

INTERNATIONAL TELECOMMUNICATION UNION

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS Digital sections and digital line system – Access networks

Amendment 3 to Recommendation G.992.3

CAUTION !

PREPUBLISHED RECOMMENDATION

This prepublication is an unedited version of a recently approved Recommendation. It will be replaced by the published version after editing. Therefore, there will be differences between this prepublication and the published version.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU [had/had not] received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 2004

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Amendment 3 to Recommendation G.992.3

Summary

This Annex C deals with Specific requirements for an ADSL system operating in the same cable as ISDN as defined in ITU-T Recommendation G.961 Appendix III. It is a delta to the main body of this Recommendation. For sections where no supplements or amendments are made, the section heading is repeated to maintain the numbering of section headings aligned with the main body.

ANNEX C to G.992.3

Specific requirements for an ADSL system operating in the same cable as ISDN as defined in ITU-T Recommendation G.961 Appendix III

This Annex is a delta to the main body of this Recommendation. For sections where no supplements or amendments are made, the section heading is repeated to maintain the numbering of section headings aligned with the main body.

C.1 Scope (supplements §1)

This annex describes those specifications that are unique to an ADSL system coexisting in the same binder as TCM-ISDN as defined Recommendation G.961 Appendix III. The subclauses in this annex provide supplementary and replacement material to the clauses in the main body. The modifications described in this annex allow a performance improvement from the ADSL system specified in Annex A in an environment coexisting with TCM-ISDN in the same cable. It is recommended that an ADSL system implementing Annex C also implements Annex A.

For this Annex, support of STM-TC as defined in § K1 is left for further study.

C.2 References

This Annex does not define any additional references.

C.3 Definitions (supplements § 3)

This Annex defines the following additional terms:

Bitmap-F _C	ATU-R transmitter bitmap under TCM-ISDN FEXT noise generated at ATU-C
Bitmap-F _R	ATU-C transmitter bitmap under TCM-ISDN FEXT noise generated at ATU-R
Bitmap-N _C	ATU-R transmitter bitmap under TCM-ISDN NEXT noise generated at ATU-C
Bitmap-N _R	ATU-C transmitter bitmap under TCM-ISDN NEXT noise generated at ATU-R
Dual Bitmap FEXT Bitmap	The Dual Bitmap method has dual bit rates under the FEXT and NEXT noise from TCM-ISDN Similar to the Dual Bitmap method however transmission only occurs during FEXT noise from TCM-ISDN
FEXT _C duration	TCM-ISDN FEXT duration at ATU-C estimated by the ATU-R
FEXT _C symbol	DMT symbol transmitted by ATU-R during TCM-ISDN FEXT
FEXT _R duration	TCM-ISDN FEXT duration at ATU-R estimated by the ATU-C
FEXT _R symbol	DMT symbol transmitted by ATU-C during TCM-ISDN FEXT
Hyperframe NEXT _C duration	5 Superframes structure which synchronized TTR TCM-ISDN NEXT duration at ATU-C estimated by the ATU-R
NEXT _C symbol	DMT symbol transmitted by ATU-R during TCM-ISDN NEXT
NEXT _R duration	TCM-ISDN NEXT duration at ATU-R estimated by the ATU-C
NEXT _R symbol	DMT symbol transmitted by ATU-C during TCM-ISDN NEXT
N _{SWF}	Sliding Window frame counter
Subframe TTR	10 consecutive DMT symbols (except for sync symbols) according to TTR timing TCM-ISDN Timing Reference

TTR _C	Timing reference used in ATU-C
TTR _R	Timing reference used in ATU-R

C.4 Abbreviations (supplements § 4)

This Annex defines the following additional abbreviations:

UI Unit Interval

C.5 Reference Models (supplements § 5)

C.5.1 ATU Functional Model

C.5.2 User Plane Protocol Reference Model (supplements § 5.2)

Due to the use of dual bitmapping (see (0.8.4.2)), the one-way maximum payload transfer delay for Annex C may be longer than the specified values in (0.8.4.2)), the one-way maximum payload transfer delay for Annex C may be longer than the specified values in (0.8.4.2.2), an additional payload transfer delay of between 0 and 4.25 ms will result.

NOTE:Buffering to support this additional delay may be included in the PMS-TC function, the TPS-TC function, or beyond the γ interface.

C.5.3 Management Plane Reference Model

- C.5.4 Application Models
- C.6 Transport Protocol Specific Transmission Convergence (TPS-TC) function
- C.6.1 G.994.1 Phase (supplements § 6.6.1)

C.6.1.1 G.994.1 Capabilities List Message (supplements § 6.6.1.1)

~ - - - - - - -

Replace Table 6-2 with Table C6-1:

Table C6-1/G.992.3 -	Format for	TPS-TC	Capabilities I	nformation

- --- - - -

Spar(2) bits	Definition of Npar(3) bits				
Maxtype Upstream (Note)	Parameter block of 2 octets that describes the maxtype values				
	for upstream, using an unsigned 3-bit value in the 0 to 4 range				
for each of the TPS-TC types 2 (ATM) and 3 (PTM).					
Maxtype Downstream (Note)	Parameter block of 2 octets that describes the <i>maxtype</i> values				
	for downstream, using an unsigned 3-bit value in the 0 to 4				
range for each of the TPS-TC types 2 (ATM) and 3 (PTM).					
Note – TPS-TC type 1 (STM) is left for further study.					

C.7 Physical Media Specific Transmission Convergence (PMS-TC) function (supplements § 7)

- C.7.1 Transport Capabilities
- C.7.2 Additional Functions
- C.7.3 Block Interface Signals and Primitives

C.7.4 Block Diagram and Internal Reference Point Signals (supplements § 7.4)

The Figure 7-4 shall be replaced with Figure C7-1. Figure C7-1 shows the block diagram of the transmit PMS-TC function.

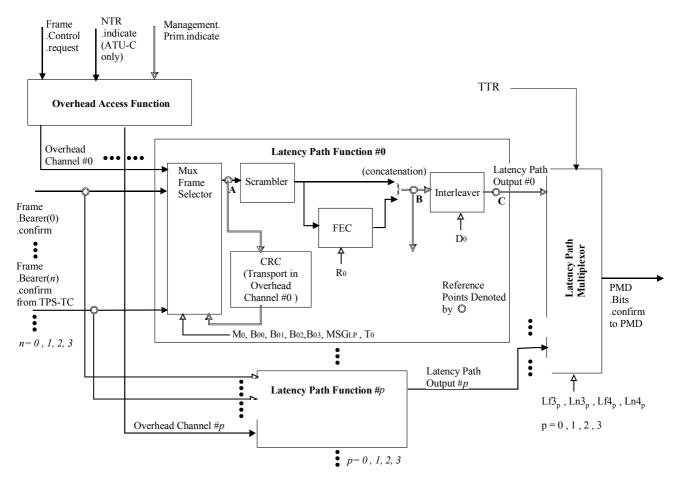


Figure C7-1/G.992.3 – Block Diagram of Transmit PMS-TC Function

C.7.5 Control Parameters

C.7.6 Frame structure (supplements §7.6)

Four types of symbols are defined in Table C8-2. When operating with frame structure with single latency dual bearers and $T_p = 1$ (see Figure 7-7), L₀ is the average number of bits per data symbol passed from the PMS-TC to the PMD.

C.7.6.1 Derived Definitions (supplements §7.6.1)

Replace Table 7-7 with Table C7-1.

NOTE - The only differences between these tables is the addition of the parameters L_p and Jitter_p.

K _p	The number of octets per Mux Data Frame in latency path function #p is always $K_p = \sum_{i=0}^{N_{BC}-1} B_{p,i} + 1$.
N _{FEC p}	The number of octets per FEC Data Frame and Interleaved FEC Data Frame in latency path function #p is always $N_{FECp} = M_p \times K_p + R_p$.
L _p	Average number of bits per data symbol $L_p = (96 \times Lf4_p + 30 \times Lf3_p + 144 \times Ln4_p + 70 \times Ln3_p) / 340.$
S_p	Not accounting for the interleaving procedure, the number of PMD.Bits.request primitives (and correspondingly the number of PMD symbols) over which the FEC Data Frame spans is always $S_p = \frac{8 \times N_{FEC,p}}{L_p}$. The value of S _p may represent a non-integer value.
Net data rate net_act_{pn} of frame	When $T_p = 1$, the net data rate for frame bearer #n in latency path #p is given by net_act_{pn} = $\frac{B_{p,n} \times M_p}{S_p} \times 32Kbit / s = \frac{B_{p,n} \times M_p \times L_p}{K_p \times M_p + R_p} \times 4Kbit / s$.
bearer #n in latency path	When $T_p \neq 1$, then the net data rate of the frame bearer with the lowest index, that is assigned to latency path #p is given by net_act_{pn}
function #p	$= \left(\frac{B_{p,n} \times M_p}{S_p} + \frac{(T_p - 1) \times M_p}{T_p \times S_p}\right) \times 32Kbit/s = \frac{(T_p \times (B_{p,n} + 1) - 1) \times M_p \times L_p}{T_p \times (K_p \times M_p + R_p)} \times 4Kbit/s;$
	the net data rate for bearers associated with subsequence values in the list is given by net_act_{pn} = $\frac{B_{p,n} \times M_p}{S_p} \times 32Kbit / s = \frac{B_{p,n} \times M_p \times L_p}{K_p \times M_p + R_p} \times 4Kbit / s$.
Net data rate <i>Net_{p act}</i> of latency path function #p	Net data rate Net _{p act} is affected by the value of T_p . When $T_p = 1$, the $Net_{p act}$ is $= \frac{(K_p - 1) \times M_p}{S_p} \times 32Kbit / s = \frac{(K_p - 1) \times M_p \times L_p}{K_p \times M_p + R_p} \times 4Kbit / s = Kbit / s$
	When $T_p \neq 1$, the Net_{pact} is $= \left(\frac{(K_p - 1) \times M_p}{S_p} + \frac{(T_p - 1) \times M_p}{T_p \times S_p}\right) \times 32Kbit / s = \frac{(T_p \times K_p - 1) \times M_p \times L_p}{T_p \times (K_p \times M_p + R_p)} \times 4Kbit / s$
Overhead rate OR_p of latency path function #p	Overhead rate is always $OR_p = \frac{M_p}{T_p \times S_p} \times 32Kbit / s = \frac{M_p \times L_p}{T_p \times (K_p \times M_p + R_p)} \times 4Kbit / s$
PMS-TC Delay $delay_p$ of latency path	Nominal one-way maximum transport delay of latency path function #p is defined as (where $\lceil x \rceil$ denotes rounding to the higher integer): $\lceil S \times D \rceil$
function #p	$\frac{delay_p}{4} = \frac{\left S_p \times D_p\right }{4}ms$
SEQ _p	Length of the sync octet sequence of latency path function #p, defined as $SEQ_{p} = \begin{cases} 2, if p \neq MSG_{LP} \text{ and latency path # p is not the lowest latency path (See 7.8.2.1)} \\ 6 if p \neq MSG_{LP} \text{ and latency path # p is the lowest latency path (See 7.8.2.1)} \\ MSG_{C} + 2, if p = MSG_{LP} \text{ and latency path # p is not the lowest latency path (See 7.8.2.1)} \\ MSG_{C} + 6 if p = MSG_{LP} \text{ and latency path # p is the lowest latency path (See 7.8.2.1)} \end{cases}$

Table C7-1/G.992.3 - Derived Characteristics of the ATU Data Frame

PER _p	The period of the overhead channel in latency path #p is $PER_p = \frac{T_p \times S_p \times SEQ_p}{4 \times M_p} ms$
INP_p	Impulse Noise Protection INP_p in number of DMT symbols of latency path function $\#p$:
	$INP_{p} = \left(\frac{1}{2}\right) \times \left(S \times D\right) \times \left(\frac{R}{N_FEC}\right)$
Jitterp	Jitter of latency path function #p is expressed in symbols and defined as:
	$jitter_{p} = \left\lceil \frac{112}{L_{p}} \times \left \frac{4 \times Lf4_{p} + 6 \times Ln4_{p} - 3 \times Lf3_{p} - 7 \times Ln3_{p}}{34} \right + \max\left(\frac{21 \times \left(Lf3_{p} - Ln3_{p}\right)}{3 \times Lf3_{p} + 7 \times Ln3_{p}}, \frac{24 \times \left(Lf4_{p} - Ln4_{p}\right)}{4 \times Lf4_{p} + 6 \times Ln4_{p}} \right) \right\rceil$
	where $ x $ denotes absolute value and $\lceil x \rceil$ denotes rounding to the higher integer.

C.7.6.2 Valid Framing Configurations

C.7.6.3 Mandatory Framing Configurations

C.7.7 Data Plane Procedures (supplements § 7.7)

C.7.7.1 Latency Path Function

C.7.7.2 Frame multiplexing (supplements § 7.7.2)

Four distinct L values are defined, one for each symbol type. These are $Lf3_p$, $Lf4_p$, $Ln3_p$, and $Ln4_p$ (see §8.4.2.2). L_p is a derived parameter and is defined in Table C7-1.

C.7.8 Control Plane Procedures

- C.7.9 Management Plane Procedures
- C.7.10 Initialization Procedures (supplements § 7.10)
- C.7.10.1 G.994.1 Phase
- C.7.10.2 Channel Analysis Phase

C.7.10.3 Exchange Phase (replaces § 7.10.3)

The remaining values of the control parameters for the TPS-TC functions as well as additional information about the TPS-TC functions shall be reported by the receive TPS-TC function and transported to the transmit TPS-TC function during the exchange procedure.

The information in C-PARAM includes:

- The latency path MSG_{LP} to carry the upstream message oriented portion of the overhead channel.
- Assignment of upstream frame bearers to upstream latency paths.
- The number of message octets MSG_c included in the upstream overhead structure
- B_{pn} for each upstream latency path and frame bearer
- M_p for each upstream latency path
- R_p for each upstream latency path
- D_p for each upstream latency path
- T_P for each upstream latency path.
- Lf3_p, Ln3_p, Lf4_p, Ln4_p corresponding to each upstream latency path.

The information in R-PARAM includes:

• The latency path MSG_{LP} to carry the downstream message oriented portion of the overhead channel.

- Assignment of downstream frame bearers to downstream latency paths.
- The number of message octets MSG_c include in the downstream overhead structure
- B_{pn} for each downstream latency path and frame bearer
- M_p for each downstream latency path
- R_p for each downstream latency path
- D_p for each downstream latency path
- T_p for each downstream latency path.
- Lf3_p, Ln3_p, Lf4_p, Ln4_p corresponding to each downstream latency path.

This C-PARAMS and R-PARAMS information is represented as a parameter block as in Table C7-2. The information is transmitted in the order shown during C-PARAM and R-PARAM as described in the PMD initialization procedure.

Octet	Format	Description					
Number [i]	PMS-TC						
	Bits [8*i+7 to 8*i+0]						
Octet 0	[0000 00bb]	The bits bb encode the value of MSG_{LP} . MSG_{LP} . Indicates the latency path					
	bit 1 to 0	in which the message based overhead information is to be transmitted. The values 00, 01, 10, and 11 correspond to latency path #0, #1, #2, #3,					
		respectively.					
Octet 1	[cccc dddd]	The bits cccc are set to 0000, 0001, 0010, or 0011 if the frame bearer #0 is					
	bit 7 to 0	to be carried in latency path $\#0, \#1, \#2$, or $\#3$ respectively. The bits cccc are set to 1111 if type ₀ is zero (i.e., disabled frame bearer, see Table 6-1).					
		The bits dddd describe where the frame bearer #1 is to be carried using the same encoding method as cccc.					
Octet 2	[eeee ffff] bit	The bits eeee and ffff describe where the frame bearers #2 and #3,					
	7 to 0	respectively, are to be carried using the same encoding method as cccc of octet 1.					
Octet 3	[gggg gggg] bit 7 to 0	The bits ggggggg encode the value of MSG_C , the number of octets in the message based portion of the overhead structure. The latency path $\#MSG_{LP}$					
	011 / 10 0	is used to transport the message based overhead information.					
Octet 4	[hhhh hhhh]	The bits hhhhhhhh give the number of octets from bearer #0 per Mux Data					
	bit 7 to 0	Frame being transported. This value is zero or the non-zero value from the value of the set $\{B_{00}, B_{10}, B_{20}, B_{30}\}$.					
Octet 5	[iiii iiii] bit 7	The bits iiiiiiii give the number of octets from bearer #1 per Mux Data					
	to 0	Frame being transported. This value is zero or the non-zero value from the value of the set $\{B_{01}, B_{11}, B_{21}, B_{31}\}$.					
Octet 6	[jjjj jjjj] bit 7	The bits jjjjjjjj give the number of octets from bearer #2 per Mux Data					
	to 0	Frame being transported. This value is zero or the non-zero value from the value of the set $\{B_{02}, B_{12}, B_{22}, B_{32}\}$.					
Octet 7	[kkkk kkkk]	The bits kkkkkkk give the number of octets from bearer #3 per Mux Data					
	bit 7 to 0	Frame being transported. This value is zero or the non-zero value from the value of the set $\{B_{03}, B_{13}, B_{23}, B_{33}\}$.					
Octet 8	[mmmm	The bits mmmmmmm give the value of M_P for latency path #0. They are					
	mmmm] bit 7 to 0	always present and set to zero if not used.					
Octet 9	[tttt tttt] bit 7 to 0	The bits ttttttt give the value of T_P for latency path #0. They are always present and set to zero if not used.					
Octet 10	[rrrr 0DDD]	The bits rrrr0DDD give the value of R_P and D_P for latency path #0. The rrrr					
	bit 7 to 0	and DDD bits are coded as defined in Table 7-18. They are always present					
Octot 11	[11]] 1]]]] L:4 7	and set to zero if not used.					
Octet 11	[1111 1111] bit 7 to 0	The bits IllIllI give the lsb of the value of $Lf3_P$ for latency path #0. They are always present and set to zero if not used					
Octet 12	[llll llll] bit	are always present and set to zero if not used. The bits lllllll give the msb of the value of $Lf3_p$ for the latency path #0.					
000012	15 to 8	These are always present and set to zero if not used.					

Table C7-2/G.992.3 - - Format for PMS-TC PARAMS Information

Octet	Format	Description				
Number [i]	PMS-TC					
	Bits [8*i+7					
	to 8*i+0]					
Octet 13	[1111 1111] bit 7	The bits lllllll give the lsb of the value of Ln3 _P for latency path #0. They				
	to 0	are always present and set to zero if not used.				
Octet 14	[1111 1111] bit	The bits lllllll give the msb of the value of $Ln3_P$ for latency path #0. They				
	15 to 8	are always present and set to zero if not used.				
Octet 15	[1111 1111] bit 7	The bits lllllll give the lsb of the value of Lf4 _P for latency path #0. They				
	to 0	are always present and set to zero if not used.				
Octet 16	[1111 1111] bit	The bits lllllll give the msb of the value of $Lf4_P$ for latency path #0. They				
	15 to 8	are always present and set to zero if not used.				
Octet 17	[1111 1111] bit 7	The bits lllllll give the lsb of the value of Ln4 _P for latency path #0. They				
	to 0	are always present and set to zero if not used.				
Octet 18	[1111 1111] bit	The bits lllllll give the msb of the value of $Ln4_P$ for latency path #0. They				
	15 to 8	are always present and set to zero if not used.				
Octets 19-29	same as	These octets describe the parameters for latency path #1, in the same format				
	octets 8-18	as octets 8 through 18. They are always present and set to zeros if unused.				
Octets 30-40	same as	These octets describe the parameters for latency path #2, in the same format				
	octets 8-18	as octets 8 through 18. They are always present and set to zeros if unused.				
Octets 41-51	same as	These octets describe the parameters for latency path #3, in the same format				
	octets 8-18	as octets 8 through 18. They are always present and set to zeros if unused.				

The value of N_{LP} (i.e., the number of enabled latency paths) is conveyed implicitly in the settings of octets 0 (bits bb), 1 (bits cccc and ddd) and 2 (bits eeee and ffff). Latency paths with a label contained in the set {*bb, cccc, dddd, eeee, ffff*} shall be enabled. Latency paths that are supported but with a label not contained in this set shall be disabled.

The octet 0 in Table C7-2 assigns the message based overhead to a particular latency path $\#MSG_{LP}$ (with MSG_{LP} in the 0 to 3 range). The octets 1 and 2 in Table C7-2 assign frame bearer #n (for n=0 to 3) to a particular latency path #p (with p in the 0 to 3 range), or disable the frame bearer. The message based overhead and the enabled frame bearers shall be assigned to a latency path that is supported by both ATUs (as indicated in CL and CLR, see Table 7-19). If an ATU supports a particular latency path #p, it shall support assignment of message based overhead and/or any number of enabled frame bearers (0 to N_{BC}) to that latency path. It is possible to assign frame bearer #n to latency path #p, with the number of octets from frame bearer #n per Mux Data Frame (as indicated in octet 4, 5, 6 or 7 in Table C7-2) set to zero (i.e., B_{p,n} = 0).

It is not possible to configure at initialization a latency path #p with overhead sequence length $SEQ_p = 6$ (i.e. one that carries only a CRC and the bit oriented portion of the overhead) without also carrying at least one frame bearer in the latency path p.

The method used by the receiver to select these values is implementation dependent. However, within the limit of the raw data rate and coding gain provided by the local PMD, the selected values shall meet all of the constraints communicated by the transmitter prior to the Exchange Phase, including:

- (Message based) Overhead data rate \geq Minimum overhead data rate
- Net data rate \geq Minimum net data rate for all bearer channels
- Impulse noise protection \geq Minimum impulse noise protection for all bearer channels
- Delay \leq Maximum delay for all bearer channels
- Jitter ≤ Maximum jitter for all bearers channels (values of Lf3_p, Lf4_p, Ln3_p, and Ln4_p shall meet the specified jitter requirement, see Table C7-1). See §C.K.2.1.1 for valid jitter configuration.

Within those constraints, the receiver shall select the values as to optimize in the priority listed:

- 1. Maximize net data rate for all bearer channels, per the allocation of the net data rate, in excess of sum of the minimum net data rates over all bearer channels (see § 7.10.2).
- 2. Minimize excess margin (see § 8.6.4)

If within those constraints, the receiver is unable to select a set of configuration parameters, then an initialization failure cause shall be indicated in the PMS-TC PARAMS information (4-bit integer, see Table 7-20), with the other bits in the

PMS-TC PARAMS information set to 0. The transmitter shall enter the SILENT state (see Annex D) instead of the SHOWTIME state at completion of the initialization procedures. Valid failure causes are the failure cause values 1 (configuration error) and 2 (configuration not feasible on line), as defined in G.997.1. If within those constraints, the receiver is able to select a set of configuration parameters, then value 0 is used to indicate a successful initialization. The values 3 to 15 are reserved.

C.7.11 Online Reconfiguration

- C.8 Physical media dependent function (supplements § 8)
- C.8.1 ATU-C/R transmitter timing model (new)
- C.8.1.1 TCM-ISDN crosstalk timing model

Figure C8-1 shows the timing chart of the crosstalk from TCM-ISDN.

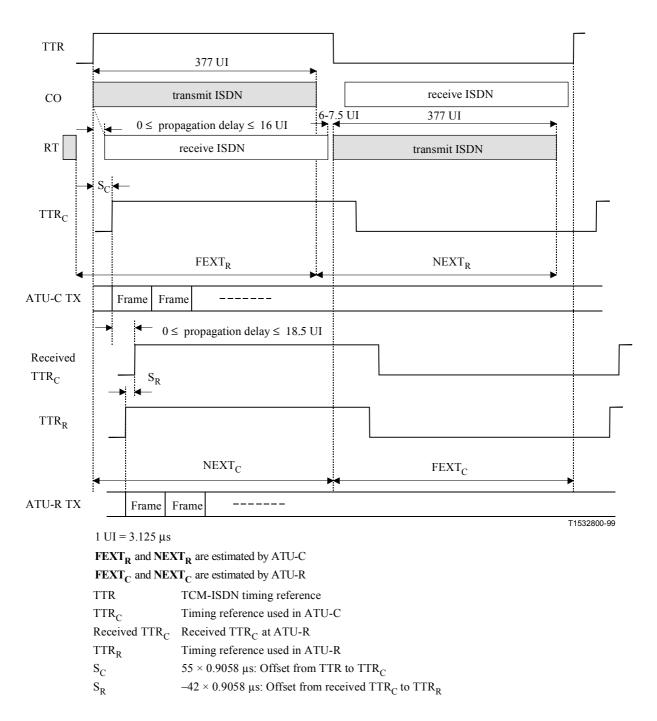


Figure C8-1/G.992.3 – Timing chart of the TCM-ISDN crosstalk

The data stream of TCM-ISDN is transmitted synchronously with the TTR period. The CO transmits TCM-ISDN during the first half of the TTR period while the RT transmits TCM-ISDN during the second half of the TTR period. The ATU-C experiences NEXT noise from TCM-ISDN in the first half of the TTR period and FEXT noise from TCM-ISDN in the second half of the TCM-ISDN period. On the other hand, the ATU-R experiences FEXT noise from TCM-ISDN in the first half of the TTR period.

As defined in § C.8.13.5.1.4 and § C.8.13.5.2.4, the ATU-C shall estimate the FEXT_R and NEXT_R duration at the ATU-R, and the ATU-R shall estimate the FEXT_C and NEXT_C duration at the ATU-C, taking into consideration the propagation delay on the subscriber line. The ATU-C shall transmit any symbols by synchronizing with the TTR_C . The ATU-R shall transmit any symbols by synchronizing with the TTR_R generated from received TTR_C .

C.8.1.2 Sliding window

Figure C8-2 shows the timing chart for downstream transmission (i.e., at the ATU-C).

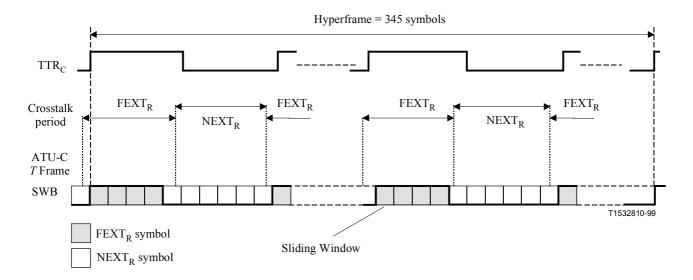


Figure C8-2/G.992.3 – Sliding window for downstream symbols

The Sliding Window defines the transmission symbols under the crosstalk noise environment synchronized to the TTR period. The $\text{FEXT}_{C/R}$ symbol represents the symbol completely inside the $\text{FEXT}_{C/R}$ duration. The $\text{NEXT}_{C/R}$ symbol represents any symbol containing the $\text{NEXT}_{C/R}$ duration. Thus, there are more $\text{NEXT}_{C/R}$ symbols than $\text{FEXT}_{C/R}$ symbols.

The ATU-C decides which transmission symbol is a FEXT_R or NEXT_R symbol according to the sliding window and transmits it with the corresponding bit table. Similarly, the ATU-R decides whether the transmission symbol is a FEXT_C or NEXT_C symbol and transmits it with the corresponding bit table. Although the phase of the sliding window is asynchronous with $\text{TTR}_{C/R}$, the pattern is fixed to the 345 frames of the hyperframe.

C.8.1.3 ATU-C Symbol Synchronization to TTR

345 symbols are 34 cycles with cyclic prefix of TTR_C (or 32 cycles of TTR_C without cyclic prefix). This implies a PLL lock at the ATU-R.

C.8.1.4 Dual Bitmap switching

The ATU-C transmits FEXT_R symbols using Bitmap-F_R (during the FEXT_R duration), and transmits NEXT_R symbols using Bitmap-N_R (during the NEXT_R duration) according to the result of initialization. The ATU-R transmits FEXT_C symbols using Bitmap-F_C (during the FEXT_C duration), and transmits NEXT_C symbols using Bitmap-N_C (during the FEXT_C duration), and transmits NEXT_C symbols using Bitmap-N_C (during the NEXT_C duration) in the same manner.

The ATU-C shall have the capability to disable Bitmap-N_C and Bitmap-N_R. As an option, an ATU-C may have the ability to enable or disable Bitmap-N_C independently of Bitmap-N_R. This is controlled by way of the profiles negotiated through G.994.1.

C.8.1.5 Loop timing at ATU-R

The phase relation between received symbol and transmitted symbol at the ATU-R at the U-R interface shall meet the phase tolerances as shown in Figure C8-3.

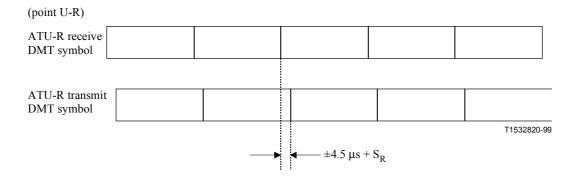


Figure C8-3/G.992.3 - Loop timing for ATU-R

C.8.2 Operating modes (new)

The following profiles are defined to support independent control of FEXT and NEXT bitmaps in the upstream and downstream direction, as well as independent control of the downstream spectrum for each downstream bitmap:

Profile 1

For Profile 1, upstream transmission only uses $Bitmap-F_C$, and downstream transmission only uses $Bitmap-F_R$ with non-overlapped spectrum.

Profile 2

For Profile 2, upstream transmission uses both Bitmap- F_C and Bitmap- N_C , and downstream transmission uses both Bitmap- F_R and Bitmap- N_R . Non-overlapped spectrum is used with both downstream bitmaps.

Profile 3

For Profile 3, upstream transmission only uses $Bitmap-F_C$, and downstream transmission only uses $Bitmap-F_R$ with overlapped spectrum. An example of a downstream PSD mask for this operating mode is shown in Figure V.3 and described in Table V.3 in Appendix V.

Profile 4

For Profile 4, upstream transmission uses both Bitmap- F_C and Bitmap- N_C , and downstream transmission uses both Bitmap- F_R and Bitmap- N_R . Overlapped spectrum is used with both downstream bitmaps.

Profile 5

For Profile 5, upstream transmission only uses Bitmap- F_C , and downstream transmission uses both Bitmap- F_R and Bitmap- N_R . Non-overlapped spectrum is used with Bitmap- N_R , and overlapped spectrum is used with Bitmap- F_R . An example of a downstream PSD mask for use with Bitmap- N_R is shown in Figure V.1 and described in Table V.1 in Appendix V. An example of a downstream PSD mask for use with Bitmap- F_R is shown in Figure V.2 and described in Table V.2 in Appendix V.

Profile 6

For Profile 6, upstream transmission uses both Bitmap- F_C and Bitmap- N_C , and downstream transmission uses both Bitmap- F_R and Bitmap- N_R . Non-overlapped spectrum is used with Bitmap- N_R , and overlapped spectrum is used with Bitmap- F_R . An example of a downstream PSD mask for use with Bitmap- N_R is shown in Figure V.1 and described in Table V.1 in Appendix V. An example of a downstream PSD mask for use with Bitmap- F_R is shown in Figure V.2 and described in Table V.2 in Appendix V.

Table 11.41.1/G.994.1 contains the code points to support these profiles.

C.8.3 Block interface signals and primitives

C.8.4 Block diagram and internal reference point signals (supplements § 8.4)

Replace Figure 8-5 with Figure C8-4:

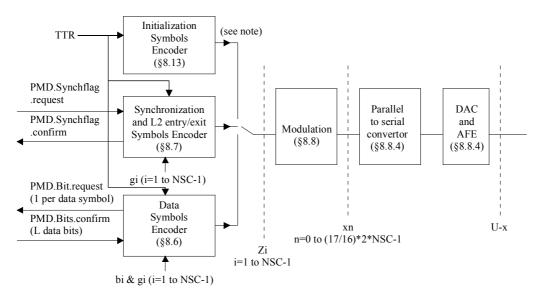


Figure C8-4/G.992.3 - Block Diagram of the Transmit PMD Function

C.8.4.1 Framing (new)

C.8.4.1.1 Hyperframe structure

C.8.4.1.1.1 ATU-C Hyperframe structure

The ATU-C transmitter uses the hyperframe structure shown in Figure C8-5. Figure C8-5 shows the phase relationship between the TTR_C and the hyperframe at the point U-C. Each hyperframe is composed of 5 superframes, which are numbered from 0 to 4.

The bit-level data stream from the rate-converter is extracted according to the size of Bitmap- F_R and Bitmap- N_R using the Sliding Window (see § C.8.1.2).

The hyperframe is composed of 345 DMT symbols, numbered from 0 to 344. Each symbol is assigned as FEXT_R or NEXT_R symbol in a FEXT_R or NEXT_R duration, and the following numerical formula describes which duration the N_{dmt}-th symbol belongs to at the ATU-C transmitter (see Figure C8-6).

 $\begin{array}{ll} \mbox{For $N_{dmt} = 0, 1, ..., 344$} \\ S = 272 \ x \ N_{dmt} \ mod \ 2760$} \\ if \ \{ \ (S + 271 < a) \ or \ (S > a + b) \ \} & then \ FEXT_R \ symbol \\ else & then \ NEXT_R \ symbol \\ where \ a = 1243, \ b = 1461 \\ \end{array}$

Thus, 128 DMT symbols are allocated in the FEXT_R duration, and 217 DMT symbols are allocated in the NEXT_R

duration. The symbols are composed of:

FEXT _R symbol:						
Number of symbol using Bitmap-F _R	= 126					
Number of sync symbol NEXT _R symbol:	= 2					
Number of symbol using Bitmap-N _R	= 214					
Number of sync symbol	= 3					

For transceivers using Profile 1, the ATU-C shall transmit only the pilot tone in the NEXT_R symbols. For Profile 3, the ATU-C shall not transmit any signal in NEXT_R symbols. The remaining Profiles, i.e., Profiles 2, 4, 5 and 6 use the dual bitmap technique.

For transceivers using profiles 5 or 6, the ATU-C may use different tssi's in FEXT_R symbols and NEXT_R symbols. The tssi used during FEXT_R symbols is conveyed in G.994.1 and the tssi used in NEXT_R symbols are not transmitted to the receiver. For the remaining profiles, the same tssi provided during G.994.1 shall be used in FEXT_R and NEXT_R symbols.

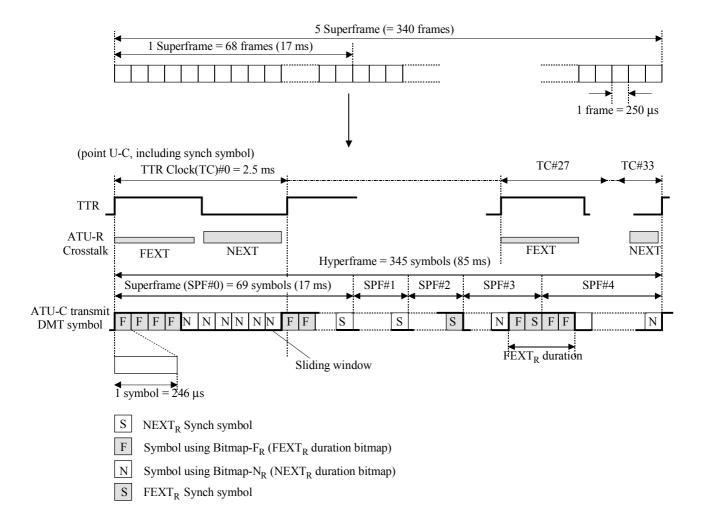


Figure C8-5/G.992.3 – Hyperframe structure for downstream

TTR _C

C												
0	0 1	2	3		4	5		5	7		8	9
1	10 11	12	13	14		15	16	·	7	18	<u> </u>	19
2	20 21	22	23	24		25	26	27		28	29	
3	30 31	32	33	34	35		36	37		38	39	40
4		42	43	44	45		46	47	4	18	49	50
5	51 52	2 3	53	54	55	5		57	58	3	59	60
6	61 62	63		54	65	66		67	SS		69	70
7	71 72	73	74	1 7	5	76	7	7	78	7	9	80
8	81 82	83	84	85		86	87	8	8	89	9	0
9	91 92	93	94	95	9	6	97	98		99	10	0 101
10	101 102	103	104	105	100	5	107	108		109	110	111
11	112 1	13	114	115	116	1	17	118	1	19	120	121
12	122 12	3 12	24	125	126	12	7	128	12	9	130	131
13	132 133	134			36	SS		38	139		40	141
14	142 143	144	14:		<u> </u>	147	14	_	49	15		151
15	152 153	154	155	156	_i,	57	158		59	160		51
16	162 163	164	165	166	16		168	169		170	17	
17		174	175	176	177		178	179		180	181	182
18			85	186	187	<u></u>	88	189		90	191	192
19	193 194			196	197	19		199	200		201	202
20	203 204 213 214	205		_	7	208 218	21		210	22	11	212 222
21 22	213 214	215	210	227		218	229	·		231		
22 23	223 224	235	236	227	23		229	240	· .	231	242	
23 24		245	230	247	248		239	250		241	242	253
25			240	257	258		59	260	26		262	263
26	264 265			267	268	269		270	271		272	273
27	274 SS	276			78	279			281		82	283
28	284 285	286	287	28	8	289	29		91	29		.93
29	294 295	296	297	298	2	99	300	30	1	302	30	3
30	304 305	306	307	308	30	9	310	311	T	312	313	314
31	315 3	316	317	318	319	3	20	321	3	22	323	324
32	325 32	26 3	27	328	329	33	30	331	33	2	333	334
33	335 336	5 33	7 3	38	339	340)	341	342		343	SS
	SS FEXT _R Sy	ynch syn	nbol S	S NE	XT _R sy	nch s	ymbol					
	FEXT _{R da}	ata symb	ool [NE	XT _R da	ata syn	nbol					

Figure C8-6/G.992.3 – Symbol pattern in a hyperframe with cyclic prefix – Downstream

C.8.4.1.1.2 ATU-R Hyperframe structure

The hyperframe structure of the ATU-R transmitter is functionally similar to that of the ATU-C transmitter (see Figure C8-7). The hyperframe is composed of 345 DMT symbols, numbered from 0 to 344. Each symbol is under $FEXT_C$ or $NEXT_C$ duration, and the following numerical formula describes which duration the N_{dmt}-th symbol belongs to at the ATU-R transmitter (see Figure C8-8).

For $N_{dmt} = 0, 1, ..., 344$ $S = 272 \times N_{dmt} \mod 2760$ if { (S > a) and (S + 271 < a + b) } then FEXT_C symbol else then NEXT_C symbol where a = 1315, b = 1293

128 DMT symbols are allocated in the FEXT_{C} duration, and 217 DMT symbols are allocated in the NEXT_{C} duration. The symbols are composed of:

FEXT _C symbol:	
Number of symbol using Bitmap-F _C	= 126
Number of sync symbol	= 2
NEXT _C symbol:	
Number of symbol using Bitmap-N $_{\rm C}$	= 214
Number of sync symbol	= 3

For transceivers using Profiles 1 and 3, the ATU-R shall not transmit any signal in the $NEXT_C$ symbols. The remaining Profiles, i.e., Profiles 2, 4, 5 and 6 use the dual bitmap technique.

For transceivers using profiles 5 or 6, the ATU-R may use different tssi's in $FEXT_C$ symbols and $NEXT_C$ symbols. The tssi used during $FEXT_C$ symbols is conveyed in G.994.1 and the tssi used in $NEXT_C$ symbols are not transmitted to the receiver. For the remaining profiles, the same tssi provided during G.994.1 shall be used in $FEXT_C$ and $NEXT_C$ symbols.

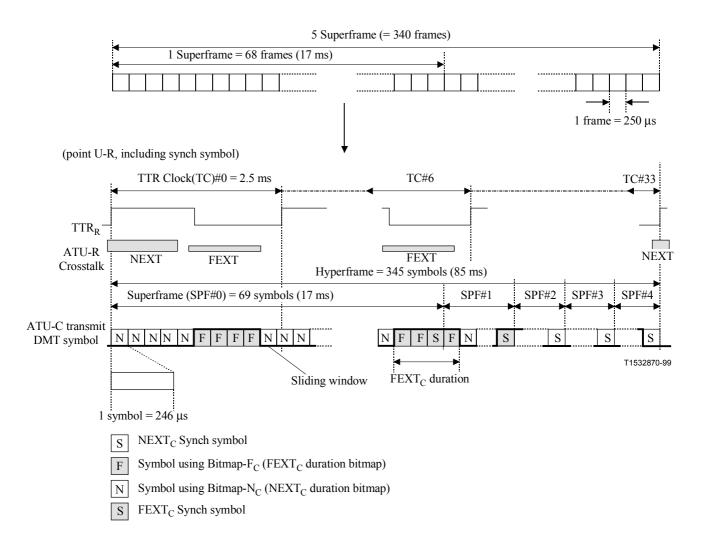


Figure C8-7/G.992.3 – Hyperframe structure for upstream

TTR _R	
0	0 1 2 3 4 5 6 7 8 9
1	10 11 12 13 14 15 16 17 18 19 20 21 22 21 22 22 22 22 23 23 24 25 25 26 25 26 26 26 26 27 28 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 26 27 26 27 26 27 26 27 26 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 27 26 27 27 27 27 27 27 27 </td
2	20 21 22 23 24 25 26 27 28 29 20 21 22 23 24 25 26 27 28 29
3	30 31 32 33 34 35 36 37 38 39 40
4	41 42 43 44 45 46 47 48 49 50
5	51 52 53 54 55 56 57 58 59 6 0
6	61 62 63 64 65 66 67 SS 69 70
7	71 72 73 74 75 76 77 78 79 80
8	81 82 83 84 85 86 87 88 89 90
9	91 92 93 94 95 96 97 98 99 100 10
10	101 102 103 104 105 106 107 108 109 110 111
11	112 113 114 115 1 6 117 118 119 120 21
12	122 123 124 125 126 127 128 129 130 131
13	132 133 134 135 136 <i>SS</i> 138 139 140 14
14	142 143 144 145 146 147 148 149 150 151
15	152 153 154 155 156 157 158 159 160 161
16	162 163 164 165 166 167 168 169 170 171 172
17	173 174 175 176 77 178 179 180 181 82
18	183 184 185 186 187 188 189 190 191 92
19	193 194 195 196 197 198 199 200 201 202
20	203 204 205 <i>SS</i> 207 208 209 210 211 212
21	213 214 215 216 217 218 219 220 221 222
22	223 224 225 226 227 228 229 230 231 232
23	233 234 235 236 237 238 239 240 241 242 24
24	244 245 246 247 248 249 250 251 252 253
25	254 255 256 257 258 259 260 261 262 263
26	264 265 266 267 268 269 270 271 272 273
27	274 SS 276 277 278 279 280 281 282 283
28	284 285 286 287 288 289 290 291 292 293 201 205 206 207 200 200 201 202 203
29 20	294 295 296 297 298 299 300 301 302 303 204 205 206 207 208 209 300 301 302 303
30	304 305 306 307 308 309 310 311 312 313 314
31	315 316 317 318 319 320 321 322 323 24 315 316 317 318 319 320 321 322 323 324
32	325 326 327 328 329 330 331 332 333 3 34
33	335 336 337 338 339 340 341 342 343 S
	SS FEXT _C Synch symbol SS NEXT _C synch symbol
	FEXT _C data symbol NEXT _C data symbol

Figure C8-8/G.992.1 – Symbol pattern in a hyperframe with cyclic prefix – Upstream

C.8.4.1.2 Subframe Structure

A subframe consists of 10 consecutive symbols (the sync symbol is not counted) as shown in Table C8-1. The 34 subframes form a hyperframe. The subframe structure shall apply to both the downstream and upstream directions.

Subframe No.	DMT symbol No.	Note
0	0-9	
1	10-19	
2	20-29	
3	30-39	
4	40-49	
5	50-59	
6	60-70	#68 is Sync Symbol
7	71-80	
8	81-90	
9	91-100	
10	101-110	
11	111-120	
12	121-130	
13	131-141	#137 is Sync Symbol
14	142-151	
15	152-161	
16	162-171	
17	172-181	
18	182-191	
19	192-201	
20	202-212	#206 is Sync Symbol
21	213-222	
22	223-232	
23	233-242	
24	243-252	
25	253-262	
26	263-272	
27	273-283	#275 is Sync Symbol
28	284-293	
29	294-303	
30	304-313	
31	314-323	
32	324-333	
33	334-344	#344 is Sync Symbol

Table C8-1/G.992.3 – Subframe

C.8.4.2 Dual Bitmapping and Latency Path Multiplexing (new)

The functions of the latency path multiplexor (§7.7.2), tone ordering, constellation encoding, and gain scaling shall use one of two bitmaps stored in the ATU. This method is called the dual bitmap.

C.8.4.2.1 Dual Bitmap

The Dual Bitmap method has individual bit rates under FEXT and NEXT noise, respectively. This requires two sets of bit, gain and tone ordering tables, $\{b_i, g_i, t_i\}$, for i=1 to NSC-1. The two sets of $\{b_i, g_i, t_i\}$ tables are switched synchronous with the sliding window pattern of NEXT/FEXT symbols.

C.8.4.2.2 Latency path multiplexing

Unlike G.992.1 Annex C, this Recommendation does not specify a rate converter, and does not use dummy bits. However, in order to accommodate the uneven data flow associated with dual bitmapping, additional latency path multiplexing parameters are defined.

Data rates and latency are controlled by the following independent parameters for each latency path and symbol type:

- Lf3_P The number of bits from the latency path function #p included per PMD.Bits.confirm primitive for symbol type f3.
- Ln3_P The number of bits from the latency path function #p included per PMD.Bits.confirm primitive for symbol type n3.
- Lf4_P The number of bits from the latency path function #p included per PMD.Bits.confirm primitive for symbol type f4.
- Ln4_P The number of bits from the latency path function #p included per PMD.Bits.confirm primitive for symbol type n4.

where the symbol types are defined in Table C8-2 as follows:

Symbol Type	Definition
f3	a FEXT symbol in a subframe that contains 3
	FEXT symbols excluding any sync symbol.
n3	a NEXT symbol in a subframe that contains 3
	FEXT symbols excluding any sync symbol.
f4	a FEXT symbol in a subframe that contains 4
	FEXT symbols excluding any sync symbol.
n4	a NEXT symbol in a subframe that contains 4
	FEXT symbols excluding any sync symbol.

Table C8-2/G.992.3 – Symbol Types

These parameters allow complete flexibility in adjusting the rates and latencies between multiple latency paths. The L_P values are exchanged during initialization and during SRA, and shall comply with the following:

With Lf3 =
$$\sum_{P=0}^{3}$$
 Lf3_P and Lf4 = $\sum_{P=0}^{3}$ Lf4_P

Lf3 and Lf4 shall be equal to the total number of bits that can be mapped in a FEXT symbol.

(e.g., for downstream, $Lf3 = Lf3_0 + Lf3_1 + Lf3_2 + Lf3_3 = f_R$, where f_R is the total number of bits mapped in a FEXT_R symbol).

With Ln3 =
$$\sum_{P=0}^{3}$$
 Ln3_P and Ln4 = $\sum_{P=0}^{3}$ Ln4_P

Ln3 and Ln4 shall be equal to the total number of bits that can be mapped in a NEXT symbol

(e.g., for downstream, $Ln3 = Ln3_0 + Ln3_1 + Ln3_2 + Ln3_3 = f_N$, where f_N is the total number of bits mapped in a NEXT_R symbol).

Two examples are shown below where the delay on latency path 1 is minimized. In the first example, shown in Figure C8-9, the number of bits mapped to the NEXT symbol (n_R) can support the data rate of the required low latency path, and the Lf4₁, Lf3₁, Ln4₁ and Ln3₁ values are simply programmed to the required payload with the Lf4₀, Lf3₀, Ln4₀ and Ln3₀ values set to accommodate the remaining bits in each symbol.

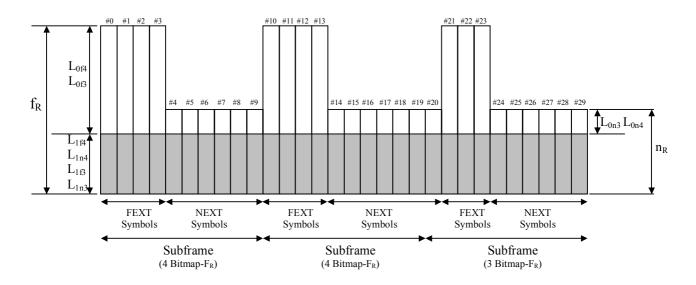
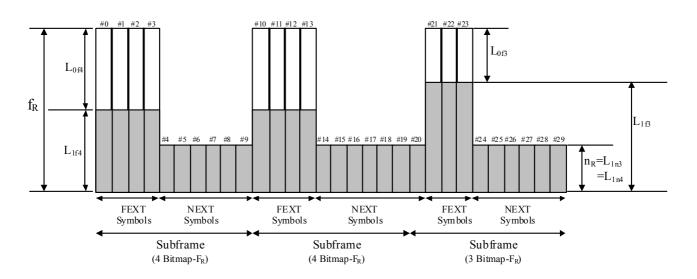



Figure C8-9/G.992.3 – First example of data rate to symbol type mapping.

###Editorial: In Figure C8-9, change notation to $Lf4_0$, $Lf3_0$, $Ln4_0$ and $Ln3_0$ and to $Lf4_1$, $Lf3_1$, $Ln4_1$ and $Ln3_1$

In the second example, shown in Figure C8-10, the n_R cannot support the data rate of the required low latency path. Therefore, all NEXT data is assigned to latency path 1, with the extra data accommodated in the FEXT symbols.

###Editorial: In Figure C8-10, change notation to Lf4₀, Lf3₀, and to Lf4₁, Lf3₁, Ln4₁ and Ln3₁

The selection of Lf4₀, Lf3₀, Ln4₀ and Ln3₀ values and Lf4₁, Lf3₁, Ln4₁ and Ln3₁ values is implementation dependent.

- C.8.5 Control Parameters (supplements § 8.5)
- C.8.5.1 Definition of control parameters
- C.8.5.2 During the Channel Analysis Phase
- C.8.5.3 Setting control parameters during initialization (supplements § 8.5.3)
- C.8.5.3.1 During the G.994.1 Phase

C.8.5.3.2 During the Channel Analysis Phase

C.8.5.3.3 During the Exchange Phase (supplements § 8.5.3.3)

The Table 8-15 shall be replaced with Table C8-3. The Table C8-3 shows the PMD function control parameters included in C-PARAMS.

Octet Nr [i]	Parameter	Format PMD bits [8*i+7 to 8*i+0]
0	LATNus (lsb)	[xxxx xxxx], bit 7 to 0
1	LATNus (msb)	[0000 00xx], bit 9 and 8
2	SATNus (lsb)	[xxxx xxxx], bit 7 to 0
3	SATNus (msb)	[0000 00xx], bit 9 and 8
4	FEXT SNRMus (1sb)	[xxxx xxxx], bit 7 to 0
5	FEXT SNRMus (msb)	[ssss sxxx], bit 10 to 8
6	FEXT ATTNDRus (lsb)	[xxxx xxxx], bit 7 to 0
7	FEXT ATTNDRus	[xxxx xxxx], bit 15 to 8
8	FEXT ATTNDRus	[xxxx xxxx], bit 23 to 16
9	FEXT ATTNDRus (msb)	[xxxx xxxx], bit 31 to 24
10	FEXT ACTATPus (lsb)	[xxxx xxxx], bit 7 to 0
11	FEXT ACTATPus (msb)	[ssss ssxx], bit 9 and 8
12	NEXT SNRMus (lsb)	[xxxx xxxx], bit 7 to 0
13	NEXT SNRMus (msb)	[ssss sxxx], bit 10 to 8
14	NEXT ATTNDRus (lsb)	[xxxx xxxx], bit 7 to 0
15	NEXT ATTNDRus	[xxxx xxxx], bit 15 to 8
16	NEXT ATTNDRus	[xxxx xxxx], bit 23 to 16
17	NEXT ATTNDRus (msb)	[xxxx xxxx], bit 31 to 24
18	NEXT ACTATPus (lsb)	[xxxx xxxx], bit 7 to 0
19	NEXT ACTATPus (msb)	[ssss ssxx], bit 9 and 8
20	TRELLISus	[0000 000x], bit 0
20	Reserved	[0000 0000]
22	FEXT Upstream Bits and Gains	[gggg bbbb], bit 7 to 0
22	For subcarrier 1 (lsb)	
23	FEXT Upstream Bits and Gains	[gggg gggg], bit 15 to 8
25	For subcarrier 1 (msb)	
 18+2*NSCus	FEXT Upstream Bits and Gains	[gggg bbbb], bit 7 to 0
10+2 NSCus	Subcarrier NSCus-1 (lsb)	
19+2*NSCus	FEXT Upstream Bits and Gains	[gggg gggg], bit 15 to 8
19+2-NSCus	Subcarrier NSCus-1 (msb)	
20+2*NSCus	NEXT Upstream Bits and Gains	[gggg bbbb], bit 7 to 0
20+2 Nocus	For subcarrier 1 (lsb)	
21+2*NSCus	NEXT Upstream Bits and Gains	[gggg gggg], bit 15 to 8
21+2 Nocus	For subcarrier 1 (msb)	
 16+4*NSCus	NEXT Upstream Bits and Gains	[gggg bbbb], bit 7 to 0
	Subcarrier NSCus-1 (lsb)	[5555 0000], on / to 0
17+4*NSCus	NEXT Upstream Bits and Gains	[gggg gggg], bit 15 to 8
1714 INSCUS	Subcarrier NSCus-1 (msb)	
18+4*NSCus	Reserved	[0000 0000]
19+4*NSCus	Upstream Tone ordering	[xxxx xxxx], bit 7 to 0
1714 MoCus	First subcarrier to map	[
 17+5*NSCus	Unstream Tone ordering	$\frac{1}{1}$
1/+3·INSCUS	Upstream Tone ordering	[xxxx xxxx], bit 7 to 0
	Last subcarrier to map	

Table C8-3/G.992.3 - PMD function control parameters included in C-PARAMS.

The Table 8-16 shall be replaced with Table C8-4. The Table C8-4 shows the PMD function control parameters included in R-PARAMS.

Octet Nr [i]	Parameter	Format PMD bits [8*i+7 to 8*i+0]
0	LATNds (1sb)	[xxxx xxxx], bit 7 to 0
1	LATNds (msb)	[0000 00xx], bit 9 and 8
2	SATNds (lsb)	[xxxx xxxx], bit 7 to 0
3	SATNds (msb)	[0000 00xx], bit 9 and 8
4	FEXT SNRMds (lsb)	[xxxx xxxx], bit 7 to 0
5	FEXT SNRMds (msb)	[ssss sxxx], bit 10 to 8
6	FEXT ATTNDRds (lsb)	[xxxx xxxx], bit 7 to 0
7	FEXT ATTNDRds	[xxxx xxxx], bit 15 to 8
8	FEXT ATTNDRds	[xxxx xxxx], bit 15 to 8
<u>8</u> 9		
	FEXT ATTNDRds (msb)	[xxxx xxxx], bit 31 to 24
10	FEXT ACTATPds (lsb)	[xxxx xxxx], bit 7 to 0
11	FEXT ACTATPds (msb)	[ssss ssxx], bit 9 and 8
12	NEXT SNRMds (1sb)	[xxxx xxxx], bit 7 to 0
13	NEXT SNRMds (msb)	[ssss sxxx], bit 10 to 8
14	NEXT ATTNDRds (lsb)	[xxxx xxxx], bit 7 to 0
15	NEXT ATTNDRds	[xxxx xxxx], bit 15 to 8
16	NEXT ATTNDRds	[xxxx xxxx], bit 23 to 16
17	NEXT ATTNDRds (msb)	[xxxx xxxx], bit 31 to 24
18	NEXT ACTATPds (lsb)	[xxxx xxxx], bit 7 to 0
19	NEXT ACTATPds (msb)	[ssss ssxx], bit 9 and 8
20	TRELLISds	[0000 000x], bit 0
21	Reserved	[0000 0000]
22	FEXT Downstream Bits and Gains For subcarrier 1 (lsb)	[gggg bbbb], bit 7 to 0
23	FEXT Downstream Bits and Gains For subcarrier 1 (msb)	[gggg gggg], bit 15 to 8
 18+2*NSCds	FEXT Downstream Bits and Gains	[gggg bbbb], bit 7 to 0
	Subcarrier NSCus-1 (lsb)	
19+2*NSCds	FEXT Downstream Bits and Gains Subcarrier NSCus-1 (msb)	[gggg gggg], bit 15 to 8
20+2*NSCds	NEXT Downstream Bits and Gains For subcarrier 1 (lsb)	[gggg bbbb], bit 7 to 0
21+2*NSCds	NEXT Downstream Bits and Gains For subcarrier 1 (msb)	[gggg gggg], bit 15 to 8
16+4*NSCds	NEXT Downstream Bits and Gains Subcarrier NSCus-1 (lsb)	[gggg bbbb], bit 7 to 0
17+4*NSCds	NEXT Downstream Bits and Gains Subcarrier NSCus-1 (msb)	[gggg gggg], bit 15 to 8
18+4*NSCds	Reserved	[0000 0000]
19+4*NSCds	Downstream Tone ordering First subcarrier to map	[xxxx xxxx], bit 7 to 0
17+5*NSCds	Downstream Tone ordering Last subcarrier to map	[xxxx xxxx], bit 7 to 0

Table C8-4/G.992.3 - PMD function control parameters included in R-PARAMS.

C.8.6 Constellation encoder for data symbols (supplements § 8.6)

C.8.6.1 Tone Ordering (supplements § 8.6.1)

The downstream bit allocation table and the gain table for each of the two bitmaps (Bitmap- F_R and Bitmap- N_R) are calculated in the ATU-R receiver, and sent back to the ATU-C in the R-PARAMS message. For each of the two bitmaps (Bitmap- F_R and Bitmap- N_R) a common tone ordering table is exchanged during initialization, separate reordered tone tables are derived from the exchanged table, and separate tone ordering is performed according to § 8.6.1.

The upstream tone ordering algorithm shall be the same as for the downstream data. Two ordered bit tables for Bitmap- F_C and Bitmap- N_C shall be prepared.

C.8.6.2 Low Power L2 State (new)

During L2 link state, The ATU-C shall transmit data during FEXT_R symbols only.

During L2 FEXT_R data symbols the ATU-C shall use the bit loading (bi) according to the L2 Grant message for the first 256 sub-carriers (sub-carrier 0 to sub-carrier 255). The rest of the sub-carriers shall not carry data (bi=0).

During L2 FEXT_R data symbols, sub-carriers that carry no data (bi=0) shall be modulated with a vendor discretionary dummy 4QAM signal.

L2 FEXT_R data symbols shall use the gain scaling (gi) of the L0 FEXT_R symbols.

 $L2 \text{ FEXT}_{R}$ data symbols shall use the downstream power cutback (PCBds) indicated in the L2 Grant message or the last granted L2 Trim message.

During L2 NEXT_R data symbols the ATU-C shall transmit a vendor discretionary dummy 4QAM signal. L2 NEXT_R data symbols shall use the gain scaling (gi) of the L0 NEXT_R symbols. L2 NEXT_R data symbols shall use the downstream power cutback (PCBds) indicated in the L2 Grant message or the last granted L2 Trim message (the same power cutback as the L2 FEXT_R data symbols).

During L2 FEXT_R synchronization symbols the constellation mapper shall be defined as for SS-REVERB (see §8.7.1). L2 FEXT_R synchronization symbols shall use the gain scaling (gi) and power cutback (PCBds) of the L2 FEXT_R data symbols.

During L2 NEXT_R synchronization symbols the constellation mapper shall be defined as for SS-REVERB (see §8.7.1). L2 NEXT_R synchronization symbols shall use the gain scaling (gi) and power cutback (PCBds) of the L2 NEXT_R data symbols.

C.8.7 Constellation encoder for synchronization and L2 exit symbols (supplements § 8.7)

The constellation mapper for the L2 exit symbols shall be as defined in §8.7. FEXT_R exit symbols shall use the FEXT_R symbols (data/synchronization, L0/L2) gain scaling and NEXT_R exit symbols shall use the NEXT_R symbols (data/synchronization, L0/L2) gain scaling. The L2 Grant and L2 Trim Grant messages indicate the PCBds value to be used with the L2 exit symbols.

C.8.7.1 Constellation mapper

C.8.7.2 Gain scaling

- C.8.7.3 On-line reconfiguration during the L0 state
- C.8.7.4 Entry from the L0 into the L2 power management state
- C.8.7.5 Power trimming during the L2 state

C.8.7.6 Exit from the L2 power management into the L0 state (supplements § 8.7.6)

For profiles 1 and 3, the L2 exit symbols shall be synchronized to the next FEXT_R symbol. For the remaining profiles, 2, 4, 5 and 6, The L2 exit procedure depends on the number of loaded sub-carriers (bi>0) in L0 Bitmap-N_R at the moment of transition from L0 to L2. If the number of loaded sub-carriers in L0 Bitmap-N_R is greater than 20, L2 exit symbols shall be synchronized to the next data symbol regardless if it is a NEXT_R or FEXT_R symbol. If the number of loaded sub-carriers in L0 Bitmap-N_R is less than 20, L2 exit symbols shall be synchronized to the next FEXT_R symbol, as in the case for profiles 1 and 3.

C.8.8 Modulation

C.8.9 Transmitter dynamic range

C.8.10 Transmitter spectral masks (supplements § 8.10)

Spectral masks for the different service options are defined in the corresponding sub-annexes. The spectral mask defines the maximum passband PSD, maximum stopband PSD and maximum aggregate transmit power.

See Sub-annex C.A.

C.8.11 Control plane procedures

C.8.12 Management plane procedures (supplements § 8.12)

C.8.12.1 ADSL line related primitives (supplements § 8.12.1)

Two near-end defects are further defined:

- *Loss-of-signal (LOS)*: The ADSL power shall be measured only in the FEXT_C duration at ATU-C, or only in the FEXT_R duration at ATU-R.
- Severely errored frame (SEF): A SEF defect occurs when the content of two consecutively received ADSL synchronization symbols in the FEXT_{C} duration at ATU-C, or in the FEXT_{R} duration at ATU-R, does not correlate with the expected content over a subset of the tones. An SEF defect terminates when the content of two consecutively received ADSL synchronization symbols in the FEXT_{C} duration at ATU-C, or in the FEXT_{C} duration at ATU-C, or in the FEXT_{R} duration at ATU-R, correlate with the expected contents over the same subset. The correlation method, the selected subset of tones, and the threshold for declaring these defect conditions are implementation discretionary.

C.8.12.2 Other Primitives

C.8.12.3 Test Parameters (supplements § 8.12.3)

The near-end primitives are further defined:

- *Attenuation (ATN)*: The received signal power shall be measured only in the FEXT_C duration at ATU-C, or only in the FEXT_R duration at ATU-R.
- Signal-to-Noise ratio (SNR) margin: During FEXT Bitmap mode, this primitive represents the snr margin in the FEXT_C duration at ATU-C, or in the FEXT_R duration at ATU-R.

The far-end primitives are further defined:

- *Attenuation (ATN)*: The received signal power shall be measured only in the FEXT_C duration at ATU-C, or only in the FEXT_R duration at ATU-R.
- Signal-to-Noise ratio SNR margin: During FEXT Bitmap mode, this primitive represents the snr margin in the FEXT_C duration at ATU-C, or in the FEXT_R duration at ATU-R.

C.8.12.3.1 Channel Characteristics Function per subcarrier (CCF-ps)

C.8.12.3.2 Quiet Line Noise PSD per subcarrier (QLN-ps) (supplements § 8.12.3.2)

The following Figures C8-11, C8-12 and C8-13 illustrates quiet line noise measurements.

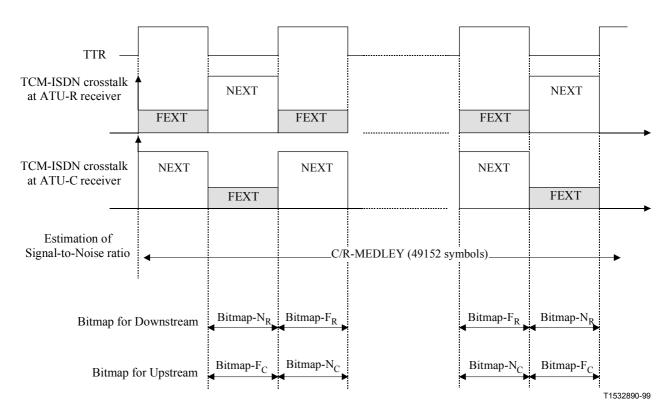


Figure C8-11/G.992.3 – Estimation of periodic Signal-to-Noise Ratio

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	TTR _C	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
30 31 32 33 34 33 36 37 38 39 44 4 41 42 43 44 45 36 37 38 39 49 5 51 52 53 54 55 56 57 58 59 60 6 61 62 63 64 65 66 67 68 69 7b 71 72 73 74 75 76 77 78 79 80 80 80 99 90 101 102 103 104 105 106 407 408 409 140 141 101 102 103 104 105 106 407 408 109 140 141 112 113 114 115 116 147 148 149 140 141 142 143 144 145 146 147 148 149 161 161 161 161 161 </td <td></td> <td></td>		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		
9 91 92 93 94 95 96 97 98 99 100 114 10 102 103 104 105 106 107 108 109 130 111 11 112 113 114 115 116 117 118 119 120 22 22 12 122 123 124 125 226 327 128 329 130 131 13 132 133 134 135 156 137 138 139 140 144 142 143 144 145 146 147 148 149 130 151 152 153 154 155 156 157 138 159 160 161 16 162 163 164 165 166 167 148 189 190 191 192 19 193 194 195 196 197 198 199 200 221 2		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	10	
132 133 134 135 136 137 138 139 140 144 14 142 143 144 145 146 147 148 149 150 151 15 152 153 154 155 156 157 138 159 160 161 1 16 162 163 164 165 166 167 168 169 177 172 177 178 179 180 181 182 181 182 181 182 181 182 181 182 181 182 181 182 181 182 181 182 181 182 181 182 181 182 181 182 181 182 181 182 181 182 182 199 200 201 202 <td>11</td> <td></td>	11	
14 142 143 144 145 146 147 148 149 150 151 15 152 153 154 155 156 157 158 159 160 161 1 16 162 163 164 165 166 167 168 169 170 171 172 17 173 174 175 176 177 178 179 180 181 82 18 183 184 185 186 187 188 188 190 191 92 19 193 194 195 196 197 198 199 200 201 202 202 203 204 205 206 207 208 209 210 211 212 1 212 213 214 215 216 217 218 219 230 231 232 1 2 242 244 245 246 247 248 249 250 251 <	12	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	13	132 133 134 135 136 137 138 139 149 141
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	142 143 144 145 146 147 148 149 159 151
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	15	152 153 154 155 156 157 738 759 769 164
18 183 184 185 186 187 188 189 190 191 92 19 193 194 195 196 97 198 199 206 201 292 20 203 204 205 206 207 208 209 216 211 212 21 213 214 215 216 217 218 219 220 221 222 22 223 224 225 226 227 228 229 230 231 232 245 23 233 234 235 236 237 238 239 240 241 242 243 24 244 245 246 247 248 249 250 251 252 253 25 254 255 256 257 258 269 270 271 272 273 27 274 275 276 277 278 279 280 281	16	162 163 164 165 166 167 168 169 178 172
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	17	173 174 175 176 177 78 182
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	18	183 184 185 186 187 188 190 191 192
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		203 204 205 206 207 208 209 230 212
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
29 294 295 296 297 298 299 300 301 302 303 30 304 305 306 307 308 309 310 311 312 313 314 31 315 316 317 318 319 320 321 322 323 324 32 325 326 327 328 329 330 334 332 333 334 33 335 336 337 338 39 340 344 342 343 344 Symbol for estimation of FEXT _R S/N Symbol not used for S/N estimation		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
32 325 326 327 328 329 330 331 332 333 334 33 335 336 337 338 399 340 341 542 343 344 Symbol for estimation of FEXT _R S/N		
33 335 336 337 338 339 340 344 344 344 344 344 344 344 344 344		
Symbol for estimation of FEXT _R S/N Symbol not used for S/N estimation		
	-	
Symbol for estimation of NEXT _R S/N T1535370-		Symbol for estimation of FEXT _R S/N Symbol not used for S/N estimation
		Symbol for estimation of NEXT _R S/N T1535370-

Figure C8-12/G.992.3 – Symbol pattern in a hyperframe for S/N estimation – Downstream

]	[]	Π	R	R
				ĸ

R	
0	
1	
2	20 21 22 23 24 25 26 27 28 29
3	30 31 32 33 34 35 36 37 38 39 40
4	41 42 43 44 45 46 47 48 49 50
5	51 52 53 54 55 56 57 58 60
6	61 62 63 64 65 66 67 68 68 70
7	71 72 73 74 75 76 80
8	81 82 83 84 85 86 87 88 90
9	<u>91</u> 92 93 94 95 96 97 98 99 100 101
10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
11	112 113 114 115 116 117 118 120 121
12	
13	132 133 134 135 136 137 138 139 144 141 142 143 141 141 141
14	142 143 144 145 46 148 148 150 151 152 152 152 155 155 151 151
15	152 153 154 155 136 157 138 139 160 161 162 162 164 165 166 171
16	162 163 164 165 166 167 168 169 171 72 173 174 175 176 77 378 389 389 381 182
17 18	
19	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
20	203 204 205 206 207 208 209 209 213 212
21	213 214 215 216 217 248 229 222
22	223 224 225 226 227 228 229 239 239 232
23	233 234 235 236 237 238 239 244 242 243
24	244 245 246 247 248 249 253
25	254 255 256 257 258 259 260 263 263
26	264 265 266 267 268 269 278 273
27	274 275 276 277 278 278 278 283
28	284 285 286 287 288 289 293 293
29	294 295 296 297 298 299 300 300 300 303 303
30	304 305 306 307 308 309 334 342 343 314
31	315 316 317 318 319 322 323 324 324
32	325 326 327 328 329 330 331 332 333 334
33	<u>335</u> <u>336</u> <u>337</u> <u>338</u> <u>339</u> <u>340</u> <u>343</u> <u>343</u> <u>344</u> <u>343</u>
	Symbol for estimation of $FEXT_C S/N$ Symbol not used for S/N estimation
	Symbol for estimation of NEXT _C S/N $T1535380-00$

Figure C8-13/G.992.3 – Symbol pattern in a hyperframe for S/N estimation – Upstream

C.8.13 Initialization (supplements § 8.13)

C.8.13.1 Initialization with Hyperframe (new)

The exchange of messages between ATU-C and ATU-R should be performed in $FEXT_C$ and $FEXT_R$. The DMT symbol has two symbol rates: one is 4.3125 kbaud for the symbol without a cyclic prefix, and the other is 4 x 69/68

kbaud for the symbol with a cyclic prefix. 32 times of the TTR has the same period as 345 times of the 4.3125 kbaud, and 34 times of the TTR is the same as 345 times of $4 \times 69/68$ kHz.

The ATU-C begins transmitting C-TTRSYNC1 at the beginning of the hyperframe without cyclic prefix. The ATU-C transmits NEXT_R / FEXT_R information to the ATU-R during C-TTRSYNC1. The ATU-R begins transmitting R-COMB1 at the beginning of the hyperframe without cyclic prefix. The ATU-R performs the training of any receiver equalizer using the phase information of the TTR_R generated from the received TTR_C. From C-TTRSYNC1 to C-SEGUE1, the following numerical formula describes which duration the N_{dmt}-th symbol belongs to at the ATU-R (see Figure C8-14).

For $N_{dmt} = 0, 1, \dots 344$ $S = 256 \times N_{dmt} \mod 2760$ if { (S + 255 < a) or (S > a + b) } else where a = 1243, b = 1461

then $FEXT_R$ symbols then $NEXT_R$ symbols

In order to enter C-MSG1 at the beginning of the hyperframe with cyclic prefix, the number of symbols from C-TTRSYNC1 to C-SEGUE1 shall be a multiple of 345 symbols.

From R-COMB1 to R-SEGUE1, the following numerical formula describes which duration the N_{dmt}-th symbol belongs to at the ATU-C (see Figure C8-15).

For $N_{dmt} = 0, 1, ..., 344$, $S = 256 \times N_{dmt} \mod 2760$ if { (S > a) and (S + 255 < a + b) } else then NEXT_C symbols where a = 1315, b = 1293

From C-MSG1 to C-SEGUE4, the number of symbols is a multiple of 345 DMT symbols. The following numerical formula describes which duration the N_{dmt}-th symbol belongs to at the ATU-R.

For $N_{dmt} = 0, 1,, 344$	
$S = 272 \times N_{dmt} \mod 2760$	
if { (S + 271 \ge a) and (S \le a + b) }	then NEXT _R symbols
else	then $FEXT_R$ symbols
where $a = 1243$, $b = 1461$	

The ATU-R enters R-REVERB5 at the beginning of the hyperframe with cyclic prefix, which is extracted from received signal. From R-REVERB5 to R-SEGUE4, the number of symbols is a multiple of 345 DMT symbols. The following numerical formula describes which duration the N_{dmt}-th symbol belongs to at the ATU-C.

For $N_{dmt} = 0, 1, ..., 344$ $S = 272 \times N_{dmt} \mod 2760$ if { (S > a) and (S + 271 < a + b) } then FEXT_C symbols else then NEXT_C symbols where a = 1315, b = 1293

Т	T	R.	
1	11	ιr	

TTR _C		
-		5 6 7 8 9 10
0	0 1 2 3 4 3 11 12 13 14 15	5 6 7 8 9 10 16 17 18 19 20 2
2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3	32 33 34 35 36 37	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
4	43 44 45 46 47 48	
5	54 55 56 57 58	59 60 61 62 63 64
6	65 66 67 68 69	70 71 72 73 74
7	75 76 77 78 79 80	81 82 83 84 85
8	86 87 88 89 90 91	92 93 94 95 96
9	97 98 99 100 101 10	02 103 104 105 106 107
10		113 114 115 116 117 118
11	119 120 121 122 123	124 125 126 127 128
12	129 130 131 132 133 134	135 136 137 138 139
13	140 141 142 143 144 145	
14		56 157 158 159 160 161
15		167 168 169 170 171 172 170 170 100 101 102
16	173 174 175 176 77	178 179 180 181 182
17	183 184 185 186 187 188 194 195 196 197 198 19	189 190 191 192 193 9 200 201 202 203 204
18 19		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
20	203 206 207 208 209 2 216 217 218 219 220	210 211 212 213 214 213 221 222 223 224 225
20	210 217 218 219 220 226 227 228 229 230 231	232 233 234 235 236
21	237 238 239 240 241 242	┙┯───┤┯───┤┯───┤┯───┤
23		53 254 255 256 257 258
24		264 265 266 267 268 269
25	270 271 272 273 274	275 276 277 278 279
26	280 281 282 283 284 285	286 287 288 289 290
27	291 292 293 294 295 29	6 297 298 299 300 301
28	302 303 304 305 306 3	307 308 309 310 311 312
29	313 314 315 316 317	318 319 320 321 322
30	323 324 325 326 327 328	329 330 331 332 333
31	334 335 336 337 338 339	340 341 342 343 344
	FEXT _R symbol	T1535350-0

Figure C8-14/G.992.3 – Symbol pattern in a hyperframe without cyclic prefix – Downstream

- T T P	
	D

R_																					
0	0 1 2 3				4			5		6		7		8	8		9 10				
1	11	1	2	1	3 14		4	15			16		17		18	18 1		9 20		1	21
2	2 22 23 24 25 26						Π	27 28 29 30 31													
3	32	33	34	1	3	5	36	5	3	37		38		39		40		41		42	
4	43	44		45		46		47		48		49		50)	51		52	2	53	3
5	54	55	5	56		57		58		4	59		60		61		62		63	6	64
6	65		66		57		68		69		70		71 72 73 74								
7		76	77		78		79		80	<u> </u>		81	Ļ	82	Ļ	83	⊥	84	4	85	
8	86	87	8		8	39		0		91				93		94				96	
9	97	98		99		100		101		10		10		10			$\frac{05}{116}$		$\frac{06}{117}$	10	
10	108	10		11		11			12	<u>.</u>	113		114		115		116		117		18
11 12		19 130	120 131	_	121 13		122 133	,	123	<u>. </u>	12	135	_	25 136	1.	26 137		27 138		28 139	L_
12	129	130		42	_	2 143	_	44	L	145		135	_	130	7	137	<u> </u>	138	_	159	
13 14	140	141		153	$\frac{1}{1}$	154		15:		<u> </u>	56	_	, 57	_	, 58	L	.59		<i>.</i> 60	10	
14	162	_	63	-	54		65	-	66		167		16		16	_	17		17)1 172
16		73	174		175		176	<u> </u>	17	7	_	78	_	<u> </u>	_	<u> </u>	_	181		82	T
17	183	184	18			36	18		-	88		189	Τ	190		191	Τ	192		193	
18	194	195		196		197	-	198	_	19	9	20	0	20)1	20)2	2	03	20	
19	205	20	6	20	7	20	8	20)9	2	210	2	211		212		213	╈	214	2	15
20	21	6	217	2	218		219		220		22	1	22	22	22	23	22	24	22	25	
21	226	227	228	3	22	9	230	0	23	31		232	Τ	233		234	Τ	235		236	
22	239	238	2	39	2	240	2	41		242		243		244	Ļ	245	5	24	6	24	
23	248	249)	250		251		252	2	25	53	2:	54	2	55	2	56	2	257	2:	58
24	259	2	60	26	51	20	52	2	.63		264		265	5	266	5	267		268	3 2	69
25	2	70	271		272		273		274	:	2'	75	2	76	2	277	2	278		79	
26	280	281	28		28		28		_	.85		286		287		288		289		290	
27	291	292		293	_	294		295		296		29'	_	29		29		30		30	
28	302	30		304		30		30			607		308		309		310		311	<u> </u>	12
29			314	3		3			317		_		31		32		32		32		-
30		324	325		326		327		32	<u>. </u>		29		330	_	331	_	332		333	
31	334	335	3	36	3	37	3	38		339		340		341		342	2	343	5	344	+
		FEXT	o svi	mbol															Т	15353	60-00
	NEXT _C symbol																				
		NEXT	_C syı	nbol																	

Figure C8-15/G.992.3 – Symbol pattern in a hyperframe without cyclic prefix – Upstream

C.8.13.2 G.994.1 phase (supplements § 8.13.2)

C.8.13.2.1 Handshake – ATU-C (supplements § 8.13.2.1)

C.8.13.2.1.1 CL messages (replaces § 8.13.2.1.1)

An ATU-C wishing to indicate G.992.3 Annex C capabilities in a G.994.1 CL message shall do so by setting bit 7 in Table 11.0.2/G.994.1 to ONE. A corresponding $\{Par(2)\}\$ field shall also be present (see § 9.4/G.994.1). The G.994.1 CL message $\{Par(2)\}\$ field corresponding to the G.992.3 Annex C $\{SPar(1)\}\$ bit is defined in Table C8-5.

NPar(2) bit	Definition							
Tones 1 to 32	Applies to ISDN related service options only (see Annexes).							
Diagnostics Mode	When set to 1, indicates the ATU-C wants to enter diagnostics mode (see § 8.15).							
C	When set to 0, indicates the ATU-C wants to enter initialization (see § 8.13).							
Profile 1	If set to ONE, this bit shall indicate that the ATU-C supports Profile 1							
Profile 2	If set to ONE, this bit shall indicate that the ATU-C supports Profile 2							
Profile 3	If set to ONE, this bit shall indicate that the ATU-C supports Profile 3							
Profile 4	If set to ONE, this bit shall indicate that the ATU-C supports Profile 4							
Profile 5	If set to ONE, this bit shall indicate that the ATU-C supports Profile 5							
Profile 6	If set to ONE, this bit shall indicate that the ATU-C supports Profile 6							
SPar(2) bit	Definition of related Npar(3) bits							
Spectrum bounds upstream	 A parameter block indicating the Nominal transmit PSD level, the Maximum transmit PSD level and the Maximum aggregate transmit power. The parameter block length shall be 6 octets. Codepoints shall be structured as: Nominal transmit PSD level (NOMPSD) shall be represented as a 9-bit 2's complement signed value in 0.1 dB steps, -25.6 to +25.5 dB, relative to the value defined in the applicable Annex for the selected service option and shall be coded in bits 3 downto 1 in octet 1, bits 6 downto 1 in octet 2; Maximum nominal transmit PSD level (MAXNOMPSD) shall be represented as a 9-bit 2's complement signed value in 0.1 dB steps, -25.6 to +25.5 dB, relative to the value defined in the applicable Annex for the selected service option and shall be coded in bits 3 downto 1 in octet 2; Maximum nominal transmit PSD level (MAXNOMPSD) shall be represented as a 9-bit 2's complement signed value in 0.1 dB steps, -25.6 to +25.5 dB, relative to the value defined in the applicable Annex for the selected service option and shall be coded in bits 3 downto 1 in octet 3, bits 6 downto 1 in octet 4; Maximum nominal aggregate transmit power (MAXNOMATP) shall be represented as a 9-bit 2'complement signed value in 0.1 dB steps, -25.6 to 25.5 dB, relative to the value defined for the applicable Annex for the selected service option and shall be coded in bits 3 downto 1 in octet 5, bits 6 downto 1 in octet 6. 							
Spectrum shaping upstream	 A parameter block of pairs of subcarrier indexes and spectrum shaping log_tssi value at that subcarrier. Pairs shall be transmitted in ascending subcarrier index order. Each pair shall be represented as 4 octets. The parameter block length shall be a multiple of 4 octets. Codepoints shall be structured as: The subcarrier index shall be a 9-bit unsigned value, indicating subcarrier index 1 to 2*NSCus-1, coded in bits 3 and 1 in octet 1, bits 6 downto 1 in octet 2; The spectrum shaping log_tssi values shall be represented in logarithmic scale as a 7-bit unsigned value in -0.5 dB steps, ranging from 0 (value 0) to -63 dB (value 126), coded in bit 1 of octet 3 and bits 6 downto 1 in octet 4. Value 127 is a special value, indicating the sub-carrier is not transmitted (i.e., tssi=0 in linear scale); For profiles 5 and 6, this block shall contain the log_tssi for the FEXT symbols. 							
Spectrum bounds downstream	Parameter block with same definition and structure as spectrum bounds upstream.							
Spectrum shaping downstream	Parameter block with same definition and structure as spectrum shaping upstream (with breakpoint frequencies indicating subcarrier index 1 to 2*NSCds-1).							
Transmit Signal Images above the Nyquist frequency	 A parameter block indicating the type of the transmit signal images above the Nyquist frequency. The parameter block shall consist of a single octet. Codepoints shall be structured as bits 6 to 3 indicating the N value and bits 2 and 1 indicating the definition of the transmit signal images above the Nyquist frequency (see § 8.8.2). The coding shall be as follows: (b6b5b4b3)=n, with 1≤n≤15 indicates that N=2ⁿ; (b6b5b4b3)=n, with n=0 indicates that N is not a power of 2; (b2b1 = 01): complex conjugate of the base-band signal; (b2b1 = 10) : zero filled; (b2b1 = 00) : other (none of the above); (b2b1 = 11) : reserved. 							

Table C8-5/G.992.3 – ATU-C CL message Par(2) PMD bit definitions

C.8.13.2.1.2 MS messages (replaces § 8.13.2.1.2)

An ATU-C selecting the G.992.3 Annex C mode of operation in a G.994.1 MS message shall do so by setting bit 7 in Table 11.0.2/G.994.1 to ONE. A corresponding $\{Par(2)\}\$ field shall also be present (see § 9.4/G.994.1). The G.994.1 MS message $\{Par(2)\}\$ field corresponding to the G.992.3 Annex C $\{SPar(1)\}\$ bit is defined in Table C8-6.

Table C8-6/G.992.3 – ATU-C MS message	Par(2) PMD bit definitions

NPar(2) bit	Definition
Tones 1 to 32	Applies to ISDN related service options only (see Annexes).
Diagnostics Mode	Set to 1 if the CL or the CLR message have this bit set to 1.
	When set to 1, indicates both ATUs shall enter diagnostics mode (see § 8.15).
	When set to 0, indicates both ATUs shall enter initialization (see § 8.13).
Profile 1	If set to ONE, this bit shall indicate that the ATU-C is selecting Profile 1
Profile 2	If set to ONE, this bit shall indicate that the ATU-C is selecting Profile 2
Profile 3	If set to ONE, this bit shall indicate that the ATU-C is selecting Profile 3
Profile 4	If set to ONE, this bit shall indicate that the ATU-C is selecting Profile 4
Profile 5	If set to ONE, this bit shall indicate that the ATU-C is selecting Profile 5
Profile 6	If set to ONE, this bit shall indicate that the ATU-C is selecting Profile 6

The SPar(2) bits shall be set to 0. No NPar(3) parameters shall be included in the MS message.

C.8.13.2.2 Handshake – ATU-R (supplements § 8.13.2.2)

C.8.13.2.2.1 CLR messages (replaces § 8.13.2.2.1)

An ATU-R wishing to indicate G.992.3 Annex C capabilities in a G.994.1 CL message shall do so by setting bit 7 in Table 11.0.2/G.994.1 to ONE. A corresponding $\{Par(2)\}$ field shall also be present (see § 9.4/G.994.1). The G.994.1 CL message $\{Par(2)\}$ field corresponding to the G.992.3 Annex C $\{SPar(1)\}$ bit is defined in Table C8-7.

NPar(2) bit	Definition						
Tones 1 to 32	Applies to ISDN related service options only (see Annexes).						
Diagnostics Mode	When set to 1, indicates the ATU-R wants to enter diagnostics mode (see § 8.15).						
	When set to 0, indicates the ATU-R wants to enter initialization (see § 8.13).						
Profile 1	If set to ONE, this bit shall indicate that the ATU-R supports Profile 1						
Profile 2	If set to ONE, this bit shall indicate that the ATU-R supports Profile 2						
Profile 3	If set to ONE, this bit shall indicate that the ATU-R supports Profile 3						
Profile 4	If set to ONE, this bit shall indicate that the ATU-R supports Profile 4						
Profile 5	If set to ONE, this bit shall indicate that the ATU-R supports Profile 5						
Profile 6	If set to ONE, this bit shall indicate that the ATU-R supports Profile 6						
SPar(2) bit	Definition of related Npar(3) bits						
Spectrum bounds	Parameter block with same definition and structure as spectrum bounds upstream parameter						
upstream	block in CL message.						
Spectrum shaping upstream	Parameter block with same definition and structure as spectrum shaping upstream parameter block in CL message.						
Spectrum bounds	Parameter block shall not be included. This SPar(2) bit shall be set to 0.						
downstream							
Spectrum shaping	Parameter block shall not be included. This SPar(2) bit shall be set to 0.						
downstream							
Transmit Signal	Parameter block with same definition and structure as Transmit Signal Images above the						
Images above the Nyquist frequency	Nyquist frequency parameter block in CL message.						

C.8.13.2.2.2 MS messages (replaces § 8.13.2.2.2)

An ATU-R selecting the G.992.3 Annex C mode of operation in a G.994.1 MS message shall do so by setting bit 7 in Table 11.0.2/G.994.1 to ONE. A corresponding $\{Par(2)\}\$ field shall also be present (see § 9.4/G.994.1). The G.994.1 MS message $\{Par(2)\}\$ field corresponding to the G.992.3 Annex C $\{SPar(1)\}\$ bit is defined in Table C8-8.

If the ATU-R transmits an MP message (as defined in \S 7.5/G.994.1), the format of the MP message shall be the same as the format of the MS message defined in Table C8-8.

NPar(2) bit	Definition
Tones 1 to 32	Applies to ISDN related service options only (see Annexes).
Diagnostics Mode	Set to 1 if the CL or the CLR message have this bit set to 1.
	When set to 1, indicates both ATUs shall enter diagnostics mode (see § 8.15).
	When set to 0, indicates both ATUs shall enter initialization (see § 8.13).
Profile 1	If set to ONE, this bit shall indicate that the ATU-R is selecting Profile 1.
Profile 2	If set to ONE, this bit shall indicate that the ATU-R is selecting Profile 2.
Profile 3	If set to ONE, this bit shall indicate that the ATU-R is selecting Profile 3.
Profile 4	If set to ONE, this bit shall indicate that the ATU-R is selecting Profile 4.
Profile 5	If set to ONE, this bit shall indicate that the ATU-R is selecting Profile 5.
Profile 6	If set to ONE, this bit shall indicate that the ATU-R is selecting Profile 6.

Table C8-8/G.992.3 – ATU-R MS message Par(2) PMD bit definitions

The Spar(2) bits shall be set to 0. No Npar(3) parameters shall be included in the MS message.

- C.8.13.2.3 G.994.1 transmit PSD levels
- C.8.13.2.4 Spectral bounds and shaping parameters
- C.8.13.3 Channel discovery phase (supplements § 8.13.3)
- C.8.13.3.1 ATU-C Channel Discovery (supplements § 8.13.3.1)
- C.8.13.3.1.1 C-QUIET1 (supplements § 8.13.3.1.1)

In the C-QUIET1 state, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. The ATU-C shall transmit a minimum of 512 and a maximum of 4204 C-QUIET symbols.

The ATU-C shall then transition to the next state C-TTRSYNC1 at a hyper-frame boundary.

C.8.13.3.1.2 C-TTRSYNC1 (replaces § 8.13.3.1.2)

The ATU-C shall set the sliding window frame counter (N_{SWF}) to 0 upon entering C-TTRSYNC1, and increment the N_{SWF} counter modulo 345 after transmission of each symbol.

The C-TTRSYNC1 state is of variable length. In the C-TTRSYNC1 state, the ATU-C shall transmit C-TTRSYNC symbols only during $FEXT_R$ symbols. During NEXT_R symbols, no signal shall be transmitted (all Xi=Yi=0).

For an ATU using Profiles 1 or 2, the C-REVERB subcarriers 33-64 shall be transmitted during the first 4 FEXT_R symbols of each hyper-frame, while initialization pilot carriers 48 and 64 shall be transmitted during all other FEXT_R symbols. For transceivers using Profiles 3, 4, 5, or 6, the C-REVERB subcarriers 6-32 shall be transmitted during the first 4 FEXT_R symbols of each hyper-frame, while initialization pilot carriers 16, 32, 48 and 64 shall be transmitted during all other FEXT_R symbols.

The ATU-C shall transmit 345n (n>1) C-TTRSYNC symbols, corresponding to 130n FEXT_R symbols and 215n NEXT_R symbols.

The C-TTRSYNC1 state is used to transmit $NEXT_R/FEXT_R$ information to the ATU-R, and for coarse timing recovery for the ATU-R.

During the first 4 FEXT_R symbols of a hyper-frame, the C-TTRSYNC1 signal shall be modulated as follows. The subcarriers transmitted in the C-TTRSYNC1 symbol shall modulate the same data bits that are used for the C-REVERB symbols, in such a way that same sub-carrier indexes modulate the same data bits with the same 4-QAM constellation, as defined in § 8.13.4.1.1. The sub-carriers not transmitted in the C-TTRSYNC1 symbol shall be transmitted at no power (i.e., Xi=Yi=0). Bits d_{2i+1} and d_{2i+2} , which modulate the initialization pilot carrier that has tone index i, shall be overwritten by {0,0}, generating the (+,+) constellation point. This shall apply to all initialization pilot carriers pertaining to the profile in use, and shall apply during all FEXT_R symbols, including the first 4 FEXT_R symbols of a hyperframe.

The ATU-C shall continue to transmit C-TTRSYNC1 until the end of the hyper-frame in which it receives the last symbol of R-COMB1. The ATU-C shall then transition to the C-QUIET-TTR1 state immediately at the hyperframe boundary when the ATU-R transitions to R-QUIET2.

C.8.13.3.1.3 C-QUIET-TTR1 (replaces § 8.13.3.1.3)

The C-QUIET-TTR1 state is of fixed length. In the C-QUIET-TTR1 state, the ATU-C shall transmit the same signal as C-TTRSYNC1 during the first 4 FEXT symbols of each hyper-frame, and no signal in all other symbols. The ATU-C shall transmit LEN_C-QUIET-TTR1 C-QUIET-TTR symbols. The value of LEN_C-QUIET-TTR1 shall be $30 \times 345 = 10350$ symbols for normal initialization and 92x345=31740 symbols for loop diagnostics mode.

Both transceivers can perform quiet line noise PSD measurements during C-QUIET-TTR1.

C.8.13.3.1.4 C-COMB2 (supplements § 8.13.3.1.4)

In the C-COMB2 state, for transceivers using Profiles 2, 4, 5 or 6, the ATU-C shall transmit during both $FEXT_R$ and $NEXT_R$ symbols. For transceivers using Profiles 1 or 3, the ATU-C shall transmit only during $FEXT_R$ symbols. The ATU-C shall transmit LEN_C-COMB2 C-COMB symbols. Whenever the initialization is invoked from Showtime as a fast error recovery procedure, the value LEN_C-COMB2 shall be set to 2760 symbols. Otherwise, the value LEN_C-COMB2 shall be set to 10350 symbols.

NOTE - § 8.13.3.1.4 specifies 1024 C-COMB2 symbols for the ATU-R to perform timing recovery and to measure downstream channel characteristics. Since there are 130 FEXT_R symbols per hyper-frame, 2760 symbols (i.e. 8 hyper-frames) contain 1040 FEXT_R symbols. However, FEXT_R symbols adjacent to NEXT_R symbols may be corrupted by the strong noise in NEXT_R symbols and thus should be excluded from the downstream channel characteristics measurement. In this case, there are only 66 middle FEXT_R symbols per hyper-frame, and 528 in 8 hyper-frames. There are 1980 middle FEXT_R symbols if LEN_C -COMB2 is set to 10350 symbols (30 hyper-frames).

C.8.13.3.1.5 C-ICOMB1 (supplements § 8.13.3.1.5)

In the C-ICOMB1 state, for transceivers using Profiles 2, 4, 5 or 6, the ATU-C shall transmit during both $FEXT_R$ and $NEXT_R$ symbols. For transceivers using Profiles 1 or 3, the ATU-C shall transmit only during $FEXT_R$ symbols. The duration of C-ICOMB1 shall be either 0 or 32 symbols, corresponding to 12 $FEXT_R$ symbols and 20 $NEXT_R$ symbols.

C.8.13.3.1.6 C-LINEPROBE (supplements § 8.13.3.1.6)

In the C-LINEPROBE state, for transceivers using Profiles 2, 4, 5 or 6, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. For transceivers using Profiles 1 or 3, the ATU-C shall transmit only during FEXT_R symbols. The ATU-C shall transmit a vendor discretionary signal with a duration of 0 or 1380 – 32 symbol periods.

The C-LINEPROBE state shall be followed by the C-QUIET-TTR2 state.

C.8.13.3.1.7 C-QUIET-TTR2 (replaces § 8.13.3.1.7)

The C-QUIET-TTR2 state is of fixed length. In the C-QUIET-TTR2 state, the ATU-C shall transmit either 2070 (normal initialization without R-LINEPROBE), 3450 (normal initialization with R-LINEPROBE) or 4830 (loop diagnostics) C-QUIET-TTR symbols.

The ATU-C may do an upstream channel attenuation measurement while the ATU-R is in the R-COMB2 state.

The ATU-C shall continue to transmit C-QUIET-TTR symbols until after the ATU-R transitions to the R-QUIET3 state. 345 symbols after the ATU-R transitions to the R-QUIET3 state, the ATU-C shall transition to the C-COMB3 state on a hyper-frame boundary.

C.8.13.3.1.8 C-COMB3 (replaces § 8.13.3.1.8)

In the C-COMB3 state, for transceivers using profiles 2,4,5, or 6 the ATU-C shall transmit COMB signal in both $FEXT_R$ and $NEXT_R$ symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during $FEXT_R$ symbols. The duration of C-COMB3 signal shall be 313 symbols.

The C-COMB3 state shall be followed by C-ICOMB2 state. The transition to C-ICOMB2 state provides time marker for C-MSG-FMT state.

C.8.13.3.1.9 C-ICOMB2 (replaces § 8.13.3.1.9)

In the C-ICOMB2 state, for transceivers using profiles 2,4,5, or 6 the ATU-C shall transmit ICOMB signal in both $FEXT_R$ and $NEXT_R$ symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during $FEXT_R$ symbols. The duration of C-ICOMB2 signal shall be 32 symbols.

The C-ICOMB2 state shall be followed by the C-MSG-FMT state.

C.8.13.3.1.10 C-MSG-FMT (supplements § 8.13.3.1.10)

In the C-MSG-FMT state, the ATU-C shall transmit the C-MSG-FMT message only during the FEXT_R symbols, using C-COMB or C-ICOMB to modulate the C-MSG-FMT message and crc. During the NEXT_R symbols, the ATU-C shall transmit no signal.

C-MSG-FMT shall start at a hyperframe boundary. The message and crc are transmitted using all FEXT_R symbols of a subframe to send one bit. A zero bit shall be transmitted as all FEXT_R symbols in a subframe being C-COMB symbols. A one bit shall be transmitted as all FEXT_R symbols in a subframe being C-ICOMB symbols. The bit m0 shall be transmitted on the first subframe of the hyperframe, the bit c15 shall be transmitted on the last subframe of the hyperframe.

The C-MSG-FMT state has a duration of 345 symbols. It shall be followed by C-MSG-PCB.

C.8.13.3.1.11 C-MSG-PCB (supplements § 8.13.3.1.11)

In the C-MSG-PCB state, the ATU-C shall transmit the C-MSG-PCB message only during the FEXT_R symbols, using C-COMB or C-ICOMB to modulate the C-MSG-PCB message and crc. One bit is transmitted in all the FEXT_R symbols in one subframe (as defined for C-MSG-FMT, see § C.8.13.3.1.10). During the NEXT_R symbols, the ATU-C shall transmit no signal.

The C-MSG-PCB state has a duration of 32 or 32 + NSCus subframes, depending on whether the C-BLACKOUT bits are included or not. The C-MSG-PCB state duration corresponds to an integer number of hyperframes. After all of the message bits are transmitted, initialization pilot carriers as described in C.8.13.3.1.2 C-TTRSYNC1 are transmitted.

C.8.13.3.1.12 C-TTRSYNC2 (replaces § 8.13.3.1.12)

The C-TTRSYNC2 state is of variable length. In the C-TTRSYNC2 state, the ATU-C shall transmit a minimum of 2070 and a maximum of (6+NSCds/32)*345 C-TTRSYNC symbols. The last C-TTRSYNC2 symbol that is transmitted shall align with the last symbol of the hyperframe.

For each hyperframe, the first 4 FEXT_R symbols, the remaining FEXT_R symbols and the NEXT_R symbols shall be modulated as defined in § C.8.13.3.1.2.

The ATU-C shall continue to transmit C-TTRSYNC symbols until after the ATU-R transitions to the R-REVERB1 state. 345 symbols after the ATU-R transitions to the R-REVERB1 state, the ATU-C shall transition to the C-REVERB1 state on a hyper-frame boundary.

C.8.13.3.2 ATU-R Channel Discovery (supplements § 8.13.3.2)

C.8.13.3.2.1 R-QUIET1 (supplements § 8.13.3.2.1)

In the R-QUIET1 state, the ATU-R shall transmit during both FEXT_C and NEXT_C symbols. The minimum duration of R-QUIET1 shall be 128 DMT symbols after the detection of C-TTRSYNC1.

The ATU-R shall continue to transmit R-QUIET symbols until it finishes TTR detection and coarse timing recovery. It shall then transition to the R-COMB1 state on a hyper-frame boundary. The maximum duration of R-QUIET1 shall be 15500 DMT symbols.

NOTE - The maximum duration of the R-QUIET1 state is the same as G.992.1 Annex C.

C.8.13.3.2.2 R-COMB1 (supplements § 8.13.3.2.2)

The ATU-R shall set the sliding window frame counter (N_{SWF}) to 0 upon entering R-COMB1, and increment the N_{SWF} counter modulo 345 after transmission of each symbol.

In the R-COMB1 state, the ATU-R shall transmit R-COMB symbols during FEXT_{C} symbols and silence during NEXT_C symbols. The duration of R-COMB1 shall be 345 symbols, corresponding to 130 FEXT_{C} symbols of R-COMB and 215 NEXT_C symbols of silence.

C.8.13.3.2.3 R-QUIET2 (supplements § 8.13.3.2.3)

The R-QUIET2 state is of fixed length. In the R-QUIET2 state, the ATU-R shall transmit during both FEXT_C and NEXT_C symbols. The ATU-R shall transmit either ($345 + LEN_C$ -QUIET-TTR1 + LEN_C-COMB2) or ($1380 + 345 + LEN_C$ -QUIET-TTR1 + LEN_C-COMB2) R-QUIET symbols. The value LEN_C-QUIET-TTR1 is defined in § C.8.13.3.1.3 and the value LEN_C-COMB2 is defined in § C.8.13.3.1.4.

The ATU-R may do a downstream channel attenuation measurement while the ATU-C is in the C-COMB2 state.

The ATU-R shall continue to transmit R-QUIET symbols until after the ATU-C transitions to the C-QUIET-TTR2 state. 345 symbols after the ATU-C transitions to the C-QUIET-TTR2 state, the ATU-R shall transition to the R-COMB2 state on a hyper-frame boundary.

C.8.13.3.2.4 R-COMB2 (supplements § 8.13.3.2.4)

In the R-COMB2 state, for transceivers using Profiles 2, 4, or 6, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols. For transceivers using Profiles 1, 3 or 5, the ATU-R shall transmit only during $FEXT_C$ symbols. For loop diagnostics mode, the ATU-R shall transmit 2760 R-COMB symbols. Otherwise, the ATU-R shall transmit 1380 R-COMB symbols, corresponding to 520 FEXT_C symbols and 860 NEXT_C symbols.

C.8.13.3.2.5 R-ICOMB1 (supplements § 8.13.3.2.5)

In the R-ICOMB1 state, for transceivers using Profiles 2, 4, or 6, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols. For transceivers using Profiles 1, 3 or 5, the ATU-R shall transmit only during $FEXT_C$ symbols. The duration of R-ICOMB1 shall be 0 or 32 symbols, corresponding to 12 $FEXT_C$ symbols and 20 $NEXT_C$ symbols.

C.8.13.3.2.6 R-LINEPROBE (supplements § 8.13.3.2.6)

In the R-LINEPROBE state, for transceivers using Profiles 2, 4, or 6, the ATU-R shall transmit during both FEXT_{C} and NEXT_{C} symbols. For transceivers using Profiles 1, 3 or 5, the ATU-R shall transmit only during FEXT_{C} symbols. The ATU-R shall transmit a vendor discretionary signal with a duration of 0 or 1380 – 32 symbol periods.

C.8.13.3.2.7 R-QUIET3 (supplements § 8.13.3.2.7)

In the R-QUIET3 state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols. The ATU-R shall transmit a minimum of 5 hyperframes and a maximum of 5+NSCus/32 hyperframes (with upstream blackout) of R-QUIET symbols.

The ATU-R shall continue to transmit R-QUIET symbols until after the ATU-C transitions to C-TTRSYNC2. 345 symbols after the ATU-C transitions to C-TTRSYNC2, the ATU-R shall transition to the R-COMB3 state on a hyperframe boundary.

C.8.13.3.2.8 R-COMB3 (replaces § 8.13.3.2.8)

In the R-COMB3 state, for transceivers using profiles 2, 4, or 6 the ATU-R shall transmit COMB signal in both $FEXT_C$ and $NEXT_C$ symbols. For transceivers using profiles 1, 3 or 5, the ATU-R shall transmit only during $FEXT_C$ symbols. The duration of R-COMB3 signal shall be 313 symbols.

The R-COMB3 state shall be followed by R-ICOMB2 state. The transition to R-ICOMB2 state provides time marker for R-MSG-FMT state.

C.8.13.3.2.9 R-ICOMB2 (replaces § 8.13.3.2.9)

In the R-ICOMB2 state, for transceivers using profiles 2, 4, or 6 the ATU-R shall transmit ICOMB signal in both $FEXT_C$ and $NEXT_C$ symbols. For transceivers using profiles 1, 3 or 5, the ATU-R shall transmit only during $FEXT_C$ symbols. The duration of R-ICOMB2 signal shall be 32 symbols.

The R-ICOMB2 state shall be followed by the R-MSG-FMT state.

C.8.13.3.2.10 R-MSG-FMT (supplements § 8.13.3.2.10)

In the R-MSG-FMT state, the ATU-R shall transmit the R-MSG-FMT message only during the FEXT_{C} symbols, using R-COMB or R-ICOMB to modulate the R-MSG-FMT message and crc. During the NEXT_{C} symbols, the ATU-R shall transmit no signal.

The R-MSG-FMT state has a duration of 345 symbols, corresponding to 130 FEXT_{C} symbols and 215 NEXT_{C} symbols. One bit is transmitted in all the FEXT_{C} symbols in one subframe (as defined for C-MSG-FMT, see § C.8.13.3.1.10).

C.8.13.3.2.11 R-MSG-PCB (supplements § 8.13.3.2.11)

In the R-MSG-PCB state, the ATU-R shall transmit the R-MSG-PCB message only during the $FEXT_C$ symbols, using R-COMB or R-ICOMB to modulate the R-MSG-FMT message and crc. One bit is transmitted in all the $FEXT_C$ symbols in one subframe (as defined for C-MSG-FMT, see § C.8.13.3.1.10). During the NEXT_C symbols, the ATU-R shall transmit no signal.

The R-MSG-PCB state has a duration of 48 or (48+ NSCds) subframes, depending on whether the C-BLACKOUT bits are included or not. The R-MSG-PCB state duration corresponds to an integer number of hyperframes, which is the round-up of the number of subframes divided by 32.

After all of the message bits are transmitted, quiet should be sent if R-MSG-PCB state is not finished.

The R-MSG-FMT state shall be followed by the R-REVERB1 state.

C.8.13.4 Transceiver training phase

C.8.13.4.1 ATU-C Transceiver Training (supplements § 8.13.4.1)

C.8.13.4.1.1 C-REVERB1 (supplements § 8.13.4.1.1)

The C-REVERB1 state is of fixed length. In the C- REVERB1 state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during FEXT_R symbols. During the C-REVERB1 state, the ATU-C shall transmit (LEN_R-REVERB1 + LEN_R-QUIET4 - 345) C-REVERB symbols. The values LEN_R-REVERB1 and LEN_R-QUIET4 are defined in § C.8.13.4.2.1 and § C.8.13.4.2.2, respectively.

C.8.13.4.1.2 C-TREF1 (supplements § 8.13.4.1.2)

The C-TREF1 state is of variable length. In the C-TREF1 state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both $FEXT_R$ and $NEXT_R$ symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during $FEXT_R$ symbols. During the C-TREF1 state, the ATU-C shall transmit a minimum of LEN_C-TREF1 and a maximum of 25875 (= 15 * 5 * 345) C_TREF symbols. The value LEN_C-TREF1 shall be defined as 5 * 345 times the FMT_C-TREF1 value (1 to 15) indicated by the ATU-R in the R-MSG-FMT message. The number of symbols transmitted in the C-TREF1 state shall be a multiple of 5 * 345 symbols (note that 5* 345 > 3 * 512, providing sufficient C-TREF symbols to the ATU-R.).

C.8.13.4.1.3 C-REVERB2 (supplements § 8.13.4.1.3)

The C-REVERB2 state is of fixed length. In the C- REVERB2 state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during FEXT_R symbols. During the C-REVERB2 state, the ATU-C shall transmit 345 C-REVERB symbols, corresponding to 130 FEXT_R symbols and 215 NEXT_R symbols.

C.8.13.4.1.4 C-ECT (supplements § 8.13.4.1.4)

The C-ECT state is of fixed length. In the C- ECT state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during FEXT_R symbols. During the C-ECT state, the ATU-C shall transmit a vendor discretionary signal with a duration of 1380 symbols, corresponding to 520 FEXT_R symbols and 860 NEXT_R symbols.

C.8.13.4.1.5 C-REVERB3 (supplements § 8.13.4.1.5)

The C-REVERB3 state is of variable length. In the C- REVERB3 state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during FEXT_R symbols. During the C-REVERB3 state, the ATU-C shall transmit a minimum of 1380 and a maximum of 43125 C-REVERB symbols, corresponding to a minimum of 5 to a maximum of 125 hyperframes.

The ATU-C shall continue to transmit C-REVERB symbols until after the ATU-R transitioning to the R-REVERB3 state. 345 symbols after the ATU-R transitioning to the R-REVERB3 state, the ATU-C shall transition to the next state on a hyperframe boundary.

C.8.13.4.1.6 C-TREF2 (supplements § 8.13.4.1.6)

The C-TREF2 state is of fixed length. In the C-TREF2 state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both $FEXT_R$ and $NEXT_R$ symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during $FEXT_R$ symbols. During the C-TREF2 state, the ATU-C shall transmit 1380 C-TREF symbols.

C.8.13.4.1.7 C-QUIET5 (supplements § 8.13.4.1.7)

The C-QUIET5 state is of fixed length. In the C-QUIET5 state, the ATU-C shall transmit during both $FEXT_R$ and NEXT_R symbols. During the C-QUIET5 state, the ATU-C shall transmit 1380 C-QUIET symbols.

C.8.13.4.1.8 C-REVERB4 (supplements § 8.13.4.1.8)

The C-REVERB4 state is of fixed length. In the C- REVERB4 state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during FEXT_R symbols. During the C-REVERB4 state, the ATU-C shall transmit LEN_C-REVERB4 C-REVERB symbols. The value LEN_C-REVERB4 shall be equal to 3070 if the ATU-C or the ATU-R (or both) have set FMT_C-REVERB4 to 1 in the C-MSG-FMT or R-MSG-FMT message respectively. The value LEN_C-REVERB4 shall be equal to 1000 otherwise.

C.8.13.4.1.9 C-SEGUE1 (supplements § 8.13.4.1.9)

The C-SEGUE1 state is of fixed length. In the C-SEGUE1 state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both $FEXT_R$ and $NEXT_R$ symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during $FEXT_R$ symbols. During the C-SEGUE1 state, the ATU-C shall transmit 35 C-SEGUE symbols.

C.8.13.4.2 ATU-R Transceiver Training (supplements § 8.13.4.2)

During transceiver training, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols. The duration of each state is defined in Figures C8-16 to C8-20.

C.8.13.4.2.1 R-REVERB1 (supplements § 8.13.4.2.1)

The R-REVERB1 state is of fixed length. In the R- REVERB1 state, for transceivers using profiles 2, 4 or 6, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols. For transceivers using profiles 1, 3 or 5, the ATU-R shall transmit only during $FEXT_C$ symbols. The ATU-R shall transmit LEN_R-REVERB1 R-REVERB symbols. The value LEN_R-REVERB1 is equal to 690 if the ATU-C or the ATU-R (or both) have set FMT_R-REVERB1 to 1 in the C-MSG-FMT or R-MSG-FMT message respectively. The value LEN_R-REVERB1 shall be equal to 1725 otherwise.

C.8.13.4.2.2 R-QUIET4 (supplements § 8.13.4.2.2)

The R-QUIET4 state is of fixed length. In the R-QUIET4 state, for transceivers using profiles 2, 4 or 6, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols. For transceivers using profiles 1, 3 or 5, the ATU-R shall transmit only during $FEXT_C$ symbols. In the R-QUIET4 state, the ATU-R shall transmit LEN_R-QUIET4 R-QUIET4 symbols. The value LEN_R-QUIET4 shall be defined as 5 * 345 times the FMT_R-QUIET4 value (0 to 31) indicated by the ATU-C in the C-MSG-FMT message, resulting in a length of the R-QUIET4 state between 0 and 53475 symbols.

C.8.13.4.2.3 R-REVERB2 (supplements § 8.13.4.2.3)

The R-REVERB2 state is of variable length. In the R- REVERB2 state, for transceivers using profiles 2, 4 or 6, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols. For transceivers using profiles 1, 3 or 5, the ATU-R shall transmit only during $FEXT_C$ symbols. The ATU-R shall transmit a minimum of 2070 and a maximum of 26220 R-REVERB symbols.

The ATU-R shall continue to transmit R-REVERB symbols until after the ATU-C transitioning to the C-REVERB2 state. 345 symbols after the ATU-C transitioning to the C-REVERB2 state, the ATU-R shall transition to the next state.

C.8.13.4.2.4 R-QUIET5 (supplements § 8.13.4.2.4)

The R-QUIET5 state is of variable length. In the R-QUIET5 state, the ATU-R shall transmit during both $FEXT_C$ and NEXT_C symbols. In the R-QUIET5 state, the ATU-R shall transmit a minimum of 2415 and a maximum of 44160 R-QUIET symbols. The last R-QUIET symbol that is transmitted shall align with the last symbol of a hyperframe.

C.8.13.4.2.5 R-REVERB3 (supplements § 8.13.4.2.5)

The R-REVERB3 state is of fixed length. In the R- REVERB3 state, for transceivers using profiles 2, 4 or 6, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols. For transceivers using profiles 1, 3 or 5, the ATU-R shall transmit only during $FEXT_C$ symbols. The ATU-R shall transmit 345 R-REVERB symbols, corresponding to 130 $FEXT_C$ symbols and 215 $NEXT_C$ symbols.

C.8.13.4.2.6 R-ECT (supplements § 8.13.4.2.6)

The R-ECT state is of fixed length. In the R- ECT state, for transceivers using profiles 2, 4 or 6, the ATU-R shall transmit during both FEXT_{C} and NEXT_{C} symbols. For transceivers using profiles 1, 3 or 5, the ATU-R shall transmit only during FEXT_{C} symbols. The ATU-R shall transmit 1380 vendor discretionary symbols, corresponding to 520 FEXT_{C} symbols and 860 NEXT_{C} symbols.

C.8.13.4.2.7 R-REVERB4 (supplements § 8.13.4.2.7)

The R-REVERB4 state is of fixed length. In the R- REVERB4 state, for transceivers using profiles 2, 4 or 6, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols. For transceivers using profiles 1, 3 or 5, the ATU-R shall transmit only during $FEXT_C$ symbols. The ATU-R shall transmit LEN_C-REVERB4 R-REVERB symbols.

C.8.13.4.2.8 R-SEGUE1 (supplements § 8.13.4.2.8)

The R-SEGUE1 state is of fixed length. In the R-SEGUE1 state, for transceivers using profiles 2, 4 or 6, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols. For transceivers using profiles 1, 3 or 5, the ATU-R shall transmit only during $FEXT_C$ symbols. During the R-SEGUE1 state, the ATU-R shall transmit 35 R-SEGUE symbols.

C.8.13.5 Channel analysis phase (supplements § 8.13.5)

C.8.13.5.1 ATU-C Channel Analysis (supplements § 8.13.5.1)

At the transmitter, the PRD sequence generator is always updated during $NEXT_R$ symbol periods when Bitmap-N_R is disabled (FEXT Bitmap mode).

C.8.13.5.1.1 C-MSG1 (supplements § 8.13.5.1.1)

The C-MSG1 state is of fixed length. In this state, the ATU-C shall transmit the C-MSG1 symbols only during the $FEXT_R$ symbols. During the $NEXT_R$ symbols, the ATU-C shall transmit the C-TREF pilot tone, except for Profile 3 where C-QUIET is transmitted during $NEXT_R$ symbols. The ATU-C shall transmit LEN_C-MSG1 C-REVERB or C-SEGUE symbols to modulate the C-MSG1 prefix, message and crc. The C-MSGS1 state shall be the first state in which the ATU-C transmits the cyclic prefix. There are LEN_C-MSG1 = 240 C-MSG1 symbols carrying information bits.

The C-MSG1 state shall have a duration of 690 symbols (ie two hyperframes, each consisting of 128 FEXT_R symbols). The 240 C-MSG1 symbols carrying information bits shall be transmitted in the first 240 FEXT_R symbols of the C-MSG1 state. For the remaining 256 - 240 = 16 FEXT_R symbols, the ATU-C shall transmit the C-TREF pilot tone.

C.8.13.5.1.2 C-REVERB5 (supplements § 8.13.5.1.2)

The C-REVERB5 state is of fixed length. In the C-REVERB5 state, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols when bitmap N_R is enabled (DBM). When bitmap N_R is disabled (FBM), the ATU-C shall transmit C-REVERB symbols only during FEXT_R symbols and the C-TREF pilot tone during NEXT_R symbols, except for Profile 3 where C-QUIET is transmitted during NEXT_R symbols. During the C-REVERB5 state, the ATU-C shall transmit $\{2+\lceil (48+NSCus)/128\rceil\} * 345 - 28$ C-REVERB symbols in normal mode, corresponding to 374 FEXT_R symbols and 633 NEXT_R symbols, where $\lceil x \rceil$ denotes rounding to the next higher integer.

The ATU-C shall continue to transmit C-REVERB symbols until after the ATU-R transitioning to the R-MEDLEY state. 345 - 28 symbols after the ATU-R transitioning to the R-MEDLEY state, the ATU-C shall transition to the next state.

C.8.13.5.1.3 C-SEGUE2 (supplements § 8.13.5.1.3)

The C-SEGUE2 state is of fixed length. In the C-SEGUE2 state, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols when bitmap N_R is enabled (DBM). When bitmap N_R is disabled (FBM), the ATU-C shall transmit C-SEGUE symbols only during FEXT_R symbols and the C-TREF pilot tone during NEXT_R symbols, except for Profile 3 where C-QUIET is transmitted during NEXT_R symbols. During the C-SEGUE2 state, the ATU-C shall transmit 28 C-SEGUE symbols, corresponding to 10 FEXT_R symbols and 18 NEXT_R symbols.

C.8.13.5.1.4 C-MEDLEY (supplements § 8.13.5.1.4)

The C-MEDLEY state is of fixed length. In the C-MEDLEY state, the ATU-C shall transmit during both $FEXT_R$ and $NEXT_R$ symbols when bitmap N_R is enabled (DBM). When bitmap N_R is disabled (FBM), the ATU-C shall transmit C-MEDLEY symbols only during $FEXT_R$ symbols and the C-TREF pilot tone during $NEXT_R$ symbols, except for Profile 3 where C-QUIET is transmitted during $NEXT_R$ symbols.

In the C-MEDLEY state, the ATU-C shall transmit LEN-MEDLEY symbols. The value LEN-MEDLEY shall be the maximum of the CA-MEDLEYus and CA-MEDLEYds values indicated by the ATU-C and the ATU-R in the C-MSG1 and R-MSG1 messages respectively. The value LEN-MEDLEY shall be a multiple of 3 * 345 and shall be less than or equal to 65205. The number of symbols transmitted in the C-MEDLEY state shall be equal to the number of symbols transmitted by the ATU-R in the R-MEDLEY state.

C.8.13.5.1.5 C-EXCHMARKER (supplements § 8.13.5.1.5)

The C-EXCHMARKER state is of fixed length. In the C-EXCHMARKER state, the ATU-C shall transmit during both $FEXT_R$ and $NEXT_R$ symbols when bitmap- N_R is enabled (DBM). When bitmap- N_R is disabled, the ATU-C shall transmit C-REVERB or C-SEGUE symbols only during $FEXT_R$ symbols and the C-TREF pilot tone during $NEXT_R$ symbols, except for Profile 3 where C-QUIET is transmitted during $NEXT_R$ symbols.

During the C-EXCHMARKER state, the ATU-C shall transmit 345 C-REVERB symbols or 345 C-SEGUE symbols. By transmitting C-REVERB symbols, the ATU-C indicates that the states C-REVERB6, C-SEGUE3 and C-PARAMS will be included. By transmitting C-SEGUE symbols, the ATU-C indicates that the states C-REVERB6, C-SEGUE3 and C-PARAMS will be skipped.

In case the C-PARAMS message is skipped during the Initialization Exchange Phase, the last previous L0 state trellis setting, bits and gains table (possibly updated through on-line reconfiguration since the last previous C-PARAMS message exchange) and tone ordering table shall be used to enter the Showtime state.

NOTE - There are two bits and gains tables and one tone ordering table when bitmap N_R is enabled (DBM).

C.8.13.5.2 ATU-R Channel Analysis (supplements § 8.13.5.2)

At the transmitter, the PRD sequence generator is always updated during NEXT_C symbol periods when Bitmap-N_C is disabled (FEXT Bitmap mode). When bitmap N_C is disabled (FBM), the ATU-R shall transmit R-QUIET symbols during NEXT_C symbols.

C.8.13.5.2.1 R-REVERB5 (supplements § 8.13.5.2.1)

The R-REVERB5 state is of fixed length. In the R-REVERB5 state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols when bitmap N_C is enabled (DBM). The ATU-R shall transmit R-REVERB symbols only during $FEXT_C$ symbols when bitmap N_C is disabled (FBM).

In the R-REVERB5 state, the ATU-R shall transmit 1035-23 R-REVERB symbols. The R-REVERB5 state shall be the first state in which the ATU-R transmits the cyclic prefix.

The ATU-R shall continue to transmit R-REVERB symbols until after the ATU-C transitioning to the C-REVERB5 state. 345-23 symbols after the ATU-C transitioning to the C-REVERB5 state, the ATU-R shall transition to the next state.

C.8.13.5.2.2 R-SEGUE2 (supplements § 8.13.5.2.2)

The R-SEGUE2 state is of fixed length. In the R-SEGUE2 state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols when bitmap N_C is enabled (DBM). The ATU-R shall transmit R-SEGUE symbols only during $FEXT_C$ symbols when bitmap N_C is disabled (FBM). In this state, the ATU-R shall transmit 23 R-SEGUE symbols.

C.8.13.5.2.3 R-MSG1 (supplements § 8.13.5.2.3)

The R-MSG1 state is of fixed length. In the R-MSG1 state, the ATU-R shall transmit only during FEXT_C symbols. In this state, the ATU-R shall transmit LEN_R-MSG1 R-REVERB or R-SEGUE symbols to modulate the R-MSG1 prefix, message and crc. There are LEN_R-MSG1 = 48+NSCus R-MSG1 symbols carrying information bits.

The R-MSG1 state shall have a duration of $\lceil (48+NSCus)/128 \rceil * 345$ symbols, where $\lceil x \rceil$ denotes rounding to the next higher integer. The 48+NSCus R-MSG1 symbols carrying information bits shall be transmitted in the first 48+NSCus FEXT_C symbols of the R-MSG1 state. For the remaining $\lceil (48+NSCus)/128 \rceil * 128 - 48+NSCus$ FEXT_C symbols of the R-MSG1 state the ATU-R shall transmit R-QUIET symbols.

C.8.13.5.2.4 R-MEDLEY (supplements § 8.13.5.2.4)

The R-MEDLEY state is of fixed length. In the R-MEDELY state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols when bitmap N_C is enabled (DBM). The ATU-R shall transmit transmit R-MEDLEY symbols only during $FEXT_C$ symbols when bitmap N_C is disabled (FBM).

The ATU-R shall transmit LEN-MEDLEY symbols. The value LEN-MEDLEY shall be the maximum of the CA-MEDLEY and CA-MEDLEY shall be indicated by the ATU-C and the ATU-R in the C-MSG1 and R-MSG1 messages respectively. The value LEN-MEDLEY shall be a multiple of 3*345 and shall be less than or equal to 65205. The number of symbols transmitted in the R-MEDLEY state shall be equal to the number of symbols transmitted by the ATU-C in the C-MEDLEY state.

C.8.13.5.2.5 R-EXCHMARKER (supplements § 8.13.5.2.5)

The R-EXCHMARKER state is of fixed length. In the R-EXCHMARKER state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols when bitmap N_C is enabled (DBM). The ATU-R shall transmit transmit R-REVERB or R-SEGUE symbols only during $FEXT_C$ symbols when bitmap N_C is disabled (FBM).

During the R-EXCHMARKER state, the ATU-R shall transmit 345 R-REVERB symbols or 345 R-SEGUE symbols. By transmitting R-REVERB symbols, the ATU-R indicates that the states R-REVERB6, R-SEGUE3 and R-PARAMS

will be included. By transmitting R-SEGUE symbols, the ATU-R indicates that the states R-REVERB6, R-SEGUE3 and R-PARAMS will be skipped.

In case the R-PARAMS message is skipped during the Initialization Exchange Phase, the last previous L0 state trellis setting, bits and gains table (possibly updated through on-line reconfiguration since the last previous R-PARAMS message exchange) and tone ordering table shall be used to enter the Showtime state.

NOTE - There are two bits and gains tables and one tone ordering table when bitmap N_C is enabled (DBM).

C.8.13.6 Exchange phase (supplements 8.13.6)

C.8.13.6.1 ATU-C Exchange Phase (supplements § 8.13.6.1)

C.8.13.6.1.1 C-MSG2 (supplements § 8.13.6.1.1)

The C-MSG2 state is of fixed length. In the C-MSG2 state, the ATU-C shall transmit the C-MSG2 symbols only during the FEXT_R symbols. During the NEXT_R symbols, the ATU-C shall transmit the C-TREF pilot tone, except for Profile 3 where C-QUIET is transmitted during NEXT_R symbols. The ATU-C shall transmit (NSCus+16) FEXT_R C-REVERB or C-SEGUE symbols to modulate the C-MSG2 message and crc. The C-MSG2 state shall have a duration of LEN_C-MSG2.

C.8.13.6.1.2 C-REVERB6 (supplements § 8.13.6.1.2)

The ATU-C shall transmit a minimum of LEN_R-MSG2 - LEN_C-MSG2 -75 and a maximum of LEN_R-MSG2 - LEN_C-MSG2 + 1995 C-REVERB symbols.

The C-REVERB6 state is of variable length. In the C-REVERB6 state, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols when bitmap N_R is enabled (DBM). When bitmap N_R is disabled (FBM), the ATU-C shall transmit C-REVERB symbols only during FEXT_R symbols and the C-TREF pilot tone during NEXT_R symbols except for Profile 3 where C-QUIET is transmitted during NEXT_R symbols.

C.8.13.6.1.3 C-SEGUE3 (supplements § 8.13.6.1.3)

The C-SEGUE3 state is of fixed length. In the C-SEGUE3 state, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols when bitmap N_R is enabled (DBM). When bitmap N_R is disabled (FBM), the ATU-C shall transmit C-SEGUE symbols only during FEXT_R symbols and the C-TREF pilot tone during NEXT_R symbols, except for Profile 3 where C-QUIET is transmitted during NEXT_R symbols. During the C-SEGUE3 state, the ATU-C shall transmit 28 C-SEGUE symbols, corresponding to 10 FEXT_R symbols and 18 NEXT_R symbols.

C.8.13.6.1.4 C-PARAMS (supplements § 8.13.6.1.4)

The C-PARAMS state is of fixed length. In the C-PARAMS state, the ATU-C shall transmit the C-PARAMS symbols only during the $FEXT_R$ symbols. During the $NEXT_R$ symbols, the ATU-C shall transmit the C-TREF pilot tone, except for Profile 3 where C-QUIET is transmitted during $NEXT_R$ symbols. The ATU-C shall transmit LEN_C-PARAMS C-PARAMS symbols to modulate the C-PARAMS message and crc at (2*NSC_C-PARAMS) bits per symbol. The value NSC_C-PARAMS shall be defined as the number of sub-carriers to be used for modulation of the C-PARAMS message as indicated by the ATU-R in the R-MSG2 message. The value LEN_C-PARAMS shall be defined as (length of the C-PARAMS message and crc in bits) divided by (2*NSC_C-PARAMS) and rounded to the higher integer.

If the number of message and crc bits to be transmitted is not an integer multiple of the number of bits per symbol (i.e., not a multiple of 2*NSC_C-PARAM), then the message and crc bits shall be further padded with zero bits such that the overall number of bits to be transmitted is equal to (2*NSC_C-PARAM*LEN_C-PARAMS).

The C-PARAMS state shall have a duration of $\lceil \text{LEN}_C\text{-PARAMS} / 128 \rceil$ * 345 symbols, where $\lceil x \rceil$ denotes rounding to the next higher integer. The LEN_C-PARAMS C-PARAMS symbols shall be transmitted in the first LEN_C-PARAMS FEXT_R symbols of the C-PARAMS state. For the remaining FEXT_R symbols of the C-PARAMS state the ATU-C shall transmit the C-TREF pilot tone.

Two bit and gain tables and one tone ordering tables shall be transmitted during the C-PARAMS state. When bitmap N_{C} is disabled (FBM), the bit and gain table and the tone ordering table for the NEXT_C symbols shall be set to zeros.

Table C8-9 lists the length of the C-PARAMS message summed over TPC-TC, PMS-TC and PMD layers. The TPS-TC, PMS-TC and PMD bits each correspond to an even number of octets. The PMD function control parameters are listed in § C.8.6.1.

Part of message	Length (bits or symbols)	
Npmd	144 + 40*NSCus	
Npms	416	
Ntps	0	
Nmsg	560 + 40*NSCus	
CRC	16	
LEN_C-PARAMS	$\left\lceil \frac{576 + 40 * NSCus}{2 * NSC _ C - PARAMS} \right\rceil$	
NOTE $- \begin{bmatrix} x \end{bmatrix}$ denotes rounding to the higher integer.		

Table C8-9/G.992.3 - C-PARAMS message and crc length

C.8.13.6.1.5 C-REVERB7 (supplements § 8.13.6.1.5)

The C-REVERB7 state is of variable length. In the C-REVERB7 state, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols when bitmap N_R is enabled (DBM). When bitmap N_R is disabled (FBM), the ATU-C shall transmit C-REVERB symbols only during FEXT_R symbols and the C-TREF pilot tone during NEXT_R symbols, except for Profile 3 where C-QUIET is transmitted during NEXT_R symbols.

The ATU-C may transition to C-REVERB7 before or after the ATU-R transitions to R-REVERB7 (depending on the presence and length of the PARAMS and REVERB6 states). If the ATU-C transitions to the C-REVERB7 state before the ATU-R transitions to the R-REVERB7 state, then the ATU-C shall continue to transmit C-REVERB symbols until after the ATU-R transitions to the R-REVERB7 state. In this case, the ATU-C shall transition to the next state in 345 * n - 28 symbols after the ATU-R transitioning to the R-REVERB7 state, where $1 \le n \le 7$.

If the ATU-C transitions to the C-REVERB7 state after the ATU-R transitions to the R-REVERB7 state, then the ATU-C shall transmit 345 * n - 28 C-REVERB symbols in the C-REVERB7 state, where $1 \le n \le 7$.

C.8.13.6.1.6 C-SEGUE4 (supplements § 8.13.6.1.6)

The C-SEGUE4 state is of fixed length. In the C-SEGUE4 state, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols when bitmap N_R is enabled (DBM). When bitmap N_R is disabled (FBM), the ATU-C shall transmit C-SEGUE symbols only during FEXT_R symbols and the C-TREF pilot tone during NEXT_R symbols, except for Profile 3 where C-QUIET is transmitted during NEXT_R symbols. During the C-SEGUE4 state, the ATU-C shall transmit 28 C-SEGUE symbols, corresponding to 10 FEXT_R symbols and 18 NEXT_R symbols.

The C-SEGUE4 state shall be followed by the C-SHOWTIME state. The duration of the preceding initialization stages ensures that the beginning of the C-SHOWTIME state is aligned with a hyperframe boundary.

C.8.13.6.2 ATU-R Exchange Phase (supplements § 8.13.6.2)

When bitmap N_C is disabled (FBM), the ATU-R shall transmit R-QUIET symbols during NEXT_C symbols.

C.8.13.6.2.1 R-MSG2 (supplements § 8.13.6.2.1)

The R-MSG2 state is of fixed length. In the R-MSG2 state, the ATU-R shall transmit the R-MSG2 symbols only during the FEXT_C symbols. The duration of R-MSG2 is NSCds+16 FEXT_C symbols, or (NSCds/128)*345+47 symbols. The ATU-R shall transmit a minimum of 272 FEXT_C R-REVERB or R-SEGUE symbols to modulate the R-MSG2 message and crc. The R-MSG2 state shall have a minimum duration of LEN_R-MSG2 = 737 symbols, corresponding to 272 FEXT_C symbols and 465 NEXT_C symbols.

C.8.13.6.2.2 R-REVERB6 (supplements § 8.13.6.2.2)

The R-REVERB6 state is of variable length. In the R-REVERB6 state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols when bitmap N_C is enabled (DBM). The ATU-R shall transmit R-REVERB symbols only during $FEXT_C$ symbols when bitmap N_C is disabled (FBM). During the R-REVERB6 state, the ATU-R shall transmit 345 * n - 47 - 23 R-REVERB symbols, with $1 \le n \le 7$.

C.8.13.6.2.3 R-SEGUE3 (supplements § 8.13.6.2.3)

The R-SEGUE3 state is of fixed length. In the R-SEGUE3 state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols when bitmap N_C is enabled (DBM). The ATU-R shall transmit transmit R-SEGUE symbols only during $FEXT_C$ symbols when bitmap N_C is disabled (FBM). During the R-SEGUE3 state, the ATU-R shall transmit 23 R-SEGUE symbols, corresponding to 10 $FEXT_C$ symbols and 13 $NEXT_C$ symbols.

C.8.13.6.2.4 R-PARAMS (supplements § 8.13.6.2.4)

The R-PARAMS state is of variable length. In the R-PARAMS state, the ATU-R shall transmit the R-PARAMS symbols only during the FEXT_C symbols. The ATU-R shall transmit LEN_R-PARAMS symbols to modulate the R-PARAMS message and crc at (2*NSC_R-PARAMS) bits per symbol. The value NSC_R-PARAMS shall be defined as the number of sub-carriers to be used for modulation of the R-PARAMS message as indicated by the ATU-C in the C-MSG2 message. The value LEN_R-PARAMS shall be defined as (length of the R-PARAMS message and crc in bits) divided by (2*NSC_R-PARAMS) and rounded to the higher integer.

If the number of message and crc bits to be transmitted is not an integer multiple of the number of bits per symbol (i.e., not a multiple of 2*NSC_R-PARAM), then the message and crc bits shall be further padded with zero bits such that the overall number of bits to be transmitted is equal to (2*NSC_R-PARAM*LEN_R-PARAMS).

The R-PARAMS state shall have a duration of $\lceil \text{LEN}_R$ -PARAMS / 128 \rceil * 345 symbols, where $\lceil x \rceil$ denotes rounding to the next higher integer. The LEN_R-PARAMS R-PARAMS symbols shall be transmitted in the first LEN_R-PARAMS FEXT_C symbols of the R-PARAMS state. For the remaining FEXT_C symbols of the R-PARAMS state the ATU-R shall transmit the R-QUIET symbol.

Two bit and gain tables and one tone ordering tables shall be transmitted during the R-PARAMS state. When bitmap N_R is disabled (FBM), the bit and gain table and the tone ordering table for the NEXT_R symbols shall be set to zeros.

Table C8-10 lists the length of the R-PARAM message summed over TPC-TC, PMS-TC and PMD layers. The TPS-TC, PMS-TC and PMD bits each correspond to an even number of octets. § C.8.7.1 lists the PMD control parameters.

Part of message	Length (bits or symbols)
Npmd	144 + 40*NSCds
Npms	416
Ntps	0
Nmsg	560 + 40*NSCds
CRC	16
LEN_R-PARAMS	$\left\lceil \frac{576 + 40 * NSCds}{2 * NSC R - PARAMS} \right\rceil$
NOTE - $\lceil x \rceil$ denotes rounding to the higher integer.	

Table C8-10/G.992.3 - R-PARAMS message and crc length

C.8.13.6.2.5 R-REVERB7 (supplements § 8.13.6.2.5)

The R-REVERB7 state is of variable length. In the R-REVERB7 state, the ATU-R shall transmit during both FEXT_C and NEXT_C symbols when bitmap N_C is enabled (DBM). The ATU-R shall transmit transmit R-REVERB symbols only during FEXT_C symbols when bitmap N_C is disabled (FBM). The ATU-R may transition to R-REVERB7 before or after the ATU-C transitions to C-REVERB7 (depending on the presence and length of the PARAMS and REVERB6 states).

If the ATU-R transitions to the R-REVERB7 state before the ATU-C transitions to the C-REVERB7 state, then the ATU-R shall continue to transmit R-REVERB symbols until after the ATU-C transitions to the C-REVERB7 state. In this case, the ATU-R shall transition to the next state in 345 * n - 23 symbols after the ATU-C transitioning to the C-REVERB7 state, where $1 \le n \le 7$.

If the ATU-R transitions to the R-REVERB7 state after the ATU-C transitions to the C-REVERB7 state, then the ATU-R shall transmit 345 * n - 23 R-REVERB symbols in the R-REVERB7 state, where $1 \le n \le 7$.

C.8.13.6.2.6 R-SEGUE4 (supplements § 8.13.6.2.6)

The R-SEGUE4 state is of fixed length. In the R-SEGUE4 state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols when bitmap N_C is enabled (DBM). The ATU-R shall transmit R-SEGUE symbols only during $FEXT_C$ symbols when bitmap N_C is disabled (FBM). During the R-SEGUE4 state, the ATU-R shall transmit 23 R-SEGUE symbols, corresponding to 10 FEXT_C symbols and 13 NEXT_C symbols.

The R-SEGUE4 state shall be followed by the R-SHOWTIME state. The duration of the preceding initialization stages ensures that the beginning of the R-SHOWTIME state is aligned with a hyperframe boundary.

C.8.13.7 Timing diagram of the initialization procedures

The Figure C8-16 show the timing diagram of the first part of the Initialization Procedures, from the G.994.1 phase up to the start of the Channel Analysis phase. The Figures C8-17 to C8-20 show the second part of the Initialization procedures, from the end of the Channel Analysis Phase up to Showtime. These four timing diagrams represent the four cases resulting from whether the C-PARAMS and/or R-PARAMS states are included or not.

		Beginning of		
	G.994.1	Hyper-frame Beginning of	G.994.1	
<=4204 >=512	C-QUIET1	Hyper-frame ▼	R-QUIET1	<=15500
345 x n n>=2	C-TTRSYNC1	Y	R-COMB1	345
10350 or 31740	C-QUIET-TTR1			345+LEN C-COMB2+
2760 or 10350	C-COMB2		D. OLUETA	LEN_C-QUITE-TTR1 or
0 or <u>32</u> 0 or (1380- <u>32</u>)	C-ICOMB1 C-LINEPROBE		R-QUIET2	1380+345+LEN_C-COMB2+ LEN_C-QUITE-TTR1
2070 or		345	R-COMB2	1380 or 2760
3450 or 4830	C-QUIET-TTR2		/ R-ICOMB1//	0 or 32
		_	R-LINEPROBE	0 or (1380-32)
	G. GOL (7)	345		
313	C-COMB3			345 x n
32	C-ICOMB2		R-QUIET3	n>=5
345	C-MSG-FMT			
^{345 x n} n>=1	C-MSG-PCB			
		345	D. COM (D)	
345 x n			R-COMB3	313
n>=6	C-TTRSYNC2		R-ICOMB2	32
			R-MSG-FMT	345
			R-MSG-PCB	345 x n n>=2
LEN R-REVERB1		345	R-REVERB1	690 or 1725
+ LEN_R-QUIET4 -345	C-REVERB1		R-QUIETA	>=0 <=53475
>=1725 <=25875	C-TREF1		R-REVERB2	>=2070 <=26220
345	C-REVERB2	345		
1380	C-ECT		R-QUIET5	>=2415
>=1380	C-REVERB3		Last symbol may be shortened by n samples	<=44160
<=43125	C-KEVEKD5	345	R-REVERB3	345
1380	C-TREF2/ C-QUIET5		R-ECT	1380
1000 or 3070	C-REVERB4	Introduction of	R-REVERB4	LEN_C-REVERB4
35	C-SEGUE1	cyclic prefix	R-SEGUE1	35
690	C-MSG1	345-23	R-REVERB5	1035-23
{2+roundup[C DEVEDDS	-23	R-SEGUE2	23
(48+NSCus)/128] } *345 -28 or	C-REVERB5		R-MSG1	roundup[
1380-28		345-28		(48+NSCus)/128] *345
28	C-SEGUE2			

Figure C8-16/G.992.3 – Timing Diagram of the Initialization Procedure

###Editorial: In Figure C8-16, fix "QUITE" to "QUIET" next to R-QUIET2 (2x). ###Editorial: In Figure C8-16, change red colours to black.

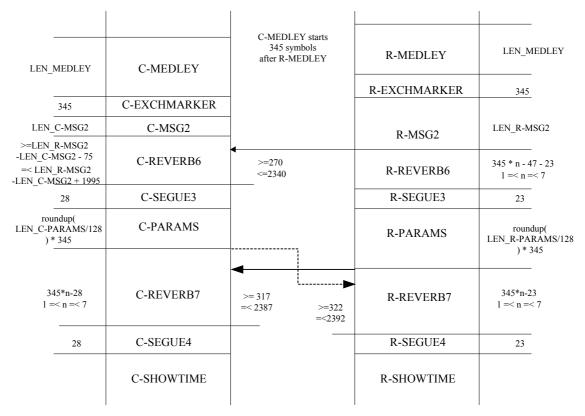


Figure C8-17/G.992.3 – Timing Diagram of the Initialization Procedure (part 2) with C-PARAMS and with R-PARAMS states

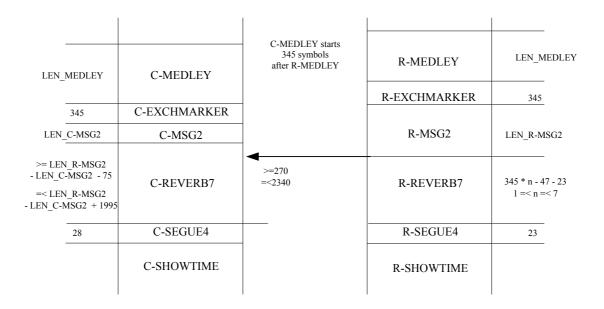


Figure C8-18/G.992.3 – Timing Diagram of the Initialization Procedure (part 2) without C-PARAMS and without R-PARAMS states

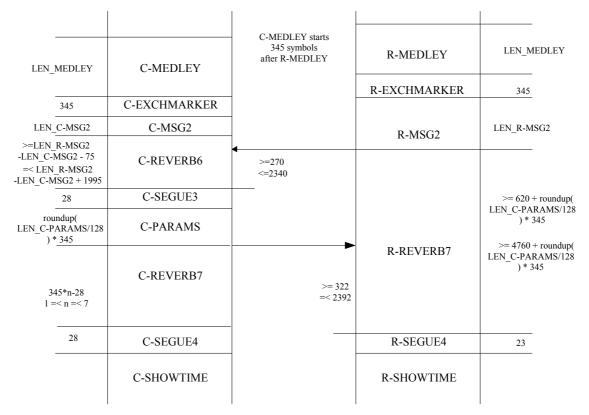


Figure C8-19/G.992.3 – Timing Diagram of the Initialization Procedure (part 2) with C-PARAMS and without R-PARAMS states

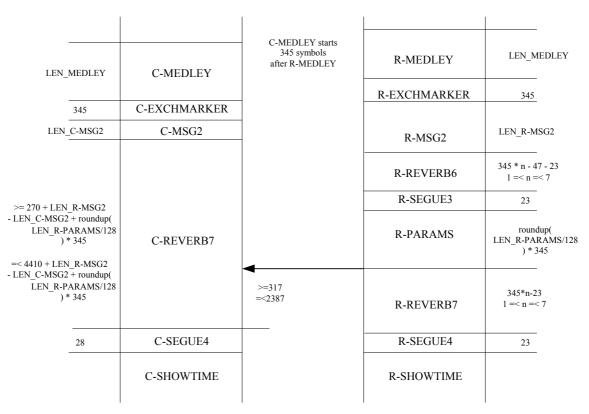


Figure C8-20/G.992.3 – Timing Diagram of the Initialization Procedure (part 2) without C-PARAMS and with R-PARAMS states

C.8.14 Short Initialization Procedures (replaces § 8.14)

The Short Initialization Procedure defined in §8.14 is not applicable to, and therefore shall not be used for Annex C.

C.8.15 Loop diagnostics mode procedures (supplements § 8.15)

- C.8.15.1 Overview
- C.8.15.2 Channel discovery phase (supplements § 8.15.2)

C.8.15.2.1 ATU-C channel discovery phase (supplements § 8.15.2.1)

In loop diagnostics mode, during the C-TTRSYNC2 state, the ATU-C shall transmit (6+NSCds/32)*345 C-TTRSYNC symbols.

In loop diagnostic mode, the duration of the C-MSG-PCB state shall be (2+NSCus/32)*345 symbols.

C.8.15.2.2 ATU-R channel discovery phase (supplements § 8.15.2.2)

In loop diagnostics mode, during the R-QUIET3 state, the ATU-C shall transmit (6 + NSCus/32)*345 R-QUIET symbols.

In loop diagnostics mode, the duration of the R-MSG-PCB state shall be (2+NSCds/32)*345 symbols.

C.8.15.3 Transceiver training phase

C.8.15.4 Channel analysis phase (supplements § 8.15.4)

In loop diagnostic mode, during the C-REVERB5 state the ATU-C shall transmit (4*345-28) C-REVERB symbols.

C.8.15.5 Exchange phase (supplements § 8.15.5)

C.8.15.5.1 ATU-C exchange phase (supplements § 8.15.5.1)

C.8.15.5.1.1 Channel information bearing messages (supplements § 8.15.5.1.1)

The Table C8-11 replaces Table 8-49.

Octet Nr[i]	Information	Format message bits [8*i+7 to 8*i+0]
0	Sequence number	[0001 0001]
1	Reserved	[0000 0000]
2	Hlin scale (lsb)	[xxxx xxxx], bit 7 to 0
3	Hlin scale (msb)	[xxxx xxxx], bit 15 to 8
4	LATN (lsb)	[xxxx xxxx], bit 7 to 0
5	LATN (msb)	[0000 00xx], bit 9 and 8
6	SATN (lsb)	[xxxx xxxx], bit 7 to 0
7	SATN (msb)	[0000 00xx], bit 9 and 8
8	FEXT SNRM (lsb)	[xxxx xxxx], bit 7 to 0
9	FEXT SNRM (msb)	[0000 00xx], bit 9 and 8
10	FEXT ATTNDR (lsb)	[xxxx xxxx], bit 7 to 0
11	FEXT ATTNDR	[xxxx xxxx], bit 15 to 8
12	FEXT ATTNDR	[xxxx xxxx], bit 23 to 16
13	FEXT ATTNDR (msb)	[xxxx xxxx], bit 31 to 24
14	FEXT Far-end ACTATP	[xxxx xxxx], bit 7 to 0
	(lsb)	
15	FEXT Far-end ACTATP	[ssss ssxx], bit 9 to 8
	(msb)	
16	NEXT SNRM (lsb)	[xxxx xxxx], bit 7 to 0
17	NEXT SNRM (msb)	[0000 00xx], bit 9 and 8
18	NEXT ATTNDR (lsb)	[xxxx xxxx], bit 7 to 0
19	NEXT ATTNDR	[xxxx xxxx], bit 15 to 8
20	NEXT ATTNDR	[xxxx xxxx], bit 23 to 16
21	NEXT ATTNDR (msb)	[xxxx xxxx], bit 31 to 24
22	NEXT Far-end ACTATP	[xxxx xxxx], bit 7 to 0
	(lsb)	
23	NEXT Far-end ACTATP	[ssss ssxx], bit 9 to 8
	(msb)	

Table C8-11/G.992.3 – Format of the C-MSG1-LD message

For the FEXT QLN(i), Table C8-12 replaces Table 8-52.

Table C8-12/G.992.3 – Format of the C-MSG4-LD message

Octet Nr[i]	Information	Format message bits [8*i+7 to 8*i+0]
0	Sequence number	[0100 0100]
1	Reserved	[0000 0000]
2	FEXT QLN(0)	[xxxx xxxx], bit 7 to 0
NSCus+1	FEXT QLN(NSCus-1)	[xxxx xxxx], bit 7 to 0

For the FEXT SNR(i), Table C8-13 replaces Table 8-53.

Table C8-13/G.992.3 – Format of the C-MSG5-LD message

Octet Nr[i]	Information	Format message bits [8*i+7 to 8*i+0]
0	Sequence number	[0101 0101]
1	Reserved	[0000 0000]
2	FEXT SNR(0)	[xxxx xxxx], bit 7 to 0
NSCus+1	FEXT SNR(NSCus-1)	[xxxx xxxx], bit 7 to 0

For the NEXT QLN(i), an additional message C-MSG6-LD is defined in Table C8-14.

Octet Nr[i]	Information	Format message bits [8*i+7 to 8*i+0]
0	Sequence number	[0110 0110]
1	Reserved	[0000 0000]
2	NEXT QLN(0)	[xxxx xxxx], bit 7 to 0
NSCus+1	NEXT QLN(NSCus-1)	[xxxx xxxx], bit 7 to 0

Table C8-14/G.992.3 – Format of the C-MSG6-LD message

For the NEXT SNR(i), an additional message C-MSG7-LD is defined in Table C8-15.

Octet Nr[i]	Information	Format message bits [8*i+7 to 8*i+0]
0	Sequence number	[01110111]
1	Reserved	[0000 0000]
2	NEXT SNR(0)	[xxxx xxxx], bit 7 to 0
NSCus+1	NEXT SNR(NSCus-1)	[xxxx xxxx], bit 7 to 0

The Table C8-16 replaces Table 8-54.

State	Duration (round up in Hyperframes)	NSCus=32	NSCus=64
C-MSG1-LD	[(24*8)+16]/34	7	7
C-MSG2-LD	[32 + 32*NSCus]/34	32	62
C-MSG3-LD	[32 + 16*NSCus]/34	16	32
C-MSG4-LD	[32 + 8*NSCus]/34	9	16
C-MSG5-LD	[32 + 8*NSCus]/34	9	16
C-MSG6-LD	[32 + 8*NSCus]/34	9	16
C-MSG7-LD	[32 + 8*NSCus]/34	9	16

Table C8-16/G.992.3 – ATU-C loop diagnostics state durations

The resulting number of hyperframes needed to transmit each of the messages and crc is shown in the Loop Diagnostics timing diagrams in Figure C8-21 and Figure C8-22.

C.8.15.5.1.2 Message flow, acknowledgement and retransmission (supplements § 8.15.5.1.2)

The C-TREF1-LD state is of variable length. In the C-TREF1-LD state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during FEXT_R symbols. During the C-TREF1-LD state, the ATU-C shall transmit a duration of LENx_R C-TREF symbols.

The C-TREF1-LD state shall be followed by the C-ACK/NACK state.

The C-ACK/NACK state is of fixed length. In the C-ACK/NACK state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both $FEXT_R$ and $NEXT_R$ symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during $FEXT_R$ symbols.

The C-ACK message is represented by "01010101" octet and shall be transmitted over 8 subframes or 81 symbols using the same modulation technique as the loop diagnostics information bearing messages. A zero bit shall be transmitted as all FEXT_R symbols in a subframe being C-REVERB symbols. A one bit shall be transmitted as all FEXT_R symbols in a sub frame being C-SEGUE symbols.

During the C-NACK state, ATU-C transmits C-TREF pilot tone on all FEXT_R symbols.

The duration of C-ACK/NACK state has a duration of 81 symbols.

The C-ACK/NACK state shall be followed by the C-TREF2-LD state.

The C-TREF2-LD state is of fixed length. In the C-TREF-LD state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during FEXT_R symbols. During the C-TREF2-LD state, the ATU-C shall transmit a duration of 690-81 C-TREF symbols.

The C-TREF2-LD state shall be followed by the C-TREF1-LD state if all downstream messages are not received, else changes to C-SEGUE-LD state.

The C-SEGUE-LD state is of fixed length. In the C-SEGUE-LD state, for transceivers using profiles 2,4, 5 or 6, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during FEXT_R symbols. During the C-SEGUE-LD state, the ATU-C shall transmit 345 C-SEGUE symbols.

The C-SEGUE-LD state shall be followed by the C-MSGx-LD state.

The C-MSGx-LD state is of variable length. In this state, the ATU-C shall transmit the C-MSGx symbols only during the $FEXT_R$ symbols. During the $NEXT_R$ symbols, the ATU-C shall transmit the C-TREF pilot tone, except for Profile 3 where C-QUIET is transmitted during $NEXT_R$ symbols.

The C-MSGx-LD message shall be transmitted over 345*n symbols using the same modulation technique as the loop diagnostics information bearing messages.

A zero bit shall be transmitted as all $FEXT_R$ symbols in a subframe being C-REVERB symbols. A one bit shall be transmitted as all $FEXT_R$ symbols in a subframe being C-SEGUE symbols.

The C-MSGx-LD state duration of LENx_C symbols corresponds to an integer number of hyperframes, which is equal to the minimum integer that is larger than or equal to the number of subframes divided by 34.

After all the message bits are transmitted, the C-TREF pilot tone should be sent if C-MSGx-LD state is not finished.

The C-TREF3-LD state is of fixed length. In the C-TREF-LD state, for transceivers using profiles 2, 4, 5 or 6, the ATU-C shall transmit during both FEXT_R and NEXT_R symbols. For transceivers using profiles 1 or 3, the ATU-C shall transmit only during FEXT_R symbols. During the C-TREF3-LD state, the ATU-C shall transmit a duration of 345 C-TREF pilot tone symbols.

The C-TREF3-LD state shall be followed by the C-SEGUE-LD state if all C-MSGx messages are not transmitted or ACK is not received for all the transmitted messages, otherwise ATU-C changes its state to C-QUIET (L3).

C.8.15.5.2 ATU-R exchange phase (supplements § 8.15.5.2)

C.8.15.5.2.1 Channel information bearing messages (supplements 8.15.5.2.1)

The Table C8-17 replaces Table 8-55.

Octet Nr[i]	Information	Format message bits [8*i+7 to 8*i+0]
0	Sequence number	[0001 0001]
1	Reserved	[0000 0000]
2	Hlin scale (lsb)	[xxxx xxxx], bit 7 to 0
3	Hlin scale (msb)	[xxxx xxxx], bit 15 to 8
4	LATN (lsb)	[xxxx xxxx], bit 7 to 0
5	LATN (msb)	[0000 00xx], bit 9 and 8
6	SATN (lsb)	[xxxx xxxx], bit 7 to 0
7	SATN (msb)	[0000 00xx], bit 9 and 8
8	FEXT SNRM (lsb)	[xxxx xxxx], bit 7 to 0
9	FEXT SNRM (msb)	[0000 00xx], bit 9 and 8
10	FEXT ATTNDR (lsb)	[xxxx xxxx], bit 7 to 0
11	FEXT ATTNDR	[xxxx xxxx], bit 15 to 8
12	FEXT ATTNDR	[xxxx xxxx], bit 23 to 16
13	FEXT ATTNDR (msb)	[xxxx xxxx], bit 31 to 24
14	FEXT Far-end ACTATP (lsb)	[xxxx xxxx], bit 7 to 0
15	FEXT Far-end ACTATP (msb)	[ssss ssxx], bit 9 to 8
16	NEXT SNRM (lsb)	[xxxx xxxx], bit 7 to 0
17	NEXT SNRM (msb)	[0000 00xx], bit 9 and 8
18	NEXT ATTNDR (lsb)	[xxxx xxxx], bit 7 to 0
19	NEXT ATTNDR	[xxxx xxxx], bit 15 to 8
20	NEXT ATTNDR	[xxxx xxxx], bit 23 to 16
21	NEXT ATTNDR (msb)	[xxxx xxxx], bit 31 to 24
22	NEXT Far-end ACTATP (lsb)	[xxxx xxxx], bit 7 to 0
23	NEXT Far-end ACTATP (msb)	[ssss ssxx], bit 9 to 8

Table C8-17/G.992.3 – Format of the R-MSG1-LD message

For the FEXT QLN(i), Table C8-18 replaces Table 8-62.

Table C8-18/G.992.3 – Format of t	the R-MSG8-LD message
-----------------------------------	-----------------------

Octet Nr[i]	Information	Format message bits [8*i+7 to 8*i+0]
0	Sequence number	[1000 1000]
1	Reserved	[0000 0000]
2	FEXT QLN(0)	[xxxx xxxx], bit 7 to 0
257	FEXT QLN(255)	[xxxx xxxx], bit 7 to 0

For the FEXT SNR(i), Table C8-19 replaces Table 8-63.

Table C8-19/G.992.3	– Format of the	R-MSG9-LD message
---------------------	-----------------	-------------------

Octet Nr[i]	Information	Format message bits [8*i+7 to 8*i+0]
0	Sequence number	[1001 1001]
1	Reserved	[0000 0000]
2	FEXT SNR(0)	[xxxx xxxx], bit 7 to 0
257	FEXT SNR(255)	[xxxx xxxx], bit 7 to 0

For the NEXT QLN(i), an additional message R-MSG10-LD is defined in Table C8-20.

Octet Nr[i]	Information	Format message bits [8*i+7 to 8*i+0]
0	Sequence number	[1010 1010]
1	Reserved	[0000 0000]
2	NEXT QLN(0)	[xxxx xxxx], bit 7 to 0
257	NEXT QLN(255)	[xxxx xxxx], bit 7 to 0

Table C8-20/G.992.3 – Format of the R-MSG10-LD message

For the NEXT SNR(i), an additional message R-MSG11-LD is defined in Table C8-21.

Octet Nr[I]	Information	Format message bits [8*i+7 to 8*i+0]
0	Sequence number	[1011 1011]
1	Reserved	[0000 0000]
2	NEXT SNR(0)	[xxxx xxxx], bit 7 to 0
257	NEXT SNR(255)	[xxxx xxxx], bit 7 to 0

Table C8-21/G.992.3 – Format of the R-MSG11-LD message

The Table C8-22 replaces Table 8-64.

State	Duration (round up in Hyperframes)
R-MSG1-LD	[24*8+16]/34 = 7
R-MSG2-LD	[258*8+16]/34 = 62
R-MSG3-LD	[258*8+16]/34 = 62
R-MSG4-LD	[258*8+16]/34 = 62
R-MSG5-LD	[258*8+16]/34 = 62
R-MSG6-LD	[258*8+16]/34 = 62
R-MSG7-LD	[258*8+16]/34 = 62
R-MSG8-LD	[258*8+16]/34 = 62
R-MSG9-LD	[258*8+16]/34 = 62
R-MSG10-LD	[258*8+16]/34 = 62
R-MSG11-LD	[258*8+16]/34 = 62

Table C8-22/G.992.3 – ATU-R loop diagnostics state durations

The resulting number of hyperframes needed to transmit each of the messages and crc is shown in the Loop Diagnostics timing diagrams in Figures C8-21 and C8-22.

C.8.15.5.2.2 Message flow, acknowledgement and retransmission (supplements § 8.15.5.2.2)

The R-SEGUE-LD state is of fixed length. In the R-SEGUE-LD state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols when bitmap N_C is enabled (DBM). The ATU-R shall transmit R-SEGUE symbols only during $FEXT_C$ symbols when bitmap N_C is disabled (FBM). In this state, the ATU-R shall transmit 345 R-SEGUE symbols.

The R-SEGUE-LD state shall be followed by the R-MSGx-LD state.

The R-MSGx-LD state is of variable length. In the R-MSGx-LD state, the ATU-R shall transmit only during $FEXT_C$ symbols.

The R-MSGx-LD message shall be transmitted over 345*n symbols using the same modulation technique as the loop diagnostics information bearing messages.

A zero bit shall be transmitted as all $FEXT_C$ symbols in a subframe being R-REVERB symbols. A one bit shall be transmitted as all $FEXT_C$ symbols in a subframe being R-SEGUE symbols.

The R-MSGx-LD state duration of LENx-R symbols corresponds to an integer number of hyperframes, which is equal to the minimum integer that is larger than or equal to the number of subframes divided by 34.

After all the message bits are transmitted, the ATU-R shall transmit R-QUIET if R-MSGx-LD state is not finished.

The R-QUIET1-LD state is of fixed length. In the R-QUIET1-LD state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols, and shall transmit 345 R-QUIET symbols.

If all the R-MSGx downstream messages are not transmitted or ACK is not received for all transmitted messages, then ATU-R transit to R_SEGUE-LD state. Otherwise, ATU-R transit to R-QUIET2_LD state. State transition occurs on a hyper frame boundary.

The R-QUIET2-LD state is of variable length. In the R-QUIET2-LD state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols, and shall transmit 345*n R-QUIET symbols.

The duration of R-QUIET2-LD shall be 690+LENx_C symbols if the transition is from R-QUIET1-LD and the duration shall be LENx_C symbols if the transition is from R-QUIET3-LD.

The R-QUIET2-LD state shall be followed by the R-ACK/NACK state.

The R-ACK/NACK state is of fixed length. In the R-ACK/NACK state, the ATU-R shall transmit during both $FEXT_C$ and $NEXT_C$ symbols when bitmap N_C is enabled (DBM). The ATU-R shall transmit R-ACK/NACK symbols only during $FEXT_C$ symbols when bitmap N_C is disabled (FBM).

The R-ACK message is represented by "01010101" octet and shall be transmitted over 8 subframes or 81 symbols using the same modulation technique as the loop diagnostics information bearing messages. A zero bit shall be transmitted as all FEXT_C symbols in a subframe being R-REVERB symbols. A one bit shall be transmitted as all FEXT_R symbols in a sub frame being R-SEGUE symbols.

During the R-NACK state, ATU-R transmits R-QUIET on all FEXT_C symbols.

The duration of R-ACK/NACK state has a duration of 81 symbols.

The R-ACK/NACK state shall be followed by the R-QUIET3-LD state.

The R-QUIET3-LD state is of fixed length. In the R-QUIET3-LD state, the ATU-R shall transmit during both FEXT_C and NEXT_C symbols. In the R-QUIET3-LD state, the ATU-R shall transmit 690-81 R-QUIET symbols.

The R-QUIET3-LD state shall be followed by the R-QUIET2-LD state if the ATU-R has not received all R-MSGx upstream messages. Otherwise changes its state to R-QUIET (L3).

		☐ Beginning of		
	G.994.1	Hyper-frame Beginning of	G.994.1	
<=4204 >=512	C-QUIET1	Hyper-frame	R-QUIET1	<=15500
345 x n n>=2	C-TTRSYNC1		R-COMB1	345
31740	C-QUIET-TTR1			
10350	C-COMB2	_	R-QUIET2	43815
32	C-ICOMB1			
1380-32	C-LINEPROBE			
		345	D. COMD2	
4830	C-QUIET-TTR2	-	R-COMB2	2760
	e çomr rinz	-	R-ICOMB1 R-LINEPROBE	32
		345	K-LINEPKOBE	1380-32
313	C-COMB3			
32	C-ICOMB2	-		
345	C-MSG-FMT		R-QUIET3	(6+NSCus/32)*345
(2+NSCus/32)*345	C-MSG-PCB			
		345		
	C-TTRSYNC2	-	R-COMB3	313
(6+NSCds/32)*345		-	R-ICOMB2	32
(0+143Cd3/32) 343		-	R-MSG-FMT	345
			R-MSG-PCB	(2+NSCds/32)*345
		345	R-REVERB1	1725
54855	C-REVERB1		R-QUIET4	53475
25875	C-TREF1		R-REVERB2	26220
345	C-REVERB2	345		
1380	C-ECT	-	R-QUIET5 Last symbol may be shortened by n samples	44160
43125	C-REVERB3	345	R-REVERB3	345
1380	C-TREF2/ C-QUIET5		R-ECT	1380
3070	C-REVERB4	Introduction of	R-REVERB4	3070
35	C-SEGUE1	Introduction of cyclic prefix	R-SEGUE1	35
1380-28			R-REVERB5	1035-23
1300-28	C-REVERB5		R-SEGUE2	23
28	C-SEGUE2	345-28		
20		4		

Figure C8-21/G.992.3 – Loop Diagnostics Timing Diagram (part 1)

###Editorial: In Figure C8-21, change red colours to black.

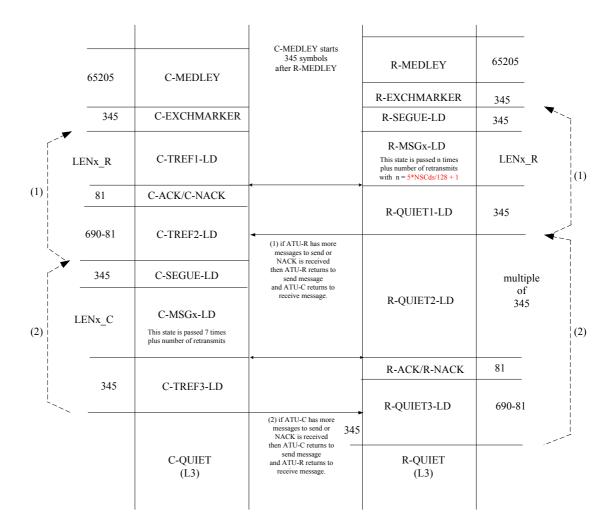


Figure C8-22/G.992.3 – Loop Diagnostics Timing Diagram (part 2)

###Editorial: In Figure C8-22, change red colours to black.

- C.8.16 On-line reconfiguration of the PMD function
- C.8.17 Power management in the PMD function

C.9 Management Protocol Specific Transmission Convergence (MPS-TC) functions (supplements § 9)

- C.9.1 Management Plane Procedures (supplements § 9.4)
- C.9.1.1 Commands (supplements 9.4.1)

C.9.1.1.1 On-line reconfiguration command (supplements 9.4.1.1)

On-line reconfiguration commands are based on §9.4.1.1 with the following changes:

- Request type 1 (bit swap) messages shall be restricted to only one bitmap per transaction.
- Request type 2 (DRR) message shall be left for further study.
- Request type 3 (SRA) messages shall allow changing L parameter for both FEXT and NEXT and shall be
 restricted to only one bitmap per transaction.

The same message designator (0000 0001b) shall be used for both FEXT and NEXT bitmap OLR commands. The OLR commands are listed in Table C9-1.

The Table C9-1 replaces Table 9-7.

Message	ELEMENT NAME
length	(Command)
(Octets)	
$3 + 3 N_{f}$	01_{16} FEXT bitmap Request Type 1 followed by
	1 octet for the number of sub-carriers $N_{\rm f}$
	$3 * N_f$ octets describing FEXT bitmap sub-carrier parameter field for each sub-carrier
3 +	08 ₁₆ FEXT bitmap Request Type 3 followed by
$8*N_{LP}$ +	$2*N_{LP}$ octets containing new $Lf3_P$ values for the N_{LP} enabled latency paths,
$8*N_{LP}$ + $3*N_{f}$	$2*N_{LP}$ octets containing new $Ln3_P$ values for the N_{LP} enabled latency paths,
5	$2*N_{LP}$ octets containing new Lf_{4P} values for the N_{LP} enabled latency paths,
	$2*N_{LP}$ octets containing new $Ln4_P$ values for the N_{LP} enabled latency paths,
	1 octet for the number of carriers N_f
	$3 * N_f$ octets describing FEXT bitmap sub-carrier parameter field for each sub-carrier
$3 + 3*N_f$	09 ₁₆ NEXT bitmap Request Type 1 followed by
$3 + 3 N_f$	1 octet for the number of sub-carriers $N_{\rm f}$
	$3^* N_f$ octets describing NEXT bitmap sub-carrier parameter field for each sub-carrier
3 +	0A ₁₆ NEXT bitmap Request Type 3 followed by
$8*N_{LP}$ +	$2*N_{LP}$ octets containing new $Lf3_P$ values for the N_{LP} enabled latency paths,
$3*N_f$	$2*N_{LP}$ octets containing new $Ln3_P$ values for the N_{LP} enabled latency paths,
	$2*N_{LP}$ octets containing new Lf4 _P values for the N_{LP} enabled latency paths,
	$2*N_{LP}$ octets containing new $Ln4_P$ values for the N_{LP} enabled latency paths,
	1 octet for the number of carriers N_f
	$3* N_f$ octets describing NEXT bitmap sub-carrier parameter field for each sub-carrier
	All other octet values are reserved by the ITU-T.

Table C9-1/G.992.3 – On line reconfiguration commands transmitted by the Initiating Receiver

C.9.1.1.2 Power management commands (supplements § 9.4.1.7)

Power management commands are based on §9.4.1.7 with the following modifications:

The L2 Request command (02_{16}) in Table 9-21 is changed as described in Table C9-2 and the L2 Grant command (82_{16}) in Table 9-22 is changed as described in Table C9-3.

Revise row and add note in Table 9-21 as shown in Table C9-2.

Message length	ELEMENT NAME (Command)		
(Octets)			
4+4 *	02_{16} L2 Request followed by		
N_{LP}	1 octet for minimum PCBds value (dB)		
	1 octet for maximum PCBds value (dB)		
	$2*N_{LP}$ octets containing maximum Lf_p values for		
	the N_{LP} enabled latency paths (See NOTE),		
	$2*N_{LP}$ octets containing minimum Lf_p values for		
	the N_{LP} enabled latency paths (See NOTE)		

Table C9-2/G.992.3 – Change in L2 Request command

NOTE: Since L2 state is not meant for data
transmission, jitter requirements shall be ignored in this
state for simplicity. The following relation shall be
used during L2 state: $Lf3_p = Lf4_p = Lf_p$

Revise row and add note in Table 9-22 as shown in Table C9-3.

Message length (Octets)	ELEMENT NAME (Command)		
5+	82 ₁₆ L2 Grant followed by		
$2*N_{LP}+$	$2*N_{LP}$ octets containing new Lf_p values for the N_{LP}		
$2*N_f$	enabled latency paths (See NOTE),		
	1 octet containing the actual PCBds value		
	1 octet containing the exit symbol PCBds value,		
	1 octet containing the exit symbol bi/gi table flag		
	1 octet for the number of carriers N_f		
	$2 * N_f$ octets describing sub-carrier parameter field		
	for each sub-carrier		
	NOTE: Since L2 state is not meant for data transmission,		
	jitter requirements shall be ignored in this state for		
	simplicity. The following relation shall be used during L2		
	state: $Lf3_p = Lf4_p = Lf_p$		

Table C9-3/G.992.3 - Change in L2 Grant command

A sub-carrier parameter field contains 2 octets formatted as [cccc cccc 0000 bbbb]. The carrier index i (8-bits) and the b_i (4 bits). The carrier index shall be the first octet of the sub-carrier field. The b_i shall be the least significant 4 bits of the second octet.

C.9.1.1.3 Test Parameter Messages (supplements § 9.4.1.10)

Some of the test parameters listed in Table 9-30 need to be duplicated for separate measurements during FEXT and NEXT periods. The Test Parameter ID values listed in Table 9-30 are used for the FEXT period measurements. New Test Parameter ID values are defined for the NEXT period measurements, as shown in Table C9-4.

Test	Test Parameter Name	Length for	Length for
Parameter		Single Read	Multiple Read
ID			
01 ₁₆	Channel Transfer Function <i>Hlog(f)</i> per	2 + NSC * 2 octets	4 octets
	sub-carrier		
0216	Reserved by ITU-T		
0316	FEXT Quiet Line Noise PSD <i>QLN(f)</i> per	2 + NSC octets	3 octet
	sub-carrier		
0416	FEXT Signal to noise ratio SNR(f) per	2 + NSC octets	3 octet
	sub-carrier		
0516	Reserved by ITU-T		
21 ₁₆	Line Attenuation LATN	2 octets	N/a
22 ₁₆	Signal Attenuation SATN	2 octets	N/a
23 ₁₆	FEXT Signal-to-Noise Margin SNRM	2 octets	N/a
24 ₁₆	FEXT Attainable Net Data Rate ATTNDR	4 octets	N/a
25 ₁₆	FEXT Near-end Actual Aggregate Transmit	2 octets	N/a
	Power ACTATP		
26 ₁₆	FEXT Far-end Actual Aggregate Transmit	2 octets	N/a
	Power ACTATP		
83 ₁₆	NEXT Quiet Line Noise PSD <i>QLN(f)</i> per	2 + NSC octets	3 octet
	sub-carrier		
84 ₁₆	NEXT Signal to noise ratio SNR(f) per	2 + NSC octets	3 octet
	sub-carrier		
A3 ₁₆	NEXT Signal-to-Noise Margin SNRM	2 octets	N/a
A4 ₁₆	NEXT Attainable Net Data Rate ATTNDR	4 octets	N/a
A5 ₁₆	NEXT Near-end Actual Aggregate Transmit	2 octets	N/a
	Power ACTATP		
A6 ₁₆	NEXT Far-end Actual Aggregate Transmit	2 octets	N/a
	Power ACTATP		

Table C9-4/G.992.3 - PMD Test Parameter ID Values

C.10 Dynamic behaviour

C.K TPS-TC functional description

NOTE - This section includes Annex C specific supplements and replacements relative to Annex K.

C.K.1 STM transmission convergence function (replaces § K.1)

For further study

C.K.2 ATM transmission convergence function (supplements § K.2)

C.K.2.1 Control Parameters (replaces § K.2.7)

The configuration of the ATM-TC function is controlled by a set of control parameters displayed in Table C.K2.1 in addition to those specified in the main body of this Recommendation. The values of these control parameters are set communicated during initialization or reconfiguration of an ATU pair. All the values are determined by application requirements and means that are beyond the scope of this document.

Minimum Net Data Rate <i>net_min_n</i>	The minimum net data rate supported by the ATM-TC stream #n. The ATU shall implement appropriate initialization and reconfiguration procedures to provide not min data rate.
Maximum Net Data Rate net_max_n	<i>net_min</i> data rate The maximum net data rate supported by ATM-TC stream #n. During activation and reconfiguration procedures, the net data rate shall not exceed this value.

Minimum Reserved	The minimum net data rate supported by ATM-TC stream #n that shall always be
Datarate	available upon request by an appropriate reconfiguration procedure. The value of
<i>net_reserve</i> _n	<i>net_reserve</i> _n shall be constrained such that <i>net_min</i> _n \leq <i>net_reserve</i> _n \leq <i>net_max</i> _n .
Maximum PMS-TC	The ATM-TC stream #n shall be transported with underlying PMS-TC functions
latency <i>delay_max_n</i>	configured such that the derived parameter delay _p is no larger than this control
	parameter delay_max _n
Maximum PMS-TC	The ATM-TC stream #n shall be transported with bit error ratio not to exceed
BER <i>error</i> _ max_n	<i>error_max_n</i> , referenced to the output of the PMS-TC function in the receiver. The
	transceiver shall implement appropriate initialization and reconfiguration procedures
	to assure this value.
IMA Compatibility	This single bit flag controls specialized functionality of the ATM-TC function. If set
Mode flag	to one, the specialized functionality is enabled. See § K2.8.2 and § K2.8.5. More
IMA_flag	information on the IMA operation mode is available in Appendix IV- Bibliography
	[B17].
Minimum PMS-TC	The ATM-TC stream #n shall be transported with underlying PMS-TC functions
Impulse Noise	configured such that the derived parameter INP_p is not lower than this control
Protection	parameter <i>INP_min_n</i>
INP_min_n	
Maximum PMS-TC	The ATM-TC stream #n shall be transported with underlying PMS-TC functions
jitter <i>jitter_max_n</i>	configured such that the derived parameter jitter _p is no larger than this control
	parameter jitter_max _n

If the values of net_min_n , net_max_n , and $net_reserve_n$ are set to the same value, then the ATM-TC stream is designated as a fixed datarate ATM-TC stream (i.e., RA_mode=MANUAL, see Table 8-6). If $net_min_n = net_reserve_n$ and $net_min_n \neq net_max_n$, then the ATM-TC stream is designated as a flexible datarate ATM-TC stream. If the value of $net_min_n \neq net_max_n \neq net_reserve_{max}$, then the ATM-TC stream is designated as a flexible datarate ATM-TC stream with reserved datarate allocation.

During initialization and reconfiguration procedures, the actual net data rate net_actn for stream #n shall always be set to the value of the derived parameter net_act_p of the underlying PMS-TC latency path function and shall be constrained such that $net_min_n \le net_act_n \le net_max_n$. However, in case the $net_min_n = net_max_n$, the net_act_n may exceed the net_max_n by up to 8 kbit/s, to allow for the PMS-TC net data rate granularity (see Table 7-7). If $net_min_n < net_max_n$, the net_max_n shall be set at least 8 kbit/s above the net_min_n , to allow for the PMS-TC net data rate granularity to meet the $net_min_n \le net_act_n \le net_max_n$. requirement. The latency $delay_act_n$ shall always be set to the value of the derived parameter $delay_p$ of the underlying PMS-TC latency path function and constrained such that $delay_act_n \le delay_max_n$. The values net_act_n and $delay_act_n$ are not control parameters; these values are the result of specific initialization and reconfiguration procedures.

The impulse noise protection INP_act_n of transport of stream #n shall always be set to the value of the derived parameter INP_p of the underlying PMS-TC path function and constrained such that $INP_act_n \ge INP_min_n$ The jitter *jitter_act_n* of transport of stream #n shall always be set to the value of the derived parameter *jitter_p* of the underlying PMS-TC path function and constrained such that *jitter_act_n* of transport of stream #n shall always be set to the value of the derived parameter *jitter_p* of the underlying PMS-TC path function and constrained such that *jitter_act_n ≤ jitter_max_n* The values *net_act_n*, *delay_act_n*, *jitter_act_n* and *INP_act_n* are not control parameters; these values are the result of specific initialization and reconfiguration procedures.

C.K.2.1.1 Valid Configurations (Supplements § K.2.7.1)

The configurations listed in Table C.K2.2 are valid for the ATM-TC function.

Parameter	Capability
$Type_n$	2
Net min _n	<i>net min_n</i> may be supported for all valid framing configurations
Net max_n	<i>net</i> max _n may be supported for all valid framing configurations
Net reserve _n	net reserve _n may be supported for all valid framing configurations
$Delay_max_n$	$0 < Delay_{max_n} \le the largest value of delay_p (see § 7.6.1) for supported$
	valid framing configurations. $Delay_max_n = 0$ is a special value indicating
	no delay bound is being imposed. Delay_max _n = 1 is a special value
	indicating the lowest delay is being imposed (see § 7.3.2.2/G.997.1).
Error max_n	$10^{-3}, 10^{-5}, 10^{-7}$
IMA_flag	0 and 1
INP_min_n	0, 1/2, 1, 2, 4, 8, 16
$Jitter_max_n$	$1 \leq jitter_max_n \leq$ the largest value of <i>jitter</i> _p (see Table C7-1) for supported
	valid framing configurations. <i>Jitter</i> $max_n = 31$ is a special value indicating no jitter bound is being imposed. Jitter $max_n = 0$ is a special value indicating that this bearer is mapped in a latency path where $Lf_{2p} = Lf_{2p} = Ln_{2p} = Ln_{2p}$.

Table C.K2.2/G.992.3 - Valid configuration for ATM-TC Function

C.K.2.1.2 Mandatory Configurations (Supplements § K.2.7.2)

If implementing an ATM-TC, an ATU shall support all combinations of the values of ATM-TC control parameters for ATM-TC function #0 displayed in Table C.K2.3 and Table C.K2.4 in the downstream and upstream directions, respectively. The transmitter and receiver shall support mandatory features displayed in the tables.

Parameter	Capability
<i>Type</i> _n	2
Net_min _n	<i>net_min_n</i> shall be supported for all valid framing configurations up to and equal to 8M bits/s .
	Note: Support for values above the required net data rate is optional and allowed.
Net_max _n	<i>net_max_n</i> shall be supported for all valid framing configurations up to and equal to 8M bits/s.
	Note: Support for values above the required net data rate is optional and allowed.
Net_reserve _n	<i>net_reserve</i> ^{<i>n</i>} shall be supported for all valid framing configurations up to and equal to 8M bits/s.
$Delay_max_n$	All valid values shall be supported
$Error_max_n$	All valid values shall be supported
IMA_flag	All valid values shall be supported
INP_min _n	0,1/2,1,2
Jitter max _n	All valid values shall be supported

Table C.K2.3/G.992.3 - Mandatory downstream configuration for ATM-TC function #0

Table C.K2.4/G.992.3 – Mandatory upstream c	control configuration for ATM-TC function #0
---	--

Parameter	Capability
<i>Type</i> _n	2
Net_min _n	<i>net_min_n</i> shall be supported for all valid framing configurations up to and equal to 800Kbits/s.
	Note: Support for values above the required net data rate is optional and allowed.
Net_max _n	net_max_n shall be supported for all valid framing configurations up to and equal to 800Kbits/s. Note: Support for values above the required net data rate is optional and
	allowed.
Net_reserve _n	<i>net_reserve_n</i> shall be supported for all valid framing configurations up to and equal to 800Kbits/s.

	Note: Support for values above the required net data rate is optional and allowed.
Delay max_n	All valid values shall be supported
Error max_n	All valid values shall be supported
IMA flag	All valid values shall be supported
INP min _n	0,1/2,1,2
$Jitter_max_n$	All valid values shall be supported

C.K.3	Packet transmission	convergence f	unction (PTM-TC	C)
-------	---------------------	---------------	-----------------	----

ANNEX C.A

Specific requirements for an Annex C based ADSL system operating with a downstream bandwidth of 1104 kHz and an upstream bandwidth of 138 kHz

This annex defines those parameters of the ADSL system that have been left undefined in the body of Annex C because they are unique to an ADSL service that uses a downstream bandwidth up to 1104 kHz (subcarrier 256) and an upstream bandwidth up to 138 kHz (subcarrier 32).

CA.1 ATU-C functional characteristics (pertains to § 8)

CA.1.1 ATU-C control parameter settings

As defined in § A.1.1.

CA.1.2 ATU-C downstream transmit spectral mask for overlapped spectrum operation (supplements § 8.10)

As defined in § A.1.2.

CA.1.2.1 Passband PSD and response

As defined in § A.1.2.1.

CA.1.2.2 Aggregate transmit power

As defined in § A.1.2.2.

CA.1.3 ATU-C transmitter PSD mask for non-overlapped spectrum operation (supplements § 8.10)

As defined in § A.1.3.

CA.1.3.1 Passband PSD and response

As defined in § A.1.2.1.

CA.1.3.2 Aggregate transmit power

As defined in § A.1.3.2.

CA.2 ATU-R functional characteristics (pertains to § 8)

CA.2.1 ATU-R control parameter settings

As defined in § A.2.1.

CA.2.2 ATU-R upstream transmit spectral mask (supplements § 8.10)

As defined in A.2.2.

CA.2.2.1 Passband PSD and response

As defined in A.2.2.1.

CA.2.2.2 Aggregate transmit power

As defined in A.2.2.

CA.3 Initialization

For this Annex, no additional requirements apply (relative to the Annex C).