

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital sections and digital line system – Access networks

Asymmetric Digital Subscriber Line (ADSL) transceivers – Extended bandwidth ADSL2 (ADSL2plus)

Amendment 2

-01

ITU-T Recommendation G.992.5 (2005) – Amendment 2

ITU-T G-SERIES RECOMMENDATIONS TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA CHARACTERISTICS	G.600–G.699
DIGITAL TERMINAL EQUIPMENTS	G.700-G.799
DIGITAL NETWORKS	G.800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900–G.999
General	G.900-G.909
Parameters for optical fibre cable systems	G.910-G.919
Digital sections at hierarchical bit rates based on a bit rate of 2048 kbit/s	G.920-G.929
Digital line transmission systems on cable at non-hierarchical bit rates	G.930–G.939
Digital line systems provided by FDM transmission bearers	G.940-G.949
Digital line systems	G.950–G.959
Digital section and digital transmission systems for customer access to ISDN	G.960–G.969
Optical fibre submarine cable systems	G.970–G.979
Optical line systems for local and access networks	G.980–G.989
Access networks	G.990-G.999
QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000–G.7999
ETHERNET OVER TRANSPORT ASPECTS	G.8000–G.8999
ACCESS NETWORKS	G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation G.992.5

Asymmetric Digital Subscriber Line (ADSL) transceivers – Extended bandwidth ADSL2 (ADSL2plus)

Amendment 2

Summary

This amendment enables the Downstream Power Back-Off functionality defined in ITU-T Rec. G.997.1 for use with ADSL2plus transceivers.

Source

Amendment 2 to ITU-T Recommendation G.992.5 (2005) was approved on 6 June 2006 by ITU-T Study Group 15 (2005-2008) under the ITU-T Recommendation A.8 procedure.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 2006

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

CONTENTS

		Page
1)	Clause 8.5.1 – Definition of control parameters	1

ITU-T Recommendation G.992.5

Asymmetric Digital Subscriber Line (ADSL) transceivers – Extended bandwidth ADSL2 (ADSL2plus)

Amendment 2

1) Clause 8.5.1 – Definition of control parameters

Change paragraphs 3 and 4 as indicated with revision marks:

The downstream PSD mask in the CO-MIB (exchanged between NMS and Access Node over the Q reference point, see Figure 5-1/G.997.1) shall be specified through the Downstream Power Back-Off-Shaped (DPBOSHAPED, see 7.3.1.2.13/G.997.1) or through a set of breakpoints (PSDMASKds, see 7.3.1.2.9/G.997.1).

- When specified through a set of breakpoints, the Access Node shall pass these breakpoints (PSDMASKds) to the ATU-C over the gamma reference point.
- When specified through the DPBO (i.e., DPBOESEL > 0, see 7.3.1.2.13/G.997.1), the Access Node shall pass the set of breakpoints of the Modified Downstream PSD Mask (see 7.3.1.2.13/G.997.1) to the ATU-C over the gamma reference point.

At the Q and gamma reference points, each breakpoint shall consist of a subcarrier index t and a MIB PSD mask level (expressed in dBm/Hz) at that subcarrier. The set of breakpoints can then be represented as $[(t_1, PSD_1), (t_2, PSD_2), \dots, (t_N, PSD_N)]$. In the CO-MIB, tThe subcarrier index shall be coded as an unsigned integer in the range from roundup($f_pb_start/\Delta f$) to rounddown($f_pb_stop/\Delta f$), where f_pb_start and f_pb_stop are the lower and higher edge, of the passband respectively and Δf is the subcarrier spacing defined in 8.8.1. The passband is defined in Annexes A, B or I, as relevant to the selected application option. The PSD mask level shall be coded as an unsigned integer representing the MHB-PSD mask levels 0 dBm/Hz (coded as 0) to -127.5 dBm/Hz (coded as 255), in steps of 0.5 dBm/Hz, with valid range 0 to -95 dBm/Hz. The maximum number of breakpoints is 32. The corresponding MIB PSD mask for each frequency f shall be defined as follows:

- $f_{lm_{start}} = \text{frequency at which the flat extension below } f_1 \text{ intersects the Limit mask (0 Hz} \\ \underline{\text{if no intersect).}}$
- <u> f_m_{stop} = frequency at which the flat extension above f_N intersects the Limit mask.</u>
- At frequencies below f_1 and at frequencies above f_N , the MIB PSD mask shall be obtained as follows:

 $MIB \ PSD \ mask \ (f) = \begin{cases} Limit \ mask \ (f) & f < f_lm_start \\ PSD_1 & f_lm_start \le f \le f_1 \\ \\ PSD_N & f_N < f \le f_lm_stop \\ Limit \ mask \ (f) & f > f_lm_stop \end{cases}$

NOTE 1 – In defining the set of breakpoints of the Modified Downstream PSD Mask (see 7.3.1.2.13/G.997.1), the Access Node may take into account whether the transceiver supports windowing or not (see 8.8.4).

NOTE 2 – The actual transmit PSD (at the U-C reference point), while conforming to the MIB PSD mask (received through a set of breakpoints over the gamma reference point), may significantly undershoot the MIB PSD mask in some frequency regions if the MIB PSD mask shape requires faster roll-off than is supported by the available windowing capability. Appendix IV defines the PSD template to be used in capacity calculations with in-band transmit spectrum shaping, except where the transceiver supports windowing and windowing is enabled, in which case the shape of the windowing should be taken into account.

In case the downstream PSD mask in the CO-MIB is expressed as a set of breakpoints (exchanged between NMS and AN over the Q reference point, see 7.3.1.2.9/G.997.1), T the set of breakpoints specified in the CO-MIB shall comply to the following restrictions, and the corresponding MIB PSD mask for each frequency *f* shall be defined as following:

- 1) General
- $t_n < t_{n+1}$ for n = 1 to N 1.

$$- \qquad f_n = t_n \times \Delta f.$$

- 2) Low-frequency end and high-frequency end of MIB PSD mask (f)
- $t_1 = roundup(f_pb_start/\Delta f)$ or $(73 \le t_1 \le 271)$.
- $t_N = rounddown(f_pb_stop/\Delta f)$.
 - f_lm_start = frequency at which the flat extension below f_l intersects the Limit mask (0 Hz if no intersect).
- <u> f_{lm_stop} = frequency at which the flat extension above f_{N} intersects the Limit mask.</u>
- At frequencies below f_1 and at frequencies above f_N , the MIB PSD mask shall be obtained as follows:

$$\frac{\text{Limit mask}(f) \quad f < f_lm_start}{PSD_1 \qquad f_lm_start \leq f \leq f_1}$$

$$\frac{\text{MIB PSD mask}(f) = \begin{cases} PSD_N \qquad f_N < f \leq f_lm_stop \\ Limit mask(f) \qquad f > f_lm_stop \end{cases}$$

3) *MIB PSD stopband in lower frequency part*

if $(73 \le t_1 \le 271)$ then:

- $PSD_1 = -95 \text{ dBm/Hz}.$
- Set of valid t_2 values is every 10th tone starting from tone 100 up until tone 280.
- The value t_1 shall be:

$$t_1 = rounddown\left(t_2 - \left(\frac{PSD_2 - PSD_1}{2.2 \text{ dB/tone}}\right)\right)$$

- At frequencies between f_1 and f_2 , the MIB PSD mask is obtained by interpolation in dB on a logarithmic frequency scale as follows:

$$MIB \ PSD \ mask \ (f) = \begin{cases} PSD_1 + (PSD_2 - PSD_1) \times \frac{\log\left((f/\Delta f)/t_1\right)}{\log(t_2/t_1)} & f_1 < f \le f_2 \end{cases}$$

4) *MIB PSD inband shaping*

if $t_1 = roundup(f_pb_start/\Delta f)$ then for n = 1 to N - 1:

if $(73 \le t_1 \le 271)$ then for n = 2 to N - 1:

– The inband slope shall comply to:

$$\left|\frac{PSD_{n+1} - PSD_n}{t_{n+1} - t_n}\right| \le 0.75 \,\mathrm{dB/tone}$$

- MAX (PSD_n) MIN $(PSD_n) \le 20$ dB.
- MAX PSD of the Limit mask $-20 \text{ dB} \le \text{MAX} (PSD_n) \le \text{MAX} PSD$ of the Limit mask.
- The MIB PSD mask is obtained by interpolation in dB on a linear frequency scale as follows:

$$MIB \ PSD \ mask \ (f) = \begin{cases} PSD_n + (PSD_{n+1} - PSD_n) \times \frac{(f/\Delta f) - t_n}{t_{n+1} - t_n} & f_n < f \le f_{n+1} \end{cases}$$

NOTE <u>3</u> – If the first breakpoint has subcarrier index $73 \le t_1 \le 271$, then a stopband is created in the lower frequency part of the passband, with spectrum shaping applied to the remainder of the passband. If $t_1 = roundup(f_pb_start/\Delta f)$, then only spectrum shaping is applied over the whole passband.

- 5) *RFI band specification*
- A RFI band is specified in the CO-MIB PSD mask through a set of 4 breakpoints (t(i + 1), PSD(i + 1)) to (t(i + 4), PSD(i + 4)), as shown in Figure 8.5.1-1. In addition, the CO-MIB also contains an explicit indication that the pair (t(i + 2), t(i + 3)) represents an RFI band (see ITU-T Rec. G.997.1).
- The restrictions on the breakpoints specifying an RFI band are:

$$\frac{PSD_{i+1} - PSD_{i+2}}{t_{i+1} - t_{i+2}} \le 1.5 \,\mathrm{dB/tone}$$

$$PSD_{i+2} \ge PSD_Limitmask(f_{i+2}) - 33.5 \,\mathrm{dB}$$

$$PSD_{i+2} = PSD_{i+3}$$

$$PSD_{i+3} \ge PSD_Limitmask(f_{i+3}) - 33.5 \,\mathrm{dB}$$

$$\frac{PSD_{i+4} - PSD_{i+3}}{t_{i+4} - t_{i+3}} \le 1.5 \,\mathrm{dB/tone}$$

– In the RFI band, the MIB PSD mask is given by the following equations:

$$MIB \ PSD \ mask(f) = \begin{cases} PSD_{i+1} & f_{i+1} \le f \le f_{i+2} \\ PSD_{i+2} = PSD_{i+3} & f_{i+2} \le f \le f_{i+3} \\ PSD_{i+4} & f_{i+3} \le f \le f_{i+4} \end{cases}$$

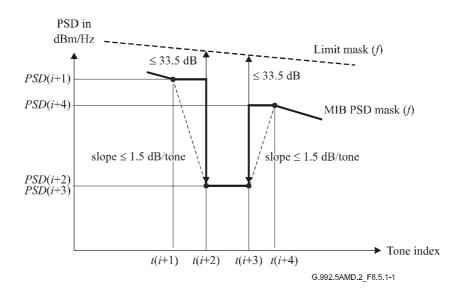


Figure 8.5.1-1/G.992.5 – Restrictions on breakpoints and MIB PSD mask (f)

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems