

INTERNATIONAL TELECOMMUNICATION UNION

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Access networks - In premises networks

Unified high-speed wire-line based home networking transceivers - Data link layer specification

Amendment 2

CAUTION !

PREPUBLISHED RECOMMENDATION

This prepublication is an unedited version of a recently approved Recommendation. It will be replaced by the published version after editing. Therefore, there will be differences between this prepublication and the published version.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Amendment 2 to Recommendation ITU-T G.9961 (2010)

Unified high-speed wire-line based home networking transceivers - Data link layer specification: Amendment 2

Summary

Amendment 2 to Recommendation ITU-T G.9961 (2010) contains the following:

- 1) Revision of text for clause 8.3.3.4.3 "CBTS back-off rules".
- 2) Addition of working text for new clause 8.3.8 "Extended acknowledgements".
- 3) Revision of the text for clause 8.5.3 "Routing of ADPs".
- 4) Addition of working text for new clause 8.6.2.4 "Bandwidth update protocol for prioritized connections" and revision of clause 8.6.2.4.1.1 "Format of BU_BWUpdate.req".
- 5) Revision of the text for clause 8.8.4 "TXOP descriptor".
- 6) Revision of text in Table 8-88 in clause 8.10.1.1.
- 7) Revision of the text for clause 8.12.1.2 "Establishment of a data connection".
- 8) Revision of the text for clause 8.17 "DLL multicast stream".
- 9) Addition of text for new clause 8.20 "Metrics acquisition".
- 10) Addition of working text for new Annex X "Test vectors".

Amendment 2 to Recommendation ITU-T G.9961 (2010)

Unified high-speed wire-line based home networking transceivers - Data link layer specification: Amendment 2

1 Revise clause 8.3.3.4.3 "CBTS back-off rules" as follows:

8.3.3.4.3 CBTS back-off rules

All nodes contending in a CBTS shall use the back-off rules described in this clause in the CW. In the general case, CW immediately follows the PRS, as shown in Figure 8-16. The size of CW is expressed in the number of ITS. The valid values for the maximum range of the CW are defined in Table 8-7, the value of ITS is defined in clause 8.4. If PR signals are not required, the CW shall start right after the INUSE signal slot, as described in clause 8.3.3.4.6, or at the beginning of the CBTS, if INUSE is not used.

Each node shall maintain the following back-off parameters for each MA priority of the frame that node intends to transmit:

- back-off-counter (BC);
- defer counter (DC); and
- back-off stage counter (BSC).

The BC determines the number of ITS the node has to wait before it begins the transmission. The DC keeps track of the number of consecutive times a node can lose contention before changing the back-off parameters. The BSC keeps track of the back-off stage to enable the selection of BC and DC when the back-off stage changes.

Nodes that are allowed to compete in the CW shall use their back-off parameters for that MA priority, and act according to the following rules before starting a transmission in a CBTS:

- 1) If the BC is zero, the node shall start transmitting its frame within a time window of TX_ON microseconds after the start of the first ITS of the CW.
- 2) If the BC is not zero, the node shall decrement its BC upon completion of each ITS in which it detects no transmission.
- 3) If, upon completion of certain ITS, the value of BC is zero, the node shall start transmitting its frame within a time window of TX_ON microseconds after the end of the ITS.
- 4) If a node detects a transmission during an ITS, it shall not transmit in this CBTS and shall do the following:
 - The node shall decrement the DC.
 - If the DC is zero and BSC is less than BSC_{max} , the node shall increment the BSC. If the DC is zero and BSC is equal to BSC_{max} , the node shall maintain the current BSC. It shall then set DC to $DC_{max}(BSC)$ and BC to a random value in the range of $(0, NCW_{max}(BSC) 1)$.
 - If the DC is greater than zero, the node shall decrement the BC.

Nodes that have inferred a collision (see clause 8.3.3.4.9) shall increment the BSC if BSC is less than BSC_{max} . It then sets DC to $DC_{max}(BSC)$ and BC to a random value in the range of $(0, NCW_{max}(BSC) - 1)$.

After initialization and upon successful transmission, nodes shall initialize BSC to 1, DC to $DC_{max}(1)$ and BC to a random value in the range (0, $NCW_{max}(1) - 1$).

As a default behaviour, after initialization and upon successful transmission, nodes shall initialize BSC to 1, DC to $DC_{max}(1)$ and BC to a random value in the range (0, $NCW_{max}(1) - 1$). This behaviour of the BSC, can be overridden by indicating so by the "Gradual BSC decrease indication flag" flag, in Table 8-85.3. If this flag is set to one, then after initialization and upon successful transmission, nodes shall decrement BSC by 1, unless BSC is already 1, in which case BSC shall be maintained as 1. In this situation, the recommended values for the values of $DC_{max}(BSC)$ are shown in Table 8-6.1, i.e., DC parameters are invalid for back-off rules.

BSC	DC _{max} (BSC)	<u>NCW_{max}(BSC)</u>
<u>1</u>	<u>1</u>	8
<u>2</u>	1	<u>16</u>
<u>3</u>	1	32
<u>4</u>	<u>1</u>	<u>64</u>

Table 8-6.1 - DC_{max}(BSC) values

Table 8-7 shows the valid-default values of $DC_{max}(BSC)$ and $NCW_{max}(BSC)$. These valid-default values are used for all MA priorities. BSC_{max}-shall be 4.

The default values in Table 8-7 can be overridden by using the contention window (CW) information sub-field of the auxiliary information field in the MAP, as described in clause 8.8.5.11.

BSC	DC _{max} (BSC)	NCW _{max} (BSC)			
1	1	8			
2	2	16			
3	4	32			
4	16	64			
NOTE – other values of BSC, DC _{max} and NCW _{max} are					
for further study.					

Table 8-7/G.9961 – Valid-Default $DC_{max}(BSC)$ and $NCW_{max}(BSC)$ values

If a node that is allowed to contend in a CBTS has an MPDU ready to transmit after the start of the CW, it is still allowed to contend with this MPDU using the back-off procedure defined in this clause only if the MPDU's MA priority is equal to or higher than the MA priority that won the priority resolution. The node shall pick the BC random value for the ITS in the CW in the same way as nodes that had the frame ready to transmit prior to the start of the CW, and shall start decrementing the BC from the ITS where the frame was ready for transmission. The BC, DC, BSC values that shall be used are of the frame's MA priority value.

2 Add new clause 8.3.8 "Extended acknowledgements" as follows:

8.3.8 Extended Acknowledgements

Extended acknowledgements between two nodes may be used to improve throughput and reduce unnecessary retransmissions due to the lack of sufficient number of bits in the regular acknowledgement frame.

The BMSG frame is used by a source node to indicate to the destination node that it supports reception of an extended acknowledgement. The destination node that supports an extended acknowledgement can choose one of the following options on a per frame basis depending on its specific requirement:

1. It can send a regular acknowledgement.

2. It can send an extended acknowledgement.

<u>3. In case of bidirectional transmissions, it can send a BACK frame, if it has additional data to transmit and doesn't need to send an extended acknowledgement.</u>

A source node can offer a destination node this choice by sending a BMSG frame with the -BTXEF set to one, EXTACKGR bit set to one and BTXGL set to a non-zero value in any of the BMSG frames. In this case, as BTXGL \neq 0, the destination node may send a BACK frame, a regular ACK frame or an extended ACK frame that fits within the granted time duration by the source node. The BTXGL shall at least include time for the destination node to send an extended ACK. Specifically, the destination node's response to the BMSG shall be as shown in Table 8-13.1:

Table 8-13.1 – Extended acknowledgement settings

BTXEF	BTXGL	Frame transmitted by the			
		destination node			
<u>1</u>	2 symbols for destination node	ACK or EACK			
<u>1</u>	>2 symbols for destination node	ACK or EACK or BACK (Note 1)			
NOTE 1 – This row applies to bidirectional transmissions.					

The BMSG PHY frames shall use the format described in Tables 7-47 and 7-53 of [ITU-T G.9960], and the BACK PHY frames shall use the format described in Tables 7-48 and 7-54 of [ITU-T G.9960], in which the PHY frame header contains $2 \times PHY_H$ information bits (EHI bit, in the PHY frame header, is set to one, see clause 7.1.2.3.1.7 of [ITU-T G.9960]).

The extended ACK frames shall use the format described in Table 7-54.1 of [ITU-T G.9960], in which the PHY frame header contains $2 \times PHY_{H}$ information bits (EHI bit, in the PHY frame header, is set to one, see clause 7.1.2.3.1.7 of [ITU-T G.9960]).

An exchange of BMSG and BACK/ACK/extended ACK frames forms a bidirectional frame sequence that shall last strictly inside the boundaries of the particular TXOP or TS assigned in the MAP for the node sourcing the bidirectional transmission. When using an extended acknowledgement, only immediate acknowledgement is allowed (the valid values of RPRQ field are 00 and 01 only).

An extended acknowledgement may be initiated by either a source node or a destination node using one of the following methods:

- A destination node transmits to the source node, in response to a MSG frame requesting immediate acknowledgement, an ACK frame with the EXTACKRQ bit set to one.
- A source node transmits to the destination node a BMSG frame with the BTXGL field set to a non-zero value, BTXEF bit set to one and EXTACKGR bit set to one.

If a source node requested by a destination node to initiate extended acknowledgements accepts the request, it shall indicate that the request is granted and shall initiate bidirectional transmission by transmitting a BMSG frame that initiates extended acknowledgements. Alternatively, the source node requested to initiate extended acknowledgement may decline the request. In this case it indicates that the extended acknowledgement request is declined by continuing to send BMSG frames with the EXTACKGR set to zero, instead of the BMSG frame that initiates extended acknowledgements.

A source node may initiate extended acknowledgements autonomously, without a request from the destination node. A source node may terminate extended acknowledgements at any time and re-start them again. The destination node may indicate to the source node when the extended acknowledgements may be stopped by setting the EXTACKRQ to zero, while the decision is up to the source node.

A destination node responds to the BMSG frame that initiates extended acknowledgements by one of the following ways:

- transmitting a BACK frame that contains data in the payload intended for the source node. The BACK frame additionally contains acknowledgement information for data previously transmitted by the source node. In the BTXRL field of the frame header the destination node indicates the requested duration of the next BACK frame it expects to transmit.
- transmitting an ACK frame
- transmitting an extended ACK frame

The destination node may indicate that extended acknowledgement is not needed any further (advice for termination of extended acknowledgement) by setting the BTXRL = 0 in the BACK frame or EXTACKRQ = 0 in the ACK frame. In response, the source node may terminate extended acknowledgement.

The maximum duration of a BACK frame is determined by the source node in the BTXGL field of the PHY-frame header. The destination node only indicates the desired duration of BACK frame in the BTXRL field of the PHY-frame header of the previous BACK frame, but the final decision on the BACK frame duration limit (including the following IFG) is done by the source node.

A responding BACK frame shall be transmitted $T_{BM2BAIFG}$ after the BMSG frame. The Imm-ACK frame shall be transmitted T_{AIFG} after the BMSG frame. In all of the following frame sequences:

- BMSG followed by a BACK
- BMSG followed by an Imm-ACK

if the transmitter of the first frame has no knowledge of the 'receiver specific' AIFG (see clause 8.6.1.1.4.1 and clause 8.6.4.3.1) or if the first frame in any of the above frame sequences includes less than MIN_SYM_VAR_AIFG symbols, the gap between this frame and the following frame shall be T_{AIFG-D} (see clause 8.4), otherwise the gap shall be T_{AIFG} . The parameter MIN_SYM_VAR_AIFG is defined in clause 8.4, for each media. The transmitter indicates usage of either T_{AIFG} or T_{AIFG-D} by using the AIFG_IND bit in the PHY-frame header (see clause 7.1.2.3.2.2.16 of [ITU-T G.9960]).

Extended acknowledgement can be used in CFTXOP, STXOP, and CBTXOP. The source node shall ensure that the total duration of the bidirectional frame sequence does not violate the boundaries of the TXOP or the maximum allowed duration of the TS. Particularly:

- if extended acknowledgement is used in a CFTXOP, the last frame in the sequence shall end at least T_{IFG_MIN} before the end of the CFTXOP;
- if extended acknowledgement is used in a CFTS or in a CBTS, the last frame in the sequence shall end at least T_{IFG_MIN} before the end of the Max_TS_Length assigned in the MAP for the TS and at least T_{IFG_MIN} before the end of the TXOP where this TS is defined.

When the bidirectional transmission is terminated with a BMSG frame with BTXEF = 1 and $BTXGL \neq 0$, the total duration of the frame sequence shall include this BTXGL value, regardless of the actual duration of the last BACK frame, acknowledgement frame or extended acknowledgement frame.

Nodes detecting a bidirectional transmission shall stay silent until the end of the bidirectional transmission sequence or until the expiration of the Max_TS_Length of the corresponding TS, whichever comes first.

Extended acknowledgement is not allowed when RTS/CTS is used.

3 Revise the text of clause 8.5.3 "Routing of ADPs" (from G.9961 corr2) as follows:

8.5.3 Routing of ADPs

Each node shall inform the domain master about the nodes of its domain it has detected as defined in clause 8.6.4.3.

Each node can have one or more applications associated with its AE (above its A-interface). Each application is identified by a unique 6-octet MAC address. Each node shall maintain the full list of MAC addresses associated with applications above its A-interface as well as its own MAC address. This list is referred to as the local address association table (LAAT).

<u>NOTE – The list of MAC addresses associated with applications above its A-interface for a node can be populated by learning, or directly programmed by the DLL management entity.</u>

Each node shall also maintain the list of MAC addresses associated with the AEs of other nodes in the domain and the MAC addresses of those nodes. This list is referred to as a remote address association table (RAAT). Each node provides its local AAT to the domain master and other nodes of the domain using topology management messages as described in clause 8.6.4.3.

The address association table (AAT) is formed by the aggregation of LAAT and RAAT.

Whenever a node receives an ADP from the A-interface, it uses its AAT to determine if the ADP is intended for the node itself (local in-band management message, see Annex A) or for an AE associated with another node.

If the ADP is intended for a remote AE or is an in-band management message addressed to

 a different node (case B of Table 8-14.1), the node shall determine the destination
 DEVICE_ID of the node in its domain through which the remote AE can be reached and
 send the corresponding ADP directly or via relay nodes to this node. This destination
 DEVICE_ID is provided to the Flow Mapper (see Figure 8-2) and is further reached either
 directly or via relays.

 If the ADP is intended for a group MAC address belonging to the AEs of different nodes of the domain (case D of Table 8-14.1), the node shall associate this ADP with a destination MSID and it shall send the APDU using DLL multicast transmission. The node may send the APDU to the appropriate nodes using unicast transmissions until the DLL multicast paths toward the appropriate nodes are established. The node may send the APDU using a combination of DLL multicast and DLL unicast transmissions until the relevant DLL multicast path is established.

<u>NOTE 1 – The association between the group of MAC addresses and addressed nodes is</u> provided by the DLL management entity. The mechanism of this association is vendor discretionary and may be based on various multicast protocols, such as IGMP.

 If the destination address of the ADP is a standard broadcast address (FFFFFFFFFFF₁₆) (case E of Table 8-14.1), then the BRCTI bit in the LFH of the LLC frame carrying the corresponding APDU shall be set to one, so that the APDU will be broadcast to all nodes in the domain using the procedure described in clause 8.5.4. If the EtherType of the ADP equals 22E3₁₆, the corresponding APDU shall also be forwarded to the local DLL management entity.

<u>NOTE 2 – For ADP with EtherType different from 22E3₁₆ and the standard broadcast address as the DA of that ADP, sending the corresponding APDU to the local DLL management entity is vendor discretionary.</u>

- If the destination address of a received ADP is found in the local AAT and it is not the MAC address of the node (case A of Table 8-14.1), the ADP shall be dropped without notification.
- If the destination address of a received ADP is the MAC address of the node (case C of Table 8-14.1), the node shall pass the corresponding APDU to its DLL management entity.
- If the destination address of a received ADP is the reserved MAC address 01-19-A7-52-76-96 (case F of Table 8-14.1), the node shall pass the corresponding APDU to its DLL management entity
- If the destination MAC address corresponds to a unicast MAC address and the destination node cannot be inferred from previous rules (not covered in cases A, B, C and F), then the BRCTI bit in the LFH of the LLC frame carrying the corresponding APDU shall be set to one, so that the APDU will be broadcast to all nodes in the domain using the procedure described in clause 8.5.4. (case G of Table 8-14.1)
- If the destination MAC address corresponds to a group MAC address for which the destination nodes cannot be inferred or a group MAC address intended to reach all the nodes of the domain (case H of Table 8-14.1), then the BRCTI bit in the LFH of the LLC frame carrying the corresponding APDU shall be set to one, so that the APDU will be broadcast to all nodes in the domain using the procedure described in clause 8.5.4.

~	Ethernet	ADP Destination		
Case	<u>frame type</u>	address	<u>Routing</u>	<u>Example</u>
A	<u>Unicast</u> <u>frame</u>	In LAAT, except node's MAC address	Drop the message	Any kind of traffic
<u>B</u>	<u>Unicast</u> <u>frame</u>	<u>In RAAT</u>	Look for the DestinationNode defined for <u>this DA</u>	<u>Normal routing of frames</u> <u>coming through the A</u> <u>interface (can be normal</u> <u>Ethernet or remote in-band</u> <u>messages)</u>
<u>C</u>	<u>Unicast</u> <u>frame</u>	<u>Node's MAC</u> <u>address</u>	Send to DLL management	Local in-band message
D	<u>Multicast</u> <u>frame</u>	<u>Multicast address</u> <u>mapped to known</u> <u>destination</u> <u>device(s)</u>	The node has the choice to treat this multicast transmission as several DLL unicast transmissions or using a DLL multicast stream	IGMP/MLD Ethernet frames
E	Broadcast frame	Broadcast address	<u>If EtherType = 22E3₁₆ send</u> <u>to DLL management</u> <u>treat this broadcast</u> <u>transmission using BRT</u> (BRCTI=1; DestinationNode <u>= BROADCAST_ID</u>) and <u>route following the BRT</u> <u>rules</u>	<u>Normal broadcast</u>
<u>F</u>	<u>Unicast</u> <u>frame</u>	Reserved address	Send to DLL management	
G	<u>Unicast</u> <u>Frame</u>	Destination MAC address not covered by cases <u>A, B, C and F</u>	<u>Treat this case as a broadcast</u> <u>transmission using BRT</u> (BRCTI=1; DestinationNode = BROADCAST_ID) and route following the BRT <u>rules</u>	Any kind of traffic
H	<u>Multicast</u> <u>Frame</u>	 Destination <u>device(s)</u> <u>cannot be</u> <u>inferred from</u> <u>the DA or</u> Frame <u>intended for</u> <u>all devices</u> 	Treat this case as a broadcast transmission using BRT (BRCTI=1; DestinationNode = BROADCAST_ID) and route following the BRT rules	<u>Multicast protocol</u> (IGMP/MLD) control <u>frames</u>

Table 8-14.1 – Routing of ADPs

4 Add new clause 8.6.2.4 "Bandwidth update protocol for prioritized connections" as follows:

8.6.2.4 Bandwidth update protocol for prioritized connections

This clause defines the mechanism used by the nodes to inform the domain master on the actual status of its connection queues. This protocol is supported by management messages described in clause 8.6.2.4.1.

<u>A node should follow the bandwidth update protocol when a node does not have direct visibility</u> with the domain master (the BRURQ field in the PHY-frame header of transmitted PHY frames is not received by the domain master).

In addition, any node should use this protocol when

- The domain master does not allocate in the MAP enough TXOPs allowing to transmit user priorities queued in the node
- The node wants to inform the domain master on the status of a particular connection

The domain master may take this information into account when assigning resources for a given connection. As prioritized connections are not QoS guaranteed, the domain master may change bandwidth allocations on its own discretion.

To inform the DM about the necessity to allocate bandwidth for prioritized connections a node shall send a BU_BWUpdate.req message to its domain master including the information about the reported connection status (user priority in the connection queue, bandwidth request update).

<u>Upon reception of BU_BWUpdate.req</u>, the domain master shall send to the reporting node a <u>BU_BWUpdate.cnf</u> message acknowledging the reception of the information. If a node doesn't receive the BU_BWUpdate.cnf message within 200 ms, it may repeat the report.

If the request is acknowledged by the DM, the node shall refrain from reporting a new bandwidth update for at least the next 1 second.

NOTE – A node should report the status of its queues when traffic conditions change but taking care not to flood the DM with report messages. If a node has enough resources with the current allocation by the domain master, it should only send a report when its traffic requirements change.

8.6.2.4.1 Bandwidth update protocol messages

The following sub-clauses specify the messages that are needed to support the bandwidth update protocol.

8.6.2.4.1.1 Format of BU_BWUpdate.req

This message is sent by the reporting node to the Domain Master and contains the user priorities, the bandwidth request update for the given connection by means of BRURQ indication, and PHY data rate used by the transmitter.

The format of the MMPL of the BU_BWUpdate.req shall be as shown in Table 8-44.1.

Field	<u>Octet</u>	<u>Bits</u>	Description		
DeviceID	<u>0</u>	[7:0]	DEVICE_ID of the originating node.		
PRIORITY_QU	<u>1</u>	[7:0]	Priority queue corresponding to the BRURQ we are		
EUE			reporting		
Priorities	<u>2</u>	[7:0]	User priority bit mask. Each bit represents one user		
			priority. Bit 0 represents user priority 0 and bit 7 user		
			priority 7. Each bit signals the presence of at least one		
			APDU with this user priority in the selected connection		
BRURQ	<u>4&5</u>	[15:0]	See in clause 7.1.2.3.2.2.19 (NOTE)		
TxRate	Variable	See	The actual PHY data rate used by the transmitter,		
		Table	specified in bits per second for each channel estimation		
		<u>8-33</u>	window, based on the bit loading per symbol, the symbol		
			time, the FEC rate and the number of repetitions.		
			The format of the TX rate field is described in Table 8-33.		
			Note that the TX Rate should be specified per each		
			channel estimation window.		
NOTE – The reporting node may set this field to zero in order to indicate that the DM may release					
the resources allo	the resources allocated for the connection that is being reported.				

<u>Table 8-44.1 – Format of the MMPL of the BU_BWUpdate.req message</u>

8.6.2.4.1.2 Format of BU_BWUpdate.cnf

This message is sent by the Domain Master to the reporting node after it has assessed whether the bandwidth allocation for the node can be provided.

The format of the MMPL of the BU_BWUpdate.cnf shall be as shown in Table 8-44.2.

Field	<u>Octet</u>	Bits	Description	
DeviceID	<u>0</u>	[7:0]	DEVICE_ID of the reporting node.	
PRIORITY_QU	<u>1</u>	[7:0]	Priority queue specified by the reporting node in the	
EUE			BU_BWUpdate.req message	
<u>StatusCode</u>	<u>3</u>	[7:0]	Status of the request for bandwidth allocation:	
			• $00_{16} =$ Success.	
			• $01_{16} = Failure - Insufficient resources.$	
			• 02_{16} = Failure – Insufficient resources for the	
			requested priority	
			• $03_{16} - FF_{16} = Reserved.$	

5 Revise the text of clause 8.8.4 "TXOP descriptor" as follows:

8.8.4 TXOP descriptor

Each TXOP is described by at least one TXOP descriptor. A TXOP descriptor is composed of a basic TXOP descriptor that may be extended by one or more additional TXOP descriptor extensions (see clauses 8.8.4.1.1 to 8.8.4.1.3). TXOP descriptor extensions supply additional information like scheduling information, timing information and TXOP attributes.

Basic TXOP descriptors and TXOP descriptor extensions are each four octets in length.

A TXOP descriptor represents the right of a certain node or a set of nodes to transmit within a certain TXOP. A CFTXOP shall be described using a single TXOP descriptor. A CBTXOP shall be described by either a single TXOP descriptor (see clause 8.3.3.4.5.3) or by multiple TXOP descriptors (see clause 8.3.3.4.5.2). A STXOP shall be described using several TXOP descriptors representing the TSs within the STXOP.

The domain master shall not assign more than 127 TXOP descriptors in the MAP, describing TSs, within a single STXOP (including CBTXOP).

The differentiation between different TXOPs shall be done via the TXOP attributes extension, which shall be appended to the last TXOP descriptor of a TXOP. The TXOP attributes extension supplies the timing information for the TXOP (see clause 8.8.4.1.1). A node associated with a TXOP or a TS is uniquely identified in a TXOP descriptor by the *SID* field, which shall be set to the DEVICE_ID of the node as was assigned by the domain master.

A flow associated with a TXOP or a TS is uniquely identified in a TXOP descriptor by the combination (SID, FLOW_ID). A FLOW_ID is a unique identifier of a flow associated with the SID.

A user priority associated with a TXOP or TS is uniquely identified in a TXOP descriptor by the tuple (SID, PRI). The PRI value shall represent the lowest MPDU priority that may be sent in the TXOP or TS.

<u>A special TXOP is specified for assignment to nodes for transmitting traffic associated with</u> <u>bandwidth managed DLL multicast stream. These TXOPs are assigned to a DLL multicast stream</u> <u>by using the 'Multicast Indication' field in the basic TXOP descriptor, combined with</u> <u>'FLOW_ID/PRI/MSID' field in the basic TXOP descriptor to identify the MSID of the stream and</u> <u>the 'SID' field in the basic TXOP descriptor to identify an intermediate node in the DLL multicast</u> <u>stream that is responsible for the transmission of data associated with the DLL multicast stream.</u> <u>The 'DID/Originating Node' field in the TXOP descriptor shall comtain the originating node of the</u> <u>DLL multicast stream and together with the MSID field, uniquely identifies the DLL multicast</u> <u>stream in the domain.</u>

Table 8-63 describes the basic TXOP descriptor. When the extension bit is set, the TXOP descriptor shall have an extension, as described in clause 8.8.4.1. Different types of TXOP descriptor extensions are distinguished by extension type.

Field	Octet	Bits	Description		
SID	0	[7:0]	SID = 1-250 identifies the DEVICE_ID of the node assigned to the TXOP.		
			SID = 0, 255 indicates special values for the TXOP descriptor (see clause 8.8.4.2).		
DID/Originating	1	[7:0]	If Multicast Indication = 0:		
Node			•_DID = 0 indicates that the DID of the destination node of the flow is not known to the domain master.		
			 DID > 0 indicates the destination node for the flow. DID shall be set to the DEVICE_ID as described in Table 8- 61. 		
			If Multicast Indication = 1:		
			This field identifies the originating node of the DLL multicast stream for which this TXOP is assigned.		
Multicast Indication/MAP type	2 and 3	[0]	If this field is a special TXOP descriptor of a MAP (see clause 8.8.4.2) it indicates the type of MAP that shall be transmitted:		
			0 indicates MAP-A, 1 indicates MAP-D.		
			If this field is not a special TXOP descriptor of a MAP this field contains the multicast indication:		
			1 indicates multicast/broadcast DID, 0 otherwise.		
PR signal required		[1]	This bit instructs nodes contending for transmission in a CBTS whether to use the PR signal:		
			0 – PR signal shall not be used.		
	-		1 – PR signal is required.		
CBTS Closure Mode		[3:2]	This field instructs nodes where to close a CBTS that was used for transmission (see in clause 8.3.3.4.5):		
			00 – Duration-based.		
			01 – Timeout-based from frame sequence start.		
			10 – Timeout-based from CBTS start.		
	-	E 43	11 – Reserved by ITU-T.		
Reduced MAP		[4]	0 TXOP for a complete MAP.		
D 1	-	F.C. 41	1 – TXOP for a reduced MAP. See clause 8.8.1.		
Reserved	-	[5 <u>:4]</u>	Reserved by ITU-T (Note).		
FLOW_ID/PRI <u>/MSI</u>		[13:6]	<u>If Multicast Indication = 0:</u>		
D			• Identifies the flow or the user priority associated with the TXOP/TS.		
			• Valid values for user priority assignments are 0-7		
			—Valid values for FLOW_ID assignments are 8-25 <u>0</u> 4		
			If Multicast Indication = 1:		
			• Valid values for MSID assignments are 1-250		
			• Value 0 is reserved by ITU-T		
			Values 251- 254 are reserved by ITU-T		
			Value 255 indicates special values for the TXOP descriptor (see		

Table 8-63 – Basic TXOP descriptor format

Octet	Bits	Description
		clause 8.8.4.2).
	[14]	1 indicates the last TS of a group of TSs in STXOP, 0 otherwise. Shall be set to zero for CFTXOP.
	[15]	 0 – No extension is present. 1 – This TXOP descriptor contains an extension.

Table 8-63 – Basic TXOP descriptor format

Several TSs within the same STXOP can be grouped together to specify common attributes for these TSs via a group information extension (see clause 8.8.4.1.3). Grouping of several TSs shall be done by setting the Last_in_Group indication in the TXOP descriptor of the last TS of the group. Groups are implicitly numbered according to their appearance in the MAP. The first group shall be identified as group number one and so on. If a group contains only one TS, the descriptor of this TS shall have its Last_in_Group bit set to one.

6 Revise Table 8-88 "OPCODEs of management messages" in clause 8.10.1.1 as follows:

Category	Message name	OPCODE	Description	MMPL
		(hex)		Reference
Admission	ADM_NodeRegistrRequest.req	010	Registration request	Clause
(01X)				8.6.1.1.4.1
	ADM_DmRegistrResponse.cnf	011	Registration response	Clause
				8.6.1.1.4.2
	ADM_NodeResignRequest.req	012	Resignation request	Clause
				8.6.1.1.4.3
	ADM_DmResign.cnf	013	Registration	Clause
			announcement	8.6.1.1.4.4
	ADM_DmForcedResign.req	014	Forced resignation	Clause
			request	8.6.1.1.4.5
	ADM NodeReRegistrRequest.re	015	Periodic re-	Clause
	<u>a</u>		registration request	8.6.1.1.4.6
	ADM DmReRegistrResponse.cnf	016	Periodic re-	Clause
			registration response	<u>8.6.1.1.4.7</u>
	ADM DmReRegistrInitiate.ind	017	Re-registration	<u>Clause</u>
			initiation request	8.6.1.1.4.8
	ADM NodeReportMAPD.ind	018	Report the reception	Clause
			of a MAP-D with	8.6.6.1.4.1
			matching domain	
			name	
	ADM_NodeReportMAPA.ind	<u>019</u>	Report the reception	Clause
			of a MAP-A with	<u>8.6.6.1.4.2</u>
			matching DNI	

 Table 8-88 – OPCODEs of management messages

AKM (02X)	AUT_NodeRequest.req	020	Request for authentication	Clause 9.2.5.1.1
	AUT_Promp.ind	021	Delivers	Clause 9.2.5.1.2
	AUT_Verification.res	022	authentication prompt Authentication numeric section	Clause
	AUT_Confirmation.cnf	023	prompt verificationAuthenticationconfirmation message	9.2.5.1.3 Clause 9.2.5.1.4
	AKM_KeyRequest.req	024	Request for secure communication with another node(s)	Clause 9.2.5.2.1
	AKM_NewKey.req	025	Message delivers the encryption key to the Supplicant node	Clause 9.2.5.2.2
	AKM_KeyConfirmation.req	026	Message delivers the encryption key to the Addressee node(s)	Clause 9.2.5.2.3
	AKM_KeyUpdate.req	027	Request for re- authentication and update the keys	Clause 9.2.5.3.1
	AKM_KeyAck.cnf	028	Addressee confirmation that encryption key was delivered	Clause 9.2.5.2.3
	SC_DMRes.req	029	Request to resign a node from the domain	Clause 9.2.5.2.5
	SC_DMRes.cnf	02A	Confirmation of resignation from the domain master	Clause 9.2.5.2.6
	AKM_KeyAddRequest.req	02B	Request to join a node to a multicast group	Clause 9.2.5.2.1.1
	AKM_DomainKeyUpdate.ind	<u>02C</u>	Indication to update the domain-wide encryption keys	<u>Clause</u> <u>9.2.5.3.2</u>
	<u>AKM_NewKey.ind</u>	<u>02D</u>	Indication that the new encryption key is available for use	<u>Clause</u> 9.2.5.2.7
Topology maintenance	TM_NodeTopologyChange.ind	030	Topology report from a node	<u>Clause</u> 8.6.4. <u>3.1</u> 2.1
(03X)	TM_NodeTopologyChange.req	031	Request sent by the domain master to a particular node requesting its topology report	<u>Clause</u> <u>8.6.4.3.2</u>

	<u>TM_NodeTopologyChange.cnf</u>	032	Topology report from a node in response to the messageTM_NodeTopologyC hange.req	<u>Clause</u> <u>8.6.4.3.3</u>
	TM_DomainRoutingChange.ind	03 <u>3</u> 4	Optimal routing update from the domain master	Clause 8.6.4.3.5
	TM_ReturnDomainRouting.req	03 <u>4</u> 2	Request for routing update from the node to the domain master	Clause 8.6.4.3.6
	TM_ReturnDomainRouting.cnf	03 <u>5</u> 3	Reply on routing request by the Domain master	Clause 8.6.4.3.7
	TM_DMBackup.ind	03 <u>6</u> 4	Topology report from a node sent by backup domain master to a node	Clause 8.6.4.3.4
Power-line coexistence with alien networks (04X)	Reserved for use by G.9972 [2]			
Multicast Binding	MC_GrpInfoUpdate.ind	050	Multicast Binding Information update	Clause 8.16.5.1
(05X)	MC_GrpInfoUpdate.cnf	051	Multicast binding information update confirmation	Clause 8.16.5.2
	MC_GrpRemove.req	<u>052</u>	Multicast leave request from the transmitter	<u>Clause</u> <u>8.16.5.3</u>
	MC_GrpRemove.cnf	<u>053</u>	Multicast leave confirmation from the receiver	<u>Clause</u> <u>8.16.5.4</u>
	DMC_Path.req	<u>054</u>	DLL multicast path establishment request	<u>Clause</u> <u>8.17.6.1</u>
	DMC_Path.cnf	<u>055</u>	DLL multicast path establishment confirmation	<u>Clause</u> <u>8.17.6.2</u>
	DMC_PathReject.cnf	<u>056</u>	DLL multicast path establishment rejection	<u>Clause</u> <u>8.17.6.3</u>
	DMC_EnforcePath.req	<u>057</u>	DLL multicast enforced path establishment request	<u>Clause</u> <u>8.17.6.4</u>
	DMC_ReleasePath.req	<u>058</u>	<u>A request to release a</u> <u>DLL multicast</u> <u>client node from</u> <u>its MSID</u>	<u>Clause</u> <u>8.17.6.5</u>

	DMC ReleasePath.cnf	059	Confirmation of the	Clause
		<u></u>	release of a DLL	<u>8.17.6.6</u>
			multicast client	
			node from its	
	DMC Dath Alive ind	05 4	MSID DLL multipast path	Clausa
	DMC_PathAlive.ind	<u>05A</u>	DLL multicast path alive indication	<u>Clause</u> 8.17.6.7
	DMC BrokenLink.ind	<u>05B</u>	DLL multicast	Clause
		<u></u>	broken link indication	<u>8.17.6.8</u>
Domain Master	DM_Handover.req	060	Domain master role	Clause
Selection and			handover request	8.6.6.5.1
Backup Domain	DM_Handover.cnf	061	Domain master role	Clause
Master			handover	8.6.6.5.2
(06X)	DM Handaran ind	0(2	confirmation	Classes
	DM_Handover.ind	062	Domain state update	Clause 8.6.6.5.3
	DM_Handover.rsp	063	Domain state update	Clause
		005	confirmation	8.6.6.5.4
	DM BackupAssign.req	064	Backup domain	Clause
			master assignment	8.6.5.2
			request	
	DM_BackupAssign.cnf	065	Backup domain	Clause
			master assignment	8.6.5.2
	DM BackupData.ind	066	confirmationDomain state update	Clause
	DM_BackupData.ind	000	Domain State update	8.6.5.2
	DM BackupRelease.req	067	Release of a backup	Clause
			domain master	8.6.5.2
	DM_BackupRelease.cnf	068	Backup domain	Clause
			master release	8.6.5.2
<u> </u>			confirmation	
Channel	CE_ProbeSlot <u>Assign.req</u> Request.	070	Channel estimation	Clause
Estimation (07X)	ind		bandwidth assignment request	8.11.7.1
$(0/\Lambda)$	CE ProbeSlotRelease.reqind	071	Channel estimation	Clause
	el_1100esioticicuse. <u>req</u> ina	071	bandwidth release	8.11.7.2
			request	
	CE_ParamUpdate. <u>req</u> ind	072	Channel estimation	Clause
			parameters update	8.11.7.1
		072	request	
	CE_ParamUpdateRequest.ind	073	<u>Request for C</u> channel	Clause
			estimation parameter requestupdate	8.11.7.4
	CE PartialBatUpdate.regind	074	Partial BAT update	Clause
	ouuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu	0/1	indicationrequest	8.11.7.5
	CE_ACESymbols.ind	075	Request for an ACE	Clause
			symbol attachment	8.11.7.6

	CE_ProbeSlotAssign.cnf	076	Channel estimation bandwidth assignment	Clause 8.11.7.7
	CE_ProbeSlotRelease.cnf	<u>077</u>	<u>confirmation</u> <u>Channel estimation</u> <u>bandwidth release</u> confirmation	<u>Clause</u> 8.11.7.8
	CE_ParamUpdate.cnf	078	Channel estimation parameters update confirmation	<u>Clause</u> <u>8.11.7.9</u>
	<u>CE_PartialBatUpdate.cnf</u>	<u>079</u>	Partial BAT update confirmation	<u>Clause</u> <u>8.11.7.10</u>
Neighbouring <u>Nn</u> etworks coordination (08X)	For F further study	For F <u>f</u> urther study	For F further study	For F further study
Inactivity scheduling	IAS_LongInactivity.req	090	Long inactivity scheduling request	Clause 8.3.6.1.1
(09X)	IAS_LongInactivity.cnf	091	Long inactivity scheduling confirmation	Clause 8.3.6.1.1
	IAS_ShortInactivity.req	092	Short inactivity scheduling request	Clause 8.3.6.2.1
	IAS_ShortInactivity.cnf	093	Short inactivity scheduling confirmation	Clause 8.3.6.2.1
Flow establishment (0AX)	CL_EstablishFlow.reqReserved	0A0	Flow establishment request <u>Reserved by</u> ITU-T	§ 8.6.2.3.1
	CL_EstablishFlow.enfReserved	0A1	Reserved by ITU- <u>T</u> Flow establishment confirmation	§ 8.6.2.3.2
	FL_AdmitFlow.req	0A2	Flow admission request	Clause 8.6.2.3.8
	FL_AdmitFlow.cnf	0A3	Flow admission confirmation	Clause 8.6.2.3.9
	FL_AdmitFlow.ind	<u>0A4</u>	Flow admission indication	<u>Clause</u> <u>8.6.2.3.10</u>
	FL_AdmitFlow.rsp	<u>0A5</u>	Flow admission acknowledgement	<u>Clause</u> <u>8.6.2.3.18</u>
	FL_OriginateFlow.req	0A <u>6</u> 4	Flow origination request	Clause 8.6.2.3.6
	FL_OriginateFlow.cnf	0A <u>7</u> 5	Flow origination confirmation	Clause 8.6.2.3.7
Flow maintenance (0BX)	FL_ModifyFlowParameters.req	0B0	Modification of flow parameters and allocation	Clause 8.6.2.3.11
	FL_ModifyFlowParameters.cnf	0B1		Clause 8.6.2.3.12

	FL_ModifyFlowParameters.ind	0B2		Clause
				8.6.2.3.15
	FL_ModifyFlowAllocations.req	0B3	Modification of flow	Clause
			allocation	8.6.2.3.17
	FL_ModifyFlowAllocations.cnf	0B4		Clause
				8.6.2.3.18
Flow	CL_TerminateFlow.reqReserved	0C0	Flow termination	<u>§8.6.2.3.3</u>
termination			request and	0
(0CX)			confirmationReserve	
			d by ITU-T	
	ReservedCL TerminateFlow.cnf	0C1	Reserved by ITU-T	<u> </u>
	ReservedCL FlowTerminated.ind	0C2	Reserved by ITU-T	<u>§8.6.2.3.5</u>
	FL TerminateFlow.req	0C2 0C3		Clause
	TL_Terminater low.req	005		8.6.2.3.13
	FL TerminateFlow.cnf	0C4		
	rL_Terminateriow.cm	0C4		Clause
		0.05		8.6.2.3.14
	FL_BrokenTunnel.ind	<u>0C5</u>	Indicate broken	<u>Clause</u>
			tunnel	8.6.2.3.19
	<u>FL_BrokenTunnel.rsp</u>	<u>0C6</u>	Response to	Clause
			indication	<u>8.6.2.3.20</u>
	FL_ReleaseTunnel.req	<u>0C7</u>	Request Release	<u>Clause</u>
			Tunnel	<u>8.6.2.3.21</u>
	FL_ReleaseTunnel.cnf	<u>0C8</u>	Confirm Release	<u>Clause</u>
			Tunnel	8.6.2.3.22
	FL DM RenewTunnel.req	<u>0C9</u>	DM renew tunnel	Clause
			request	8.6.2.3.23
	FL DM RenewTunnel.cnf	0CA	Confirm DM renew	Clause
			tunnel	8.6.2.3.24
	FL RenewTunnel.req	0CB	Renew tunnel request	Clause
	<u> </u>		<u> </u>	8.6.2.3.25
	FL RenewTunnel.cnf	<u>0CC</u>	Confirm Renew	Clause
		<u></u>	tunnel	8.6.2.3.26
	FL DeleteFlow.req	0CD	Delete Flow request	Clause
	<u>I D_Deleter low.req</u>		<u>Delete i low lequest</u>	8.6.2.3.27
	FL DeleteFlow.cnf	0CE	Confirm Delete Flow	<u>Clause</u>
		UCL	Commin Delete Flow	<u>8.6.2.3.28</u>
Madia Accord	MAD	000	MAD magaa ga	
Media Access	MAP	<u>0D0</u>	MAP message	<u>Clause 8.8</u>
<u>Plan</u>				
<u>(0DX)</u>		050		Cl
<u>Channel</u>	CE_Request.ind	<u>0E0</u>	Channel estimation	Clause
Estimation 2		0.51	trigger	8.11.7.11
<u>(0EX)</u>	CE_Initiation.req	<u>0E1</u>	Channel estimation	<u>Clause</u>
			initiation request	<u>8.11.7.12</u>
	<u>CE_Initiation.cnf</u>	<u>0E2</u>	Channel estimation	<u>Clause</u>
			<u>initiation</u>	<u>8.11.7.13</u>
			<u>confirmation</u>	
	CE_ProbeRequest.ind	<u>0E3</u>	Request for PROBE	<u>Clause</u>
			frame transmission	8.11.7.14

	CE_Cancellation.req	<u>0E4</u>	Channel estimation	Clause
	CE_BatIdMaintain.ind	<u>0E5</u>	cancellation request BAT ID maintenance	8.11.7.15 Clause
	CE Cancellation.cnf	<u>0E6</u>	Channel estimation	8.11.7.16 Clause
		010	<u>cancellation</u>	<u>8.11.7.17</u>
			confirmation	
· ·	Reserved	<u>0E7 – 0EF</u>	Reserved by ITU-T	~1
<u>Transmission</u> Profile	TP_TransmitPsdChange.req	<u>0F0</u>	Transmit PSD mask change request	<u>Clause</u> 8.6.9.1
<u>(0FX)</u>	TP_TransmitPsdChange.cnf	<u>0F1</u>	Transmit PSD mask change confirmation	<u>Clause</u> 8.6.9.2
Neighbouring	NDIM_StartAlignmentProcedure.	100	Request to start a	Clause
network	ind		MAC cycle	<u>8.14.9.1</u>
$\frac{\text{coöordination}}{(10\text{ y to } 121\text{ y})}$			alignment procedure	
(10X to 13+X)	NDIM IDCCReserve.req	101	(DM to proxy node) Slot reservation	Clause
	TIDECRESSIVE.req	<u>101</u>	request	<u>8.14.9.2</u>
	NDIM_IDCCReserve.cnf	<u>102</u>	Slot reservation	Clause
		102	confirmation	<u>8.14.9.3</u>
	NDIM_ReportAlignment.req	<u>103</u>	Report on MAC cycle alignment	<u>Clause</u> 8.14.9.4
	NDIM_ReportAlignment.cnf	<u>104</u>	Confirm receiving	Clause
			NDIM_ReportAlign	<u>8.14.9.5</u>
	NDIM RemotePresence.req	105	ment.req Request to respond to	Clause
	NDIM_Remoter resence.req	<u>105</u>	ID Presence-Request	8.14.9.6
	NDIM_RemotePresence.cnf	<u>106</u>	Permission to	Clause
			respond to	<u>8.14.9.7</u>
			ID_Presence-Request	
	NDIM_Transmit.ind	<u>107</u>	DM to proxy node message to be	<u>Clause</u> 8.14.9.8
			transmitted to	<u>0.14.9.0</u>
			neighbouring domain	
	NDIM_Receive.ind	108	Proxy node to DM	Clause
			message received	<u>8.14.9.9</u>
			from neighbouring	
	NDIM Interformed Dement in d	100	domain Indiantian of	Clause
	NDIM_InterferenceReport.ind	<u>109</u>	Indication of interference detected	<u>Clause</u> 8.14.9.12
	NDIM_IDCC_Release.req	<u>10A</u>	Release Slot	Clause
			reservation	8.14.9.10
	NDIM_IDCC_Release.cnf	<u>10B</u>	Confirm receiving	Clause
			<u>NDIM_IDCC_Releas</u> e.req	<u>8.14.9.11</u>
	IDM_ClusterAlignment.req	<u>120</u>	DM informs other	Clause
			DMs about new	<u>8.14.10.1</u>
			cluster alignment	

IDM ClusterAlignment.cnf	121	DM confirm	Clause
<u>IDM_ClusterAngliment.cm</u>	121	receiving	<u>8.14.10.2</u>
		IDM ClusterAlignme	0.14.10.2
		nt.req	
IDM InterfNodesInfo.ind	122	Proxy node to	Clause
		neighbouring	8.14.10.3
		domains indication of	
		interfering nodes	
IDM_CoördDomainsInfo.ind	<u>123</u>	Proxy node to	<u>Clause</u>
		neighbouring	<u>8.14.10.5</u>
		domains indication of	
	101	coördinating nodes	
IDM_ShareUnallocSlot.req	<u>124</u>	Request to share	<u>Clause</u>
	105	unallocated slots	<u>8.14.10.7</u>
IDM_ShareUnallocSlot.cnf	<u>125</u>	Confirmation of	Clause
		request to share unallocated slots	<u>8.14.10.8</u>
IDM ShareUnallocSlot.ind	126	Indication of status of	Clause
IDW_ShareOnanoeSlot.ind	120	the request to share	<u>8.14.10.9</u>
		unallocated slots	0.14.10.2
IDM RequestUnallocSlot.req	127	Request assignment	Clause
<u></u>	<u> </u>	of unallocated slots	8.14.10.10
IDM RequestUnallocSlot.cnf	128	Confirmation of	Clause
		request for	8.14.10.11
		assignment of	
		unallocated slots	
IDM_RequestUnallocSlot.ind	<u>129</u>	Indication of status of	<u>Clause</u>
		the request for	8.14.10.12
		assignment of	
	10.4	unallocated slots	<u></u>
IDM_SwapAllocSlot.req	<u>12A</u>	Request to swap	<u>Clause</u>
IDM SwapAllocSlot.cnf	12D	allocated slots	<u>8.14.10.13</u>
IDM_SwapAnocSlot.cm	<u>12B</u>	<u>Confirmation of the</u> request to swap	<u>Clause</u> 8.14.10.14
		allocated slots	0.14.10.14
IDM SwapAllocSlot.ind	<u>12C</u>	Indication of status of	Clause
	120	the request to swap	8.14.10.15
		allocated slots	
IDM CoördPref.ind	12D	Indication of	Clause
		preferred	8.14.10.16
		coördination method	
IDM_DmChange.ind	<u>12E</u>	Indication to	<u>Clause</u>
		neighbouring domain	<u>8.14.10.17</u>
		masters that the DM	
		of the domain	
		sending the message	
		has changed	

r			1	
	IDM_DniChange.ind	<u>12F</u>	Indication to	<u>Clause</u>
			neighbouring domain	<u>8.14.10.18</u>
			masters that the DNI	
			of the domain	
			sending the message	
			has changed	
	IDM_InterfNodesInfo.rsp	<u>130</u>	A message sent as a	Clause
			confirmation for a	8.14.10.4
			received IDM	
			InterfNodesInfo.ind	
	IDM_CoördDomainsInfo.rsp	<u>131</u>	A message sent as a	Clause
			confirmation for a	8.14.10.6
			received IDM	
			CoördDomainsInfo.in	
			<u>d</u>	
Bandwidth	BU_BWUpdate.req	<u>140</u>	Bandwidth update	Clause
update			request	8.6.2.4.1.1
<u>(14X)</u>	BU_BWUpdate.cnf	<u>141</u>	Bandwidth update	Clause
			<u>confirmation</u>	8.6.2.4.1.2
Reserved	Reserved	<u>150 – 7FF</u>	Reserved by ITU-T	
MIMO	Reserved for use by G.9963 [x]	<u>800 – 9FF</u>		
(8XX - 9XX)				
Reserved	Reserved	<u>A00</u> -FFF	Reserved by ITU-T	

7 Revise clause 8.12.1.2 "Establishment of a data connection" as follows:

8.12.1.2Establishment of a data connection

A data connection shall be established using the protocol described in clause 8.9.5.3, where the transmitter shall send a PHY frame with FT=MSG, CNN_MNGMT=0101, START_SSN=ACK_TX_WINDOW_START, no payload and RPRQ=01. The transmitter may advise the receiver about the required number of LPDUs that the receiver should buffer for this connection by setting the ADVISED WIN SIZE field.

If the receiver has resources to handle the new connection, it shall respond with a PHY frame with FT=ACK, RXRST_DATA=1. In this ACK frame, the receiver shall use the flow control fields FLCTRLT, FLCTRL and FLCTRL_CONN to provide additional flow control information, such as receiver buffer size or hold time. Once the protocol described in clause 8.9.5.3 is finished successfully, the transmitter may start sending PHY frames with data segments.

Following the protocol described in clause 8.9.5.3, if the receiver temporarily does not have resources to handle the new connection, it shall respond with a PHY frame with FT=ACK, RXRST_DATA=1, FLCTRLT=<Hold Time>, FLCTRL_CONN=0 and FLCTRL equal to the amount of time desired by the receiver.

If the receiver does not have resources to handle the new connection, it shall respond with a PHY frame with FT=ACK, RXRST_DATA=1, FLCTRLT=<Hold Time>, FLCTRL_CONN=0 and FLCTRL=31.

If the receiver has resources for the new connection, it shall respond with a PHY frame with FT=ACK, RXRST_DATA=1, FLCTRLT=<Status report>, FLCTRL_CONN=04 and FLCTRL equal to the number of LPDUs that the receiver can buffer for this connection. The receiver may

<u>consider the value of the ADVISED_WIN_SIZE as proposed by the transmitter to set its FLCTRL</u> <u>field and RX_CONN_WIN_SIZE field.</u> The transmitter shall set ACK_TX_CONF_WINDOW_SIZE (see clause 8.9.4.2) to the minimum of the value indicated in the <u>RX_CONN_WIN_SIZE FLCTRL</u> field and its own available window size (see clause 7.1.2.3.2.3.8 of [ITU-T G.9960]). The number of LPDUs that the receiver can buffer for this connection, indicated by the FLCTRL field during the lifetime of the connection, shall not exceed the maximum acknowledge window size that the receiver can support for the connection indicated by RX_CONN_WIN_SIZE during connection setup.

8 Revise the text of clause 8.17 "DLL multicast stream" (from G.9961 corr1) as follows:

8.17 DLL multicast stream

A source node that decides to establish a DLL multicast stream shall establish a multicast path toward each client of the DLL multicast stream. The paths toward the client nodes may include relay nodes that are bound to the path and the DLL Multicast Stream identification (MSID). The source node that establishes a DLL multicast group shall generate the DLL multicast stream identifier (MSID) that together with the DEVICE_ID of source of the DLL multicast stream uniquely identifies the DLL multicast stream. The members of a DLL multicast group are identified by the source node of the DLL multicast stream. The source of a DLL multicast stream, shall transmit the traffic of the DLL multicast stream to the members of the DLL multicast group according to established paths as described in the following <u>sectionclauses</u>.

8.17.1 DLL multicast stream establishment

A G.hn node that determines that it has to transmit a multicast stream to client nodes in the domain, shall establish a path to each one of the client nodes. The source node that generates the DLL multicast stream shall first allocate an MSID that, together with the DEVICE_ID of the source node, shall uniquely identify the DLL multicast stream. <u>Valid values of MSID are from 1 to 250</u>. The source node shall also initialize the Transaction ID for that DLL multicast stream to zero. The source node shall increment the Transaction ID- for each new DLL multicast path it establishes for that DLL multicast stream.

The source node shall establish the path toward a client node as follows:

If the source node has a direct link to the client node according to the current unicast routing table, it shall send a DMC_Path.req message to the client node to bind it with the specified MSID multicast stream and the multicast stream MAC Address. The client node shall reply with a DMC_Path.cnf message that contains the same Transaction_ID that was specified in the DMC_Path.req message and shall bind itself to the established path identified by the MSID, the DEVICE_ID of the source node and the multicast MAC address (DA). The source node upon receiving the DMC_Path.cnf message shall bind the path and complete the path establishment procedure. If the source node does not receive a DMC_Path.cnf message after a vendor discretionary period, which is larger than MAX_WAIT_TIME, it may repeat the request through a new DMC_Path.req with a different Transaction_ID.

NOTE – DMC_Path.req should be sent using connections with acknowledgements in order to avoid long setup times for DLL multicast trees because of lost messages.

If the source node does not have a direct link to the client node, it shall determine the first relay node towards the client node according to the current unicast routing table and send a DMC_Path.req message to that node.

The DMC_Path.req message shall contain the following fields: the DEVICE_ID of the source node of the DLL multicast, the allocated MSID, the DEVICE_ID of the client node, the MAC address of the multicast stream_-and the Transaction_ID, and the DEVICE_ID of the first relay node (Relay ID). If there is a direct link between the source node and the client node, the Relay ID field shall be set to the DEVICE_ID of the client node. The source node of the multicast stream shall address the DMC_Path.req message to the first relay node by setting the DA to the MAC address of that node.

A relay node that receives a DMC_Path.req message and has a direct link with the client node shall bind the DEVICE_ID of the source of the DLL multicast stream, the MSID, and the sender node's DEVICE_ID with the DEVICE_ID of the client endpoint node, and shall replace the DA of the LCDU of the DMC_Path.req message with the client node's MAC address and transmit the DMC_Path.req message to the client node.

A relay node that receives a DMC_Path.req message and doesn't have a direct link to the client node shall bind the DEVICE_ID of the source of the DLL multicast stream, the MSID, and the sender node's DEVICE_ID with the DEVICE_ID of the next relay node towards the client node according to the unicast routing table. It shall then replace the DMC_Path.req LCDU's DA by the MAC address of the next relay node and send the updated DMC_Path.req message to that node.

Upon reception of the DMC_Path.req message, the client node shall reply to the node that sent this message with a DMC_Path.cnf message and shall bind itself to the specified DLL multicast stream identified by the DEVICE_ID of the source DLL multicast stream, the MSID, and the sender node's DEVICE_ID.

A relay node that receives the DMC_Path.cnf message shall mark the binding of the DLL multicast stream path identified by the DEVICE ID of the source DLL multicast stream node and the MSID as valid. The relay node shall then append its DEVICE_ID to the Path_List field in the MMPL of the received DMC_Path.cnf message. The relay node shall transmit the updated DMC_Path.cnf message to the node from which it has received the DMC_Path.req message, which can be either a relay node or the node originating the DLL multicast stream.

Once the originating node receives the DMC_Path.cnf message, it has the complete path of this bound client from the received DMC_Path.cnf message. This completes the path establishment procedure. The source node may then start sending the multicast stream packets towards the client node(s) either directly or via the first relay node according to the established path.

Each relay node shall identify LLC frames corresponding to a DLL multicast stream according to the OriginatingNode and the MSID specified in the LFH. The relay node shall then relay any received LLC frames of that DLL multicast stream to all the nodes it has bound to this DLL multicast stream according to the binding information that it has configured during the DLL multicast stream path establishment. The relay node shall only relay LLC frames corresponding to a DLL multicast stream path for which its binding is marked as valid.

When the multicast source node or any other relay node in the DLL multicast paths receives an updated routing table, it shall not update the current multicast paths. A relay node shall correct an established multicast path only by explicit order received from the multicast source node as defined in clause 8.17.3.

8.17.2 DLL multicast stream establishment with bandwidth reservation

An originating node that decides to establish a DLL multicast stream shall also decide whether to have it 'BW reserved' or not. The 'BW reserved' attribute shall be carried in the DLL multicast stream protocol messages so all participating nodes will have that knowledge as well.

It is the responsibility of the originating node and the relay nodes in the stream to make sure new non-leaf nodes added to a bandwidth reserved stream are compliant with this amendment (each

node reports its standard's version to the DM which then broadcasts this information to the domain, see clause 8.6.4).

DLL multicast stream establishment with BW reservation includes the same steps as specified in the previous clause.

In addition to these steps, the actions specified in the following clauses enable the nodes to reserve BW from the DM.

8.17.2.1 Bandwidth reservation when direct link from originating node to client node

Once the originating node receives the DMC_Path.cnf message from the DM, it shall decide whether bandwidth reservation is required for the stream. If bandwidth reservation is required, the client node of the DLL multicast stream shall request the DM for BW reservation.

If BW reservation from the DM is required, the originating node will ask the DM to reserve BW for the stream by sending a DMC_BWReserve.req message. The DMC_BWReserve.req message will include the BW required for the DLL multicast stream, and the rate from the originating node to the client node. The rate enables the domain master to estimate the time allocation needed to serve the DLL multicast transmission based on the number of bytes needed to be transmitted and the rate of the node.

Based on its calculations, the DM shall reply with a DMC_BWReserve.cnf message, and if bandwidth reservation was approved, the DM will then allocate TXOPs for this hop in the DLL multicast stream (identified by the MSID of the stream and the SID of the node) if this is the first bandwidth reservation for this DLL multicast stream, or change the allocation for existing TXOPs for this hop in the multicast stream if this is a bandwidth update for an existing stream.

8.17.2.2 Bandwidth reservation through relay

The source node will indicate that the DLL multicast stream -bandwidth reserved and that transmission should occur only in allocated TXOPs (this is done through the 'Is BW managed' field in the DMC_Path.req message).

<u>A relay node that receives a DMC_Path.req message shall check whether this is a bandwidth reserved DLL multicast stream and act accordingly.</u>

In addition to the steps described in clause 8.17.1 – DLL multicast stream establishment, the relay node shall send a DMC_BWReserve.req message to DM. The DMC_BWReserve.req message will include the SID of the relay node, the MSID of the stream, the DEVICE ID of the originating node of the stream and the requested bandwidth.

Based on this information the DM will calculate whether requested bandwidth can be allocated and reply with a DMC_BWReserve.cnf message. If bandwidth reservation was approved, the DM will then allocate resources to serve the hop in the DLL multicast stream.

8.17.32 Preventing loops and packets duplications

The paths of a specific DLL multicast stream shall be established in a tree topology that ensures that a node shall not receive duplicate multicast packets from different paths and prevent the source node or any relay node to duplicate unnecessarily transmissions. The topology of the DLL multicast stream tree is built under a principal rule that each node shall receive packets of a specific (OriginatingNode, MSID) only from one node. The DLL multicast stream paths tree shall be built according to this rule by executing the following procedure in path establishment: When a source node binds a new client node to an existing DLL multicast stream, it shall send towards it the DMC_Path.req message as defined in the previous sectionclause. Any relay node on the path towards the newly joined client node shall verify that it always receives the DMC_Path.req for this

specific (OriginatingNode, MSID) from the same sender node. In case that it receives a DMC_Path.req message from a node different from the sender node to which it is currently bound, it shall reply with the DMC_PathReject.cnf message towards the source node. The DMC_PathReject.cnf message shall contain the rejecting node's DEVICE_ID, the DEVICE_ID of the node that sent it DMC_Path.req message and the rejection reason (duplication source).

When the source multicast node receives the DMC PathReject.cnf message, it may decide to release the entire tree or the branch and rebuild it again, or to enforce establishment of the path until the rejecting relay node based on the existing path. If the source node decides to enforce the existing path, it shall send the DMC EnforcePath.req towards the relay node that encountered the problem via the original path. The source node shall address the DMC EnforcePath.req message to the first relay node in the path toward the rejecting node. The DMC EnforcePath.req message shall contain the full path until the rejecting node and the client node. Each relay node that receives the DMC EnforcePath.req message shall forward the message to the next relay node according to the specified path toward the rejecting node. When the rejecting node receives the DMC EnforcePath.req message it shall create a DMC Path.req message, filling it with the information received in the DMC EnforcePath.reg message, and forward the message to the next relay node according to the current routing table. From this phase, the path establishment procedure towards the client node shall continue as specified in the previous section clause. The client node shall reply with the DMC Path.cnf message to the relay node that sent it the DMC Path.req message. All the relay nodes on the path towards the source node upon receiving the DMC Path.cnf message, shall execute the bind, update the Path List field in the DMC Path.cnf message with their own DEVICE ID and forward the DMC Path.cnf message towards the source node.

A specific relay that has to forward a specific MSID stream traffic to several nodes that are bound with this MSID may establish a PHY multicast group. In this case, the node may create or update PHY multicast groups when it receives a DMC_Path.req message to transmit the data to the next relay nodes or client nodes. In that case, the PHY multicast group shall only include bound client nodes and relay nodes that are in its bind list for this MSID in its current hop.

Node A decides to add node N to the '*MSID*' DLL multicast stream.

According to the current routing table node A sends the DMC_Path.req message Message to node D.

According to the current routing table node D sends the DMC_Path.req message to node R.

According to the current routing Relay node R sends the DMC_Path.req message To node E.

Node E knows that the legitimate source node for the specified '*MSID*' is node D, therefore it reject the DMC_Path.req message By sending the DMC PathReject.cnf message to node R.

Node R receives the DMC_PathReject.cnf message and sends a DMC_PathReject.cnf message node D.

Node D receives the DMC_PathReject.cnf message and sends a DMC_PathReject.cnf message node A.

Node A sends the DMC_EnforcePath.req message To Node B to establish the path towards node N with a specified path until node E. Node B sends theDMC_EnforcePath.req message to node D (and not to node R) according to the specified path in the DMC_EnforcePath.req Message.

Node D sends the DMC_EnforcePath.req Message to node E and node E sends DMC_Path.req message to node N.

8.17.43 Releasing client node from MSID

When the source node of a DLL multicast stream decides to release a client node from its MSID, it shall increment the Transaction ID of that DLL multicast stream and shall send a DMC_ReleasePath.req message to the respective client node or to its first relay node in case the client node is accessed via relay node(s). Each node that receives the DMC_ReleasePath.req shall release the specified node from this bind list and forward the message towards the client node. Each node that received the message shall reply with DMC_ReleasePath.cnf message to the node that sent it the DMC_ReleasePath.req message. Each relay node that does not have any nodes in its bind list shall released itself from the MSID multicast stream and indicate it in the replied DMC ReleasePath.cnf message.

8.17.54 Recovery from DLL multicast broken path

In case that one of the relay nodes determines that the path of a specific MSID is broken it shall inform the domain master via a normal topology update message and the source node of the DLL multicast stream via a DMC_BrokenLink.ind message.

The multicast source node may correct the broken path according to newly received updated routing table from the domain master. The source node may correct an existing path by sending DMC_ReleasePath.req to the relevant nodes and then it shall send new DMC_Path.req to the relevant nodes.

8.17.65 Aging DLL multicast path process

In order to prevent a situation where a multicast source node leaves the network and all the respective nodes in the multicast stream path are still holding MSID resources, an aging mechanism shall be used. The source node of each DLL multicast stream (MSID) shall periodically send a management message: DMC_PathAlive.ind via the established MSID DLL multicast stream paths tree to the first node of each path (client node or relay node). Each node in the tree that receives this message shall reset its aging timer for that DLL multicast stream and shall transmit the DMC_PathAlive.ind message to each of the nodes that are bound to this DLL multicast stream, identified by (OriginatingNode, MSID), according to the binding information that it has configured during the DLL multicast stream paths establishment. Each node in the path that does not receive a DMC_PathAlive.ind message within a period of DMC_PATH_AGING_PERIOD (1 second) shall remove itself from this DLL multicast stream and release all of its MSID resources.

8.17.7 DLL Multicast stream bandwidth maintenance

Each node participating in a DLL multicast stream that is bandwidth reserved (whether it is the originating node or a relay node) is responsible for modifying its hop's requested bandwidth according to changes in the stream (e.g., if nodes are removed from a binding list, or if the hop's rate is changed, or if the hop transmission method is changed from using unicast connection to a PHY multicast connection).

If a node is no longer acting as a relay node in a DLL multicast stream, it is this node's responsibility to ask the DM to release all bandwidth reserved for its hop in the stream.

The modification of the bandwidth reservation is done by sending DMC_BWReserve.req to the DM. In this case, the DM shall reply with a DMC_BWReserve.cnf and change the allocation for the existing TXOPs for the indicated hop in the bandwidth reserved multicast stream.

The allocated bandwidth can be released by sending DMC_BWRelease.req to the DM. In this case, the DM shall reply with a DMC_BWRelease.cnf and completely remove the TXOPs assigned for the indicated hop in the bandwidth reserved multicast stream.

The internal rules used by the domain master to decide whether an allocation should be expanded or contracted due to ongoing flow maintenance done by the bandwidth management function are out of the scope of this Recommendation.

<u>NOTE – If the bandwidth allocation for the DLL multicast stream is changed, this will be reflected</u> in the MAP describing the following MAC cycles.

8.17.8 Transmission of bandwidth managed DLL Multicast stream

Originating node and relay nodes participating in a bandwidth managed DLL multicast streams should transmit the traffic associated with the multicast stream only in TXOPs assigned for that stream. This assignment is indicated via the 'Multicast Indication' flag,SID and MSID fields in the MAP's TXOP basic descriptor (see clause 8.8.4)

8.17.96 DLL Multicast protocol messages

8.17.<u>9.1</u>6.1 DMC_Path.req message format

The format of the DMC_Path.req management message shall be as shown in Table 8-113.

Field	Octet	Bits	Description		
Source ID	0	[7:0]	The DEVICE_ID of the source node		
			of the DLL Multicast stream.		
MSID	1	[7:0]	The multicast identification allocated		
			by the source of the DLL multicast		
			stream.		
ClientID	2	[7:0]	The DEVICE_ID of the client node of		
			the DLL Multicast steam source node.		
MulticastAddress	3-8	[47:0]	MAC address of the multicast stream		
Transaction_ID	9	[7:0]	Identifies this path transaction.		
Relay ID	<u>10</u>	[7:0]	The DEVICE_ID of the relay node		
			<u>(NOTE 1)</u>		
Is BW Managed	<u>11</u>	[0]	0 - If this DLL multicast stream is not		
			bandwidth reserved		
			1 - If this DLL multicast stream is		
			bandwidth reserved (and transmission		
			should occur only in allocated		
			<u>TXOPs)</u>		
			<u>(NOTE 1)</u>		
Reserved	<u>11</u>	<u>[7:1]</u>	Reserved by ITU-T. (NOTE 2)		
NOTE 1 - If there is a di	NOTE 1 - If there is a direct link between the source node and the client node, this field shall be				
	set with the DEVICE_ID of the client node				
NOTE 2 - Bits that are re	NOTE 2 - Bits that are reserved by ITU-T shall be set to zero by the transmitter and ignored by the				
receiver.					

Table 8-113 – Format of the MMPL of the DMC_Path.req message

8.17.<u>9.2</u>6.2 DMC_Path.cnf message format

The format of the DMC_Path.cnf management message shall be as shown in Table 8-114.

Field	Octet	Bits	Description
Source ID	0	[7:0]	The DEVICE_ID of the source node of the DLL Multicast stream.
MSID	1	[7:0]	The multicast identification allocated by the source of the DLL multicast stream.
ClientID	2	[7:0]	The DEVICE_ID of the client node of the DLL Multicast steam source node.
Transaction_ID	3	[7:0]	Identifies this path establishment transaction. It shall contain the same value that was specified in the corresponding DMC_Path.req message.
NumOfNodes	4	[7:0]	Specifies the number of relay nodes (n) in the Path_List from the source node towards the client node.
Path_List[0]	5	[7:0]	This entry in the list contains the DEVICE_ID of the last relay node in the established path from the source node towards the client node.
Path_List[n-1]	4+n	[7:0]	This entry in the list contains the DEVICE_ID of the first relay in the established path from the source node towards the client node.

Table 8-114 – Format of the MMPL of the DMC_Path.cnf message

8.17.<u>9.3</u>6.3 DMC_PathReject.cnf message format

The format of the DMC_PathReject.cnf management message shall be as shown in Table 8-115.

Field	Octet	Bits	Description
Source ID	0	[7:0]	The DEVICE_ID of the source node
			of the DLL Multicast stream.
MSID	1	[7:0]	The multicast identification allocated
			by the source of the DLL multicast
			stream.
ClientID	2	[7:0]	The DEVICE_ID of the client node of
			the DLL Multicast steam source node
Transaction_ID	3	[7:0]	Identifies this path establishment
			transaction specified in the
			DMC_Path.req message.
RejectingNodeId	4	[7:0]	The DEVICE_ID of the relay node
			that rejects the DMC_Path.req
			message
Rejection_code	5	[7:0]	00_{16} – The request Path is conflicted
			because there is already a path
			established for the specified multicast
			stream with a different source node
			01_{16} – The node is not able to support
			additional multicast streams
			02_{16} to FF ₁₆ – reserved by ITU-T.

Table 8-115 – Format of the MMPL of the DMC_PathReject.cnf message

8.17.<u>9.4</u>6.4 DMC_EnforcePath.req message format

The format of the DMC_EnforcePath.req management message shall be as shown in Table 8-116.

Field	Octet	Bits	Description
Source ID	0	[7:0]	The DEVICE_ID of the source node
			of the DLL Multicast stream.
MSID	1	[7:0]	The multicast identification allocated
			by the source of the DLL multicast
			stream.
ClientID	2	[7:0]	The DEVICE_ID of the client node of
			the DLL Multicast steam source node.
MulticastAddress	3-8	[47:0]	MAC address of the multicast stream
Transaction_ID	9	[7:0]	Identifies this path establishment
			transaction. It shall contain the same
			value as in the original DMC_Path.req
			for this path.
NumOfNodes	10	[7:0]	Specifies the number of relay nodes
			(n) in the Path_List from the source
			node towards the rejecting node.
Path_List[0]	11	[7:0]	This entry in the list contains the
			DEVICE_ID of the first relay node in
			the established path from the source
			node towards the rejecting node.
Path_List[n-1]	10+n	[7:0]	This entry in the list contains the
			DEVICE_ID of the last relay in the
			established path from the source node
			towards the rejecting node

Table 8-116 – Format of the MMPL of the DMC_EnforcePath.req message

8.17.<u>9.5</u>6.5 DMC_ReleasePath.req message format

The format of the DMC_ReleasePath.req management message shall be as shown in Table 8-117.

Field	Octet	Bits	Description
Source ID	0	[7:0]	The DEVICE_ID of the source node
			of the DLL multicast stream.
MSID	1	[7:0]	The multicast identification allocated
			by the source of the DLL multicast
			stream.
ClientID	2	[7:0]	The DEVICE_ID of the client node of
			the DLL multicast steam source node
			to be release from the path.
Transaction_ID	3	[7:0]	Identifies this path transaction.
NumOfNodes	4	[7:0]	Specifies the number of relay nodes
			(n) in the Path_List from the source
			node towards the client node.
Path_List[0]	5	[7:0]	This entry in the list contains the
			DEVICE_ID of the first relay node in
			the established path from the source
			node towards the client node.
Path_List[n-1]	4+n	[7:0]	This entry in the list contains the
			DEVICE_ID of the last relay node in
			the established path from the source
			node towards the client node.

Table 8-117 – Format of the MMPL of the DMC_ReleasePath.req message

8.17.<u>9.6</u>6.6 DMC_ReleasePath.cnf message format

The format of the DMC_ReleasePath.cnf management message shall be as shown in Table 8-118.

r			
Field	Octet	Bits	Description
Source ID	0	[7:0]	The DEVICE_ID of the source node
			of the DLL multicast stream.
MSID	1	[7:0]	The multicast identification allocated
			by the source of the DLL multicast
			stream.
ClientID	2	[7:0]	The DEVICE_ID of the client node of
			the DLL multicast steam source node
			to be release from the path.
Transaction_ID	3	[7:0]	Identifies this path establishment
			transaction. It shall contain the same
			value as in the corresponding
			DMC_ReleasePath.req for this path.
RelayNodeStatus	4	[7:0]	Specifies the status of the relay node
			that sends this message.
			0: The relay node released itself from
			the specified DLL multicast stream
			1: The relay node still belongs to the
			specified DLL multicast stream
			2 to 255: Reserved by ITU-T

8.17.<u>9.7</u>6.7 DMC_PathAlive.ind message format

The format of the DMC_PathAlive.ind management message shall be as shown in Table 8-119.

Field	Octet	Bits	Description
Source ID	0	[7:0]	The DEVICE_ID of the source node
			of the DLL Multicast stream.
MSID	1	[7:0]	The multicast identification allocated
			by the source of the DLL multicast
			stream.

Table 8-119 – Format of the MMPL of the DMC_PathAlive.ind message

8.17.<u>9.8</u>6.8 DMC_BrokenLink.ind message format

This message is sent by a node that needs to report to the source of a DLL multicast stream that a link towards a multicast client node is broken.

The format of the DMC_BrokenLink.ind message shall be as shown in Table 8-120.

Table 8-120 – Format of the MMPL of the DMC_BrokenLink.ind message

Field	Octet	Bits	Description
Source ID	0	[7:0]	The DEVICE_ID of the source node
			of the DLL Multicast stream.
Reporting_DeviceID	1	[7:0]	The DEVICE_ID of the node
			reporting the broken link.
Broken_DeviceID	2	[7:0]	DEVICE_ID of the node with which
			the link is broken
StatusCode	3	[7:0]	0: the reporting node experienced a
			broken link
			1: the reporting node has no bind
			information for this MSID
			2 to 255: Reserved by ITU-T
NumberAffectedMSID	4	[7:0]	Number n of MSIDs affected by the
			broken link
MSID0	5	[7:0]	The multicast identification of the first
			affected MSID.
MSIDn	variable	[7:0]	The multicast identification of the n th
		_	affected MSID.

8.17.9.9DMC_BWReserve.req message format

The format of the DMC_BWReserve.req management message shall be as shown in Table 8-121

Field	<u>Octet</u>	Bits	Description
Originating Node	<u>0</u>	[7:0]	The DEVICE_ID of the originating
			node of the DLL Multicast stream.
MSID	<u>1</u>	[7:0]	The multicast identification allocated
			by the source of the DLL multicast
			stream.
Requested BW	<u>6-3</u>	[39:8]	Specifies the requested bandwidth rate in bit/s, represented as a 32-bit unsigned integer.
Rate	<u>8-7</u>	[55:40]	The PHY data rate in bits per second for this hop in steps of 32 kbit/s

Table 8-121 – Format of the MMPL of the DMC_BWReserve.req message

8.17.9.10 DMC_BWReserve.cnf message format

The format of the DMC_BWReserve.cnf management message shall be as shown in Table 8-122

Table 8-122 – Format of the MMPL of the DMC_BWReserve.cnf message

Field	<u>Octet</u>	Bits	Description
Return Code	<u>0</u>	[7:0]	00_{16} – The requested bandwidth is
			approved.
			<u>01₁₆ – The requested bandwidth is</u>
			denied.
			<u>02₁₆ to FF₁₆ – reserved by ITU-</u>
Originating Node	<u>1</u>	<u>[7:0</u>	The DEVICE_ID of the originating
			node of the DLL Multicast stream.
MSID	<u>2</u>	[7:0]	The multicast identification allocated
			by the source of the DLL multicast
			stream.

8.17.9.11 DMC_BWRelease.req message format

The format of the DMC_BWRelease.req management message shall be as shown in Table 8-123

Field	<u>Octet</u>	Bits	Description
Originating Node	<u>0</u>	[7:0]	The DEVICE_ID of the originating
			node of the DLL Multicast stream.
MSID	<u>1</u>	[7:0]	The multicast identification allocated
			by the source of the DLL multicast
			stream.

Table 8-123 – Format of the MMPL of the DMC_BWRelease.req message

8.17.9.12 DMC_BWRelease.cnf message format

The format of the DMC_BWRelease.cnf management message shall be as shown in Table 8-124

Table 8-124 – Format of the MMPL of the DMC_BWRelease.cnf message

Field	<u>Octet</u>	Bits	Description
MSID	<u>0</u>	[7:0]	The multicast identification allocated
			by the source of the DLL multicast
			stream.
Originating Node	<u>1</u>	[7:0]	The DEVICE_ID of the originating
			node of the DLL Multicast stream.

9 Add text for new clause 8.20 "Metrics acquisition" as follows:

8.20 Metrics acquisition

The goal of metrics acquisition mechanism is to provide a node a way to calculate the throughput metrics between it and a destination node without needing to establish a flow.

A node that wants to obtain the achievable throughput with another node of the domain may request metric information to the DM by sending the message MA_AcquireMetrics.req, which includes the information on the destination node.

Upon reception of MA_AcquireMetrics.req, the DM shall respond to the requesting node with an MA_AcquireMetrics.cnf message.

8.20.1 Metrics acquisition protocol messages

8.20.1.1 Format of MA_AcquireMetrics.req

This message is sent from a node requesting an update of metrics information to the DM.

The format of the MMPL of the MA_AcquireMetrics.req shall be as shown in Table 8-125.

Field	<u>Octet</u>	Bits	Description
OriginDeviceID	<u>0</u>	[7:0]	DEVICE_ID of the node origin of the link for which the
			metrics are requested
DestinationDevic	<u>1</u>	[7:0]	DEVICE_ID of the node destination of the link for which the
eID			metrics are requested

<u>Table 8-125 – Format of the MMPL of the MA_AcquireMetrics.req message</u>

8.20.1.2 Format of MA_AcquireMetrics.cnf

This message is sent by the DM to inform a requesting node about the metrics of a particular link. The format of the MMPL of the MA_AcquireMetrics.cnf shall be as shown in Table 8-126.

<u>Table 8-126 – Format of the MMPL of the MA_AcquireMetrics.cnf message</u>

Field	Octet	Bits	Description						
OriginDeviceID	<u>0</u>	[7:0]	DEVICE_ID of the node origin of the link for which the						
			metrics are requested						
DestinationDevic	<u>1</u>	[7:0]	DEVICE_ID of the node destination of the link for which the						
eID			metrics are requested						
MetricsRouteList	<u>Variable</u>	See	Routing list from OriginDeviceID toward						
		Table 8-	DestinationDeviceID. This field is only present when there is at						
		<u>127</u>	<u>least one relay node (N \geq 1)</u>						
MaxBitsPerSeco	Variable	[15:0]	Maximum data rate in bits per second from OriginDeviceID to						
<u>nd</u>			DestinationDeviceID. (Note 1)						
<u>AttainableBitsPer</u>	<u>Variable</u>	[15:0]	The attainable data rate in bits per second from						
Second			OriginDeviceID to DestinationDeviceID that a DM can						
			allocate for a flow between these two nodes under current						
			domain traffic conditions.						
NOTE 1: This valu	e is calculate	ed from the	values reported to the DM by each of the nodes of the domain in						
the BitsPerSecond	field of the V	/isibility_L	ist field of the TM_NodeTopologyChange.ind message (See						
Table 8-48) using t	<u>Table 8-48) using the following formula:</u> $MaxBitsPerSecond = \frac{1}{\sum_{i=1}^{N+1} \frac{1}{BitsPerSecond_i}}$ where N is the number								
of relays between (

Field	Octet	Bits	Description
<u>NumRelays</u>	<u>0</u>	<u>[7:0]</u>	Number of relay nodes (N) in the MetricsRouteList
RelayNode[1]	<u>1</u>	[7:0]	DEVICE_ID of the first relay node in the list
<u></u>	<u></u>	<u></u>	
RelayNode[N]	<u>N</u>	[7:0]	DEVICE_ID of the Nth relay node in the list
LinkMetrics[1]	$\frac{N+1 \text{ and }}{N+2}$	[15:0]	<u>PHY data rate in bits per second from the originating</u> node in the route to the first relay. (Note 1)
<u></u>	<u></u>	<u></u>	<u></u>
LinkMetrics[N+ 1]	$\frac{\underline{3*N+1}}{\underline{and \ 3*N+2}}$	[15:0]	PHY data rate in bits per second from the Nth relay in the route to the destination node. (Note 1)
			rted to the DM by each of the nodes of the domain in of the TM_NodeTopologyChange.ind message. See

Table 8-127 – Format of MetricsRouteList

10 Add new Annex X "Test vectors" as follows:

Annex X – Test vectors

This annex includes test vectors for core operations described in this Recommendation.

X.1 CCM encryption

This clause provides a set of test vectors for parameters involved in CCM encryption described in clause 9.1. Parameters are expressed in a hexadecimal form with the leftmost byte representing the lowest byte within a parameter (i.e., byte 0). Within a byte, the leftmost bit represents the MSB.

X.1.1 CCM test vector 1

X.1.1.1 Input parameters

This clause provides one set of examples for input parameters used in CCM encryption.

Data packet, APDU (75 bytes):

The APDU can be broken into the following parameters:

Destination MAC address, DA (6 bytes)

 $DA = 00 \ 00 \ 5E \ 10 \ 20 \ 09_{16}$

Source MAC address, SA (6 bytes)

 $SA = 00\ 00\ 5E\ 07\ 20\ 13_{16}$

MAC client length/type, LT (2 bytes)

 $LT = 08 \ 00_{16}$

APDU payload, P (57 bytes)

P =	52	41	56	49	3B	45	52	45	5A	3B	41	56	$4 \mathrm{E}$	45	52	3B	4C	45	53	3B	52
	4F	59	3B	4D	41	52	43	4F	53	3B	41	47	55	53	54	49	4E	3B	4A	4F	48
	4E	3B	4A	42	3B	54	4F	4E	47	3B	56	5A	45	49	42	16					

Frame check sequence, FCS (4 bytes)

 $FCS = A4 55 5A 26_{16}$

Note that VLAN TAG does not exist in this example (i.e., TG = 0), Alen is 21 bytes (see Table 9-5), and Plen is 57 bytes.

Parameters for the LLC frame header (LFH) are given as LLCFT = 2 (APDU), TSMPI = 0 (TSMP field not present), CCMPI = 1, LPRI = 0, FLEN = 71, MCSTI = 0, OriginatingNode = 1, DestinationNode = 2, BRCTI = 0, and TTL = 0 (see clause 8.1.3.1.1).

Resulting LFH (6 bytes):

 $LFH = 12 \ 47 \ 00 \ 01 \ 02 \ 00_{16}$

Parameters for the CCMP header (CCMPH) are given as MIC size = 111_2 (16-byte MIC), NN or NMK, Key ID = 0, and FN = 1 (see clause 9.1.2.3).

Resulting CCMP header, CCMPH (6 bytes):

 $CCMPH = 07 01 00 00 00_{16}$

Encryption Key K: 47 68 6F 43 65 72 74 66 32 30 31 33 47 68 6E 43₁₆.

X.1.1.2 Parameters generated

This clause provides one set of examples of parameters generated by the node based on given set of input parameters.

Nonce, N (13 bytes):

 $N = 00\ 00\ 00\ 5E\ 07\ 20\ 13\ 00\ 00\ 00\ 00\ 00\ 01_{16}$

Nonce block, *B*₀ (16 bytes):

 $B_0 = 79 \ 00 \ 00 \ 5E \ 07 \ 20 \ 13 \ 00 \ 00 \ 00 \ 00 \ 01 \ 00 \ 39_{16}$

Associated data block, *B*₁ (16 bytes):

 $B_1 = 00\ 15\ 00\ 00\ 00\ 00\ 5E\ 10\ 20\ 09\ 00\ 00\ 5E\ 07\ 20\ 13_{16}$

Associated data block, B₂ (16 bytes):

 $B_3 = 52 \ 41 \ 56 \ 49 \ 3B \ 45 \ 52 \ 45 \ 5A \ 3B \ 41 \ 56 \ 4E \ 45 \ 52 \ 3B_{16}$ Payload block, B_4 (16 bytes):

 $\frac{B_4}{B_4} = \frac{4C \ 45 \ 53 \ 3B \ 52 \ 4F \ 59 \ 3B \ 4D \ 41 \ 52 \ 43 \ 4F \ 53 \ 3B \ 41_{16}}{Payload block, B_5 (16 bytes):}$

 $\underline{B_5} = 47 \ 55 \ 53 \ 54 \ 49 \ 4E \ 3B \ 4A \ 4F \ 48 \ 4E \ 3B \ 4A \ 42 \ 3B \ 54_{16}$ $\underline{Payload \ block, B_6 \ (16 \ bytes):}$

 $B_{6} = 4F 4E 47 3B 56 5A 45 49 42 00 00 00 00 00 00 00_{16}$ Counter block 0, *Ctr*₀ (16 bytes):

Counter block	x 1, (<u>Ctr₁</u> ((161	byte	<u>s):</u>												
$Ctr_1 =$	01	00	00	00	5E	07	20	13	00	00	00	00	00	01	00	011	.6
Counter block	x 2, (Ctr ₂	(161	byte	<u>s):</u>												
$Ctr_2 =$	01	00	00	00	5E	07	20	13	00	00	00	00	00	01	00	021	.6
Counter block	<u>x 3, (</u>	C <u>tr</u> 3	(161	byte	<u>s):</u>												
$Ctr_3 =$	01	00	00	00	5E	07	20	13	00	00	00	00	00	01	00	031	.6
Counter block	x 4, (<u>Ctr₄ (</u>	(161	byte	<u>s):</u>												
$Ctr_4 =$	01	00	00	00	5E	07	20	13	00	00	00	00	00	01	00	041	.6
Cyphertext																	
C =	04	4f	24	21	07	fb	58	68	ba	1a	c7	с3	1f	5c	e7	20	c1
	29	d5	03	b1	e0	94	43	ed	4 f	28	24	62	с8	28	с5	53	50

Message Integrity code

MIC = 8c df 6e 79 03 0f 7e 69 cc 33 b8 29 ef e4 6d $e2_{16}$

X.2 PAK test vectors

This clause provides a set of test vectors for parameters involved in the PAK protocol described in clause 9.2.2. Parameters are expressed in a hexadecimal form with the leftmost bit representing the MSB.

X.2.1 PAK test vector 1

X.2.1.1 Input parameters

This clause provides one set of examples for input parameters known to the supplicant and the authenticator before the initiation of key authentication process.

Node identifier of the supplicant, A (48 bits, see clause 9.2.2.2.1):

 $A = 0019 A717 DD30_{16}$

Node identifier of the authenticator, *B* (48 bits, see clause 9.2.2.2.1):

 $B = 0019 \text{ A770 } 8\text{A32}_{16}$

Node password shared by the supplicant and the authenticator, PW (96 bits, see clause 9.2.2.2.2):

 $PW = 5962 \text{ A05A B89F C0AA FB14 0EF7}_{16}$

X.2.1.2 Parameters generated or exchanged

This clause provides one set of examples of parameters generated and/or exchanged by the supplicant and the authenticator.

Secret exponent generated by the supplicant, RA (384 bits, see clause 9.2.2.2.5):

RA =	89A1	A7B4	F433	9220	2C60	960D	172A	7C45	6B95	C225	26B1	1C7A
	9E2E	7712	C43C	9C77	48B6	3936	A62B	CF90	3C03	A0E2	0E28	D660 ₁₆
Secret expone	nt gene	rated b	y the a	uthenti	cator, I	<u>RB (38</u> 4	4 bits, s	see clau	ise 9.2.	2.2.5):		
RB =	F052	57CB	1840	6A91	173B	87E4	1F22	9289	7D3E	08A7	BCA0	4EB9
	1A8A	CFF3	940C	AE00	E15B	302D	7E67	2E81	CCB4	C103	A241	B133 ₁₆

Concatenated	l input j	paramet	ters, $P =$	$=A \mid B$	PW(192 bits	s, see [ITU-T	X.1035]):		
D _	0010	7717	0 S U U	0010	7770	0722	5962	$\Lambda \cap \Box \Lambda$	DQQT		FD1/	$\cap \Box \Box \Box \neg$

Concatenateu	mput p		(15, T)		<u> </u>	1 <i>72</i> UIU	s, see [1	10-1	A.1035	<u>,]).</u>		
P =	0019	A717	DD30	0019	A770	8A32	5962	A05A	B89F	COAA	FB14	0EF7 ₁₆
Intermediate 1	esult, I	R1 = H	$I_{1}(P)$ (1	152 bit	s, see o	clause 9	9.2.2.2.	6 and [ITU-T	X.103	<u>5]):</u>	
IR1 =	11F9	E6DD	6E7D	48EF	3672	CAOF	A2EC	2488	7678	34B9	506C	FE86
	5BC0	A847	3051	F6FD	408D	0178	816D	80A7	D8D3	B75C	3176	C8D3
	BD12	2AD1	2AE5	C26C	29F8	3518	BD91	1581	9483	C303	68F3	B137
	3A33	A8E5	6193	83B8	34F1	59B4	E1C3	8259	B3DA	D35F	7876	A7FE
	3B0A	9E9A	F594	BEA6	B126	77B0	50EC	672E	11F7	3A1E	231E	9ECE
	793A	34AE	154D	4EB0	82BB	AC26	1F8E	0B50	735C	01FB	C364	9081 ₁₆
Intermediate r X.1035]):	esult, I	$TR2 = g^4$	^{RA} mod	<u>p (102</u>	4 bits,	see cla	use 9.2	.2.2.3,	clause	9.2.2.2	<u>.4, and</u>	<u>[ITU-T</u>
IR2 =	D678	B9D6	E866	FB46	4865	A430	C2BA	0668	722D	236E	7BEA	1C51
	7E4A	4812	1CD4	B42C	7803	2B8C	F05F	497B	46EC	F894	CB5A	0678
	7104	7E99	448A	D384	46A1	15AF	4640	7B9B	F13C	FFBD	2452	FB69
	3D7C	6445	DE1E	95AF	DC13	7B33	01AE	6659	0839	A05E	03A2	2169
	E10C	C5F6	D87B	62E5	FF92	B000	4DA9	8058	9F95	5F2E	F66A	42D6
	CBC4	E70A	A3CA	D1361	.6							
Parameter car <u>T X.1035]):</u>	ried in	AUT_1	NodeRe	equest.	req, X =	= IR1 · I	<u>R2 (21</u> ′	76 bits,	see cla	ause 9.2	2.5.1.1	and [ITU-
X =	OFOF	612E	0137	3C14	AB36	88FB	07C9	98E6	EBA7	033C	E635	4EDA
	54D2	DA67	46D2	43AC	FC19	3F9E	7E66	4B5F	1ED8	13D7	7763	OBFF
	DE60	E3D5	397E	901A	1338	99CC	2E52	209E	441F	0DDE	9449	1CDA
	8B36	B454	FF1B	1E9E	784A	07D4	5DF5	85C5	503E	65AD	7E34	EE82
	2E92	99AC	B766	EF21	0CEB	7D10	B620	AB10	BA09	7DF7	EEB0	25BE
	E6AD	223B	3049	93F9	FCDB	C996	EA09	8BFC	56C7	495E	2E17	BD88
	E201	B2C2	40E9	9F79	B681	9963	3D8F	5F22	7BD8	5373	A868	902D
	93FC	20CB	9F1D	369B	1C54	A143	E416	D7C5	2A59	EAC8	0B49	D013
	575F	C302	FA4D	AD02	DDF7	BA96	71E9	9B56	DE44	9E57	9DFB	83AD
	B1F1	1A43	0900	2F9C	8EFD	A771	0A71	DAA0	176D	E5ED	C7A8	02F3
	99D8	6E26	0458	3EF1	901F	7C1A	99E8	CBB7	5357	09DA	84F2	5393
	9F2E	3706	79F9	CC361	.6							
Intermediate r	esult, I	R3 = H	<u>I₂(P) (1</u>	152 bit	s, see o	clause 9	9.2.2.2.	6 and [ITU-T	X.103	5]):	
IR3 =	2773	D699	51BB	3CC5	D595	F28E	3AAF	CCBF	C2A3	895D	D429	A707
	13EE	C1D7	2E08	BCA9	D3C7	AE45	7317	5180	25AE	9B9D	6125	BED6
	EA69	F440	FD1F	D309	2404	0AD9	E3DB	B2A4	8F1A	49DA	0F14	BD2E
	15B7	2E9D	E16E	9E95	EE26	6890	AA45	1ACE	A1A7	394C	9BFB	55B8
	54DE	5CFB	1385	028D	3A58	ED53	C8B1	639C	76D4	F4AF	BB51	52D8
	2E7F	F099	4210	DA52	CDFD	DF2B	973D	EC89	DFEB	A32C	A4B7	4428 ₁₆

<u>X.1035]):</u>												
IR4 =	B503	DOFE	AAC7	D9D5	B2C1	ADAC	ACB2	F4AC	ED7D	EOEA	65F2	D88F
	39DA	A98C	CCA3	C197	40F4	B466	6DC4	310F	6969	482F	2B94	D5A2
	BB64	4E8F	04A7	12D4	81FF	34E0	45F3	E351	E255	3A57	F32F	E600
	820A	7C9B	0407	F35C	588D	4C6A	0908	BD7C	9F76	A9BB	A478	16BB
	C6F8	73DC	B9EF	COCD	54FC	E949	F840	2EE6	DD0C	D4B9	52F9	96BC
	D529	9885	964C	394D ₁	L6							
Parameter can	ried in	AUT_I	Promp.	ind, <i>Y</i> =	= IR3·I	<u>R4 (21'</u>	76 bits,	see cla	ause 9.2	2.5.1.2	and [I]	Г U- Т
<u>X.1035]):</u>												
Y =	1BE5	7D4B	4832	8ED0	90C6	5623	C4D1	1400	F58E	FDEF	A37E	2AAC
	0EB6	9A5E	904E	F71A	193D	46B2	6113	372A	0517	45CB	1FCB	5200
	2FF9	A00C	9070	72C2	5946	E87D	630E	36A2	AFCE	5FB4	AA35	D2F7
	74DA	FED9	11A4	4EF4	698C	4582	9E47	8AA6	F74A	6714	09E0	8CA3
	9654	1D65	9099	DC16	3C40	2E8D	6779	D9CD	B182	4EF6	6A83	8A40
	7537	64A9	ABDB	1619	33A7	44E6	8C9A	3D37	2D34	1C46	423F	4679
	B03B	563D	0B02	D397	6171	776F	7FD4	31D6	6B26	4F6A	5AC5	BD89
	434C	C914	2698	36A0	DC88	2E31	D3FD	B108	69FA	4F86	AFAB	CDDC
	7CE6	D753	F7C5	5286	6E12	C2C3	80E4	70A2	6F81	08CD	D379	08F5
	AE54	4467	DA86	974D	BE27	39A6	5058	E201	1387	AB08	6402	15A3
	E973	5002	8852	6DD8	302B	60F8	28AF	9806	4535	F825	425C	0652
	010F	763A	052C	6808	L6							
Intermediate					g ^{RB} mo	$d p \mid g^R$	^{PA·RB} ma	<u>od p (32</u>	264 bits	s, see c	lause 9	.2.2.2.3
IR5 =		-			A770	8A32	5962	A05A	B89F	COAA	FB14	0EF7
	D678	B9D6	E866	FB46	4865	A430	C2BA	0668	722D	236E	7BEA	1C51
	7E4A	4812	1CD4	B42C	7803	2B8C	F05F	497B	46EC	F894	CB5A	0678
	7104	7E99	448A	D384	46A1	15AF	4640	7B9B	F13C	FFBD	2452	FB69
	3D7C	6445	DE1E	95AF	DC13	7B33	01AE	6659	0839	A05E	03A2	2169
	E10C	C5F6	D87B	62E5	FF92	B000	4DA9	8058	9F95	5F2E	F66A	42D6
	CBC4	E70A	A3CA	D136	B503	DOFE	AAC7	D9D5	B2C1	ADAC	ACB2	F4AC
	ED7D	EOEA	65F2	D88F	39DA	A98C	CCA3	C197	40F4	B466	6DC4	310F
	6969	482F	2B94	D5A2	BB64	4E8F	04A7	12D4	81FF	34E0	45F3	E351
	E255	3A57	F32F	E600	820A	7C9B	0407	F35C	588D	4C6A	0908	BD7C
	9F76	A9BB	A478	16BB	C6F8	73DC	B9EF	COCD	54FC	E949	F840	2EE6
	DDOC	D4B9	52F9	96BC	D529	9885	964C	394D	<u>9</u> 768	81A5	5808	E976
	F569	319A	8764	8539	16E0	1496	6E1F	191A	482B	1838	0E4F	9A77
					7A57						B951	52B7
								-				

Intermediate result, $IR4 = g^{RB} \mod p$ (1024 bits, see clause 9.2.2.2.3, clause 9.2.2.2.4, and [ITU-T X.1035]):

 EADB
 C460
 8B62
 3464
 944E
 1011
 8471
 028C
 8000
 8F8E
 EC8E
 B6C7

 FC36
 30DF
 27DD
 2D43
 3277
 2F84
 E1A8
 FF9F
 CA61
 6E4E
 E466
 CDA4

 B6AD
 9B02
 F498
 39BF
 589B
 C793
 2680
 8C26
 9AA6
 B351
 9418
 EFEB16

 Parameter carried in AUT_Promp.ind, $S_I = H_3(IR5)$ (128 bits, see clause
 9.2.2.2.6, clause
 9.2.5.1.2, and [ITU-T X.1035]):

 $S_2 =$ 3B55
 5C57
 33CF
 1E7F
 0711
 C525
 CD89
 3181_{16}

 Parameter carried in AUT_Verification.res, $S_2 = H_4(IR5)$ (128 bits, see clause
 9.2.2.2.6, clause
 9.2.5.1.3, and [ITU-T X.1035]):

 $S_2 =$ 3DB1
 A72C
 64B0
 CAE6
 57FF
 D4EA
 DC31
 F676_{16}

 NSC key generated, $K = H_5(IR5)$ (128 bits, see clause
 9.2.2.2.6 and [ITU-T X.1035])
 K =
 ABA6
 D8E8
 BD2B
 705B
 B4CC
 34BD
 1107
 E00D_{16}