

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital sections and digital line system – Optical line systems for local and access networks

Gigabit-capable Passive Optical Networks (G-PON): Enhancement band

ITU-T Recommendation G.984.5

-01

ITU-T G-SERIES RECOMMENDATIONS TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600–G.699
DIGITAL TERMINAL EQUIPMENTS	G.700–G.799
DIGITAL NETWORKS	G.800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900–G.999
General	G.900-G.909
Parameters for optical fibre cable systems	G.910–G.919
Digital sections at hierarchical bit rates based on a bit rate of 2048 kbit/s	G.920–G.929
Digital line transmission systems on cable at non-hierarchical bit rates	G.930–G.939
Digital line systems provided by FDM transmission bearers	G.940–G.949
Digital line systems	G.950–G.959
Digital section and digital transmission systems for customer access to ISDN	G.960–G.969
Optical fibre submarine cable systems	G.970–G.979
Optical line systems for local and access networks	G.980-G.989
Access networks	G.990–G.999
QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000–G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000–G.8999
ACCESS NETWORKS	G.9000-G.9999

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation G.984.5

Gigabit-capable Passive Optical Networks (G-PON): Enhancement band

Summary

The purpose of ITU-T Recommendation G.984.5 is to define wavelength ranges reserved for additional service signals to be overlaid via wavelength division multiplexing (WDM) in future passive optical networks (PON) for maximizing the value of optical distribution networks (ODNs).

Source

ITU-T Recommendation G.984.5 was approved on 22 September 2007 by ITU-T Study Group 15 (2005-2008) under the ITU-T Recommendation A.8 procedure.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2008

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

CONTENTS

Page

1	Scope						
2	Referen	ces	1				
3	Definiti	ons	2				
	3.1	Terms defined elsewhere	2				
	3.2	Terms defined in this Recommendation	2				
4	Abbrevi	ations and acronyms	2				
5	Convent	tions	3				
6	Operating wavelength						
7	X/S tolerance of G-PON ONU						
Appendix I – Example of WDM1 characteristics							
Appendix II – Examples of wavelength allocation for NGA services and video distribution services							
	II.1	Introduction	10				
	II.2	Case 1: Integrated filter for video	10				

ITU-T Recommendation G.984.5

Gigabit-capable Passive Optical Networks (G-PON): Enhancement band

1 Scope

The purpose of this Recommendation is to define wavelength ranges reserved for additional service signals to be overlaid via wavelength division multiplexing (WDM) in future gigabit capable passive optical networks (G-PON) for maximizing the value of optical distribution networks (ODNs). Other PON systems, such as B-PON, have wavelength plans based on [ITU-T G.983.3], which includes existing options for enhancement bands. This Recommendation also defines further wavelength ranges reserved for additional service signals to be overlaid via WDM in future PONs whose wavelength allocations are based on [ITU-T G.983.3].

For this purpose, this Recommendation defines and provides:

- wavelength ranges to be reserved; and
- X/S tolerance in PON optical network units (ONUs).

Appendices I and II provide:

- Sample parameters of a discrete WDM filter that combines and isolates the G-PON up/down signals and enhancement bands at the OLT side.
- Examples of wavelength allocation for NGA services and video distribution services.

The physical media dependent (PMD) layer specification for G-PON in the absence of an enhancement band is defined in [ITU-T G.984.2]. PMD layer specifications for G-PON in the presence of enhancement bands are defined by the combination of G.984.2 and this Recommendation. Whenever a parameter specified in [ITU-T G.984.2] is not explicitly mentioned in this Recommendation, its value given in [ITU-T G.984.2] remains valid. Whenever a parameter is specified in both this Recommendation and [ITU-T G.984.2], the specification in this Recommendation takes precedence.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T G.652]	ITU-T Recommendation G.652 (2005), <i>Characteristics of a single-mode optical fibre and cable</i> .
[ITU-T G.671]	ITU-T Recommendation G.671 (2005), Transmission characteristics of optical components and subsystems.
[ITU-T G.983.1]	ITU-T Recommendation G.983.1 (2005), Broadband optical access systems based on Passive Optical Networks (PON).
[ITU-T G.983.3]	ITU-T Recommendation G.983.3 (2001), A broadband optical access system with increased service capability by wavelength allocation.
[ITU-T G.984.2]	ITU-T Recommendation G.984.2 (2003), Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification.

[ITU-T G.984.2/Amd.1] ITU-T Recommendation G.984.2/Amd.1 (2006), Gigabit-capable Passive Optical Networks (G-PON): Physical Media Dependent (PMD) layer specification, Amendment 1: New Appendix III – Industry best practice for 2.488 Gbit/s downstream, 1.244 Gbit/s upstream G-PON.

