Series G

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Variable bit rate calculations for ITU-T Recommendation G. 767 Digital Circuit Multiplication Equipment (DCME)

Supplement 38 to
ITU-T G-series Recommendations
(Previously CCITT Recommendation)

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G. 199
INTERNATIONAL ANALOGUE CARRIER SYSTEM	
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIERTRANSMISSION SYSTEMS	G.200-G. 299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300-G. 399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400-G. 449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G. 499
TESTING EQUIPMENTS	
TRANSMISSION MEDIA CHARACTERISTICS	G.600-G. 699
DIGITAL TRANSMISSION SYSTEMS	
TERMINAL EQUIPMENTS	G.700-G. 799
DIGITAL NETWORKS	G.800-G. 899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G. 999

For further details, please refer to ITU-T List of Recommendations.

SUPPLEMENT 38 TO ITU-T G-SERIES RECOMMENDATIONS

VARIABLE BIT RATE CALCULATIONS FOR ITU-T RECOMMENDATION G. 767 DIGITAL CIRCUIT MULTIPLICATION EQUIPMENT (DCME)

[^0]
FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had/had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Supplement 38 to G-series Recommendations

VARIABLE BIT RATE CALCULATIONS FOR ITU-T RECOMMENDATION G. 767 DIGITAL CIRCUIT MULTIPLICATION EQUIPMENT (DCME)

(Geneva, 1998)

This Supplement explains how the VBR equations were derived. The same notations of Recommendation G. 767 are used here. The notation (X, Y, Z) shall be used to note that $N_{16}=\mathrm{X}$, $N_{12.8}=\mathrm{Y}$ and $N_{9.6}=\mathrm{Z}$, i.e. X QBs of the bearer carry traffic at $16 \mathrm{kbit} / \mathrm{s}, \mathrm{Y} \mathrm{QBs}$ at $12.8 \mathrm{kbit} / \mathrm{s}$ and Z QBs at 9.6 kbit/s.

In this combination, $\mathrm{X}+\mathrm{Y}+\mathrm{Z}$ QBs are used to support traffic from up to $X+\frac{5}{4} Y+\frac{5}{3} Z$ BCs.
If N_{V} is greater than $N_{Q B}$, then VBR is required to create the additional overload channels. Creation of the extra channels can be done using several combinations of $N_{16}, N_{12.8}$ and $N_{9.6}$.
If, for example, there are 19 BCs that need bearer resources and 15 available QBs , then several combinations exist that use the available resources and support this traffic. Some combinations create more BCs than required, like $(2,4,9)$ that creates 22 BCs or $(1,8,6)$ that creates 21 BCs . These combinations support all traffic from all BCs but the average bit rate is not optimal since additional unused BCs are created. Obviously, a combination that creates too few BCs is not acceptable. Other combinations do not use all available QBs but still support all traffic, like $(4,4,6)$ that uses only 14 QBs of the list to create 19 BCs , but, again, such combinations lower the bit rate as the bearer resources are not optimally utilized.

One exceptional case needs special attention: If $N_{Q B}$ is a multiplier of 3 and also $N_{V}=\frac{5}{3} N_{Q B}-1$, there is no combination that creates exactly $N_{V} \mathrm{BCs}$ and an additional unused BC must be created. For example, if $N_{Q B}=3$, it is possible to create 3 channels (each QB carries one voice channel at $16 \mathrm{kbit} / \mathrm{s}$) or 5 channels (the 3 QBs carry five $9.6 \mathrm{kbit} / \mathrm{s}$ channels), but it is not possible to create exactly 4 channels.

To this point, an optimized combination is one that provides the highest bit rate and highest utilization supporting traffic from all BCs in the voice list. This means that no unnecessary additional BCs are created and all the QBs of the list are used.

Given N_{V} and $N_{Q B}$ there still may be more than one combination that meets these requirements. Advancing the above example, both $(9,0,6)$ and $(4,8,3)$ use all 15 QBs, create no unused BCs and provide the same bit rate -1.58 bit/sample.

So another criterion is required to choose a unique combination. The criterion will be: Prefer creation of as few $9.6 \mathrm{kbit} / \mathrm{s}$ channels as possible. In the given example, the second combination is favourable since it uses less $9.6 \mathrm{kbit} / \mathrm{s}$ channels, even though it also uses less $16 \mathrm{kbit} / \mathrm{s}$ than the first combination. The motivation to use this criterion is that linear decrease of the bit rate might result in a steeper deterioration of speech quality so, when more $9.6 \mathrm{kbit} / \mathrm{s}$ channels are used, even when the average bit rate is maintained, the total quality decreases.
To sum, the criteria for choosing one unique combination of $N_{16}, N_{12.8}$ and $N_{9.6}$ are:
a) Maximize instantaneous average bit rate of the traffic while using available bearer resources.
b) Create enough channels for all BCs in the voice list.
c) Minimize the number of $9.6 \mathrm{kbit} / \mathrm{s}$ channels.

The formal representation of these criteria is:
a)

$$
\max \left(16 \times N_{16}+12.8 \times \frac{5}{4} N_{12.8}+9.6 \times \frac{5}{3} N_{9.6}\right)
$$

b)

$$
N_{16}+\frac{5}{4} N_{12.8}+\frac{5}{3} N_{9.6} \geq N_{V}
$$

c) $\quad \min \left(N_{9.6}\right)$

Another obvious requirement is:
d) $\quad N_{16}$ is an integer; $N_{12.8}$ is an integer multiplier of 4; and $N_{9.6}$ is an integer multiplier of 3 .

The first criterion is satisfied when all bearer resources are consumed, so that:
a) $\quad N_{16}+N_{12.8}+N_{9.6}=N_{Q B}$

The special case, when an unused BC must be created, is handled in the following manner: If $N_{Q B}$ is a multiplier of 3 and also $N_{V}=\frac{5}{3} N_{Q B}-1$, then N_{V} is adjusted by adding 1 to its value. After handling this special case, the second criterion is satisfied when exactly the number of required channels are created, so that:
b)

$$
N_{16}+\frac{5}{4} N_{12.8}+\frac{5}{3} N_{9.6}=N_{V}
$$

In order to find the unique combination, the third criterion is handled first:
$N_{9.6}$ is an integral multiple of 3 , say $N_{9.6}=3 \times I_{1}$ where I_{1} is an integer. Then exactly $5 \times I_{1} 9.6 \mathrm{kbit} / \mathrm{s}$ channels are created. The maximum number of additional channels that can be created will be achieved if as many of these additional channels will be at $12.8 \mathrm{kbit} / \mathrm{s}$ and the rest at $16 \mathrm{kbit} / \mathrm{s}$. The maximum number of channels at $12.8 \mathrm{kbit} / \mathrm{s}$ is $5 \times \operatorname{int}\left(\left(N_{Q B}-3 \times I_{1}\right) / 4\right)$ which leaves $\left(N_{Q B}-3 \times I_{1}\right)-4 \times \operatorname{int}\left(\left(N_{Q B}-3 \times I_{1}\right) / 4\right)$
channels at $16 \mathrm{kbit} / \mathrm{s}$. It is required that the sum of the $9.6 \mathrm{kbit} / \mathrm{s}, 12.8 \mathrm{kbit} / \mathrm{s}$ and $16 \mathrm{kbit} / \mathrm{s}$ channels will be at least N_{v} :

$$
\begin{gathered}
5 \times I_{1}+5 \times \operatorname{int}\left(\left(N_{Q B}-3 \times I_{1}\right) / 4\right)+\left(N_{Q B}-3 \times I_{1}\right)-4 \times \operatorname{int}\left(\left(N_{Q B}-3 \times I_{1}\right) / 4\right) \geq N_{V} \\
\Rightarrow 2 \times I_{1}+N_{Q B}+\operatorname{int}\left(\left(N_{Q B}-3 \times I_{1}\right) / 4\right) \geq N_{V}
\end{gathered}
$$

$2 \times I_{1}$ is an integer. $N_{Q B}$ and N_{V} are also integers so all three quantities can be moved inside the parentheses and the equation is still valid so we get:

$$
\operatorname{int}\left(\frac{5}{4} I_{1}+\frac{5}{4} N_{Q B}-N_{V}\right) \geq 0
$$

The minimal I_{1} that satisfies this equation is:

$$
I_{1}=\frac{4}{5} N_{V}-N_{Q B}
$$

Since I_{1} is an integer, the solution is:

$$
I_{1}=\operatorname{int}\left(\frac{4}{5} N_{V}-N_{Q B}\right)+\alpha
$$

where $\alpha=0$ if $\frac{4}{5} N_{V}-N_{Q B}$ is an integer (because this way the value inside the parentheses is exactly zero) or $\alpha=1$ otherwise.
If I_{1} is smaller than zero, then it is set to zero since the number of QBs cannot be negative.
After setting the value of $N_{9.6}$, the first two criteria are simply two linear equations with two variables, and their solution is:

$$
\begin{gathered}
N_{12.8}=4\left(N_{V}-N_{Q B}-\frac{2}{3} N_{9.6}\right) \\
N_{16}=N_{Q B}-N_{12.8}-N_{9.6}
\end{gathered}
$$

Example \#1

Case of $\mathrm{N}_{Q^{B}}=10$ and $\mathrm{N}_{V}=13$
$I_{1}=\frac{4}{5} N_{V}-N_{Q B}=\frac{4}{5} 13-10=0.4$
0.4 is not an integer therefore $I_{1}=1.4$
$N_{9.6}=3 \times \operatorname{int}\left(I_{1}\right)=3$
$N_{12.8}=4\left(N_{V}-N_{Q B}-\frac{2}{3} N_{9.6}\right)=4\left(13-10-\frac{2}{3} 3\right)=4$
$N_{16}=N_{Q B}-N_{12.8}-N_{9.6}=10-4-3=3$
Assume $\mathrm{IT}=120$ and $\mathrm{BC}=54$. Then:

$$
P_{V}=(B C+I T) \bmod N_{V}=(120+54) \bmod 13=5
$$

And the VBR mapping is as follows:

$N_{Q B}=10, N_{V}=13$ $N_{9.6}=3, N_{12.8}=4, N_{16}=3$ $\mathrm{IT}=120, \mathrm{BC}=54$ $P_{V}=5$	BCs number	mapped to QBs number	at rate $[\mathbf{k b i t / s} \mathbf{]}$
	5	1	16
	6	2	16
	$8,9,10,11$ and 12	$4,5,6$ and 7	12.8
	$13,1,2,3$ and 4	8,9 and 10	9.6

Example \#2

Case of $\mathrm{N}_{Q B}=15$ and $\mathrm{N}_{V}=18$
$I_{1}=\frac{4}{5} N_{V}-N_{Q B}=\frac{4}{5} 18-15=-0.6$
-0.6 is smaller than zero, therefore $I_{1}=0$
$N_{9.6}=3 \times \operatorname{int}\left(I_{1}\right)=0$ (creation of $9.6 \mathrm{kbit} / \mathrm{s}$ channels is not required)
$N_{12.8}=4\left(N_{V}-N_{Q B}-\frac{2}{3} N_{9.6}\right)=4\left(18-15-\frac{2}{3} 0\right)=12$
$N_{16}=N_{Q B}-N_{12.8}-N_{9.6}=15-12-0=3$
Assume $\mathrm{IT}=79$ and $\mathrm{BC}=136$. Then:

$$
P_{V}=(B C+I T) \bmod N_{V}=(79+136) \bmod 18=17
$$

And the VBR mapping is as follows:

$\begin{gathered} N_{Q B}=15, N_{V}=18 \\ N_{9.6}=0, N_{12,8}=12, N_{16}=3 \end{gathered}$	BCs number	mapped to QBs number	at rate [kbit/s]
	17	1	16
	18	2	16
	1	3	16
$\begin{gathered} \mathrm{IT}=79, \mathrm{BC}=136 \\ P_{v}=17 \end{gathered}$	2, 3, 4, 5 and 6	4, 5, 6 and 7	12.8
	7, 8, 9, 10 and 11	8, 9, 10 and 11	12.8
	12, 13, 14, 15 and 16	12, 13, 14 and 15	12.8

ITU-T RECOMMENDATIONS SERIES

Series A Organization of the work of the ITU-T
Series B Means of expression: definitions, symbols, classification
Series C General telecommunication statistics
Series D General tariff principles
Series E Overall network operation, telephone service, service operation and human factors
Series F Non-telephone telecommunication services
Series G Transmission systems and media, digital systems and networks
Series H Audiovisual and multimedia systems
Series I Integrated services digital network
Series J Transmission of television, sound programme and other multimedia signals
Series K Protection against interference
Series L Construction, installation and protection of cables and other elements of outside plant
Series M TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits

Series N Maintenance: international sound programme and television transmission circuits
Series O Specifications of measuring equipment
Series P Telephone transmission quality, telephone installations, local line networks
Series Q Switching and signalling
Series R Telegraph transmission
Series S Telegraph services terminal equipment
Series T Terminals for telematic services
Series U Telegraph switching
Series V Data communication over the telephone network
Series X Data networks and open system communications
Series Y Global information infrastructure
Series Z Programming languages

[^0]: Source
 Supplement 38 to ITU-T G-series Recommendations, was prepared by ITU-T Study Group 15 (1997-2000) and was approved under the WTSC Resolution No. 5 procedure on the $13^{\text {th }}$ of October 1998.

