHeight() are used in the derivation process for
motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

— B _Direct 8x8: no motion vector differences or reference indices are present for the sub-macroblock in the
bitstream. The functions SubMbPartWidth(B_Direct 8x8) and SubMbPartHeight(B Direct 8x8) are used in the
derivation process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

— B_X MxN, with X being replaced by L0, L1, or Bi, and MxN being replaced by 8x8, 8x4, 4x8 or 4x4: the samples
of the sub-macroblock are predicted using one luma partition of size MxN equal to 8x8, or the samples of the sub-
macroblock are predicted using two luma partitions of size MxN equal to 8x4, or the samples of the sub-
macroblock are predicted using two luma partitions of size MxN equal to 4x8, or the samples of the sub-
macroblock are predicted using four luma partitions of size MxN equal to 4x4, and associated chroma samples,
respectively. All sub-macroblock partitions share the same reference index. For an MxN sub-macroblock partition
in a sub-macroblock with sub_mb_type being B X MxN with X being replaced by either LO or L1, one motion
vector difference is present in the bitstream. For an MxN sub-macroblock partition in a sub-macroblock with
sub_mb_type being B Bi MxN, two motion vector difference are present in the bitstream.

94 ITU-T Rec. H.264 (03/2005)

The following semantics are assigned to the sub-macroblock prediction modes (SubMbPredMode()) in Table 7-18.
— Direct: see semantics for Table 7-14.

— Pred LO: see semantics for Table 7-13.

— Pred LI: see semantics for Table 7-14.

— BiPred: see semantics for Table 7-14.

ref_idx_10[mbPartldx | has the same semantics as ref_idx_10 in subclause 7.4.5.1.
ref _idx 11[mbPartldx | has the same semantics as ref idx 11 in subclause 7.4.5.1.

mvd_10[mbPartldx][subMbPartldx][compldx | has the same semantics as mvd_10 in subclause 7.4.5.1, except that it
is applied to the sub-macroblock partition index with subMbPartldx. The indices mbPartldx and subMbPartldx specify
to which macroblock partition and sub-macroblock partition mvd_10 is assigned.

mvd_11[mbPartldx][subMbPartldx][compldx] has the same semantics as mvd_11 in subclause 7.4.5.1.

7.4.5.3 Residual data semantics
The syntax structure residual_block(), which is used for parsing the transform coefficient levels, is assigned as follows.

— If entropy_coding_mode flag is equal to 0, residual block is set equal to residual block cavle, which is used for
parsing the syntax elements for transform coefficient levels.

— Otherwise (entropy_coding_mode flag is equal to 1), residual block is set equal to residual block cabac, which is
used for parsing the syntax elements for transform coefficient levels.

Depending on mb type, luma or chroma, and chroma format, the syntax structure
residual_block(coeffLevel, maxNumCoeff) is used with the arguments coeffLevel, which is a list containing the
maxNumCoeff transform coefficient levels that are parsed in residual block() and maxNumCoeff as follows.

— Depending on MbPartPredMode(mb_type, 0), the following applies.

— If MbPartPredMode(mb_type, 0) is equal to Intra_16x16, the transform coefficient levels are parsed into the
list Intral6x16DCLevel and into the 16 lists Intral6x16ACLevel[i]. Intral6x16DCLevel contains the 16
transform coefficient levels of the DC transform coefficient levels for each 4x4 luma block. For each of the 16
4x4 luma blocks indexed by i =0..15, the 15 AC transform coefficients levels of the i-th block are parsed into
the i-th list Intral6x16ACLevel[1].

— Otherwise (MbPartPredMode(mb_type, 0) is not equal to Intra_16x16), the following applies.

— Iftransform_size 8x8 flag is equal to 0, for each of the 16 4x4 luma blocks indexed by i = 0..15, the 16
transform coefficient levels of the i-th block are parsed into the i-th list LumaLevel[1].

— Otherwise (transform_size 8x8 flag is equal to 1), for each of the 4 8x8 luma blocks indexed by
18x8 = 0..3, the following applies.

— If entropy_coding_mode flag is equal to 0, first for each of the 4 4x4 luma blocks indexed by
i4x4 =0.3, the 16 transform coefficient levels of the i4x4-th block are parsed into the
(18x8 * 4 + i4x4)-th list LumaLevel[i8x8 * 4 + i4x4]. Then, the 64 transform coefficient levels of
the 18x8-th 8x8 luma block which are indexed by 4 * i + i4x4, where i =0..15 and i4x4 = 0..3, are
derived as LumaLevel8x8[i8x8][4 * 1 + i4x4] = LumaLevel[i8x8 * 4 + i4x4][1].

NOTE - The 4x4 luma blocks with luma4x4BlkIdx =i8x8 * 4 + i4x4 containing every fourth transform

coefficient level of the corresponding i8x8-th 8x8 luma block with offset i4x4 are assumed to represent spatial
locations given by the inverse 4x4 luma block scanning process in subclause 6.4.3.

— Otherwise (entropy coding mode flag is equal to 1), the 64 transform coefficient levels of the
18x8-th block are parsed into the i8x8-th list LumaLevel8x8[i8x8].

— For each chroma component, indexed by iCbCr = 0..1, the DC transform coefficient levels of the 4 * NumC8x8
4x4 chroma blocks are parsed into the iCbCr-th list ChromaDCLevel[iCbCr].

— For each of the 4x4 chroma blocks, indexed by i4x4 =0..3 and i8x8 =0..NumC8x8 — 1, of each chroma
component, indexed by iCbCr = 0..1, the 15 AC transform coefficient levels are parsed into the (i8x8*4 + i4x4)-th
list of the iCbCr-th chroma component ChromaACLevel[iCbCr][i8x8*4 + i4x4].

ITU-T Rec. H.264 (03/2005) 95

7.4.5.3.1 Residual block CAVLC semantics

The function TotalCoeff(coeff token) that is used in subclause 7.3.5.3.1 returns the number of non-zero transform
coefficient levels derived from coeff token.

The function TrailingOnes(coeff token) that is used in subclause 7.3.5.3.1 returns the trailing ones derived from
coeff token.

coeff_token specifies the total number of non-zero transform coefficient levels and the number of trailing one transform
coefficient levels in a transform coefficient level scan. A trailing one transform coefficient level is one of up to three
consecutive non-zero transform coefficient levels having an absolute value equal to 1 at the end of a scan of non-zero
transform coefficient levels. The range of coeff token is specified in subclause 9.2.1.

trailing_ones_sign_flag specifies the sign of a trailing one transform coefficient level as follows.
— Iftrailing_ones_sign flag is equal to 0, the corresponding transform coefficient level is decoded as +1.
— Otherwise (trailing_ones_sign_flag equal to 1), the corresponding transform coefficient level is decoded as -1.

level_prefix and level_suffix specify the value of a non-zero transform coefficient level. The range of level prefix and
level suffix is specified in subclause 9.2.2.

total_zeros specifies the total number of zero-valued transform coefficient levels that are located before the position of
the last non-zero transform coefficient level in a scan of transform coefficient levels. The range of total zeros is
specified in subclause 9.2.3.

run_before specifies the number of consecutive transform coefficient levels in the scan with zero value before a non-
zero valued transform coefficient level. The range of run_before is specified in subclause 9.2.3.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.

7.4.5.3.2 Residual block CABAC semantics

coded_block flag specifies whether the block contains non-zero transform coefficient levels as follows.

- Ifcoded block flag is equal to 0, the block contains no non-zero transform coefficient levels.

- Otherwise (coded_block flag is equal to 1), the block contains at least one non-zero transform coefficient level.
significant_coeff flag| i | specifies whether the transform coefficient level at scanning position i is non-zero as follows.
— Ifsignificant coeff flag[i] is equal to 0, the transform coefficient level at scanning position i is set equal to 0;

— Otherwise (significant _coeff flag[i] is equal to 1), the transform coefficient level at scanning position i has a non-
zero value.

last_significant_coeff flag|i] specifies for the scanning position i whether there are non-zero transform coefficient
levels for subsequent scanning positions i + 1 to maxNumCoeff — 1 as follows.

— Iflast_significant coeff flag[i] is equal to 1, all following transform coefficient levels (in scanning order) of the
block have value equal to 0.

— Otherwise (last_significant_coeff flag[i] is equal to 0), there are further non-zero transform coefficient levels
along the scanning path.

coeff abs level minusl[i] is the absolute value of a transform coefficient level minus 1. The wvalue of
coeff abs_level minusl is constrained by the limits in subclause 8.5.

coeff_sign_flag] i] specifies the sign of a transform coefficient level as follows.
— Ifcoeff sign flag is equal to 0, the corresponding transform coefficient level has a positive value.
— Otherwise (coeff sign flag is equal to 1), the corresponding transform coefficient level has a negative value.

coeffLevel contains maxNumCoeff transform coefficient levels for the current list of transform coefficient levels.
8 Decoding process

Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).

This clause describes the decoding process, given syntax elements and upper-case variables from clause 7.

96 ITU-T Rec. H.264 (03/2005)

The decoding process is specified such that all decoders shall produce numerically identical results. Any decoding
process that produces identical results to the process described here conforms to the decoding process requirements of
this Recommendation | International Standard.

Each picture referred to in this clause is a primary picture. Each slice referred to in this clause is a slice of a primary
picture. Each slice data partition referred to in this clause is a slice data partition of a primary picture.

An overview of the decoding process is given as follows.
— The decoding of NAL units is specified in subclause 8.1.
— The processes in subclause 8.2 specify decoding processes using syntax elements in the slice layer and above.

— Variables and functions relating to picture order count are derived in subclause 8.2.1. (only needed to be
invoked for one slice of a picture)

— Variables and functions relating to the macroblock to slice group map are derived in subclause 8.2.2. (only
needed to be invoked for one slice of a picture)

— The method of combining the various partitions when slice data partitioning is used is described in subclause
8.2.3.

— When the frame num of the current picture is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum, the decoding process for gaps in frame num is performed
according to subclause 8.2.5.2 prior to the decoding of any slices of the current picture.

— At the beginning of the decoding process for each P, SP, or B slice, the decoding process for reference picture
lists construction specified in 8.2.4 performed for derivation of reference picture list 0 (RefPicList0), and
when decoding a B slice, reference picture list 1 (RefPicListl).

— When the current picture is a reference picture and after all slices of the current picture have been decoded,
the decoded reference picture marking process in subclause 8.2.5 specifies how the current picture is used in
the decoding process of inter prediction in later decoded pictures.

— The processes in subclauses 8.3, 8.4, 8.5, 8.6, and 8.7 specify decoding processes using syntax elements in the
macroblock layer and above.

— The intra prediction process for I and SI macroblocks, except for I PCM macroblocks as specified in
subclause 8.3, has intra prediction samples as its output. For I PCM macroblocks subclause 8.3 directly
specifies a picture construction process. The output are the constructed samples prior to the deblocking filter
process.

— The inter prediction process for P and B macroblocks is specified in subclause 8.4 with inter prediction
samples being the output.

— The transform coefficient decoding process and picture construction process prior to deblocking filter process
are specified in subclause 8.5. That process derives samples for I and B macroblocks and for P macroblocks in
P slices. The output are constructed samples prior to the deblocking filter process.

— The decoding process for P macroblocks in SP slices or SI macroblocks is specified in subclause 8.6. That
process derives samples for P macroblocks in SP slices and for SI macroblocks. The output are constructed
samples prior to the deblocking filter process.

— The constructed samples prior to the deblocking filter process that are next to the edges of blocks and
macroblocks are processed by a deblocking filter as specified in subclause 8.7 with the output being the
decoded samples.

8.1 NAL unit decoding process
Inputs to this process are NAL units.
Outputs of this process are the RBSP syntax structures encapsulated within the NAL units.

The decoding process for each NAL unit extracts the RBSP syntax structure from the NAL unit and then operates the
decoding processes specified for the RBSP syntax structure in the NAL unit as follows.

Subclause 8.2 describes the decoding process for NAL units with nal unit type equal to 1 through 5.

Subclauses 8.3 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1, 2, and 5.

ITU-T Rec. H.264 (03/2005) 97

Subclause 8.4 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit type equal to 1 and 2.

Subclause 8.5 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal unit type equal to 1 and 3 to 5.

Subclause 8.6 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit_type equal to 1 and 3 to 5.

Subclause 8.7 describes the decoding process for a macroblock or part of a macroblock coded in NAL units with
nal_unit type equal to 1 to 5.

NAL units with nal_unit type equal to 7 and 8 contain sequence parameter sets and picture parameter sets, respectively.
Picture parameter sets are used in the decoding processes of other NAL units as determined by reference to a picture
parameter set within the slice headers of each picture. Sequence parameter sets are used in the decoding processes of
other NAL units as determined by reference to a sequence parameter set within the picture parameter sets of each
sequence.

No normative decoding process is specified for NAL units with nal unit type equal to 6, 9, 10, 11, and 12.

8.2 Slice decoding process

8.2.1 Decoding process for picture order count
Outputs of this process are TopFieldOrderCnt (if applicable) and BottomFieldOrderCnt (if applicable).

Picture order counts are used to determine initial picture orderings for reference pictures in the decoding of B slices (see
subclauses 8.2.4.2.3 and 8.2.4.2.4), to represent picture order differences between frames or fields for motion vector
derivation in temporal direct mode (see subclause 8.4.1.2.3), for implicit mode weighted prediction in B slices (see
subclause 8.4.2.3.2), and for decoder conformance checking (see subclause C.4).

Picture order count information is derived for every frame, field (whether decoded from a coded field or as a part of a
decoded frame), or complementary field pair as follows:

— Each coded frame is associated with two picture order counts, called TopFieldOrderCnt and BottomFieldOrderCnt
for its top field and bottom field, respectively.

— Each coded field is associated with a picture order count, called TopFieldOrderCnt for a coded top field and
BottomFieldOrderCnt for a bottom field.

— Each complementary field pair is associated with two picture order counts, which are the TopFieldOrderCnt for its
coded top field and the BottomFieldOrderCnt for its coded bottom field, respectively.

TopFieldOrderCnt and BottomFieldOrderCnt indicate the picture order of the corresponding top field or bottom field
relative to the first output field of the previous IDR picture or the previous reference picture including a
memory_management_control operation equal to 5 in decoding order.

TopFieldOrderCnt and BottomFieldOrderCnt are derived by invoking one of the decoding processes for picture order
count type 0, 1, and 2 in subclauses 8.2.1.1, 8.2.1.2, and 8.2.1.3, respectively. When the current picture includes a
memory management control operation equal to 5, after the decoding of the current picture, tempPicOrderCnt is set
equal to PicOrderCnt(CurrPic), TopFieldOrderCnt of the current picture (if any) is set equal to
TopFieldOrderCnt - tempPicOrderCnt, and BottomFieldOrderCnt of the current picture (if any) is set equal to
BottomFieldOrderCnt - tempPicOrderCnt.

The bitstream shall not contain data that results in Min(TopFieldOrderCnt, BottomFieldOrderCnt) not equal to 0 for a
coded IDR frame, TopFieldOrderCnt not equal to 0 for a coded IDR top field, or BottomFieldOrderCnt not equal to 0
for a coded IDR bottom field. Thus, at least one of TopFieldOrderCnt and BottomFieldOrderCnt shall be equal to 0 for
the fields of a coded IDR frame.

When the current picture is not an IDR picture, the following applies.

— Consider the list variable listD containing as elements the TopFieldOrderCnt and BottomFieldOrderCnt values
associated with the list of pictures including all of the following

— the first picture in the list is the previous picture of any of the following types
— an IDR picture
— apicture containing a memory _management_control operation equal to 5

— the following additional pictures.

98 ITU-T Rec. H.264 (03/2005)

— If pic_order cnt type is equal to 0, all other pictures that follow in decoding order after the first picture in the
list and are not "non-existing" frames inferred by the decoding process for gaps in frame num specified in
subclause 8.2.5.2 and either precede the current picture in decoding order or are the current picture. When
pic_order cnt type is equal to 0 and the current picture is not a "non-existing" frame inferred by the decoding
process for gaps in frame num specified in subclause 8.2.5.2, the current picture is included in listD prior to
the invoking of the decoded reference picture marking process.

Otherwise (pic_order cnt type is not equal to 0), all other pictures that follow in decoding order after the first
picture in the list and either precede the current picture in decoding order or are the current picture. When
pic_order cnt type is not equal to 0, the current picture is included in listD prior to the invoking of the
decoded reference picture marking process.

— Consider the list variable listO which contains the elements of listD sorted in ascending order. listO shall not contain
any of the following.

— a pair of TopFieldOrderCnt and BottomFieldOrderCnt for a frame or complementary field pair that are not at
consecutive positions in listO.

— a TopFieldOrderCnt that has a value equal to another TopFieldOrderCnt.
— a BottomFieldOrderCnt that has a value equal to another BottomFieldOrderCnt.

— a BottomFieldOrderCnt that has a value equal to a TopFieldOrderCnt unless the BottomFieldOrderCnt and
TopFieldOrderCnt belong to the same coded frame or complementary field pair.

The bitstream shall not contain data that results in values of TopFieldOrderCnt, BottomFieldOrderCnt,
PicOrderCntMsb, or FrameNumOffset used in the decoding process as specified in subclauses 8.2.1.1 to 8.2.1.3 that
exceed the range of values from -2*! to 2*'-1, inclusive.

The function PicOrderCnt(picX) is specified as follows:

if(picX is a frame or a complementary field pair)
PicOrderCnt(picX) = Min(TopFieldOrderCnt, BottomFieldOrderCnt) of the frame or complementary field

pair picX
else if(picX is a top field)
PicOrderCnt(picX) = TopFieldOrderCnt of field picX (8-1)

else if(picX is a bottom field)
PicOrderCnt(picX) = BottomFieldOrderCnt of field picX

Then DiffPicOrderCnt(picA, picB) is specified as follows:

DiffPicOrderCnt(picA, picB) = PicOrderCnt(picA) - PicOrderCnt(picB) (8-2)

The bitstream shall not contain data that results in values of DiffPicOrderCnt(picA, picB) used in the decoding process
that exceed the range of -2'° to 2" - 1, inclusive.

NOTE 1 — Let X be the current picture and Y and Z be two other pictures in the same sequence, Y and Z are considered to be in
the same output order direction from X when both DiffPicOrderCnt(X, Y) and DiffPicOrderCnt(X, Z) are positive or both are
negative.

NOTE 2 — Many applications assign PicOrderCnt(X) proportional to the sampling time of the picture X relative to the sampling
time of an IDR picture.

When the current picture includes a memory management control operation equal to 5, PicOrderCnt(CurrPic) shall
be greater than PicOrderCnt(any other picture in listD).

8.2.1.1 Decoding process for picture order count type 0
This process is invoked when pic_order cnt_type is equal to 0.

Input to this process is PicOrderCntMsb of the previous reference picture in decoding order as specified in this
subclause.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.
The variables prevPicOrderCntMsb and prevPicOrderCntLsb are derived as follows.

— If the current picture is an IDR picture, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal
to 0.

— Otherwise (the current picture is not an IDR picture), the following applies.

ITU-T Rec. H.264 (03/2005) 99

— If the previous reference picture in decoding order included a memory management control operation equal
to 5, the following applies.

- If the previous reference picture in decoding order is not a bottom field, prevPicOrderCntMsb is set equal
to 0 and prevPicOrderCntLsb is set equal to the value of TopFieldOrderCnt for the previous reference
picture in decoding order.

- Otherwise (the previous reference picture in decoding order is a bottom field), prevPicOrderCntMsb is
set equal to 0 and prevPicOrderCntLsb is set equal to 0.

— Otherwise (the previous reference picture in decoding order did not include a
memory_management_control operation equal to 5), prevPicOrderCntMsb is set equal to PicOrderCntMsb of
the previous reference picture in decoding order and prevPicOrderCntLsb is set equal to the value of
pic_order_cnt _Isb of the previous reference picture in decoding order.

PicOrderCntMsb of the current picture is derived as follows:

if((pic_order cnt Isb < prevPicOrderCntLsb) &&

((prevPicOrderCntLsb — pic_order cnt Isb) >= (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsb + MaxPicOrderCntLsb (8-3)
else if((pic_order_cnt_Isb > prevPicOrderCntLsb) &&

((pic_order_cnt Isb — prevPicOrderCntLsb) > (MaxPicOrderCntLsb/2)))

PicOrderCntMsb = prevPicOrderCntMsb — MaxPicOrderCntLsb
else

PicOrderCntMsb = prevPicOrderCntMsb

When the current picture is not a bottom field, TopFieldOrderCnt is derived as follows:

if(!field pic_flag || !'bottom_field flag)
TopFieldOrderCnt = PicOrderCntMsb + pic_order cnt Isb (8-4)

When the current picture is not a top field, BottomFieldOrderCnt is derived as follows:

if(!field pic_flag)
BottomFieldOrderCnt = TopFieldOrderCnt + delta_pic_order_cnt_bottom

else if(bottom_field flag) (8-5)
BottomFieldOrderCnt = PicOrderCntMsb + pic_order cnt Isb

8.2.1.2 Decoding process for picture order count type 1

This process is invoked when pic_order cnt type is equal to 1.

Input to this process is FrameNumOffset of the previous picture in decoding order as specified in this subclause.
Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

The values of TopFieldOrderCnt and BottomFieldOrderCnt are derived as specified in this subclause. Let
prevFrameNum be equal to the frame num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows.

— If the previous picture in decoding order included a memory management control operation equal to 5,
prevFrameNumOffset is set equal to 0.

— Otherwise (the previous picture in decoding order did not include a memory management control operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE — When gaps_in_frame num_value allowed flag is equal to 1, the previous picture in decoding order may be a "non-
existing" frame inferred by the decoding process for gaps in frame num specified in subclause 8.2.5.2.

The derivation proceeds in the following ordered steps.
1. The variable FrameNumOffset is derived as follows:
if(nal_unit_type == 5)
FrameNumOffset = 0

else if(prevFrameNum > frame num) (8-6)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum

100 ITU-T Rec. H.264 (03/2005)

else
FrameNumOffset = prevFrameNumOffset

2. The variable absFrameNum is derived as follows:

if(num_ref frames in_pic_order cnt cycle != 0)
absFrameNum = FrameNumOffset + frame num

else (8-7)
absFrameNum = 0

if(nal ref idc == 0 && absFrameNum > 0)
absFrameNum = absFrameNum — 1

3. When absFrameNum > 0, picOrderCntCycleCnt and frameNumInPicOrderCntCycle are derived as follows:

if(absFrameNum > 0) {
picOrderCntCycleCnt = (absFrameNum — 1) / num_ref frames_in_pic_order cnt cycle
frameNumInPicOrderCntCycle = (absFrameNum — 1) % num_ref frames in_pic_order cnt cycle (8-8)

}

4. The variable expectedDeltaPerPicOrderCntCycle is derived as follows:

expectedDeltaPerPicOrderCntCycle = 0
for(1=0; i <num ref frames in pic order cnt cycle; i++)
expectedDeltaPerPicOrderCntCycle += offset_for ref frame[i] (8-9)

5. The variable expectedPicOrderCnt is derived as follows:

if(absFrameNum > 0){
expectedPicOrderCnt = picOrderCntCycleCnt * expectedDeltaPerPicOrderCntCycle
for(1= 0; i <= frameNumInPicOrderCntCycle; i++)
expectedPicOrderCnt = expectedPicOrderCnt + offset for ref frame[i]

} else
expectedPicOrderCnt = 0
if(nal ref ide == 0) (8-10)

expectedPicOrderCnt = expectedPicOrderCnt + offset_for non_ref pic

6. The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as follows:

if(!field pic_flag) {

TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order cnt[0]

BottomFieldOrderCnt = TopFieldOrderCnt +

offset_for top to bottom_field + delta pic_order cnt[1] 8-11)

} else if(!bottom_field flag)

TopFieldOrderCnt = expectedPicOrderCnt + delta_pic_order cnt[0]
else

BottomFieldOrderCnt = expectedPicOrderCnt + offset for top to bottom field + delta pic_order cnt[O]

8.2.1.3 Decoding process for picture order count type 2

This process is invoked when pic_order cnt type is equal to 2.

Outputs of this process are either or both TopFieldOrderCnt or BottomFieldOrderCnt.

Let prevFrameNum be equal to the frame num of the previous picture in decoding order.

When the current picture is not an IDR picture, the variable prevFrameNumOffset is derived as follows.

— If the previous picture in decoding order included a memory management control operation equal to 5,
prevFrameNumOffset is set equal to 0.

— Otherwise (the previous picture in decoding order did not include a memory management control operation equal
to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

ITU-T Rec. H.264 (03/2005) 101

NOTE 1 — When gaps_in_frame num_value allowed flag is equal to 1, the previous picture in decoding order may be a "non-
existing" frame inferred by the decoding process for gaps in frame num specified in subclause 8.2.5.2.

The variable FrameNumOffset is derived as follows.

if(nal unit type == 5)
FrameNumOffset = 0

else if(prevFrameNum > frame num) (8-12)
FrameNumOffset = prevFrameNumOffset + MaxFrameNum
else

FrameNumOffset = prevFrameNumOffset

The variable tempPicOrderCnt is derived as follows:

if(nal_unit_type == 5)
tempPicOrderCnt = 0

else if(nal_ref idc == 0) (8-13)
tempPicOrderCnt = 2 * (FrameNumOffset + frame num) — 1
else

tempPicOrderCnt = 2 * (FrameNumOffset + frame num)

The variables TopFieldOrderCnt or BottomFieldOrderCnt are derived as follows:

if(!field pic flag) {

TopFieldOrderCnt = tempPicOrderCnt

BottomFieldOrderCnt = tempPicOrderCnt (8-14)
} else if(bottom_field flag)

BottomFieldOrderCnt = tempPicOrderCnt
else

TopFieldOrderCnt = tempPicOrderCnt

NOTE 2 — Picture order count type 2 cannot be used in a coded video sequence that contains consecutive non-reference pictures
that would result in more than one of these pictures having the same value of TopFieldOrderCnt or more than one of these
pictures having the same value of BottomFieldOrderCnt.

NOTE 3 - Picture order count type 2 results in an output order that is the same as the decoding order.

8.2.2 Decoding process for macroblock to slice group map
Inputs to this process are the active picture parameter set and the slice header of the slice to be decoded.
Output of this process is a macroblock to slice group map MbToSliceGroupMap.

This process is invoked at the start of every slice.
NOTE — The output of this process is equal for all slices of a picture.

When num_slice _groups minusl is equal to 1 and slice_group map_type is equal to 3, 4, or 5, slice groups 0 and 1
have a size and shape determined by slice group change direction flag as shown in Table 8-1 and specified in
subclauses §.2.2.4 to 8.2.2.6.

Table 8-1 — Refined slice group map type

slice_group _map_type slice_group_change_direction_flag | refined slice group map type
3 0 Box-out clockwise
3 1 Box-out counter-clockwise
4 0 Raster scan
4 1 Reverse raster scan
5 0 Wipe right
5 1 Wipe left

102 ITU-T Rec. H.264 (03/2005)

In such a case, MapUnitsInSliceGroup0 slice group map units in the specified growth order are allocated for slice group
0 and the remaining PicSizeInMapUnits — MapUnitsInSliceGroup0 slice group map units of the picture are allocated for
slice group 1.

When num_slice_groups minusl is equal to1 and slice group map type is equal to4 or 5, the variable
sizeOfUpperLeftGroup is defined as follows:

sizeOfUpperLeftGroup = (slice_group change direction_flag ?
(PicSizeInMapUnits — MapUnitsInSliceGroup0) : MapUnitsInSliceGroup0) (8-15)

The variable mapUnitToSliceGroupMap is derived as follows.

— If num_slice groups minusl is equal to 0, the map unit to slice group map is generated for all i ranging from 0 to
PicSizeInMapUnits — 1, inclusive, as specified by:

mapUnitToSliceGroupMap[i] =0 (8-16)

— Otherwise (num_slice_groups_minus1 is not equal to 0), mapUnitToSliceGroupMap is derived as follows.

— If slice group map type is equal to 0, the derivation of mapUnitToSliceGroupMap as specified in
subclause 8.2.2.1 applies.

— Otherwise, if slice group map type is equal to 1, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.2 applies.

— Otherwise, if slice_group map type is equal to 2, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.3 applies.

— Otherwise, if slice_group map type is equal to 3, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.4 applies.

— Otherwise, if slice_group map_type is equal to4, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.5 applies.

— Otherwise, if slice group map type is equal to 5, the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.6 applies.

— Otherwise (slice_group map_type is equal to 6), the derivation of mapUnitToSliceGroupMap as
specified in subclause 8.2.2.7 applies.

After derivation of the mapUnitToSliceGroupMap, the process specified in subclause 8.2.2.8 is invoked to convert the
map unit to slice group map mapUnitToSliceGroupMap to the macroblock to slice group map MbToSliceGroupMap.
After derivation of the macroblock to slice group map as specified in subclause 8.2.2.8, the function
NextMbAddress(n) is defined as the value of the variable nextMbAddress derived as specified by:

i=n+1
while(i < PicSizeInMbs && MbToSliceGroupMap[i] != MbToSliceGroupMap[n |)
i+t
nextMbAddress = i (8-17)

8.2.2.1 Specification for interleaved slice group map type
The specifications in this subclause apply when slice_group map_type is equal to 0.
The map unit to slice group map is generated as specified by:

i=0

do

for(iGroup = 0; iGroup <= num_slice_groups_minusl && i < PicSizeInMapUnits;
i+=run_length minusl[iGroup++]+ 1)
for(j=0;j <=run_length minusl[iGroup] && i+ j < PicSizeInMapUnits; j++)

mapUnitToSliceGroupMap][i + j] = iGroup (8-18)
while(1 < PicSizeInMapUnits)

8.2.2.2 Specification for dispersed slice group map type

The specifications in this subclause apply when slice_group map type is equal to 1.

ITU-T Rec. H.264 (03/2005) 103

The map unit to slice group map is generated as specified by:

for(i = 0; i < PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap[i] = ((1 % PicWidthInMbs) +
(((1/PicWidthInMbs) * (num_slice_groups minusl +1))/2))
% (num_slice groups minusl + 1) (8-19)

8.2.2.3 Specification for foreground with left-over slice group map type
The specifications in this subclause apply when slice_group map_type is equal to 2.

The map unit to slice group map is generated as specified by:

for(1= 0; i < PicSizeInMapUnits; i++)
mapUnitToSliceGroupMap|[i] = num_slice _groups_minusl
for(iGroup = num_slice _groups minusl — 1; iGroup >= 0; iGroup--) {
yTopLeft = top_left[iGroup]/ PicWidthInMbs
xTopLeft = top_left[iGroup] % PicWidthInMbs
yBottomRight = bottom_right[iGroup]/ PicWidthInMbs
xBottomRight = bottom_right[iGroup] % PicWidthInMbs
for(y = yTopLeft; y <= yBottomRight; y++)
for(x = xTopLeft; x <= xBottomRight; x++)
mapUnitToSliceGroupMap[y * PicWidthInMbs + x] = iGroup (8-20)
}

NOTE - The rectangles may overlap. Slice group 0 contains the macroblocks that are within the rectangle specified by
top_left[0] and bottom_right[0]. A slice group having slice group ID greater than 0 and less than num_slice groups minusl
contains the macroblocks that are within the specified rectangle for that slice group that are not within the rectangle specified for
any slice group having a smaller slice group ID. The slice group with slice group ID equal to num_slice _groups_minus] contains
the macroblocks that are not in the other slice groups.

8.2.2.4 Specification for box-out slice group map types
The specifications in this subclause apply when slice_group map_type is equal to 3.

The map unit to slice group map is generated as specified by:

for(i = 0; i <PicSizelInMapUnits; i++)
mapUnitToSliceGroupMap[i]=1
x = (PicWidthInMbs — slice_group change direction_flag) /2
y = (PicHeightInMapUnits — slice_group change direction flag) /2
(leftBound, topBound) = (x,y)
(rightBound, bottomBound) = (x,y)
(xDir, yDir) = (slice_group change direction flag — 1, slice group change direction flag)
for(k = 0; k < MapUnitsInSliceGroup0; k += mapUnitVacant) {
mapUnitVacant = (mapUnitToSliceGroupMap[y * PicWidthInMbs +x] == 1)

if(mapUnitVacant)
mapUnitToSliceGroupMap[y * PicWidthInMbs +x] =0 (8-21)
if(xDir == -1 && x == leftBound) {

leftBound = Max(leftBound — 1, 0)

x = leftBound

(xDir, yDir)= (0, 2 * slice_group _change direction_flag— 1)
}else if(xDir == 1 && x == rightBound) {

rightBound = Min(rightBound + 1, PicWidthInMbs — 1)

x = rightBound

(xDir, yDir)= (0, 1 —2 * slice_group_change direction flag)

} else if(yDir == -1 && y == topBound) {
topBound = Max(topBound -1, 0)
y = topBound

(xDir, yDir) = (1 -2 * slice_group _change direction_flag, 0)
}else if(yDir == 1 && y == bottomBound) {
bottomBound = Min(bottomBound + 1, PicHeightInMapUnits — 1)
y = bottomBound
(xDir, yDir) = (2 * slice_group change direction flag—1,0)
} else

104 ITU-T Rec. H.264 (03/2005)

(x,y)=(x+xDir, y + yDir)

8.2.2.5 Specification for raster scan slice group map types
The specifications in this subclause apply when slice_group map_type is equal to 4.

The map unit to slice group map is generated as specified by:

for(1= 0; i < PicSizeInMapUnits; i++)
if(1 < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap] i] = slice_group change direction flag
else (8-22)
mapUnitToSliceGroupMap[i | = 1 —slice_group_change direction flag

8.2.2.6 Specification for wipe slice group map types
The specifications in this subclause apply when slice _group map_type is equal to 5.
The map unit to slice group map is generated as specified by:

k=0;

for(j = 0; j < PicWidthInMbs; j++)

for(1= 0; i < PicHeightInMapUnits; i++)
if(k++ < sizeOfUpperLeftGroup)
mapUnitToSliceGroupMap[i * PicWidthInMbs + j] = slice_group change direction_flag

else (8-23)
mapUnitToSliceGroupMap| i * PicWidthInMbs + j] = 1 —slice_group_change direction_flag

8.2.2.7 Specification for explicit slice group map type
The specifications in this subclause apply when slice_group map_type is equal to 6.

The map unit to slice group map is generated as specified by:

mapUnitToSliceGroupMap| i] = slice_group _id[i] (8-24)

for all i ranging from 0 to PicSizeInMapUnits — 1, inclusive.

8.2.2.8 Specification for conversion of map unit to slice group map to macroblock to slice group map

For each value of i ranging from 0 to PicSizeInMbs — 1, inclusive, the macroblock to slice group map is specified as
follows.

— If frame_mbs _only flag is equal to 1 or field pic_flag is equal to 1, the macroblock to slice group map is specified
by:

MbToSliceGroupMap| i] = mapUnitToSliceGroupMap[i | (8-25)

— Otherwise, if MbaffFrameFlag is equal to 1, the macroblock to slice group map is specified by:

MbToSliceGroupMap[i] = mapUnitToSliceGroupMap[i/2] (8-206)

— Otherwise (frame_mbs_only flag is equal to 0 and mb_adaptive frame field flag is equal to 0 and field pic_flag
is equal to 0), the macroblock to slice group map is specified by:

MbToSliceGroupMap| i] = mapUnitToSliceGroupMap[(i/ (2 * PicWidthInMbs)) * PicWidthInMbs
+ (1 % PicWidthInMbs)] (8-27)

8.2.3 Decoding process for slice data partitioning

Inputs to this process are

— aslice data partition A layer RBSP,

ITU-T Rec. H.264 (03/2005) 105

— when syntax elements of category 3 are present in the slice data, a slice data partition B layer RBSP having the
same slice id as in the slice data partition A layer RBSP, and

— when syntax elements of category 4 are present in the slice data, a slice data partition C layer RBSP having the
same slice id as in the slice data partition A layer RBSP.

NOTE 1 — The slice data partition B layer RBSP and slice data partition C layer RBSP need not be present.
Output of this process is a coded slice.

When slice data partitioning is not used, coded slices are represented by a slice layer without partitioning RBSP that
contains a slice header followed by a slice data syntax structure that contains all the syntax elements of categories 2, 3,
and 4 (see category column in subclause 7.3) of the macroblock data for the macroblocks of the slice.

When slice data partitioning is used, the macroblock data of a slice is partitioned into one to three partitions contained
in separate NAL units. Partition A contains a slice data partition A header, and all syntax elements of category 2.
Partition B, when present, contains a slice data partition B header and all syntax elements of category 3. Partition C,
when present, contains a slice data partition C header and all syntax elements of category 4.

When slice data partitioning is used, the syntax elements of each category are parsed from a separate NAL unit, which
need not be present when no symbols of the respective category exist. The decoding process shall process the slice data
partitions of a coded slice in a manner equivalent to processing a corresponding slice layer without partitioning RBSP
by extracting each syntax element from the slice data partition in which the syntax element appears depending on the
slice data partition assignment in the syntax tables in subclause 7.3.
NOTE 2 — Syntax elements of category 3 are relevant to the decoding of residual data of I and SI macroblock types. Syntax
elements of category 4 are relevant to the decoding of residual data of P and B macroblock types. Category 2 encompasses all
other syntax elements related to the decoding of macroblocks, and their information is often denoted as header information. The
slice data partition A header contains all the syntax elements of the slice header, and additionally a slice id that are used to
associate the slice data partitions B and C with the slice data partition A. The slice data partition B and C headers contain the
slice_id syntax element that establishes their association with the slice data partition A of the slice.

8.2.4 Decoding process for reference picture lists construction
This process is invoked at the beginning of decoding of each P, SP, or B slice.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified
by the bitstream and specified in subclause 8.2.5. Short-term reference pictures are identified by the value of
frame num. Long-term reference pictures are assigned a long-term frame index as specified by the bitstream and
specified in subclause 8.2.5.

Subclause 8.2.4.1 is invoked to specify

— the assignment of variables FrameNum, FrameNumWTrap, and PicNum to each of the short-term reference pictures,
and

— the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in subclause 8.4.2.1. A reference index is an
index into a reference picture list. When decoding a P or SP slice, there is a single reference picture list RefPicList0.
When decoding a B slice, there is a second independent reference picture list RefPicList] in addition to RefPicList0.

At the beginning of decoding of each slice, reference picture list RefPicList0, and for B slices RefPicListl, are derived
as follows.

— An initial reference picture list RefPicList0 and for B slices RefPicListl are derived as specified in
subclause 8.2.4.2.

— The initial reference picture list RefPicList0 and for B slices RefPicList]l are modified as specified in
subclause 8.2.4.3.
NOTE - The reordering process for reference picture lists specified in subclause 8.2.4.3 allows the contents of RefPicList0 and
for B slices RefPicListl to be modified in a flexible fashion. In particular, it is possible for a picture that is currently marked
"used for reference" to be inserted into RefPicList0 and for B slices RefPicListl even when the picture is not in the initial
reference picture list derived as specified in subclause 8.2.4.2.

The number of entries in the modified reference picture list RefPicList0 is num ref idx 10 active minusl + 1, and for
B slices the number of entries in the modified reference picture list RefPicListl is num ref idx 11 active minusl + 1.
A reference picture may appear at more than one index in the modified reference picture lists RefPicList0 or
RefPicListl.

106 ITU-T Rec. H.264 (03/2005)

8.2.4.1 Decoding process for picture numbers

This process is invoked when the decoding process for reference picture lists construction specified in subclause 8.2.4
or the decoded reference picture marking process specified in subclause 8.2.5 is invoked.

The variables FrameNum, FrameNumWrap, PicNum, LongTermFrameldx, and LongTermPicNum are used for the
initialisation process for reference picture lists in subclause 8.2.4.2, the modification process for reference picture lists
in subclause 8.2.4.3, and for the decoded reference picture marking process in subclause 8.2.5.

To each short-term reference picture the variables FrameNum and FrameNumWrap are assigned as follows. First,
FrameNum is set equal to the syntax element frame num that has been decoded in the slice header(s) of the
corresponding short-term reference picture. Then the variable FrameNumWrap is derived as

if(FrameNum > frame num)

FrameNumWrap = FrameNum — MaxFrameNum (8-28)
else

FrameNumWrap = FrameNum

where the value of frame num used in Equation 8-28 is the frame num in the slice header(s) for the current picture.

Each long-term reference picture has an associated value of LongTermFrameldx (that was assigned to it as specified in
subclause 8.2.5).

To each short-term reference picture a variable PicNum is assigned, and to each long-term reference picture a variable
LongTermPicNum 1is assigned. The values of these variables depend on the value of field pic flag and
bottom_field flag for the current picture and they are set as follows.

— Iffield pic flag is equal to 0, the following applies.

— For each short-term reference frame or complementary reference field pair:

PicNum = FrameNumWrap (8-29)

— For each long-term reference frame or long-term complementary reference field pair:

LongTermPicNum = LongTermFrameldx (8-30)

NOTE — When decoding a frame the value of MbaffFrameFlag has no influence on the derivations in subclauses
8.2.4.2,82.4.3,and 8.2.5.

— Otherwise (field pic_flag is equal to 1), the following applies.
— For each short-term reference field the following applies.

— If the reference field has the same parity as the current field

PicNum =2 * FrameNumWrap + 1 (8-31)

— Otherwise (the reference field has the opposite parity of the current field),

PicNum =2 * FrameNumWrap (8-32)

— For each long-term reference field the following applies.

- If the reference field has the same parity as the current field

LongTermPicNum = 2 * LongTermFrameldx + 1 (8-33)

- Otherwise (the reference field has the opposite parity of the current field),

LongTermPicNum = 2 * LongTermFrameldx (8-34)

8.2.4.2 Initialisation process for reference picture lists

This initialisation process is invoked when decoding a P, SP, or B slice header.

ITU-T Rec. H.264 (03/2005) 107

RefPicList0 and RefPicList] have initial entries as specified in subclauses 8.2.4.2.1 through 8.2.4.2.5.

When the number of entries in the initial RefPicList0 or RefPicListl produced as specified in subclauses 8.2.4.2.1
through 8.2.4.2.5 is greater than num ref idx 10 active minusl +1 or num ref idx Il active minusl + 1,
respectively, the extra entries past position num_ref idx 10 active minusl or num ref idx 11 active minusl are
discarded from the initial reference picture list.

When the number of entries in the initial RefPicList0 or RefPicListl produced as specified in subclauses 8.2.4.2.1
through 8.2.4.2.5 is less than num_ref idx 10 active minusl + 1 or num_ref idx 1l active minusl + 1, respectively,
the remaining entries in the initial reference picture list are set equal to "no reference picture".

8.2.4.2.1 Initialisation process for the reference picture list for P and SP slices in frames
This initialisation process is invoked when decoding a P or SP slice in a coded frame.

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is
currently marked as "used for short-term reference" or "used for long-term reference".

The reference picture list RefPicListO is ordered so that short-term reference frames and short-term complementary
reference field pairs have lower indices than long-term reference frames and long-term complementary reference field
pairs.

The short-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the highest PicNum value and proceeding through in descending order to the frame or
complementary field pair with the lowest PicNum value.

The long-term reference frames and complementary reference field pairs are ordered starting with the frame or
complementary field pair with the lowest LongTermPicNum value and proceeding through in ascending order to the
frame or complementary field pair with the highest LongTermPicNum value.

NOTE — A non-paired reference field is not used for inter prediction for decoding a frame, regardless of the value of
MbaffFrameFlag.

For example, when three reference frames are marked as "used for short-term reference" with PicNum equal to 300,
302, and 303 and two reference frames are marked as "used for long-term reference" with LongTermPicNum equal to 0
and 3, the initial index order is:

— RefPicList0[0] is set equal to the short-term reference picture with PicNum = 303,
— RefPicList0[1] is set equal to the short-term reference picture with PicNum = 302,
— RefPicList0[2] is set equal to the short-term reference picture with PicNum = 300,
— RefPicList0[3] is set equal to the long-term reference picture with LongTermPicNum = 0, and

— RefPicList0[4] is set equal to the long-term reference picture with LongTermPicNum = 3.

8.2.4.2.2 Initialisation process for the reference picture list for P and SP slices in fields
This initialisation process is invoked when decoding a P or SP slice in a coded field.

Each field included in the reference picture list RefPicList0 has a separate index in the reference picture list
RefPicList0.

NOTE — When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Two ordered lists of reference frames, refFrameListOShortTerm and refFrameListOLongTerm, are derived as follows.
For purposes of the formation of this list of frames, decoded reference frames, complementary reference field pairs,
non-paired reference fields and reference frames in which a single field is marked "used for short-term reference" or
"used for long-term reference" are all considered reference frames.

— All frames having one or more fields marked "used for short-term reference" are included in the list of short-term
reference frames refFrameListOShortTerm. When the current field is the second field (in decoding order) of a
complementary reference field pair and the first field is marked as "used for short-term reference", the first field is
included in the list of short-term reference frames refFrameListOShortTerm. refFrameListOShortTerm is ordered
starting with the reference frame with the highest FrameNumWrap value and proceeding through in descending
order to the reference frame with the lowest FrameNumWrap value.

— All frames having one or more fields marked "used for long-term reference" are included in the list of long-term
reference frames refFrameListOLongTerm. When the current field is the second field (in decoding order) of a
complementary reference field pair and the first field is marked as "used for long-term reference, the first field is
included in the list of long-term reference frames refFrameListOLongTerm. refFrameListOLongTerm is ordered

108 ITU-T Rec. H.264 (03/2005)

starting with the reference frame with the lowest LongTermFrameldx value and proceeding through in ascending
order to the reference frame with the highest LongTermFrameldx value.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListOLongTerm
given as input and the output is assigned to RefPicList0.

8.2.4.2.3 Initialisation process for reference picture lists for B slices in frames
This initialisation process is invoked when decoding a B slice in a coded frame.

For purposes of the formation of the reference picture lists RefPicList0 and RefPicListl the term reference entry refers
in the following to decoded reference frames or complementary reference field pairs.

When this process is invoked, there shall be at least one reference entry that is currently marked as "used for short-term
reference" or "used for long-term reference".

For B slices, the order of short-term reference entries in the reference picture lists RefPicList0 and RefPicList]l depends
on output order, as given by PicOrderCnt(). When pic_order cnt_type is equal to 0, reference pictures that are marked
as "non-existing" as specified in subclause 8.2.5.2 are not included in either RefPicList0 or RefPicListl.

NOTE 1 — When gaps_in_frame num_value_allowed_flag is equal to 1, encoders should use reference picture list reordering to

ensure proper operation of the decoding process (particularly when pic order cnt type is equal to 0, in which case
PicOrderCnt() is not inferred for "non-existing" frames).

The reference picture list RefPicList0 is ordered such that short-term reference entries have lower indices than long-
term reference entries. It is ordered as follows.

— Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for short-term
reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm) less than
PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of refPicList0 in descending
order of PicOrderCnt(entryShortTerm). All of the remaining values of entryShortTerm (when present) are then
appended to refPicList0 in ascending order of PicOrderCnt(entryShortTerm).

— The long-term reference entries are ordered starting with the long-term reference entry that has the lowest
LongTermPicNum value and proceeding through in ascending order to the long-term reference entry that has the
highest LongTermPicNum value.

The reference picture list RefPicListl is ordered so that short-term reference entries have lower indices than long-term
reference entries. It is ordered as follows.

— Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for short-term
reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm) greater than
PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of refPicList]l in ascending
order of PicOrderCnt(entryShortTerm). All of the remaining values of entryShortTerm (when present) are then
appended to refPicList] in descending order of PicOrderCnt(entryShortTerm).

— Long-term reference entries are ordered starting with the long-term reference frame or complementary reference
field pair that has the lowest LongTermPicNum value and proceeding through in ascending order to the long-term
reference entry that has the highest LongTermPicNum value.

— When the reference picture list RefPicList] has more than one entry and RefPicList] is identical to the reference
picture list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

NOTE 2 — A non-paired reference field is not used for inter prediction of frames (independent of the value of MbaffFrameFlag).

8.2.4.2.4 Initialisation process for reference picture lists for B slices in fields
This initialisation process is invoked when decoding a B slice in a coded field.

When decoding a field, each field of a stored reference frame is identified as a separate reference picture with a unique
index. The order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicListl depend on
output order, as given by PicOrderCnt(). When pic_order cnt type is equal to 0, reference pictures that are marked as
"non-existing" as specified in subclause 8.2.5.2 are not included in either RefPicListO or RefPicList1.

NOTE 1 — When gaps_in_frame num_value_allowed_flag is equal to 1, encoders should use reference picture list reordering to

ensure proper operation of the decoding process (particularly when pic order cnt type is equal to 0, in which case
PicOrderCnt() is not inferred for "non-existing" frames).

NOTE 2 — When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be
when decoding a frame at the same position in decoding order.

Three ordered lists of reference frames, refFrameListOShortTerm, refFrameListlShortTerm and
refFrameListLongTerm, are derived as follows. For purposes of the formation of these lists of frames the term reference
entry refers in the following to decoded reference frames, complementary reference field pairs, or non-paired reference

ITU-T Rec. H.264 (03/2005) 109

fields. When pic_order cnt_type is equal to 0, the term reference entry does not refer to frames that are marked as "non-
existing" as specified in subclause 8.2.5.2.

— Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for short-term
reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm) less than or
equal to PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of
refFrameListOShortTerm in descending order of PicOrderCnt(entryShortTerm). All of the remaining values of
entryShortTerm (when present) are then appended to refFrameListOShortTerm in ascending order of
PicOrderCnt(entryShortTerm).

NOTE 3 — When the current field follows in decoding order a coded field fldPrev with which together it forms a

complementary reference field pair, fldPrev is included into the list refFrameListOShortTerm using PicOrderCnt(fldPrev)
and the ordering method described in the previous sentence is applied.

— Let entryShortTerm be a variable ranging over all reference entries that are currently marked as "used for short-term
reference". When some values of entryShortTerm are present having PicOrderCnt(entryShortTerm) greater than
PicOrderCnt(CurrPic), these values of entryShortTerm are placed at the beginning of refFrameList]l ShortTerm in
ascending order of PicOrderCnt(entryShortTerm). All of the remaining values of entryShortTerm (when present)
are then appended to refFrameList]ShortTerm in descending order of PicOrderCnt(entryShortTerm).

NOTE 4 — When the current field follows in decoding order a coded field fldPrev with which together it forms a

complementary reference field pair, fldPrev is included into the list refFrameList] ShortTerm using PicOrderCnt(fldPrev)
and the ordering method described in the previous sentence is applied.

— refFrameListLongTerm is ordered starting with the reference entry having the lowest LongTermFrameldx value and
proceeding through in ascending order to the reference entry having highest LongTermFrameldx value.
NOTE 5 — When the complementary field of the current picture is marked "used for long-term reference" it is included into the

list refFrameListLongTerm. A reference entry in which only one field is marked as “used for long-term reference” is included
into the list refFrameListLongTerm.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameListOShortTerm and refFrameListLongTerm
given as input and the output is assigned to RefPicList0.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameListlShortTerm and refFrameListLongTerm
given as input and the output is assigned to RefPicListl.

When the reference picture list RefPicList] has more than one entry and RefPicListl is identical to the reference picture
list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

8.2.4.2.5 Initialisation process for reference picture lists in fields

Inputs of this process are the reference frame lists refFrameListXShortTerm (with X may be 0 or 1) and
refFrameListLongTerm.

The reference picture list RefPicListX is a list ordered such that short-term reference fields have lower indices than
long-term reference fields. Given the reference frame lists refFrameListXShortTerm and refFrameListLongTerm, it is
derived as follows.

— Short-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListXShortTerm by alternating between fields of differing parity, starting with a field that has the same
parity as the current field (when present). When one field of a reference frame was not decoded or is not marked as
“used for short-term reference”, the missing field is ignored and instead the next available stored reference field of
the chosen parity from the ordered list of frames refFrameListXShortTerm is inserted into RefPicListX. When there
are no more short-term reference fields of the alternate parity in the ordered list of frames refFrameListXShortTerm,
the next not yet indexed fields of the available parity are inserted into RefPicListX in the order in which they occur
in the ordered list of frames refFrameListXShortTerm.

— Long-term reference fields are ordered by selecting reference fields from the ordered list of frames
refFrameListLongTerm by alternating between fields of differing parity, starting with a field that has the same parity
as the current field (when present). When one field of a reference frame was not decoded or is not marked as “used
for long-term reference”, the missing field is ignored and instead the next available stored reference field of the
chosen parity from the ordered list of frames refFrameListLongTerm is inserted into RefPicListX. When there are
no more long-term reference fields of the alternate parity in the ordered list of frames refFrameListLongTerm, the
next not yet indexed fields of the available parity are inserted into RefPicListX in the order in which they occur in
the ordered list of frames refFrameListLongTerm.

8.2.4.3 Reordering process for reference picture lists
When ref pic_list reordering flag 10 is equal to 1, the following applies.

— Let refldxL0 be an index into the reference picture list RefPicList0. It is initially set equal to 0.

110 ITU-T Rec. H.264 (03/2005)

— The corresponding syntax elements reordering of pic nums idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

— Ifreordering of pic_nums_idc is equal to O or equal to 1, the process specified in subclause 8.2.4.3.1 is invoked
with refldxL0 as input, and the output is assigned to refldxLO0.

— Otherwise, if reordering_of pic_nums_idc is equal to 2, the process specified in subclause 8.2.4.3.2 is invoked
with refldxL0 as input, and the output is assigned to refldxLO0.

— Otherwise (reordering of pic nums_idc is equal to 3), the reordering process for reference picture list
RefPicList0 is finished.

When ref pic_list reordering flag 11 is equal to 1, the following applies.
— Let refldxL1 be an index into the reference picture list RefPicListl. It is initially set equal to 0.

— The corresponding syntax elements reordering of pic nums idc are processed in the order they occur in the
bitstream. For each of these syntax elements, the following applies.

— Ifreordering_of pic nums_idc is equal to 0 or equal to 1, the process specified in subclause 8.2.4.3.1 is invoked
with refldxL1 as input, and the output is assigned to refldxL1.

— Otherwise, if reordering_of pic_nums_idc is equal to 2, the process specified in subclause 8.2.4.3.2 is invoked
with refldxL1 as input, and the output is assigned to refldxL1.

— Otherwise (reordering_of pic nums_idc is equal to 3), the reordering process for reference picture list
RefPicListl is finished.

8.2.4.3.1 Reordering process of reference picture lists for short-term reference pictures
Input to this process is an index refldxLX (with X being 0 or 1).

Output of this process is an incremented index refldxLX.

The variable picNumLXNoWrap is derived as follows.

— Ifreordering_of pic nums_idc is equal to 0

if(picNumLXPred — (abs_diff pic num minusl +1)<0)

picNumLXNoWrap = picNumLXPred — (abs_diff pic num minusl + 1) + MaxPicNum (8-35)
else

picNumLXNoWrap = picNumLXPred — (abs_diff pic num minusl + 1)

— Otherwise (reordering_of pic_nums_idc is equal to 1),

if(picNumLXPred + (‘abs_diff pic num minusl + 1) >= MaxPicNum)

picNumLXNoWrap = picNumLXPred + (abs_diff pic num minusl + 1) — MaxPicNum (8-36)
else

picNumLXNoWrap = picNumLXPred + (abs_diff pic num minusl + 1)

picNumLXPred is the prediction value for the variable picNumLXNoWrap. When the process specified in this
subclause is invoked the first time for a slice (that is, for the first occurrence of reordering_of pic_nums_idc equal to 0
or 1 in the ref pic list reordering() syntax), picNumLOPred and picNumL1Pred are initially set equal to CurrPicNum.
After each assignment of picNumLXNoWrap, the value of picNumLXNoWTrap is assigned to picNumLXPred.

The variable picNumLX is derived as follows

if(picNumLXNoWrap > CurrPicNum)

picNumLX = picNumLXNoWrap — MaxPicNum (8-37)
else

picNumLX = picNumLXNoWrap

picNumLX shall be equal to the PicNum of a reference picture that is marked as “used for short-term reference” and
shall not be equal to the PicNum of a short-term reference picture that is marked as "non-existing".

The following procedure is conducted to place the picture with short-term picture number picNumLX into the index
position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refldxLX.

ITU-T Rec. H.264 (03/2005) 111

for(cldx =num_ref idx IX active minusl + 1; cldx > refldxLX; cIdx--)
RefPicListX[cldx] = RefPicListX[cldx — 1]
RefPicListX[refldxLX++ | = short-term reference picture with PicNum equal to picNumLX
nldx = refldxLX
for(cldx = refldxLX; cldx <= num_ref idx IX active minusl + 1; cldx++) (8-38)
if(PicNumF(RefPicListX[cldx]) != picNumLX)
RefPicListX[nldx++] = RefPicListX][cldx]

where the function PicNumF(RefPicListX[cldx]) is derived as follows:

— If the picture RefPicListX][cldx] is marked as "used for short-term reference", PicNumF(RefPicListX[cldx]) is
the PicNum of the picture RefPicListX[cldx].

— Otherwise (the picture RefPicListX[cldx] is not marked as "used for short-term reference"),
PicNumF(RefPicListX[cldx]) is equal to MaxPicNum.
NOTE 1 — A value of MaxPicNum can never be equal to picNumLX.

NOTE 2 — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref idx_1X_active_minus] of
the list need to be retained.

8.2.4.3.2 Reordering process of reference picture lists for long-term reference pictures
Input to this process is an index refldxLX (with X being 0 or 1).
Output of this process is an incremented index refldxLX.

The following procedure is conducted to place the picture with long-term picture number long_term_pic_num into the
index position refldxLX, shift the position of any other remaining pictures to later in the list, and increment the value of
refldxLX.

for(cIdx = num_ref idx 1X active minusl + 1; cIdx > refldxLX; cIdx--)
RefPicListX[cldx] = RefPicListX[cldx — 1]
RefPicListX[refldxLX++] = long-term reference picture with LongTermPicNum equal to long_term_pic_num
nldx = refldxLX
for(cldx = refldxLX; cldx <= num_ref idx IX active minusl + 1; cIdx++) (8-39)
if(LongTermPicNumF(RefPicListX[cldx]) !=long term pic num)
RefPicListX[nldx++] = RefPicListX][cldx]

where the function LongTermPicNumF(RefPicListX[cldx]) is derived as follows:

— If the picture RefPicListX][cldx] is marked as "used for long-term reference",
LongTermPicNumF(RefPicListX][cldx]) is the LongTermPicNum of the picture RefPicListX][cldx].

— Otherwise (the picture RefPicListX[cldx] is not marked as '"used for long-term reference"),
LongTermPicNumF(RefPicListX] cldx]) is equal to 2 * (MaxLongTermFrameldx + 1).
NOTE 1 — A value of 2 * (MaxLongTermFrameldx + 1) can never be equal to long_term pic_num.

NOTE 2 — Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the
length needed for the final list. After the execution of this procedure, only elements 0 through num_ref idx 1X active minus] of
the list need to be retained.

8.2.5 Decoded reference picture marking process

This process is invoked for decoded pictures when nal_ref idc is not equal to 0.

NOTE — The decoding process for gaps in frame num that is specified in subclause 8.2.5.2 may also be invoked when
nal_ref idc is equal to 0, as specified in clause 8.

A decoded picture with nal _ref idc not equal to 0, referred to as a reference picture, is marked as “used for short-term
reference” or "used for long-term reference". For a decoded reference frame, both of its fields are marked the same as
the frame. For a complementary reference field pair, the pair is marked the same as both of its fields. A picture that is
marked as "used for short-term reference" is identified by its FrameNum and, when it is a field, by its parity. A picture
that is marked as "used for long-term reference" is identified by its LongTermFrameldx and, when it is a field, by its
parity.

Frames or complementary field pairs marked as “used for short-term reference” or as "used for long-term reference" can
be used as a reference for inter prediction when decoding a frame until the frame, the complementary field pair, or one
of its constituent fields is marked as “unused for reference”. A field marked as “used for short-term reference” or as

112 ITU-T Rec. H.264 (03/2005)

"used for long-term reference" can be used as a reference for inter prediction when decoding a field until marked as
“unused for reference”.

A picture can be marked as "unused for reference" by the sliding window reference picture marking process, a first-in,
first-out mechanism specified in subclause 8.2.5.3 or by the adaptive memory control reference picture marking
process, a customised adaptive marking operation specified in subclause 8.2.5.4.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and
FrameNumWrap and its picture number PicNum, and a long-term reference picture is identified for use in the decoding
process by its long-term picture number LongTermPicNum. When the current picture is not an IDR picture,
subclause 8.2.4.1 is invoked to specify the assignment of the variables FrameNum, FrameNumWrap, PicNum and
LongTermPicNum.

8.2.5.1 Sequence of operations for decoded reference picture marking process
Decoded reference picture marking proceeds in the following ordered steps.
1. Allslices of the current picture are decoded.
2. Depending on whether the current picture is an IDR picture, the following applies.
— If the current picture is an IDR picture, the following applies.
— All reference pictures are marked as "unused for reference"
— Depending on long_term_reference flag, the following applies.

— If long_term reference flag is equal to 0, the IDR picture is marked as "used for short-term reference"
and MaxLongTermFrameldx is set equal to “no long-term frame indices”.

— Otherwise (long_term_reference flag is equal to 1), the IDR picture is marked as "used for long-term
reference", the LongTermFrameldx for the IDR picture is set equal to 0, and MaxLongTermFrameldx is
set equal to 0.

— Otherwise (the current picture is not an IDR picture), the following applies.
— Ifadaptive ref pic marking mode flag is equal to 0, the process specified in subclause 8.2.5.3 is invoked.

— Otherwise (adaptive_ref pic_marking mode flag is equal to 1), the process specified in subclause 8.2.5.4 is
invoked.

3. When the current picture is not an IDR picture and it was not marked as "used for long-term reference" by
memory_management_control operation equal to 6, it is marked as "used for short-term reference".

After marking the current decoded reference picture, the total number of frames with at least one field marked as “used
for reference”, plus the number of complementary field pairs with at least one field marked as “used for reference”, plus
the number of non-paired fields marked as “used for reference” shall not be greater than Max(num_ref frames, 1).

8.2.5.2 Decoding process for gaps in frame num

This process is invoked when frame num is not equal to PrevRefFrameNum and is not equal to
(PrevRefFrameNum + 1) % MaxFrameNum.
NOTE 1 — Although this process is specified as a subclause within subclause 8.2.5 (which defines a process that is invoked only

when nal_ref idc is not equal to 0), this process may also be invoked when nal_ref idc is equal to 0 (as specified in clause 8).
The reasons for the location of this subclause within the structure of this Recommendation | International Standard are historical.

NOTE 2 — This process can only be invoked for a conforming bitstream when gaps in_frame num_value allowed flag is equal
to 1. When gaps_in_frame num_value allowed flag is equal to 0 and frame num is not equal to PrevRefFrameNum and is not
equal to (PrevRefFrameNum + 1) % MaxFrameNum, the decoding process should infer an unintentional loss of pictures.

When this process is invoked, a set of values of frame num pertaining to “non-existing” pictures is derived as all values
taken on by UnusedShortTermFrameNum in Equation 7-21 except the value of frame num for the current picture.

The decoding process generates and marks a frame for each of the values of frame num pertaining to “non-existing”
pictures, in the order in which the values of UnusedShortTermFrameNum are generated by Equation 7-21, using the
“sliding window” picture marking process as specified in subclause 8.2.5.3. The generated frames are also marked as
“non-existing” and “used for short-term reference”. The sample values of the generated frames may be set to any value.
The bitstream shall not contain data that results in a reference to these generated frames which are marked as “non-
existing” in the inter prediction process, a reference to these frames in the reordering commands for reference picture
lists for short-term reference pictures (subclause 8.2.4.3.1), or a reference to these frames in the assignment process of a
LongTermFrameldx to a short-term reference picture (subclause 8.2.5.4.3).

ITU-T Rec. H.264 (03/2005) 113

When pic_order cnt_type is not equal to 0, TopFieldOrderCnt and BottomFieldOrderCnt are derived for each of the
"non-existing" frames by invoking the decoding process for picture order count in subclause 8.2.1. When invoking the
process in subclause 8.2.1 for a particular "non-existing" frame, the current picture is considered to be a picture
considered having frame num inferred to be equal to UnusedShortTermFrameNum, nal ref idc inferred to be not equal
to 0, nal unit type inferred to be not equal to 5, field pic flag inferred to be equal to O,
adaptive ref pic marking mode flag inferred to be equal to 0, delta pic_order cnt[0] (if needed) inferred to be equal
to 0, and delta_pic_order cnt[1] (if needed) inferred to be equal to 0.
NOTE 3 — The decoding process should infer an unintentional picture loss when any of these values of frame num pertaining to
“non-existing” pictures is referred to in the inter prediction process, is referred to in the reordering commands for reference
picture lists for short-term reference pictures (subclause 8.2.4.3.1), or is referred to in the assignment process of a
LongTermFrameldx to a short-term reference picture (subclause 8.2.5.4.3). The decoding process should not infer an
unintentional picture loss when a memory management control operation not equal to 3 is applied to a frame marked as “non-
existing”.

8.2.5.3 Sliding window decoded reference picture marking process
This process is invoked when adaptive ref pic_marking mode flag is equal to 0.
Depending on the properties of the current picture as specified below, the following applies.

— If the current picture is a coded field that is the second field in decoding order of a complementary reference field
pair, and the first field has been marked as “used for short-term reference”, the current picture is also marked as
“used for short-term reference”.

— Otherwise, the following applies.

— Let numShortTerm be the total number of reference frames, complementary reference field pairs and non-paired
reference fields for which at least one field is marked as “used for short-term reference”. Let numLongTerm be
the total number of reference frames, complementary reference field pairs and non-paired reference fields for
which at least one field is marked as “used for long-term reference”.

— When numShortTerm + numLongTerm is equal to Max(num_ref frames, 1), the condition that numShortTerm
is greater than 0 shall be fulfilled, and the short-term reference frame, complementary reference field pair or non-
paired reference field that has the smallest value of FrameNumWTrap is marked as “unused for reference”. When
it is a frame or a complementary field pair, both of its fields are also marked as “unused for reference”.

8.2.5.4 Adaptive memory control decoded reference picture marking process
This process is invoked when adaptive ref pic_marking mode flag is equal to 1.

The memory_management_control operation commands with values of 1 to 6 are processed in the order they occur in
the bitstream after the current picture has been decoded. For each of these memory management control operation
commands, one of the processes specified in subclauses 8.2.5.4.1 to 8.2.5.4.5 is invoked depending on the value of
memory_management_control operation. The memory management control operation command with value of 0
specifies the end of memory management control operation commands.

Memory management control operations are applied to pictures as follows.

— If field pic_flag is equal to 0, memory management control operation commands are applied to the frames or
complementary reference field pairs specified.

— Otherwise (field pic flag is equal to 1), memory management control operation commands are applied to the
individual reference fields specified.

8.2.5.4.1 Marking process of a short-term reference picture as “unused for reference”
This process is invoked when memory _management_control operation is equal to 1.

Let picNumX be specified by

picNumX = CurrPicNum — (difference of pic nums minusl + 1). (8-40)

Depending on field pic flag the value of picNumX is used to mark a short-term reference picture as “unused for
reference” as follows.

— If field pic_flag is equal to 0, the short-term reference frame or short-term complementary reference field pair
specified by picNumX and both of its fields are marked as “unused for reference”.

— Otherwise (field pic_flag is equal to 1), the short-term reference field specified by picNumX is marked as “unused
for reference”. When that reference field is part of a reference frame or a complementary reference field pair, the

114 ITU-T Rec. H.264 (03/2005)

frame or complementary field pair is also marked as "unused for reference", but the marking of the other field is
not changed.

8.2.5.4.2 Marking process of a long-term reference picture as “unused for reference”
This process is invoked when memory management control operation is equal to 2.

Depending on field pic flag the value of LongTermPicNum is used to mark a long-term reference picture as “unused
for reference” as follows.

— If field pic_flag is equal to 0, the long-term reference frame or long-term complementary reference field pair
having LongTermPicNum equal to long term pic num and both of its fields are marked as “unused for
reference”.

— Otherwise (field pic_flag is equal to 1), the long-term reference field specified by LongTermPicNum equal to
long_term pic_num is marked as “unused for reference”. When that reference field is part of a reference frame or
a complementary reference field pair, the frame or complementary field pair is also marked as "unused for
reference", but the marking of the other field is not changed.

8.2.5.4.3 Assignment process of a LongTermFrameldx to a short-term reference picture
This process is invoked when memory management control operation is equal to 3.

Given the syntax element difference of pic nums_minusl, the variable picNumX is obtained as specified in subclause
8.2.5.4.1. picNumX shall refer to a frame or complementary reference field pair or non-paired reference field marked as
"used for short-term reference" and not marked as "non-existing".

When LongTermFrameldx equal to long_term frame idx is already assigned to a long-term reference frame or a long-
term complementary reference field pair, that frame or complementary field pair and both of its fields are marked as
"unused for reference". When LongTermFrameldx is already assigned to a non-paired reference field, and the field is
not the complementary field of the picture specified by picNumX, that field is marked as “unused for reference”.

Depending on field pic_flag the value of LongTermFrameldx is used to mark a picture from "used for short-term
reference"” to "used for long-term reference" as follows.

— If field pic flag is equal to 0, the marking of the short-term reference frame or short-term complementary
reference field pair specified by picNumX and both of its fields are changed from "used for short-term reference"
to "used for long-term reference" and assigned LongTermFrameldx equal to long_term_frame idx.

— Otherwise (field pic_flag is equal to 1), the marking of the short-term reference field specified by picNumX is
changed from "used for short-term reference" to "used for long-term reference" and assigned LongTermFrameldx
equal to long_term_frame idx. When the field is part of a reference frame or a complementary reference field pair,
and the other field of the same reference frame or complementary reference field pair is also marked as "used for
long-term reference", the reference frame or complementary reference field pair is also marked as "used for long-
term reference" and assigned LongTermFrameldx equal to long_term_ frame idx.

8.2.5.4.4 Decoding process for MaxLongTermFrameldx
This process is invoked when memory management control operation is equal to 4.

All pictures for which LongTermFrameldx is greater than max_long_term frame idx_plusl — 1 and that are marked as
"used for long-term reference" are marked as “unused for reference”.

The variable MaxLongTermFrameldx is derived as follows.

— If max_long term frame idx plusl is equal to 0, MaxLongTermFrameldx is set equal to “no long-term frame
indices”.

— Otherwise (max long term frame idx plusl is greater than 0), MaxLongTermFrameldx is set equal to
max_long term frame idx plusl — 1.

NOTE — The memory management control operation command equal to 4 can be used to mark long-term reference pictures as
“unused for reference”. The frequency of transmitting max long term frame idx plusl is not specified by this
Recommendation | International Standard. However, the encoder should send a memory management control operation
command equal to 4 upon receiving an error message, such as an intra refresh request message.

8.2.5.4.4.1 Marking process of all reference pictures as “unused for reference” and setting
MaxLongTermFrameldx to “no long-term frame indices”

This process is invoked when memory _management_control _operation is equal to 5.

ITU-T Rec. H.264 (03/2005) 115

All reference pictures are marked as “unused for reference” and the variable MaxLongTermFrameldx is set equal to “no
long-term frame indices”.

8.2.5.4.5 Process for assigning a long-term frame index to the current picture
This process is invoked when memory management control operation is equal to 6.

When a variable LongTermFrameldx equal to long_term_frame idx is already assigned to a long-term reference frame
or a long-term complementary reference field pair, that frame or complementary field pair and both of its fields are
marked as "unused for reference". When LongTermFrameldx is already assigned to a non-paired reference field, and
the field is not the complementary field of the current picture, that field is marked as “unused for reference”.

The current picture is marked as
long_term_frame idx.

'used for long-term reference" and assigned LongTermFrameldx equal to

When field pic flag is equal to 0, both its fields are also marked as "used for long-term reference" and assigned
LongTermFrameldx equal to long_term_frame idx.

When field pic flag is equal to 1 and the current picture is the second field (in decoding order) of a complementary
reference field pair, and the first field of the complementary reference field pair is also currently marked as "used for
long-term reference), the complementary reference field pair is also marked as "used for long-term reference" and
assigned LongTermFrameldx equal to long_term_frame idx.

After marking the current decoded reference picture, the total number of frames with at least one field marked as “used
for reference”, plus the number of complementary field pairs with at least one field marked as “used for reference”, plus
the number of non-paired fields marked as “used for reference” shall not be greater than Max(num_ref frames, 1).

NOTE - Under some circumstances, the above statement may impose a constraint on the order in which a
memory management_control operation syntax element equal to 6 can appear in the decoded reference picture marking syntax
relative to a memory _management_control_operation syntax element equal to 1, 2, or 4.

8.3 Intra prediction process

This process is invoked for I and SI macroblock types.

Inputs to this process are constructed samples prior to the deblocking filter process and, for Intra NxN prediction
modes (where NxN is equal to 4x4 or 8x8), the values of IntraNxNPredMode from neighbouring macroblocks.

Outputs of this process are specified as follows.

— If the macroblock prediction mode is Intra_4x4 or Intra_8x8, the outputs are constructed luma samples prior to the
deblocking filter process and (when chroma format idc is not equal to 0) chroma prediction samples of the
macroblock predc, where C is equal to Cb and Cr.

— Otherwise, if mb_type is not equal to I PCM, the outputs are luma prediction samples of the macroblock pred; and
(when chroma_format _idc is not equal to 0) chroma prediction samples of the macroblock predc, where C is equal
to Cb and Cr.

— Otherwise (mb_type is equal to I PCM), the outputs are constructed luma and (when chroma_format idc is not
equal to 0) chroma samples prior to the deblocking filter process.

The variable MvCnt is set equal to 0.
Depending on the value of mb_type the following applies.
— Ifmb type is equal to I PCM, the process specified in subclause 8.3.5 is invoked.
— Otherwise (mb_type is not equal to I PCM), the following applies.
— The decoding processes for Intra prediction modes are described for the luma component as follows.
— If the macroblock prediction mode is equal to Intra_4x4, the specification in subclause 8.3.1 applies.

— Otherwise, if the macroblock prediction mode is equal to Intra 8x8, the specification in subclause 8.3.2
applies.

— Otherwise (the macroblock prediction mode is equal to Intra_16x16), the specification in subclause
8.3.3 applies.

— The decoding processes for Intra prediction modes for the chroma components are described in subclause
8.3.4. This process is only invoked when chroma_format_idc is not equal to 0 (monochrome).

Samples used in the Intra prediction process are the sample values prior to alteration by any deblocking filter operation.

116 ITU-T Rec. H.264 (03/2005)

8.3.1 Intra_4x4 prediction process for luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_4x4.

Inputs to this process are the values of Intra4x4PredMode (if available) or Intra8x8PredMode (if available) from
neighbouring macroblocks or macroblock pairs.

The luma component of a macroblock consists of 16 blocks of 4x4 luma samples. These blocks are inverse scanned
using the 4x4 luma block inverse scanning process as specified in subclause 6.4.3.

For all 4x4 luma blocks of the luma component of a macroblock with luma4x4BlkIldx = 0..15, the derivation process for
the Intra4x4PredMode as specified in subclause 8.3.1.1 is invoked with luma4x4BlkIdx as well as Intra4x4PredMode
and Intra8x8PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the
variable Intra4x4PredMode[luma4x4Blkldx | as the output.

For each luma block of 4x4 samples indexed using luma4x4BlkIdx = 0..15,

1. The Intra 4x4 sample prediction process in subclause 8.3.1.2 is invoked with luma4x4Blkldx and constructed
samples prior (in decoding order) to the deblocking filter process from adjacent luma blocks as the input and the
output are the Intra_4x4 luma prediction samples pred4x4,[x, y] with x, y =0..3.

2. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the current macroblock
is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the
input and the output being assigned to (xO, yO) and x, y = 0..3.

pred [xO +x,yO +y | =pred4x4.[X, y] (8-41)

3. The transform coefficient decoding process and picture construction process prior to deblocking filter process in
subclause 8.5 is invoked with pred; and luma4x4BIklIdx as the input and the constructed samples for the current
4x4 luma block S’ as the output.

8.3.1.1 Derivation process for the Intradx4PredMode

Inputs to this process are the index of the 4x4 luma block luma4x4Blkldx and variable arrays Intra4x4PredMode (if
available) and Intra8x8PredMode (if available) that are previously (in decoding order) derived for adjacent
macroblocks.

Output of this process is the variable Intra4x4PredMode[luma4x4BlkIdx].

Table 8-2 specifies the values for Intra4x4PredMode[luma4x4Blkldx] and the associated names.

Table 8-2 — Specification of Intra4x4PredMode| luma4x4BlkIdx | and associated names

Intra4x4PredMode[luma4x4BlkIdx | Name of Intradx4PredMode[luma4x4BlkIdx |
0 Intra_4x4 Vertical (prediction mode)
1 Intra_4x4_Horizontal (prediction mode)
2 Intra_4x4 DC (prediction mode)
3 Intra_4x4 Diagonal Down_Left (prediction mode)
4 Intra_4x4_ Diagonal Down_Right (prediction mode)
5 Intra_4x4 Vertical Right (prediction mode)
6 Intra_4x4 Horizontal Down (prediction mode)
7 Intra_4x4 Vertical Left (prediction mode)
8 Intra_4x4 Horizontal Up (prediction mode)

Intradx4PredMode[luma4x4BlkIdx] labelled 0, 1, 3, 4, 5, 6, 7, and 8 represent directions of predictions as illustrated in
Figure 8-1.

ITU-T Rec. H.264 (03/2005) 117

v
-

Figure 8-1 — Intra_4x4 prediction mode directions (informative)

Intradx4PredMode[luma4x4BIlkIdx] is derived as follows.

118

The process specified in subclause 6.4.8.3 is invoked with luma4x4BlkIdx given as input and the output is
assigned to mbAddrA, luma4x4BIlkIdxA, mbAddrB, and luma4x4BlkIdxB.

The variable dcPredModePredictedFlag is derived as follows.
— If any of the following conditions are true, dcPredModePredictedFlag is set equal to 1
— the macroblock with address mbAddrA is not available

- the macroblock with address mbAddrB is not available

— the macroblock with address mbAddrA is available and coded in Inter prediction mode and

constrained_intra_pred_flag is equal to 1

— the macroblock with address mbAddrB is available and coded in Inter prediction mode and

constrained intra pred flag is equal to 1
— Otherwise, dcPredModePredictedFlag is set equal to 0.
For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows.

— If dcPredModePredictedFlag is equal to 1 or the macroblock with address mbAddrN is not coded in Intra_4x4
or Intra_8x8 macroblock prediction mode, intraMxMPredModeN is set equal to 2 (Intra_4x4 DC prediction

mode).

— Otherwise (dcPredModePredictedFlag is equal to 0 and (the macroblock with address mbAddrN is coded in

Intra_4x4 macroblock prediction mode or the macroblock with address mbAddrN is coded in Intra_8x8

macroblock prediction mode)), the following applies.

— If the macroblock with address mbAddrN is coded in Intra 4x4 macroblock mode,
intraMxMPredModeN is set equal to Intradx4PredMode[luma4x4BlkIdxN], where Intra4x4PredMode

is the variable array assigned to the macroblock mbAddrN.

— Otherwise (the macroblock with address mbAddrN is coded in Intra 8x8 macroblock mode),

intraMxMPredModeN is set equal to Intra8x8PredMode[luma4x4BIkIdxN >>2],
Intra8x8PredMode is the variable array assigned to the macroblock mbAddrN.

Intradx4PredMode[luma4x4Blkldx] is derived by applying the following procedure.

predIntra4x4PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra4x4 pred mode flag[luma4x4Blkldx])
Intradx4PredMode[luma4x4Blkldx | = predIntradx4PredMode
else
if(rem_intra4x4 pred mode[luma4x4Blkldx] < predIntra4x4PredMode)
Intra4x4PredMode[luma4x4Blkldx] =rem_intra4x4 pred mode[luma4x4BlkIdx]
else
Intra4x4PredMode[luma4x4Blkldx] =rem_intra4x4 pred mode[luma4x4Blkldx]+ 1

ITU-T Rec. H.264 (03/2005)

where

(8-42)

8.3.1.2 Intra_4x4 sample prediction

This process is invoked for each 4x4 luma block of a macroblock with prediction mode equal to Intra_4x4 followed by
the transform decoding process and picture construction process prior to deblocking for each 4x4 luma block.

Input to this process is the index of a 4x4 luma block luma4x4BlkIdx.

Output of this process are the prediction samples pred4x4,[x,y], with x, y = 0..3 for the 4x4 luma block with index
luma4x4BIkIdx.

The position of the upper-left sample of a 4x4 luma block with index luma4x4Blkldx inside the current macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the input
and the output being assigned to (xO, yO).

The 13 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1.3and x=0..7, y = -1, are derived as follows.

— The luma location (XN, yN) is specified by

xN =x0 + x (8-43)

yN=yO +y (8-44)

— The derivation process for neighbouring locations in subclause 6.4.9 is invoked for luma locations with (XN, yN)
as input and mbAddrN and (xW, yW) as output.

— Eachsample p[x,y Jwithx=-1,y=-1..3 and x=0..7, y = -1 is derived as follows.

— If any of the following conditions is true, the sample p[X,y] is marked as “not available for Intra 4x4
prediction”

— mbAddrN is not available,

— the macroblock mbAddrN is coded in Inter prediction mode and constrained intra_pred flag is equal
to 1.

— the macroblock mbAddrN has mb_type equal to SI and constrained intra pred flag is equal to 1 and the
current macroblock does not have mb_type equal to SI.

— x is greater than 3 and luma4x4BlkIdx is equal to 3 or 11

— Otherwise, the sample p[x, y] is marked as “available for Intra_4x4 prediction” and the luma sample at luma
location (xW, yW) inside the macroblock mbAddrN is assigned to p[X, y].

When samples p[x, -1], with x = 4..7 are marked as “not available for Intra_4x4 prediction,” and the sample p[3, -1]
is marked as “available for Intra 4x4 prediction,” the sample value of p[3,-1] is substituted for sample values
pl x, -1], with x = 4..7 and samples p[x, -1], with x = 4..7 are marked as “available for Intra_4x4 prediction”.

NOTE - Each block is assumed to be constructed into a picture array prior to decoding of the next block.

Depending on Intra4x4PredMode[luma4x4BlklIdx], one of the Intra 4x4 prediction modes specified in subclauses
8.3.1.2.1 t0 8.3.1.2.9 is invoked.

8.3.1.2.1 Specification of Intra_4x4 Vertical prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BIkldx] is equal to O.

This mode shall be used only when the samples p[x,-1] with x = 0..3 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4; [x, y], with x, y = 0..3 are derived by

pred4x4, [x,y]=p[x, -1], withx,y=0.3 (8-45)

8.3.1.2.2 Specification of Intra_4x4 Horizontal prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BlklIdx] is equal to 1.

This mode shall be used only when the samples p[-1,y], with y = 0..3 are marked as “available for Intra 4x4
prediction”.

ITU-T Rec. H.264 (03/2005) 119

The values of the prediction samples pred4x4;[x, y], with x, y = 0..3 are derived by

pred4x4 [x,y]=p[-1,y], withx,y=0..3 (8-46)

8.3.1.2.3 Specification of Intra_4x4 DC prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlkIdx] is equal to 2.
The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

— If all samples p[x,-1], with x = 0.3 and p[-1,y], with y = 0..3 are marked as “available for Intra 4x4
prediction”, the values of the prediction samples pred4x4, [x, y], with x, y = 0..3 are derived by

preddx4 [x,y]=(p[0,-1]+p[1,-1]+p[2,-1]+p[3,-1]+
p[-1,0]+p[-1,1]+p[-1,2]+p[-1,3]+4)>>3 (8-47)

— Otherwise, if any samples p[x, -1], with x = 0..3 are marked as “not available for Intra 4x4 prediction” and all
samples p[-1,y], with y = 0..3 are marked as “available for Intra_4x4 prediction”, the values of the prediction
samples pred4x4,[x, y], with x, y = 0..3 are derived by

pred4x4 [x,y] =(p[-1,0]+p[-1,1]+p[-1,2]+p[-1,3]+2)>>2 (8-48)

— Otherwise, if any samples p[-1, y], with y = 0..3 are marked as “not available for Intra_4x4 prediction” and all
samples p[x, -1], with x =0 .. 3 are marked as “available for Intra 4x4 prediction”, the values of the prediction
samples pred4x4, [x, y], with x, y =0 .. 3 are derived by

pred4x4 [X,y] =(p[O0,-1]+p[1,-1]+p[2,-1]+p[3,-1]+2)>>2 (8-49)

— Otherwise (some samples p[x, -1], with x = 0..3 and some samples p[-1,y], with y = 0..3 are marked as “not
available for Intra_4x4 prediction”), the values of the prediction samples pred4x4.[x,y], with x, y = 0..3 are
derived by

preddx4; [x,y]= (1 <<(BitDepthy — 1)) (8-50)

NOTE — A 4x4 luma block can always be predicted using this mode.
8.3.1.2.4 Specification of Intra_4x4 Diagonal Down_Left prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BlklIdx] is equal to 3.

This mode shall be used only when the samples p[x,-1] with x = 0..7 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

— Ifxisequal to 3 and y is equal to 3,

pred4x4. [X,y]=(p[6,-1]+3*p[7,-1]+2)>>2 (8-51)

— Otherwise (x is not equal to 3 or y is not equal to 3),

pred4x4 [x,y | =(p[x+y,-1]+2*p[x+y+1,-1]+p[x+ty+2,-1]+2)>>2 (8-52)

8.3.1.2.5 Specification of Intra_4x4 Diagonal Down_Right prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BlklIdx] is equal to 4.

This mode shall be used only when the samples p[x, -1] with x = 0..3 and p[-1,y | with y = -1..3 are marked as
“available for Intra_4x4 prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

— Ifxis greater than y,

120 ITU-T Rec. H.264 (03/2005)

preddx4 [X,y] =(p[x-y-2,-1]+2%p[x-y- L -1]+p[x-y,-1]+2)>>2 (8-53)

Otherwise if x is less than y,

predaxd [x,y 1= (p[-1,y-x-2]+2*p[-I,y-x-1]+p[-I,y-x]+2)>>2 (8-54)

Otherwise (x is equal to y),

pred4x4, [X,y]=(p[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-55)

8.3.1.2.6 Specification of Intra_4x4 Vertical Right prediction mode

This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BlklIdx] is equal to 5.

This mode shall be used only when the samples p[x, -1] with x = 0..3 and p[-1,y | with y = -1..3 are marked as
“available for Intra_4x4 prediction”.

Let the variable zVR be set equal to 2 * x —y.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

If zZVR is equal to 0, 2, 4, or 6,

preddx4 [X,y]=(p[x-(y>>1)- 1L -1]+p[x-(y>>1),-1]+1)>>1 (8-56)

Otherwise, if zZVR is equal to 1, 3, or 5,

preddxd [x,y 1= (p[x-(y>>1)-2,-1]+2%p[x-(y>>1)-L,-1]+p[x-(y>>1),-1]1+2)>>2 (8-57)

Otherwise, if zZVR is equal to -1,

preddx4 [x,y]=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-58)

Otherwise (zVR is equal to -2 or -3),

preddx4.[x,y] =(p[-Ly-1]1+2*p[-l,y-2]+p[-l,y-3]+2)>>2 (8-59)

8.3.1.2.7 Specification of Intra_4x4 Horizontal Down prediction mode

This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BlklIdx] is equal to 6.

This mode shall be used only when the samples p[x, -1] with x = 0..3 and p[-1,y] with y = -1..3 are marked as
“available for Intra_4x4 prediction”.

Let the variable zZHD be set equal to 2 * y —x.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

If zZHD is equal to 0, 2, 4, or 6,

preddxéi[x,y = (p[-1y (x>>1)-1]+p[-Ly-(x>>1)]+1)>>1 (8-60)

Otherwise, if zZHD is equal to 1, 3, or 5,

predax4 [X,y] =(p[-1,y-(x>>1)-2]+2*p[-1,y-(x>>1)-1]+p[-1,y-(x>>1)]+2)>>2(8-61)

Otherwise, if zZHD is equal to -1,

preddx4 [x,y]=(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-62)

Otherwise (zHD is equal to -2 or -3),

ITU-T Rec. H.264 (03/2005) 121

preddxd [x,y]=(p[x-1,-1]+2%*p[x-2,-1]+p[x-3,-1]+2)>>2 (8-63)

8.3.1.2.8 Specification of Intra_4x4 Vertical Left prediction mode
This Intra_4x4 prediction mode is invoked when Intradx4PredMode[luma4x4BlklIdx] is equal to 7.

This mode shall be used only when the samples p[x,-1] with x = 0..7 are marked as “available for Intra 4x4
prediction”.

The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows.

— Ifyisequal toOor?2,

preddx4 [X,y] =(p[x+(y>>1),-1 J+p[x+(y>>1)+1,-1]+1)>>1 (8-64)

— Otherwise (y is equal to 1 or 3),

preddx4r[X,y [=(p[x+(y>>1),-1]+2%*p[x+(y>1)+1,-1]+p[x+(y>1)+2,-1]+2)>>2
(8-65)

8.3.1.2.9 Specification of Intra_4x4 Horizontal Up prediction mode
This Intra_4x4 prediction mode is invoked when Intra4x4PredMode[luma4x4BlklIdx] is equal to 8.

This mode shall be used only when the samples p[-1,y] with y = 0..3 are marked as “available for Intra 4x4
prediction”.

Let the variable zZHU be set equal to x + 2 * y.
The values of the prediction samples pred4x4,[x, y], with x, y = 0..3 are derived as follows:

— IfzHU isequal to 0, 2, or 4

predaxd [x,y 1= (p[-1,y +(x>> 1)]+ p[-Ly+(x>> 1)+ 1]+1)>>1 (8-66)

— Otherwise, if zZHU is equal to 1 or 3

predaxd [x,y 1= (pl -1,y +(x>> 1)]+2*p[-I,y+(x>> 1)+ 1]+p[-L,y+(x>>1)+2]+2)>>2

(8-67)
— Otherwise, if zZHU is equal to 5,
preddx4 [x,y]=(p[-1,2]+3*p[-1,3]+2)>>2 (8-68)
— Otherwise (zHU is greater than 5),
pred4x4.[x,y]=p[-1,3] (8-69)

8.3.2 Intra_8x8 prediction process for luma samples
This process is invoked when the macroblock prediction mode is equal to Intra_8x8.

Inputs to this process are the values of Intra4x4PredMode (if available) or Intra8x8PredMode (if available) from the
neighbouring macroblocks or macroblock pairs.

Outputs of this process are 8x8 luma sample arrays as part of the 16x16 luma array of prediction samples of the
macroblock pred; .

The luma component of a macroblock consists of 4 blocks of 8x8 luma samples. These blocks are inverse scanned using
the inverse 8x8 luma block scanning process as specified in subclause 6.4.4.

For all 8x8 luma blocks of the luma component of a macroblock with luma8x8BlkIdx = 0..3, the derivation process for
Intra8x8PredMode as specified in subclause 8.3.2.1 is invoked with luma8x8BlklIdx as well as Intra4x4PredMode and

122 ITU-T Rec. H.264 (03/2005)

Intra8x8PredMode that are previously (in decoding order) derived for adjacent macroblocks as the input and the
variable Intra8x8PredMode[luma8x8BlkIdx] as the output.

For each luma block of 8x8 samples indexed using luma8x8BlklIdx = 0..3, the following applies.

— The Intra_8x8 sample prediction process in subclause 8.3.2.2 is invoked with luma8x8BlkIldx and constructed
samples prior (in decoding order) to the deblocking filter process from adjacent luma blocks as the input and the
output are the Intra_8x8 luma prediction samples pred8x8.[x, y | with x, y =0..7.

— The position of the upper-left sample of an 8x8 luma block with index luma8x8Blkldx inside the current
macroblock is derived by invoking the inverse 8x8 luma block scanning process in subclause 6.4.4 with
luma8x8BIlkIdx as the input and the output being assigned to (xO, yO) and x, y =0..7.

pred [XxO +x,yO +y | =pred8x8. [X,y] (8-70)

— The transform coefficient decoding process and picture construction process prior to deblocking filter process in
subclause 8.5 is invoked with pred; and luma8x8BlkIdx as the input and the constructed samples for the current
8x8 luma block S’ as the output.

8.3.2.1 Derivation process for Intra8x8PredMode

Inputs to this process are the index of the 8x8 luma block luma8x8Blkldx and variable arrays Intra4x4PredMode (if
available) and Intra8x8PredMode (if available) that are previously (in decoding order) derived for adjacent
macroblocks.

Output of this process is the variable Intra8x8PredMode[luma8x8BlkIdx].

Table 8-3 specifies the values for Intra8x8PredMode[luma8x8BlkIdx] and the associated mnemonic names.

Table 8-3 — Specification of Intra8x8PredMode| luma8x8BIkIdx | and associated names

Intra8x8PredMode[luma8x8BIkIdx | Name of Intra8x8PredMode[luma8x8BIlkIdx |
0 Intra_8x8 Vertical (prediction mode)
1 Intra_8x8 Horizontal (prediction mode)
2 Intra_8x8 DC (prediction mode)
3 Intra_8x8 Diagonal Down_Left (prediction mode)
4 Intra_8x8 Diagonal Down_Right (prediction mode)
5 Intra 8x8 Vertical Right (prediction mode)
6 Intra_8x8 Horizontal Down (prediction mode)
7 Intra_8x8 Vertical Left (prediction mode)
8 Intra_8x8 Horizontal Up (prediction mode)

Intra8x8PredMode[luma8x8BlkIdx] is derived as follows.

— The process specified in subclause 6.4.8.2 is invoked with luma8x8BlkIdx given as input and the output is assigned
to mbAddrA, luma8x8BlkIdxA, mbAddrB, and luma8x8BlkIdxB.

— The variable dcPredModePredictedFlag is derived as follows.
— Ifany of the following conditions are true, dcPredModePredictedFlag is set equal to 1
— the macroblock with address mbAddrA is not available
— the macroblock with address mbAddrB is not available

— the macroblock with address mbAddrA is available and coded in Inter prediction mode and
constrained_intra_pred_flag is equal to 1

ITU-T Rec. H.264 (03/2005) 123

— the macroblock with address mbAddrB is available and coded in Inter prediction mode and
constrained_intra pred_flag is equal to 1

— Otherwise, dcPredModePredictedFlag is set equal to 0.
— For N being either replaced by A or B, the variables intraMxMPredModeN are derived as follows.

— If dcPredModePredictedFlag is equal to 1 or (the macroblock with address mbAddrN is not coded in
Intra_4x4 macroblock prediction mode and the macroblock with address mbAddrN is not coded in Intra_8x8
macroblock prediction mode), intraMxMPredModeN is set equal to 2 (Intra_8x8 DC prediction mode).

— Otherwise (dcPredModePredictedFlag is equal to 0 and (the macroblock with address mbAddrN is coded in
Intra_4x4 macroblock prediction mode or the macroblock with address mbAddrN is coded in Intra 8x8
macroblock prediction mode)), the following applies.

— If the macroblock with address mbAddrN is coded in Intra 8x8 macroblock mode,
intraMxMPredModeN is set equal to Intra8x8PredMode[luma8x8BIkIdxN], where Intra8x8PredMode
is the variable array assigned to the macroblock mbAddrN.

— Otherwise (the macroblock with address mbAddrN is coded in Intra_4x4 macroblock mode),
intraMxMPredModeN is derived by the following procedure, where Intradx4PredMode is the variable
array assigned to the macroblock mbAddrN.

intraMxMPredModeN = Intra4x4PredMode[luma8x8BIkIdxN * 4 +n] (8-71)

where the variable n is derived as follows

— If N is equal to A, depending on the variable MbaffFrameFlag, the variable luma8x8BlkIdx, the
current macroblock, and the macroblock mbAddrN, the following applies.

— If MbaffFrameFlag is equal to 1, the current macroblock is a frame coded macroblock, the
macroblock mbAddrN is a field coded macroblock, and luma8x8BlklIdx is equal to 2, n is set
equal to 3.

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a field coded
macroblock or the macroblock mbAddrN is a frame coded macroblock or luma8x8BIkIdx is
not equal to 2), n is set equal to 1.

— Otherwise (N is equal to B), n is set equal to 2.

— Finally, given intraMxMPredModeA and intraMxMPredModeB, the variable Intra8x8PredMode[luma8x8BlkIdx]
is derived by applying the following procedure.

predintra8x8PredMode = Min(intraMxMPredModeA, intraMxMPredModeB)
if(prev_intra8x8 pred mode flag[luma8x8Blkldx])
Intra8x8PredMode[luma8x8Blkldx | = predIntra8x8PredMode
else (8-72)
if(rem_intra8x8 pred mode[luma8x8Blkldx] < predIntra8x8PredMode)
Intra8x8PredMode[luma8x8Blkldx | =rem_intra8x8 pred mode[luma8x8BlkIdx]
else
Intra8x8PredMode[luma8x8Blkldx | =rem_intra8x8 pred mode[luma8x8Blkldx]+ 1

8.3.2.2 Intra_8x8 sample prediction

This process is invoked for each 8x8 luma block of a macroblock with prediction mode equal to Intra_8x8 followed by
the transform decoding process and picture construction process prior to deblocking for each 8x8 luma block.

Input to this process is the index of an 8x8 luma block luma8x8BIkIdx.

Output of this process are the prediction samples pred8x8,[x, y], with x, y =0..7 for the 8x8 luma block with index
luma8x8BIkIdx.

The position of the upper-left sample of an 8x8 luma block with index luma8x8BlkIdx inside the current macroblock is
derived by invoking the inverse 8x8 luma block scanning process in subclause 6.4.4 with luma8x8BlkIdx as the input
and the output being assigned to (xO, yO).

The 25 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1..7and x=0..15, y = -1, are derived as follows.

— The luma location (xN, yN) is specified by

124 ITU-T Rec. H.264 (03/2005)

xN =x0 + x (8-73)

yN=yO +y (8-74)

— The derivation process for neighbouring locations in subclause 6.4.9 is invoked for luma locations with (xN, yN)
as input and mbAddrN and (xW, yW) as output.

— Eachsample p[x,y] withx=-1,y=-1..7 and x = 0..15, y = -1 is derived as follows.

— Ifany of the following conditions is true, the sample p[X, y] is marked as “not available for Intra_8x8
prediction”

— mbAddrN is not available,

— the macroblock mbAddrN is coded in Inter prediction mode and constrained_intra pred flag is equal
to1,

— Otherwise, the sample p[x, y] is marked as “available for Intra_8x8 prediction” and the luma sample at luma
location (xW, yW) inside the macroblock mbAddrN is assigned to p[X, y].

When samples p[x, -1], with x = 8..15 are marked as “not available for Intra 8x8 prediction,” and the sample p[7, -1]
is marked as “available for Intra 8x8 prediction,” the sample value of p[7,-1] is substituted for sample values
pl x, -1], with x = 8..15 and samples p[x, -1], with x = 8..15 are marked as “available for Intra_8x8 prediction”.

NOTE - Each block is assumed to be constructed into a picture array prior to decoding of the next block.

The reference sample filtering process for Intra 8x8 sample prediction in subclause 8.3.2.2.1 is invoked with the
samples p[X,y | withx =-1, y=-1..7 and x = 0..15, y = -1 (if available) as input and p[X, y] withx =-1, y =-1..7 and
x =0..15, y =-1 as output.

Depending on Intra8x8PredMode[luma8x8BIlklIdx], one of the Intra 8x8 prediction modes specified in subclauses
8.3.2.2.2t0 8.3.2.2.10 is invoked.

8.3.2.2.1 Reference sample filtering process for Intra_8x8 sample prediction

Inputs to this process are the reference samples p[x,y | with x=-1, y=-1..7 and x=0..15, y =-1 (if available) for
Intra_8x8 sample prediction.

Outputs of this process are the filtered reference samples p'[x,y] with x=-1, y=-1..7 and x=0..15, y=-1 for
Intra_8x8 sample prediction.

When all samples p[x, -1] with x = 0..7 are marked as “available for Intra_8x8 prediction”, the following applies.
— The value of p[0, -1] is derived as follows.

— Ifp[-1, -1]is marked as “available for Intra_8x8 prediction”, p'[0, -1] is derived by

plO0,-1]1=(p[-1,-1]+2*p[0,-1]+p[1,-1]+2)>>2 (8-75)

— Otherwise (p[-1, -1] is marked as “not available for Intra_8x8 prediction”), p'[0, -1] is derived by

p[0,-1]=(3*p[0,-1]+p[1,-1]+2)>>2 (8-76)

— The values of p'[x, -1], with x = 1..7 are derived by

pIx,-1]=(p[x-1,-1]1+2*p[x,-1] +p[xt],-1]+2)>>2 (8-77)

When all samples p[x, -1] with x = 7..15 are marked as “available for Intra_8x8 prediction”, the following applies.

— The values of p'[x, -1], with x = 8..14 are derived by

pIx,-1]1=(p[x-1,-1]+2*p[x,-1] +p[x+],-1]+2)>>2 (8-78)

— The value of p'[15, -1] is derived by

pl15 -1]=(p[14,-1]+3 *p[15,-1]+2)>>2 (8-79)

ITU-T Rec. H.264 (03/2005) 125

When the sample p[-1, -1] is marked as “available for Intra 8x8 prediction”, the value of p'[-1, -1] is derived as
follows.

— Ifthe sample p[0, -1] is marked as “not available for Intra_8x8 prediction” or the sample p[-1, 0] is marked as
“not available for Intra_8x8 prediction”, the following applies.

— Ifthe sample p[0, -1] is marked as “available for Intra_8x8 prediction”, p'[-1, -1] is derived by
p[-1,-1]=(3*p[-1,-1]+p[0,-1]+2)>>2 (8-80)
— Otherwise (the sample p[0, -1] is marked as “not available for Intra_8x8 prediction” and the sample
pl -1, 0] is marked as “available for Intra_8x8 prediction”), p'[-1, -1] is derived by
p[-1,-11=(3*p[-1,-1]+p[-1,0]+2)>>2 (8-81)

— Otherwise (the sample p[0, -1] is marked as “available for Intra_8x8 prediction” and the sample p[-1, 0] is
marked as “available for Intra_8x8 prediction”), p'[-1, -1] is derived by

p[-1,-11=(p[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-82)

When all samples p[-1, y] with y = 0..7 are marked as “available for Intra_8x8 prediction”, the following applies.
— The value of p'[-1, 0] is derived as follows.

— Ifp[-1,-1]1s marked as “available for Intra_8x8 prediction”, p'[-1, 0] is derived by

pl-1,0]=(p[-1,-1]+2*p[-1,0]+p[-1,1]+2)>2 (8-83)

— Otherwise (if p[-1, -1] is marked as “not available for Intra_8x8 prediction”), p'[-1, 0] is derived by

pl[-1,0]=(3*p[-1,0]+p[-1,1]+2)>>2 (8-84)

— The values of p'[-1, y], with y = 1..6 are derived by

pl-Lyl=(pl-Ly-1]+2*p[-1,y]+p[-1,y+1]+2)>>2 (8-85)

— The value of p'[-1, 7] is derived by

pL-1, 7]=(p[-1,6]+3*p[-1,7]+2)>>2 (8-86)

8.3.2.2.2 Specification of Intra_8x8 Vertical prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 0.

This mode shall be used only when the samples p[x,-1] with x=0..7 are marked as “available for Intra 8x8
prediction”.

The values of the prediction samples pred8x8, [x, y], with x, y = 0..7 are derived by

pred8x8. [X,y | =p'[X, -1], withx, y=0..7 (8-87)

8.3.2.2.3 Specification of Intra_8x8 Horizontal prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIlkldx] is equal to 1.

This mode shall be used only when the samples p[-1,y], with y=0..7 are marked as “available for Intra 8x8
prediction”.

The values of the prediction samples pred8x8;[x, y], with x, y =0..7 are derived by

pred8x8;[x,y]=p[-1,y], with x, y=0..7 (8-88)

126 ITU-T Rec. H.264 (03/2005)

8.3.2.2.4 Specification of Intra_8x8 DC prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIlkldx] is equal to 2.
The values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived as follows.

— Ifall samples p[x, -1], with x =0..7 and p[-1, y], with y = 0..7 are marked as “available for Intra_8x8
prediction,” the values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived by

7 7
pred8x8, [x,y 1= p'[x',~1]+ Y p'[-1,1']+8) >> 4 (8-89)
x'=0 y'=0

— Otherwise, if any samples p[x, -1], with x = 0..7 are marked as “not available for Intra_8x8 prediction” and all
samples p[-1,y], with y = 0..7 are marked as “available for Intra_8x8 prediction”, the values of the prediction
samples pred8x8,[x, y], with x, y =0..7 are derived by

predSx8, [x,y]= (i p[-1,'1+4)>>3 (8-90)

»'=0

— Otherwise, if any samples p[-1, y], with y = (..7 are marked as “not available for Intra_8x8 prediction” and all
samples p[x, -1], with x = 0..7 are marked as “available for Intra 8x8 prediction”, the values of the prediction
samples pred8x8,[x, y], with x, y =0..7 are derived by

pred8x8,[x,y]= (ip’[x',—l] +4)>>3 (8-91)

x'=0

— Otherwise (some samples p[x, -1], with x = 0..7 and some samples p[-1, y |, with y = 0..7 are marked as “not
available for Intra_8x8 prediction”), the values of the prediction samples pred8x8,[x, y], with x, y =0..7 are
derived by

pred8x8.[x,y] = (1 << (BitDepthy — 1)) (8-92)

NOTE — An 8x8 luma block can always be predicted using this mode.
8.3.2.2.5 Specification of Intra_8x8 Diagonal Down_Left prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 3.

This mode shall be used only when the samples p[x,-1] with x =0..15 are marked as “available for Intra 8x8
prediction”.

The values of the prediction samples pred8x8,[x, y], with x, y = 0..7 are derived as follows.

— Ifxisequal to 7 and y is equal to 7,

pred8x8;[X, y 1= (p[14,-1]+3 *p[l15,-1]+2)>>2 (8-93)

— Otherwise (x is not equal to 7 or y is not equal to 7),

pred8x8.[x,y | =(p'[x+y,-1]+2*p[x+y+ L-1]+p[x+y+2,-1]+2)>>2 (8-94)

8.3.2.2.6 Specification of Intra_8x8 Diagonal Down_Right prediction mode
This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BlkIdx] is equal to 4.

This mode shall be used only when the samples p[x, -1] with x=0..7 and p[-1,y] with y=-1..7 are marked as
“available for Intra_8x8 prediction”.

The values of the prediction samples pred8x8,[x, y], with x, y = 0..7 are derived as follows.

— Ifxis greater than y,

pred8x8. [X,y | =(p[x-y-2,-1]+2*p[x-y-1L,-1]+p[x-y,-1]+2)>>2 (8-95)

ITU-T Rec. H.264 (03/2005) 127

Otherwise if x is less than y,

pred8x8. [X,y | =(p[-1,y-x-2]+2*p[-Ly-x-1]+p[-Ly-x]+2)>>2 (8-96)

Otherwise (x is equal to y),

pred8x8 [X,y]=(p[0,-1]+2*p[-1,-1]+p[-1,0]+2)>>2 (8-97)

8.3.2.2.7 Specification of Intra_8x8 Vertical Right prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIlkldx] is equal to 5.

This mode shall be used only when the samples p[x, -1] with x=0..7 and p[-1,y] with y=-1..7 are marked as
“available for Intra 8x8 prediction”.

Let the variable zVR be set equal to 2 * x —y.

The values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived as follows.

If zVR isequal to 0, 2, 4, 6, 8, 10, 12, or 14

pred8x8 [x, y 1= (p[x-(y>>1)-1,-11+p[x-(y>>1),-1]+1)>>1 (8-98)

Otherwise, if zVR is equalto 1, 3,5, 7,9, 11, or 13

pred8x8 [x,y1=(p[x-(y>>1)-2,-1]+2*p[x-(y>>1)-1,-1]+p[x-(y>>1),-1]42)>>2 (8-99)

Otherwise, if zZVR is equal to -1,

pred8x8.[x, y 1= (p[-1,01+2*p[-1,-1]+p[0,-1]+2)>>2 (8-100)

Otherwise (zVR is equal to -2, -3, -4, -5, -6, or -7),

pred8x8 [X,y]=(p[-1,y-2*x-1]+2*p[-1,y-2%*x-2]+p[-1,y-2*x-3]+2)>>2 (8-101)

8.3.2.2.8 Specification of Intra_8x8 Horizontal Down prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIlkldx] is equal to 6.

This mode shall be used only when the samples p[x, -1 | with x=0..7 and p[-1,y] with y=-1..7 are marked as
“available for Intra 8x8 prediction”.

Let the variable zZHD be set equal to 2 * y —x.

The values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived as follows.

128

If zHD is equal to 0, 2, 4, 6, 8, 10, 12, or 14

pred8x8 [x, y 1= (p[-Ly-(x>>1)-1]+p[-Ly-(x>>1)]+1)>>1 (8-102)

Otherwise, if zHD is equal to 1,3,5,7,9, 11, or 13

pred8x8ix,y]1=(p[-1,y-(x>>1)-2]+2%p[-Ly-(x>>1)-1]+p[-Ly-(x>>1)]+2)>2 (8-103)

Otherwise, if zHD is equal to -1,

pred8x8.[X,y | =(p[-1,0]+2*p[-1,-1]+p[0,-1]+2)>>2 (8-104)

Otherwise (zHD is equal to -2, -3, -4, -5, -6, -7),

pred8x8 [X,y |=(p[x-2¥y-1,-1]+2*p[x-2*%y-2,-1]+p[x-2%y-3,-1]+2)>>2 (8-105)

ITU-T Rec. H.264 (03/2005)

8.3.2.2.9 Specification of Intra_8x8 Vertical Left prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIlkldx] is equal to 7.

This mode shall be used only when the samples p[x,-1] with x =0..15 are marked as “available for Intra 8x8
prediction”.

The values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived as follows.

Ifyisequalto0,2,4 0r6

pred8x8 [x,y 1= (p[x+(y>>1),-1]+p[x+(y>>1)+1,-1]+1)>>1 (8-106)

Otherwise (y is equal to 1, 3, 5, 7),

pred8x8i[x,y]=(p[x+(y>>1),-1]+2*p[x+(y>> 1)+ L -1]+p[x+(y>>1)+2,-1]+2)>2 (8-107)

8.3.2.2.10 Specification of Intra_8x8_ Horizontal Up prediction mode

This Intra_8x8 prediction mode is invoked when Intra8x8PredMode[luma8x8BIlkldx] is equal to 8.

This mode shall be used only when the samples p[-1,y] with y=0..7 are marked as “available for Intra 8x8
prediction”.

Let the variable zHU be set equal to x + 2 * y.

The values of the prediction samples pred8x8;[x, y], with x, y = 0..7 are derived as follows:

833

If zHU is equal t0 0, 2, 4, 6, 8, 10, or 12

pred8x8.[x,y 1= (p[-1,y +(x>> 1) +p[-Ly+(x>>1)+1]+1)>>1 (8-108)

Otherwise, if zZHU is equal to 1, 3,5,7,9,0or 11

pred8x8i x,y1=(p[-1,y+(x>> 1)+ 2% p[-Ly+(x>> 1)+ 1]+p[-I,y+(x>>1)+2]+2)>>2 (8-109)

Otherwise, if zHU is equal to 13,

pred8x8.[X,y 1= (p[-1,6]+3 *p[-1,7]+2)>>2 (8-110)

Otherwise (zHU is greater than 13),

pred8x8 [x,y]=p'[-1,7] (8-111)

Intra_16x16 prediction process for luma samples

This process is invoked when the macroblock prediction mode is equal to Intra 16x16. It specifies how the Intra
prediction luma samples for the current macroblock are derived.

Outputs of this process are Intra prediction luma samples for the current macroblock pred;[x, y].

The 33 neighbouring samples p[x, y] that are constructed luma samples prior to the deblocking filter process, with
x=-1,y=-1..15 and with x = 0..15, y = -1, are derived as follows.

The derivation process for neighbouring locations in subclause 6.4.9 is invoked for luma locations with (x,y)
assigned to (XN, yN) as input and mbAddrN and (xW, yW) as output.

Each sample p[x, y] withx =-1, y =-1..15 and with x = 0..15, y = -1 is derived as follows.

— If any of the following conditions is true, the sample p[X, y | is marked as “not available for Intra 16x16
prediction”

— mbAddrN is not available,

— the macroblock mbAddrN is coded in Inter prediction mode and constrained intra pred flag is equal
to 1.

ITU-T Rec. H.264 (03/2005) 129

— the macroblock mbAddrN has mb_type equal to SI and constrained_intra_pred flag is equal to 1.

— Otherwise, the sample p[x, y] is marked as “available for Intra_16x16 prediction” and the luma sample at
luma location (xW, yW) inside the macroblock mbAddrN is assigned to p[X, y |.

Let pred, [x, y] with x, y = 0..15 denote the prediction samples for the 16x16 luma block samples.

Intra_16x16 prediction modes are specified in Table 8-4.

Table 8-4 — Specification of Intral6x16PredMode and associated names

Intral6x16PredMode Name of Intral6x16PredMode
0 Intra_16x16_Vertical (prediction mode)
1 Intra_16x16_Horizontal (prediction mode)
2 Intra_16x16_DC (prediction mode)
3 Intra_16x16_Plane (prediction mode)

Depending on Intral6x16PredMode, one of the Intra 16x16 prediction modes specified in subclauses 8.3.3.1 to 8.3.3.4
is invoked.

8.3.3.1 Specification of Intra_16x16_Vertical prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, -1] with x =0..15 are marked as “available
for Intra_16x16 prediction”.

predi[X,y] =p[X, -1], withx, y=0..15 (8-112)

8.3.3.2 Specification of Intra_16x16_Horizontal prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[-1, y] with y = 0..15 are marked as “available
for Intra_16x16 prediction”.

predi [x,y]=p[-1,y], withx, y=0..15 (8-113)

8.3.3.3 Specification of Intra_16x16_DC prediction mode

This Intra_16x16 prediction mode operates, depending on whether the neighbouring samples are marked as “available
for Intra_16x16 prediction”, as follows.

— If all neighbouring samples p[x, -1], with x = 0..15 and p[-1,y], with y = 0..15 are marked as “available for
Intra_16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

15 15
predi[X,y 1= (3 p[x',~1]+ > p[-1,y]+16) >> 5. with x, y = 0..15 (8-114)
x'=0

y'=0

— Otherwise, if any of the neighbouring samples p[x,-1], with x = 0..15 are marked as "not available for
Intra_16x16 prediction" and all of the neighbouring samples p[-1, y], with y = 0..15 are marked as “available for
Intra_16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

15 .
pred [X,y]= (zp[_ljyv]Jr 8) >> 4, withx, y=0..15 (8-115)

y'=0

— Otherwise, if any of the neighbouring samples p[-1,y], with y = 0..15 are marked as "not available for
Intra_16x16 prediction" and all of the neighbouring samples p[x, -1], with x = 0..15 are marked as “available for
Intra 16x16 prediction”, the prediction for all luma samples in the macroblock is given by:

15 .
predi[X,y]= (3 p[x',~1]+8) >> 4, with x, y = 0..15 (8-116)
x'=0

130 ITU-T Rec. H.264 (03/2005)

— Otherwise (some of the neighbouring samples p[x, -1], with x = 0..15 and some of the neighbouring samples
p[-1,y], with y = 0..15 are marked as “not available for Intra_16x16 prediction”), the prediction for all luma
samples in the macroblock is given by:

predi[x, vy]=(1 <<(BitDepthy — 1)), with x, y =0..15 (8-117)

8.3.3.4 Specification of Intra_16x16_Plane prediction mode

This Intra_16x16 prediction mode shall be used only when the samples p[x, -1 | with x = -1..15 and p[-1, y] with
y =0..15 are marked as “available for Intra 16x16 prediction”.

predi [x,y]=Cliply((a+b*(x-7)+c*(y-7)+16)>>5), withx,y=0..15, (8-118)
where:

a=16*(p[-1,15]+p[15,-1]) (8-119)

b=(5*H+32)>>6 (8-120)

c=(5*V+32)>>6 (8-121)

and H and V are specified in Equations 8-122 and 8-123.

H=i(x'+1>*(p[8+x',—1]-p[6-x',-1]> (8-122)
V=i(y’ﬂ)*(p[-1,8+y']-p[-1,6-y’]) (8-123)

8.3.4 Intra prediction process for chroma samples

This process is invoked for I and SI macroblock types. It specifies how the Intra prediction chroma samples for the
current macroblock are derived.

Outputs of this process are Intra prediction chroma samples for the current macroblock predcy[X, y] and prede,[X, y 1.

Both chroma blocks (Cb and Cr) of the macroblock use the same prediction mode. The prediction mode is applied to
each of the chroma blocks separately. The process specified in this subclause is invoked for each chroma block. In the
remainder of this subclause, chroma block refers to one of the two chroma blocks and the subscript C is used as a
replacement of the subscript Cb or Cr.

The neighbouring samples p[x, y] that are constructed chroma samples prior to the deblocking filter process, with
x =-1, y=-1..MbHeightC - 1 and with x = 0.MbWidthC - 1, y = -1, are derived as follows.

— The derivation process for neighbouring locations in subclause 6.4.9 is invoked for chroma locations with (X, y)
assigned to (xN, yN) as input and mbAddrN and (xW, yW) as output.

— Each sample p[x, y] is derived as follows.

— If any of the following conditions is true, the sample p[x, y] is marked as “not available for Intra chroma
prediction”

— mbAddrN is not available,

— the macroblock mbAddrN is coded in Inter prediction mode and constrained intra pred flag is equal
to 1.

— the macroblock mbAddrN has mb_type equal to SI and constrained intra_pred flag is equal to 1 and the
current macroblock does not have mb_type equal to SI.

— Otherwise, the sample p[x, y | is marked as “available for Intra chroma prediction” and the chroma sample
of component C at chroma location (xW, yW) inside the macroblock mbAddrN is assigned to p[x, y |.

ITU-T Rec. H.264 (03/2005) 131

Let predc[x, y] with x =0..MbWidthC - 1, y = 0..MbHeightC - 1 denote the prediction samples for the chroma block
samples.

Intra chroma prediction modes are specified in Table 8-5.

Table 8-5 — Specification of Intra chroma prediction modes and associated names

intra_chroma_pred_mode Name of intra_chroma_pred_mode
0 Intra_Chroma_DC (prediction mode)
1 Intra_Chroma_Horizontal (prediction mode)
2 Intra_Chroma_Vertical (prediction mode)
3 Intra_Chroma_Plane (prediction mode)

Depending on intra_chroma pred mode, one of the Intra chroma prediction modes specified in subclauses 8.3.4.1
to 8.3.4.4 is invoked.

8.3.4.1 Specification of Intra_Chroma_DC prediction mode
This Intra chroma prediction mode is invoked when intra_chroma pred mode is equal to 0.

For each chroma block of 4x4 samples indexed by chroma4x4Blkldx =0..(1 <<(chroma_ format idc +1))—1, the
following applies.

— Depending on chroma format idc, the position of the upper-left sample of a 4x4 chroma block with index
chroma4x4BlkIdx is derived as follows

— Ifchroma format idc is equal to 1 or 2, the following applies

x0 = InverseRasterScan(chroma4x4BIklIdx, 4, 4, 8,0) (8-124)

yO = InverseRasterScan(chroma4x4Blkldx, 4, 4, 8, 1) (8-125)

— Otherwise (chroma format idc is equal to 3), the following applies

xO = InverseRasterScan(chroma4x4Blkldx / 4, 8, 8, 16,0) +
InverseRasterScan(chroma4x4Blkldx % 4,4, 4, 8,0) (8-126)

yO = InverseRasterScan(chroma4x4Blkldx / 4, 8, 8, 16,1) +
InverseRasterScan(chroma4x4Blkldx % 4,4, 4,8, 1) (8-127)

— If(x0,y0)isequal to (0, 0) or xO and yO are greater than 0, the values of the prediction samples
predc[x + X0, y + yO] with x, y = 0..3 are derived as follows.

— Ifall samples p[x + xO, -1], with x =0..3 and p[-1, y +yO], with y = 0..3 are marked as “available for Intra
chroma prediction”, the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived
as

3 3
pred.[x+x0,y+yO]= (> plx+x0,-1]+ > p[-1, y+yO] + 4J >>3, with x, y=0..3. (8-128)

x'=0 y'=0

— Otherwise, if any samples p[x +xO, -1], with x=0..3 are marked as “not available for Intra chroma
prediction” and all samples p[-1,y+yO], with y=0.3 are marked as “available for Intra chroma
prediction”, the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

3

pred.[x+x0,y+yO] =(Zp[—l,y’+y0] + ZJ >> 2, withx,y=0..3. (8-129)

y'=0

132 ITU-T Rec. H.264 (03/2005)

— Otherwise, if any samples p[-1,y +yO], with y=0..3 are marked as “not available for Intra chroma
prediction” and all samples p[x +x0,-1], with x=0..3 are marked as ‘“available for Intra chroma
prediction”, the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

3
pred.[x +x0,y+ yO]=(Zp[x‘+xO,—1] +2) >> 2, withx, y=0.3. (8-130)

x'=0

— Otherwise (some samples p[x + xO, -1], with x =0..3 and some samples p[-1,y +yO], with y=0..3 are
marked as ‘“not available for Intra chroma prediction”), the values of the prediction samples
predc[x + xO, y + yO], with x, y = 0..3 are derived as

predc[x +x0, y + yO [=(1 << (BitDepthc — 1)), with x, y =0..3. (8-131)

Otherwise, if xO is greater than 0 and yO is equal to 0, the values of the prediction samples predc[x + xO, y + yO]
with x, y = 0..3 are derived as follows.

— If all samples p[x +xO, -1], with x =0..3 are marked as “available for Intra chroma prediction”, the values
of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

3
pred.[x+x0,y+ yO]:(Zp[x‘+xO,—l] +2j >>2 withx,y=0.3. (8-132)

x'=0

— Otherwise, if all samples p[-1, y +yO], with y = 0..3 are marked as “available for Intra chroma prediction”,
the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

3
pred.[x +x0,y+yO] :[Zp[—l,y’+y0] + 2) >>2, withx,y=0.3. (8-133)

y'=0

— Otherwise (some samples p[x +xO, -1], with x =0..3 and some samples p[-1, y +yO], with y=0..3 are
marked as ‘“not available for Intra chroma prediction”), the values of the prediction samples
predc[x + x0O, y + yO], with x, y = 0..3 are derived as

predc[x +x0, y + yO] = (1 << (BitDepthc — 1)), with x, y = 0..3. (8-134)

Otherwise (xO is equal to 0 and yO is greater than 0), the values of the prediction samples predc[x + xO, y +yO]
with x, y = 0..3 are derived as follows.

— If all samples p[-1,y +yO], with y = 0..3 are marked as “available for Intra chroma prediction”, the values
of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

3
pred.[x+x0,y+yO] :[Zp[—l,y’+y0] + 2J >> 2, withx,y=0.3. (8-135)

y'=0

— Otherwise, if all samples p[x + xO, -1], with x = 0..3 are marked as “available for Intra chroma prediction”,
the values of the prediction samples predc[x + xO, y + yO], with x, y = 0..3 are derived as

3
pred.[x +xO0,y+ yO]=(Zp[x‘+xO,—l] + 2] >>2 , withx,y=0.3. (8-136)
x'=0

— Otherwise (some samples p[x +xO, -1], with x =0..3 and some samples p[-1,y +yO], with y=0..3 are
marked as “not available for Intra chroma prediction”), the values of the prediction samples
predc[x + xO, y + yO], with x, y = 0..3 are derived as

predc[x + %O,y +yO] = (1 << (BitDepthc — 1)), with x, y =0..3. (8-137)

ITU-T Rec. H.264 (03/2005) 133

8.3.4.2 Specification of Intra_Chroma_Horizontal prediction mode
This Intra chroma prediction mode is invoked when intra_chroma_pred mode is equal to 1.

This mode shall be used only when the samples p[-1, y] with y = 0..MbHeightC - 1 are marked as "available for Intra
chroma prediction".

The values of the prediction samples predc[x, y] are derived as follows.

predc[X,y]=p[-1, y], with x = 0..MbWidthC - 1 and y = 0..MbHeightC - 1 (8-138)

8.3.4.3 Specification of Intra_Chroma_Vertical prediction mode
This Intra chroma prediction mode is invoked when intra_chroma pred mode is equal to 2.

This mode shall be used only when the samples p[x, -1] with x = 0.MbWidthC - 1 are marked as "available for Intra
chroma prediction".

The values of the prediction samples predc[x, y] are derived as follows.

predc[X,y 1= pl x, -1], with x = 0..MbWidthC - 1 and y = 0..MbHeightC - 1 (8-139)

8.3.4.4 Specification of Intra_Chroma_Plane prediction mode
This Intra chroma prediction mode is invoked when intra_chroma pred mode is equal to 3.

This mode shall be used only when the samples p[x,-1], with x = 0.MbWidthC-1 and p[-1,y], with
y = -1..MbHeightC - 1 are marked as "available for Intra chroma prediction".

The values of the prediction samples predc[X, y] are derived as follows.

Let the variable XCF be set equal to4 * (chroma format idc == 3) and let the variable yCF be set equal
to 4 * (chroma format ide != 1).

predc[X,y] =Cliple((a+b*(x-3-xCF)+c*(y-3—-yCF)+16)>>5),

with x = 0..MbWidthC - 1 and y = 0..MbHeightC - 1 (8-140)

where:
a=16* (p[-1, MbHeightC - 1]+ p[MbWidthC - 1,-11]) (8-141)
b=((34-29 * (chroma_format idc ==3))*H+32)>>6 (8-142)
c=((34-29 *(chroma_format idc != 1))*V+32)>>6 (8-143)

and H and V are specified as

3+xCF

H= > (x+1)*(p[4+xCF +x',~1]-p[2 + xCF - x', ~ 1) (8-144)
x'=0
3+yCF

V= > (y+D)*(p[-1,4+yCF+y']-p[-12+yCF-y']) (8-145)
y'=0

8.3.5 Sample construction process for | PCM macroblocks

This process is invoked when mb_type is equal to I PCM.

The variable dy is derived as follows.

— If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock, dy is set equal to 2.

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock), dy is set equal to 1.

134 ITU-T Rec. H.264 (03/2005)

The position of the upper-left luma sample of the current macroblock is derived by invoking the inverse macroblock
scanning process in subclause 6.4.1 with CurrMbAddr as input and the output being assigned to (xP, yP).

The constructed luma samples prior to the deblocking process are generated as specified by:

for(1=0;1<256;i++)
SL[xP+ (1% 16),yP+dy *(i/16))]=pcm_sample luma[i] (8-146)

When chroma_format_idc is not equal to 0 (monochrome), the constructed chroma samples prior to the deblocking
process are generated as specified by:

for(1=0; 1 <MbWidthC * MbHeightC; i++) {
S'cp[(xP / SubWidthC) + (i % MbWidthC),
((yP + SubHeightC — 1) / SubHeightC) + dy * (i/ MbWidthC)] =
pcm_sample chroma] i] (8-147)
S'e[(xP / SubWidthC) + (i % MbWidthC),
((yP + SubHeightC — 1) / SubHeightC) + dy * (i/ MbWidthC)] =
pcm_sample chroma[i + MbWidthC * MbHeightC]

8.4 Inter prediction process
This process is invoked when decoding P and B macroblock types.

Outputs of this process are Inter prediction samples for the current macroblock that are a 16x16 array pred, of luma
samples and when chroma_format idc is not equal to 0 (monochrome) two 8x8 arrays predc, and predc, of chroma
samples, one for each of the chroma components Cb and Cr.

The partitioning of a macroblock is specified by mb_type. Each macroblock partition is referred to by mbPartldx. When
the macroblock partitioning consists of partitions that are equal to sub-macroblocks, each sub-macroblock can be
further partitioned into sub-macroblock partitions as specified by sub_mb_type. Each sub-macroblock partition is
referred to by subMbPartldx. When the macroblock partitioning does not consist of sub-macroblocks, subMbPartldx is
set equal to 0.

The following steps are specified for each macroblock partition or for each sub-macroblock partition.

The functions MbPartWidth(), MbPartHeight(), SubMbPartWidth(), and SubMbPartHeight() describing the width
and height of macroblock partitions and sub-macroblock partitions are specified in Tables 7-13, 7-14, 7-17, and 7-18.

The range of the macroblock partition index mbPartldx is derived as follows.
— Ifmb_type is equal to B_Skip or B_Direct 16x16, mbPartldx proceeds over values 0..3.

— Otherwise (mb_type is not equal to B _Skip or B Direct 16x16), mbPartldx proceeds over values
0..NumMbPart(mb_type) — 1.

For each value of mbPartldx, the variables partWidth and partHeight for each macroblock partition or sub-macroblock
partition in the macroblock are derived as follows.

— Ifmb_type is not equal to P_8x8, P_8x8ref0, B_Skip, B Direct 16x16, or B_8x8, subMbPartldx is set equal to 0,
and partWidth and partHeight are derived as

partWidth = MbPartWidth(mb_type) (8-148)

partHeight = MbPartHeight(mb_type) (8-149)

— Otherwise, if mb type is equal to P 8x8 or P 8x8refd, or mb type is equal to B 8x8 and
sub mb_type[mbPartldx] is not equal to B Direct 8x8, subMbPartldx proceeds over values
0..NumSubMbPart(sub_mb_type) — 1, and partWidth and partHeight are derived as

partWidth = SubMbPartWidth(sub_mb_type[mbPartldx]) (8-150)

partHeight = SubMbPartHeight(sub_mb_type[mbPartldx]). (8-151)

ITU-T Rec. H.264 (03/2005) 135

— Otherwise (mb_type is equal to B_Skip or B Direct 16x16, or mb type is equal to B_8x8 and
sub_mb_type[mbPartldx] is equal to B_Direct 8x8), subMbPartldx proceeds over values 0..3, and partWidth and
partHeight are derived as

partWidth = 4 (8-152)

partHeight = 4 (8-153)

When chroma_format_idc is not equal to 0 (monochrome) the variables partWidthC and partHeightC are derived as

partWidthC = partWidth / SubWidthC (8-154)
partHeightC = partHeight / SubHeightC (8-155)

Let the variable MvCnt be initially set equal to 0 before any invocation of subclause 8.4.1 for the macroblock.

The Inter prediction process for a macroblock partition mbPartldx and a sub-macroblock partition subMbPartldx
consists of the following ordered steps

1. Derivation process for motion vector components and reference indices as specified in subclause 8.4.1.
Inputs to this process are
— amacroblock partition mbPartldx,
— asub-macroblock partition subMbPartIdx.
Outputs of this process are

— luma motion vectors mvL0 and mvL1 and when chroma_format idc is not equal to 0 (monochrome) the
chroma motion vectors mvCL0 and mvCL1

— reference indices refldxL0 and refldxL1
— prediction list utilization flags predFlagl.0 and predFlagL.1
— the sub-macroblock partition motion vector count subMvCnt.
2. The variable MvCnt is incremented by subMvCnt.
3. Decoding process for Inter prediction samples as specified in subclause 8.4.2.
Inputs to this process are
— amacroblock partition mbPartldx,
— asub-macroblock partition subMbPartIdx.

— variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight,
partWidthC (if available), and partHeightC (if available)

— luma motion vectors mvLO and mvL1 and when chroma format idc is not equal to 0 (monochrome) the
chroma motion vectors mvCL0 and mvCL1

— reference indices refldxL0 and refldxL1
— prediction list utilization flags predFlagl.0 and predFlagl.1
Outputs of this process are

— inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPart; of prediction luma
samples and when chroma format idc is not equal to 0 (monochrome) two (partWidthC)x(partHeightC)
arrays predPartc,, and predPartc, of prediction chroma samples, one for each of the chroma components Cb
and Cr.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

MvLO[mbPartldx][subMbPartldx | = mvLO0 (8-156)

MvVLI1[mbPartldx][subMbPartldx] = mvLl1 (8-157)

136 ITU-T Rec. H.264 (03/2005)

RefldxLO[mbPartldx] = refldxL0 (8-158)

RefldxL1[mbPartldx] = refldxL1 (8-159)
PredFlagLO[mbPartldx] = predFlaglL.0 (8-160)
PredFlagL1[mbPartldx] = predFlagL1 (8-161)

The location of the upper-left sample of the partition relative to the upper-left sample of the macroblock is derived by
invoking the inverse macroblock partition scanning process as described in subclause 6.4.2.1 with mbPartldx as the
input and (xP, yP) as the output.

The location of the upper-left sample of the macroblock sub-partition relative to the upper-left sample of the
macroblock partition is derived by invoking the inverse sub-macroblock partition scanning process as described in
subclause 6.4.2.2 with subMbPartldx as the input and (xS, yS) as the output.

The macroblock prediction is formed by placing the partition or sub-macroblock partition prediction samples in their
correct relative positions in the macroblock, as follows.

The variable pred; [xP + xS +x, yP +yS +y] with x =0 .. partWidth — 1, y = 0 .. partHeight — 1 is derived by

pred; [xP + xS + x, yP + yS +y] = predPart, [X, y] (8-162)

When chroma format idc is not equal to O (monochrome) the variable predc with x=0..partWidthC — 1,
y = 0..partHeightC — 1, and C in pred¢ and predPartc being replaced by Cb or Cr is derived by

predc[xP / SubWidthC + xS / SubWidthC + x, yP / SubHeightC + yS / SubHeightC + y] = predPart([x, y]
(8-163)

8.4.1 Derivation process for motion vector components and reference indices

Inputs to this process are
— amacroblock partition mbPartldx,
— asub-macroblock partition subMbPartldx.

Outputs of this process are
— luma motion vectors mvL0 and mvL1 as well as the chroma motion vectors mvCL0 and mvCL1

— reference indices refldxL0 and refldxL1

prediction list utilization flags predFlaglL0 and predFlagL1

a sub-partition macroblock motion vector count variable subMvCnt

For the derivation of the variables mvL0 and mvL1 as well as refldxL0 and refldxL1, the following applies.

— Ifmb_type is equal to P_Skip, the derivation process for luma motion vectors for skipped macroblocks in P and SP
slices in subclause 8.4.1.1 is invoked with the output being the luma motion vectors mvLO and reference indices
refldxL0, and predFlagL0 is set equal to 1. mvL1 and refldxL1 are marked as not available and predFlagL1 is set
equal to 0. The sub-partition motion vector count variable subMvCnt is set equal to 1.

— Otherwise, if mb type is equal to B Skip or B Direct 16x16 or sub mb type[mbPartldx] is equal to
B Direct 8x8, the derivation process for luma motion vectors for B_Skip, B Direct 16x16, and B_Direct 8x8 in B
slices in subclause 8.4.1.2 is invoked with mbPartldx and subMbPartldx as the input and the output being the luma
motion vectors mvL0, mvL1, the reference indices refldxL0, refldxL.1, the sub-partition motion vector count
subMvCnt, and the prediction utilization flags predFlagl.0 and predFlagl1.

— Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refldxLX, and in Pred LX and
in the syntax elements ref idx 1X and mvd X, the following applies.

ITU-T Rec. H.264 (03/2005) 137

1. The variables refldxLX and predFlagL.X are derived as follows.

— If MbPartPredMode(mb_type, mbPartldx) or SubMbPredMode(sub_mb_type[mbPartldx]) is equal
to Pred_LX or to BiPred,

refldxLX = ref idx_1X[mbPartldx] (8-164)

predFlagLX =1 (8-165)

— Otherwise, the variables refldxLX and predFlagLX are specified by

refldxLX = -1 (8-166)

predFlagLX =0 (8-167)

2. The variable subMvCnt for sub-partition motion vector count is set equal to predFlagL.0 + predFlagL1.

3. The variable currSubMbType is derived as follows.
- If the macroblock type is equal to B_8x8, currSubMbType is set equal to sub_mb_type[mbPartldx].
- Otherwise (the macroblock type is not equal to B_8x8), currSubMbType is set equal to "na".

4. When predFlaglX is equal to 1, the derivation process for luma motion vector prediction in subclause 8.4.1.3 is
invoked with mbPartldx subMbPartldx, refldxLX, and currSubMbType as the inputs and the output being
mvpLX. The luma motion vectors are derived by

mvLX[0]=mvpLX[0]+ mvd_IX[mbPartldx][subMbPartldx][0] (8-168)

mvLX[1]=mvpLX[1]+ mvd_IX[mbPartldx][subMbPartldx][1] (8-169)

For the derivation of the variables for the chroma motion vectors, the following applies. When predFlaglL. X (with X
being either 0 or 1) is equal to 1, the derivation process for chroma motion vectors in subclause 8.4.1.4 is invoked with
mvLX and refldxLLX as input and the output being mvCLX.

8.4.1.1 Derivation process for luma motion vectors for skipped macroblocks in P and SP slices
This process is invoked when mb_type is equal to P_Skip.
Outputs of this process are the motion vector mvL0 and the reference index refldxLO0.

The reference index refldxLO0 for a skipped macroblock is derived as follows.

refldxL0 = 0. (8-170)

For the derivation of the motion vector mvL0 of a P_Skip macroblock type, the following applies.

— The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx set equal to 0, subMbPartldx set equal to 0,
currSubMbType set equal to "na", and listSuffixFlag set equal to 0 as input and the output is assigned to mbAddrA,
mbAddrB, mvLOA, mvLOB, refldxLOA, and refldxLLOB.

— The variable mvLO is specified as follows.
— Ifany of the following conditions are true, both components of the motion vector mvLO0 are set equal to 0.
— mbAddrA is not available
— mbAddrB is not available
— refldxLOA is equal to 0 and both components of mvLOA are equal to 0

— refldxLOB is equal to 0 and both components of mvLOB are equal to 0

138 ITU-T Rec. H.264 (03/2005)

— Otherwise, the derivation process for luma motion vector prediction as specified in subclause 8.4.1.3 is invoked
with mbPartldx =0, subMbPartldx =0, refldxL0, and currSubMbType ="na" as inputs and the output is
assigned to mvL0.

NOTE — The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

8.4.1.2 Derivation process for luma motion vectors for B_Skip, B_Direct _16x16, and B_Direct_8x8

This process is invoked when mb_type is equal to B_Skip or B Direct 16x16, or sub mb_type[mbPartldx] is equal to
B Direct 8x8.

Inputs to this process are mbPartldx and subMbPartldx.

Outputs of this process are the reference indices refldxL0, refldxL1, the motion vectors mvL0O and mvL1, the sub-
partition motion vector count subMvCnt, and the prediction list utilization flags, predFlaglL.0 and predFlagL1.

The derivation process depends on the value of direct spatial mv_pred flag, which is present in the bitstream in the
slice header syntax as specified in subclause 7.3.3, and is specified as follows.

— If direct_spatial mv_pred flag is equal to 1, the mode in which the outputs of this process are derived is referred
to as spatial direct prediction mode.

— Otherwise (direct_spatial mv_pred flag is equal to 0), mode in which the outputs of this process are derived is
referred to as temporal direct prediction mode.

Both spatial and temporal direct prediction mode use the co-located motion vectors and reference indices as specified in
subclause 8.4.1.2.1.

The motion vectors and reference indices are derived as follows.

— If spatial direct prediction mode is used, the direct motion vector and reference index prediction mode specified in
subclause 8.4.1.2.2 is used, with subMvCnt being an output.

— Otherwise (temporal direct prediction mode is used), the direct motion vector and reference index prediction mode
specified in subclause 8.4.1.2.3 is used and the variable subMvCnt is derived as follows.

— If subMbPartldx is equal to 0, subMvCnt is set equal to 2.
— Otherwise (subMbPartldx is not equal to 0), subMvCnt is set equal to 0.

8.4.1.2.1 Derivation process for the co-located 4x4 sub-macroblock partitions
Inputs to this process are mbPartldx and subMbPartldx.

Outputs of this process are the picture colPic, the co-located macroblock mbAddrCol, the motion vector mvCol, the
reference index refldxCol, and the variable vertMvScale (which can be One_To One, Frm_To_ Fld or Fld To Frm).

When RefPicListl[0] is a frame or a complementary field pair, let firstRefPicL1Top and firstRefPicL1Bottom be the
top and bottom fields of RefPicList1[0], respectively, and let the following variables be specified as
topAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL.1Top, CurrPic)) (8-171)

bottomAbsDiffPOC = Abs(DiffPicOrderCnt(firstRefPicL.1Bottom, CurrPic)) (8-172)

ITU-T Rec. H.264 (03/2005) 139

The variable colPic specifies the picture that contains the co-located macroblock as specified in Table 8-6.

Table 8-6 — Specification of the variable colPic

field pic flag | RefPicListl[0] | mb field decoding flag | additional condition colPic
is ...
afield of a the frame containing
1 decoded frame RefPicListl1[0]
a decoded field RefPicList1[0]
a decoded frame RefPicListl[0]
topAbsDiffPOC < .
. bottomAbsDIffPOC firstRefPicl.1Top
0 a topAbsDiffPOC >= .
Complementary bOI‘;tomAb sDiffPOC firstRefPicL1Bottom
field pair -
| (CurrMbAddr & 1) == 0 | firstRefPicL1Top
(CurrMbAddr & 1) =0 firstRefPicL1Bottom

When direct 8x8 inference flag is equal to 1, subMbPartldx is set as follows.

subMbPartldx = mbPartldx (8-173)

Let PicCodingStruct(X) be a function with the argument X being either CurrPic or colPic. It is specified in Table 8-7.

Table 8-7 — Specification of PicCodingStruct(X)

X is coded with field pic_flag equal to ... | mb_adaptive frame field flag | PicCodingStruct(X)
1 FLD
0 0 FRM
0 1 AFRM

With luma4x4Blkldx = mbPartldx * 4 + subMbPartldx, the inverse 4x4 luma block scanning process as specified in
subclause 6.4.3 is invoked with luma4x4Blkldx as the input and (X, y) assigned to (xCol, yCol) as the output.

Table 8-8 specifies the co-located macroblock address mbAddrCol, yM, and the variable vertMvScale in two steps:

1. Specification of a macroblock address mbAddrX depending on PicCodingStruct(CurrPic), and
PicCodingStruct(colPic).

NOTE - It is not possible for CurrPic and colPic picture coding types to be either (FRM, AFRM) or (AFRM, FRM)
because these picture coding types must be separated by an IDR picture.

2. Specification of mbAddrCol, yM, and vertMvScale depending on mb_field decoding flag and the variable
fieldDecodingFlagX, which is derived as follows.

— If the macroblock mbAddrX in the picture colPic is a field macroblock, fieldDecodingFlagX is set equal to 1

— Otherwise (the macroblock mbAddrX in the picture colPic is a frame macroblock), fieldDecodingFlagX is set
equal to 0.

Unspecified values in Table 8-8 indicate that the value of the corresponding variable is not relevant for the current table
row.

mbAddrCol is set equal to CurrMbAddr or to one of the following values.
mbAddrColl =2 * PicWidthInMbs * (CurrMbAddr / PicWidthInMbs) +
(CurrMbAddr % PicWidthInMbs) + PicWidthInMbs * (yCol / 8) (8-174)

mbAddrCol2 = 2 * CurrMbAddr + (yCol / 8) (8-175)

140 ITU-T Rec. H.264 (03/2005)

mbAddrCol3 =2 * CurrMbAddr + bottom_field flag (8-176)
mbAddrCol4 = PicWidthInMbs * (CurrMbAddr / (2 * PicWidthInMbs)) +
(CurrMbAddr % PicWidthInMbs) (8-177)
mbAddrCol5 = CurrMbAddr / 2 (8-178)
mbAddrCol6 =2 * (CurrMbAddr /2) + ((topAbsDiffPOC < bottomAbsDiffPOC)?0: 1) (8-179)
mbAddrCol7 =2 * (CurrMbAddr /2) + (yCol / 8) (8-180)
Table 8-8 — Specification of mbAddrCol, yM, and vertMvScale
2| -
o 2 o0
| & 2
Q 131 = | =
E | E 1= - o
E’n E‘) " i § o B
o o - E >9 S N
= 3 g 2|8 3 <
3 9 g 2= g s =
& = E HE E > 2
FLD CurrMbAddr |yCol One _To One
FRM mbAddrColl |(2* yCol) % 16 Frm To Fld
FLD
0 |mbAddrCol2 |(2 *yCol)% 16 Frm To FId
AFRM | 2*CurrMbAddr
1 |mbAddrCol3 |yCol One _To One
* 1 1 [
FLD mbAddrCol4 |% . i(cugl\f}’?ddr / PicWidthinMbs) % 2) | 114 T6 Frm
FRM (yCo)
FRM CurrMbAddr |yCol One _To One
0 mbAddrCol5 |8 * (CurrMbAddr %2) +4 * (yCol/8) |Fld To Frm
FLD
1 mbAddrCol5 |yCol One_To One
0 |CurrMbAddr |yCol One _To One
AFRM CurrMbAddr 0
1 |mbAddrCol6 |8 * (CurrMbAddr % 2)+ 4 * (yCol/8) |Fld To Frm
AFRM
0 |mbAddrCol7 [(2 * yCol) % 16 Frm To Fld
CurrMbAddr 1
1 |CurrMbAddr |yCol One _To One

Let mbPartldxCol be the macroblock partition index of the co-located partition and subMbPartldxCol the sub-
macroblock partition index of the co-located sub-macroblock partition. The partition in the macroblock mbAddrCol
inside the picture colPic covering the sample (xCol, yM) is assigned to mbPartldxCol and the sub-macroblock
partition inside the partition mbPartldxCol covering the sample (xCol, yM) in the macroblock mbAddrCol inside the
picture colPic is assigned to subMbPartldxCol.

ITU-T Rec. H.264 (03/2005)

141

The prediction utilization flags predFlagLOCol and predFlagl.1Col are set equal to PredFlagl.O[mbPartldxCol] and
PredFlagl1[mbPartldxCol], respectively, which are the prediction utilization flags that have been assigned to the
macroblock partition mbAddrCol\mbPartldxCol inside the picture colPic.

The motion vector mvCol and the reference index refldxCol are derived as follows.

— If the macroblock mbAddrCol is coded in Intra macroblock prediction mode or both prediction utilization flags,
predFlagL.0Col and predFlagL.1Col are equal to 0, both components of mvCol are set equal to 0 and refldxCol is set
equal to —1.

— Otherwise, the following applies.

— If predFlagLOCol is equal to 1, the motion vector mvCol and the reference index refldxCol are set equal to
MvLO[mbPartldxCol][subMbPartldxCol] and RefldxLLO[mbPartldxCol], respectively, which are the motion
vector mvLO and the reference index refldxLO that have been assigned to the (sub-)macroblock partition
mbAddrCol\mbPartIdxCol\subMbPartldxCol inside the picture colPic.

— Otherwise (predFlagL0Col is equal to 0 and predFlagl.1Col is equal to 1), the motion vector mvCol and the
reference index refldxCol are set equal to MvLI1[mbPartldxCol][subMbPartldxCol] and
RefldxL1[mbPartldxCol], respectively, which are the motion vector mvL1 and the reference index refldxL1
that have been assigned to the (sub-)macroblock partition mbAddrCol\mbPartldxCol\subMbPartldxCol inside
the picture colPic.

8.4.1.2.2 Derivation process for spatial direct luma motion vector and reference index prediction mode

This process is invoked when direct_spatial mv_pred_flag is equal to 1 and any of the following conditions is true.
— mb_type is equal to B_Skip
— mb typeis equal to B Direct 16x16
— sub_mb_type[mbPartldx] is equal to B_Direct 8x8.

Inputs to this process are mbPartldx, subMbPartIdx.

Outputs of this process are the reference indices refldxL0, refldxL1, the motion vectors mvL0O and mvL1, the sub-
partition motion vector count subMvCnt, and the prediction list utilization flags, predFlagl.0 and predFlagl1.

The reference indices refldxLO and refldxL1 and the variable directZeroPredictionFlag are derived by applying the
following ordered steps.

1. Let the variable currSubMbType be set equal to sub_mb_type[mbPartldx].

2. The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, currSubMbType,
and listSuffixFlag = 0 as inputs and the output is assigned to the motion vectors mvLON and the reference indices
refldxLLON with N being replaced by A, B, or C.

3. The process specified in subclause 8.4.1.3.2 is invoked with mbPartldx = 0, subMbPartldx = 0, currSubMbType,
and listSuffixFlag = 1 as inputs and the output is assigned to the motion vectors mvL1N and the reference indices
refldxLL1N with N being replaced by A, B, or C.

NOTE 1 — The motion vectors mvLON, mvL1IN and the reference indices refldxLON, refldxLIN are identical for all 4x4 sub-
macroblock partitions of a macroblock.

4. The reference indices refldxL0, refldxL.1, and directZeroPredictionFlag are derived by

refldxLLO = MinPositive(refldxLOA, MinPositive(refldxLOB, refldxLOC)) (8-181)

refldxLL1 = MinPositive(refldxL 1A, MinPositive(refldxL1B, refldxL1C)) (8-182)

directZeroPredictionFlag = 0 (8-183)
where

Min(x, if x>=0andy>=0
MinPositive(x, y)= "n(xy) if x>=0andy (8-184)
Max(x,y) otherwise

142 ITU-T Rec. H.264 (03/2005)

5. When both reference indices refldxL0 and refIldxL1 are less than 0,

refldxL0 =0 (8-185)
refldxL1 =0 (8-186)
directZeroPredictionFlag = 1 (8-187)

The process specified in subclause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to refldxCol and mvCol.

The variable colZeroFlag is derived as follows.
— If all of the following conditions are true, colZeroFlag is set equal to 1.

RefPicListl[0] is currently marked as "used for short-term reference".

— refldxCol is equal to 0

— both motion vector components mvCol[0] and mvCol[1] lie in the range of -1 to 1 in units specified as
follows.

— If the co-located macroblock is a frame macroblock, the units of mvCol[0] and mvCol[1] are units of
quarter luma frame samples.

— Otherwise (the co-located macroblock is a field macroblock), the units of mvCol[0] and mvCol[1] are
units of quarter luma field samples.

NOTE 2 - For purposes of determining the condition above, the value mvCol[1] is not scaled to use the units of a motion vector
for the current macroblock in cases when the current macroblock is a frame macroblock and the co-located macroblock is a field
macroblock or when the current macroblock is a field macroblock and the co-located macroblock is a frame macroblock. This
aspect differs from the use of mvCol[1] in the temporal direct mode as specified in subclause 8.4.1.2.3, which applies scaling to
the motion vector of the co-located macroblock to use the same units as the units of a motion vector for the current macroblock,
using Equation 8-190 or Equation 8-191 in these cases.

— Otherwise, colZeroFlag is set equal to 0.

The motion vectors mvLX (with X being 0 or 1) are derived as follows.

— If any of the following conditions is true, both components of the motion vector mvLX are set equal to 0.
— directZeroPredictionFlag is equal to 1
— refldxLX is less than 0
— refldxLX is equal to 0 and colZeroFlag is equal to 1

— Otherwise, the process specified in subclause 8.4.1.3 is invoked with mbPartldx = 0, subMbPartldx = 0, refldxLX,
and currSubMbType as inputs and the output is assigned to mvLX.

NOTE 3 — The motion vector mvLX returned from subclause 8.4.1.3 is identical for all 4x4 sub-macroblock partitions
of a macroblock for which the process is invoked.

The prediction utilization flags predFlagl.0 and predFlagl 1 are derived as specified using Table 8-9.

Table 8-9 — Assignment of prediction utilization flags

refldxL0 refldxL1 predFlagl.0 predFlagl.1
>=() >=() 1 1
>=0 <0 1 0
<0 >=() 0 1

The variable subMvCnt is derived as follows.

— If subMbPartldx is not equal to 0 or direct 8x8 inference flag is equal to 0, subMvCnt is set equal to 0.

— Otherwise (subMbPartldx is equal to 0 and direct 8x8 inference flag is equal to 1), subMvCnt is set equal to

predFlagl0 + predFLagL1.

ITU-T Rec. H.264 (03/2005)

143

8.4.1.2.3 Derivation process for temporal direct luma motion vector and reference index prediction mode
This process is invoked when direct_spatial mv_pred flag is equal to 0 and any of the following conditions is true.
— mb type is equal to B_Skip
— mb_typeis equal to B Direct 16x16
— sub_mb_type[mbPartldx] is equal to B_Direct 8x8.
Inputs to this process are mbPartldx and subMbPartIdx.
Outputs of this process are the motion vectors mvL0 and mvL1, the reference indices refldxLO and refldxL.1, and the

prediction list utilization flags, predFlagL0 and predFlagL1.

The process specified in subclause 8.4.1.2.1 is invoked with mbPartldx, subMbPartldx given as input and the output is
assigned to colPic, mbAddrCol, mvCol, refldxCol, and vertMvScale.

The reference indices refldxL0 and refldxL1 are derived as follows.

refldxLO = ((refldxCol <0) ? 0 : MapColToList0(refldxCol)) (8-188)

refldxL1 =0 (8-189)

NOTE 1 — If the current macroblock is a field macroblock, refldxL.0 and refldxL1 index a list of fields; otherwise (the current
macroblock is a frame macroblock), refldxL0 and refldxL1 index a list of frames or complementary reference field pairs.

Let refPicCol be a frame, a field, or a complementary field pair that was referred by the reference index refldxCol when
decoding the co-located macroblock mbAddrCol inside the picture colPic. The function MapColToList0(refldxCol) is
specified as follows.

— If vertMvScale is equal to One To One, the following applies.
— Iffield pic flag is equal to 0 and the current macroblock is a field macroblock, the following applies.

— Let refldxLOFrm be the lowest valued reference index in the current reference picture list RefPicList0
that references the frame or complementary field pair that contains the field refPicCol. RefPicList0 shall
contain a frame or complementary field pair that contains the field refPicCol. The return value of
MapColToList0() is specified as follows.

— If the field referred to by refldxCol has the same parity as the current macroblock,
MapColToList0(refldxCol) returns the reference index (refldxLOFrm << 1).

— Otherwise (the field referred by refldxCol has the opposite parity of the current macroblock),
MapColToListO(refldxCol) returns the reference index ((refldxLOFrm <<1)+1).

— Otherwise (field pic_flag is equal to 1 or the current macroblock is a frame macroblock), MapColToListO(
refldxCol) returns the lowest valued reference index refldxL0 in the current reference picture list RefPicList0
that references refPicCol. RefPicList0 shall contain refPicCol.

— Otherwise, if vertMvScale is equal to Frm_To_Fld, the following applies.

— If field pic flag is equal to O, let refldxLOFrm be the lowest valued reference index in the current reference
picture list RefPicList0 that references refPicCol. MapColToListO(refldxCol) returns the reference index
(refldxLOFrm << 1). RefPicList0 shall contain refPicCol.

— Otherwise (field pic_flag is equal to 1), MapColToListO(refldxCol) returns the lowest valued reference index
refldxLO in the current reference picture list RefPicList0 that references the field of refPicCol with the same
parity as the current picture CurrPic. RefPicList0 shall contain the field of refPicCol with the same parity as the
current picture CurrPic.

— Otherwise (vertMvScale is equal to Fld To Frm), MapColToList0O(refldxCol) returns the lowest valued reference
index refldxL0 in the current reference picture list RefPicList0 that references the frame or complementary field pair
that contains refPicCol. RefPicListO0 shall contain a frame or complementary field pair that contains the field
refPicCol.

NOTE 2 — A decoded reference picture that was marked as "used for short-term reference" when it was referenced in
the decoding process of the picture containing the co-located macroblock may have been modified to be marked as
"used for long-term reference" before being used for reference for inter prediction using the direct prediction mode for
the current macroblock.

144 ITU-T Rec. H.264 (03/2005)

Depending on the value of vertMvScale the vertical component of mvCol is modified as follows.

— IfvertMvScale is equal to Frm_To_Fld

mvCol[1]=mvCol[1]/2 (8-190)

— Otherwise, if vertMvScale is equal to FId To Frm

mvCol[1]=mvCol[1]*2 (8-191)

— Otherwise (vertMvScale is equal to One_To_One), mvCol[1] remains unchanged.
The variables currPicOrField, pic0, and picl, are derived as follows.

— Iffield pic flag is equal to 0 and the current macroblock is a field macroblock, the following applies.
— currPicOrField is the field of the current picture CurrPic that has the same parity as the current macroblock.
— picl is the field of RefPicList1[O] that has the same parity as the current macroblock.
— The variable pic0 is derived as follows.

— IfrefldxL.O % 2 is equal to 0, picO is the field of RefPicListO[refldxL0 / 2] that has the same parity as the
current macroblock.

— Otherwise (refldxL0 % 2 is not equal to 0), picO is the field of RefPicListO[refldxL0 /2] that has the
opposite parity of the current macroblock.

— Otherwise (field pic flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField is the
current picture CurrPic, picl is the decoded reference picture RefPicListl[O], and picO is the decoded reference
picture RefPicList0[refldxLO].

The two motion vectors mvL0 and mvL1 for each 4x4 sub-macroblock partition of the current macroblock are derived
as follows:

NOTE 3 — It is often the case that many of the 4x4 sub-macroblock partitions share the same motion vectors and
reference pictures. In these cases, temporal direct mode motion compensation can calculate the inter prediction sample
values in larger units than 4x4 luma sample blocks. For example, when direct 8x8 inference flag is equal to 1, at
least each 8x8 luma sample quadrant of the macroblock shares the same motion vectors and reference pictures.

— If the reference index refldxL0 refers to a long-term reference picture, or DiffPicOrderCnt(picl, pic0) is equal
to 0, the motion vectors mvL0O, mvL1 for the direct mode partition are derived by

mvL0 = mvCol (8-192)

mvL1 =0 (8-193)

— Otherwise, the motion vectors mvL0, mvL1 are derived as scaled versions of the motion vector mvCol of the co-
located sub-macroblock partition as specified below (see Figure 8-2)

tx=(16384+ Abs(td/2))/td (8-194)
DistScaleFactor = Clip3(-1024, 1023, (tb *tx +32)>>6) (8-195)
mvL0 = (DistScaleFactor * mvCol + 128) >> 8 (8-196)
mvL1 =mvL0 — mvCol (8-197)

where tb and td are derived as follows.

tb = Clip3(-128, 127, DiffPicOrderCnt(currPicOrField, pic0)) (8-198)

td = Clip3(-128, 127, DiffPicOrderCnt(picl, pic0)) (8-199)

ITU-T Rec. H.264 (03/2005) 145

NOTE 4 — mvLO0 and mvL1 cannot exceed the ranges specified in Annex A.
The prediction utilization flags predFlagl.0 and predFlagl.1 are both set equal to 1.

Figure 8-2 illustrates the temporal direct-mode motion vector inference when the current picture is temporally between
the reference picture from reference picture list 0 and the reference picture from reference picture list 1.

List 0 Reference Current B List 1 Reference

mvL1

direct-mode B partition

™~ co-located partition

time

Figure 8-2 — Example for temporal direct-mode motion vector inference (informative)

8.4.1.3 Derivation process for luma motion vector prediction
Inputs to this process are
— the macroblock partition index mbPartldx,

— the sub-macroblock partition index subMbPartldx,

the reference index of the current partition refldxLX (with X being 0 or 1),
— the variable currSubMbType.
Output of this process is the prediction mvpLX of the motion vector mvLX (with X being O or 1).

The derivation process for the neighbouring blocks for motion data in subclause 8.4.1.3.2 is invoked with mbPartldx,
subMbPartldx, currSubMbType, and listSuffixFlag = X (with X being 0 or 1 for refldxLX being refldxL0 or refldxL1,
respectively) as the input and with mbAddrN\mbPartldxN\subMbPartIdxN, reference indices refldxLXN and the
motion vectors mvLXN with N being replaced by A, B, or C as the output.

The derivation process for median luma motion vector prediction in subclause 8.4.1.3.1 is invoked with
mbAddrN\mbPartldxN\subMbPartIdxN, mvLXN, refldxLXN with N being replaced by A, B, or C and refldxLX as the
input and mvpLX as the output, unless one of the following is true.

— MbPartWidth(mb_type) is equal to 16, MbPartHeight(mb type) is equal to 8, mbPartldx is equal to 0, and
refldxLXB is equal to refldxLX,

mvpLX = mvLXB (8-200)

— MbPartWidth(mb _type) is equal to 16, MbPartHeight(mb type) is equal to 8, mbPartldx is equal to 1, and
refldxLXA is equal to refldxLX,

mvpLX = mvLXA (8-201)

— MbPartWidth(mb _type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartldx is equal to 0, and
refldxLXA is equal to refldxLX,

mvpLX = mvLXA (8-202)

146 ITU-T Rec. H.264 (03/2005)

— MbPartWidth(mb_type) is equal to 8, MbPartHeight(mb_type) is equal to 16, mbPartldx is equal to 1, and
refldxLXC is equal to refldxLX,

mvpLX = mvLXC (8-203)

Figure 8-3 illustrates the non-median prediction as described above.

8*16 16*8

N R v v

Figure 8-3 — Directional segmentation prediction (informative)

8.4.1.3.1 Derivation process for median luma motion vector prediction
Inputs to this process are

— the neighbouring partitions mbAddrN\mbPartIdxN\subMbPartIdxN (with N being replaced by A, B, or C),

the motion vectors mvLXN (with N being replaced by A, B, or C) of the neighbouring partitions,

the reference indices refldxLXN (with N being replaced by A, B, or C) of the neighbouring partitions, and
— the reference index refldxLX of the current partition.

Output of this process is the motion vector prediction mvpLX.

The variable mvpLX is derived as follows:

— When both partitions mbAddrB\mbPartldxB\subMbPartldxB and mbAddrC\mbPartldxC\subMbPartldxC are not
available and mbAddrA\mbPartldx A\subMbPartIdxA is available,

mvLXB =mvLXA (8-204)
mvLXC =mvLXA (8-205)
refldxLXB = refldxLXA (8-206)
refldxLXC = refldxLXA (8-207)

— Depending on reference indices refldxLXA, refldxLXB, or refldxL.XC, the following applies.

— If one and only one of the reference indices refldxLXA, refldxLXB, or refldxLXC is equal to the reference
index refldxLX of the current partition, the following applies. Let refldxLXN be the reference index that is equal
to refldxLX, the motion vector mvLXN is assigned to the motion vector prediction mvpLX:

mvpLX = mvLXN 8-208)
p (

— Otherwise, each component of the motion vector prediction mvpLX is given by the median of the corresponding
vector components of the motion vector mvLXA, mvLXB, and mvLXC:

mvpLX[0] = Median(mvLXA[0], mvLXB[0], mvLXC[0]) (8-209)

ITU-T Rec. H.264 (03/2005) 147

mvpLX[1]=Median(mvLXA[1], mvLXB[1], mvLXC[1]) (8-210)

8.4.1.3.2 Derivation process for motion data of neighbouring partitions

Inputs to this process are

— the macroblock partition index mbPartIdx,

— the sub-macroblock partition index subMbPartIdx,

— the current sub-macroblock type currSubMbType,

— the list suffix flag listSuffixFlag

Outputs of this process are (with N being replaced by A, B, or C)

— mbAddrN\mbPartldxN\subMbPartIdxN specifying neighbouring partitions,

— the motion vectors mvLXN of the neighbouring partitions, and

— the reference indices refldxLXN of the neighbouring partitions.

Variable names that include the string "LX" are interpreted with the X being equal to listSuffixFlag.

The partitions mbAddrN\mbPartIldxN\subMbPartldxN with N being either A, B, or C are derived in the following
ordered steps.

1. Let mbAddrD\mbPartldxD\subMbPartldxD be variables specifying an additional neighbouring partition.

2. The process in subclause 6.4.8.5 is invoked with mbPartldx, currSubMbType, and subMbPartldx as input and the
output is assigned to mbAddrN\mbPartldxN\subMbPartldxN with N being replaced by A, B, C, or D.

3. When the partition mbAddrC\mbPartldxC\subMbPartldxC is not available, the following applies

mbAddrC = mbAddrD (8-211)
mbPartldxC = mbPartldxD (8-212)
subMbPartldxC = subMbPartldxD (8-213)

The motion vectors mvLXN and reference indices refldxLXN (with N being A, B, or C) are derived as follows.

— If the macroblock partition or sub-macroblock partition mbAddrN\mbPartldxN\subMbPartIdxN is not available or
mbAddrN is coded in Intra prediction mode or predFlagLX of mbAddrN\mbPartldxN\subMbPartldxN is equal to 0,
both components of mvLXN are set equal to 0 and refldxLXN is set equal to —1.

— Otherwise, the following applies.

148

The motion vector mvLXN and reference index refldxkLXN are set equal to
MvLX][mbPartIdxN][subMbPartldxN | and RefldxLX[mbPartldxN], respectively, which are the motion
vector mvLX and reference index refldxLX that have been assigned to the (sub-)macroblock partition
mbAddrN\mbPartIdxN\subMbPartIdxN.

The variables mvLXNJ 1] and refldxLXN are further processed as follows.

— If the current macroblock is a field macroblock and the macroblock mbAddrN is a frame macroblock

mvLXN[1]=mvLXN[1]/2 (8-214)

refldxLXN = refldxLXN * 2 (8-215)

— Otherwise, if the current macroblock is a frame macroblock and the macroblock mbAddrN is a field
macroblock

mvLXN[1]=mvLXN[1]*2 (8-216)

ITU-T Rec. H.264 (03/2005)

refldxLXN = refldxLXN / 2 (8-217)

— Otherwise, the vertical motion vector component mvLXN[1] and the reference index refldxLXN remain
unchanged.

8.4.1.4 Derivation process for chroma motion vectors

This process is only invoked when chroma_format_idc is not equal to 0 (monochrome).
Inputs to this process are a luma motion vector mvLX and a reference index refldxLX.
Output of this process is a chroma motion vector mvCLX.

A chroma motion vector is derived from the corresponding luma motion vector.

The precision of the chroma motion vector components is 1+ (4 * SubWidthC) horizontally and

1 + (4 * SubHeightC) vertically.
NOTE - For example, when using the 4:2:0 chroma format, since the units of luma motion vectors are one-quarter luma sample
units and chroma has half horizontal and vertical resolution compared to luma, the units of chroma motion vectors are one-eighth
chroma sample units, i.e., a value of 1 for the chroma motion vector refers to a one-eighth chroma sample displacement. For
example, when the luma vector applies to 8x16 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies
to 4x8 chroma samples and when the luma vector applies to 4x4 luma samples, the corresponding chroma vector in 4:2:0 chroma
format applies to 2x2 chroma samples.

For the derivation of the motion vector mvCLX, the following applies.

— Ifchroma format idc is not equal to 1 or the current macroblock is a frame macroblock, the horizontal and vertical
components of the chroma motion vector mvCLX are derived as

mvCLX[0]=mvLX[0] (8-218)
mvCLX[1]=mvLX[1] (8-219)

— Otherwise (chroma_format idc is equal to 1 and the current macroblock is a field macroblock), only the horizontal
component of the chroma motion vector mvCLX] 0] is derived using Equation 8-218. The vertical component of
the chroma motion vector mvCLX] 1] is dependent on the parity of the current field or the current macroblock and
the reference picture, which is referred by the reference index refldxLX. mvCLX] 1] is derived from mvLX][1]
according to Table 8-10.

Table 8-10 — Derivation of the vertical component of the chroma vector in field coding mode

Parity conditions mvCLX][1]
Reference picture (refldxLX) Current field (picture/macroblock)

Top field Bottom field mvLX[1]+2
Bottom field Top field mvLX[1]-2
Otherwise mvLX[1]

8.4.2 Decoding process for Inter prediction samples
Inputs to this process are

— amacroblock partition mbPartIdx,

— asub-macroblock partition subMbPartIdx.

— variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight,
partWidthC (if available) and partHeightC (if available)

— luma motion vectors mvL0 and mvL1 and when chroma_format_idc is not equal to 0 (monochrome) chroma
motion vectors mvCLO and mvCL1

— reference indices refldxL0 and refldxL1

ITU-T Rec. H.264 (03/2005) 149

— prediction list utilization flags, predFlagl.0 and predFlagL.1
Outputs of this process are

— the Inter prediction samples predPart, which are a (partWidth)x(partHeight) array predPart; of prediction luma
samples, and when chroma format idc is not equal to 0 (monochrome) two (partWidthC)x(partHeightC) arrays
predPartcy, predPartc, of prediction chroma samples, one for each of the chroma components Cb and Cr.

Let predPartLOp and predPartL1; be (partWidth)x(partHeight) arrays of predicted luma sample values and when
chroma format idc is not equal to 0 (monochrome) predPartLOc,, predPartL1cy,, predPartLOc,, and predPartL1c, be
(partWidthC)x(partHeightC) arrays of predicted chroma sample values.

For LX being replaced by either LO or L1 in the variables predFlagl. X, RefPicListX, refldxLX, refPicLX, predPartL.X,
the following is specified.

When predFlagLX is equal to 1, the following applies.

— The reference picture consisting of an ordered two-dimensional array refPicLX; of luma samples and when
chroma_format idc is not equal to 0 (monochrome) two ordered two-dimensional arrays refPicL Xy, and
refPicLXc, of chroma samples is derived by invoking the process specified in subclause 8.4.2.1 with refldxLX and
RefPicListX given as input.

— The array predPartLX; and when chroma format idc is not equal to 0 (monochrome) the arrays predPartLXc;, and
predPartL X, are derived by invoking the process specified in subclause 8.4.2.2 with the current partition specified
by mbPartldx\subMbPartldx, the motion vectors mvLX, mvCLX (if available), and the reference arrays with
refPicLX;, refPicLXc, (if available), and refPicL X, (if available) given as input.

For C being replaced by L, Cb (if available), or Cr (if available), the array predPartc of the prediction samples of
component C is derived by invoking the process specified in subclause 8.4.2.3 with the current partition specified by
mbPartldx and subMbPartldx and the array predPartL.O¢c and predPartL1. as well as predFlagl.0 and predFlagl.1 given
as input.

8.4.2.1 Reference picture selection process
Input to this process is a reference index refldxLX.

Output of this process is a reference picture consisting of a two-dimensional array of luma samples refPicLX; and two
two-dimensional arrays of chroma samples refPicLXc, and refPicLXc,.

Depending on field pic flag, the reference picture list RefPicListX (which has been derived as specified in
subclause 8.2.4) consists of the following.

— [Iffield pic flag is equal to 1, each entry of RefPicListX is a reference field or a field of a reference frame.

— Otherwise (field pic_flag is equal to 0), each entry of RefPicListX is a reference frame or a complementary
reference field pair.

For the derivation of the reference picture, the following applies.

— If field pic_flag is equal to 1, the reference field or field of a reference frame RefPicListX[refldxLX] is the output.
The output reference field or field of a reference frame consists of a (PicWidthInSamples;)x(PicHeightInSamples;)
array of luma samples refPicLX; and, when chroma format idc is not equal to O (monochrome), two
(PicWidthInSamplesc)x(PicHeightInSamplesc) arrays of chroma samples refPicL Xy, and refPicLXc,.

— Otherwise (field pic_flag is equal to 0), the following applies.

— If the current macroblock is a frame macroblock, the reference frame or complementary reference field pair
RefPicListX[refldxLX] is the output. The output reference frame or complementary reference field pair
consists of a (PicWidthInSamples;)x(PicHeightinSamples;) array of luma samples refPicLX; and, when
chroma_format idc is not equal to 0 (monochrome), two (PicWidthInSamplesc)x(PicHeightInSamplesc) arrays
of chroma samples refPicLX¢, and refPicL.X;.

— Otherwise (the current macroblock is a field macroblock), the following applies.
— Let refFrame be the reference frame or complementary reference field pair RefPicListX[refldxLX /2].
— The field of refFrame is selected as follows.

— IfrefldxLX % 2 is equal to 0, the field of refFrame that has the same parity as the current macroblock is
the output.

150 ITU-T Rec. H.264 (03/2005)

— Otherwise (refldxLX % 2 is equal to 1), the field of refFrame that has the opposite parity as the current
macroblock is the output.

— The output reference field or field of a reference frame consists of a
(PicWidthInSamples;)x(PicHeightInSamples; /2) array of Iuma samples refPicLX; and, when
chroma_format idc is not equal to 0 (monochrome), two (PicWidthInSamplesc)x(PicHeightInSamplesc / 2)
arrays of chroma samples refPicL X, and refPicLXc,.

The reference picture sample arrays refPicLX;, refPicLXc, (if available), and refPicLXc, (if available) correspond to
decoded sample arrays S;, Sc, (if available), S, (if available) derived in subclause 8.7 for a previously-decoded
reference field or reference frame or complementary reference field pair or field of a reference frame.

8.4.2.2 Fractional sample interpolation process

Inputs to this process are

— the current partition given by its partition index mbPartldx and its sub-macroblock partition index subMbPartldx,
— the width and height partWidth, partHeight of this partition in luma-sample units,

— aluma motion vector mvLX given in quarter-luma-sample units,

— achroma motion vector mvCLX given in eighth-chroma-sample units, and

— the selected reference picture sample arrays refPicL Xy, refPicLXcy, and refPicLXc,

Outputs of this process are

— a(partWidth)x(partHeight) array predPartL X of prediction luma sample values and

— when chroma_format_idc is not equal to 0 (monochrome) two (partWidthC)x(partHeightC) arrays predPartL.Xcy,
and predPartL X, of prediction chroma sample values.

Let (XAr, yAr) be the location given in full-sample units of the upper-left luma sample of the current partition given
by mbPartldx\subMbPartldx relative to the upper-left luma sample location of the given two-dimensional array of luma
samples.

Let (xInt;, yInt;) be a luma location given in full-sample units and (xFracy, yFrac,) be an offset given in quarter-
sample units. These variables are used only inside this subclause for specifying general fractional-sample locations
inside the reference sample arrays refPicLX;, refPicL. X, (if available), and refPicLXc; (if available).

For each luma sample location (0 <= x; < partWidth, 0 <=y < partHeight) inside the prediction luma sample array
predPartL X}, the corresponding prediction luma sample value predPartLX; [x;, y;] is derived as follows:

— The variables xInt;, yInt; , xFrac;, and yFrac, are derived by

xIntp =xAL + (mvLX[0]>>2)+xg (8-220)
yIntg =yAL+ (mvLX[1]>>2)+yL (8-221)
xFrac, =mvLX[0] &3 (8-222)
yFrac,=mvLX[1] &3 (8-223)

— The prediction luma sample value predPartLX, [x;, y;] is derived by invoking the process specified in
subclause 8.4.2.2.1 with (xInt,, yInt,), (xFracy, yFracy) and refPicLX; given as input.

When chroma_format_idc is not equal to 0 (monochrome), the following applies.

Let (xIntc, yIntc) be a chroma location given in full-sample units and (xFracc, yFracc) be an offset given in one-
eighth sample units. These variables are used only inside this subclause for specifying general fractional-sample
locations inside the reference sample arrays refPicL.Xcy, and refPicLXc,.

For each chroma sample location (0 <= x¢ < partWidthC, 0 <= y¢ < partHeightC) inside the prediction chroma sample
arrays predPartL X, and predPartLXc,, the corresponding prediction chroma sample values predPartLXc,[Xc, yc | and
predPartLXc,[Xc, yc] are derived as follows:

— Depending on chroma_format _idc, the variables xIntc, yIntc, xFracc, and yFracc are derived as follows.

— Ifchroma format idc is equal to 1,

ITU-T Rec. H.264 (03/2005) 151

xInte = (xAL / SubWidthC) + (mvCLX[0]>>3) + xc
yIntc = (yAr / SubHeightC) + (mvCLX[1]>>3)+ yc

xFracc =mvCLX[0] & 7
yFracc =mvCLX[1] & 7
— Otherwise, if chroma_format idc is equal to 2,

xIntc = (XA / SubWidthC) + (mvCLX[0] >>3) + x¢
yIntc = (yAr / SubHeightC) + (mvCLX[1]>>2)+ yc

xFracc =mvCLX[0] & 7
yFracc =(mvCLX[1] &3)<<1
— Otherwise (chroma_format_idc is equal to 3),

xIntc = (xAL / SubWidthC) + (mvCLX[0]>>2) + xc
yIntc = (yAr / SubHeightC) + (mvCLX[1]>>2) +yc

xFracc=(mvCLX[0] & 3)<<1
yFracc=(mvCLX[1] & 3)<<1

(8-224)
(8-225)

(8-226)
(8-227)

(8-228)
(8-229)

(8-230)
(8-231)

(8-232)

(8-233)

(8-234)
(8-235)

— The prediction sample value predPartLXc,[Xc yc] is derived by invoking the process specified in subclause

8.4.2.2.2 with (xIntc, yIntc), (xFracc, yFracc) and refPicL Xy, given as input.

— The prediction sample value predPartLXc[xc yc] is derived by invoking the process specified in subclause

8.4.2.2.2 with (xIntc, yIntc), (xFracc, yFracc) and refPicLXc, given as input.

8.4.2.2.1 Luma sample interpolation process

Inputs to this process are

— aluma location in full-sample units (xInt;, yInty),

— aluma location offset in fractional-sample units (xFrac, yFrac;), and
— the luma sample array of the selected reference picture refPicLX;

Output of this process is a predicted luma sample value predPartLX; [x;, yi].

152 ITU-T Rec. H.264 (03/2005)

]

= [E

]

Gla|b|c H‘
die|f|g
hiiljlk m‘
niplql|r
M s N

= 8] E

]

CIREYC

]

Figure 8-4 — Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded
blocks with lower-case letters) for quarter sample luma interpolation

The variable refPicHeightEffective;, which is the height of the effective reference picture luma array, is derived as

follows.

— If MbaffFrameFlag is equal to 0 or mb_field decoding flag is equal to 0, refPicHeightEffective, is set equal to
PicHeightInSamples; .

— Otherwise (MbaffFrameFlag is equal to 1 and mb_field decoding_flag is equal to 1), refPicHeightEffective is set
equal to PicHeightInSamples; /2.

In Figure 8-4, the positions labelled with upper-case letters within shaded blocks represent luma samples at full-sample
locations inside the given two-dimensional array refPicLX; of luma samples. These samples may be used for generating
the predicted luma sample value predPartLX;[x;, yr]. The locations (xZy, yZ;) for each of the corresponding luma
samples Z, where Z may be A, B, C, D, E,F, G, H, L I, K, L, M, N, P, Q, R, S, T, or U, inside the given array

refPicLX; of luma samples are derived as follows:

xZy = Clip3(0, PicWidthInSamples; — 1, xInt; + xDZ;)

yZ; = Clip3(0, refPicHeightEffective, — 1, yInt; + yDZ;) (8-236)
Table 8-11 specifies (xDZ,, yDZ,) for different replacements of Z.
Table 8-11 — Differential full-sample luma locations
Z A |B |C |D |E |F |G |H |I J K |L N Q 9]
xDZ; | 0 1 1 22 -1 10 1 2 3 -2 | -1 1 3 1
yDZ, |2 |2 |-1 |[-1 |O |O JO [0 [O |O 1 1 1 1 3
ITU-T Rec. H.264 (03/2005) 153

Given the luma samples ‘A’ to ‘U’ at full-sample locations (XAy, yAr) to (xUr, yUr), the luma samples ‘a’ to ‘s’ at
fractional sample positions are derived by the following rules. The luma prediction values at half sample positions are
derived by applying a 6-tap filter with tap values (1, -5, 20, 20, -5, 1). The luma prediction values at quarter sample
positions are derived by averaging samples at full and half sample positions. The process for each fractional position is
described below.

— The samples at half sample positions labelled b are derived by first calculating intermediate values denoted as b; by
applying the 6-tap filter to the nearest integer position samples in the horizontal direction. The samples at half
sample positions labelled h are derived by first calculating intermediate values denoted as h; by applying the 6-tap
filter to the nearest integer position samples in the vertical direction:

by=(E-5*F+20*G+20*H-5*1+1J) (8-237)
hi=(A-5*C+20*G+20*M-5*R+T) (8-238)

The final prediction values b and h are derived using:

b=Cliply((b, +16)>>5) (8-239)
h=Cliply((h, +16)>>5) (8-240)

— The samples at half sample position labelled as j are derived by first calculating intermediate value denoted as j; by
applying the 6-tap filter to the intermediate values of the closest half sample positions in either the horizontal or
vertical direction because these yield an equal result.

ji=cc—5*dd+20*h, +20*m, — 5 * ee + ff, or (8-241)
ji=aa—5*bb+20*b,+20*%s, —5*gg+hh (8-242)

where intermediate values denoted as aa, bb, gg, s; and hh are derived by applying the 6-tap filter horizontally in the
same manner as the derivation of b; and intermediate values denoted as cc, dd, ee, m; and ff are derived by applying
the 6-tap filter vertically in the same manner as the derivation of h;. The final prediction value j are derived using:

j=Cliply((j, +512)>>10) (8-243)

— The final prediction values s and m are derived from s; and m; in the same manner as the derivation of b and h, as
given by:

s =Cliply((s; +16)>>5) (8-244)
m = Cliply((m; +16)>>5) (8-245)

— The samples at quarter sample positions labelled as a, c, d, n, f, i, k, and q are derived by averaging with upward
rounding of the two nearest samples at integer and half sample positions using:

a=(G+b+1)>>1 (8-246)
c=(H+b+1)>>1 (8-247)
d=(G+h+1)>>1 (8-248)
n=(M+h+1)>>1 (8-249)
f=(b+j+1)>>1 (8-250)
i=(h+j+1)>>1 (8-251)
k=(j+m+1)>>1 (8-252)
q=(j+s+1)>>1. (8-253)

— The samples at quarter sample positions labelled as e, g, p, and r are derived by averaging with upward rounding of
the two nearest samples at half sample positions in the diagonal direction using

e=(b+h+1)>1 (8-254)
g=(b+tm+1)>>1 (8-255)
p=(h+s+1)>>1 (8-256)
r=(m+s+1)>>1. (8-257)

The luma location offset in fractional-sample units (xFracy, yFracy) specifies which of the generated luma samples at
full-sample and fractional-sample locations is assigned to the predicted luma sample value predPartLX;[x;, yr]. This
assignment is done according to Table 8-12. The value of predPartLX, [x, y.] is the output.

154 ITU-T Rec. H.264 (03/2005)

Table 8-12 — Assignment of the luma prediction sample predPartLX, [xi, y. |

xFracy 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

yFracp 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

predPartLX [x,y.]| G | d h n a e i p b f] q c g k r

8.4.2.2.2 Chroma sample interpolation process

This process shall only be invoked when chroma_format_idc is not equal to 0 (monochrome).
Inputs to this process are

— achroma location in full-sample units (xIntc, yIntc),

— achroma location offset in fractional-sample units (xFracc, yFracc), and

— chroma component samples from the selected reference picture refPicLXc.

Output of this process is a predicted chroma sample value predPartLXc[xc, yc -

In Figure 8-5, the positions labelled with A, B, C, and D represent chroma samples at full-sample locations inside the
given two-dimensional array refPicLXc of chroma samples.

xFrac,| 8-xFrac,

8-yFrac,

Figure 8-5 — Fractional sample position dependent variables in chroma interpolation and surrounding integer
position samples A, B, C, and D

The variable refPicHeightEffectivec, which is the height of the effective reference picture chroma array, is derived as
follows.

— If MbaffFrameFlag is equal to 0 or mb_field decoding_flag is equal to 0, refPicHeightEffectivec is set equal to
PicHeightInSamplesc.

— Otherwise (MbaffFrameFlag is equal to 1 and mb_field decoding flag is equal to 1), refPicHeightEffectivec is set
equal to PicHeightInSamplesc / 2.

The sample coordinates specified in Equations 8-258 through 8-265 are used for generating the predicted chroma
sample value predPartLX¢[X¢, yc |.

xAc = Clip3(0, PicWidthInSamplesc — 1, xIntc) (8-258)
xB¢ = Clip3(0, PicWidthInSamplesc — 1, xIntc + 1) (8-259)
xCc¢ = Clip3(0, PicWidthInSamplesc — 1, xIntc) (8-260)
xDc = Clip3(0, PicWidthInSamplesc — 1, xIntc + 1)) (8-261)
yAc = Clip3(0, refPicHeightEffectivec — 1, yIntc) (8-262)
yBc¢ = Clip3(0, refPicHeightEffectivec — 1, ylntc) (8-263)
yCc = Clip3(0, refPicHeightEffectivec — 1, yIntc + 1) (8-264)
yDc = Clip3(0, refPicHeightEffectivec — 1, yIntc + 1) (8-265)

ITU-T Rec. H.264 (03/2005) 155

Given the chroma samples A, B, C, and D at full-sample locations specified in Equations 8-258 through 8-265, the
predicted chroma sample value predPartL X[Xc, yc] is derived as follows:

predPartLX[X¢, yc] = ((8 —xFracc) * (8 —yFracc) * A + xFracc * (8 —yFracc) * B +
(8 —xFracc) * yFracc * C + xFracc * yFracc * D +32)>>6 (8-266)

8.4.2.3 Weighted sample prediction process

Inputs to this process are

— mbPartldx: the current partition given by the partition index
— subMbPartldx: the sub-macroblock partition index

— predFlagL0 and predFlagL1: prediction list utilization flags

— predPartLX;: a (partWidth)x(partHeight) array of prediction luma samples (with LX being replaced by LO or L1
depending on predFlagL0 and predFlagL1)

— when chroma format idc is not equal to0 (monochrome), predPartLXc, and predPartLXc,:
(partWidthC)x(partHeightC) arrays of prediction chroma samples, one for each of the chroma components Cb and
Cr (with LX being replaced by LO or L1 depending on predFlaglL0 and predFlagl.1)

Outputs of this process are
— predPart; : a (partWidth)x(partHeight) array of prediction luma samples and

— when chroma_format_idc is not equal to 0 (monochrome), predPartcy, and predPartc,: (partWidthC)x(partHeightC)
arrays of prediction chroma samples, one for each of the chroma components Cb and Cr.

For macroblocks or partitions with predFlagl.0 equal to 1 in P and SP slices, the following applies.

— If weighted pred flag is equal to 0, the default weighted sample prediction process as described in subclause
8.4.2.3.1 is invoked with the same inputs and outputs as the process described in this subclause.

— Otherwise (weighted pred flag is equal to 1), the explicit weighted prediction process as described in subclause
8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this subclause.

For macroblocks or partitions with predFlaglL0 or predFlagl.1 equal to 1 in B slices, the following applies.

— If weighted bipred idc is equal to 0, the default weighted sample prediction process as described in subclause
8.4.2.3.1 is invoked with the same inputs and outputs as the process described in this subclause.

— Otherwise, if weighted bipred idc is equal to 1, the explicit weighted sample prediction process as described in
subclause 8.4.2.3.2, for macroblocks or partitions with predFlagL0 or predFlagl.1 equal to 1 with the same inputs
and outputs as the process described in this subclause.

— Otherwise (weighted bipred idc is equal to 2), the following applies.

— If predFlagl0 is equal to 1 and predFlagL1 is equal to 1, the implicit weighted sample prediction as described
in subclause 8.4.2.3.2 is invoked with the same inputs and outputs as the process described in this subclause.

— Otherwise (predFlagl0 or predFlagl.1 are equal to 1 but not both), the default weighted sample prediction
process as described in subclause 8.4.2.3.1 is invoked with the same inputs and outputs as the process
described in this subclause.

8.4.2.3.1 Default weighted sample prediction process

Input to this process are the same as specified in subclause 8.4.2.3.

Output of this process are the same as specified in subclause 8.4.2.3.

Depending on the available component for which the prediction block is derived, the following applies.

— If the luma sample prediction values predPart [x, y] are derived, the following applies with C set equal to L, x set
equal to 0 .. partWidth - 1, and y set equal to O .. partHeight - 1.

— Otherwise, if the chroma Cb component sample prediction values predPartcy[X, y] are derived, the following
applies with C set equal to Cb, x set equal to 0 .. partWidthC - 1, and y set equal to O .. partHeightC - 1.

— Otherwise (the chroma Cr component sample prediction values predPartc[x,y] are derived), the following
applies with C set equal to Cr, x set equal to 0 .. partWidthC - 1, and y set equal to 0 .. partHeightC - 1.

156 ITU-T Rec. H.264 (03/2005)

The prediction sample values are derived as follows.

If predFlagl0 is equal to 1 and predFlagL1 is equal to O for the current partition

predPart([x, y | = predPartLOc[X, y] (8-267)

Otherwise, if predFlagL0 is equal to 0 and predFlagl1 is equal to 1 for the current partition

predPartc[x, y]= predPartL1[X, y] (8-268)

Otherwise (predFlagl0 and predFlagL.1 are equal to 1 for the current partition),

predPartc[x, y] = (predPartLOc[X, y] + predPartL1c[x,y]+ 1) >>1. (8-269)

8.4.2.3.2 Weighted sample prediction process

Input to this process are the same as specified in subclause 8.4.2.3.

Output of this process are the same as specified in subclause 8.4.2.3.

Depending on the available component for which the prediction block is derived, the following applies.

If the luma sample prediction values predPart; [X, y] are derived, the following applies with C set equal to L, x set
equal to 0 .. partWidth - 1, and y set equal to O .. partHeight - 1.

Otherwise, if the chroma Cb component sample prediction values predPartcy[x,y] are derived, the following
applies with C set equal to Cb, x set equal to 0 .. partWidthC - 1, and y set equal to 0 .. partHeightC - 1.

Otherwise (the chroma Cr component sample prediction values predPartc,[X, y | are derived), the following applies
with C set equal to Cr, x set equal to 0 .. partWidthC - 1, and y set equal to O .. partHeightC - 1.

The prediction sample values are derived as follows

If the partition mbPartldx\subMbPartldx has predFlagl.0 equal to 1 and predFlagL1 equal to O, the final predicted
sample values predPartc[x, y] are derived by

if(logWD >=1)
predPartc[x, y] = Cliplc(((predPartLOc[x, y] * wo + 2°¢"P 1) >> 1ogWD) + 0y)

else (8-270)
predPartc[x, y | = Cliplc(predPartLOc[X, y] * wo + 0¢)

Otherwise, if the partition mbPartldx\subMbPartldx has predFlagL0 equal to 0 and predFlagl1 equal to 1, the final
predicted sample values predPart([x, y | are derived by

if(logWD >=1)
predPartc[X, y] = Cliplo(((predPartLlc[x,y] * w; +2°¢"P 1) >>1ogWD) + 0,)

else (8-271)
predPartc[x, y | = Cliplc(predPartL1c[X,y] * w; +0;)

Otherwise (the partition mbPartldx\subMbPartldx has both predFlagl0 and predFlagl.1 equal to 1), the final
predicted sample values predPart([x, y | are derived by

predPartc[x, y] = Cliplc(((predPartLOc[X, y] * wo + predPartL1c[x, y] * wy + 2'%6VP) >>
(logWD+1))+((0ogto;+1)>>1)) (8-272)

The variables in the above derivation for the prediction samples are derived as follows.

If weighted bipred idc is equal to 2 and the slice type is equal to B, implicit mode weighted prediction is used as
follows.

logWD =5 (8-273)

ITU-T Rec. H.264 (03/2005) 157

00="0 (8-274)

0,=0 (8-275)

and w, and w; are derived as follows.

— The variables currPicOrField, pic0, and picl are derived as follows:

— Iffield pic flag is equal to 0 and the current macroblock is a field macroblock, the following applies.

— currPicOrField is the field of the current picture CurrPic that has the same parity as the current
macroblock.

— The variable pic0 is derived as follows.

— If refldxLO % 2 is equal to 0, picO is the field of RefPicListO[refldxL0 /2] that has the same
parity as the current macroblock.

— Otherwise (refldxL0 % 2 is not equal to 0), picO is the field of RefPicListO[refldxL0 /2] that
has the opposite parity of the current macroblock.

— The variable picl is derived as follows.

— IfrefldxL1 % 2 is equal to 0, picl is the field of RefPicList1[refldxL1 /2] that has the same
parity as the current macroblock.

— Otherwise (refldxL1 % 2 is not equal to 0), picl is the field of RefPicListl[refldxL1 /2] that
has the opposite parity of the current macroblock.

- Otherwise (field pic flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField
is the current picture CurrPic, picl is RefPicList1[refldxL1], and picO is RefPicListO[refIldxLO0].

— The variables tb, td, tx, and DistScaleFactor are derived from the values of currPicOrField, pic0, picl using
Equations 8-198, 8-199, 8-194, and 8-195, respectively.

— If DiffPicOrderCnt(picl, picO) is equal to 0 or one or both of picl and picO is marked as "used for long-term
reference" or (DistScaleFactor >> 2) <-64 or (DistScaleFactor >> 2) > 128, w, and w, are derived as

wo =32 (8-276)

w; =32 (8-277)
- Otherwise,

wo = 64 — (DistScaleFactor >> 2) (8-278)

w, = DistScaleFactor >> 2 (8-279)

— Otherwise (weighted pred flag is equal to 1 in P or SP slices or weighted bipred idc equal to 1 in B slices), explicit
mode weighted prediction is used as follows.

- The variables refldxLOWP and refldxL1 WP are derived as follows.

— If MbaffFrameFlag is equal to 1 and the current macroblock is a field macroblock

refldxLOWP = refldxL0 >> 1 (8-280)

refldxL1WP = refldxL1 >> 1 (8-281)

— Otherwise (MbaffFrameFlag is equal to 0 or the current macroblock is a frame macroblock),

refldx LOWP = refldxL0 (8-282)

158 ITU-T Rec. H.264 (03/2005)

refldxL1WP = refldxL1 (8-283)

— The variables logWD, wy, wy, 0y, and 0, are derived as follows.

— If Cin predPartc[x, y] is replaced by L for luma samples

logWD = luma_log2 weight denom (8-284)
wo = luma_weight 10 refldxLOWP] (8-285)
w; =luma_weight 11 refldxL1WP] (8-286)
0o = luma_offset 10[refldxLOWP] * (1 << (BitDepthy —8)) (8-287)
0; =luma_offset 11[refldxLIWP | * (1 <<(BitDepthy —8)) (8-288)

— Otherwise (C in predPartc[x,y | is replaced by Cb or Cr for chroma samples, with iCbCr=0 for Cb,
iCbCr =1 for Cr),

logWD = chroma log2 weight denom (8-289)
wo = chroma_weight 10[refldxLOWP][iCbCr] (8-290)
wi = chroma_weight 11[refldxL1WP][iCbCr] (8-291)
09 = chroma_offset 10[refldxLOWP][iCbCr | * (1 << (BitDepthc—8)) (8-292)
0, = chroma_offset 11[refldxL1WP][iCbCr] * (1 << (BitDepthc—8)) (8-293)

When explicit mode weighted prediction is used and the partition mbPartldx\subMbPartldx has both predFlaglL.0 and
predFlagL1 equal to 1, the following constraint shall be obeyed

128 <=wo+ w; <= ((logWD == 7)?127:128) (8-294)

NOTE - For implicit mode weighted prediction, weights wy and w; are each guaranteed to be in the range of -64..128 and the
constraint expressed in Equation 8-294, although not explicitly imposed, will always be met. For explicit mode weighted
prediction with logWD equal to 7, when one of the two weights wy or w; is inferred to be equal to 128 (as a consequence of
luma_weight 10 flag, luma weight 11 flag, chroma weight 10 flag, or chroma_weight 11_flag equal to 0), the other weight (w,
or wy) must have a negative value in order for the constraint expressed in Equation 8-294 to hold (and therefore the other flag
luma_weight 10 flag, luma weight 11 flag, chroma weight 10 flag, or chroma weight 11 flag must be equal to 1).

8.5 Transform coefficient decoding process and picture construction process prior to deblocking
filter process

Inputs to this process are Intral6x16DCLevel (if available), Intral6x16ACLevel (if available), LumalLevel (if
available), LumaLevel8x8 (if available), ChromaDCLevel (if available), ChromaACLevel (if available), and available
Inter or Intra prediction sample arrays for the current macroblock for the applicable components pred; , predcy, or predc;.

NOTE 1 — When decoding a macroblock in Intra_4x4 (or Intra_8x8) prediction mode, the luma component of the macroblock
prediction array may not be complete, since for each 4x4 (or 8x8) luma block, the Intra_4x4 (or Intra_8x8) prediction process for
luma samples as specified in subclause 8.3.1 (or 8.3.2) and the process specified in this subclause are iterated.

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable
components S’;, S’cp, OF S’y

NOTE 2 — When decoding a macroblock in Intra_4x4 (or Intra_8x8) prediction mode, the luma component of the macroblock
constructed sample arrays prior to the deblocking filter process may not be complete, since for each 4x4 (or 8x8) luma block, the

ITU-T Rec. H.264 (03/2005) 159

Intra_4x4 (or Intra_8x8) prediction process for luma samples as specified in subclause 8.3.1 (or 8.3.2) and the process specified
in this subclause are iterated.

This subclause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the current macroblock is coded as P _Skip or B Skip, all values of Lumalevel, LumaLevel8x8,
ChromaDCLevel, ChromaACLevel are set equal to 0 for the current macroblock.

When residual colour transform flag is equal to 1, the residual colour transform process as specified in subclause
8.5.13 is invoked.

8.5.1 Specification of transform decoding process for 4x4 luma residual blocks
This specification applies when transform_size 8x8 flag is equal to 0.

When the current macroblock prediction mode is not equal to Intra 16x16, the variable LumaLevel contains the levels
for the luma transform coefficients. For a 4x4 luma block indexed by luma4x4BlklIdx = 0..15, the following ordered
steps are specified.

1. The inverse transform coefficient scanning process as described in subclause 8.5.5 is invoked with
LumaLevel[luma4x4BlkIdx] as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.10 is invoked with ¢
as the input and r as the output.

3. When residual_colour_transform_flag is equal to 1, the variable Ry is set equal to rj; with i, j=0..3 and this
process is suspended until after completion of the residual colour transform process as specified in
subclause 8.5.13, after the completion of which, the variable r;; is set equal to Rgj; with i, j = 0..3 and this process
is continued.

4. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock is
derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlkIdx as the
input and the output being assigned to (xO, yO).

5. The 4x4 array u with elements u;; for i, j = 0..3 is derived as

u;; = Cliply(pred [XO +j, yO+i]+r13) (8-295)

When qpprime_y_zero_transform bypass_flag is equal to 1 and QP'y is equal to 0, the bitstream shall not
contain data that result in a value of u; as computed by Equation 8-295 that is not equal to
pred [XO +j,yO +i] + 1.

6. The picture construction process prior to deblocking filter process in subclause 8.5.12 is invoked with
luma4x4BlkIdx and u as the inputs.

8.5.2 Specification of transform decoding process for luma samples of Intra_16x16 macroblock prediction
mode

When the current macroblock prediction mode is equal to Intra 16x16, the variables Intral6x16DCLevel and
Intral6x16ACLevel contain the levels for the luma transform coefficients. The transform coefficient decoding proceeds
in the following ordered steps:

1. The 4x4 luma DC transform coefficients of all 4x4 luma blocks of the macroblock are decoded.

a. The inverse transform coefficient scanning process as described in subclause 8.5.5 is invoked with
Intral6x16DCLevel as the input and the two-dimensional array c as the output.

b. The scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock type
as specified in subclause 8.5.8 is invoked with c as the input and dcY as the output.

2. For a 4x4 luma block indexed by luma4x4BlkIdx = 0..15, the following ordered steps are specified.

a. The variable lumalist, which is a list of 16 entries, is derived. The first entry of lumaList is the
corresponding value from the array dcY. Figure 8-6 shows the assignment of the indices of the array dcY to
the luma4x4BIkldx. The two numbers in the small squares refer to indices i and j in dcYj;, and the numbers in
large squares refer to luma4x4BlkIdx.

160 ITU-T Rec. H.264 (03/2005)

8.5.3

Figure 8-6 — Assignment of the indices of dcY to luma4x4BlkIdx

The elements in lumaList with index k = 1..15 are specified as

lumaList[k] = Intral6x16ACLevel[luma4x4BIlkldx][k- 1] (8-296)

. The inverse transform coefficient scanning process as described in subclause 8.5.5 is invoked with lumaList

as the input and the two-dimensional array c as the output.

. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.10 is invoked

with ¢ as the input and r as the output.

. When residual_colour_transform_flag is equal to 1, the variable Ry j is set equal to r;; with i, j = 0..3 and this

process is suspended until after completion of the residual colour transform process as specified in
subclause 8.5.13, after the completion of which, the variable 1;; is set equal to Rgj with i, j=0..3 and this
process is continued.

. The position of the upper-left sample of a 4x4 luma block with index luma4x4BlkIdx inside the macroblock

is derived by invoking the inverse 4x4 luma block scanning process in subclause 6.4.3 with luma4x4BlklIdx
as the input and the output being assigned to (xO, yO).

The 4x4 array u with elements u;; for i, j = 0..3 is derived as

u; = Cliply(pred [XO +j,yO+i]+1y) (8-297)

When gpprime_y_zero_transform_bypass_flag is equal to 1 and QP'y is equal to 0, the bitstream shall not
contain data that result in a value of u;; as computed by 8-297 that is not equal to pred, [XO +j, yO +1] + 1.

. The picture construction process prior to deblocking filter process in subclause 8.5.12 is invoked with

luma4x4BIlkIdx and u as the inputs.

Specification of transform decoding process for 8x8 luma residual blocks

This specification applies when transform_size 8x8 flag is equal to 1.

The variable LumaLevel8x8[luma8x8Blkldx] with luma8x8Blkldx = 0..3 contains the levels for the luma transform
coefficients for the luma 8x8 block with index luma8x8BIkIdx.

For an 8x8 luma block indexed by luma8x8BlklIdx = 0..3, the following ordered steps are specified.

1.

The inverse scanning process for 8x8 luma transform coefficients as described in subclause 8.5.6 is invoked with
LumaLevel8x8[luma8x8BlkIdx] as the input and the two-dimensional array c as the output.

The scaling and transformation process for residual 8x8 blocks as specified in subclause 8.5.11 is invoked with ¢ as
the input and r as the output.

When residual_colour_transform_flag is equal to 1, the variable Ry is set equal to rj with i,j=0..7 and this
process is suspended until after completion of the residual colour transform process as specified in subclause
8.5.13, after the completion of which, the variable r; is set equal to Rgj with i,j=0..7 and this process is
continued.

ITU-T Rec. H.264 (03/2005) 161

4. The position of the upper-left sample of an 8x8 luma block with index luma8x8BlkIdx inside the macroblock is
derived by invoking the inverse 8x8 luma block scanning process in subclause 6.4.4 with luma8x8BlkIdx as the
input and the output being assigned to (xO, yO).

5. The 8x8 array u with elements u;; for i, j = 0..7 is derived as

u;; = Cliply(pred [XO +j, yO+1]+r13) (8-298)

When qpprime_y_zero_transform_bypass_flag is equal to 1 and QP'y is equal to 0, the bitstream shall not contain
data that result in a value of u;; as computed by Equation 8-298 that is not equal to pred, [xO +j, yO +i] + 1.

6. The picture construction process prior to deblocking filter process in subclause 8.5.12 is invoked with
luma8x8BlkIdx and u as the inputs.

8.5.4 Specification of transform decoding process for chroma samples
This process is invoked for each chroma component Cb and Cr seperately.

For each chroma component, the variables ChromaDCLevel[iCbCr | and ChromaACLevel[iCbCr], with iCbCr set
equal to 0 for Cb and iCbCr set equal to 1 for Cr, contain the levels for both components of the chroma transform
coefficients.

Let the variable numChroma4x4BIlks be set equal to (MbWidthC / 4) * (MbHeightC / 4).
For each chroma component, the transform decoding proceeds separately in the following ordered steps:

1. The numChroma4x4Blks chroma DC transform coefficients of the 4x4 chroma blocks of the component indexed
by iCbCr of the macroblock are decoded.

a. Depending on the variable chroma_format idc, the following applies.

— If chroma format idc is equal to 1, the 2x2 array c is derived using the inverse raster scanning process
applied to ChromaDCLevel as follows

_ | ChromaDCLevel [iCbCr][0] ChromaDCLevel[iCbCr][1]

c=) , (8-299)
ChromaDCLevel[iCbCr [2] ChromaDCLevel[iCbCr |3 |

— Otherwise, if chroma format idc is equal to 2, the 2x4 array c is derived using the inverse raster scanning
process applied to ChromaDCLevel as follows

ChromaDCLeel[iCbCr]0] ChromaDCLevel[iCbCr][2]

_ | ChromaDCLevel[iCbCr]1] ChromaDCLevel[iCbCr]5]
. ChromaDCLeel[iCbCr[3] ChromaDCLevel[iCbCr]6] (8-300)

ChromaDCLeel[iCbCr[4] ChromaDCLevel[iCbCr]7]

— Otherwise (chroma format idc is equal to 3), the inverse scanning process for transform coefficients as
specified in subclause 8.5.5 is invoked with ChromaDCLevel[iCbCr] as the input and the two-dimensional
4x4 array c as the output.

b. The scaling and transformation process for chroma DC transform coefficients as specified in subclause 8.5.9 is
invoked with ¢ as the input and dcC as the output.

2. For each 4x4 chroma block indexed by chroma4x4Blkldx = 0..numChroma4x4Blks — 1 of the component indexed
by iCbCer, the following ordered steps are specified.

a. The variable chromaList, which is a list of 16 entries, is derived. The first entry of chromaList is the
corresponding value from the array dcC. Figure 8-7 shows the assignment of the indices of the array dcC to the
chroma4x4BlkIdx. The two numbers in the small squares refer to indices i and j in dcCj;, and the numbers in
large squares refer to chroma4x4BlkIdx.

162 ITU-T Rec. H.264 (03/2005)

[00] [or] [00] [o1] [02] [oz]
0 1 0 1 4 5

1]] 0]] 2] 3]
2 3 2 3 6 7

[oo] [oT] 2] 2 E 2 E]
0 1 4 5 8 9 12 13

[1o] | [30] [31] [30] [31] [32] [32]
2 3 6 7 10 11 14 15

a b c

Figure 8-7 — Assignment of the indices of dcC to chroma4x4BlkIdx:
(a) chroma_format_idc equal to 1, (b) chroma_format_idc equal to 2, (¢c) chroma_format_idc equal to 3

The elements in chromaList with index k = 1..15 are specified as

chromalList[k] = ChromaACLevel[chroma4x4Blkldx J[k—1] (8-301)

b. The inverse scanning process for transform coefficients as specified in subclause 8.5.9 is invoked with
chromalL ist as the input and the two-dimensional array c as the output.

c. The scaling and transformation process for residual 4x4 blocks as specified in subclause 8.5.10 is invoked with
c as the input and r as the output.

d. Depending on the variable chroma format idc, the position of the upper-left sample of a 4x4 chroma block
with index chroma4x4BlkIdx inside the macroblock is derived as follows.

— Ifchroma format idc is equal to 1 or 2, the following applies.

x0O = InverseRasterScan(chroma4x4BIkIdx, 4, 4, 8, 0) (8-302)

yO = InverseRasterScan(chroma4x4Blkldx, 4,4, 8, 1) (8-303)

— Otherwise (chroma_format idc is equal to 3), the following applies.

x0 = InverseRasterScan(chroma4x4BIlkIdx / 4, 8, 8, 16,0) +
InverseRasterScan(chroma4x4Blkldx % 4,4, 4, 8,0) (8-304)

yO =InverseRasterScan(chroma4x4Blkldx / 4, 8, 8, 16, 1) +
InverseRasterScan(chroma4x4Blkldx % 4,4, 4,8, 1) (8-305)

e. When residual colour transform flag is equal tol, the wvariable xO' 1is set equal to
xO % (4 << transform_size 8x8 flag), the variable yO' is set equal to
yO % (4 << transform_size 8x8 flag), and the following applies.

— If this process is invoked for the chroma component Cb, the variable Reymn is set equal to ry with
,j=0.3, m=x0"+1,n=y0'+j, and this process is suspended until after completion of the residual
colour transform process as specified in subclause 8.5.13, after which the variable r; is set equal to Rg
with i, j=0..3, m=x0'+1, n =yO' + j and this process is continued.

— Otherwise (this process is invoked for the chroma component Cr), the variable Remy is set equal to 1j;
with 1,j=0..3, m=x0"'+1,n=y0'+] and this process is suspended until after the completion of the
residual colour transform process as specified in subclause 8.5.13, after which the variable 1;; is set equal
to Rrmn With 1, j = 0..3, m=xO' + 1, n = yO' + j and this process is continued.

f. The 4x4 array u with elements u;; for i, j = 0..3 is derived as

ITU-T Rec. H.264 (03/2005) 163

u;; = Cliplc(predc[xO +j, yO+i] +15)

(8-306)

When gpprime y zero transform bypass flag is equal to 1 and QP'y is equal to 0, the bitstream shall not
contain data that result in a value of u; as computed by Equation 8-306 that is not equal to
predc[XO +j, yO +1] +rj.

g. The picture construction process prior to deblocking filter process in subclause 8.5.12 is invoked with
chroma4x4BlkIdx and u as the inputs.

8.5.5

Input to this process is a list of 16 values.

Inverse scanning process for transform coefficients

Output of this process is a variable ¢ containing a two-dimensional array of 4x4 values. In the case of transform
coefficients, these 4x4 values represent levels assigned to locations in the transform block. In the case of applying the
inverse scanning process to a scaling list, the output variable ¢ contains a two-dimensional array representing a 4x4

scaling matrix.

The inverse scanning process for transform coefficients maps the sequence of transform coefficient levels to the
transform coefficient level positions. Table 8-13 specifies the two mappings: inverse zig-zag scan and inverse field
scan. The inverse zig-zag scan is used for transform coefficients in frame macroblocks and the inverse field scan is used
for transform coefficients in field macroblocks.

The inverse scanning process for scaling lists maps the sequence of scaling list entries to the positions in the

corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-8 illustrates the scans.

Vra
e

0

L7

ree—— W

~Ne— o«

S —© ¢~

B

Figure 8-8 — 4x4 block scans. (a) Zig-zag scan. (b) Field scan (informative)

Table 8-13 provides the mapping from the index idx of input list of 16 elements to indices i and j of the two-

dimensional array c.

Table 8-13 — Specification of mapping of idx to ¢;; for zig-zag and field scan

idx 0 1 2 3 4 5 6 7 8 9 |10 |11 |12 |13 |14 | 15
Zig-zag | Coo | Coi | Cio | C20 | €11 | Co2 | Co3 | Ci2 | Ca1 | C30 | €31 | €22 | Ci3 | €23 | €32 | C33
field Coo | C10 | Co1 | €20 | €30 | €11 | Co1 [C31 [Co2 | C12 | €22 | C32 | Co3 | C13 | C23 | €33

8.5.6

Input to this process is a list of 64 values.

164 ITU-T Rec. H.264 (03/2005)

Inverse scanning process for 8x8 luma transform coefficients

Output of this process is a variable ¢ containing a two-dimensional array of 8x8 values. In the case of transform
coefficients, these 8x8 values represent levels assigned to locations in the transform block. In the case of applying the
inverse scanning process to a scaling list, the output variable ¢ contains a two-dimensional array representing an 8x8
scaling matrix.

The inverse scanning process for transform coefficients maps the sequence of transform coefficient levels to the
transform coefficient level positions. Table 8-14 specifies the two mappings: inverse 8x8 zig-zag scan and inverse 8x8
field scan. The inverse 8x8 zig-zag scan is used for transform coefficients in frame macroblocks and the inverse 8x8
field scan is used for transform coefficients in field macroblocks.

The inverse scanning process for scaling lists maps the sequence of scaling list entries to the positions in the
corresponding scaling matrix. For this mapping, the inverse zig-zag scan is used.

Figure 8-9 illustrates the scans.

0>1 56 1415 2728 0
¥ A ¥ A ¥ 72K v
4 7 13 16 26 29 42 1

\

2

2
VA X A KA K AN
3 8 12 17 25 30 41 43

S AN AN AN /
9 11 18 24 31 40 44 53 5 9
VA X A K A K AN +§/
6

10 19 23 32 39 45 52 54
y A ¥ A ¥ A ¥

20 22 33 38 46 51 55 60 10
VA XA KA Y AN v
21 34 37 47 50 56 59 61 11
xy A ¥ A ¥ A ¥ \/
35+»36 48+»49 57»58 62+»63 12 19 27 35 43 50 57 63
a b

Figure 8-9 — 8x8 block scans. (a) 8x8 zig-zag scan. (b) 8x8 field scan (informative)

Table 8-14 provides the mapping from the index idx of the input list of 64 elements to indices i and j of the two-
dimensional array c.

ITU-T Rec. H.264 (03/2005) 165

Table 8-14 — Specification of mapping of idx to ¢;; for 8x8 zig-zag and 8x8 field scan

idx 0|12 |3 |4 |56 |7 (8|9 /10111213 |14]15

zig-zag Coo | Co1 | C10 | C20 | C11 | Co2 | Co3 | C12 | Co1 | €30 | Ca0 | €31 | €22 | C13 | Co4 | Cos

field Coo | €10 | €20 | Co1 | C11 | €30 | C40 | €21 | Co2 | €31 | €50 | C60 | €70 | C41 | C12 | Co3

Table 8-14 (continued) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 16 | 17 | 18 [19 | 20 | 21 [22 | 23 |24 |25 |26 |27 28293031

Zig-zag | Ci4 | Co3 | C3p | C41 | Cs0 | Ce0 | Cs1 | Can | €33 | C24 | Cis | Co6 | Co7 | Ci6 | C25 | C3a

field Coz | Cs1 | Ce1 | C71 | €32 | €13 | Coa | €23 | Cap | Cs2 | €62 | C72 | €33 | €14 | Cos | Coa

Table 8-14 (continued) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 32 {33 134353637 383940 |41 |42 |43 |44 45|46 | 47

Zig-zag | C43 | Csy | Cg1 | C70 | C71 | Ce2 | Cs53 | Cagq | C35 | Cog | €17 | Ca7 | C36 | Ca5 | Cs4 | Ce3

field Ca3 | C53 | C63 | C73 | C34 | Ci15 | Co6 | €25 | Ca4 | Cs4 | Coa | C74 | C35 | Ci6 | Co6 | Cas

Table 8-14 (concluded) — Specification of mapping of idx to cij for 8x8 zig-zag and 8x8 field scan

idx 48 |49 |50 | 51 |52 |53 |54 |55 |56 |57 |58 |59 |60 61| 62| 63

Zig-zag | C7p | C73 | Cea | Cs5 | Cas | C37 | Caz | Cs6 | Co5 | C74 | C75 | Co6 | €57 | Co7 | C76 | C17

field Cs5 | Co5 | €75 [C36 | Co7 | €17 | Ca6 | C56 | Co6 | C76 | Co7 | C37 | Ca7 | Cs57 | Co67 | C77

8.5.7 Derivation process for the chroma quantisation parameters and scaling function

Outputs of this process are:
— QP¢: the chroma quantisation parameter for each chroma component Cb and Cr

— QSc: the additional chroma quantisation parameter for each chroma component Cb and Cr required for decoding
SP and SI slices (if applicable)

NOTE 1 — QP quantisation parameter values QPy and QSy are always in the range of —QpBdOffsety to 51, inclusive. QP
quantisation parameter values QP¢ and QSc are always in the range of —-QpBdOffsetc to 51, inclusive.

The value of QP for a chroma component is determined from the current value of QPy and the value of
chroma gp index offset (for Cb) or second chroma qp index_offset (for Cr).

NOTE 2 — The scaling equations are specified such that the equivalent transform coefficient level scaling factor doubles for every
increment of 6 in QPy. Thus, there is an increase in the factor used for scaling of approximately 12 % for each increase of 1 in the
value of QPy.

The value of QP for each chroma component is determined as specified in Table 8-15 based on the index denoted as
qPI.

The variable qPogs for each chroma component is derived as follows.

— If the chroma component is the Cb component, qPog; i specified as

qPorrset = chroma_qp_index offset (8-307)

— Otherwise (the chroma component is the Cr component), qPosss i specified as

qPorsset = second_chroma qp_index offset (8-308)

The value of qP; for each chroma component is derived as

qP; = Clip3(—QpBdOffsetc, 51, QPy + qPosser) (8-309)

166 ITU-T Rec. H.264 (03/2005)

The value of QP'c for the chroma components is derived as

QP'c = QP¢ + QpBdOffsetc (8-310)

The value of BitDepth'c for the chroma components is derived as

BitDepth'c = BitDepthc + residual _colour_transform_flag (8-311)

Table 8-15 — Specification of QP¢ as a function of qP;

qP; <30 |30 |31 323334 [35[36[37[38[39][40]41 4243|4445 |46 |47 |48]|49]|50]51

QPc | =qP; [29 |30 |31 [3232333434 |35[35[36[36|37 3737 [38[38[38[39]39]39]39

When the current slice is an SP or SI slice, QSc is derived using the above process, substituting QPy with QSy and QP¢
with QSC

The function LevelScale(m, i, j) is specified as follows.
— The 4x4 matrix weightScale(i, j) is specified as follows.
— The variable mblsInterFlag is derived as follows.

— If the current macroblock is coded using Inter macroblock prediction modes, mblsInterFlag is set equal
to 1.

— Otherwise (the current macroblock is coded using Intra macroblock prediction modes), mblsInterFlag is
set equal to 0.

— The variable iYCbCr derived as follows.
— If'the input array c relates to a luma residual block, iYCbCer is set equal to 0.

— Otherwise, if the input array c relates to a chroma residual block and the chroma component is equal
to Cb, iYCDbCr is set equal to 1.

— Otherwise (the input array c relates to a chroma residual block and the chroma component is equal
to Cr), iYCDCr is set equal to 2.

— The inverse scanning process for transform coefficients as specified in subclause 8.5.5 is invoked with
ScalingList4x4[iYCbCr + ((mblslnterFlag == 1) ? 3 :0)] as the input and the output is assigned to the
4x4 matrix weightScale.

LevelScale(m, i, j) = weightScale(1, j) * normAdjust(m, i, j) (8-312)

where

Vo for(i%2,j%2)equalto(0,0),
normAdjust(m,i, j)=1v,, for (i%2,j%2)equalto(l,1), (8-313)

% otherwise;

m2

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

10 16 13]
11 18 14
v= 1320 16 . (8-314)
14 23 18
16 25 20
|18 29 23]

ITU-T Rec. H.264 (03/2005) 167

The function LevelScale8x8(m, 1, j) is specified as follows:
— The 8x8 matrix weightScale8x8(i, j) is specified as follows.
— The variable mblsInterFlag is derived as follows.

— If the current macroblock is coded using Inter macroblock prediction modes, mblsInterFlag is set equal
to 1.

— Otherwise (the current macroblock is coded using Intra macroblock prediction modes), mblsInterFlag is
set equal to 0.

— The inverse scanning process for 8x8 luma transform coefficients as specified in subclause 8.5.6 is invoked
with ScalingList8x8[mblsinterFlag] as the input and the output is assigned to the 8x8 matrix

weightScale8x8.
LevelScale8x8(m, i, j) = weightScale8x8(1, j) * normAdjust8x8(m, i, j) (8-315)
where
v, for(i%4,j%4)equalto(0,0),
Vi for(i%2,j% 2)equalto(1,1),

. . v, for(i%4,j%4)equalto(2,2),

normAdJust8x8(m, i,]) =)] .) (8-316)
for (1% 4, j % 2) equal to (0,1) or (i % 2, j % 4) equal to (1,0),

for (1% 4, j % 4) equal to (0,2) or (i % 4, j % 4) equal to (2,0),

otherwise;

m3

m4

mS5

where the first and second subscripts of v are row and column indices, respectively, of the matrix specified as:

(20 18 32 19 25 24]

22 19 35 21 28 26

26 23 42 24 33 31

v) (8-317)
28 25 45 26 35 33

32 28 51 30 40 38

36 32 58 34 46 43

8.5.8 Scaling and transformation process for luma DC transform coefficients for Intra_16x16 macroblock
type

Inputs to this process are transform coefficient level values for luma DC transform coefficients of Intra 16x16
macroblocks as a 4x4 array ¢ with elements cjj, where i and j form a two-dimensional frequency index.

Outputs of this process are 16 scaled DC values for luma 4x4 blocks of Intra_16x16 macroblocks as a 4x4 array dcY
with elements dcYj.

Depending on the values of qpprime_y zero transform_bypass_flag and QP'y, the following applies.

— Ifgpprime_y zero transform_bypass flag is equal to 1 and QP'y is equal to 0, the output dcY is derived as

dcYj =c; with i,j=0.3 (8-318)

— Otherwise (qpprime_y_zero_transform_bypass_flag is equal to 0 or QP'y is not equal to 0), the following text of
this process specifies the output.

168 ITU-T Rec. H.264 (03/2005)

The inverse transform for the 4x4 luma DC transform coefficients is specified by:

I 1 1 Ifcyp € Cp» Coz|fl 1 1 1

o 1 1 -1 -1}c, ¢ ¢, c5fl 1 -1 -1 . (8-319)
I =1 =1 1jcy €y €y Cyfl =1 =1 1
1 -1 1 —1jcy €5 €3 cCyufl =1 1 -1

The bitstream shall not contain data that results in any element fj; of f with i, j = 0..3 that exceeds the range of integer
values from —2U7 " BitDepthy) ¢ 77+ BitDepthy) 1 i clusive.

After the inverse transform, scaling is performed as follows.

— If QP'y is greater than or equal to 36, the scaled result is derived as

deY; = (f; * LevelScale(QP', %6,0,0)) << (QP', /6—6), with i,j=0.3 (8-320)

— Otherwise (QP'y is less than 36), the scaled result is derived as

deY; = (f, * LevelScale(QP', %6,0,0)+ 27)>> (6-QP', /6), with i,j=0.3 (8-321)

The bitstream shall not contain data that results in any element dcYj; of dcY with i, j = 0..3 that exceeds the range of
integer values from —20 " BitPepthy) o o7+ Bitbepthy)_1 “inclusive.

NOTE 1 — When entropy coding_mode flag is equal to 0 and QP'y is less than 10 and profile idc is equal to 66, 77, or 88, the
range of values that can be represented for the elements c;; of ¢ is not sufficient to represent the full range of values of the
elements dcY; of dcY that could be necessary to form a close approximation of the content of any possible source picture by use
of the Intra_16x16 macroblock type.

NOTE 2 - Since the range limit imposed on the elements dcYj; of dcY is imposed after the right shift in Equation 8-321, a larger
range of values must be supported in the decoder prior to the right shift.

8.5.9 Scaling and transformation process for chroma DC transform coefficients

Inputs to this process are transform coefficient level values for chroma DC transform coefficients of one chroma
component of the macroblock as an (MbWidthC / 4)x(MbHeightC / 4) array ¢ with elements c;;, where i and j form a
two-dimensional frequency index.

Outputs of this process are the scaled DC values as an (MbWidthC / 4)x(MbHeightC / 4) array dcC with elements dcCj;.
Depending on the values of qpprime_y zero transform_bypass_flag and QP'y, the following applies.
— Ifgpprime_y zero transform bypass flag is equal to 1 and QP'y is equal to 0, the output dcC is derived as

dcCjj = ¢ with i=0..(MbWidthC /4) — 1 and j = 0..(MbHeightC /4) — 1. (8-322)

— Otherwise (gpprime_y zero_transform_bypass flag is equal to 0 or QP'y is not equal to 0), the following text of
this process specifies the output.

Depending on the variable chroma_format idc, the inverse transform is specified as follows.

— If chroma format idc is equal to 1, the inverse transform for the 2x2 chroma DC transform coefficients is
specified as

11 11
f= w o (8-323)
I —1fc, ¢, |1 -1

— Otherwise, if chroma_format_idc is equal to 2, the inverse transform for the 2x4 chroma DC transform coefficients
is specified as

ITU-T Rec. H.264 (03/2005) 169

I 1 1 Icyp ¢y
f_1 I =1 =1fc, c |1 1
1 =1 =1 1y ey |l -1

I -1 1 —1fcy cy

(8-324)

Otherwise (chroma_format_idc is equal to 3), the inverse transform for the 4x4 chroma DC transform coefficients

is specified as follows.

— If residual colour transform flag is equal to 1 and the current macroblock prediction mode
MbPartPredMode(mb_type, 0) is Intra 4x4 or Intra 8x8, the inverse transform for the 4x4 chroma DC

transform coefficients is specified as

fij =c; <<2 with i,j=0..3

— Otherwise, the inverse transform for the 4x4 chroma DC transform coefficients is specified as

I 1 1 1fcep € Cum €|l 1 1 1
I 1 -1 —=Ifcy, ¢; ¢, ¢l 1 =1 -1
o1 21 ey oy ey cpfl -1 -1 1
I =1 1 —=1Ifcyy €5 ©C5 cCyfl -1 1 =1

(8-325)

(8-326)

The bitstream shall not contain data that results in any element f;; of f with i, j = 0..3 that exceeds the range of integer
values from —27 " BiPept'c) o o7+ Bitbepth'c) 1 i clusive.

After the inverse transform, scaling is performed depending on the variable chroma format idc as follows.

If chroma_format idc is equal to 1, the scaled result is derived as

deC;; = ((f; * LevelScale(QP'¢ %6,0,0)) << (QP'c/6))>>5, with 1i,j=0,1

If chroma_format idc is equal to 2, the following applies.

— The variable QP'c pc is derived as

QP'cpc=QP'c+3

— Depending on the value of QP'c pc, the following applies.

— If QP'cpc is greater than or equal to 36, the scaled result is derived as

deC. = (f. * LevelScale (QP'. 1 %6,0,0)) << (QP'c p /6— 6), withi=0..3,j=0, 1
1 J C,DC C,DC

— Otherwise (QP'c pc is less than 36), the scaled result is derived as

deC, = (f; *LevelScale (QP'cpc % 6,0,0)+27 ¥)5 (6 —QP'(e /6), with 1=0..3,j=0,1

Otherwise (chroma_format_idc is equal to 3), the following applies.

— If QP'c is greater than or equal to 36, the scaled result is derived as

deC, = (f, * LevelScale(QP'¢%6,0,0)) << (QP'c /6-6), with i,j=0.3.

— Otherwise (QP'c is less than 36), the scaled result is derived as

5-QP'¢/6

deC, = (£, * LevelScalQP'c % 6,0,0) + 2) >> (6 - QP'_/6), withi, j,= 0.3

(8-327)

(8-328)

(8-329)

(8-330)

(8-331)

(8-332)

The bitstream shall not contain data that results in any element dcC; of dcC with i, j = 0..3 that exceeds the range of
integer values from —20 " BIPePIo) 4o (7 BitDert')_1 inclysive.

170

ITU-T Rec. H.264 (03/2005)

NOTE 1 — When entropy coding_mode flag is equal to 0 and QP'c is less than 4 and profile_idc is equal to 66, 77, or 88, the
range of values that can be represented for the elements cij of ¢ may not be sufficient to represent the full range of values of the
elements dcCij of dcC that could be necessary to form a close approximation of the content of any possible source picture.

NOTE 2 — Since the range limit imposed on the elements dcCij of dcC is imposed after the right shift in Equation 8-327, 8-330,
or 8-332, a larger range of values must be supported in the decoder prior to the right shift.

8.5.10 Scaling and transformation process for residual 4x4 blocks

Input to this process is a 4x4 array ¢ with elements c;; which is either an array relating to a residual block of the luma
component or an array relating to a residual block of a chroma component.

Outputs of this process are residual sample values as 4x4 array r with elements r;;.
Depending on the values of qpprime_y zero transform_bypass_flag and QP'y, the following applies.

— Ifgpprime_y zero transform_bypass_flag is equal to 1 and QP'y is equal to 0, the output r is derived as

rj=c; with i,j=0.3 (8-333)

— Otherwise (qpprime_y_zero_transform_bypass_flag is equal to 0 or QP'y is not equal to 0), the following text of
this process specifies the output.

The variable bitDepth is derived as follows.
— Ifthe input array c relates to a luma residual block, bitDepth is set equal to BitDepthy.

— Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepth'c.

The bitstream shall not contain data that results in any element c;; of ¢ with i, j = 0..3 that exceeds the range of integer
values from —207 " PiPePth) ¢ (7 +bitDepth)_1 3 clysive.

The variable sMbFlag is derived as follows.

- If mb_type is equal to SI or the macroblock prediction mode is equal to Inter in an SP slice, sMbFlag is set equal
to 1,

- Otherwise (mb_type not equal to SI and the macroblock prediction mode is not equal to Inter in an SP slice),
sMbFlag is set equal to 0.

The variable gP is derived as follows.

— Ifthe input array c relates to a luma residual block and sMbFlag is equal to 0

qP = QP'y (8-334)

— Otherwise, if the input array c relates to a luma residual block and sMbFlag is equal to 1

qP = QSY (8-335)

— Otherwise, if the input array c relates to a chroma residual block and sMbFlag is equal to 0

qP = QP (8-336)

— Otherwise (the input array c relates to a chroma residual block and sMbFlag is equal to 1),

qP = QSc (8-337)

Scaling of 4x4 block transform coefficient levels c;; proceeds as follows.
— If all of the following conditions are true

— 1iisequalto 0

— jisequalto 0

— c relates to a luma residual block coded using Intra_16x16 prediction mode or c relates to a chroma residual
block

ITU-T Rec. H.264 (03/2005) 171

the variable dy is derived by

doo = Coo (8-338)

— Otherwise, the following applies.

— If qP is greater than or equal to 24, the scaled result is derived as follows

d;j = (¢; * LevelScale(qP % 6, 1, j)) << (qP / 6 — 4), with i,j = 0..3 except as noted above (8-339)

— Otherwise (qP is less than 24), the scaled result is derived as follows

d; = (c; *LevelScale(qP % 6,1, j) + 27y 55 (4—qP/6), withi,j=0..3 except as noted above (8-340)

The bitstream shall not contain data that results in any element d;; of d with i, j = 0..3 that exceeds the range of integer
values from —207 PP 4o 270D _q nclysive.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform
as follows.

A set of intermediate values is computed as follows.

ep=djtdp, with i=0.3 (8-341)
e =djp—dp, with 1=0.3 (8-342)
ep=(dj;>>1)-ds, with i=0.3 (8-343)
ey=dy +(dz>>1), with i=0.3 (8-344)

The bitstream shall not contain data that results in any element e; of e with i, j = 0..3 that exceeds the range of integer
values from —2(7 " PIPePM) 4o 27 0iDepth) _q i clysive.

Then, the transformed result is computed from these intermediate values as follows.

fo=ejptes with 1=0.3 (8-345)
fii=¢; tep, with 1=0.3 (8-346)
fr=¢1—¢€p, with 1=0.3 (8-347)
fi=eo—ej3, with i=0.3 (8-348)

The bitstream shall not contain data that results in any element f;; of f with i, j = 0..3 that exceeds the range of integer
values from —2(7 " PIPePM) 4o 27 biDepth) _q i clysive.

Then, each (vertical) column of the resulting matrix is transformed using the same one-dimensional inverse transform as
follows.

A set of intermediate values is computed as follows.

goj = f()j + fzj, with _] =0..3 (8—349)

g1 = f()j — fzj, with _] =0..3 (8—350)

172 ITU-T Rec. H.264 (03/2005)

£ = (flj >>]) — f3j, with J =0..3 (8-351)

23 = flj + (f3j >>]), with _] =0..3 (8-352)

The bitstream shall not contain data that results in any element g;; of g with i, j = 0..3 that exceeds the range of integer
values from —2(7 " PIPP) o (7 bitDepth) _ 1 Hinclusive.

Then, the transformed result is computed from these intermediate values as follows.

hoj = goj + g3, with j=0.3 (8-353)
hijj=gij+ & with j=0.3 (8-354)
hyj=gij— gy, with j=0.3 (8-355)
hsj = goj — g3, with j=0.3 (8-356)

The bitstream shall not contain data that results in any element h;; of h with i, j = 0..3 that exceeds the range of integer
values from —207 " PitPepth) ¢ p(7+bitDepth) _ 33 i clusive.

After performing both the one-dimensional horizontal and the one-dimensional vertical inverse transforms to produce
an array of transformed samples, the final constructed residual sample values is derived as

r,=(h; +27)>>6 with i,j=0.3 (8-357)

8.5.11 Scaling and transformation process for residual 8x8 luma blocks

Input to this process is an 8x8 array ¢ with elements c;; which is an array relating to an 8x8 residual block of the luma
component.

Outputs of this process are residual sample values as 8x8 array r with elements ;.
Depending on the values of gpprime_y zero transform_bypass_flag and QP'y, the following applies.

— Ifqpprime y zero transform bypass_flag is equal to 1 and QP'y is equal to O, the output r is derived as

r;=cy with i,j=0.7 (8-358)

— Otherwise (qpprime_y_zero_transform_bypass_flag is equal to 0 or QP'y is not equal to 0), the following text of
this process specifies the output.

The bitstream shall not contain data that results in any element c;; of ¢ with i, j = 0..7 that exceeds the range of integer
values from —207 " BitDepthy) ¢ 77+ BitDepthy) 1 i clusive.

The scaling process for 8x8 block transform coefficient levels c;; proceeds as follows.

— IfQP'y is greater than or equal to 36, the scaled result is derived as

d;; = (c; * LevelScale8x8(QP'y % 6, i,)) << (QP'y / 6 — 6), with i,j =0..7 (8-359)

— Otherwise (QP'y is less than 36), the scaled result is derived as

d;j = (cij * LevelScale8x8(QP'y % 6, i, j)) + 2> Y% >> (6 — QP'y /6), with i,j = 0..7 (8-360)

The bitstream shall not contain data that results in any element d;j of d with i, j = 0..7 that exceeds the range of integer
values from -2+ BitPepthy) 4 o7+ BitDerthy) 1 “inclusive.

ITU-T Rec. H.264 (03/2005) 173

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner
mathematically equivalent to the following.

First, each (horizontal) row of scaled transform coefficients is transformed using a one-dimensional inverse transform
as follows.

174

A set of intermediate values e;; is derived by

Cio = di() + di4, with 1=0..7

€1 = — di3 + di5 — di7 — (dﬂ >> 1), with 1=0..7

Cp = di() — di4, with 1=0..7

€3 = dil + di7 — di3 — (di3 >> 1), with 1=0..7

eu=(dp>>1)—dg, with i=0..7

Cis = — dil + di7 + di5 + (di5 >> 1), with 1=0..7

e =dpt(dig>>1), with 1=0..7

e =dis +dis +d;; +(dy; >> 1), with i=0..7

A second set of intermediate results fj; is computed from the inter