3 Definitions

This Recommendation makes frequent use of the defined terms found in [ITU-T G.983.1], [ITU-T G.983.3] and [ITU-T G.984.2]. For convenience, the main definitions related to the G-PON enhancement bands are reported in this clause.

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

- **3.1.1** optical distribution network (ODN): [ITU-T G.984.2].
- **3.1.2** optical line termination (OLT): [ITU-T G.984.2].
- **3.1.3** optical network unit (ONU): [ITU-T G.984.2].
- **3.1.4 wavelength division multiplexing (WDM)**: [ITU-T G.984.2].

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 next generation access (NGA): A possible new optical access system that coexists with G-PON on the same ODN.

3.2.2 wavelength blocking filter (WBF): An optical filter to prevent an optical receiver from receiving unwanted optical signals with different wavelengths.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

- B-PON Broadband Passive Optical Network
- CNR Carrier-to-Noise Ratio
- DFB Distributed Feedback Laser
- G-PON Gigabit-capable Passive Optical Network
- NGA Next Generation Access
- ODN Optical Distribution Network
- OLT Optical Line Termination
- ONU Optical Network Unit
- PMD Physical Media Dependent
- PON Passive Optical Network
- WBF Wavelength Blocking Filter
- WDM Wavelength Division Multiplexing

5 Conventions

See [ITU-T G.983.1] for the generic physical configuration of optical access network. For convenience, Figure 5 of [ITU-T G.983.1] is reproduced below.

Figure 1 – Generic physical configuration of the optical distribution network (reproduced from Figure 5 of [ITU-T G.983.1])

The two directions for optical transmission in the ODN are identified as follows:

- downstream direction for signals travelling from the OLT to the ONU(s);
- upstream direction for signals travelling from the ONU(s) to the OLT.

According to [ITU-T G.983.1], transmission in downstream and upstream directions can take place on the same fibre and components (duplex/diplex working) or on separate fibres and components (simplex working). This Recommendation covers only diplex working, i.e., bidirectional transmission using different wavelengths over a single fibre.

There can be several types of ODN architectures to achieve the coexistence of G-PON and additional services including next generation access (NGA) and video distribution services. Figures 2 and 3 are reference diagrams of optical access network architectures, and assume that wavelength blocking filters (WBF) are used when G-PON, video and NGA share the same ODN.

Note that these diagrams just provide reference configurations of the ODN and WBF, and do not intend to limit future designs and implementations.

The following abbreviations are used in Figures 2 and 3:

- Tx Optical transmitter.
- Rx Optical receiver.
- V-Tx Video transmitter.
- V-Rx Video receiver.
- WBF Wavelength blocking filter for blocking interference signals to Rx.
- WBF-V Wavelength blocking filter for blocking interference signals to V-Rx.

- WDM-N WDM filter in G-PON ONU to combine/isolate the wavelengths of G-PON upstream and downstream.
- WDM-N' WDM filter in G-PON ONU to combine/isolate the wavelengths of G-PON upstream and downstream and isolate the video signal(s).
- WDM-NGA WDM filter in NGA ONU to combine/isolate the wavelengths of NGA upstream and downstream.
- WDM-NGA' WDM filter in NGA ONU to combine/isolate the wavelengths of NGA upstream and downstream and isolate the video signal(s).
- WDM-L WDM filter in G-PON OLT to combine/isolate the wavelengths of G-PON upstream and downstream.
- WDM-NGA-L WDM filter in NGA OLT to combine/isolate the wavelengths of NGA upstream and downstream of one or more channels.
- WDM1 WDM filter that may be located in the central office to combine/isolate the wavelengths of G-PON and NGA signals and combine the video signals.

6 **Operating wavelength**

The wavelength range of the G-PON downstream signal (single fibre system) is specified in [ITU-T G.984.2] as 1480 nm to 1500 nm and that of the G-PON upstream signal as 1260 nm to 1360 nm. This Recommendation redefines the reserved wavelength range and specifies the tolerance for interference signals of G-PON ONUs to enable coexistence of G-PON and additional services including NGA and video services.

Figure 4 and Table 1 define the wavelength allocation plan including the wavelength bands reserved for additional services. The wavelength range of the G-PON downstream signal is referred to as the "basic band". Reserved bands are referred to as the "enhancement band". Applications for the enhancement band include video services and NGA services. The wavelength range for video services remains the same as defined in [ITU-T G.983.3].

A guard band separates the G-PON upstream and/or basic band from the enhancement band. The interference between signals in these two bands causes signal degradation to each other, which must be kept negligible. Wavelength blocking filters (WBFs) are used to obtain the required isolation outside the guard band. The wavelength values specified in Table 1 take into account guard bands that may be achievable by commercially available low-cost WBFs.

NOTE – Wavelengths in the enhancement band may be used not only for downstream but also for upstream signal transmission in the WDM scheme.

1.3 μ m wavelength band (upstream)

Intermediate wavelength band (upstream and/or downstream)

1.5 μ m wavelength band (upstream and/or downstream)

Figure 4 – Wavelength allocation

1/	Table 1 –	Parameters for	wavelength	allocation	in Figure 4
----	-----------	----------------	------------	------------	-------------

Items	Notation	Unit	Nominal value	Application examples
1.3 µm wavelength band		For use in G-PON upstream.		
– Regular wavel	ength band op	otion		
Lower limit	λ1	nm	1260	e.g., ONUs based on Fabry-Perot lasers.
Upper limit	λ2	nm	1360	
- Reduced wave	length band o	ption		
Lower limit	λ1	nm	1290	e.g., ONUs based on ordinary DFB lasers.
Upper limit	λ2	nm	1330	
- Narrow wavele	ength band op	tion		
Lower limit	λ1	nm	1300	e.g., UNUs based on wavelength selected lasers
Upper limit	λ2	nm	1320	
Enhancement ban	d (option 1-1)			For next generation access (NGA).
Lower limit	λ3	nm	1415	NOTE – The values are informative. The
			(Informative)	loss in this band is not guaranteed in optical branching components for PON (i.e., power
Upper limit	λ4	nm	1450	splitters) specified in G.671 nor in optical
			(Informative)	fibres specified as G.652A&B (non-low-water-peak fibres).
Enhancement band (option 1-2)		For next generation access (NGA).		
Lower limit	λ3	nm	1400	Applicable for low-water-peak fibre only.
			(Informative)	NOTE – The values are informative. The
Upper limit	λ4	nm	1450	loss in this band is not guaranteed in optical
			(Informative)	splitters) specified in G.671.

Items	Notation	Unit	Nominal value	Application examples
Basic band				
Lower limit	_	nm	1480	For use in G-PON downstream.
Upper limit	_	nm	1500	
Enhancement ban	d (option 2)	_		For next generation access (NGA).
Lower limit	λ5	nm	1530	NOTE – The upper-limit value is
Upper limit	λ6	nm	1580 to 1625	determined as an operator choice from 1580 to 1625 nm considering the following factors.
				 Bending loss of optical fibre that increases at longer wavelengths.
				 Loss of a filter that separates/combines a monitoring signal and NGA signal(s) (if an optical monitoring system is used).
Enhancement band (option 3)				
Lower limit	_	nm	1550	For video distribution service.
Upper limit	_	nm	1560	
NOTE – Additional guard bands are needed in the case of the coexistence of option 2 and option 3 (see Appendix II).				

 Table 1 – Parameters for wavelength allocation in Figure 4

7 X/S tolerance of G-PON ONU

The minimum optical sensitivity of a G-PON ONU must be met in the presence of the interference signals caused by NGA and/or video signals in the enhancement band specified in Table 1. To minimize the effect of interference signals, G-PON ONUs need to isolate interference signals using an appropriate WBF and WDM filter. This Recommendation does not specify the isolation characteristics of the WBF and WDM filters themselves, but specifies the X/S tolerance of the G-PON ONU. Here S is the optical power of the basic band signal and X is that of the interference signal(s), both measured at the point IF_{G-PON} of ONU side specified in Figures 2 and 3. Figure 5 shows the X/S tolerance mask that should not cause the sensitivity of the basic band receiver to fail to meet the specified limit. Implementers need to specify the isolation characteristics of the WBF and WDM filter to obtain enough isolation of the interference signal(s) to allow the sensitivity requirement to be met in the presence of this level of interference. On the other hand, the wavelengths and total optical launch power of additional services including NGA and video services must be considered with reference to Figure 5 in the case of coexistence with G-PON.

The interference signal format for measuring X/S tolerance should be NRZ pseudo-random coded with the same bit rate as the G-PON downstream signal or a lower rate within the bandwidth of the basic band receiver.

NOTE – λ 3 value of 1400 (*Informative*) may be applicable for low-water-peak fibre only.

Figure 5 – S	/X tolerance n	nask for ONU
--------------	----------------	--------------

Appendix I

Example of WDM1 characteristics

(This appendix does not form an integral part of this Recommendation)

Table I.1 shows sample parameters of a WDM1 filter that combines (downstream) and isolates (upstream) the G-PON up/down signals and enhancement band. Figure I.1 shows the reference diagram of WDM1.

Specification	Value				
Loss without connectors – G-PON wavelength span	< 0.7 dB (1260-1500 nm)				
Loss without connectors for enhancement bands	< 1.0 dB (1524-1625 nm)				
Isolation – COM – OLT (1524-1625 nm)	TBD (> 30 dB (higher values may be required depending on the application))				
Isolation – COM – UPGRADE	> 30 dB				
(1480-1500 nm, 1260-1360 nm)					
Max optical power	+23 dB				
Return Loss	> 50 dB				
Directivity	> 50 dB				
NOTE 1. The second with some second state of the second se					

Table I.1 – Parameters for WDM1

NOTE 1 – The wavelength range of 1524-1530 nm should not be used by NGA downstream signals.

NOTE 2 – The specification of WDM1 in the range of 1625-1660 nm for applications such as inserting an OTDR signal onto the PON is for future study.

Figure I.1 – Reference diagram of WDM1

Appendix II

Examples of wavelength allocation for NGA services and video distribution services

(This appendix does not form an integral part of this Recommendation)

II.1 Introduction

Considering the possible network scenarios that allow the coexistence of G-PON, NGA and video services, it is assumed that additional guard bands are needed at both sides of the video band to avoid interference which could cause the degradation of video CNR performances of the video receiver. To take the guard bands for both basic band and video into account, the wavelength range between basic band and video may not be applicable for NGA downstream signals. Figure II.1 shows the wavelength plan of the 1.5 μ m wavelength band for these scenarios. The ranges of the guard bands depend on the filter characteristics of the video band pass filter and the performance of the video receiver. In this clause, two types of filters are considered. One is the integrated filter within the G-PON ONU transceiver such as triplexer type transceiver, and the other is the discrete filter outside of the G-PON diplexer type transceiver and the video receiver. The examples of wavelength allocation and filter characteristics for each case are provided below.

Figure II.1 – Wavelength allocation

II.2 Case 1: Integrated filter for video

Figure II.2 shows an example configuration of a G-PON ONU using a triplexer type transceiver including an integrated video filter. This figure does not intend to limit filter configurations of the triplexer. Filter configurations may be different in each implementation and also depend on the implementations of optics (e.g., micro-optics or PLC-based). In this figure, the isolation values at Reference point are sum of the isolation values of WDM filter and WBF in front of the V-Rx. Figure II.3 shows an example of isolation and Table II.1 shows an example of wavelength allocation including tentative wavelength value of λ 7 in Figure II.3. One of the example isolation values of an integrated filter. Service operators and implementers should take the actual filter characteristics and performance of the video receiver into account when considering additional enhanced services.

Figure II.2 – Example configuration of G-PON ONU with video (Case 1)

Figure II.3 – Example of integrated filter characteristics for video

Items	Notation	Unit	Nominal value	Application examples	
Enhancement band (option 3)					
Lower limit – nm 1550		For video distribution service.			
Upper limit	_	nm	1560		
Enhancement band (option 4)					
Lower limit $\lambda7$ nmTBD (1574 or 1575)For ne				For next generation access (NGA).	
Upper limit	λ6	nm	1580 to 1625		
NOTE – Typically applied to the integrated filters inside the triplexer type optical transceiver.					

Table II.1 –	Example	of wavelength	allocation	(Case	1)
	Lampie	or wavelength	unocution	(Cube	-,

II.3 Case 2: Discrete WDM filter for video

Figures II.4 and II.5 show example configurations of a G-PON ONU (and a video ONU) using discrete WDM filters. These figures do not intend to limit filter configurations. In these figures, the isolation values at reference point are sum of the isolation values of discrete WDM filter and WBF in front of the V-Rx. Figure II.6 shows an example of isolation and Table II.2 shows an example of wavelength allocation. One of the example isolation values of y4 in Figure II.6 is 35 dB with reference to the realistic isolation performances of a discrete filter. Service operators and implementers should take actual filter characteristics and performance of the video receiver into account when considering additional enhanced services.

Figure II.4 – Example configuration of G-PON ONU with video (Case 2)

Figure II.5 – Example configuration of G-PON ONU and video ONU (Case 2)

Figure II.6 – Example of discrete filter characteristics for video ONU

Items	Notation	Unit	Nominal value	Application examples
Enhancement band (option 3)				
Lower limit	_	nm	1550	For video distribution service.
Upper limit	-	nm	1560	
Enhancement band (option 5)				
Lower limit	λ7'	nm	For further study	For next generation access (NGA).
Upper limit	λ6	nm	1580 to 1625	

Table II.2 – Example of wavelength allocation (Case 2)

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems