

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T G.9961
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Amendment 2
(04/2014)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA,
DIGITAL SYSTEMS AND NETWORKS

Access networks – In premises networks

 Unified high-speed wire-line based home

networking transceivers - Data link layer
specification

Amendment 2

CAUTION !
PREPUBLISHED RECOMMENDATION

This prepublication is an unedited version of a recently approved Recommendation.
It will be replaced by the published version after editing. Therefore, there will be
differences between this prepublication and the published version.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual
property, protected by patents, which may be required to implement this Recommendation. However,
implementers are cautioned that this may not represent the latest information and are therefore strongly urged
to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2014

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 1

Amendment 2 to Recommendation ITU-T G.9961 (2010)

Unified high-speed wire-line based home networking transceivers - Data link
layer specification: Amendment 2

Summary

Amendment 2 to Recommendation ITU-T G.9961 (2010) contains the following:

1) Revision of text for clause 8.3.3.4.3 “CBTS back-off rules”.

2) Addition of working text for new clause 8.3.8 “Extended acknowledgements”.

3) Revision of the text for clause 8.5.3 “Routing of ADPs”.

4) Addition of working text for new clause 8.6.2.4 “Bandwidth update protocol for prioritized
connections” and revision of clause 8.6.2.4.1.1 “Format of BU_BWUpdate.req”.

5) Revision of the text for clause 8.8.4 “TXOP descriptor”.

6) Revision of text in Table 8-88 in clause 8.10.1.1.

7) Revision of the text for clause 8.12.1.2 “Establishment of a data connection”.

8) Revision of the text for clause 8.17 “DLL multicast stream”.

9) Addition of text for new clause 8.20 “Metrics acquisition”.

10) Addition of working text for new Annex X “Test vectors”.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 2

Amendment 2 to Recommendation ITU-T G.9961 (2010)

Unified high-speed wire-line based home networking transceivers - Data link
layer specification: Amendment 2

1 Revise clause 8.3.3.4.3 “CBTS back-off rules” as follows:

8.3.3.4.3 CBTS back-off rules

All nodes contending in a CBTS shall use the back-off rules described in this clause in the CW. In
the general case, CW immediately follows the PRS, as shown in Figure 8-16. The size of CW is
expressed in the number of ITS. The valid values for the maximum range of the CW are defined in
Table 8-7, the value of ITS is defined in clause 8.4. If PR signals are not required, the CW shall
start right after the INUSE signal slot, as described in clause 8.3.3.4.6, or at the beginning of the
CBTS, if INUSE is not used.

Each node shall maintain the following back-off parameters for each MA priority of the frame that
node intends to transmit:

• back-off-counter (BC);

• defer counter (DC); and

• back-off stage counter (BSC).

The BC determines the number of ITS the node has to wait before it begins the transmission. The
DC keeps track of the number of consecutive times a node can lose contention before changing the
back-off parameters. The BSC keeps track of the back-off stage to enable the selection of BC and
DC when the back-off stage changes.

Nodes that are allowed to compete in the CW shall use their back-off parameters for that MA
priority, and act according to the following rules before starting a transmission in a CBTS:

1) If the BC is zero, the node shall start transmitting its frame within a time window of
TX_ON microseconds after the start of the first ITS of the CW.

2) If the BC is not zero, the node shall decrement its BC upon completion of each ITS in
which it detects no transmission.

3) If, upon completion of certain ITS, the value of BC is zero, the node shall start transmitting
its frame within a time window of TX_ON microseconds after the end of the ITS.

4) If a node detects a transmission during an ITS, it shall not transmit in this CBTS and shall
do the following:

• The node shall decrement the DC.

• If the DC is zero and BSC is less than BSCmax, the node shall increment the BSC. If the
DC is zero and BSC is equal to BSCmax, the node shall maintain the current BSC. It
shall then set DC to DCmax(BSC) and BC to a random value in the range of
(0, NCWmax(BSC) – 1).

• If the DC is greater than zero, the node shall decrement the BC.

Nodes that have inferred a collision (see clause 8.3.3.4.9) shall increment the BSC if BSC is less
than BSCmax. It then sets DC to DCmax(BSC) and BC to a random value in the range of
(0, NCWmax(BSC) – 1).

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 3

After initialization and upon successful transmission, nodes shall initialize BSC to 1, DC to
DCmax(1) and BC to a random value in the range (0, NCWmax(1) – 1).

As a default behaviour, after initialization and upon successful transmission, nodes shall initialize
BSC to 1, DC to DCmax(1) and BC to a random value in the range (0, NCWmax(1) – 1). This
behaviour of the BSC, can be overridden by indicating so by the "Gradual BSC decrease indication
flag" flag, in Table 8-85.3. If this flag is set to one, then after initialization and upon successful
transmission, nodes shall decrement BSC by 1, unless BSC is already 1, in which case BSC shall be
maintained as 1. In this situation, the recommended values for the values of DCmax(BSC) are shown
in Table 8-6.1, i.e., DC parameters are invalid for back-off rules.

Table 8-6.1 – DCmax(BSC) values

BSC DCmax(BSC) NCWmax(BSC)

1 1 8

2 1 16

3 1 32

4 1 64

Table 8-7 shows the valid default values of DCmax(BSC) and NCWmax(BSC). These valid default
values are used for all MA priorities. BSCmax shall be 4.

The default values in Table 8-7 can be overridden by using the contention window (CW)
information sub-field of the auxiliary information field in the MAP, as described in clause 8.8.5.11.

Table 8-7/G.9961 – Valid Default DCmax(BSC) and NCWmax(BSC) values

BSC DCmax(BSC) NCWmax(BSC)
1 1 8
2 2 16
3 4 32

4 16 64

NOTE – other values of BSC, DCmax and NCWmax are
for further study.

If a node that is allowed to contend in a CBTS has an MPDU ready to transmit after the start of the
CW, it is still allowed to contend with this MPDU using the back-off procedure defined in this
clause only if the MPDU's MA priority is equal to or higher than the MA priority that won the
priority resolution. The node shall pick the BC random value for the ITS in the CW in the same way
as nodes that had the frame ready to transmit prior to the start of the CW, and shall start
decrementing the BC from the ITS where the frame was ready for transmission. The BC, DC, BSC
values that shall be used are of the frame's MA priority value.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 4

2 Add new clause 8.3.8 “Extended acknowledgements” as follows:

8.3.8 Extended Acknowledgements

Extended acknowledgements between two nodes may be used to improve throughput and reduce
unnecessary retransmissions due to the lack of sufficient number of bits in the regular
acknowledgement frame.

The BMSG frame is used by a source node to indicate to the destination node that it supports
reception of an extended acknowledgement. The destination node that supports an extended
acknowledgement can choose one of the following options on a per frame basis depending on its
specific requirement:

1. It can send a regular acknowledgement.

2. It can send an extended acknowledgement.

3. In case of bidirectional transmissions, it can send a BACK frame, if it has additional data to
transmit and doesn't need to send an extended acknowledgement.

A source node can offer a destination node this choice by sending a BMSG frame with the BTXEF
set to one, EXTACKGR bit set to one and BTXGL set to a non-zero value in any of the BMSG
frames. In this case, as BTXGL ≠ 0, the destination node may send a BACK frame, a regular ACK
frame or an extended ACK frame that fits within the granted time duration by the source node. The
BTXGL shall at least include time for the destination node to send an extended ACK. Specifically,
the destination node's response to the BMSG shall be as shown in Table 8-13.1:

Table 8-13.1 – Extended acknowledgement settings

BTXEF BTXGL Frame transmitted by the
destination node

1 2 symbols for destination node ACK or EACK

1 >2 symbols for destination node ACK or EACK or BACK
(Note 1)

NOTE 1 – This row applies to bidirectional transmissions.

The BMSG PHY frames shall use the format described in Tables 7-47 and 7-53 of [ITU-T G.9960],
and the BACK PHY frames shall use the format described in Tables 7-48 and 7-54 of [ITU-T
G.9960], in which the PHY frame header contains 2×PHYH information bits (EHI bit, in the PHY
frame header, is set to one, see clause 7.1.2.3.1.7 of [ITU-T G.9960]).

The extended ACK frames shall use the format described in Table 7-54.1 of [ITU-T G.9960], in
which the PHY frame header contains 2×PHYH information bits (EHI bit, in the PHY frame header,
is set to one, see clause 7.1.2.3.1.7 of [ITU-T G.9960]).

An exchange of BMSG and BACK/ACK/extended ACK frames forms a bidirectional frame
sequence that shall last strictly inside the boundaries of the particular TXOP or TS assigned in the
MAP for the node sourcing the bidirectional transmission. When using an extended
acknowledgement, only immediate acknowledgement is allowed (the valid values of RPRQ field
are 00 and 01 only).

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 5

An extended acknowledgement may be initiated by either a source node or a destination node using
one of the following methods:

• A destination node transmits to the source node, in response to a MSG frame requesting
immediate acknowledgement, an ACK frame with the EXTACKRQ bit set to one.

• A source node transmits to the destination node a BMSG frame with the BTXGL field set to
a non-zero value, BTXEF bit set to one and EXTACKGR bit set to one.

If a source node requested by a destination node to initiate extended acknowledgements accepts the
request, it shall indicate that the request is granted and shall initiate bidirectional transmission by
transmitting a BMSG frame that initiates extended acknowledgements. Alternatively, the source
node requested to initiate extended acknowledgement may decline the request. In this case it
indicates that the extended acknowledgement request is declined by continuing to send BMSG
frames with the EXTACKGR set to zero, instead of the BMSG frame that initiates extended
acknowledgements.

A source node may initiate extended acknowledgements autonomously, without a request from the
destination node. A source node may terminate extended acknowledgements at any time and re-start
them again. The destination node may indicate to the source node when the extended
acknowledgements may be stopped by setting the EXTACKRQ to zero, while the decision is up to
the source node.

A destination node responds to the BMSG frame that initiates extended acknowledgements by one
of the following ways:

• transmitting a BACK frame that contains data in the payload intended for the source node.
The BACK frame additionally contains acknowledgement information for data previously
transmitted by the source node. In the BTXRL field of the frame header the destination node
indicates the requested duration of the next BACK frame it expects to transmit.

• transmitting an ACK frame

• transmitting an extended ACK frame

The destination node may indicate that extended acknowledgement is not needed any further
(advice for termination of extended acknowledgement) by setting the BTXRL = 0 in the BACK
frame or EXTACKRQ = 0 in the ACK frame. In response, the source node may terminate extended
acknowledgement.

The maximum duration of a BACK frame is determined by the source node in the BTXGL field of
the PHY-frame header. The destination node only indicates the desired duration of BACK frame in
the BTXRL field of the PHY-frame header of the previous BACK frame, but the final decision on
the BACK frame duration limit (including the following IFG) is done by the source node.

A responding BACK frame shall be transmitted TBM2BAIFG after the BMSG frame. The Imm-ACK
frame shall be transmitted TAIFG after the BMSG frame. In all of the following frame sequences:

• BMSG followed by a BACK

• BMSG followed by an Imm-ACK

if the transmitter of the first frame has no knowledge of the 'receiver specific' AIFG
(see clause 8.6.1.1.4.1 and clause 8.6.4.3.1) or if the first frame in any of the above frame sequences
includes less than MIN_SYM_VAR_AIFG symbols, the gap between this frame and the following
frame shall be TAIFG-D (see clause 8.4), otherwise the gap shall be TAIFG. The parameter
MIN_SYM_VAR_AIFG is defined in clause 8.4, for each media. The transmitter indicates usage of

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 6

either TAIFG or TAIFG-D by using the AIFG_IND bit in the PHY-frame header
(see clause 7.1.2.3.2.2.16 of [ITU-T G.9960]).

Extended acknowledgement can be used in CFTXOP, STXOP, and CBTXOP. The source node
shall ensure that the total duration of the bidirectional frame sequence does not violate the
boundaries of the TXOP or the maximum allowed duration of the TS. Particularly:

– if extended acknowledgement is used in a CFTXOP, the last frame in the sequence shall
end at least TIFG_MIN before the end of the CFTXOP;

– if extended acknowledgement is used in a CFTS or in a CBTS, the last frame in the
sequence shall end at least TIFG_MIN before the end of the Max_TS_Length assigned in the
MAP for the TS and at least TIFG_MIN before the end of the TXOP where this TS is defined.

When the bidirectional transmission is terminated with a BMSG frame with BTXEF = 1 and
BTXGL ≠ 0, the total duration of the frame sequence shall include this BTXGL value, regardless of
the actual duration of the last BACK frame, acknowledgement frame or extended acknowledgement
frame.

Nodes detecting a bidirectional transmission shall stay silent until the end of the bidirectional
transmission sequence or until the expiration of the Max_TS_Length of the corresponding TS,
whichever comes first.

Extended acknowledgement is not allowed when RTS/CTS is used.

3 Revise the text of clause 8.5.3 “Routing of ADPs” (from G.9961 corr2) as follows:

8.5.3 Routing of ADPs

Each node shall inform the domain master about the nodes of its domain it has detected as defined
in clause 8.6.4.3.

Each node can have one or more applications associated with its AE (above its A-interface). Each
application is identified by a unique 6-octet MAC address. Each node shall maintain the full list of
MAC addresses associated with applications above its A-interface as well as its own MAC address.
This list is referred to as the local address association table (LAAT).

NOTE – The list of MAC addresses associated with applications above its A-interface for a node
can be populated by learning, or directly programmed by the DLL management entity.

Each node shall also maintain the list of MAC addresses associated with the AEs of other nodes in
the domain and the MAC addresses of those nodes. This list is referred to as a remote address
association table (RAAT). Each node provides its local AAT to the domain master and other nodes
of the domain using topology management messages as described in clause 8.6.4.3.

The address association table (AAT) is formed by the aggregation of LAAT and RAAT.

Whenever a node receives an ADP from the A-interface, it uses its AAT to determine if the ADP is
intended for the node itself (local in-band management message, see Annex A) or for an AE
associated with another node.

• If the ADP is intended for a remote AE or is an in-band management message addressed to
a different node (case B of Table 8-14.1), the node shall determine the destination
DEVICE_ID of the node in its domain through which the remote AE can be reached and
send the corresponding ADP directly or via relay nodes to this node. This destination
DEVICE_ID is provided to the Flow Mapper (see Figure 8-2) and is further reached either
directly or via relays.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 7

• If the ADP is intended for a group MAC address belonging to the AEs of different nodes of
the domain (case D of Table 8-14.1), the node shall associate this ADP with a destination
MSID and it shall send the APDU using DLL multicast transmission. The node may send
the APDU to the appropriate nodes using unicast transmissions until the DLL multicast
paths toward the appropriate nodes are established. The node may send the APDU using a
combination of DLL multicast and DLL unicast transmissions until the relevant DLL
multicast path is established.

NOTE 1 – The association between the group of MAC addresses and addressed nodes is
provided by the DLL management entity. The mechanism of this association is vendor
discretionary and may be based on various multicast protocols, such as IGMP.

• If the destination address of the ADP is a standard broadcast address (FFFFFFFFFFFF16)
(case E of Table 8-14.1), then the BRCTI bit in the LFH of the LLC frame carrying the
corresponding APDU shall be set to one, so that the APDU will be broadcast to all nodes in
the domain using the procedure described in clause 8.5.4. If the EtherType of the ADP
equals 22E316, the corresponding APDU shall also be forwarded to the local DLL
management entity.

NOTE 2 – For ADP with EtherType different from 22E316 and the standard broadcast
address as the DA of that ADP, sending the corresponding APDU to the local DLL
management entity is vendor discretionary.

• If the destination address of a received ADP is found in the local AAT and it is not the
MAC address of the node (case A of Table 8-14.1), the ADP shall be dropped without
notification.

• If the destination address of a received ADP is the MAC address of the node (case C of
Table 8-14.1), the node shall pass the corresponding APDU to its DLL management entity.

• If the destination address of a received ADP is the reserved MAC address 01-19-A7-52-76-
96 (case F of Table 8-14.1), the node shall pass the corresponding APDU to its DLL
management entity

• If the destination MAC address corresponds to a unicast MAC address and the destination
node cannot be inferred from previous rules (not covered in cases A, B, C and F), then the
BRCTI bit in the LFH of the LLC frame carrying the corresponding APDU shall be set to
one, so that the APDU will be broadcast to all nodes in the domain using the procedure
described in clause 8.5.4. (case G of Table 8-14.1)

• If the destination MAC address corresponds to a group MAC address for which the
destination nodes cannot be inferred or a group MAC address intended to reach all the
nodes of the domain (case H of Table 8-14.1), then the BRCTI bit in the LFH of the LLC
frame carrying the corresponding APDU shall be set to one, so that the APDU will be
broadcast to all nodes in the domain using the procedure described in clause 8.5.4.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 8

Table 8-14.1 – Routing of ADPs

Case
Ethernet

frame type
ADP Destination

address
Routing Example

A Unicast
frame

In LAAT,
except node's
MAC address

Drop the message Any kind of traffic

B Unicast
frame

In RAAT Look for the
DestinationNode defined for

this DA

Normal routing of frames
coming through the A

interface (can be normal
Ethernet or remote in-band

messages)

C Unicast
frame

Node's MAC
address

Send to DLL management Local in-band message

D Multicast
frame

Multicast address
mapped to known
destination
device(s)

The node has the choice to
treat this multicast
transmission as several DLL
unicast transmissions or
using a DLL multicast stream

IGMP/MLD Ethernet
frames

E Broadcast
frame

Broadcast address If EtherType = 22E316 send
to DLL management
treat this broadcast

transmission using BRT
(BRCTI=1; DestinationNode

= BROADCAST_ID) and
route following the BRT

rules

Normal broadcast

F Unicast
frame

Reserved address Send to DLL management

G

Unicast
Frame

Destination MAC
address not

covered by cases
A, B, C and F

Treat this case as a broadcast
transmission using BRT

(BRCTI=1; DestinationNode
= BROADCAST_ID) and
route following the BRT

rules

Any kind of traffic

H Multicast
Frame

• Destination
device(s)
cannot be
inferred from
the DA or

• Frame
intended for
all devices

Treat this case as a broadcast
transmission using BRT
(BRCTI=1; DestinationNode
= BROADCAST_ID) and
route following the BRT
rules

Multicast protocol
(IGMP/MLD) control

frames

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 9

4 Add new clause 8.6.2.4 “Bandwidth update protocol for prioritized connections” as
follows:

8.6.2.4 Bandwidth update protocol for prioritized connections

This clause defines the mechanism used by the nodes to inform the domain master on the actual
status of its connection queues. This protocol is supported by management messages described in
clause 8.6.2.4.1.

A node should follow the bandwidth update protocol when a node does not have direct visibility
with the domain master (the BRURQ field in the PHY-frame header of transmitted PHY frames is
not received by the domain master).

In addition, any node should use this protocol when
• The domain master does not allocate in the MAP enough TXOPs allowing to transmit user

priorities queued in the node
• The node wants to inform the domain master on the status of a particular connection

The domain master may take this information into account when assigning resources for a given
connection. As prioritized connections are not QoS guaranteed, the domain master may change
bandwidth allocations on its own discretion.

To inform the DM about the necessity to allocate bandwidth for prioritized connections a node shall
send a BU_BWUpdate.req message to its domain master including the information about the
reported connection status (user priority in the connection queue, bandwidth request update).

Upon reception of BU_BWUpdate.req, the domain master shall send to the reporting node a
BU_BWUpdate.cnf message acknowledging the reception of the information. If a node doesn’t
receive the BU_BWUpdate.cnf message within 200 ms, it may repeat the report.

If the request is acknowledged by the DM, the node shall refrain from reporting a new bandwidth
update for at least the next 1 second.

NOTE – A node should report the status of its queues when traffic conditions
change but taking care not to flood the DM with report messages. If a node has
enough resources with the current allocation by the domain master, it should only
send a report when its traffic requirements change.

8.6.2.4.1 Bandwidth update protocol messages

The following sub-clauses specify the messages that are needed to support the bandwidth update
protocol.

8.6.2.4.1.1 Format of BU_BWUpdate.req

This message is sent by the reporting node to the Domain Master and contains the user priorities,
the bandwidth request update for the given connection by means of BRURQ indication, and PHY
data rate used by the transmitter.

The format of the MMPL of the BU_BWUpdate.req shall be as shown in Table 8-44.1.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 10

Table 8-44.1 – Format of the MMPL of the BU_BWUpdate.req message

Field Octet Bits Description
DeviceID 0 [7:0] DEVICE_ID of the originating node.
PRIORITY_QU
EUE

1 [7:0] Priority queue corresponding to the BRURQ we are
reporting

Priorities 2 [7:0] User priority bit mask. Each bit represents one user
priority. Bit 0 represents user priority 0 and bit 7 user
priority 7. Each bit signals the presence of at least one
APDU with this user priority in the selected connection

BRURQ 4&5 [15:0] See in clause 7.1.2.3.2.2.19 (NOTE)
TxRate Variable See

Table
8-33

The actual PHY data rate used by the transmitter,
specified in bits per second for each channel estimation
window, based on the bit loading per symbol, the symbol
time, the FEC rate and the number of repetitions.
The format of the TX rate field is described in Table 8-33.
Note that the TX Rate should be specified per each
channel estimation window.

NOTE – The reporting node may set this field to zero in order to indicate that the DM may release
the resources allocated for the connection that is being reported.

8.6.2.4.1.2 Format of BU_BWUpdate.cnf

This message is sent by the Domain Master to the reporting node after it has assessed whether the
bandwidth allocation for the node can be provided.

The format of the MMPL of the BU_BWUpdate.cnf shall be as shown in Table 8-44.2.

Table 8-44.2 – Format of the MMPL of the BU_BWUpdate.cnf message

Field Octet Bits Description
DeviceID 0 [7:0] DEVICE_ID of the reporting node.
PRIORITY_QU
EUE

1 [7:0] Priority queue specified by the reporting node in the
BU_BWUpdate.req message

StatusCode 3 [7:0] Status of the request for bandwidth allocation:
• 0016 = Success.
• 0116 = Failure – Insufficient resources.
• 0216 = Failure – Insufficient resources for the

requested priority
• 0316 – FF16 = Reserved.

5 Revise the text of clause 8.8.4 “TXOP descriptor” as follows:

8.8.4 TXOP descriptor

Each TXOP is described by at least one TXOP descriptor. A TXOP descriptor is composed of a
basic TXOP descriptor that may be extended by one or more additional TXOP descriptor extensions
(see clauses 8.8.4.1.1 to 8.8.4.1.3). TXOP descriptor extensions supply additional information like
scheduling information, timing information and TXOP attributes.

Basic TXOP descriptors and TXOP descriptor extensions are each four octets in length.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 11

A TXOP descriptor represents the right of a certain node or a set of nodes to transmit within a
certain TXOP. A CFTXOP shall be described using a single TXOP descriptor. A CBTXOP shall be
described by either a single TXOP descriptor (see clause 8.3.3.4.5.3) or by multiple TXOP
descriptors (see clause 8.3.3.4.5.2). A STXOP shall be described using several TXOP descriptors
representing the TSs within the STXOP.

The domain master shall not assign more than 127 TXOP descriptors in the MAP, describing TSs,
within a single STXOP (including CBTXOP).

The differentiation between different TXOPs shall be done via the TXOP attributes extension,
which shall be appended to the last TXOP descriptor of a TXOP. The TXOP attributes extension
supplies the timing information for the TXOP (see clause 8.8.4.1.1). A node associated with a
TXOP or a TS is uniquely identified in a TXOP descriptor by the SID field, which shall be set to the
DEVICE_ID of the node as was assigned by the domain master.

A flow associated with a TXOP or a TS is uniquely identified in a TXOP descriptor by the
combination (SID, FLOW_ID). A FLOW_ID is a unique identifier of a flow associated with the
SID.

A user priority associated with a TXOP or TS is uniquely identified in a TXOP descriptor by the
tuple (SID, PRI). The PRI value shall represent the lowest MPDU priority that may be sent in the
TXOP or TS.

A special TXOP is specified for assignment to nodes for transmitting traffic associated with
bandwidth managed DLL multicast stream. These TXOPs are assigned to a DLL multicast stream
by using the 'Multicast Indication' field in the basic TXOP descriptor, combined with
'FLOW_ID/PRI/MSID' field in the basic TXOP descriptor to identify the MSID of the stream and
the 'SID' field in the basic TXOP descriptor to identify an intermediate node in the DLL multicast
stream that is responsible for the transmission of data associated with the DLL multicast stream.
The 'DID/Originating Node' field in the TXOP descriptor shall comtain the originating node of the
DLL multicast stream and together with the MSID field, uniquely identifies the DLL multicast
stream in the domain.

Table 8-63 describes the basic TXOP descriptor. When the extension bit is set, the TXOP descriptor
shall have an extension, as described in clause 8.8.4.1. Different types of TXOP descriptor
extensions are distinguished by extension type.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 12

Table 8-63 – Basic TXOP descriptor format

Field Octet Bits Description

SID 0 [7:0] SID = 1-250 identifies the DEVICE_ID of the node assigned to
the TXOP.
SID = 0, 255 indicates special values for the TXOP descriptor
(see clause 8.8.4.2).

DID/Originating
Node

1 [7:0] If Multicast Indication = 0:

• DID = 0 indicates that the DID of the destination node of
the flow is not known to the domain master.

• DID > 0 indicates the destination node for the flow. DID
shall be set to the DEVICE_ID as described in Table 8-
61.

If Multicast Indication = 1:

This field identifies the originating node of the DLL multicast
stream for which this TXOP is assigned.

Multicast
Indication/MAP type

2 and
3

[0] If this field is a special TXOP descriptor of a MAP (see
clause 8.8.4.2) it indicates the type of MAP that shall be
transmitted:
0 indicates MAP-A, 1 indicates MAP-D.
If this field is not a special TXOP descriptor of a MAP this field
contains the multicast indication:
1 indicates multicast/broadcast DID, 0 otherwise.

PR signal required [1] This bit instructs nodes contending for transmission in a CBTS
whether to use the PR signal:
0 – PR signal shall not be used.
1 – PR signal is required.

CBTS Closure Mode [3:2] This field instructs nodes where to close a CBTS that was used
for transmission (see in clause 8.3.3.4.5):
00 – Duration-based.
01 – Timeout-based from frame sequence start.
10 – Timeout-based from CBTS start.
11 – Reserved by ITU-T.

Reduced MAP [4] 0 – TXOP for a complete MAP.
1 – TXOP for a reduced MAP. See clause 8.8.1.

Reserved [5:4] Reserved by ITU-T (Note).

FLOW_ID/PRI/MSI
D

[13:6] If Multicast Indication = 0:

• Identifies the flow or the user priority associated with the
TXOP/TS.

• Valid values for user priority assignments are 0-7
 Valid values for FLOW_ID assignments are 8-2504

If Multicast Indication = 1:

• Valid values for MSID assignments are 1-250

• Value 0 is reserved by ITU-T

Values 251- 254 are reserved by ITU-T
Value 255 indicates special values for the TXOP descriptor (see

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 13

Table 8-63 – Basic TXOP descriptor format

Field Octet Bits Description

clause 8.8.4.2).

Last_in_Group [14] 1 indicates the last TS of a group of TSs in STXOP, 0 otherwise.
Shall be set to zero for CFTXOP.

Extension [15] 0 – No extension is present.
1 – This TXOP descriptor contains an extension.

NOTE – Bits that are reserved by ITU-T shall be set to zero by the transmitter and ignored by the receiver.

Several TSs within the same STXOP can be grouped together to specify common attributes for
these TSs via a group information extension (see clause 8.8.4.1.3). Grouping of several TSs shall be
done by setting the Last_in_Group indication in the TXOP descriptor of the last TS of the group.
Groups are implicitly numbered according to their appearance in the MAP. The first group shall be
identified as group number one and so on. If a group contains only one TS, the descriptor of this TS
shall have its Last_in_Group bit set to one.

6 Revise Table 8-88 “OPCODEs of management messages” in clause 8.10.1.1 as follows:

Table 8-88 – OPCODEs of management messages

Category Message name OPCODE
(hex)

Description MMPL
Reference

Admission
(01X)

ADM_NodeRegistrRequest.req 010 Registration request Clause
8.6.1.1.4.1

ADM_DmRegistrResponse.cnf 011 Registration response Clause
8.6.1.1.4.2

ADM_NodeResignRequest.req 012 Resignation request Clause
8.6.1.1.4.3

ADM_DmResign.cnf 013 Registration
announcement

Clause
8.6.1.1.4.4

ADM_DmForcedResign.req 014 Forced resignation
request

Clause
8.6.1.1.4.5

ADM_NodeReRegistrRequest.re
q

015 Periodic re-
registration request

Clause
8.6.1.1.4.6

ADM_DmReRegistrResponse.cnf 016 Periodic re-
registration response

Clause
8.6.1.1.4.7

ADM_DmReRegistrInitiate.ind 017 Re-registration
initiation request

Clause
8.6.1.1.4.8

ADM_NodeReportMAPD.ind 018 Report the reception
of a MAP-D with
matching domain
name

Clause
8.6.6.1.4.1

ADM_NodeReportMAPA.ind 019 Report the reception
of a MAP-A with
matching DNI

Clause
8.6.6.1.4.2

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 14

AKM
(02X)

AUT_NodeRequest.req 020 Request for
authentication

Clause
9.2.5.1.1

AUT_Promp.ind 021 Delivers
authentication prompt

Clause
9.2.5.1.2

AUT_Verification.res 022 Authentication
prompt verification

Clause
9.2.5.1.3

AUT_Confirmation.cnf 023 Authentication
confirmation message

Clause
9.2.5.1.4

AKM_KeyRequest.req 024 Request for secure
communication with
another node(s)

Clause
9.2.5.2.1

AKM_NewKey.req 025 Message delivers the
encryption key to the
Supplicant node

Clause
9.2.5.2.2

AKM_KeyConfirmation.req 026 Message delivers the
encryption key to the
Addressee node(s)

Clause
9.2.5.2.3

AKM_KeyUpdate.req 027 Request for re-
authentication and
update the keys

Clause
9.2.5.3.1

AKM_KeyAck.cnf 028 Addressee
confirmation that
encryption key was
delivered

Clause
9.2.5.2.3

SC_DMRes.req 029 Request to resign a
node from the
domain

Clause
9.2.5.2.5

SC_DMRes.cnf 02A Confirmation of
resignation from the
domain master

Clause
9.2.5.2.6

AKM_KeyAddRequest.req 02B Request to join a
node to a multicast
group

Clause
9.2.5.2.1.1

AKM_DomainKeyUpdate.ind 02C Indication to update
the domain-wide
encryption keys

Clause
9.2.5.3.2

AKM_NewKey.ind 02D Indication that the
new encryption key is
available for use

Clause
9.2.5.2.7

Topology
maintenance

(03X)

TM_NodeTopologyChange.ind 030 Topology report from
a node

Clause
8.6.4.3.12.1

TM_NodeTopologyChange.req 031 Request sent by the
domain master to a
particular node
requesting its
topology report

Clause
8.6.4.3.2

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 15

TM_NodeTopologyChange.cnf 032 Topology report from
a node in response to
the message
TM_NodeTopologyC
hange.req

Clause
8.6.4.3.3

TM_DomainRoutingChange.ind 0331 Optimal routing
update from the
domain master

Clause
8.6.4.3.5

TM_ReturnDomainRouting.req 0342 Request for routing
update from the node
to the domain master

Clause
8.6.4.3.6

TM_ReturnDomainRouting.cnf 0353 Reply on routing
request by the
Domain master

Clause
8.6.4.3.7

TM_DMBackup.ind 0364 Topology report from
a node sent by
backup domain
master to a node

Clause
8.6.4.3.4

Power-line
coexistence with
alien networks

(04X)

Reserved for use by G.9972 [2]

Multicast
Binding
(05X)

MC_GrpInfoUpdate.ind 050 Multicast Binding
Information update

Clause
8.16.5.1

MC_GrpInfoUpdate.cnf 051 Multicast binding
information update
confirmation

Clause
8.16.5.2

MC_GrpRemove.req 052 Multicast leave
request from the
transmitter

Clause
8.16.5.3

MC_GrpRemove.cnf 053 Multicast leave
confirmation from the
receiver

Clause
8.16.5.4

DMC_Path.req 054 DLL multicast path
establishment
request

Clause
8.17.6.1

DMC_Path.cnf 055 DLL multicast path
establishment
confirmation

Clause
8.17.6.2

DMC_PathReject.cnf 056 DLL multicast path
establishment
rejection

Clause
8.17.6.3

DMC_EnforcePath.req 057 DLL multicast
enforced path
establishment
request

Clause
8.17.6.4

DMC_ReleasePath.req 058 A request to release a
DLL multicast
client node from
its MSID

Clause
8.17.6.5

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 16

DMC_ReleasePath.cnf 059 Confirmation of the
release of a DLL
multicast client
node from its
MSID

Clause
8.17.6.6

DMC_PathAlive.ind 05A DLL multicast path
alive indication

Clause
8.17.6.7

DMC_BrokenLink.ind 05B DLL multicast
broken link indication

Clause
8.17.6.8

Domain Master
Selection and

Backup Domain
Master
(06X)

DM_Handover.req 060 Domain master role
handover request

Clause
8.6.6.5.1

DM_Handover.cnf 061 Domain master role
handover
confirmation

Clause
8.6.6.5.2

DM_Handover.ind 062 Domain state update Clause
8.6.6.5.3

DM_Handover.rsp 063 Domain state update
confirmation

Clause
8.6.6.5.4

DM_BackupAssign.req 064 Backup domain
master assignment
request

Clause
8.6.5.2

DM_BackupAssign.cnf 065 Backup domain
master assignment
confirmation

Clause
8.6.5.2

DM_BackupData.ind 066 Domain state update Clause
8.6.5.2

DM_BackupRelease.req 067 Release of a backup
domain master

Clause
8.6.5.2

DM_BackupRelease.cnf 068 Backup domain
master release
confirmation

Clause
8.6.5.2

Channel
Estimation

(07X)

CE_ProbeSlotAssign.reqRequest.
ind

070 Channel estimation
bandwidth
assignment request

Clause
8.11.7.1

CE_ProbeSlotRelease.reqind 071 Channel estimation
bandwidth release
request

Clause
8.11.7.2

CE_ParamUpdate.reqind 072 Channel estimation
parameters update
request

Clause
8.11.7.1

CE_ParamUpdateRequest.ind 073 Request for Cchannel
estimation parameter
requestupdate

Clause
8.11.7.4

CE_PartialBatUpdate.reqind 074 Partial BAT update
indicationrequest

Clause
8.11.7.5

CE_ACESymbols.ind 075 Request for an ACE
symbol attachment

Clause
8.11.7.6

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 17

CE_ProbeSlotAssign.cnf 076 Channel estimation
bandwidth
assignment
confirmation

Clause
8.11.7.7

CE_ProbeSlotRelease.cnf 077 Channel estimation
bandwidth release
confirmation

Clause
8.11.7.8

CE_ParamUpdate.cnf 078 Channel estimation
parameters update
confirmation

Clause
8.11.7.9

CE_PartialBatUpdate.cnf 079 Partial BAT update
confirmation

Clause
8.11.7.10

Neighbouring
Nnetworks

coordination
(08X)

For Ffurther study For
Ffurther

study

For Ffurther study For Ffurther
study

Inactivity
scheduling

(09X)

IAS_LongInactivity.req 090 Long inactivity
scheduling request

Clause
8.3.6.1.1

IAS_LongInactivity.cnf 091 Long inactivity
scheduling
confirmation

Clause
8.3.6.1.1

IAS_ShortInactivity.req 092 Short inactivity
scheduling request

Clause
8.3.6.2.1

IAS_ShortInactivity.cnf 093 Short inactivity
scheduling
confirmation

Clause
8.3.6.2.1

Flow
establishment

(0AX)

CL_EstablishFlow.reqReserved 0A0 Flow establishment
request Reserved by
ITU-T

§ 8.6.2.3.1

CL_EstablishFlow.cnfReserved 0A1 Reserved by ITU-
TFlow establishment
confirmation

§ 8.6.2.3.2

FL_AdmitFlow.req 0A2 Flow admission
request

Clause
8.6.2.3.8

FL_AdmitFlow.cnf 0A3 Flow admission
confirmation

Clause
8.6.2.3.9

FL_AdmitFlow.ind 0A4 Flow admission
indication

Clause
8.6.2.3.10

FL_AdmitFlow.rsp 0A5 Flow admission
acknowledgement

Clause
8.6.2.3.18

FL_OriginateFlow.req 0A64 Flow origination
request

Clause
8.6.2.3.6

FL_OriginateFlow.cnf 0A75 Flow origination
confirmation

Clause
8.6.2.3.7

Flow
maintenance

(0BX)

FL_ModifyFlowParameters.req 0B0 Modification of flow
parameters and
allocation

Clause
8.6.2.3.11

FL_ModifyFlowParameters.cnf 0B1 Clause
8.6.2.3.12

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 18

FL_ModifyFlowParameters.ind 0B2 Clause
8.6.2.3.15

FL_ModifyFlowAllocations.req 0B3 Modification of flow
allocation

Clause
8.6.2.3.17

FL_ModifyFlowAllocations.cnf 0B4 Clause
8.6.2.3.18

Flow
termination

(0CX)

CL_TerminateFlow.reqReserved 0C0 Flow termination
request and
confirmationReserve
d by ITU-T

§8.6.2.3.3

ReservedCL_TerminateFlow.cnf 0C1 Reserved by ITU-T §8.6.2.3.4
ReservedCL_FlowTerminated.ind 0C2 Reserved by ITU-T §8.6.2.3.5
FL_TerminateFlow.req 0C3 Clause

8.6.2.3.13
FL_TerminateFlow.cnf 0C4 Clause

8.6.2.3.14
FL_BrokenTunnel.ind 0C5 Indicate broken

tunnel
Clause
8.6.2.3.19

FL_BrokenTunnel.rsp 0C6 Response to
indication

Clause
8.6.2.3.20

FL_ReleaseTunnel.req 0C7 Request Release
Tunnel

Clause
8.6.2.3.21

FL_ReleaseTunnel.cnf 0C8 Confirm Release
Tunnel

Clause
8.6.2.3.22

FL_DM_RenewTunnel.req 0C9 DM renew tunnel
request

Clause
8.6.2.3.23

FL_DM_RenewTunnel.cnf 0CA Confirm DM renew
tunnel

Clause
8.6.2.3.24

FL_RenewTunnel.req 0CB Renew tunnel request Clause
8.6.2.3.25

FL_RenewTunnel.cnf 0CC Confirm Renew
tunnel

Clause
8.6.2.3.26

FL_DeleteFlow.req 0CD Delete Flow request Clause
8.6.2.3.27

FL_DeleteFlow.cnf 0CE Confirm Delete Flow Clause
8.6.2.3.28

Media Access
Plan

(0DX)

MAP 0D0 MAP message Clause 8.8

Channel
Estimation 2

(0EX)

CE_Request.ind 0E0 Channel estimation
trigger

Clause
8.11.7.11

CE_Initiation.req 0E1 Channel estimation
initiation request

Clause
8.11.7.12

CE_Initiation.cnf 0E2 Channel estimation
initiation
confirmation

Clause
8.11.7.13

CE_ProbeRequest.ind 0E3 Request for PROBE
frame transmission

Clause
8.11.7.14

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 19

CE_Cancellation.req 0E4 Channel estimation
cancellation request

Clause
8.11.7.15

CE_BatIdMaintain.ind 0E5 BAT ID maintenance Clause
8.11.7.16

CE_Cancellation.cnf 0E6 Channel estimation
cancellation
confirmation

Clause
8.11.7.17

 Reserved 0E7 – 0EF Reserved by ITU-T
Transmission

Profile
(0FX)

TP_TransmitPsdChange.req 0F0 Transmit PSD mask
change request

Clause
8.6.9.1

TP_TransmitPsdChange.cnf 0F1 Transmit PSD mask
change confirmation

Clause
8.6.9.2

Neighbouring
network

coöordination
(10X to 131X)

NDIM_StartAlignmentProcedure.
ind

100 Request to start a
MAC cycle
alignment procedure
(DM to proxy node)

Clause
8.14.9.1

NDIM_IDCCReserve.req 101 Slot reservation
request

Clause
8.14.9.2

NDIM_IDCCReserve.cnf 102 Slot reservation
confirmation

Clause
8.14.9.3

NDIM_ReportAlignment.req 103 Report on MAC
cycle alignment

Clause
8.14.9.4

NDIM_ReportAlignment.cnf 104 Confirm receiving
NDIM_ReportAlign
ment.req

Clause
8.14.9.5

NDIM_RemotePresence.req 105 Request to respond to
ID_Presence.Request

Clause
8.14.9.6

NDIM_RemotePresence.cnf 106 Permission to
respond to
ID_Presence.Request

Clause
8.14.9.7

NDIM_Transmit.ind 107 DM to proxy node
message to be
transmitted to
neighbouring domain

Clause
8.14.9.8

NDIM_Receive.ind 108 Proxy node to DM
message received
from neighbouring
domain

Clause
8.14.9.9

NDIM_InterferenceReport.ind 109 Indication of
interference detected

Clause
8.14.9.12

NDIM_IDCC_Release.req 10A Release Slot
reservation

Clause
8.14.9.10

NDIM_IDCC_Release.cnf 10B Confirm receiving
NDIM_IDCC_Releas
e.req

Clause
8.14.9.11

IDM_ClusterAlignment.req 120 DM informs other
DMs about new
cluster alignment

Clause
8.14.10.1

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 20

IDM_ClusterAlignment.cnf 121 DM confirm
receiving
IDM_ClusterAlignme
nt.req

Clause
8.14.10.2

IDM_InterfNodesInfo.ind 122 Proxy node to
neighbouring
domains indication of
interfering nodes

Clause
8.14.10.3

IDM_CoördDomainsInfo.ind 123 Proxy node to
neighbouring
domains indication of
coördinating nodes

Clause
8.14.10.5

IDM_ShareUnallocSlot.req 124 Request to share
unallocated slots

Clause
8.14.10.7

IDM_ShareUnallocSlot.cnf 125 Confirmation of
request to share
unallocated slots

Clause
8.14.10.8

IDM_ShareUnallocSlot.ind 126 Indication of status of
the request to share
unallocated slots

Clause
8.14.10.9

IDM_RequestUnallocSlot.req 127 Request assignment
of unallocated slots

Clause
8.14.10.10

IDM_RequestUnallocSlot.cnf 128 Confirmation of
request for
assignment of
unallocated slots

Clause
8.14.10.11

IDM_RequestUnallocSlot.ind 129 Indication of status of
the request for
assignment of
unallocated slots

Clause
8.14.10.12

IDM_SwapAllocSlot.req 12A Request to swap
allocated slots

Clause
8.14.10.13

IDM_SwapAllocSlot.cnf 12B Confirmation of the
request to swap
allocated slots

Clause
8.14.10.14

IDM_SwapAllocSlot.ind 12C Indication of status of
the request to swap
allocated slots

Clause
8.14.10.15

IDM_CoördPref.ind 12D Indication of
preferred
coördination method

Clause
8.14.10.16

IDM_DmChange.ind 12E Indication to
neighbouring domain
masters that the DM
of the domain
sending the message
has changed

Clause
8.14.10.17

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 21

IDM_DniChange.ind 12F Indication to
neighbouring domain
masters that the DNI
of the domain
sending the message
has changed

Clause
8.14.10.18

IDM_InterfNodesInfo.rsp 130 A message sent as a
confirmation for a
received IDM_
InterfNodesInfo.ind

Clause
8.14.10.4

IDM_CoördDomainsInfo.rsp 131 A message sent as a
confirmation for a
received IDM_
CoördDomainsInfo.in
d

Clause
8.14.10.6

Bandwidth
update
(14X)

BU_BWUpdate.req 140 Bandwidth update
request

Clause
8.6.2.4.1.1

BU_BWUpdate.cnf 141 Bandwidth update
confirmation

Clause
8.6.2.4.1.2

Reserved Reserved 150 – 7FF Reserved by ITU-T
MIMO

(8XX – 9XX)
Reserved for use by G.9963 [x] 800 – 9FF

Reserved Reserved A00-FFF Reserved by ITU-T

7 Revise clause 8.12.1.2 “Establishment of a data connection” as follows:

8.12.1.2 Establishment of a data connection

A data connection shall be established using the protocol described in clause 8.9.5.3, where the
transmitter shall send a PHY frame with FT=MSG, CNN_MNGMT=0101,
START_SSN=ACK_TX_WINDOW_START, no payload and RPRQ=01. The transmitter may
advise the receiver about the required number of LPDUs that the receiver should buffer for this
connection by setting the ADVISED_WIN_SIZE field.

If the receiver has resources to handle the new connection, it shall respond with a PHY frame with
FT=ACK, RXRST_DATA=1. In this ACK frame, the receiver shall use the flow control fields
FLCTRLT, FLCTRL and FLCTRL_CONN to provide additional flow control information, such as
receiver buffer size or hold time. Once the protocol described in clause 8.9.5.3 is finished
successfully, the transmitter may start sending PHY frames with data segments.

Following the protocol described in clause 8.9.5.3, if the receiver temporarily does not have
resources to handle the new connection, it shall respond with a PHY frame with FT=ACK,
RXRST_DATA=1, FLCTRLT=<Hold Time>, FLCTRL_CONN=0 and FLCTRL equal to the
amount of time desired by the receiver.

If the receiver does not have resources to handle the new connection, it shall respond with a PHY
frame with FT=ACK, RXRST_DATA=1, FLCTRLT=<Hold Time>, FLCTRL_CONN=0 and
FLCTRL=31.

If the receiver has resources for the new connection, it shall respond with a PHY frame with
FT=ACK, RXRST_DATA=1, FLCTRLT=<Status report>, FLCTRL_CONN=01 and FLCTRL
equal to the number of LPDUs that the receiver can buffer for this connection. The receiver may

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 22

consider the value of the ADVISED_WIN_SIZE as proposed by the transmitter to set its FLCTRL
field and RX_CONN_WIN_SIZE field. The transmitter shall set
ACK_TX_CONF_WINDOW_SIZE (see clause 8.9.4.2) to the minimum of the value indicated in
the RX_CONN_WIN_SIZE FLCTRL field and its own available window size (see
clause 7.1.2.3.2.3.8 of [ITU-T G.9960]). The number of LPDUs that the receiver can buffer for this
connection, indicated by the FLCTRL field during the lifetime of the connection, shall not exceed
the maximum acknowledge window size that the receiver can support for the connection indicated
by RX_CONN_WIN_SIZE during connection setup.

8 Revise the text of clause 8.17 “DLL multicast stream” (from G.9961 corr1) as follows:

8.17 DLL multicast stream

A source node that decides to establish a DLL multicast stream shall establish a multicast path
toward each client of the DLL multicast stream. The paths toward the client nodes may include
relay nodes that are bound to the path and the DLL Multicast Stream identification (MSID). The
source node that establishes a DLL multicast group shall generate the DLL multicast stream
identifier (MSID) that together with the DEVICE_ID of source of the DLL multicast stream
uniquely identifies the DLL multicast stream. The members of a DLL multicast group are identified
by the source node of the DLL multicast stream. The source of a DLL multicast stream, shall
transmit the traffic of the DLL multicast stream to the members of the DLL multicast group
according to established paths as described in the following sectionclauses.

8.17.1 DLL multicast stream establishment

A G.hn node that determines that it has to transmit a multicast stream to client nodes in the domain,
shall establish a path to each one of the client nodes. The source node that generates the DLL
multicast stream shall first allocate an MSID that, together with the DEVICE_ID of the source
node, shall uniquely identify the DLL multicast stream. Valid values of MSID are from 1 to 250.
The source node shall also initialize the Transaction ID for that DLL multicast stream to zero. The
source node shall increment the Transaction ID for each new DLL multicast path it establishes for
that DLL multicast stream.

The source node shall establish the path toward a client node as follows:

If the source node has a direct link to the client node according to the current unicast routing table,
it shall send a DMC_Path.req message to the client node to bind it with the specified MSID
multicast stream and the multicast stream MAC Address. The client node shall reply with a
DMC_Path.cnf message that contains the same Transaction_ID that was specified in the
DMC_Path.req message and shall bind itself to the established path identified by the MSID, the
DEVICE_ID of the source node and the multicast MAC address (DA). The source node upon
receiving the DMC_Path.cnf message shall bind the path and complete the path establishment
procedure. If the source node does not receive a DMC_Path.cnf message after a vendor
discretionary period, which is larger than MAX_WAIT_TIME, it may repeat the request through a
new DMC_Path.req with a different Transaction_ID.

NOTE – DMC_Path.req should be sent using connections with acknowledgements in order to avoid
long setup times for DLL multicast trees because of lost messages.

If the source node does not have a direct link to the client node, it shall determine the first relay
node towards the client node according to the current unicast routing table and send a
DMC_Path.req message to that node.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 23

The DMC_Path.req message shall contain the following fields: the DEVICE_ID of the source node
of the DLL multicast, the allocated MSID, the DEVICE_ID of the client node, the MAC address of
the multicast stream, and the Transaction_ID, and the DEVICE_ID of the first relay node (Relay
ID). If there is a direct link between the source node and the client node, the Relay ID field shall be
set to the DEVICE_ID of the client node. The source node of the multicast stream shall address the
DMC_Path.req message to the first relay node by setting the DA to the MAC address of that node.

A relay node that receives a DMC_Path.req message and has a direct link with the client node shall
bind the DEVICE_ID of the source of the DLL multicast stream, the MSID, and the sender node's
DEVICE_ID with the DEVICE_ID of the client endpoint node, and shall replace the DA of the
LCDU of the DMC_Path.req message with the client node’s MAC address and transmit the
DMC_Path.req message to the client node.

A relay node that receives a DMC_Path.req message and doesn’t have a direct link to the client
node shall bind the DEVICE_ID of the source of the DLL multicast stream, the MSID, and the
sender node's DEVICE_ID with the DEVICE_ID of the next relay node towards the client node
according to the unicast routing table. It shall then replace the DMC_Path.req LCDU's DA by the
MAC address of the next relay node and send the updated DMC_Path.req message to that node.

Upon reception of the DMC_Path.req message, the client node shall reply to the node that sent this
message with a DMC_Path.cnf message and shall bind itself to the specified DLL multicast stream
identified by the DEVICE_ID of the source DLL multicast stream, the MSID, and the sender node's
DEVICE_ID.

A relay node that receives the DMC_Path.cnf message shall mark the binding of the DLL multicast
stream path identified by the DEVICE ID of the source DLL multicast stream node and the MSID
as valid. The relay node shall then append its DEVICE_ID to the Path_List field in the MMPL of
the received DMC_Path.cnf message. The relay node shall transmit the updated DMC_Path.cnf
message to the node from which it has received the DMC_Path.req message, which can be either a
relay node or the node originating the DLL multicast stream.

Once the originating node receives the DMC_Path.cnf message, it has the complete path of this
bound client from the received DMC_Path.cnf message. This completes the path establishment
procedure. The source node may then start sending the multicast stream packets towards the client
node(s) either directly or via the first relay node according to the established path.

Each relay node shall identify LLC frames corresponding to a DLL multicast stream according to
the OriginatingNode and the MSID specified in the LFH. The relay node shall then relay any
received LLC frames of that DLL multicast stream to all the nodes it has bound to this DLL
multicast stream according to the binding information that it has configured during the DLL
multicast stream path establishment. The relay node shall only relay LLC frames corresponding to a
DLL multicast stream path for which its binding is marked as valid.

When the multicast source node or any other relay node in the DLL multicast paths receives an
updated routing table, it shall not update the current multicast paths. A relay node shall correct an
established multicast path only by explicit order received from the multicast source node as defined
in clause 8.17.3.

8.17.2 DLL multicast stream establishment with bandwidth reservation

An originating node that decides to establish a DLL multicast stream shall also decide whether to
have it ‘BW reserved’ or not. The 'BW reserved' attribute shall be carried in the DLL multicast
stream protocol messages so all participating nodes will have that knowledge as well.

It is the responsibility of the originating node and the relay nodes in the stream to make sure new
non-leaf nodes added to a bandwidth reserved stream are compliant with this amendment (each

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 24

node reports its standard's version to the DM which then broadcasts this information to the domain,
see clause 8.6.4).

DLL multicast stream establishment with BW reservation includes the same steps as specified in the
previous clause.

In addition to these steps, the actions specified in the following clauses enable the nodes to reserve
BW from the DM.

8.17.2.1 Bandwidth reservation when direct link from originating node to client node

Once the originating node receives the DMC_Path.cnf message from the DM, it shall decide
whether bandwidth reservation is required for the stream. If bandwidth reservation is required, the
client node of the DLL multicast stream shall request the DM for BW reservation.

If BW reservation from the DM is required, the originating node will ask the DM to reserve BW for
the stream by sending a DMC_BWReserve.req message. The DMC_BWReserve.req message will
include the BW required for the DLL multicast stream, and the rate from the originating node to the
client node. The rate enables the domain master to estimate the time allocation needed to serve the
DLL multicast transmission based on the number of bytes needed to be transmitted and the rate of
the node.

Based on its calculations, the DM shall reply with a DMC_BWReserve.cnf message, and if
bandwidth reservation was approved, the DM will then allocate TXOPs for this hop in the DLL
multicast stream (identified by the MSID of the stream and the SID of the node) if this is the first
bandwidth reservation for this DLL multicast stream, or change the allocation for existing TXOPs
for this hop in the multicast stream if this is a bandwidth update for an existing stream.

8.17.2.2 Bandwidth reservation through relay

The source node will indicate that the DLL multicast stream bandwidth reserved and that
transmission should occur only in allocated TXOPs (this is done through the 'Is BW managed' field
in the DMC_Path.req message).

A relay node that receives a DMC_Path.req message shall check whether this is a bandwidth
reserved DLL multicast stream and act accordingly.

In addition to the steps described in clause 8.17.1 – DLL multicast stream establishment, the relay
node shall send a DMC_BWReserve.req message to DM. The DMC_BWReserve.req message will
include the SID of the relay node, the MSID of the stream, the DEVICE ID of the originating node
of the stream and the requested bandwidth.

Based on this information the DM will calculate whether requested bandwidth can be allocated and
reply with a DMC_BWReserve.cnf message. If bandwidth reservation was approved, the DM will
then allocate resources to serve the hop in the DLL multicast stream.

8.17.32 Preventing loops and packets duplications

The paths of a specific DLL multicast stream shall be established in a tree topology that ensures that
a node shall not receive duplicate multicast packets from different paths and prevent the source
node or any relay node to duplicate unnecessarily transmissions. The topology of the DLL multicast
stream tree is built under a principal rule that each node shall receive packets of a specific
(OriginatingNode, MSID) only from one node. The DLL multicast stream paths tree shall be built
according to this rule by executing the following procedure in path establishment: When a source
node binds a new client node to an existing DLL multicast stream, it shall send towards it the
DMC_Path.req message as defined in the previous sectionclause. Any relay node on the path
towards the newly joined client node shall verify that it always receives the DMC_Path.req for this

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 25

specific (OriginatingNode, MSID) from the same sender node. In case that it receives a
DMC_Path.req message from a node different from the sender node to which it is currently bound,
it shall reply with the DMC_PathReject.cnf message towards the source node. The
DMC_PathReject.cnf message shall contain the rejecting node’s DEVICE_ID, the DEVICE_ID of
the node that sent it DMC_Path.req message and the rejection reason (duplication source).

When the source multicast node receives the DMC_PathReject.cnf message, it may decide to
release the entire tree or the branch and rebuild it again, or to enforce establishment of the path until
the rejecting relay node based on the existing path. If the source node decides to enforce the existing
path, it shall send the DMC_EnforcePath.req towards the relay node that encountered the problem
via the original path. The source node shall address the DMC_EnforcePath.req message to the first
relay node in the path toward the rejecting node. The DMC_EnforcePath.req message shall contain
the full path until the rejecting node and the client node. Each relay node that receives the
DMC_EnforcePath.req message shall forward the message to the next relay node according to the
specified path toward the rejecting node. When the rejecting node receives the
DMC_EnforcePath.req message it shall create a DMC_Path.req message, filling it with the
information received in the DMC_EnforcePath.req message, and forward the message to the next
relay node according to the current routing table. From this phase, the path establishment procedure
towards the client node shall continue as specified in the previous sectionclause. The client node
shall reply with the DMC_Path.cnf message to the relay node that sent it the DMC_Path.req
message. All the relay nodes on the path towards the source node upon receiving the DMC_Path.cnf
message, shall execute the bind, update the Path_List field in the DMC_Path.cnf message with their
own DEVICE_ID and forward the DMC_Path.cnf message towards the source node.

A specific relay that has to forward a specific MSID stream traffic to several nodes that are bound
with this MSID may establish a PHY multicast group. In this case, the node may create or update
PHY multicast groups when it receives a DMC_Path.req message to transmit the data to the next
relay nodes or client nodes. In that case, the PHY multicast group shall only include bound client
nodes and relay nodes that are in its bind list for this MSID in its current hop.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 26

Figure 8-61.1 – Example of the mechanism for preventing loops in the DLL multicast tree

8.17.43 Releasing client node from MSID

When the source node of a DLL multicast stream decides to release a client node from its MSID, it
shall increment the Transaction ID of that DLL multicast stream and shall send a
DMC_ReleasePath.req message to the respective client node or to its first relay node in case the
client node is accessed via relay node(s). Each node that receives the DMC_ReleasePath.req shall
release the specified node from this bind list and forward the message towards the client node. Each
node that received the message shall reply with DMC_ReleasePath.cnf message to the node that
sent it the DMC_ReleasePath.req message. Each relay node that does not have any nodes in its bind
list shall released itself from the MSID multicast stream and indicate it in the replied
DMC_ReleasePath.cnf message.

8.17.54 Recovery from DLL multicast broken path

In case that one of the relay nodes determines that the path of a specific MSID is broken it shall
inform the domain master via a normal topology update message and the source node of the DLL
multicast stream via a DMC_BrokenLink.ind message.

The multicast source node may correct the broken path according to newly received updated routing
table from the domain master. The source node may correct an existing path by sending
DMC_ReleasePath.req to the relevant nodes and then it shall send new DMC_Path.req to the
relevant nodes.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 27

8.17.65 Aging DLL multicast path process

In order to prevent a situation where a multicast source node leaves the network and all the
respective nodes in the multicast stream path are still holding MSID resources, an aging mechanism
shall be used. The source node of each DLL multicast stream (MSID) shall periodically send a
management message: DMC_PathAlive.ind via the established MSID DLL multicast stream paths
tree to the first node of each path (client node or relay node). Each node in the tree that receives this
message shall reset its aging timer for that DLL multicast stream and shall transmit the
DMC_PathAlive.ind message to each of the nodes that are bound to this DLL multicast stream,
identified by (OriginatingNode, MSID), according to the binding information that it has configured
during the DLL multicast stream paths establishment. Each node in the path that does not receive a
DMC_PathAlive.ind message within a period of DMC_PATH_AGING_PERIOD (1 second) shall
remove itself from this DLL multicast stream and release all of its MSID resources.

8.17.7 DLL Multicast stream bandwidth maintenance

Each node participating in a DLL multicast stream that is bandwidth reserved (whether it is the
originating node or a relay node) is responsible for modifying its hop's requested bandwidth
according to changes in the stream (e.g., if nodes are removed from a binding list, or if the hop's
rate is changed, or if the hop transmission method is changed from using unicast connection to a
PHY multicast connection).

If a node is no longer acting as a relay node in a DLL multicast stream, it is this node's
responsibility to ask the DM to release all bandwidth reserved for its hop in the stream.

The modification of the bandwidth reservation is done by sending DMC_BWReserve.req to the
DM. In this case, the DM shall reply with a DMC_BWReserve.cnf and change the allocation for the
existing TXOPs for the indicated hop in the bandwidth reserved multicast stream.

The allocated bandwidth can be released by sending DMC_BWRelease.req to the DM. In this case,
the DM shall reply with a DMC_BWRelease.cnf and completely remove the TXOPs assigned for
the indicated hop in the bandwidth reserved multicast stream.

The internal rules used by the domain master to decide whether an allocation should be expanded or
contracted due to ongoing flow maintenance done by the bandwidth management function are out
of the scope of this Recommendation.

NOTE – If the bandwidth allocation for the DLL multicast stream is changed, this will be reflected
in the MAP describing the following MAC cycles.

8.17.8 Transmission of bandwidth managed DLL Multicast stream

Originating node and relay nodes participating in a bandwidth managed DLL multicast streams
should transmit the traffic associated with the multicast stream only in TXOPs assigned for that
stream. This assignment is indicated via the 'Multicast Indication' flag,SID and MSID fields in the
MAP's TXOP basic descriptor (see clause 8.8.4)

8.17.96 DLL Multicast protocol messages

8.17.9.16.1 DMC_Path.req message format

The format of the DMC_Path.req management message shall be as shown in Table 8-113.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 28

Table 8-113 – Format of the MMPL of the DMC_Path.req message

Field Octet Bits Description
Source ID 0 [7:0] The DEVICE_ID of the source node

of the DLL Multicast stream.
MSID 1 [7:0] The multicast identification allocated

by the source of the DLL multicast
stream.

ClientID 2 [7:0] The DEVICE_ID of the client node of
the DLL Multicast steam source node.

MulticastAddress 3-8 [47:0] MAC address of the multicast stream
Transaction_ID 9 [7:0] Identifies this path transaction.
Relay ID 10 [7:0] The DEVICE_ID of the relay node

(NOTE 1)
Is BW Managed 11 [0] 0 – If this DLL multicast stream is not

bandwidth reserved
1 – If this DLL multicast stream is
bandwidth reserved (and transmission
should occur only in allocated
TXOPs)
(NOTE 1)

Reserved 11 [7:1] Reserved by ITU-T. (NOTE 2)
NOTE 1 - If there is a direct link between the source node and the client node, this field shall be
set with the DEVICE_ID of the client node
NOTE 2 - Bits that are reserved by ITU-T shall be set to zero by the transmitter and ignored by the
receiver.

8.17.9.26.2 DMC_Path.cnf message format

The format of the DMC_Path.cnf management message shall be as shown in Table 8-114.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 29

Table 8-114 – Format of the MMPL of the DMC_Path.cnf message

Field Octet Bits Description
Source ID 0 [7:0] The DEVICE_ID of the source node

of the DLL Multicast stream.
MSID 1 [7:0] The multicast identification allocated

by the source of the DLL multicast
stream.

ClientID 2 [7:0] The DEVICE_ID of the client node of
the DLL Multicast steam source node.

Transaction_ID 3 [7:0] Identifies this path establishment
transaction. It shall contain the same
value that was specified in the
corresponding DMC_Path.req
message.

NumOfNodes 4 [7:0] Specifies the number of relay nodes
(n) in the Path_List from the source
node towards the client node.

Path_List[0] 5 [7:0] This entry in the list contains the
DEVICE_ID of the last relay node in
the established path from the source
node towards the client node.

Path_List[n-1] 4+n [7:0] This entry in the list contains the
DEVICE_ID of the first relay in the
established path from the source node
towards the client node.

8.17.9.36.3 DMC_PathReject.cnf message format

The format of the DMC_PathReject.cnf management message shall be as shown in Table 8-115.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 30

Table 8-115 – Format of the MMPL of the DMC_PathReject.cnf message

Field Octet Bits Description
Source ID 0 [7:0] The DEVICE_ID of the source node

of the DLL Multicast stream.
MSID 1 [7:0] The multicast identification allocated

by the source of the DLL multicast
stream.

ClientID 2 [7:0] The DEVICE_ID of the client node of
the DLL Multicast steam source node

Transaction_ID 3 [7:0] Identifies this path establishment
transaction specified in the
DMC_Path.req message.

RejectingNodeId 4 [7:0] The DEVICE_ID of the relay node
that rejects the DMC_Path.req
message

Rejection_code 5 [7:0] 0016 – The request Path is conflicted
because there is already a path
established for the specified multicast
stream with a different source node
0116 – The node is not able to support
additional multicast streams
0216 to FF16 – reserved by ITU-T.

8.17.9.46.4 DMC_EnforcePath.req message format

The format of the DMC_EnforcePath.req management message shall be as shown in Table 8-116.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 31

Table 8-116 – Format of the MMPL of the DMC_EnforcePath.req message

Field Octet Bits Description
Source ID 0 [7:0] The DEVICE_ID of the source node

of the DLL Multicast stream.
MSID 1 [7:0] The multicast identification allocated

by the source of the DLL multicast
stream.

ClientID 2 [7:0] The DEVICE_ID of the client node of
the DLL Multicast steam source node.

MulticastAddress 3-8 [47:0] MAC address of the multicast stream
Transaction_ID 9 [7:0] Identifies this path establishment

transaction. It shall contain the same
value as in the original DMC_Path.req
for this path.

NumOfNodes 10 [7:0] Specifies the number of relay nodes
(n) in the Path_List from the source
node towards the rejecting node.

Path_List[0] 11 [7:0] This entry in the list contains the
DEVICE_ID of the first relay node in
the established path from the source
node towards the rejecting node.

Path_List[n-1] 10+n [7:0] This entry in the list contains the
DEVICE_ID of the last relay in the
established path from the source node
towards the rejecting node

8.17.9.56.5 DMC_ReleasePath.req message format

The format of the DMC_ReleasePath.req management message shall be as shown in Table 8-117.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 32

Table 8-117 – Format of the MMPL of the DMC_ReleasePath.req message

Field Octet Bits Description
Source ID 0 [7:0] The DEVICE_ID of the source node

of the DLL multicast stream.
MSID 1 [7:0] The multicast identification allocated

by the source of the DLL multicast
stream.

ClientID 2 [7:0] The DEVICE_ID of the client node of
the DLL multicast steam source node
to be release from the path.

Transaction_ID 3 [7:0] Identifies this path transaction.
NumOfNodes 4 [7:0] Specifies the number of relay nodes

(n) in the Path_List from the source
node towards the client node.

Path_List[0] 5 [7:0] This entry in the list contains the
DEVICE_ID of the first relay node in
the established path from the source
node towards the client node.

Path_List[n-1] 4+n [7:0] This entry in the list contains the
DEVICE_ID of the last relay node in
the established path from the source
node towards the client node.

8.17.9.66.6 DMC_ReleasePath.cnf message format

The format of the DMC_ReleasePath.cnf management message shall be as shown in Table 8-118.

Table 8-118 – Format of the MMPL of the DMC_ReleasePath.cnf message

Field Octet Bits Description
Source ID 0 [7:0] The DEVICE_ID of the source node

of the DLL multicast stream.
MSID 1 [7:0] The multicast identification allocated

by the source of the DLL multicast
stream.

ClientID 2 [7:0] The DEVICE_ID of the client node of
the DLL multicast steam source node
to be release from the path.

Transaction_ID 3 [7:0] Identifies this path establishment
transaction. It shall contain the same
value as in the corresponding
DMC_ReleasePath.req for this path.

RelayNodeStatus 4 [7:0] Specifies the status of the relay node
that sends this message.
0: The relay node released itself from
the specified DLL multicast stream
1: The relay node still belongs to the
specified DLL multicast stream
2 to 255: Reserved by ITU-T

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 33

8.17.9.76.7 DMC_PathAlive.ind message format

The format of the DMC_PathAlive.ind management message shall be as shown in Table 8-119.

Table 8-119 – Format of the MMPL of the DMC_PathAlive.ind message

Field Octet Bits Description
Source ID 0 [7:0] The DEVICE_ID of the source node

of the DLL Multicast stream.
MSID 1 [7:0] The multicast identification allocated

by the source of the DLL multicast
stream.

8.17.9.86.8 DMC_BrokenLink.ind message format

This message is sent by a node that needs to report to the source of a DLL multicast stream that a
link towards a multicast client node is broken.

The format of the DMC_BrokenLink.ind message shall be as shown in Table 8-120.

Table 8-120 – Format of the MMPL of the DMC_BrokenLink.ind message

Field Octet Bits Description
Source ID 0 [7:0] The DEVICE_ID of the source node

of the DLL Multicast stream.
Reporting_DeviceID 1 [7:0] The DEVICE_ID of the node

reporting the broken link.
Broken_DeviceID 2 [7:0] DEVICE_ID of the node with which

the link is broken
StatusCode 3 [7:0] 0: the reporting node experienced a

broken link
1: the reporting node has no bind
information for this MSID
2 to 255: Reserved by ITU-T

NumberAffectedMSID 4 [7:0] Number n of MSIDs affected by the
broken link

MSID0 5 [7:0] The multicast identification of the first
affected MSID.

… … … …
MSIDn variable [7:0] The multicast identification of the nth

affected MSID.

8.17.9.9 DMC_BWReserve.req message format

The format of the DMC_BWReserve.req management message shall be as shown in Table 8-121

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 34

Table 8-121 – Format of the MMPL of the DMC_BWReserve.req message

Field Octet Bits Description
Originating Node 0 [7:0] The DEVICE_ID of the originating

node of the DLL Multicast stream.

MSID 1 [7:0] The multicast identification allocated
by the source of the DLL multicast
stream.

Requested BW 6-3 [39:8] Specifies the requested bandwidth rate in
bit/s, represented as a 32-bit unsigned
integer.

Rate 8-7 [55:40] The PHY data rate in bits per second for
this hop in steps of 32 kbit/s…

8.17.9.10 DMC_BWReserve.cnf message format

The format of the DMC_BWReserve.cnf management message shall be as shown in Table 8-122

Table 8-122 – Format of the MMPL of the DMC_BWReserve.cnf message

Field Octet Bits Description
Return Code 0 [7:0] 0016 – The requested bandwidth is

approved.
0116 – The requested bandwidth is
denied.
0216 to FF16 – reserved by ITU-

Originating Node 1 [7:0 The DEVICE_ID of the originating
node of the DLL Multicast stream.

MSID 2 [7:0] The multicast identification allocated
by the source of the DLL multicast
stream.

8.17.9.11 DMC_BWRelease.req message format

The format of the DMC_ BWRelease.req management message shall be as shown in Table 8-123

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 35

Table 8-123 – Format of the MMPL of the DMC_ BWRelease.req message

Field Octet Bits Description
Originating Node 0 [7:0] The DEVICE_ID of the originating

node of the DLL Multicast stream.

MSID 1 [7:0] The multicast identification allocated
by the source of the DLL multicast
stream.

8.17.9.12 DMC_ BWRelease.cnf message format

The format of the DMC_ BWRelease.cnf management message shall be as shown in Table 8-124

Table 8-124 – Format of the MMPL of the DMC_ BWRelease.cnf message

Field Octet Bits Description
MSID 0 [7:0] The multicast identification allocated

by the source of the DLL multicast
stream.

Originating Node 1 [7:0] The DEVICE_ID of the originating
node of the DLL Multicast stream.

9 Add text for new clause 8.20 “Metrics acquisition” as follows:

8.20 Metrics acquisition

The goal of metrics acquisition mechanism is to provide a node a way to calculate the throughput
metrics between it and a destination node without needing to establish a flow.

A node that wants to obtain the achievable throughput with another node of the domain may request
metric information to the DM by sending the message MA_AcquireMetrics.req, which includes the
information on the destination node.

Upon reception of MA_AcquireMetrics.req, the DM shall respond to the requesting node with an
MA_AcquireMetrics.cnf message.

8.20.1 Metrics acquisition protocol messages

8.20.1.1 Format of MA_AcquireMetrics.req

This message is sent from a node requesting an update of metrics information to the DM.

The format of the MMPL of the MA_AcquireMetrics.req shall be as shown in Table 8-125.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 36

Table 8-125 – Format of the MMPL of the MA_AcquireMetrics.req message

Field Octet Bits Description
OriginDeviceID 0 [7:0] DEVICE_ID of the node origin of the link for which the

metrics are requested
DestinationDevic
eID

1 [7:0] DEVICE_ID of the node destination of the link for which the
metrics are requested

8.20.1.2 Format of MA_AcquireMetrics.cnf

This message is sent by the DM to inform a requesting node about the metrics of a particular link.

The format of the MMPL of the MA_AcquireMetrics.cnf shall be as shown in Table 8-126.

Table 8-126 – Format of the MMPL of the MA_AcquireMetrics.cnf message

Field Octet Bits Description
OriginDeviceID 0 [7:0] DEVICE_ID of the node origin of the link for which the

metrics are requested
DestinationDevic
eID

1 [7:0] DEVICE_ID of the node destination of the link for which the
metrics are requested

MetricsRouteList Variable See
Table 8-

127

Routing list from OriginDeviceID toward
DestinationDeviceID. This field is only present when there is at
least one relay node (N ≥ 1)

MaxBitsPerSeco
nd

Variable [15:0] Maximum data rate in bits per second from OriginDeviceID to
DestinationDeviceID. (Note 1)

AttainableBitsPer
Second

Variable [15:0] The attainable data rate in bits per second from
OriginDeviceID to DestinationDeviceID that a DM can
allocate for a flow between these two nodes under current
domain traffic conditions.

NOTE 1: This value is calculated from the values reported to the DM by each of the nodes of the domain in
the BitsPerSecond field of the Visibility_List field of the TM_NodeTopologyChange.ind message (See

Table 8-48) using the following formula: ݀݊ܿ݁ܵݎ݁ܲݏݐ݅ܤݔܽܯ = ଵ∑ భ݅݀݊ܿ݁ܵݎ݁ܲݏݐ݅ܤಿశభసభ where N is the number

of relays between OriginDeviceID and DestinationDeviceID.

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 37

Table 8-127 – Format of MetricsRouteList

Field Octet Bits Description
NumRelays 0 [7:0] Number of relay nodes (N) in the MetricsRouteList

RelayNode[1] 1 [7:0] DEVICE_ID of the first relay node in the list

… … … …

RelayNode[N] N [7:0] DEVICE_ID of the Nth relay node in the list

LinkMetrics[1] N + 1 and
N + 2

[15:0] PHY data rate in bits per second from the originating
node in the route to the first relay. (Note 1)

…. … … …

LinkMetrics[N+
1]

3*N + 1
and 3*N +

2

[15:0] PHY data rate in bits per second from the Nth relay in
the route to the destination node. (Note 1)

NOTE 1: This value corresponds to the value reported to the DM by each of the nodes of the domain in
the BitsPerSecond field of the Visibility_List field of the TM_NodeTopologyChange.ind message. See
Table 8-48

10 Add new Annex X “Test vectors” as follows:

Annex X – Test vectors

This annex includes test vectors for core operations described in this Recommendation.

X.1 CCM encryption

This clause provides a set of test vectors for parameters involved in CCM encryption described in
clause 9.1. Parameters are expressed in a hexadecimal form with the leftmost byte representing the
lowest byte within a parameter (i.e., byte 0). Within a byte, the leftmost bit represents the MSB.

X.1.1 CCM test vector 1

X.1.1.1 Input parameters

This clause provides one set of examples for input parameters used in CCM encryption.

Data packet, APDU (75 bytes):

The APDU can be broken into the following parameters:

Destination MAC address, DA (6 bytes)

 DA = 00 00 5E 10 20 0916

Source MAC address, SA (6 bytes)

 SA = 00 00 5E 07 20 1316

MAC client length/type, LT (2 bytes)

 LT = 08 0016

APDU payload, P (57 bytes)

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 38

 P = 52 41 56 49 3B 45 52 45 5A 3B 41 56 4E 45 52 3B 4C 45 53 3B 52
4F 59 3B 4D 41 52 43 4F 53 3B 41 47 55 53 54 49 4E 3B 4A 4F 48
4E 3B 4A 42 3B 54 4F 4E 47 3B 56 5A 45 49 4216

Frame check sequence, FCS (4 bytes)

 FCS = A4 55 5A 2616

Note that VLAN TAG does not exist in this example (i.e., TG = 0), Alen is 21 bytes (see Table 9-5),
and Plen is 57 bytes.

Parameters for the LLC frame header (LFH) are given as LLCFT = 2 (APDU), TSMPI = 0 (TSMP
field not present), CCMPI = 1, LPRI = 0, FLEN = 71, MCSTI = 0, OriginatingNode = 1,
DestinationNode = 2, BRCTI = 0, and TTL = 0 (see clause 8.1.3.1.1).

Resulting LFH (6 bytes):

 LFH = 12 47 00 01 02 0016

Parameters for the CCMP header (CCMPH) are given as MIC size = 1112 (16-byte MIC), NN or
NMK, Key ID = 0, and FN = 1 (see clause 9.1.2.3).

Resulting CCMP header, CCMPH (6 bytes):

 CCMPH = 07 01 00 00 00 0016

Encryption Key K: 47 68 6F 43 65 72 74 66 32 30 31 33 47 68 6E 4316.

X.1.1.2 Parameters generated

This clause provides one set of examples of parameters generated by the node based on given set of
input parameters.

Nonce, N (13 bytes):

 N = 00 00 00 5E 07 20 13 00 00 00 00 00 0116

Nonce block, B0 (16 bytes):

 B0 = 79 00 00 00 5E 07 20 13 00 00 00 00 00 01 00 3916

Associated data block, B1 (16 bytes):

 B1 = 00 15 00 00 00 00 5E 10 20 09 00 00 5E 07 20 1316

Associated data block, B2 (16 bytes):

 B2 = 12 47 00 01 02 08 00 00 00 00 00 00 00 00 00 0016

Payload block, B3 (16 bytes):

 B3 = 52 41 56 49 3B 45 52 45 5A 3B 41 56 4E 45 52 3B16

Payload block, B4 (16 bytes):

 B4 = 4C 45 53 3B 52 4F 59 3B 4D 41 52 43 4F 53 3B 4116

Payload block, B5 (16 bytes):

 B5 = 47 55 53 54 49 4E 3B 4A 4F 48 4E 3B 4A 42 3B 5416

Payload block, B6 (16 bytes):

 B6 = 4F 4E 47 3B 56 5A 45 49 42 00 00 00 00 00 00 0016

Counter block 0, Ctr0 (16 bytes):

 Ctr0 = 01 00 00 00 5E 07 20 13 00 00 00 00 00 01 00 0016

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 39

Counter block 1, Ctr1 (16 bytes):

 Ctr1 = 01 00 00 00 5E 07 20 13 00 00 00 00 00 01 00 0116

Counter block 2, Ctr2 (16 bytes):

 Ctr2 = 01 00 00 00 5E 07 20 13 00 00 00 00 00 01 00 0216

Counter block 3, Ctr3 (16 bytes):

 Ctr3 = 01 00 00 00 5E 07 20 13 00 00 00 00 00 01 00 0316

Counter block 4, Ctr4 (16 bytes):

 Ctr4 = 01 00 00 00 5E 07 20 13 00 00 00 00 00 01 00 0416

Cyphertext

C = 04 4f 24 21 07 fb 58 68 ba 1a c7 c3 1f 5c e7 20 c1 a2 09 ed a0
29 d5 03 b1 e0 94 43 ed 4f 28 24 62 c8 28 c5 53 50 95 74 86 fc
ea 0e 92 4d 2c 4f 3b 25 cf b5 3a 5e 1f 5e 3f16

Message Integrity code

MIC = 8c df 6e 79 03 0f 7e 69 cc 33 b8 29 ef e4 6d e216

X.2 PAK test vectors

This clause provides a set of test vectors for parameters involved in the PAK protocol described in
clause 9.2.2. Parameters are expressed in a hexadecimal form with the leftmost bit representing the
MSB.

X.2.1 PAK test vector 1

X.2.1.1 Input parameters

This clause provides one set of examples for input parameters known to the supplicant and the
authenticator before the initiation of key authentication process.

Node identifier of the supplicant, A (48 bits, see clause 9.2.2.2.1):

 A = 0019 A717 DD3016

Node identifier of the authenticator, B (48 bits, see clause 9.2.2.2.1):

 B = 0019 A770 8A3216

Node password shared by the supplicant and the authenticator, PW (96 bits, see clause 9.2.2.2.2):

 PW = 5962 A05A B89F C0AA FB14 0EF716

X.2.1.2 Parameters generated or exchanged

This clause provides one set of examples of parameters generated and/or exchanged by the
supplicant and the authenticator.

Secret exponent generated by the supplicant, RA (384 bits, see clause 9.2.2.2.5):

 RA = 89A1 A7B4 F433 9220 2C60 960D 172A 7C45 6B95 C225 26B1 1C7A

 9E2E 7712 C43C 9C77 48B6 3936 A62B CF90 3C03 A0E2 0E28 D66016

Secret exponent generated by the authenticator, RB (384 bits, see clause 9.2.2.2.5):

 RB = F052 57CB 1840 6A91 173B 87E4 1F22 9289 7D3E 08A7 BCA0 4EB9

 1A8A CFF3 940C AE00 E15B 302D 7E67 2E81 CCB4 C103 A241 B13316

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 40

Concatenated input parameters, P = A | B | PW (192 bits, see [ITU-T X.1035]):

 P = 0019 A717 DD30 0019 A770 8A32 5962 A05A B89F C0AA FB14 0EF716

Intermediate result, IR1 = H1(P) (1152 bits, see clause 9.2.2.2.6 and [ITU-T X.1035]):

 IR1 = 11F9 E6DD 6E7D 48EF 3672 CA0F A2EC 2488 7678 34B9 506C FE86

 5BC0 A847 3051 F6FD 408D 0178 816D 80A7 D8D3 B75C 3176 C8D3

 BD12 2AD1 2AE5 C26C 29F8 3518 BD91 1581 9483 C303 68F3 B137

 3A33 A8E5 6193 83B8 34F1 59B4 E1C3 8259 B3DA D35F 7876 A7FE

 3B0A 9E9A F594 BEA6 B126 77B0 50EC 672E 11F7 3A1E 231E 9ECE

 793A 34AE 154D 4EB0 82BB AC26 1F8E 0B50 735C 01FB C364 908116

Intermediate result, IR2 = gRA mod p (1024 bits, see clause 9.2.2.2.3, clause 9.2.2.2.4, and [ITU-T
X.1035]):

 IR2 = D678 B9D6 E866 FB46 4865 A430 C2BA 0668 722D 236E 7BEA 1C51

 7E4A 4812 1CD4 B42C 7803 2B8C F05F 497B 46EC F894 CB5A 0678

 7104 7E99 448A D384 46A1 15AF 4640 7B9B F13C FFBD 2452 FB69

 3D7C 6445 DE1E 95AF DC13 7B33 01AE 6659 0839 A05E 03A2 2169

 E10C C5F6 D87B 62E5 FF92 B000 4DA9 8058 9F95 5F2E F66A 42D6

 CBC4 E70A A3CA D13616

Parameter carried in AUT_NodeRequest.req, X = IR1·IR2 (2176 bits, see clause 9.2.5.1.1 and [ITU-
T X.1035]):

 X = 0F0F 612E 0137 3C14 AB36 88FB 07C9 98E6 EBA7 033C E635 4EDA

 54D2 DA67 46D2 43AC FC19 3F9E 7E66 4B5F 1ED8 13D7 7763 0BFF

 DE60 E3D5 397E 901A 1338 99CC 2E52 209E 441F 0DDE 9449 1CDA

 8B36 B454 FF1B 1E9E 784A 07D4 5DF5 85C5 503E 65AD 7E34 EE82

 2E92 99AC B766 EF21 0CEB 7D10 B620 AB10 BA09 7DF7 EEB0 25BE

 E6AD 223B 3049 93F9 FCDB C996 EA09 8BFC 56C7 495E 2E17 BD88

 E201 B2C2 40E9 9F79 B681 9963 3D8F 5F22 7BD8 5373 A868 902D

 93FC 20CB 9F1D 369B 1C54 A143 E416 D7C5 2A59 EAC8 0B49 D013

 575F C302 FA4D AD02 DDF7 BA96 71E9 9B56 DE44 9E57 9DFB 83AD

 B1F1 1A43 0900 2F9C 8EFD A771 0A71 DAA0 176D E5ED C7A8 02F3

 99D8 6E26 0458 3EF1 901F 7C1A 99E8 CBB7 5357 09DA 84F2 5393

 9F2E 3706 79F9 CC3616

Intermediate result, IR3 = H2(P) (1152 bits, see clause 9.2.2.2.6 and [ITU-T X.1035]):

 IR3 = 2773 D699 51BB 3CC5 D595 F28E 3AAF CCBF C2A3 895D D429 A707

 13EE C1D7 2E08 BCA9 D3C7 AE45 7317 5180 25AE 9B9D 6125 BED6

 EA69 F440 FD1F D309 2404 0AD9 E3DB B2A4 8F1A 49DA 0F14 BD2E

 15B7 2E9D E16E 9E95 EE26 6890 AA45 1ACE A1A7 394C 9BFB 55B8

 54DE 5CFB 1385 028D 3A58 ED53 C8B1 639C 76D4 F4AF BB51 52D8

 2E7F F099 4210 DA52 CDFD DF2B 973D EC89 DFEB A32C A4B7 442816

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 41

Intermediate result, IR4 = gRB mod p (1024 bits, see clause 9.2.2.2.3, clause 9.2.2.2.4, and [ITU-T
X.1035]):

 IR4 = B503 D0FE AAC7 D9D5 B2C1 ADAC ACB2 F4AC ED7D E0EA 65F2 D88F

 39DA A98C CCA3 C197 40F4 B466 6DC4 310F 6969 482F 2B94 D5A2

 BB64 4E8F 04A7 12D4 81FF 34E0 45F3 E351 E255 3A57 F32F E600

 820A 7C9B 0407 F35C 588D 4C6A 0908 BD7C 9F76 A9BB A478 16BB

 C6F8 73DC B9EF C0CD 54FC E949 F840 2EE6 DD0C D4B9 52F9 96BC

 D529 9885 964C 394D16

Parameter carried in AUT_Promp.ind, Y = IR3·IR4 (2176 bits, see clause 9.2.5.1.2 and [ITU-T
X.1035]):

 Y = 1BE5 7D4B 4832 8ED0 90C6 5623 C4D1 1400 F58E FDEF A37E 2AAC

 0EB6 9A5E 904E F71A 193D 46B2 6113 372A 0517 45CB 1FCB 5200

 2FF9 A00C 9070 72C2 5946 E87D 630E 36A2 AFCE 5FB4 AA35 D2F7

 74DA FED9 11A4 4EF4 698C 4582 9E47 8AA6 F74A 6714 09E0 8CA3

 9654 1D65 9099 DC16 3C40 2E8D 6779 D9CD B182 4EF6 6A83 8A40

 7537 64A9 ABDB 1619 33A7 44E6 8C9A 3D37 2D34 1C46 423F 4679

 B03B 563D 0B02 D397 6171 776F 7FD4 31D6 6B26 4F6A 5AC5 BD89

 434C C914 2698 36A0 DC88 2E31 D3FD B108 69FA 4F86 AFAB CDDC

 7CE6 D753 F7C5 5286 6E12 C2C3 80E4 70A2 6F81 08CD D379 08F5

 AE54 4467 DA86 974D BE27 39A6 5058 E201 1387 AB08 6402 15A3

 E973 5002 8852 6DD8 302B 60F8 28AF 9806 4535 F825 425C 0652

 010F 763A 052C 680816

Intermediate result, IR5 = P | gRA mod p | gRB mod p | gRA·RB mod p (3264 bits, see clause 9.2.2.2.3,
clause 9.2.2.2.4, and [ITU-T X.1035]):

 IR5 = 0019 A717 DD30 0019 A770 8A32 5962 A05A B89F C0AA FB14 0EF7

 D678 B9D6 E866 FB46 4865 A430 C2BA 0668 722D 236E 7BEA 1C51

 7E4A 4812 1CD4 B42C 7803 2B8C F05F 497B 46EC F894 CB5A 0678

 7104 7E99 448A D384 46A1 15AF 4640 7B9B F13C FFBD 2452 FB69

 3D7C 6445 DE1E 95AF DC13 7B33 01AE 6659 0839 A05E 03A2 2169

 E10C C5F6 D87B 62E5 FF92 B000 4DA9 8058 9F95 5F2E F66A 42D6

 CBC4 E70A A3CA D136 B503 D0FE AAC7 D9D5 B2C1 ADAC ACB2 F4AC

 ED7D E0EA 65F2 D88F 39DA A98C CCA3 C197 40F4 B466 6DC4 310F

 6969 482F 2B94 D5A2 BB64 4E8F 04A7 12D4 81FF 34E0 45F3 E351

 E255 3A57 F32F E600 820A 7C9B 0407 F35C 588D 4C6A 0908 BD7C

 9F76 A9BB A478 16BB C6F8 73DC B9EF C0CD 54FC E949 F840 2EE6

 DD0C D4B9 52F9 96BC D529 9885 964C 394D 9768 81A5 5808 E976

 F569 319A 8764 8539 16E0 1496 6E1F 191A 482B 1838 0E4F 9A77

 99FA C4AF AE0B 9C74 7A57 630C DA71 DF19 5CB2 FE5F B951 52B7

Rec. ITU-T G.9961 (2010)/Amd.2 (04/2014) – Prepublished version 42

 EADB C460 8B62 3464 944E 1011 8471 028C 8000 8F8E EC8E B6C7

 FC36 30DF 27DD 2D43 3277 2FB4 E1A8 FF9F CA61 6E4E E466 CDA4

 B6AD 9B02 F498 39BF 589B C793 2680 8C26 9AA6 B351 9418 EFEB16

Parameter carried in AUT_Promp.ind, S1 = H3(IR5) (128 bits, see clause 9.2.2.2.6, clause 9.2.5.1.2,
and [ITU-T X.1035]):

 S1 = 3BB5 5C57 33CF 1E7F 0711 C525 CD89 318116

Parameter carried in AUT_Verification.res, S2 = H4(IR5) (128 bits, see clause 9.2.2.2.6, clause
9.2.5.1.3, and [ITU-T X.1035]):

 S2 = 3DB1 A72C 64B0 CAE6 57FF D4EA DC31 F67616

NSC key generated, K = H5(IR5) (128 bits, see clause 9.2.2.2.6 and [ITU-T X.1035])

 K = ABA6 D8E8 BD2B 705B B4CC 34BD 1107 E00D16

	Draft Amendment 2 to Recommendation ITU-T G.9961 (2010) (for Approval, April 2014)
	Amendment 2 to Recommendation ITU-T G.9961 (2010)
	Unified high-speed wire-line based home networking transceivers - Data link layer specification: Amendment 2
	Summary
	Amendment 2 to Recommendation ITU-T G.9961 (2010)
	Unified high-speed wire-line based home networking transceivers - Data link layer specification: Amendment 2

