

Recommendation

ITU-T G.874 (2020) Amd. 2 (01/2024)

SERIES G: Transmission systems and media, digital systems and networks

Digital networks – Optical transport networks

Management aspects of optical transport network elements

Amendment 2

ITU-T G-SERIES RECOMMENDATIONS

Transmission systems and media, digital systems and networks

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-	G.100-G.199
	G.200-G.299
TRANSMISSION SYSTEMS	
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300-G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE	
SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH	G.400-G.449
METALLIC LINES	G.400-G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600-G.699
	G.700-G.799
DIGITAL TERMINAL EQUIPMENTS DIGITAL NETWORKS	G.800-G.899
BIGITIE I (EI WOTHE	
General aspects	G.800-G.809
Design objectives for digital networks	G.810-G.819
Synchronization, quality and availability targets	G.820-G.829
Network capabilities and functions	G.830-G.839
SDH network characteristics	G.840-G.849
Management of transport network	G.850-G.859
SDH radio and satellite systems integration	G.860-G.869
Optical transport networks	G.870-G.879
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-	G.1000-G.1999
RELATED ASPECTS	G.1000-G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000-G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000-G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000-G.8999
ACCESS NETWORKS	G.9000-G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.874

Management aspects of optical transport network elements

Amendment 2

Summary

Recommendation ITU-T G.874 addresses management aspects of optical transport network (OTN) elements containing transport functions of one or more of the layer networks of the OTN. The management of optical layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client. The management functions for fault management, configuration management (CM) and performance monitoring are specified.

Recommendation ITU-T G.874 (2008) updated the management information (MI) to align with Recommendation ITU-T G.798, reorganized the sections to align with the structure of Recommendation ITU-T G.7710/Y.1701, and replaced the generic text with pointers to Recommendation ITU-T G.7710/Y.1701.

Recommendation ITU-T G.874 (2010) added the management of new transport functions that were introduced in ITU-T G.798 (2010), including OPSMnk_TT, OPSM/OTUk a_A, and ODUk for k=0, 2e, 4, and flex.

Recommendation ITU-T G.874 (2013) added the management of hitless adjustment of ODUflex(GFP) (HAO), automatic protection switching (APS), application codes and performance management (PM) data collection.

Recommendation ITU-T G.874 (2017) added a description to cover OTUCn GCC0, added the application code related MI signals, updated the MI signals for ODU2eP/FC-1200_A, OSM256.4/CBRx_A, OSx/CBRx-b_A_Sk and OSx/CBRx-c_A_Sk, removed the nDelay, nES, and fES primitives, moved the description of O.MN, O.MSN, and O.NE to the convention clause, updated the default values of DEGThr and DEGM, updated Appendix III to align with Table 15-9 of ITU-T G.709/Y.1331 (2016), and removed the adaptation function activation and MI_Active to align with ITU-T G.798.

Recommendation ITU-T G.874 (2020) aligns with the latest editions of ITU-T G.709 and ITU-T G.798, and harmonizes generic requirements with clauses 8 and 10 of ITU-T G.7710/Y.1701.

Recommendation ITU-T G.874 Amendment 1 (2022) aligns with the latest editions of ITU-T G.709 and ITU-T G.798, including their amendments.

Recommendation ITU-T G.874 Amendment 2 (2023) aligns with the latest editions of ITU-T G.709 and ITU-T G.798 Edition 7, including their amendments.

History*

Edition	Recommendation	Approval	Study Group	Unique ID
1.0	ITU-T G.874	2001-11-29	15	11.1002/1000/5607
2.0	ITU-T G.874	2008-03-29	15	11.1002/1000/9376
3.0	ITU-T G.874	2010-07-29	15	11.1002/1000/10881
3.1	ITU-T G.874 (2010) Cor. 1	2011-06-06	15	11.1002/1000/11121
3.2	ITU-T G.874 (2010) Amd. 1	2012-04-06	15	11.1002/1000/11493
3.3	ITU-T G.874 (2010) Amd. 2	2012-10-29	15	11.1002/1000/11792
4.0	ITU-T G.874	2013-08-29	15	11.1002/1000/11987
4.1	ITU-T G.874 (2013) Amd. 1	2015-08-13	15	11.1002/1000/12559
5.0	ITU-T G.874	2017-08-13	15	11.1002/1000/13304
6.0	ITU-T G.874	2020-10-29	15	11.1002/1000/14500
6.1	ITU-T G.874 (2020) Amd. 1	2022-11-13	15	11.1002/1000/15140
6.2	ITU-T G.874 (2020) Amd. 2	2024-01-13	15	11.1002/1000/15831

Keywords

Optical transport network, OTN.

-

^{*} To access the Recommendation, type the URL https://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents/software copyrights, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at http://www.itu.int/ITU-T/ipr/.

© ITU 2024

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

1	Scope	
2	Refere	nces
3	Defini	tions
	3.1	Terms defined elsewhere
	3.2	Terms defined in this Recommendation
4	Abbre	viations and acronyms
5		ntions
6	Optica	ıl transport network management architecture
	6.1	OTN management network architecture
	6.2	Optical transport network equipment management architecture
	6.3	Information flows over management points
7	Fault 1	nanagement
	7.1	Fault management applications
	7.2	Fault management functions
8	Config	guration management
	8.1	Hardware
	8.2	Software
	8.3	Protection switching
	8.4	Trail termination
	8.5	Adaptation
	8.6	Connection
	8.7	DEG thresholds
	8.8	ZZZ_Reported
	8.9	Alarm severity
	8.10	Alarm reporting control
	8.11	Performance management thresholds
	8.12	Tandem connection monitoring activations
	8.13	Date and time
	8.14	Control function
	8.15	Application identifier management
	8.16	Media element management
	8.17	Administrative state
9	Accou	nt management
10	Perfor	mance management
	10.1	Performance management applications
	10.2	Performance management functions

		Page
11	Security management	66
Appen	ndix I – Management information for configuration management	67
Appen	ndix II – Management information for performance management	69
Appen	adix III – Mapping between OPUk payload type and adaptation atomic function	70

Recommendation ITU-T G.874

Management aspects of optical transport network elements

Amendment 2

Editorial note: This is a complete-text publication. Modifications introduced by this amendment are shown in revision marks relative to Recommendation ITU-T G.874 (2020) and its Amendment 1.

1 Scope

This Recommendation addresses management aspects of optical transport network (OTN) elements containing transport functions of one or more layer networks of the OTN as described in [ITU-T G.709]. The management of optical layer networks is separable from that of its client layer networks; therefore the same means of management can be used regardless of the client. This Recommendation specifies the management functions for fault management, configuration management (CM), account management, performance management (PM) and security management.

This Recommendation describes the management network organizational model for communication between an element management layer (EML) operations system (OS) and the optical equipment management function (EMF) within an OTN network element (O.NE).

The architecture described in this Recommendation for the management of OTNs is based upon the following considerations.

- The management view of network element (NE) functional elements should be uniform whether those elements form part of an inter-domain interface (IrDI) or part of an intradomain interface (IaDI). Those properties necessary to form such a uniform management view are to be included in this Recommendation.
- OTN layer network entities (OLNEs) include trail termination (TT), adaptation and connection functions as described in [ITU-T G.872] for the OTN digital layer.
- An NE may only contain OLNEs.
- An NE may contain both OLNEs and client layer network entities (CLNEs).
- CLNEs are managed as part of their own logical domain [e.g., a synchronous digital hierarchy (SDH) management network].
- CLNEs and OLNEs may or may not share a common message communication function (MCF) and management application function (MAF) depending on application.
- CLNEs and OLNEs may or may not share the same agent.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T G.695] Recommendation ITU-T G.695 (2018), Optical interfaces for coarse wavelength division multiplexing applications.

- [ITU-T G.698.2] Recommendation ITU-T G.698.2 (2018), Amplified multichannel dense wavelength division multiplexing applications with single channel optical interfaces.
- [ITU-T G.7041] Recommendation ITU-T G.7041/Y.1303 (2016), Generic framing procedure.
- [ITU-T G.7044] Recommendation ITU-T G.7044/Y.1347 (2011), *Hitless adjustment of ODUflex(GFP)*.
- [ITU-T G.709] Recommendation ITU-T G.709/Y.1331 (2020), *Interfaces for the optical transport network*.
- [ITU-T G.709.1] Recommendation ITU-T G.709.1/Y.1331.1 (20182024), Flexible OTN short-reach interfaces common elements.
- [ITU-T G.784] Recommendation ITU-T G.784 (2008), Management aspects of synchronous digital hierarchy (SDH) transport network elements.
- [ITU-T G.798] Recommendation ITU-T G.798 (20172023), Characteristics of optical transport network hierarchy equipment functional bocks.
- [ITU-T G.806] Recommendation ITU-T G.806 (2012), Characteristics of transport equipment Description methodology and generic functionality.
- [ITU-T G.826] Recommendation ITU-T G.826 (2002), End-to-end error performance parameters and objectives for international, constant bit-rate digital paths and connections.
- [ITU-T G.870] Recommendation ITU-T G.870/Y.1352 (2016), Terms and definitions for optical transport networks.
- [ITU-T G.872] Recommendation ITU-T G.872 (20192024), Architecture of optical transport networks.
- [ITU-T G.873.1] Recommendation ITU-T G.873.1 (2017), Optical transport network: Linear protection.
- [ITU-T G.875] Recommendation ITU-T G.875 (2020), Optical transport network: Protocolneutral management information model for the network element view.
- [ITU-T G.959.1] Recommendation ITU-T G.959.1 (20182024), Optical transport network physical layer interfaces.
- [ITU-T G.7710] Recommendation ITU-T G.7710/Y.1701 (2020), Common equipment management function requirements.
- [ITU-T G.7712] Recommendation ITU-T G.7712/Y.1703 (2019), *Architecture and specification of data communication network*.
- [ITU-T G.8121] Recommendation ITU-T G.8121/Y.1381 (2018), Characteristics of MPLS-TP equipment functional blocks.
- [ITU-T M.20] Recommendation ITU-T M.20 (1992), Maintenance philosophy for telecommunication networks.
- [ITU-T M.60] Recommendation ITU-T M.60 (1993), Maintenance terminology and definitions.
- [ITU-T M.2120] Recommendation ITU-T M.2120 (2002), *International multi-operator paths,* sections and transmission systems fault detection and localization procedures.
- [ITU-T M.3010] Recommendation ITU-T M.3010 (2000), Principles for a telecommunications management network.

- [ITU-T M.3100] Recommendation ITU-T M.3100 (2005), Generic network information model.
- [ITU-T X.700] Recommendation ITU-T X.700 (1992), Management framework for Open

Systems Interconnection (OSI) for CCITT applications.

 $[ITU\text{-}T~X.701] \qquad Recommendation~ITU\text{-}T~X.701~(1997)~|~ISO/IEC~10040:1998,~\textit{Information}$

technology - Open Systems Interconnection - Systems management overview.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

- **3.1.1** agent [ITU-T X.701]
- **3.1.2** alarm reporting control (ARC) [ITU-T M.3100]
- **3.1.3** data communication channel (DCC) [ITU-T G.784]
- 3.1.4 data communication network (DCN) [ITU-T G.7712]
- **3.1.5** embedded communication channel (ECC) [ITU-T G.7712]
- **3.1.6 inhibited** [ITU-T M.3100]
- **3.1.7** intra-domain interface (IaDI) [ITU-T G.870]
- **3.1.8** inter-domain interface (IrDI) [ITU-T G.870]
- **3.1.9** local craft terminal (LCT) [ITU-T G.7710]
- **3.1.10** managed entity (ME) [ITU-T M.3100]
- **3.1.11** managed object (MO) [ITU-T X.700]
- 3.1.12 managed object class [ITU-T X.701]
- 3.1.13 managed resource [ITU-T M.3100]
- 3.1.14 managed resource-specific/unit audible/visual indicator [ITU-T M.3100]
- **3.1.15** manager [ITU-T X.701]
- **3.1.16** management application function (MAF) [ITU-T G.7710]
- **3.1.17** management interface (MI) [ITU-T M.3100]
- 3.1.18 management point (MP) [ITU-T G.806]
- **3.1.19** media layer access point (M-AP) [ITU-T G.807]
- **3.1.20** message communication function (MCF) [ITU-T M.60]
- **3.1.21 network element (NE)** [ITU-T M.3010]
- 3.1.22 network element function (NEF) [ITU-T M.3010]
- **3.1.23** operations system (**OS**) [ITU-T M.3010]
- **3.1.24** persistence interval [ITU-T M.3100]
- **3.1.25** qualified problem [ITU-T M.3100]
- **3.1.26** timed interval [ITU-T M.3100]

3.2 Terms defined in this Recommendation

None.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

AcPT Accepted Payload Type

AcSTAT Accepted Status

AcTI Accepted Trace Identifier

AdminState Administrative State

AIS Alarm Indication Signal

ALM Alarm

AP Access Point

APR Automatic Power Reduction

APRCntrl Automatic Power Reduction Control

APS Automatic Protection Switching

ARC Alarm Reporting Control

AST Alarm Status

ASY Alarm Synchronization

AutoMS Automatic configuration of the Multiplex Structure

BDI-O Backward Defect Indicator Overhead

BDI-P Backward Defect Indicator Payload

BIAE Backward Incoming Alignment Error

BIP Bit Interleaved Parity

CBRx Constant Bit Rate signal of bit rate [range] x

CBRx-a Constant Bit Rate signal of bit rate [range] x -Asynchronous mapping
CBRx-b Constant Bit Rate signal of bit rate [range] x -Bit synchronous mapping

CCC Control Communication Channel
CCN Control Communication Network

CLNE Client Layer Network Entity
CM Configuration Management

COMMS Communications

COMMS OH Communications Overhead

CP Connection Point

CPL Current Problem List

CSACM Calendar Slot Availability Count Mismatch

CSF Client Signal Failure

CST Cipher SuiteType

CTP Connection Termination Point

CWDM Coarse Wavelength Division Multiplexing

DCC Data Communication Channel

DCN Data Communication Network

DS Defect Second

DS-O Defect Second Overhead
DS-P Defect Second Payload

DEG Degraded

DEG consecutive 1 s Monitoring intervals

DEGThr DEG 1 s EBC Threshold

DTDL Defect Type and Defect Location

DWDM Dense Wavelength Division Multiplexing

EBC Errored Block Count

ECC Embedded Communication Channel
EMF Equipment Management Function

EML Element Management Layer

ETH Ethernet

ETH-C Ethernet connection

ExDAPI Expected Destination Access Point Identifier

ExMSI Expected Multiplex Structure Identifier
ExSAPI Expected Source Access Point Identifier

ExtCMD External Command

F Far end

FCAPS Fault, Configuration, Accounting, Performance and Security

FEC Forward Error Correction

FECEn Forward Error Correction Enabled

FFS For Further Study
FlexESG FlexE Sub-Group

FlexO Flexible Optical transport network

FMM FlexO Map Mismatch

FlexE Map Mismatch

FOP-PM Failure of Protocol; Provisioning Mismatch

FOP-NR Failure of Protocol; No Response GCC General Communication Channel

GCCAccess General Communication Channel Access
GCCCont General Communication Channel Continue

GCM Galois/Counter Mode

GetAcTI Get Accepted trail Trace Identifier

GFC Generic Flow Control

GIDM Group Identification Mismatch

HAO Hitless Adjustment of ODUflex(GFP)

HEC Header Error Control

HO High Order HoTime Hold-off Time

IaDI Intra-Domain Interface

IAE Incoming Alignment Error

IrDI Inter-Domain Interface

LAN Local Area Network

LCK Locked

LCS Loss of Character Synchronization

LCT Local Craft Terminal

LFD Loss of Frame Delineation

LOA Loss of Alignment

LOF Loss of Frame

LOFLOM Loss of Frame and Loss of Multiframe

LOG Logging

LOL Loss Of Lane

LOM Loss Of Multiframe

LOOMFI Loss of OPU Multiframe Indication

LOS Loss Of Signal

LOS-O Loss Of Signal Overhead LOS-P Loss Of Signal Payload

LSS Loss of pseudo-random bit Sequence lock

LTC Loss of Tandem Connection

M-AI Media Layer Adapted Information

M-AP Media Layer Access Point

MAF Management Application Function

MCC Maintenance Communication Channel

MCF Message Communication Function

MCN Management Communication Network

MI Management Information

MIB Management Information Base

MO Managed Object
MP Management Point

MPI-R Main Path Interface-Reference point

MPI-S Main Path Interface-S interface

MS Multiplex Session

MSIM Multiplex Structure Identifier Mismatch

NE Network Element

NEA Network Element Alarm
NEF Network Element Function

NT Network Termination

OCh Optical Channel

OCI Open Connection Indication

ODTUjk Optical Data Tributary Unit j into k

ODU Optical Data Unit

ODUCn Optical Data Unit-Cn

ODUCnP Optical Data Unit-Cn, Path
ODUi Optical Data Unit of level i

ODU[i]j Optical Data Unit of level j and i (i is optional; i < j)

ODUj Optical Data Unit of level j

ODUk Optical Data Unit of level k, k=0, 1, 2, 2e, 3, 4, flex

ODUkP Optical Data Unit of level k, Path, k=0, 1, 2, 2e, 3, 4, flex

ODUkT Optical Data Unit of level k, Tandem connection sub-layer, k=0, 1, 2, 2e, 3, 4,

flex

ODUkT non-intrusive monitoring function, k=0, 1, 2, 2e, 3, 4, flex

ODUT Optical Data Unit, Tandem
OLNE OTN Layer Network Entity
O.MN OTN Management Network

OMS-O Optical Multiplex Section – Overhead

O.MSN OTN Management Subnetwork

O.NE OTN Network Element

OPS Operational State
OS Operations System

OSC Optical Supervisory Channel

OSI Open Systems Interconnection

OTM Optical Transport Module
OTN Optical Transport Network
OTS Optical Transmission Section

OTSi Optical Tributary Signal

OTSiG Optical Tributary Signal Group

OTUCn Optical Transport Unit-Cn
OTUk Optical Transport Unit-k
OTU Optical Transmission Unit

OTUk Optical Transmission Unit of level k, k=1, 2, 3, 4

OTUkV Optical Transmission Unit of level k, functional standardized, k=1, 2, 3, 4

PCS Physical Coding Sublayer

PLM Payload Mismatch

PM Performance Management

PMC Performance Monitoring Clock

PPP Point-to-Point Protocol

ProtType Protection Type

PRBS Pseudo-Random Bit Sequence

PRS Persistency

PT Payload Type

REP Reportable failure

RSn Regenerator Section of level n

RTC Real-Time Clock

RTR Reset Threshold Report

SDH Synchronous Digital Hierarchy

SEV Severity assignment

Sk Sink

So Source

SSF-O Server Signal Fail Overhead

SSF-P Server Signal Fail Payload

STA Station Alarm

STAT Status

STM-N Synchronous Transfer Mode-N
TAN TMN Alarm event Notification
TCM Tandem Connection Monitoring

TCMCP TCM Control Point

TCP Termination Connection Point

TEP TMN Event Pre-processing alarm

TIM Trail trace Identifier Mismatch

TIMActDis Trace Identifier Mismatch consequent Actions Disabled

TIMDetMo Trace Identifier Mismatch Detection Mode
TMN Telecommunications Management Network

TP Termination Point

TPusgActive TP usage measurement Active

TR Threshold Report
TSE Test Sequence Error

TT Trail Termination

TTI Trail Trace Identifier

TTP Trail Termination Point

TxMSI Transmitted Multiplex Structure Identifier

TxTI Transmitted trail Trace Identifier

UNA Unit Alarm

VPI Virtual Path Identifier

WDM Wavelength Division Multiplexing

5 Conventions

An O.MN is a subset of a telecommunications management network (TMN) that is responsible for managing those parts of an NE that contain OLNEs. An O.MN may be subdivided into a set of O.MSNs.

An O.MSN consists of a set of separate OTN ECCs and associated intra-site data communication links that have been interconnected to form a DCN within any given OTN transport topology.

An O.NE is that part of an NE that contains entities from one or more OTN layer networks. An O.NE may therefore be a standalone physical entity or a subset of an NE. It supports at least network element functions (NEFs) and may also support an OS function or a mediation function. It contains managed objects (MOs), an MCF and an MAF. The functions of an O.NE may be contained within an NE that also supports other layer networks. These layer network entities are considered to be managed separately from OTN entities. As such, they are not part of the O.MSN or O.MN.

6 Optical transport network management architecture

See clause 6 of [ITU-T G.7710] for the generic architecture for managing transport equipment.

The transport layer networks of the OTN are described in [ITU-T G.872], [ITU-T G.798] and [ITU-T G.709]. The management of the OTN layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client.

6.1 OTN management network architecture

6.1.1 Relationship between telecommunications management network, O.MN and O.MSN

The inter-relationship between a management network, its subnetworks and a TMN as generically described in clause 6.1.1 of [ITU-T G.7710] is applicable to OTN.

This Recommendation specifies the O.MN and O.MSNs.

6.1.2 Access to the O.MSN

See clause 6.1.2 of [ITU-T G.7710] for the generic requirements.

6.1.3 O.MSN requirements

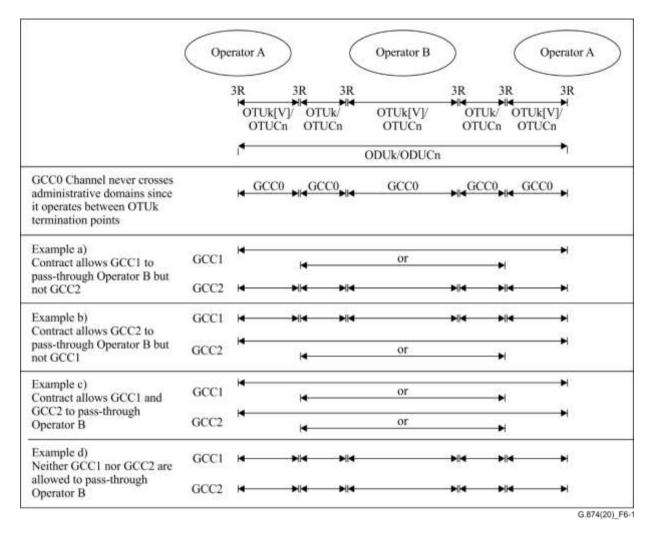
See clause 6.1.3 of [ITU-T G.7710] for the generic requirements.

The main ECC for OTN is considered to be the communications overhead (COMMS OH) in the optical supervisory channel (OSC), see clause 15.1.7 of [ITU-T G.709]. The COMMS OH is carried in the OSC in OTN optical networking interfaces, type I. This COMMS-based ECC is equivalent to the SDH synchronous transfer mode-N (STM-N) multiplex session-data communication channel (MS-DCC). A general communication channel (GCC) is typically used as an ECC when a remote

customer-premises equipment (CPE) or a remote subnetwork has to be reached, and on OTN point-to-point interfaces of type I and type II only.

In addition, the O.MSN allows for the support of the following:

- 1) The OTN allows the ECC options of using the general management COMMS OH or the GCCs.
 - All O.NEs, which are not connected through an Ethernet local area network (LAN) with a co-located NE, are required to terminate the COMMS OH.
 - All O.NEs, which are not connected through an Ethernet LAN with a co-located NE, are required to terminate the optical transmission unit (OTU) GCC0 to connect to O.NEs [e.g., OTN network terminations (NTs)] that are equipped with OTN point-to-point interfaces of type I and type II only. The OTU types are defined in Table 7-1 of [ITU-T G.709].
- 2) OTN inter-site communications. The inter-site or inter-office communications link between O.NEs will normally be formed from the COMMS OH.
- 3) OTN intra-site communications. Within a particular site, O.NEs may communicate via an intra-site COMMS OH or via an LAN.


The use of GCCs and COMMS OH for management communications is described in clauses 6.1.3.1 and 6.1.3.2.

6.1.3.1 General communication channels

The OTN supports three GCCs:

- 1) GCC0;
- 2) GCC1;
- 3) GCC2.

Figure 6-1 illustrates a network scenario consisting of two operators. Operator B provides an optical data unit ODU (either as ODUk or ODUCn, and the value of k and Cn are defined in Table 7-2 and in Table L.8 of [ITU-T G.709]), service to operator A (i.e., operator B transports the ODU frame that begins and ends in operator A's domain). According to [ITU-T G.709], only a subset of the ODU overhead (e.g., path monitoring) is guaranteed to be passed through operator B's network. Other overheads, such as tandem connection monitoring (TCM) overhead, as well as GCC1 and GCC2 are subject to the service level agreement made between operator A and operator B.

Figure 6-1 – GCC contract scenarios OTUk[V]: OTUk or OTUkV

GCC0 is a channel between OTUk/OTUCn termination points (TPs) and therefore does not cross administrative domains, since an IrDI interface supports 3R points on either end of the interface. Example a) illustrates a scenario where the contract between operators A and B only allows GCC1 to pass through operator B's network. In such a scenario, operator B may use GCC2 within its own network. Example b) illustrates a scenario where the contract between operators A and B only allows GCC2 to pass through operator B's network. In this scenario, operator B may use GCC1 within its own network. Example c) illustrates a scenario where the contract between operators A and B allows both GCC1 and GCC2 to pass through operator B's network. In this scenario, operator B cannot use GCC1 or GCC2. Example d) illustrates a scenario where the contract between operators A and B does not allow GCC1 or GCC2 to pass through operator B's network. In this scenario, operator B can use both GCC1 and GCC2 within its own network.

6.1.3.1.1 General communication channel physical characteristics

The OTU (either as OTUk, or OTUCn) GCC0 shall operate as a single message channel between OTU TPs using the OTU overhead bytes located in row 1, columns 11 and 12 of the OTU overhead. The bit rate of GCC0 depends on the type of the OTU, as defined in Table 7-10 and in Table L.8 of [ITU-T G.709]). According to [ITU-T G.709], vendor specific interfaces could use the first GCC0 only.

The GCC1 shall operate as a single message channel between any two NEs with access to the ODU frame structure using the optical data unit (ODU) overhead bytes located in row 4, columns 1 and 2

of the ODU overhead. The bit rate of the GCC1 depends on the rate of the ODU, as defined in Table 7-10 and in Table L.8 of [ITU-T G.709]).

The GCC2 shall operate as a single message channel between any two NEs with access to the ODUk frame structure using the ODU overhead bytes located in row 4, columns 3 and 4 of the ODUk overhead. The bit rate of the GCC1 depends on the rate of the ODU, as defined in Table 7-10 and in Table L.8 of [ITU-T G.709])

For ODUCn, the GCC1 #1 to #n plus GCC2 #1 to #n overhead may be combined to provide one communication channel as illustrated in Table 7-10 of [ITU-T G.709] with an approximated bandwidth of $n \times 27.525$ Mbit/s.

NOTE – The GCC0/1/2 rates specified in this clause are nominal rates with ± 20 ppm rate tolerance.

6.1.3.1.2 GCC data link layer protocol

When used for management applications, the data link point-to-point protocol (PPP) provides connections between nodes of the underlying transmission network. Mapping of an OTN data-link layer frame into the GCC is specified in [ITU-T G.7712].

6.1.3.1.3 Support of the management communication network and signalling communication network separation

In some network deployment scenarios, it might be desirable to have separation of the management communication network (MCN) and signalling communication network (SCN), such as separately enabling or disabling the MCN and SCN traffic on each DCN interface. This might include scenarios where the SCN spans multiple network domains. The following mechanisms can be used to meet such an application requirement.

GCC1 and GCC2 can be used simultaneously and separately via two parallel independent instances of the ODUkP/COMMS_A function or via two parallel independent instances of the ODUCnP/COMMS_A function. For these two instances, one must be configured as GCC1 (MI_GCCAccess = "GCC1") while the other instance must be configured as GCC2 (MI_GCCAccess = "GCC2"). The two COMMS_CPs can then be assigned to the MCN and SCN, respectively. See Figure 6-2.

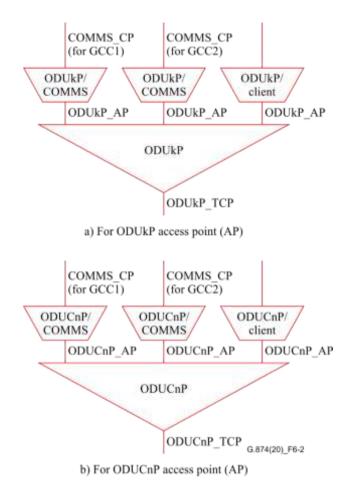


Figure 6-2 – COMMS (GCC1 and GCC2) access at ODUkP access point (Updated from Figure 14-104 and Figure 14-106 of [ITU-T G.798]) ODUkP: optical data unit of level k, Path (k=0, 1, 2, 2e, 3, 4, flex)

GCC1 and GCC2 can be used simultaneously and separately via two cascaded independent instances of the ODUk/COMMS_AC atomic function or via two parallel independent instances of the ODUCnP/COMMS_AC function. For these two instances, one must be configured as GCC1 (MI_GCCAccess = "GCC1") while the other instance must be configured as GCC2 (MI_GCCAccess = "GCC2"). The two COMMS_CPs can then be assigned to the MCN and SCN, respectively. See Figure 6-3.

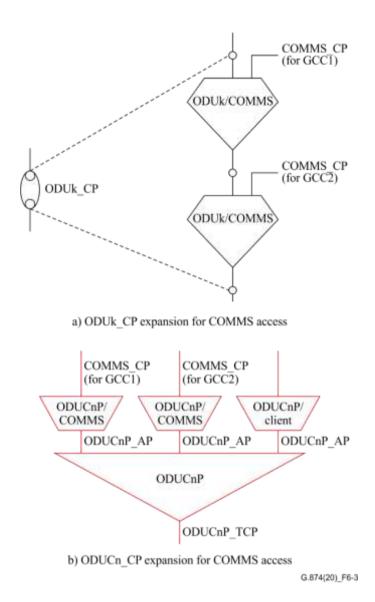


Figure 6-3 – ODUk_CP expansion for COMMS access for GCC1 and GCC2 (Updated version of Figure 14-108 of [ITU-T G.798])

- If there is limitation in the ODUk layer network deployment, such that GCC1 and GCC2 cannot be used separately and simultaneously, it is necessary to have at least two ODUk connections between the two NEs (if possible) such that the GCC of one high-order (HO) ODUk connection can be used as the maintenance communication channel (MCC) and the GCC of the other ODUk connection can be used as the Control Communication Channel (CCC).
- If there is limitation in the ODUCn layer network deployment, such that GCC1 and GCC2 cannot be used separately and simultaneously, it is necessary to have at least two other ODUCn connections between the two NEs (if possible) such that the GCC of one ODUCn connection can be used as the MCC and the GCC of the other ODUCn connection can be used as the CCC.
- If there is limitation in the ODUk/ODUCn layer network deployment, such that GCC1 and GCC2 cannot be used separately and simultaneously and it is also not possible to have two ODUk connections between the two NEs, mechanisms such as deep packet inspection would be needed if the MCC and the CCC share that single GCC. This would, however, mean that the MCC or CCC messages need to be analysed beyond open systems interconnection (OSI) layer 3.

6.1.3.2 General management communications overhead

The general management COMMS OH is specified in [ITU-T G.709].

6.1.3.2.1 COMMS OH physical characteristics

The COMMS OH is a logical element that provides general management communications between two optical NEs. As such, the COMMS OH supports the ECC of the OTN OSC.

The specific physical frame structure and coding for the COMMS OH lies outside the scope of [ITU-T G.709] and is therefore not standardized.

6.1.3.2.2 COMMS OH data link layer protocol

The adaptation of COMMS OH data link layer into the physical layer is FFS.

6.1.4 O.MSN data communications network

See clause 6.1.4 of [ITU-T G.7710] for the generic requirements.

6.1.5 Management of data communication network

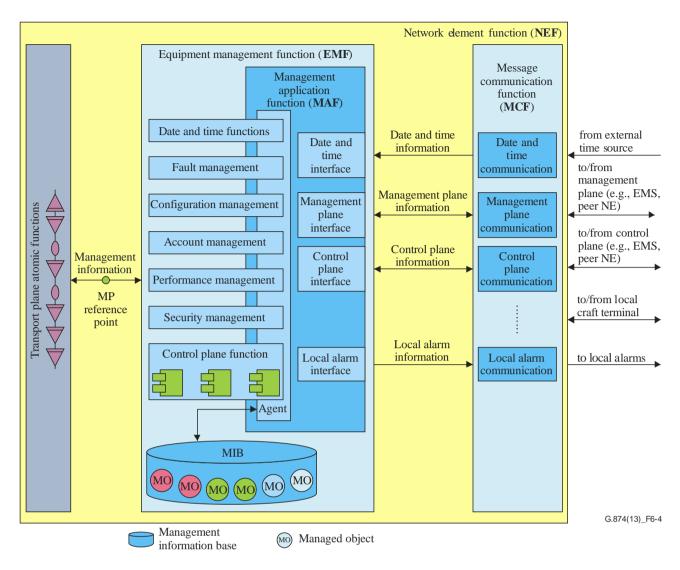
See clause 6.1.5 of [ITU-T G.7710] for the generic requirements.

6.1.6 Remote log-in

See clause 6.1.6 of [ITU-T G.7710] for the generic requirements.

6.1.7 Relationship between technology domains

See clause 6.1.7 of [ITU-T G.7710] for the generic requirements.


6.2 Optical transport network equipment management architecture

See clause 6.2 of [ITU-T G.7710] for a generic description of the equipment management architecture.

Protocol-neutral specifications of the OTN MAFs, in terms of MO classes, attributes and message specification are provided in [ITU-T G.875].

The OTN EMF interacts with the other atomic functions specified in [ITU-T G.798]. See [ITU-T G.806] and [ITU-T G.798] for more information on atomic functions and on MP reference points.

See Figure 6-4.

Figure 6-4 – Optical equipment management architecture (Figure 5 of [ITU-T G.7710])

6.3 Information flows over management points

See clause 6.3 of [ITU-T G.7710] for a generic description of information flows over MPs.

The information flow over the MP reference points is described in specific detail for each atomic function in [ITU-T G.798]. Note that these information flows and associated functions apply equally to both the client and supervisory channel due to the independent nature of these signals. This implies neither that the supervisory channel shall provide all the functions described, nor that [ITU-T G.798] will provide the details of which functions are available.

7 Fault management

See clause 7 of [ITU-T G.7710] for generic requirements for fault management. OTN-specific specifications, if needed, are explicitly described.

7.1 Fault management applications

See clause 7.1 of [ITU-T G.7710] for a description of basic fault management applications.

7.1.1 Supervision

See clause 7.1.1 of [ITU-T G.7710] for a generic description of supervision applications.

The supervision philosophy for OTN is also based on the concepts underlying the OTN functional model of [ITU-T G.872].

7.1.1.1 Transmission supervision

See clause 7.1.1.1 of [ITU-T G.7710] for a description of transmission supervision.

7.1.1.2 Quality of service supervision

See clause 7.1.1.2 of [ITU-T G.7710] for a description of quality of service supervision.

7.1.1.3 Processing supervision

See clause 7.1.1.3 of [ITU-T G.7710] for a description of processing supervision.

7.1.1.4 Hardware supervision

See clause 7.1.1.4 of [ITU-T G.7710] for a description of hardware supervision.

7.1.1.5 Environment supervision

See clause 7.1.1.5 of [ITU-T G.7710] for a description of environment supervision.

7.1.2 Fault cause validation

See clause 7.1.2 of [ITU-T G.7710] for a description of fault cause validation.

7.1.3 Alarm handling

7.1.3.1 Severity assignment

See clause 7.1.3.1 of [ITU-T G.7710] for a description of severity categories.

7.1.3.2 Alarm reporting control

See clause 7.1.3.2 of [ITU-T G.7710] for a description of alarm reporting control (ARC).

7.1.3.3 Reportable failures

See clause 7.1.3.3 of [ITU-T G.7710] for a description of reportable failures.

7.1.3.4 Alarm surveillance

See clause 7.1.3.4 of [ITU-T G.7710] for a description of alarm surveillance.

7.1.3.4.1 Local reporting

See clause 7.1.3.4.1 of [ITU-T G.7710] for a description of local reporting.

7.1.3.4.2 Telecommunications management network reporting

See clause 7.1.3.4.2 of [ITU-T G.7710] for a description of TMN reporting.

7.2 Fault management functions

See clause 7.2 of [ITU-T G.7710] for a description of fault management inside the EMF.

Figure 7-1 shows the functional model of fault management inside the OTN EMF.

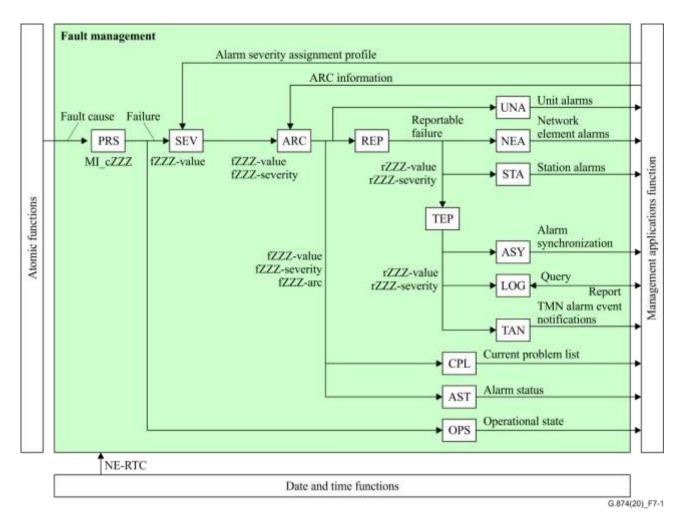


Figure 7-1 – Fault management within the optical transport network network element function (Figure 7 of [ITU-T G.7710])

7.2.1 Fault cause persistency function

See clause 7.2.1 of [ITU-T G.7710] for a description of the fault cause persistency (PRS) function.

For an O.NE that supports the atomic functions listed in Table 7-1, the EMF PRS process shall support the persistency check for the associated fault causes.

Atomic functions	Input (fault cause)	Output (failure)
OSM256.4/CBRx_A_So	cLOF	fLOF
OTS-O_TT_Sk	cTIM cBDI cBDI-O cBDI-P cLOS-P	fTIM fBDI fBDI-O fBDI-P fLOS-P
OMS-O_TT_Sk	cBDI cBDI-O cBDI-P cSSF cSSF-O cSSF-P	fBDI fBDI-O fBDI-P fSSF fSSF-O fSSF-P

cLOS-P

fLOS-P

Table 7-1 – Inputs and outputs for the fault cause persistency function

Table 7-1 – Inputs and outputs for the fault cause persistency function

Atomic functions	Input (fault cause)	Output (failure)
OMS-O/OTSiG OCh-O_A_Sk	cMSIM[1(n+m)]	fMSIM[1(n+m)]
OCh-O_TT_Sk	cOCI cSSF cSSF-P cSSF-O	fOCI fSSF fSSF-P fSSF-O
OTSiG-O_TT_Sk	cOCI cSSF cSSF-P cSSF-O cTIM cBDI cBDI-P cBDI-O	fOCI fSSF fSSF-P fSSF-O fTIM fBDI fBDI-P fBDI-O
OTSi/OTUk-RS_A_Sk For the value of k, see Table 16-3.2 of [ITU-T G.798]	cLOS-P c <u>LOL</u> cLOFLOM cLOF cLOM	fLOS-P fLOFLOM <u>fLOL</u> <u>fLOF</u> <u>fLOM</u>
OTSi/OTUkV_A_Sk	cLOS-P cLOF cLOM (if the optical transmission unit of level k, functional standardized (OTUkV; k=1, 2, 3, 4) has a multiframe)	fLOS-P fLOF fLOM
OTSi/OTUCn_A_Sk	cLOS-P cLOL cLOF cLOM	fLOS-P fLOL fLOF fLOM
M-AI/FlexO-1-SC_A_Sk	cLOS-P cLOL cLOM cCSTM cUnlockSec	fLOS-P fLOL fLOM fCSTM fUnlockSec
OTSi/OTUk_A_Sk See Table 16-1 in [ITU-T G.798] for the function types	cLOS-P cLOF cLOM	fLOS-P fLOF fLOM
OTSiG/OTUkV_A_Sk	cLOS-P cLOF cLOM (if OTUkV has a multiframe)	fLOS-P fLOF fLOM
OTSiG/OTUk_A_Sk See Table 16-6 of [ITU-T G.798] for the function types	cLOS-P cLOL cLOF cLOM	fLOS-P fLOL fLOF fLOM
OTSiG/OTUCn_A_Sk	cLOS-P	fLOS-P

Table 7-1 – Inputs and outputs for the fault cause persistency function

Atomic functions	Input (fault cause)	Output (failure)
	cLOL	fLOL
	cLOF	fLOF
	cLOM	fLOM
OTSi/OSC_A_Sk	cLOS-O	fLOS-O
	cTIM	fTIM
OTU_TT_Sk	cDEG	fDEG
010_11_bk	cBDI	fBDI
	cSSF	fSSF
	cTIM	fTIM
OTUkV_TT_Sk	cDEG cBDI	fDEG fBDI
	cSSF	fSSF
OTUkV/ODUk A Sk (if loss of		1551
alignment supervision is performed)	cLOA	fLOA
ODU_C	cFOP-PM	fFOP-PM
Note 2	cFOP-NR	fFOP-NR
11000 2	cOCI	fOCI
	cTIM	fTIM
	cDEG	fDEG
ODUP_TT_Sk	cBDI	fBDI
	cSSF	fSSF
	cLCK	fLCK
ODUkP/CBRx_A_Sk	cPLM	fPLM
ODORI / CBRA_/ I_DR	cCSF	fCSF
ODUP/NULL_A_Sk	cPLM	fPLM
ODUP/PRBS_A_Sk	cPLM	fPLM
	cLSS	fLSS
ODUkP/RSn_A_Sk	cPLM	fPLM
	cLOF	fLOF
ODUkP/CBRx-g_A_Sk For the value of k and x in	cPLM	fPLM
ODUkP/CBRx, see Table 14-18 of	cCSF	fCSF
[ITU-T G.798]	cLCS (Note1)	fLCS (Note1)
	cPLM	fPLM
ODUkP/ODU[i]j_A_Sk	cMSIM[1n+m)]	fMSIM[1n+m)]
	cLOFLOM[1(n+m)]	fLOFLOM[1(n+m)]
ODUkP/ODUj-21_A_Sk	cPLM	fPLM
For the value of k and j, see clause	cLOOMFI	fLOOMFI
14.3.10 of [ITU-T G.798]	cMSIM[p]	fMSIM[p]
	cLOFLOM[1n]	fLOFLOM[1n]
	cPLM	fPLM
ODUkP-h/ODUj-21_A_Sk	cLOOMFI	fLOOMFI
For the value of k and j, see	cMSIM[1n]	fMSIM[1n]
clause 14.3.13 of [ITU-T G.798]	cLOFLOM[1n]	fLOFLOM[1n]
ODIN DATENTAL A.	cRCOHM	fRCOHM
ODUkP/ETH_A_Sk	cPLM	fPLM

Table 7-1 – Inputs and outputs for the fault cause persistency function

Atomic functions	Input (fault cause)	Output (failure)
	cLFD	fLFD
	cUPM	fUPM
	cEXM	fEXM
	cCSF	fCSF
	cPLM	fPLM
ODUkflexP/ETH-imp_A_Sk	cCSF	fCSF
	cLCS	<u>fLCS</u>
	cPLM	fPLM
	cLFD	fLFD
ODUkP-h/ETH_A_Sk	cUPM	fUPM
	cEXM	fEXM
	cCSF	fCSF
	cPLM	fPLM
	cLFD	fLFD
ODU2P/ERS10G_A_Sk	cUPM	fUPM
	cEXM	fEXM
	cCSF	fCSF
	cPLM	fPLM
ODU2eP/FC-1200_A_Sk	cCSF	fCSF
	cLFD	fLFD
	cPLM	fPLM
	cLOOMFI	fLOOMFI
ODUCnP/ODUk_A_Sk	cMSIM[1m]	fMSIM[1m]
	cLOFLOM[1m]	fLOFLOM[1m]
	cPLM	fPLM
ODUflexP/FlexEC_A_Sk	cCSF	fCSF
	cLCS	fLCS
	cFMM	fFMM
	cGIDM	fGIDM
ODUflexP/FlexESG_A_So	cLOL	fLOL
	cCSUM	fCSUM
	cPLM	fPLM
	cCSF	fCSF
	cCSACM	fCSACM
ODUflexP/FlexESG_A_Sk	cLCS	fLCS
	cLOF	fLOF
	cLOM	fLOM
	cPLM	fPLM
ODUflexP/ETCy_A_Sk	cCSF	fCSF
See Table 14-47.1 of [ITU-T G.798]	cLCS	fLCS
for the value of y	cLRC	fLRC
	cOCI	fOCI
	cTIM	fTIM
ODUT_TT_Sk	cDEG	fDEG
	cBDI	fBDI

Table 7-1 – Inputs and outputs for the fault cause persistency function

Atomic functions	Input (fault cause)	Output (failure)
	cSSF	fSSF
	cLCK	fLCK
	cLTC	fLTC
	cOCI	fOCI
	cTIM	fTIM
	cDEG	fDEG
ODUTm_TT_Sk	cBDI	fBDI
	cSSF	fSSF
	cLCK cLTC	fLCK fLTC
FlexO_TT_Sk	cSSF	fSSF
riexO_11_3k	cRDI cBDI	fRDI fBDI
FlexO-x_TT_Sk	cSSF	fSSF
	cRDI cBDI	fRDI fBDI
FlexO-x_CTT_Sk	cSSF	fSSF
	cLOFLOM[1n]	fLOFLOM[1n]
TI O (OTTLIC A CI	cGIDM	fGIDM
FlexO-n/OTUCn_A_Sk	cFMM	fFMM
	cLOL	fLOL
	cGIDM	fGIDM
	cFMM	fFMM
	cPLM	fPLM
FlexO-n/OTUCni_A_Sk	cMSIM[1N]	fMSIM[1N]
	cLOFLOM[1N]	fLOFLOM[1N]
	cLOL[1N]	fLOL[1N]
ME_MI	cLOS-P[i]	fLOS-P[i]
	cLOS-P	fLOS-P
	cLOL	fLOL
	cLOF	fLOF
M-AI/FlexO-x-DSH-Z_A_Sk	cLOM	fLOM
	cCSTM (Note4)	fCSTM (Note 4)
	cUnlockSec (Note4)	fUnlockSec (Note 4)
	cLOS-P	fLOS-P
	cLOL	fLOL
M-AI/FlexO-x-DO-Z_A_Sk	cLOM	fLOM
	cCSTM (Note 5)	fCSTM (Note 5)
	cUnlockSec (Note 5)	fUnlockSec (Note 5)
	cLOS-P	fLOS-P
	cLOL	fLOL
OTG:C/EL O BG 4 G	cLOF	fLOF
OTSiG/FlexO-x-RS_A_Sk	cLOM	fLOM
	cCSTM (Note 6)	fCSTM (Note 6)
	cUnlockSec (Note 6)	fUnlockSec (Note 6)
OSx_TT_Sk, x=2G5, 10G, 40G	cLOS	fLOS

Table 7-1 – Inputs and outputs for the fault cause persistency function

Atomic functions	Input (fault cause)	Output (failure)
OSx/CBRx-b_A_Sk	cLFA	fLFA
OSx/CBRx-c_A_Sk	cLFA	fLFA

NOTE1 – Applicable only when (k=3, CBRx=ETC40GR) or (k=4, CBRx=ETC100GR).

 $NOTE 2\hbox{--} Based on \ Note \ 1\ in \ 14.1.1\ of \ [ITU-T\ G.798], the \ ODU_C\ function\ means \ ODUk\ connection\ function$

(ODUk_C), ODUCn is excluded from the ODU_C function.

NOTE3 - For OTSiG/FlexO-1-GCM-SC_A_Sk only.

NOTE4 - For OTSiG/FlexO-x-GCM-DSH-Z_A_Sk only.

NOTE5 - For OTSiG/FlexO-x-GCM-DO-Z_A_Sk only.

NOTE6 - For OTSiG/FlexO-x-GCM-RS_A_Sk only.

7.2.2 Severity assignment function

See clause 7.2.2 of [ITU-T G.7710] for a description of the severity assignment (SEV) function.

7.2.3 Alarm reporting control function

See clause 7.2.3 of [ITU-T G.7710] for a description of the severity alarm reporting control (ARC) function.

The alarms that can be controlled with this function are specified for each atomic function in [ITU-T G.798].

In Table 7-2, for each atomic function, a subset of the plausible failures (specified in Table 7-1) is selected, consisting of qualified problems. These qualified problems are recommended as they are deemed essential to the operability of the subject managed entity. Note that for each managed entity, one or more of the qualified problems could then be further selected by the management system to be included in the ARC list for controlling alarm reporting for the entity.

The default ARC state is also specified for each managed entity. If the ARC function is supported by the O.NE and an ARC state is not explicitly provisioned from the management system for the managed entity, then the default ARC specified in Table 7-2 should be in effect.

For an O.NE that supports the atomic functions listed in Table 7-2, the EMF ARC process shall support ARC for the associated fault causes.

 $Table \ 7-2-Alarm \ reporting \ control \ specifications \ for \ the \ optical \ transport \ network$

Atomic function	Qualified problems	Default ARC state value constraints
OSM256.4/CBRx_A_So	fLOF	Alarm (ALM)
OTS-O_TT_Sk	fTIM fBDI fBDI-O fBDI-P fLOS-P	ALM
OMS-O_TT_Sk	fBDI fBDI-O fBDI-P fSSF fSSF-O fSSF-P fLOS-P	ALM
OMS-O/OTSiG OCh-O_A_Sk	fMSIM[1(n+m)]	ALM
OCh-O_TT_Sk	fOCI fSSF fSSF-O fSSF-P	ALM
OTSiG-O_TT_Sk	fOCI fSSF fSSF-P fSSF-O fTIM fBDI fBDI-P fBDI-O	ALM
OTSi/OTUk_A_Sk See Table 16-1 of [ITU-T G.798] for the function types	fLOS-P fLOF fLOM	ALM
OTSi/OTUk-RS_A_Sk For the value of k, see Table 16-3.2 of [ITU-T G.798]	fLOS-P fLOFLOM <u>fLOL</u> <u>fLOF</u> <u>fLOM</u>	ALM
OTSiG/OTUk_A_Sk See Table 16-6 of [ITU-T G.798] for the function types	fLOS-P fLOL fLOF fLOM	ALM
OTSi/OTUkV_A_Sk	fLOS-P fLOF fLOM	ALM
OTSiG/OTUkV_A_Sk	fLOS-P fLOF fLOM	ALM
OTSi/OTUCn_A_Sk	fLOS-P	ALM

Table 7-2 – Alarm reporting control specifications for the optical transport network

Atomic function	Qualified problems	Default ARC state value constraints
	fLOL fLOF fLOM	
OTSiG/OTUCn_A_Sk	fLOS-P fLOL fLOF fLOM	ALM
M-AI/FlexO-1-SC_A_Sk	fLOS-P fLOL fLOM fCSTM (Note 3) fUnlockSec (Note 3)	ALM
OTSi/OSC_A_Sk	fLOS-O	ALM
OTU_TT_Sk	fTIM fDEG fBDI fSSF	ALM
OTUkV_TT_Sk	fTIM fDEG fBDI fSSF	ALM
OTUkV/ODU_A_Sk	fLOA	ALM
ODU_C Note 2	fFOP-PM fFOP-NR	ALM
ODUP_TT_Sk	fOCI fTIM fDEG fBDI fSSF fLCK	ALM
ODUkP/CBRx_A_Sk	fPLM fCSF	ALM
ODUP/NULL_A_Sk	fPLM	ALM
ODUP/PRBS_A_Sk	fPLM fLSS	ALM
ODUkP/RSn_A_Sk	fPLM fLOF	ALM
ODUkP/CBRx-g_A_Sk For the value of k and x in CBRx, see Table 14-18 of [ITU-T G.798]	fPLM fCSF fLCS (Note)	ALM
ODUkP/ODU[i]j_A_Sk	fPLM fMSIM[1(n+m)] fLOFLOM[1(n+m)]	ALM

Table 7-2 – Alarm reporting control specifications for the optical transport network

Atomic function	Qualified problems	Default ARC state value constraints
ODUkP/ODUj-21_A_Sk For the value of k and j, see clause 14.3.10 of [ITU-T G.798]	fPLM fLOOMFI fMSIM[1n] fLOFLOM[1n]	ALM
ODUkP-h/ODUj-21_A_Sk For the value of k and j, see clause 14.3.13 of [ITU-T G.798]	fPLM fLOOMFI fMSIM[1n] fLOFLOM[1n] fRCOHM	ALM
ODUkP/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	ALM
ODUflexkP/ETH-imp_A_Sk	<u>fPLM</u> <u>fCSF</u> <u>fLCS</u>	ALM
ODUkP-h/ETH_A_Sk(k=flex)	fPLM fLFD fUPM fEXM fCSF	ALM
ODU2P/ERS10G_A_Sk	fPLM fLFD fUPM fEXM fCSF	ALM
ODU2eP/FC-1200_A_Sk	fPLM fCSF fLFD	ALM
ODUCnP/ODUk_A_Sk	fPLM fLOOMFI fMSIM[1m] fLOFLOM[1m]	ALM
ODUflexP/FlexEC_A_Sk	fPLM fCSF fLCS	ALM

Table 7-2 – Alarm reporting control specifications for the optical transport network

Atomic function	Qualified problems	Default ARC state value constraints
ODUflexP/FlexESG_A_So	fFMM fGIDM fLOL fCSUM	ALM
ODUflexP/FlexESG_A_Sk	fPLM fCSF fCSACM fLCS fLOF fLOM	ALM
ODUflexP/ETCy_A_Sk See Table 14-47.1 of [ITU-T G.798] for the value of y	fPLM fCSF fLCS fLRC	ALM
ODUT_TT_Sk	fOCI fTIM fDEG fBDI fSSF fLCK fLTC	ALM
ODUTm_TT_Sk	fOCI fTIM fDEG fBDI fSSF fLCK fLTC	ALM
FlexO_TT_Sk	fSSF	ALM
FlexO-x_TT_Sk	fRDI fBDI fSSF	ALM
FlexO-x_CTT_Sk	fRDI fBDI fSSF	ALM
FlexO-n/OTUCn_A_Sk	fLOFLOM[1n] fGIDM fFMM fLOL	ALM
FlexO-n/OTUCni_A_Sk	fGIDM fFMM fPLM fMSIM[1N] fLOFLOM[1N] fLOL[1N]	ALM

Table 7-2 – Alarm reporting control specifications for the optical transport network

Atomic function	Qualified problems	Default ARC state value constraints
ME_MI	fLOS-P[i]	ALM
	cLOS-P	
	cLOL	
M-AI/FlexO-x-DO-Z_A_Sk	cLOM	ALM
	cCSTM (Note 5)	
	cUnlockSec (Note 5)	
	cLOS-P	ALM
	cLOL	
M AL/Elano - DCH 7 A Cl	cLOF	
M-AI/FlexO-x-DSH-Z_A_Sk	cLOM	
	cCSTM (Note 4)	
	cUnlockSec (Note 4)	
OTSiG/FlexO-x-RS_A_Sk	cLOS-P	ALM
	cLOL	
	cLOF	
	cLOM	
	cCSTM (Note 6)	
	cUnlockSec (Note 6)	
OSx_TT_Sk	fLOS	ALM
OSx/CBRx-b_A_Sk	fLFA	ALM
OSx/CBRx-c_A_Sk	fLFA	ALM

NOTE 1 – Applicable only when (k=3, CBRx=ETC40GR) or (k=4, CBRx=ETC100GR).

7.2.4 Reportable failure function

See clause 7.2.4 of [ITU-T G.7710] for a description of the reportable failure (REP) function.

7.2.5 Unit alarm function

See clause 7.2.5 of [ITU-T G.7710] for a description of the unit alarm (UNA) function.

7.2.6 Network element alarm function

See clause 7.2.6 of [ITU-T G.7710] for a description of the network element alarm (NEA) function.

7.2.7 Station alarm function

See clause 7.2.7 of [ITU-T G.7710] for a description of the station alarm (STA) function.

NOTE 2 – Based on Note 1 in clause 14.1.1 of [ITU-T G.798], the ODU_C function means ODUk connection function (ODUk C), ODUCn is excluded from the ODU C function.

NOTE 3 – For OTSiG/FlexO-1-GCM-SC_A_Sk only.

NOTE 4 – For OTSiG/FlexO-x-GCM-DSH-Z_A_Sk only.

NOTE 5 – For OTSiG/FlexO-x-GCM-DO-Z A Sk only.

NOTE 6 – For OTSiG/FlexO-x-GCM-RS_A_Sk only.

7.2.8 Telecommunications management network event pre-processing function

See clause 7.2.8 of [ITU-T G.7710] for a description of the TMN event pre-processing alarm (TEP) function.

7.2.9 Alarm synchronization function

See clause 7.2.9 of [ITU-T G.7710] for a description of the alarm synchronization (ASY) function.

7.2.10 Logging function

See clause 7.2.10 of [ITU-T G.7710] for a description of the logging (LOG) function.

7.2.11 Telecommunications management network alarm event notification function

See clause 7.2.11 of [ITU-T G.7710] for a description of the TMN alarm event notification (TAN) function.

7.2.12 Current problem list function

See clause 7.2.12 of [ITU-T G.7710] for a description of the current problem list (CPL) function.

7.2.13 Alarm status function

See clause 7.2.13 of [ITU-T G.7710] for a description of the alarm status (AST) function.

7.2.14 Operational state function – OPS

See clause 7.2.14 of [ITU-T G.7710] for a description of the operational state function.

Table 7-3 lists the failures that could influence the operational state of the related objects.

For an O.NE that supports the atomic functions listed in Table 7-3, the EMF OPS process shall support the operational state for the associated fault causes.

Table 7-3 – Input and output signals of the operational state function for the optical transport network

Atomic function	Failure input (fZZZ-value)	Operational state output (enabled/disabled) of the trail object class	
OSM256.4/CBRx_A_So	fLOF	Disabled	
OTS-O_TT_Sk	fTIM fBDI fBDI-P fBDI-O fLOS-P	Enabled Enabled Enabled Enabled Disabled	
OMS-O_TT_Sk	fBDI fBDI-O fBDI-P fSSF fSSF-O fSSF-P fLOS-P	Enabled Enabled Enabled Enabled Enabled Enabled Disabled	
OMS-O/OTSiG OCh-O_A_Sk	fMSIM[1(n+m)]	Enabled	
OCh-O_TT_Sk	fOCI fSSF fSSF-P fSSF-O	Enabled Enabled Enabled Enabled	

 $\begin{tabular}{ll} Table 7-3-Input and output signals of the operational state function \\ for the optical transport network \\ \end{tabular}$

Atomic function	Failure input (fZZZ-value)	Operational state output (enabled/disabled) of the trail object class
	fOCI	Enabled
	fSSF	Enabled
	fSSF-P	Enabled
OTSiG-O TT Sk	fSSF-O	Enabled
OTDIO O_TT_DK	fTIM	Enabled
	fBDI	Enabled
	fBDI-P fBDI-O	Enabled
		Enabled
OTSi/OTUk-RS_A_Sk	fLOS-P	
For the value of k, see Table 16-3.2 of	<u>fLOFLOM</u> <u>fLOL</u>	Disabled
[ITU-T G.798]	<u>fLOF</u>	Disabled
	<u>fLOM</u>	
	fLOS-P	Disabled
OTSi/OTUkV_A_Sk	fLOF	Disabled
	fLOM	Disabled
	fLOS-P	Disabled
OTSiG/OTUkV_A_Sk	fLOF	Disabled
	fLOM	Disabled
OTSi/OTUk_A_Sk	fLOS-P	Disabled
See Table 16-1 of [ITU-T G.798] for the	fLOF	Disabled
function types	fLOM	Disabled
OTSiG/OTUk_A_Sk	fLOS-P	Disabled
See Table 16-6 of [ITU-T G.798] for the	fLOL	Disabled
function types	fLOF	Disabled
Tunetion types	fLOM	Disabled
	fLOS-P	Disabled
	fLOL	Disabled
M-AI/FlexO-1-SC_A_Sk	fLOM	Disabled
	fCSTM (Note 3)	Disabled
	fUnlockSec (Note 3)	Disabled
OTSi/OSC_A_Sk	fLOS-O	Disabled
	fLOS-P	Disabled
OTC:/OTLICe A CI-	fLOL	Disabled
OTSi/OTUCn_A_Sk	fLOF	Disabled
	fLOM	Disabled
	fLOS-P	Disabled
OTSiG/OTUCn_A_Sk	fLOL	Disabled
	fLOF	Disabled
	fLOM	Disabled
	fLOS-P	Disabled
M-AI/FlexO-x-DSH-Z_A_Sk	fLOL	Disabled
	fLOF	Disabled

 $\begin{tabular}{ll} Table 7-3-Input and output signals of the operational state function \\ for the optical transport network \\ \end{tabular}$

Atomic function	Failure input (fZZZ-value)	Operational state output (enabled/disabled) of the trail object class
	fLOM	Disabled
	fCSTM (Note 4)	Disabled
	fUnlockSec (Note 4)	Disabled
		Disabled
	fLOS-P	Disabled
	fLOL	Disabled
M-AI/FlexO-x-DO-Z_A_Sk	fLOM	Disabled
	fCSTM (Note 5)	Disabled
	fUnlockSec (Note 5)	Disabled
	fLOS-P	Disabled
	fLOL	Disabled
OTG: C/EL O DG A GI	fLOF	Disabled
OTSiG/FlexO-x-RS_A_Sk	fLOM	Disabled
	fCSTM (Note 6)	Disabled
	fUnlockSec (Note 6)	Disabled
	fTIM	Enabled
OTU_TT_Sk	fDEG	Enabled
010_11_5k	fBDI	Enabled
	fSSF	Enabled
	fTIM	Enabled
OTUkV_TT_Sk	fDEG	Enabled
	fBDI fSSF	Enabled Enabled
OTHER WORLD A. C.		
OTUkV/ODUk_A_Sk	fLOA	Disabled
ODU_C	fFOP-PM	Disabled
Note 2	fFOP-NR	Disabled
	fOCI	Enabled
	fTIM fDEG	Enabled Enabled
ODUP_TT_Sk	fBDI	Enabled
	fSSF	Enabled
	fLCK	Enabled
ODVI D/GDD A GI	fPLM	Disabled
ODUkP/CBRx_A_Sk	fCSF	Enabled
ODUP/NULL_A_Sk	fPLM	Disabled
ODUD/DDDC A CI-	fPLM	Disabled
ODUP/PRBS_A_Sk	fLSS	Disabled
ODUkP/RSn_A_Sk	fPLM	Disabled
ODORI/RBII_A_SK	fLOF	Disabled
ODUkP/CBRx-g_A_Sk	fPLM	Disabled
For the values of k and x in CBRx, see	fCSF	Enabled
Table 14-18 of [ITU-T G.798]	fLCS (Note)	Disabled

 $\begin{tabular}{ll} Table 7-3-Input and output signals of the operational state function \\ for the optical transport network \\ \end{tabular}$

Atomic function	Failure input (fZZZ-value)	Operational state output (enabled/disabled) of the trail object class
ODUkP/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	Disabled Disabled Disabled Disabled Enabled
ODUflexkP/ETH-imp_A_Sk	<u>fPLM</u> <u>fCSF</u> <u>fLCS</u>	<u>Disabled</u> <u>Disabled</u> <u>Enabled</u>
ODUkP/ODU[i]j_A_Sk	fPLM fMSIM[1(n+m)] fLOFLOM[1(n+m)]	Disabled Disabled Disabled
ODUkP/ODUj-21_A_Sk For the value of k and j, see clause 14.3.10 of [ITU-T G.798]	fPLM fLOOMFI fMSIM[1n] fLOFLOM[1n]	FFS FFS FFS Disabled
ODUkP-h/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	Disabled Disabled Disabled Disabled Enabled
ODUkP-h/ODUj-21_A_Sk For the value of k and j, see clause 14.3.13 of [ITU-T G.798]	fPLM fLOOMFI fMSIM[1n] fLOFLOM[1n] fRCOHM	Disabled Disabled Disabled Disabled FFS
ODU2P/ERS10G_A_Sk	fPLM fLFD fUPM fEXM fCSF	Disabled Disabled Disabled Disabled Enabled
ODU2eP/FC-1200_A_Sk	fPLM fCSF fLFD	Disabled Enabled Disabled
ODUCnP/ODUk_A_Sk	cPLM cLOOMFI cMSIM[1m] cLOFLOM[1m]	Disabled Disabled Disabled Disabled
ODUflexP/FlexEC_A_Sk	fPLM fCSF fLCS	Disabled Enabled Disabled

 $\begin{tabular}{ll} Table 7-3-Input and output signals of the operational state function \\ for the optical transport network \\ \end{tabular}$

Atomic function	Failure input (fZZZ-value)	Operational state output (enabled/disabled) of the trail object class
ODUflexP/FlexESG_A_So	fFMM fGIDM fLOL	Disabled Disabled Disabled
	fCSUM	Disabled
ODUflexP/FlexESG_A_Sk	fPLM fCSF fCSACM fLCS	Disabled Enabled Disabled Disabled
	fLOF fLOM	Disabled Disabled
ODUflexP/ETCy_A_Sk See Table 14-47.1 of [ITU-T G.798] for the value of y	fPLM fCSF fLCS fLRC	Disabled Enabled Disabled Disabled
ODUT_TT_Sk	fOCI fTIM fDEG fBDI fSSF fLCK fLTC	Enabled Enabled Enabled Enabled Enabled FFS
ODUTm_TT_Sk	fOCI fTIM fDEG fBDI fSSF fLCK fLTC	Enabled Enabled Enabled Enabled Enabled Enabled FFS
FlexO_TT_Sk	fSSF	Enabled
FlexO-x_TT_Sk	fRDI fBDI fSSF	Enabled Enabled
FlexO-x_CTT_Sk	fRDI fBDI fSSF	Enabled Enabled
FlexO-n/OTUCni_A_Sk	fGIDM fFMM fPLM fMSIM[1N] fLOFLOM[1N] fLOFLI]	Disabled Disabled Disabled Disabled Disabled Disabled

Table 7-3 – Input and output signals of the operational state function for the optical transport network

Atomic function	Failure input (fZZZ-value)	Operational state output (enabled/disabled) of the trail object class
	fLOFLOM[1n]	Disabled
FlexO-n/OTUCn_A_Sk	fGIDM	Disabled
	fFMM	Disabled
	fLOL	Disabled
ME_MI	fLOS-P[i]	Disabled
OSx_TT_Sk	fLOS	Disabled
OSx/CBRx-b_A_Sk	fLFA	Disabled
OSx/CBRx-c_A_Sk	fLFA	Disabled

NOTE1 – Applicable only when (k=3, CBRx=ETC40GR) or (k=4, CBRx=ETC100GR).

NOTE2 – Based on Note 1 in clause 14.1.1 of [ITU-T G.798], the ODU_C function means ODUk connection function (ODUk_C), ODUCn is excluded from the ODU_C function.

NOTE3 - For OTSiG/FlexO-1-GCM-SC_A_Sk only.

NOTE4 - For OTSiG/FlexO-x-GCM-DSH-Z A Sk only.

NOTE5 – For OTSiG/FlexO-x-GCM-DO-Z_A_Sk only.

NOTE6 - For OTSiG/FlexO-x-GCM-RS_A_Sk only.

8 Configuration management

See clause 8 of [ITU-T G.7710] for the generic requirements for CM. OTN-specific specifications, if needed, are explicitly described.

8.1 Hardware

See clause 8.1 of [ITU-T G.7710] for a description of hardware management.

8.2 Software

See clause 8.2 of [ITU-T G.7710] for a description of software management.

8.3 Protection switching

See clause 8.3 of [ITU-T G.7710] for a description of protection switching management.

This function allows a user to provision and monitor the operation of protection processes deployed in an OTN connection (OTSiA|OCh_C and ODU_C) processes.

Management information (MI) signals concerning the protection processes are listed in Table 8-3 and communicated between the EMF and the protection process through the MP. According to these MI signals, the EMF generates a corresponding event notification and state report signals to the MAF.

For the protection processes supported by an O.NE, the O.NE EMF shall support the following management functions:

- provisioning the protection switching MI;
- retrieving the protection switching MI;
- notifying the changes of the protection switching MI;
- receiving the monitored protection switching MI.

8.4 Trail termination

See clause 8.4 of [ITU-T G.7710] for a description of TT management.

This function allows a user to provision and monitor the operation of the OTN TT process.

A trail trace identifier (TTI) at the optical transmission section (OTS) layer is useful to ensure proper fibre connection between NEs, in particular in meshed network topology with optical cross-connects that have several line input ports and several line output ports.

TTIs are also a means for the OS to deduce the network topology at the OTS layer first, and then at the OMS and optical channel (OCh) level. Specifically, the OS gets the list of source and sink (Sk) TTIs of all NEs and can automatically deduce the trails at the OTS layer by a comparison of the expected TTIs of the Sk objects and the TTIs sent from the source objects. Then, as there is only one instance of an OMS connection point (CP) and one instance of an OMS trail termination point (TTP), the OS can deduce automatically the topology at the OMS layer. A similar method may be applied at the OCh level from the list of existing ochCTP (which are named by omsTTP).

The TTIs received are used at the NE level to detect wrong fibre connection and generate an OTS trail trace identifier mismatch (TIM) alarm if the accepted value is different from the expected value.

The TTI at the OCh layer is necessary to check that the signal received by an Sk originates from the intended source. To be able to localize the cross-connection responsible for a TIM, the expected and the received OCh TTIs are needed at the Sk.

The received OCh TTI is used at the NE level to detect incorrect OCh connections and to generate an OCH TIM alarm.

The MI signals listed in Table 8-1 are communicated between the EMF and the OTN TT process across the MP within the O.NE.

For the TT functions supported by an O.NE, the O.NE EMF shall support the following management functions:

- provisioning the TT MI;
- retrieving the TT MI;
- notifying the changes of the TT MI;
- receiving the monitored TT MI.

Table 8-1 – Trail termination-related provisioning and reporting

MI signal	Value range	Default value		
OTS-C	OTS-O_TT_So Provisioning			
OTS-O_TT_So_MI_TxTI	According to [ITU-T G.709]	Not applicable		
OTS-C	D_TT_Sk Provisioning			
OTS-O_TT_Sk_MI_ExSAPI	According to [ITU-T G.709]	Not applicable		
OTS-O_TT_Sk_MI_ExDAPI	According to [ITU-T G.709]	Not applicable		
OTS-O_TT_Sk_MI_GetAcTI	According to [ITU-T G.798]	Not applicable		
OTS-O_TT_Sk_MI_TIMDetMo	According to [ITU-T G.798]	OFF		
OTS-O_TT_Sk_MI_TIMActDis	True, false	True		
OTS-O_TT_Sk_MI_1second	According to [ITU-T G.798]	Not applicable		
OTS-O_TT_Sk Reporting				
OTS-O_TT_Sk_MI_AcTI	According to [ITU-T G.709]	Not applicable		
OTSiG-O_TT_So Provisioning				

Table 8-1 – Trail termination-related provisioning and reporting

MI signal	Value range	Default value	
OTSiG-O_TT_So_MI_TxTI	According to [ITU-T G.709]	Not applicable	
OTSiG-O_TT_So_MI_TxTSI	According to [ITU-T G.709]	Not applicable	
OTSiG-	O_TT_Sk Provisioning		
OTSiG-O_TT_Sk_MI_ExSAPI	According to [ITU-T G.709]	Not applicable	
OTSiG-O_TT_Sk_MI_ExDAPI	According to [ITU-T G.709]	Not applicable	
OTSiG-O_TT_Sk_MI_GetAcTI	According to [ITU-T G.798]	Not applicable	
OTSiG-O_TT_Sk_MI_TIMDetMo	According to [ITU-T G.798]	OFF	
OTSiG-O_TT_Sk_MI_TIMActDis	True, false	True	
OTSiG-O_TT_Sk_MI_1second	According to [ITU-T G.798]	Not applicable	
OTSiC	G-O_TT_Sk Reporting		
OTSiG-O_TT_Sk_MI_AcTI	According to [ITU-T G.709]	Not applicable	
OMS-0	O_TT_Sk Provisioning		
OMS-O_TT_Sk_MI_1second	According to [ITU-T G.798]	Not applicable	
OCh_TT_	So Provisioning (Note 1)		
OCh_TT_So_MI_nominalCentralFrequency OrWavelength	See [ITU-T G.875] for the object OCh_TerminationPoint	_	
OCh_TT_So_MI_selectedApplicationIdenti fier	See [ITU-T G.875] for the object OCh_TerminationPoint	-	
OCh_T7	Γ_So Reporting (Note 1)		
OCh_TT_So_MI_nominalCentralFrequency OrWavelength	See [ITU-T G.875] for the object OCh_TerminationPoint	-	
OCh_TT_So_MI_supportableApplicationId entifierList	See [ITU-T G.875] for the object OCh_TerminationPoint	-	
OCh_TT_Sk Reporting (Note 1)			
OCh_TT_Sk_MI_supportableApplicationId entifierList	See [ITU-T G.875] for the object OCh_TerminationPoint	-	
OTU	_TT_So Provisioning		
OTU_TT_So_MI_TxTI	According to [ITU-T G.709]	Not applicable	
OTU_TT_So_MI_Mode	OPERATIONAL,TRANSPAR ENT	OPERATIONAL	
OTU	_TT_Sk Provisioning		
OTU_TT_Sk_MI_ExSAPI	According to [ITU-T G.709]	Not applicable	
OTU_TT_Sk_MI_ExDAPI	According to [ITU-T G.709]	Not applicable	
OTU_TT_Sk_MI_GetAcTI	According to [ITU-T G.798]	Not applicable	
OTU_TT_Sk_MI_TIMDetMo	According to [ITU-T G.798]	OFF	
OTU_TT_Sk_MI_TIMActDis	True, false	True	
OTU_TT_Sk_MI_DEGThr	In number of errored blocks or as a percentage between 0% and 100%; see Table 7-1 of [ITU-T G.806]	SES Threshold (Note 2)	

Table 8-1 – Trail termination-related provisioning and reporting

MI signal	Value range	Default value	
OTU_TT_Sk_MI_DEGM	2-10; see Table 7-1 of [ITU-T G.806]	(Note 2)	
OTU_TT_Sk_MI_1second	According to [ITU-T G.798]	Not applicable	
OTU_TT_Sk_MI_Mode	OPERATIONAL,TRANSPAR ENT	OPERATIONAL	
TO	U_TT_Sk Reporting		
OTU_TT_Sk_MI_AcTI	According to [ITU-T G.709]	Not applicable	
	XV_TT_So Provisioning	11	
OTUkV_TT_So_MI_TxTI	According to [ITU-T G.709]	Not applicable	
	V_TT_Sk Provisioning	**	
OTUkV_TT_Sk_MI_ExSAPI	According to [ITU-T G.709]	Not applicable	
OTUkV_TT_Sk_MI_ExDAPI	According to [ITU-T G.709]	Not applicable	
OTUkV_TT_Sk_MI_GetAcTI	According to [ITU-T G.798]	Not applicable	
OTUkV_TT_Sk_MI_TIMDetMo	According to [ITU-T G.798]	OFF	
OTUkV_TT_Sk_MI_TIMActDis	Enabled, disabled	Disabled	
OTUkV_TT_Sk_MI_DEGThr	In number of errored blocks or as a percentage between 0% and 100%; see Table 7-1 of [ITU-T G.806]	SES Threshold (Note 2)	
OTUkV_TT_Sk_MI_DEGM	2-10; see Table 7-1 of [ITU-T G.806]	(Note 2)	
OTUkV_TT_Sk_MI_1second	According to [ITU-T G.798]	Not applicable	
OTU	JkV_TT_Sk Reporting		
OTUkV_TT_Sk_MI_AcTI	According to [ITU-T G.709]	Not applicable	
ODU	P_TT_So Provisioning		
ODUP_TT_So_MI_TxTI	According to [ITU-T G.709]	Not applicable	
ODUP_TT_So_MI_DM_Source	true, false	false	
ODUP_TT_So_MI_DMValue	Not applicable. See [ITU-T G.798]	Not applicable	
ODU	P_TT_Sk Provisioning		
ODUP_TT_Sk_MI_ExSAPI	According to [ITU-T G.709]	Not applicable	
ODUP_TT_Sk_MI_ExDAPI	According to [ITU-T G.709]	Not applicable	
ODUP_TT_Sk_MI_GetAcTI	According to [ITU-T G.798]	Not applicable	
ODUP_TT_Sk_MI_TIMDetMo	According to [ITU-T G.798]	OFF	
ODUP_TT_Sk_MI_TIMActDis	Enabled, disabled	Disabled	
ODUP_TT_Sk_MI_DEGThr	In number of errored blocks or as a percentage between 0% and 100%; see Table 7-1 of [ITU-T G.806]	SES Threshold (Note 2)	
ODUP_TT_Sk_MI_DEGM	2-10; see Table 7-1 of [ITU-T G.806]	(Note 2)	

Table 8-1 – Trail termination-related provisioning and reporting

MI signal	Value range	Default value	
ODUP_TT_Sk_MI_1second	According to [ITU-T G.798]	Not applicable	
ODUP_TT_Sk_MI_DM_Source	true, false	false	
ODUP_TT_Sk_MI_DMValue	Not applicable. See [ITU-T G.798]	Not applicable.	
ODU	JP_TT_Sk Reporting		
ODUP_TT_Sk_MI_AcTI	According to [ITU-T G.709]	Not applicable	
ODUT	Γ_TT_So Provisioning		
ODUT_TT_So_MI_TxTI	According to [ITU-T G.709]	Not applicable	
ODUT_TT_So_MI_DM_Source	true, false	false	
ODUT_TT_So_MI_DMValue	Not applicable. See [ITU-T G.798]	Not applicable.	
ODUT	Γ_TT_Sk Provisioning		
ODUT_TT_Sk_MI_ExSAPI	According to [ITU-T G.709]	Not applicable	
ODUT_TT_Sk_MI_ExDAPI	According to [ITU-T G.709]	Not applicable	
ODUT_TT_Sk_MI_GetAcTI	According to [ITU-T G.798]	Not applicable	
ODUT_TT_Sk_MI_TIMDectMo	According to [ITU-T G.798]	FFS	
ODUT_TT_Sk_MI_TIMActDis	Enabled, disabled	Disabled	
ODUT_TT_Sk_MI_DEGThr	In number of errored blocks or as a percentage between 0% and 100%; See Table 7-1 of [ITU-T G.806]	SES Threshold (Note 2)	
ODUT_TT_Sk_MI_DEGM	2-10; see Table 7-1 of [ITU-T G.806]	(Note 2)	
ODUT_TT_Sk_MI_1second	According to [ITU-T G.798]	Not applicable	
ODUT_TT_Sk_MI_DM_Source	true, false	true	
ODUT_TT_Sk_MI_DMValue	Not applicable. See [ITU-T G.798]	Not applicable.	
ODUT_TT_Sk_MI_LTCAct_Enable	true, false	false	
ODU	JT_TT_Sk Reporting		
ODUT_TT_Sk_MI_AcTI	According to [ITU-T G.709]	Not applicable	
ODUT	m_TT_Sk Provisioning		
ODUTm_TT_Sk_MI_Level	16	Not applicable	
ODUTm_TT_Sk_MI_ExSAPI	According to [ITU-T G.709]	Not applicable	
ODUTm_TT_Sk_MI_ExDAPI	According to [ITU-T G.709]	Not applicable	
ODUTm_TT_Sk_MI_GetAcTI	According to [ITU-T G.798]	Not applicable	
ODUTm_TT_Sk_MI_TIMDectMo	According to [ITU-T G.798]	FFS	
ODUTm_TT_Sk_MI_TIMActDis	Enabled, disabled	Disabled	
ODUTm_TT_Sk_MI_DEGThr	In number of errored blocks or as a percentage between 0% and 100%; see Table 7-1 of [ITU-T G.806]	SES Threshold (Note 2)	

Table 8-1 - Trail termination-related provisioning and reporting

MI signal	Value range	Default value
ODUTm_TT_Sk_MI_DEGM	2-10; see Table 7-1 of [ITU-T G.806]	(Note 2)
ODUTm_TT_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
ODUTm_TT_Sk Reporting		
ODUTm_TT_Sk_MI_AcTI	According to [ITU-T G.709]	Not applicable
OSx_TT_So Provisioning		
OSx_TT_So_MI_APRCntrl (Notes 3 and 4)	Enable, disable	Enable

NOTE 1 – These MIs are specified in [ITU-T G.798].

NOTE 2 – Equipment designed prior to the 2017 edition of this Recommendation may use a default MI_DEGTHR value of 30% and of MI_DEGM of 10.

NOTE 3 – If automatic power reduction (APR) is required.

NOTE 4 – The automatic power reduction control (APRCntrl) commands depend on the specific APR process.

For the management of the connectivity at the OTS layer, the following TTI attributes are recommended:

- 1) otsTTIsent attribute in every otsTTPsource (get replace);
- 2) otsTTIexpected attribute in every otsTTPsink (get replace);
- 3) otsTTIreceived attribute in every otsTTPsink (get replace).

For the management of the connectivity at the OCH layer, the following TTI attributes are recommended:

- 1) ochTTIsent attribute in every ochTTPsource (get replace);
- 2) ochTTlexpected attribute in every ochTTPsink and ochCTPsink (get replace);
- 3) ochTTIreceived attribute in every ochTTPsink and ochCTPsink (get only).

8.5 Adaptation

See clause 8.5 of [ITU-T G.7710] for a description of adaptation management.

An access point (AP) that has multiple adaptation functions connected to it, thereby allowing different clients to be transported via the server signal, requires a mechanism for the selection of the active client.

The adaptation function allows a user to provision and monitor the operation of the OTN adaptation processes.

Both OMS/OCh_A and OCh/Application_A will report on request from the OTN EMF the value of the received and accepted payload type (PT) indication signal via the MI_AcPT.

The MI signals listed in Table 8-2 are communicated between the EMF and the adaptation processes across the MP within the OTN NE.

NOTE - ODUkP/ETH_A and ODU2P/ETHPP-OS_A are specified in [ITU-T G.798].

For the adaptation functions supported by an O.NE, the O.NE EMF shall support the following management functions:

- provisioning the adaptation MI;
- retrieving the adaptation MI;
- notifying the changes of the adaptation MI.

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value		
OMS-O/OTSiG OCh-O_A_So Provisionin	OMS-O/OTSiG OCh-O_A_So Provisioning			
OMS-O/OTSiG OCh-O_A_So_MI_TxMSI	The value range is implementation specific. See clause 8.7.2.3 of [ITU-T G.798].	Not applicable		
OMS-O/OTSiG OCh-O_A_Sk Provisionin	g			
OMS-O/OTSiG OCh-O_A_Sk_MI_ExMSI[1(n+m)] for the n OTSiG-O_CPs and m OCh-O_CPs	The value range is implementation specific. See clause 8.7.2.3 of [ITU-T G.798].	Not applicable		
OMS-O/OTSiG OCh-O_A_Sk Reporting				
OMS-O/OTSiG OCh-O_A_Sk_MI_AcMSI[1(n+m)] for the n OTSiG-O_CPs and m OCh-O_CPs	The value range is implementation specific. See clause 8.7.2.3 of [ITU-T G.798].	Not applicable		
OSC/COMMS_A_So Provisioning				
None				
OSC/COMMS_A_Sk Provisioning				
None				
OSM256.4/CBRx_So Provisioning				
None				
OTSi/OTUkV_A_So Provisioning				
None				
OTSi/OTUkV_A_Sk Provisioning	T	T		
OTSi /OTUkV_A_Sk_MI_1second (NOTE 9)	According to [ITU-T G.798]	Not applicable		
OTSi/OTUk_A_So Provisioning				
None				
OTSi/OTUk_A_Sk Provisioning See Table 16-1 of [ITU-T G.798] for the function types				
OTSi/OTUk_A_Sk_MI_FECEn	True, false	True		
OTSi/OTUk_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable		

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
OTSi/OTUk_A_Sk_Reporting	•	
None		
OTSi/OTUk-RS_A_Sk Provisioning		
OTSi/OTUk-RS_A_Sk_MI_FECEn	True, false	True
OTSi/OTUk-RS_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
OTSi/OTUk-RS_A_Sk_Reporting		
None		
OTSiG/OTUk_A_So Provisioning		
See Table 16-6 of [ITU-T G.798] for the functi	on types	
None		
OTSiG/OTUk_A_So_Reporting		
None		
OTSiG/OTUk_A_Sk Provisioning See Table 16-6 of [ITU-T G.798] for the functi	on types	
OTSiG/OTUk_A_Sk_MI_FECEn (Note 10)	True, false	True
OTSiG/OTUk_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
OTSiG/OTUkV_A_So Provisioning		
None		
OTSiG/OTUkV_A_Sk Provisioning See Table 16-6 of [ITU-T G.798] for the functi	on types	
OTSiG/OTUkV_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
OTSiG/OTUkV_A_Sk Reporting		
None		
M-AI/FlexO-1-SC_A_So Provisioning		
None		
M-AI/FlexO-1-SC_A_So_Reporting		
None		
M-AI/FlexO-1-SC_A_Sk Provisioning		
M-AI/FlexO-1-SC_A_Sk_MI_SquelchEn	True, false	True
M-AI/FlexO-1-SC_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
M-AI/FlexO-1-SC_A_Sk_Reporting		
W-Al/TicaO-1-3C_A_Sk_keporting		
M-AI/FlexO-1-SC_A_Sk_MI_AcCST	According to [ITU-T G.798]	Not applicable
	[ITU-T G.798]	

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
M-AI/FlexO-x-DSH-Z_A_Sk_MI_1 second	According to [ITU-T G.798]	Not applicable
M-AI/FlexO-x-DSH-Z_A_Sk_Reporting	ıg	
M-AI/FlexO-x-DSH-Z_A_Sk_MI_AcCST	According to [ITU-T G.798]	Not applicable
M-AI/FlexO-x-DO-Z_A_Sk Provisioning	ng	
M-AI/FlexO-x-DO-Z_A_Sk_SquelchEn	True, false	True
M-AI/FlexO-x-DO-Z_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
M-AI/FlexO-x-DO-Z_A_Sk Reporting		
M-AI/FlexO-x-DO-Z_A_Sk_MI_AcCST	According to [ITU-T G.798]	Not applicable
OTSiG/FlexO-x-RS_A_Sk Provisionin	g	
OTSiG/FlexO-x-RS_A_Sk_MI_SquelchEn	True, false	True
OTSiG/FlexO-x-RS_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
OTSiG/FlexO-x-RS_A_Sk Reporting		
OTSiG/FlexO-x-RS_A_Sk_MI_AcCST	According to [ITU-T G.798]	Not applicable
OTSiG/OTUCn_A_So Provisioning		
OTSiA/OTUCn_A_So_MI_Active	True, false	False
OTSiG/OTUCn_A_Sk Provisioning	1	
OTSiG/OTUCn_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
OTSi/OSC_A_So Provisioning		
None		
OTSi/OSC_A_Sk Provisioning		T
OTSi/OSC_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
OTU/ODU_A_So_Provisioning		1
OTU/ODU_A_So_MI_AdminState (Note 11)	LOCKED, Not LOCKED	Not LOCKED
OTU/ODU_A_So_MI_APS_EN	true, false	True
OTU/ODU_A_So_MI_APS_LVL	06, 0 for path and 16 for TCM	_
OTU/ODU_A_So_MI_Mode	OPERATIONA L, TRANSPARE NT	OPERATIO NAL
OTU/ODU_A_Sk_Provisioning		

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
OTU/ODU_A_Sk_MI_AdminState (Note 11)	LOCKED, Not LOCKED	Not LOCKED
OTU/ODU_A_Sk_MI_APS_EN	true, false	True
OTU/ODU_A_Sk_MI_APS_LVL	06, 0 for path and 16 for TCM	-
OTU/ODU_A_Sk_MI_Mode	OPERATIONAL , TRANSPARE NT	OPERATIO NAL
OTUkV/ODUk_A_So_Provisioning		
OTUkV/ODUk_A_So_MI_AdminState (Note 11)	LOCKED, Not LOCKED	Not LOCKED
OTUkV/ODkU_A_So_MI_APS_EN	true, false	True
OTUkV/ODUk_A_So_MI_APS_LVL	06, 0 for path and 16 for TCM	_
OTUkV/ODUk_A_Sk_Provisioning	1	l
OTUkV/ODUk_A_Sk_MI_AdminState (Note 11)	LOCKED, Not LOCKED	Not LOCKED
OTUkV/ODUk_A_Sk_MI_APS_EN	true, false	True
OTUkV/ODU_A_Sk_MI_APS_LVL	06, 0 for path and 16 for TCM	_
OTU/COMMS_A_So_Provisioning		l .
None		
OTU/COMMS_A_Sk_Provisioning		
None		
OTUkV/COMMS_A_So_Provisioning	7	
None		
OTUkV/COMMS_A_Sk_Provisioning		
None ODULP/CRPv a A So Provisioning		
ODUkP/CBRx-a_A_So_Provisioning None		
ODUkP/CBRx-b_A_So_Provisioning		
None		
ODUkP/CBRx_A_Sk_Provisioning		
ODUkP/CBRx_A_Sk_MI_CSF_Enable	True, False	False
ODUkP/CBRx_A_Sk Reporting	'	
ODUkP/CBRx_A_Sk_MI_AcPT, (Note 1)	According to [ITU-T G.798]	Not applicable

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
ODUkP/CBRx-g_A_So Provisioning		
None		
ODUkP/CBRx-g_A_Sk Provisioning		
None		
ODUkP/CBRx-g_A_Sk Reporting	1	
ODUkP/CBRx_A_Sk_MI_AcPT (For the values of k and x in CBRx, see Table 15-8 of [ITU-T G.709])	0 to 255	Not applicable
ODUP/NULL_A_So Provisioning		
ODUP/NULL_A_So_MI_Nominal_Bitrate_and_Tolerance	According to [ITU-T G.798]	Not applicable
ODUP/NULL_A_Sk_Provisioning		
None		
ODUP/NULL_A_Sk Reporting		
ODUP/NULL_A_Sk_MI_AcPT, k=0, 1, 2, 2e, 3, 4, flex	According to [ITU-T G.798]	Not applicable
ODUP/PRBS_A_So Provisioning		•
ODUP/PRBS_A_So_MI_Nominal_Bitrate_and_Tolerance	According to [ITU-T G.798]	Not applicable
ODUP/PRBS_A_Sk Provisioning		
ODUP/PRBS_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
ODUP/PRBS_A_Sk Reporting		
ODUP/PRBS_A_Sk_MI_AcPT, k=0, 1, 2, 2e, 3, 4, flex	According to [ITU-T G.798]	Not applicable
ODUkP/RSn_A_So Provisioning		
See clause 14.3.6 of [ITU-T G.798]		
None		
ODUkP/RSn_A_Sk Provisioning See clause 14.3.6 of [ITU-T G.798]		
None		
ODUkP/RSn_A_Sk Reporting See clause 14.3.6 of [ITU-T G.798]		
ODUkP/RSn_A_Sk_MI_AcPT	According to [ITU-T G.709]	Not applicable
ODUkP/ODU[i]j_A_So Provisioning		
ODUkP/ODU[i]j_A_So_MI_AdminState[1(n+m)] (Note 11)	LOCKED, Not LOCKED	Not LOCKED
ODUkP/ODU[i]j_A_So_MI_APS_EN[1(n+m)]	true, false	True
ODUkP/ODU[i]j_A_So_MI_APS_LVL[1(n+m)]	06, 0 for path and 16 for TCM	_

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
ODU3P/ODU12_A_So Provisioni	ing	•
ODU3P/ODU12_A_So_MI_TxMSI	According to Table 14-30 of [ITU-T G.798]	Not applicable
ODUkP/ODU[i]j_A_Sk Provision	ing	
ODUkP/ODU[i]j_A_Sk_MI_AdminState[1(n+m)] (Note 11)	LOCKED, Not LOCKED	Not LOCKED
ODUkP/ODU[i]j_A_Sk_MI_APS_EN[1(n+m)] when doing m x ODUi_CP respectively.	True, false	True
ODUkP/ODU[i]j_A_Sk_MI_APS_LVL[1(n+m)]	06, 0 for path and 16 for TCM	_
ODU3P/ODU12_A_Sk Provisioni	ing	
ODU3P/ODU12_A_Sk_MI_ExMSI[1(n+m)]	According to Table 14-32 of [ITU-T G.798]	Not applicable
ODUkP/ODU[i]j_A_Sk Reportin	ng	
ODUkP/ODU[i]j_A_Sk_MI_AcPT	According to [ITU-T G.709]	Not applicable
ODUkP/ODU[i]j_A_Sk_MI_AcMSI[1(n+m)]	According to [ITU-T G.709]	Not applicable
ODUkP/ODUj-21_A_So Provision	ning	
(For the value of k and j, see clause 14.3.10 of	[ITU-T G.798])	
ODUkP/ODUj-21_A_So_MI_TxMSI	According to [ITU-T G.798]	Not applicable
ODUkP/ODUj-21_A_So_MI_AUTOpayloadtype	According to [ITU-T G.798]	Not applicable
ODUkP/ODUj-21_A_So_MI_ODUType_Rate[1n]	According to clause 19.6 of [ITU-T G.709]	Not applicable
ODUkP/ODUj-21_A_So_MI_AdminState[1n] (Note 11)	LOCKED, Not LOCKED	Not LOCKED
ODUkP/ODUj-21_A_So_MI_APS_EN[1n]	true, false	True
ODUkP/ODUj-21_A_So_MI_APS_LVL[1n]	06, 0 for path and 16 for TCM	_
ODUkP/ODUj-21_A_So Reporting		
(For the value of k and j, see clause 14.3.10 of		1
ODUkP/ODUj-21_A_So_MI_TrPT	According to [ITU-T G.709]	Not applicable
ODUkP/ODUj-21_A_Sk Provision	~	
(For the value of k and j, see clause 14.3.10 of	[ITU-T G.798])	

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value	
ODUkP/ODUj-21_A_Sk_MI_ExMSI[1n]	According to [ITU-T G.798]	Not applicable	
ODUkP/ODUj-21_A_Sk_MI_AdminState[1n] (Note 11)	LOCKED, Not LOCKED	Not LOCKED	
ODUkP/ODUj-21_A_Sk_MI_Nominal_Bitrate_and_Tolerance[1n]	According to [ITU-T G.798]	Not applicable	
ODUkP/ODUj-21_A_Sk_MI_ODUType[1n]	According to clause 19.6 of [ITU-T G.709]	Not applicable	
ODUkP/ODUj-21_A_Sk_MI_APS_EN[1n]	true, false	True	
ODUkP/ODUj-21_A_Sk_MI_APS_LVL[1n]	06, 0 for path and 16 for TCM	_	
ODUkP/ODUj-21_A_Sk Reporting (For the value of k and j, see clause 14.3.10 of [ITU]	-T G.798])		
ODUkP/ODUj-21_A_Sk_MI_AcPT	According to [ITU-T G.709]	Not applicable	
ODUkP/ODUj-21_A_Sk_MI_AcMSI[1n]	According to [ITU-T G.709]	Not applicable	
ODU2P/ERS10G_A_So Provisioning			
ODU2P/ERS10G_A_So_MI_CSFEnable	True, False	True	
ODU2P/ERS10G_A_So Reporting			
None			
ODU2P/ERS10G_A_Sk Provisioning	т.	1	
ODU2P/ERS10G_A_Sk_MI_CSF_Reported	True, False	False	
ODU2P/ERS10G_A_Sk Reporting	T	1	
ODU2P/ERS10G_A_Sk_MI_AcPT	0 to 255 (See Table 15-8 of [ITU-T G.709])	Not applicable	
ODU2P/ERS10G_A_Sk_MI_AcEXI	0 to 255 (See Table 6-2 of [ITU-T G.7041])	Not applicable	
ODU2P/ERS10G_A_Sk_MI_AcUPI	0 to 255 (See Table 6-3 of [ITU-T G.7041])	Not applicable	
ODUkP/ETH_A_So Provisioning,			
ODUkP/ETH_A_So_MI_CSFEnable	True, False	True	
ODUkP/ETH_A_So_MI_CSFrdifdiEnable (Note 2)	True, False	True	
ODUkP/ETH_A_So Reporting			

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
None		
ODUkP/ETH_A_Sk Provisioning,	-	
ODUkP/ETH_A_Sk_MI_CSF_Reported	True, False	False
ODUkP/ETH_A_Sk_MI_CSFrdifdiEnable (Note 2)	True, False	True
ODUkP/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
ODUkP/ETH_A_Sk Reporting		
ODUkP/ETH_A_Sk_MI_MI_AcPT	0 to 255 (See Table 15-8 of [ITU-T G.709])	Not applicable
ODUkP/ETH_A_Sk_MI_MI_AcEXI	0 to255 (See Table 6-2 of [ITU-T G.7041])	Not applicable
ODUkP/ETH_A_Sk_MI_MI_AcUPI	0 to 255 (See Table 6-3 of [ITU-T G.7041])	Not applicable
ODUkflexP/ETH-imp_A_So Provisioning	T 2	
ODUkflexP/ETH-imp A So MI [IEEE 802.3]	See [IEEE 802.3]	Not applicable
ODUflexkP/ETH-imp_A_So Reporting		
ODUflexkP/ETH-imp_A_So_MI_[IEEE 802.3]	<u>See [IEEE</u> 802.3]	Not applicable
ODUkflexP/ETH-imp_A_Sk Provisioning	5.2	
ODUflexkP/ETH-imp_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	Not applicable
ODUkflexP/ETH-imp_A_Sk Reporting		
ODUflexkP/ETH-imp_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	Not applicable
ODUkflexP/ETH-imp A Sk MI MI AcPT	0 to 255 (See Table 15-8 of [ITU-T G.709])	Not applicable
ODUkP-h/ETH_A_So Provisioning		
ODUkP-h/ETH_A_So_MI_CSFEnable	True, False	True
ODUkP-h/ETH_A_So_MI_CSFrdifdiEnable (Note 2)	True, False	True
ODUkP-h/ETH_A_So_MI_INCREASE	True, False	False
ODUkP-h/ETH_A_So_MI_DECREASE	True, False	False

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
ODUkP-h/ETH_A_So_MI_TSNUM	According to [ITU-T G.7044]	Not applicable
ODUkP-h/ETH_A_So_MI_ODUflexRate	FlexCBR, FlexGFP	Not applicable
ODUkP-h/ETH_A_So Reporting		
ODUkP-h/ETH-m_A_So_MI_ADJSTATE	According to [ITU-T G.7044]	Not applicable
ODUkP-h/ETH_A_Sk Provisioning		1
ODUkP-h /ETH_A_Sk_MI_CSF_Reported	True, False	False
ODUkP-h/ETH_A_Sk_MI_CSFrdifdiEnable (Note 2)	True, False	True
ODUkP-h /ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
ODUkP-h/ETH_A_Sk_MI_INCREASE	True, False	False
ODUkP-h/ETH_A_Sk_MI_DECREASE	True, False	False
ODUkP-h/ETH_A_Sk Reporting		1
ODUkP-h/ETH_A_Sk_MI_AcPT	0 to 255 (See Table 15-8 of [ITU-T G.709])	Not applicable
ODUkP-h/ETH_A_Sk_MI_AcEXI	0 to 255 (See Table 6-2 of [ITU-T G.7041])	Not applicable
ODUkP-h/ETH_A_Sk_MI_AcUPI	0 to 255 (See Table 6-3 of [ITU-T G.7041])	Not applicable
ODUkP-h/ODUj-21_A_So Provisionin	~	
(For the value of k and j, see clause 14.3.13 of [IT		l
ODUkP-h/ODUj-21_A_So_MI_TxMSI	According to [ITU-T G.798]	Not applicable
ODUkP-h/ODUj-21_A_So_MI_AUTOpayloadtype mapping.	According to [ITU-T G.798]	Not applicable
ODUkP-h/ODUj-21_A_So_MI_ODUType_Rate[1n]	According to clause 19.6 of [ITU-T G.709]	Not applicable
ODUkP-h/ODUj-21_A_So_MI_AdminState[1n] (Note 11)	According to [ITU-T G.798]	Not applicable
ODUkP-h/ODUj-21_A_So_MI_APS_EN[1n]	true, false	true
ODUkP-h/ODUj-21_A_So_MI_APS_LVL[1n]	06,	_

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
	0 for path and 16 for TCM	
ODUkP-h/ODUj-21_A_So_MI_INCREASE	True, false	False
ODUkP-h/ODUj-21_A_So_MI_DECREASE	True, false	False
ODUkP-h/ODUj-21_A_So_MI_TSMAP	According to [ITU-T G.7044]	Not applicable
ODUkP-h/ODUj-21_A_So_MI_TPID	According to [ITU-T G.7044]	Not applicable
ODUkP-h/ODUj-21_A_So Reporting (For the value of k and j, see clause 14.3.13 of [ITU-	-T G.798])	
ODUkP-h/ODUj-21_A_So_MI_TRPT	According to [ITU-T G.7044]	Not applicable
ODUkP-h/ODUj-21_A_So_MI_ADJSTATE	According to [ITU-T G.7044]	Not applicable
ODUkP-h/ODUj-21_A_Sk Provisioning (For the value of k and j, see clause 14.3.13 of [ITU-	-T G.798])	
ODU3P-h /ODUj21_A_Sk_MI_ExMSI[1n]	According to [ITU-T G.798]	Not applicable
ODUkP-h /ODUj-21_A_Sk_MI_AdminState[1n] (Note 11)	According to [ITU-T G.798]	Not applicable
ODUkP-h /ODUj-21_A_Sk_MI_Nominal_Bitrate_and_Tolerance[1n]	According to [ITU-T G.709]	Not applicable
ODUkP-h/ODUj-21_A_Sk_MI_APS_EN[1n]	true, false	true
ODUkP-h/ODUj-21_A_Sk_MI_APS_LVL[1n]	06, 0 for path and 16 for TCM	_
ODUkP-h/ODUj-21_A_Sk_MI_ODUType[1n]	According to clause 19.6 of [ITU-T G.709]	Not applicable
ODUkP-h/ODUj-21_A_Sk_MI_INCREASE	True, false	False
ODUkP-h/ODUj-21_A_Sk_MI_DECREASE	True, false	False
ODUkP-h/ODUj-21_A_Sk_MI_TSMAP	According to [ITU-T G.7044]	Not applicable
ODUkP-h/ODUj-21_A_Sk_MI_TPID	According to [ITU-T G.7044]	Not applicable
ODUkP-h/ODUj-21_A_Sk Reporting (For the value of k and j, see clause 14.3.13 of [ITU-	-T G.798])	
ODUkP-h/ODUj-21_A_Sk_MI_AcPT	According to [ITU-T G.709]	Not applicable
ODUkP-h/ODUj-21_A_Sk_MI_AcMSI[1n].	According to [ITU-T G.709]	Not applicable
ODU2eP/FC-1200_A_So Provisioning		

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
None		
ODU2eP/FC-1200_A_Sk Provisioning		
None		
ODU2eP/FC-1200_A_Sk Reporting		
ODU2eP/FC-1200_A_Sk_MI_AcPT	0 to 255 (See Table 15-8 of [ITU-T G.709])	Not applicable
ODUCnP/ODUk_A_So Provisioning		
ODUCnP/ODUk_A_So_MI_TxMSI	According to [ITU-T G.798]	Not applicable
ODUCnP/ODUk_A_So_MI_Nominal_Bitrate_and_Tolerance[1m]	According to [ITU-T G.709]	Not applicable
ODUCnP/ODUk_A_So_MI_AdminState[1m] (Note 11)	LOCKED, Not LOCKED	Not LOCKED
ODUCnP/ODUk _A_So_MI_APS_EN[1m]	true, false	true
ODUCnP/ODUk_A_SoMI_APS_LVL[1m]	06, 0 for path and 16 for TCM	_
ODUCnP/ODUk_A_Sk Provisioning		
ODUCnP/ODUk_A_Sk_MI_ExMSI	According to [ITU-T G.798]	Not applicable
ODUCnP/ODUk_A_Sk_MI_Nominal_Bitrate_and_Tolerance[1m]	According to [ITU-T G.709]	Not applicable
ODUCnP/ODUk_A_Sk_MI_AdminState[1m] (Note 11)	LOCKED, Not LOCKED	Not LOCKED
ODUCnP/ODUk _A_Sk_MI_APS_EN[1m]	true, false	true
ODUCnP/ODUk_A_SkMI_APS_LVL[1m]	06, 0 for path and 16 for TCM	_
ODUCnP/ODUk_A_Sk Reporting	<u>, </u>	
ODUCnP/ODUk_A_Sk_MI_AcPT	According to [ITU-T G.709]	Not applicable
ODUCnP/ODUk_A_Sk_MI_AcMSI	According to [ITU-T G.709]	Not applicable
ODUflexP/FlexEC_A_So Provisioning		
None		
ODUflexP/FlexEC_A_Sk Provisioning		
None		
ODUflexP/FlexEC_A_Sk Reporting	T	T
ODUflexP/FlexEC_A_Sk_MI_AcPT	According to [ITU-T G.709]	Not applicable

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value	
ODUflexP/FlexESG_A_So Provisioning			
ODUflexP/FlexESG_A_So_MI_ExGID	According to [ITU-T G.798].	Not applicable	
ODUflexP/FlexESG_A_So_MI_ExFMAP	According to [ITU-T G.798].	Not applicable	
ODUflexP/FlexESG_A_So_MI_CS_n[1p]	According to [ITU-T G.798].	Not applicable	
ODUflexP/FlexESG_A_So Reporting			
ODUflexP/FlexESG_A_So_MI_AcCC[1p]	According to [ITU-T G.798]	Not applicable	
ODUflexP/FlexESG_A_So_MI_AcCCA[1p]	According to [ITU-T G.798]	Not applicable	
ODUflexP/FlexESG_A_So_MI_AcCCB[1p]	According to [ITU-T G.798]	Not applicable	
ODUflexP/FlexESG_A_So_MI_AcGID[1p]	According to [ITU-T G.798].	Not applicable	
ODUflexP/FlexESG_A_So_MI_AcFMAP[1p]	According to [ITU-T G.798].	Not applicable	
ODUflexP/FlexESG_A_So_MI_AcIID[1p]	According to [ITU-T G.798].	Not applicable	
ODUflexP/FlexESG_A_Sk Provisioning			
ODUflexP/FlexESG_A_Sk_MI_CS_n[1p]	According to [ITU-T G.798]	Not applicable	
ODUflexP/FlexESG_A_Sk Reporting			
ODUflexP/FlexESG_A_Sk_MI_AcPT	According to [ITU-T G.798]	Not applicable	
ODUflexP/ETCy_A_So Provisioning			
None			
ODUflexP/ETCy_A_So Reporting			
None			
ODUflexP/ETCy_A_Sk Provisioning (See Table 14-47.1 of [ITU-T G.798] for the value	ue of y)		
ODUflexP/ETCy_A_Sk_MI_CSF_Enable	True, False	False	
ODUflexP/ETCy_A_Sk Reporting (See Table 14-47.1 of [ITU-T G.798] for the value	ue of y)		
ODUflexP/ETCy_A_Sk_MI_AcPT	According to [ITU-T G.709]	Not applicable	
ODUP/COMMS_A_So Provisioning			
ODUP/COMMS_A_So_MI_GCCAccess, k=0, 1, 2, 2e, 3, 4, flex	GCC1, GCC2, GCC1+GCC2	Not applicable	
ODUP/COMMS_A_Sk Provisioning			

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
ODUP/COMMS_A_Sk_MI_GCCAccess, k=0, 1, 2, 2e, 3, 4, flex	GCC1, GCC2, GCC1+GCC2	Not applicable
ODU/COMMS_AC_So Provisioning	•	
ODU/COMMS_AC_So_MI_GCCAccess, k=0, 1, 2, 2e, 3, 4, flex	GCC1, GCC2, GCC1+GCC2	Not applicable
ODU/COMMS_AC_Sk Provisioning		
ODU/COMMS_AC_Sk_MI_GCCAccess, k=0, 1, 2, 2e, 3, 4, flex	GCC1, GCC2, GCC1+GCC2	Not applicable
ODU/COMMS_AC_Sk_MI_GCCCont, k=0, 1, 2, 2e, 3, 4, flex	True, false	True
ODUT/ODU_A_So Provisioning		
ODUT/ODU_A_So_MI_AdminState (Note 11), k=0, 1, 2, 2e, 3, 4, flex	LOCKED, Not LOCKED	Not LOCKED
ODUT/ODU_A_Sk Provisioning		
ODUT/ODU_A_Sk_MI_AdminState (Note 11), k=0, 1, 2, 2e, 3, 4, flex	LOCKED, Not LOCKED	Not LOCKED
FlexO-n/OTUCn_A_So Provisioning		
FlexO-n/OTUCn_A_So_MI_TxGID(Note 4)	Integer >=0 encoded in 20- bit. See clause 9.2.2 of [ITU-T G.709.1].	Not applicable
FlexO-n/OTUCn_A_So_MI_TxIID[1n] (Note 5 and Note 6)	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn_A_So_MI_TxFMAP (Note 5 and Note 8)	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn_A_So Reportting		
None		
FlexO-n/OTUCn_A_Sk Provisioning		
FlexO-n/OTUCn_A_Sk_MI_ExGID (Note 4)	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn_A_Sk_MI_ExFMAP (Note 7 and Note 8)	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn_A_Sk Reportting		
FlexO-n/OTUCn_A_Sk_MI_AcGID[1n]	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn_A_Sk_MI_AcFMAP[1n]	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn_A_Sk_MI_AcIID[1n]	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn _{i_} A_So Provisioning		

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
FlexO-n/OTUCn _i _A_So_MI_TxMSI[1n]	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn _i _A_So_MI_TxGID(Note 4)	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn _i _A_So_MI_TxIID[1n] (Note 5 and Note 6)	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn _i _A_So_MI_TxFMAP(Note 7 and Note 8)	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn _i _A_So_Reporting		
None defined in [ITU-T G.798]		
FlexO-n/OTUCn _i _A_Sk Provisioning		
FlexO-n/OTUCn _i _A_Sk_MI_ExGID	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn _i _A_Sk_MI_ExFMAP	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn _i _A_Sk_MI_ExMSI[1n]	According to [ITU-T G.798].	Not applicable
FlexO-n/OTUCn _{i_} A_Sk Reporting		
FlexO-n/OTUCn _i _A_Sk_MI_AcGID[1n]	See clause 9.2 of [ITU-T G.709.1].	Not applicable
FlexO-n/OTUCn _i _A_Sk_MI_AcFMAP[1n]	See clause 9.2 of [ITU-T G.709.1].	Not applicable
FlexO-n/OTUCn _i _A_Sk_MI_AcIID[1n]	See clause 9.2 of [ITU-T G.709.1].	Not applicable
FlexO-n/OTUCn _i _A_Sk_MI_AcPT[1n]	According to [ITU-T G.798]	Not applicable
FlexO-n/OTUCn _i _A_Sk_MI_AcMSI[1n]	According to [ITU-T G.798]	Not applicable
FlexO/FCC_A_So Provisioning		
None defined in [ITU-T G.798]		
FlexO/FCC_A_Sk Provisioning		
None defined in [ITU-T G.798]		
OSx/CBRx_A_So_Provisioning		
None defined in [ITU-T G.798]		
OSx/CBRx_A_Sk Provisioning		
None defined in [ITU-T G.798]		
OSx/CBRx-b_A_So_Provisioning		
None defined in [ITU-T G.798]		
OSx/CBRx-b_A_Sk Provisioning		

Table 8-2 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
OSx/CBRx-b_A_Sk_MI_FECEn	True, false	False
OSx/CBRx-b_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable
OSx/CBRx-c_A_Sk Provisioning		
OSx/CBRx-c_A_Sk_MI_1second	According to [ITU-T G.798]	Not applicable

NOTE 1 - x = 2G5, 10G, 10G3, 40G.

NOTE 2 – The EMF shall configure the same value for the MI_CSFrdifdiEnable signals of the paired source and Sk functions.

NOTE 3 – Void

NOTE 4 – The EMF shall configure the same value for the MI_TxGID and MI_ExGID signals of the paired FlexO-n/OTUCn_A_So and FlexO-n/OTUCn_A_Sk functions.

NOTE 5 – The EMF shall configure consistent values between the MI_TxIID[1..n] and MI_TxIMAP of the same FlexO-n/OTUCn_A_So function, as described in clause 9.2.2 of [ITU-T G.709.1].

NOTE 6 – The EMF shall configure the same values for the MI_TxIID[1..n] and MI_ExIID[1..n] signals of the paired FlexO-n/OTUCn A So and FlexO-n/OTUCn A Sk functions.

NOTE 7 – The EMF shall configure consistent values between the MI_ExIID[1..n] and MI_ExPhyMAP of the same FlexO-n/OTUCn A Sk function, as described in clause 9.2.2 of [ITU-T G.709.1].

NOTE 8 – The EMF shall configure the same values for the MI_TxFMAP and MI_ExFMAP signals of the paired FlexO-n/OTUCn_A_So and FlexO-n/OTUCn_A_Sk functions.

NOTE 9 – If the function performs FEC.

NOTE 10 – This MI does not exist for OTU4.

NOTE 11 – See clause 8.17 for Administrative state management.

8.6 Connection

See clause 8.6 of [ITU-T G.7710] for a description of connection management.

This function allows a user to provision the operation of an OTN connection process.

The MI signals listed in Table 8-3 are communicated from the EMF to the connection process through the MP.

For the connection functions supported by an O.NE, the O.NE EMF shall support the following management functions:

- provisioning the connection MI;
- retrieving the connection MI;
- notifying the changes of the connection MI.

Table 8-3 – Provisioning and reporting for connection functions

MI signal	Value range	Default value
OTSiA OCh_C Provisioning		
OTSiA OCh_C_MI_MatrixControl	Connect, disconnect	Not applicable
Per protection group:	Revertive, non-revertive	Revertive
OTSiA OCh_C_MI_OperType	512 min	FFS
OTSiA OCh_C_MI_WTR	010 s in steps of 100 ms	FFS
OTSiA OCh_C_MI_HoTime		

Table 8-3 – Provisioning and reporting for connection functions

MI signal	Value range	Default value	
OTSiA OCh_C_MI_ExtCMD	- (Command)	Not applicable	
OTSiA OCh_C_MI_TSF-ODis	True, false	False	
ODU_C Provisioning			
ODUk_C_MI_MatrixControl	Connect, disconnect	Not applicable	
Per protection group: ODUk_C_MI_ProtType ODUk_C_MI_OperType ODUk_C_MI_WTR ODUk_C_MI_HoTime ODUk_C_MI_ExtCMD ODUk_C_MI_APSChannel (Note) ODUk_C_MI_SDEnable NOTE – According to 14.1.1 in G.798, ODUCn is excluded from ODU_C.	According to clause 8.4 of [ITU-T G.873.1]. Revertive, non-revertive 512 min 010 s in steps of 100 ms – (Command) 07 (for Path, TCM16, Section) True, false	Revertive FFS FFS Not applicable Not applicable True	

Reconfigurable NEs provide connection capabilities at the OCh layer. Cross-connections can be configured between client add ports and line output ports or between line input ports and client drop ports or between line input ports and line output ports (straight through matrix connections).

NOTE 1 - A matrix connection between a client add port and a client drop port is not useful from a network provisioning point of view, as it does not carry a signal through the optical core network, but it can be useful for loop back test purposes.

The following management functions are identified.

1) Get connectivity capabilities

Because reconfigurable NEs may have static cross-connection restrictions, the OS should be aware of these restrictions.

This function gives an overview of the fabric's static capability to connect TPs. This is done by identifying one or more sets of TPs that can be interconnected.

Restrictions of connectivity may be caused by principal design of the switch matrix or by the fact that not all Sk TPs are fully reachable from all source TPs. One example for restricted connectivity capability is a missing frequency conversion function in an all-optical network.

This function should not take limited processing capacity, usage or current problems into account. These additional restrictions have to be considered dynamically by the OS.

2) Report connectivity changes of an optical cross-connect

The availability of frequency converters in a cross-connect may change. As a consequence, the connectivity sets (sets of TPs that can be connected by the fabric) may change. The NE has to send a report when the connectivity of the fabric changes.

NOTE 2 – After receiving a report about connectivity changes, the OS may again get all connectivity sets to update its connectivity topology.

3) Create a unidirectional point-to-point cross-connection

A unidirectional point-to-point cross-connection can be created between:

- a) one ochCTPsink and one ochCTPsource (straight through); in case of connection monitoring via och adapter;
- b) one ochCTPsink and one ochTTPsink (drop);

- c) one ochTTPsource and one ochCTPsource (add);
- d) one ochTTPsource and one ochTTPsink (for loop back test purposes).

A cross-connection object is created and a report on this creation has to be sent to the OS.

- 4) Remove a unidirectional point-to-point cross-connection
 - This action disconnects the ochXTPs connected together. The cross-connection object is deleted and a report on this deletion has to be sent to the OS.
- 5) Suspend/resume traffic on a point-to-point cross-connection
 - This function provides the possibility to suspend and resume traffic on a point-to-point cross-connection to put it out of service (suspend) or to put it in service (resume). This change has to be reported to the OS.
- 6) Get all point-to-point cross-connections

 This action returns the list of all point-to-point cross-connections created.

8.7 DEG thresholds

See clause 8.7 of [ITU-T G.7710] for a description of degraded (DEG) thresholds configuration.

8.8 ZZZ_Reported

ZZZ_Reported is not applicable to O.NEs.

8.9 Alarm severity

See clause 8.9 of [ITU-T G.7710] for a description of alarm severity configuration functions.

8.10 Alarm reporting control

See clause 8.10 of [ITU-T G.7710] for a description of ARC configuration functions.

8.11 Performance management thresholds

See clause 8.11 of [ITU-T G.7710] for a description of PM threshold configuration functions.

8.12 Tandem connection monitoring activations

See clause 8.12 of [ITU-T G.7710] for a description of TCM activation configuration functions.

8.13 Date and time

The date and time functions within the OTN EMF comprise the local real-time clock (RTC) function and the performance monitoring clock (PMC) function. The MCF within the OTN NEF shall be capable of setting the local RTC function.

The date and time values are incremented by a free-running local clock, or by an external timing source. The fault, configuration, accounting, performance and security (FCAPS) management functions need date and time information, e.g., to time stamp event reports. They obtain this information from the date and time function.

8.13.1 Date and time applications

Clause 8.13.1 of [ITU-T G.7710] identifies three date and time applications. These are:

- time-stamping;
- PMC signals;
- activity scheduling.

The OTN NEF functional requirements for these applications are specified in clauses 8.13.1.1 to 8.13.1.3.

8.13.1.1 Time stamping

See clause 8.13.1.1 of [ITU-T G.7710] for a description of the time-stamping application.

8.13.1.2 Performance monitoring clock signals

See clause 8.13.1.2 of [ITU-T G.7710] for a description of the PMC signals.

8.13.1.3 Activity scheduling

See clause 8.13.1.3 of [ITU-T G.7710] for a description of the activity scheduling.

8.13.2 Date and time functions

See clause 8.13.2 of [ITU-T G.7710] for a description of the date and time application.

8.13.2.1 Local real-time clock function

The local RTC function is specified in clause 8.13.2.1 of [ITU-T G.7710].

8.13.2.2 Local real-time clock alignment function with external time reference

The local RTC alignment function with an external time reference is specified in clause 8.13.2.2 of [ITU-T G.7710].

8.13.2.3 Performance monitoring clock function

The PMC function is specified in clause 8.13.2.3 of [ITU-T G.7710].

8.14 Control function

The ODUT_TCMC function (i.e., ODUkT_TCMC or ODUCnT_TCMC functions) are responsible for the activation or deactivation of a TCM trail. An ODUT _TCMC function is connected to the ODUT _TT and ODUT/ODUk_A functions at the TCM control points (TCMCPs) as shown in Figure 14-93 of [ITU-T G.798].

Currently only an ODUT _TCMC function for manual activation or deactivation via the management is defined. ODUT _TCMC functions for automatic activation are FFS.

The MI signals listed in Table 8-4 are communicated from the EMF to the connection process through the MP.

For the control functions supported by an O.NE, the O.NE EMF shall support the following management functions:

- provisioning the control MI;
- retrieving the control MI;
- notifying the changes of the control MI.

Table 8-4 – Provisioning and reporting for control functions

MI signal	Value range	Default value
ODUT_TCMCm Provisioning		
ODUT_TCMCm_MI_Level	16	Not applicable
ODUT_TCMCm_MI_ModeSo	OPERATIONAL, MONITOR, TRANSPARENT	FFS
ODUT_TCMCm_MI_ModeSk	OPERATIONAL, MONITOR, TRANSPARENT	FFS

Table 8-4 – Provisioning and reporting for control functions

MI signal	Value range	Default value	
ODUT_TCMCm_MI_TCM_Extension	Normal, Pass-through, Erase	Normal	
ODUT_TCMCm Reporting			
ODUT_TCMCm_MI_AcSTATSo[16]	According to clause 15.8.2.2.5 of [ITU-T G.709]	Not applicable	
ODUT_TCMCm_MI_AcSTATSk[16]	According to clause 15.8.2.2.5 of [ITU-T G.709]	Not applicable	

8.15 Application identifier management

This clause specifies management requirements for the OTN NE having OChs that support optical system standard applications (specified in ITU-T Recommendations, e.g., [ITU-T G.695], [ITU-T G.698.2] and [ITU-T G.959.1]) and proprietary applications.

[ITU-T G.695], [ITU-T G.698.2] and [ITU-T G.959.1] provide optical parameter values of physical layer interfaces for the coarse wavelength division multiplexing (CWDM) system, dense wavelength division multiplexing (DWDM) system, and non-wavelength division multiplexing (non-WDM) system, respectively. The applications specified in these Recommendations are determined using optical interface parameters at the main path interface S (or MPI-S) reference point, at the R (or MPI-R) reference point, as well as for the optical link between the reference points.

The specifications of the optical interface parameters in [ITU-T G.695], [ITU-T G.698.2] and [ITU-T G.959.1] are organized according to sets of application codes. The current edition of [ITU-T G.872] has generalized the application code to application identifier so that proprietary (i.e., non-standard) applications can be handled.

For the OTN NE having OChs that support standards or proprietary applications, there is a need to provision or report on the supported set of application identifiers and to select a specific one from the set to ensure application identifier compatibility among the transmitter, receiver and link.

Note that an application identifier does not specify the actual nominal central frequency or actual nominal central wavelength, though it does specify the range of the nominal central frequency or wavelength. In the cases of DWDM and CWDM, in addition to the application identifier, the nominal central frequency or nominal central wavelength needs also to be specified.

[ITU-T G.872] has introduced some new terms to better describe the media aspects of optical networking. In particular, the media path that interconnects an OCh source (So) with an OCh Sk is called a network media channel. A black link is an instance of a network media channel.

For the OCh TT in an OTN-compliant NE supporting standard or proprietary application identifiers, the OTN NE EMF shall support the following management functions:

- provisioning the supportable application identifiers for the OCh TT;
- retrieving the supportable application identifiers from the OCh TT;
- notifying the changes of the supportable application identifiers of the OCh TT;
- selecting the application identifier to be used for the OCh TT;
- retrieving the selected application identifier from the OCh TT;
- notifying the changes of the selected application identifier of the OCh TT;
- if the selected application identifier defines a tributary to a DWDM system, provisioning the nominal central frequency of the OCh_TT;

- if the selected application identifier defines a tributary to a DWDM system, retrieving the nominal central frequency of the OCh_TT;
- if the selected application identifier defines a tributary to a DWDM system, notifying the changes in the nominal central frequency of the OCh_TT;
- if the selected application identifier defines a tributary to a CWDM system, provisioning the nominal central wavelength of the OCh_TT;
- if the selected application identifier defines a tributary to a CWDM system, retrieving the nominal central wavelength of the OCh_TT;
- if the selected application identifier defines a tributary to a CWDM system, notifying the changes in the nominal central wavelength of the OCh TT.

Valid ITU-T standard application identifiers are specified in ITU-T Recommendations, e.g., [ITU-T G.695], [ITU-T G.698.2] and [ITU-T G.959.1]. In the management interface, when an ITU-T standard application code is referred to, the values and value ranges of the optical parameters as specified in the corresponding ITU-T Recommendation for that application code are assumed.

Note that an operable OCh trail is formed from an OCh_TT So, a network media channel and an OCh_TT Sk, all of which share a common application identifier.

Note that OCh_TT had been specified in [ITU-T G.798]. The specification of OCh_TT was integrated into the optical tributary signal (OTSi) modulation and demodulator processes in the 2017 edition of [ITU-T G.798].

8.16 Media element management

This clause specifies the management requirements for the media element, in particular the input provisioning information to and the output information from the media element, of which the equipment functionality is specified in clause 16 of [ITU-T G.798]. See Table 8-5.

Default value MI signal Value range Media element provisioning ME MI configureMediaChannel(port i, **FFS FFS** port k, freqSlot, signalTransfer) ME MI configureOPM(port j, freqSlot, **FFS FFS** threshold) Media element reporting ME MI queryMediaChannel(port j, port k, **FFS FFS** freqSlot, signalTransfer) ME_MI_OPM(port j, freqSlot, value) **FFS FFS**

Table 8-5 – Media element-related provisioning and reporting

8.17 Administrative state

See clause 8.15 of [ITU-T G.7710] for a description of Administrative state configuration functions.

The OTN atomic functions supporting the Administrative state are listed within Table 8-2, i.e., those adaptation functions that are appended with _MI_AdminState.

NOTE – In this Recommendation the state values Not LOCKED is used in place of UNLOCKED.

9 Account management

Account management is FFS.

10 Performance management

See clause 10 of [ITU-T G.7710] for the generic requirements for PM. OTN-specific management requirements are described as follows.

Note that, due to the frame synchronous mapping between an optical data unit of level k, path (ODUkP, k=0, 1, 2, 2e, 3, 4, flex) and an optical data unit of level k, tandem connection sub-layer, (ODUkT; k=0, 1, 2, 2e, 3, 4, flex) and between an ODUk and an OTUk, a frame slip that already exists at the source of the ODUkT or the OTUk trail is also detected at the Sk of the ODUkT and the OTUk trail. This frame slip will result in bit error detection at the TT Sk, even if the trail contains no errors. In order to suppress these bit errors, incoming alignment error (IAE) and backward incoming alignment error (BIAE) signalling is supported in the OTN. IAE is generated at the trail source if a frame slip is detected. It is transmitted to the trail Sk to suppress the bit errors. BIAE is the signalling for the reverse direction and is used to suppress the backward error indication. Due to the detection, propagation and signalling delay, no fixed time relation between the occurrence of bit errors and the detection of the IAE exists. Therefore, bit errors detected in the current or previous second are wrong and must be suppressed if an IAE is detected.

The following rules apply:

- if pBIAE is active, the F_DS and the F_EBC values of the previous and the current second must be discarded;
- if pIAE is active, the N_DS, the F_DS, the N_EBC and the F_EBC values for the previous and the current second must be discarded.

Note that the previous second must be discarded due to the delay of the IAE information coming from the remote source.

10.1 Performance management applications

See clause 10.1 of [ITU-T G.7710] for the generic description for PM applications.

10.1.1 Concepts of near-end and far-end

See clause 10.1.1 of [ITU-T G.7710] for a description of near-end and far-end concepts.

10.1.2 Maintenance

See clause 10.1.2 of [ITU-T G.7710] for a description of PM for maintenance.

10.1.3 Bringing-into-service

See clause 10.1.3 of [ITU-T G.7710] for a description of bringing-into-service.

10.1.4 Quality of service

See clause 10.1.4 of [ITU-T G.7710] for a description of quality of service.

10.1.5 Availability

See clause 10.1.5 of [ITU-T G.7710] for a description of availability.

10.1.6 Reporting

See clause 10.1.6 of [ITU-T G.7710] for a description of reporting.

As soon as a threshold is reached or crossed in a 15 min/24 h period for a given performance measurement, a threshold report (TR) is generated.

As an option for 15 min periods, an alternative method of threshold reporting can be used. When, for the first time, a threshold is reached or crossed for a given performance measurement, a TR is generated. No TRs will be generated in subsequent 15 min periods until the value of the performance measurement falls below a specific threshold. Then, a reset threshold report (RTR) is generated.

Performance data shall be reportable across the NE/OS interface automatically upon reaching or crossing a performance-monitoring threshold.

10.1.6.1 Performance data collection

See clause 10.1.6.1 of [ITU-T G.7710] for the generic description of performance data collection.

Counter-based performance data collection refers to the measurement counting associated with each of the performance measurements and any additional performance parameter specified in this Recommendation.

Two types of performance data collection are possible.

- A collection as specified in [ITU-T M.2120], i.e., based on information of each direction of transport independently. This type is also referred to as performance data collection for maintenance purposes.
- The collection as specified in [ITU-T G.826], i.e., based on information of both directions of transport together. This type is also referred to as performance data collection for error performance assessment purposes.

Counts are taken over fixed time periods of 15 min and 24 h. Counting is stopped during unavailable time.

Gauge-based performance data collection refers to the measurement gauge crossings associated with each of the performance measurements and any additional performance parameter specified in this Recommendation.

Performance history data is necessary to assess the recent performance of transmission systems. Such information can be used to sectionalize faults and to locate the source of intermittent errors.

Historical data, in the form of performance measurement, may be stored in registers in the NE or in mediation devices associated with the NE. For specific applications, e.g., when only quality of service alarms are used, historical data may not be stored.

All the history registers shall be time-stamped.

The history registers operate as follows.

15 min registers

The history of the 15 min monitoring is contained in a stack of 16 registers per monitored measurement. These registers are called the recent registers.

Every 15 min, the contents of the current registers are moved to the first of the recent registers. When all 15 min registers are used, the oldest information will be discarded.

24 h registers

The history of the 24 h monitoring is contained in a single register per monitored measurement. This register is called the recent register.

Every 24 h, the contents of the current register are moved to the recent register.

10.1.6.2 History storage suppression

See clause 10.1.6.2 of [ITU-T G.7710] for a description of history storage suppression.

10.1.7 Thresholding

A thresholding mechanism can be used to generate an autonomous measurement report when the performance of a transport entity falls below a predetermined level. The general strategy for the use of thresholds is described in [ITU-T M.20]. Specific information for optical networks is FFS. The thresholding mechanism is applicable only for the maintenance-based collection.

See clause 10.1.7 of [ITU-T G.7710] for a description of thresholding.

10.1.7.1 Threshold setting

The thresholds may be set in the NE via the OS. The OS shall be able to retrieve and change the settings of the 15 min and 24 h thresholds.

The threshold values for measurements evaluated over the 15 min period should be programmable within the specified range.

10.1.7.2 Threshold reporting

As soon as a threshold is reached or crossed in a 15 min/24 h period for a given performance measurement, a TR is generated.

As an option for 15 min periods, an alternative method of threshold reporting can be used. When, for the first time, a threshold is reached or crossed for a given performance measurement, a TR is generated. No TRs will be generated in subsequent 15 min periods until the value of the performance measurement falls below a specific threshold. Then, an RTR is generated.

The detailed functioning of the threshold mechanisms is FFS.

Performance data shall be reportable across the NE/OS interface automatically upon reaching or crossing a performance-monitoring threshold.

10.1.7.3 Evaluation for counters

See clause 10.1.7.3 of [ITU-T G.7710] for a generic description.

10.1.7.4 Evaluation for gauges

See clause 10.1.7.4 of [ITU-T G.7710] for a generic description.

10.1.8 Delay measurement requirements

- 1) OTN delay measurement is defined as a "round trip" measurement; i.e., it can only be used in bidirectional connections.
- 2) The toggling of the DMValue has to be synchronized between the source and Sk atomic functions.
- 3) DM Source in the So and Sk atomic functions always has the same value.
- 4) DM_Source should be set to false in all involved atomic functions when no delay measurement is required.
- 5) On-demand delay measurement must be supported.
- 6) Proactive delay measurement is FFS.

10.2 Performance management functions

See clause 10.2 of [ITU-T G.7710] for generic requirements of PM functions.

OTN NE provides the PM MI in Table 10-1.

Table 10-1 – Performance management information

Performance management information	OTN function	PM current data and history data collected in EMF
OTS-O_TT_Sk_MI_pN_DS-P		OTS-O_TTP_Sk:
OTS-O_TT_Sk_MI_pN_DS-O	OTS-O_TT_Sk	nSES, fSES,
OTS-O_TT_Sk_MI_pF_DS-P		{UAS nUAS,
OTS-O_TT_Sk_MI_pF_DS-O		fUAS}(Note 1)

Table 10-1 – Performance management information

Performance management information	OTN function	PM current data and history data collected in EMF
OMS-O_TT_Sk_MI_pN_DS-P OMS-O_TT_Sk_MI_pN_DS-O OMS-O_TT_Sk_MI_pF_DS-P OMS-O_TT_Sk_MI_pF_DS-O	OMS-O_TT_Sk	OMSn_TTP_Sk: nSES, fSES, {UAS nUAS, fUAS}
OTSi/OTUk_A_Sk_MI_pFECcorrErr (Note 6)	OTSi/OTUk_A_Sk	OTU_CTP_Sk: CD/HD: #FECcorrErr
OTSi/OTUk-RS_A_Sk_MI_pFECcorrErr For the value of k, see Table 16-3.2 of [ITU-T G.798]	OTSi/OTUk-RS_A_Sk	OTSi_TTP_Sk: CD/HD: #FECcorrErr OTSiG_TTP_Sk:
OTSi/OTUkV_A_Sk_MI_pFECcorrErr (Note 2)	OTSi/OTUkV_A_Sk	CD/HD: #FECcorrErr M-AI _TTP_Sk:
OTSi/OTUCn_A_Sk_MI_pFECcorrErr	OTSi/OTUCn_A_Sk	CD/HD:
OTSiG/OTUCn_A_Sk_MI_pFECcorrErr	OTSiG /OTUCn_A_Sk	#FECcorrErrwhere #FECcorrErr = count of
OTSiG/OTUkV_A_Sk_MI_pFECcorrErr (Note 2)	OTSiG/OTUkV_A_Sk	FEC-corrected Errors
OTSiG/OTUk_A_Sk_MI_pFECcorrErr	OTSiG/OTUk_A_Sk See Table 16-6 of [ITU-T G.798] for the function types	
OTSiG/OTUCn_A_Sk_MI_pFECcorrErr	OTSiG/OTUCn_A_Sk	
M-AI/FlexO-1-SC_A_Sk_MI_pFECcorrErr	M-AI/FlexO-1-SC_A_Sk	
M-AI/FlexO-x-DSH-Z_A_Sk_MI_pFECcorrErr	M-AI/FlexO- <i>x</i> -DSH- Z_A_Sk	
M-AI/FlexO-x-DO-Z_A_Sk_MI_pFECcorrErr	M-AI/FlexO- <i>x</i> -DO- Z_A_Sk	
OTSiG/FlexO-x-RS_A_Sk_MI_pFECcorrErr	OTSiG/FlexO-x- RS_A_Sk	
M-AI/FlexO-1-SC_A_Sk_MI_pAuthCheckErr	M-AI/FlexO-1-SC_A_Sk	OTSiG_TTP_Sk:
M-AI/FlexO- <i>x</i> -DSH- Z_A_Sk_MI_pAuthCheckErr	M-AI/FlexO- <i>x</i> -DSH- Z_A_Sk	CD/HD: #pAuthCheckErr M-AI _TTP_Sk: CD/HD: #pAuthCheckErr where #pAuthCheckErr = count of pAuthChecked Errors
M-AI/FlexO-x-DO-Z_A_Sk_MI_pAuthCheckErr	M-AI/FlexO- <i>x</i> -DO- Z_A_Sk	
OTSiG/FlexO-x-RS_A_Sk_MI_pAuthCheckErr	OTSiG/FlexO-x- RS_A_Sk	
OTSi/OSC_A_MI_pN_DS-O	OTSi/OSC_A_Sk	OTSi/OSC_A_Sk: nSES, fSES, {UAS nUAS, fUAS} (Note 1) pN_DS-O is missing this primitive in Table 16-18 of [ITU-T G.798].

Table 10-1 – Performance management information

Performance management information	OTN function	PM current data and history data collected in EMF	
OTU_TT_Sk_MI_pN_EBC OTU_TT_Sk_MI_pN_DS OTU_TT_Sk_MI_pF_EBC OTU_TT_Sk_MI_pF_DS OTU_TT_Sk_MI_pBIAE OTU_TT_Sk_MI_pIAE	OTU_TT_Sk	OTU_TTP_Sk: nSES, fSES,	
OTUkV_TT_Sk_MI_pN_EBC OTUkV_TT_Sk_MI_pN_DS OTUkV_TT_Sk_MI_pF_EBC OTUkV_TT_Sk_MI_pF_DS OTUkV_TT_Sk_MI_pBIAE (Note 3) OTUkV_TT_Sk_MI_pIAE (Note 3)	OTUkV_TT_Sk	{UAS nUAS, fUAS}, nBBE, fBBE, (Note 4)	
OTSiG-O_TT_Sk_MI_pN_DS-P OTSiG-O_TT_Sk_MI_pN_DS-O OTSiG-O_TT_Sk_MI_pF_DS-P OTSiG-O_TT_Sk_MI_pF_DS-O	OTSiG-O_TT_Sk	OTSiG-O_TTP_Sk: nSES, fSES, {UAS nUAS, fUAS}, nBBE, fBBE,	
ODUP_TT_Sk_MI_pN_EBC ODUP_TT_Sk_MI_pN_DS ODUP_TT_Sk_MI_pF_EBC ODUP_TT_Sk_MI_pF_DS ODUP_TT_Sk_MI_pN_delay	ODUP_TT_Sk	ODUkP_TTP_Sk: nSES, fSES, {UAS nUAS, fUAS}, nBBE, fBBE, Proactive DM is FFS. See clause 14.2.1 of [ITU-T G.798] for pN_Delay	
ODUP/PRBS_A_Sk_MI_pN_TSE	ODUP/PRBS_A_Sk	PRBS or generic client layer CTP_Sk: Sum of pN_TSE	
ODUkP/CBRx-g_A_So_MI_pN_PCS_BIP (Note 5)	ODUkP/CBRx-g_A_So For the value of k and x in ODUkP/CBRx, see Table 14-18 of [ITU-T G.798]	generic client layer CTP_So: Sum of pN_PCS_BIP	
ODUkP/CBRx-g_A_Sk_MI_pN_PCS_BIP (Note 5)	ODUkP/CBRx-g_A_Sk For the value of k and x in ODUkP/CBRx, see Table 14-18 of [ITU-T G.798]	generic client layer CTP_Sk: Sum of pN_PCS_BIP	
ODUkP/ETH_A_Sk_MI_pFCSErrors	ODUkP/ETH_A_Sk	ETH or generic client layer CTP_Sk: Sum of pFCSErrors	
ODUflexkP/ETH-imp_A_Sk_MI_[IEEE 802.3]	ODUflexkP/ETH- imp_A_Sk	See [IEEE 802.3]	

Table 10-1 – Performance management information

Performance management information	OTN function	PM current data and history data collected in EMF
ODUkP-h/ETH_A_Sk_MI_pFCSErrors	ODUkP-h/ETH_A_Sk	ETH or generic client layer CTP_Sk: Sum of pFCSErrors
ODUT_TT_Sk_MI_pN_EBC ODUT_TT_Sk_MI_pN_DS ODUT_TT_Sk_MI_pF_EBC ODUT_TT_Sk_MI_pF_DS ODUT_TT_Sk_MI_pN_delay ODUT_TT_Sk_MI_pBIAE ODUT_TT_Sk_MI_pIAE	ODUT_TT_Sk See clause 14.5.1.1.2 of [ITU-T G.798]	ODUKT_TTP_Sk: nSES, fSES, {UAS nUAS, fUAS}, nBBE, fBBE, Proactive DM is FFS. See clause 14.2.1 of [ITU-T G.798] for pN_Delay (Note 4)
ODUTm_TT_Sk_MI_pN_EBC ODUTm_TT_Sk_MI_pN_DS ODUTm_TT_Sk_MI_pF_EBC ODUTm_TT_Sk_MI_pF_DS ODUTm_TT_Sk_MI_pBIAE ODUTm_TT_Sk_MI_pIAE	ODUTm_TT_Sk See clause 14.5.1.1.3 of [ITU-T G.798]	ODUkTm_TTP_Sk: nSES, fSES, {UAS nUAS, fUAS}, nBBE, fBBE, (Note 4)
OSx_TT_Sk_MI_pN_DS	OSx_TT_Sk	OSx_TTP_Sk: nSES, nUAS
OSx/CBRx-b_A_Sk _MI_pFECcorrErr	OSx/CBRx-b_A_Sk	OSx/CBRx_Sk:
OSx/CBRx-c_A_Sk_MI_FECcorrErr	OSx/CBRx-c_A_Sk	CD/HD: #FECcorrErr where #FECcorrErr = count of FEC-corrected Errors
OSx/CBRx-b_A_Sk_MI_pFECuncorrErr	OSx/CBRx-b_A_Sk	OSx/CBRx_Sk:
OSx/CBRx-c_A_Sk_MI_pFECuncorrErr	OSx/CBRx-c_A_Sk	CD/HD: #FECuncorrErr where #FECCuncorrErr = FEC-uncorrected Errors

NOTE 1 – {UAS|nUAS, fUAS} means bidirectional UAS or Unidirectional "nUAS and fUAS".

NOTE 4-pIAE and pBIAE are used for the suppression of the PM data in the EMFs. If pBIAE is active, the F_DS and F_EBC values of the previous and current second have to be discarded (errored block count (EBC) = 0 and defect second (DS) = false). If pIAE is active, the N/F_DS and N/F_EBC and N_delay values of the previous and current second have to be discarded (EBC = 0 and DS = false). The previous second has to be included due to the delay of the IAE information coming from the remote source.

NOTE 5 – Applicable only when (k=3, CBRx=ETC40GR) or (k=4, CBRx=ETC100GR).

NOTE 6 – Only For the function type of OTSi/OTUk-a_A and OTSi/OTUk-v_A. The function type for OTSi/OTUk_A is shown in Table16-1 in [ITU-T G.798].

The EMF shall support the following functions:

- collecting OTN layer-specific current PM data as specified in Table 10-1;
- collecting OTN layer-specific history PM data as specified in Table 10-1;

NOTE 2 – If the function performs forward error correction (FEC).

NOTE 3 – In case of frame-synchronous mapping of ODUk client signal.

- resetting of the OTN layer-specific current PM data registers;
- reporting OTN layer-specific current PM data at the maturity of the monitoring time interval;
- on-demand retrieval of the collected OTN layer-specific PM data;
- setting of the threshold of the monitored OTN layer-specific PM data collection;
- reporting of threshold crossing for the collected OTN layer-specific current PM data;
- notifying the change of the threshold of the monitored OTN layer-specific PM data collection.

11 Security management

No requirement is specified in the Recommendation.

Appendix I

Management information for configuration management

(This appendix does not form an integral part of this Recommendation.)

Regarding CM, the OTN NEs can be configured via the following MI signals that are specified per atomic function in [ITU-T G.798]:

- <atomic function name>_MI_AutoMS
- <atomic function name>_MI_AdminState
- <atomic function name>_MI_APRCntrl
- <atomic function name> MI APSChannel
- <atomic function name>_MI_CellDiscardActive
- <atomic function name>_MI_DTDLuseEnabled
- <atomic function name>_MI_ExtCMD
- <atomic function name> MI ExDAPI
- <atomic function name>_MI_ExMSI
- <atomic function name>_MI_ExSAPI
- <atomic function name>_MI_FECEn
- <atomic function name> MI GCCAccess
- <atomic function name> MI GCCCont
- <atomic function name>_MI_GetAcTI
- <atomic function name>_MI_GFCActive
- <atomic function name> MI HECactive
- <atomic function name> MI HoTime
- <atomic function name>_MI_Level
- <atomic function name>_MI_MatrixControl
- <atomic function name> MI ModeSk
- <atomic function name>_MI_ModeSo
- <atomic function name>_MI_OperType
- <atomic function name>_MI_ProtType
- <atomic function name>_MI_SDEnable
- <atomic function name>_MI_TIMActDis
- <atomic function name>_MI_TIMDetMo
- <atomic function name>_MI_TPusgActive
- <atomic function name>_MI_TSF-ODis
- <atomic function name>_MI_TxMSI
- <atomic function name> MI TxTI
- <atomic function name>_MI_VPIrange
- <atomic function name>_MI_VPI-KActive
- <atomic function name>_MI_VPIK_SAISActive
- <atomic function name>_MI_WTR

Regarding CM, the OTN NEs can provide the configuration data via the following MI signals that are specified per atomic function in [ITU-T G.798]:

- <atomic function name>_MI_AcMSI
- <atomic function name>_MI_AcPT
- <atomic function name>_MI_AcPT[1..XMR]
- <atomic function name>_MI_AcTI
- <atomic function name>_MI_AcSTATSk[1..6]
- <atomic function name>_MI_AcSTATSo[1..6]
- <atomic function name>_MI_AcVcPT

Appendix II

Management information for performance management

(This appendix does not form an integral part of this Recommendation.)

Regarding PM, the OTN NEs can be configured via the following MI signals that are specified per atomic function in [ITU-T G.798]:

- <atomic function name>_MI_1second
- <atomic function name>_MI_DEGM
- <atomic function name>_MI_DEGThr

Regarding PM, the OTN NEs can provide the performance data via the following MI signals that are specified per atomic function in [ITU-T G.798]:

- <atomic function name> MI pBIAE
- <atomic function name>_MI_pF_DS-O
- <atomic function name>_MI_pF_DS-P
- <atomic function name>_MI_pFECcorrErr
- <atomic function name>_MI_pF_EBC
- <atomic function name>_MI_pF_DS
- <atomic function name>_MI_pIAE
- <atomic function name>_MI_pN_DS-O
- <atomic function name>_MI_pN_DS-P
- <atomic function name>_MI_pN_EBC
- <atomic function name>_MI_pN_DS
- <atomic function name>_MI_pN_delay
- <atomic function name>_MI_pN_TSE
- <atomic function name>_MI_pN_PCS_BIP

Appendix III

Mapping between OPUk payload type and adaptation atomic function

(This appendix does not form an integral part of this Recommendation.)

Table III.1 maps the OPUk PTs specified in Table 15-9 of [ITU-T G.709] to the corresponding adaptation atomic functions.

Table III.1 – Payload type and atomic functions

Payload types Table 15-9 of [ITU-T G.709] (clause numbers in this column are those of [ITU-T G.709])		Atomic functions [ITU-T G.798]		
PT in Hex code	Interpretation	Interpretation Adaptation atomic function		
01	Experimental mapping	_		
02	Asynchronous CBR mapping, see clause 17.2	ODUkP/ CBRx-a_A_so ODUkP/		
03	Bit synchronous CBR mapping, see clause 17.2	ODUkP/ CBRx-b_A_So	CBRx_A_Sk	
04	Not available	No	one	
05	GFP mapping, see clause 17.4	ODUkP/ETH_A ODUkP-X-L/ETH_A; k = 1, 2, 3 NOTE – Since GFP is not an adaptation, i.e., only a mapping, the adaptation function depends on the client signal.		
06	Not available	None		
07	Physical coding sublayer (PCS) codeword transparent Ethernet mapping: 1000BASE-X into OPU0 mapping, see clauses 17.7.1 and 17.7.1.1 40GBASE-R into OPU3, see clauses 17.7.4 and 17.7.4.1 100GBASE-R into OPU4, see clauses 17.7.5 and 17.7.5.1	ODU0P/CBRx_A (0≤x≤1.25G)		
08	FC-1200 into OPU2e mapping, see clause 17.8.2	ODUkP/CBRx-g_A		
09	GFP mapping into Extended OPU2 payload, see clause 17.4.1	ODU2P/EthPP-OS_A		
0A	STM-1 mapping into ODU0, see clause 17.7.1	ODUkP/RSn_A		
0B	STM-4 mapping into ODU0, see clause 17.7.1			
0C	FC-100 mapping into ODU0, see clause 17.7.1	DU1, see clause 17.7.2 DUflex, see clause 17.9 DUflex, see clause 17.9 DUflex, see clause 17.9		
0D	FC-200 mapping into ODU1, see clause 17.7.2			
0E	FC-400 mapping into ODUflex, see clause 17.9			
0F	FC-800 mapping into ODUflex, see clause 17.9			
10	Bit stream with octet timing mapping, see clause 17.6.1			

Payload types Table 15-9 of [ITU-T G.709] (clause numbers in this column are those of [ITU-T G.709])		Atomic functions [ITU-T G.798]	
PT in Hex code	Interpretation Adaptation atomic func		
11	Bit stream without octet timing mapping, see clause 17.6.2		
12	IB SDR mapping into OPUflex, see clause 17.9		
13	IB DDR mapping into OPUflex, see clause 17.9		
14	IB QDR mapping into OPUflex, see clause 17.9		
15	SDI mapping into OPU0, see clause 17.7.1		
16	(1.485/1.001) Gbit/s SDI mapping into OPU1, see clause 17.7.2		
17	1.485 Gbit/s SDI mapping into OPU1, see clause 17.7.2		
18	(2.970/1.001) Gbit/s SDI mapping into OPUflex, see clause 17.9		
19	2.970 Gbit/s SDI mapping into OPUflex, see clause 17.9		
1A	SBCON/ESCON mapping into OPU0, see clause 17.7.1		
1B	DVB_ASI mapping into OPU0, see clause 17.7.1		
1C	FC-1600 mapping into OPUflex, see clause 17.9		
1D	Packet client mapping into OPUflex(IMP) and ODUflex(IMP,s), see clause 17.10 and 17.11 FlexE Client mapping into OPUflex, see clause 17.11	ODUkP/ETH, ODUflexkP/ETH- impOPUflexP/FlexEC	
1E	FlexE aware (partial rate) mapping into OPUflex, see clause 17.12	OPUflexP/FlexESG	
1F	FC-3200 mapping into OPUflex, see clause 17.9	ODUkP/CBRx-g_A	
20	ODU multiplex structure supporting optical data tributary unit j into k (ODTUjk) only, see clause 19 (AMP only)	ODUkP/ODU[i]j_A	
21	ODU multiplex structure supporting ODTUk.ts or ODTUk.ts and ODTUjk, see clause 19 (GMP capable)	ODUkP/ODUj-21_A	
22	ODU multiplex structure supporting ODTUCn.ts, see clause 20 (GMP capable)	ODUCnP/ODUk	
30	25GBASE-R mapping into OPUflex, see clause 17.13		
31	200GBASE-R mapping into OPUflex, see clause 17.13		
32	400GBASE-R mapping into OPUflex, see clause 17.13	OPUflexP/x <i>GBASE-R</i>	
33	50GBASE-R mapping into OPUflex, see clause 17.13		
55	Not available	None	
66	Not available	None	
80-8F	Reserved codes for proprietary use	None	
FD	NULL test signal mapping, see clause 17.5.1	ODUkP/NULL_A	

Payload types Table 15-9 of [ITU-T G.709] (clause numbers in this column are those of [ITU-T G.709])		Atomic functions [ITU-T G.798]	
PT in Hex code	Interpretation	Adaptation atomic function	
FE	PRBS test signal mapping, see clause 17.5.2	ODkP/PRBS_A	
FF	Not available	None	

NOTE – The PT does not have a unique value for every adaptation function. Multiple adaptation functions share the same PT value. An overview is presented as follows.

14.3.1/G.798 ODUkP/CBRx_A, bit sync: <k,x> = <1,2G5>, <2,10G>, <2e,10G3>,
 <3,40G>, <flex,beyond_2.5G>, async: <1,2G5> (20 ppm), <1,2G5> (32 ppm), <2,10G>,
 <3,40G>; no need to manage 2G5 ppm differences

PT of these adaptation functions;

PT=0x02 for async mapping of CBR2G5, CBR10G, CBR40G

PT=0x03 for bitsync mapping of CBR2G5, CBR10G, CBR10G3, CBR40G

PT=0x0E for bitsync mapping of FC400

PT=0x0F for bitsync mapping of FC800

PT=0x12 for bitsync mapping of IB QDR

PT=0x13 for bitsync mapping of IB QDR

PT=0x14 for bitsync mapping of IB QDR

PT=0x18 for bitsync mapping of (2.970/1.001)G SDI

PT=0x19 for bitsync mapping of 2.970G SDI

PT=0x1C for bitsync mapping of FC1600

- 14.3.3/G.798 ODU2P/EthPP_OS_A => 11.5.3/G.8021 ODU2P/EthOS_A

PT=0x05

- 14.3.4/G.798 ODUkP/NULL_A

PT=0xFD.

Additional control here is for ODUk, k=flex the nominal bit rate.

14.3.5/G.798 ODUP/PRBS_A

PT=0xFE.

Additional control here is for ODUk, k=flex the nominal bit rate.

- 14.3.6/G.798 ODUkP/RSn A, $\langle k,n \rangle = \langle 1,16 \rangle$, $\langle 2,64 \rangle$, $\langle 3,256 \rangle$

PT=0x02 for async mapping of RS16, RS64, RS256,

PT=0x03 for bitsync mapping of RS16, RS64, RS256.14.3.7 ODU0P/CBRx_A, x = 155M, 622M, ETC3, FC100, SBCON, DVB_ASI

PT=0x0A for STM-1 (155M) mapping into OPU0

PT=0x0B for STM-4 (622M) mapping into OPU0

PT=0x0C for FC100

PT=0x07 for 1000BASE-X (ETC3)

PT=0x1A for SBCON/ESCON

PT=0x1B for DVB_ASI

Table III.2 maps PT values of SDHs to ODUs.

Table III.2 – PT of SDH to ODU mapping

ODUk SDH	PT			
	BMP	AMP	GMP	
ODU0	STM-1(155M)	_	_	0x0A
ODU0	STM-4(622M)	_	_	0x0B
ODU1	STM – 4	0x03	0x02	_
ODU2	STM – 16	0x03	0x02	_
ODU3	STM – 64	0x03	0x02	_

– 14.3.8/G.798 ODUkP/CBRx-g_A, CBRx-g = ETC5, ETC6, FC200

PT=0x07 for 40GBASE-R (ETC5)

PT=0x07 for100GBASE-R (ETC6)

PT=0x0D for FC200

14.3.9/G.798 ODUkP/ODU[i]j_A

PT=0x20.

Additional control here is on a per LO optical data unit of level j (ODUj) basis, which can be performed as part of LO ODU connection management:

MI_TxMSI, MI_ExMSI[p], MI_AdminState[p], MI_APS_EN[p], MI_APS_LVL [p]

– 14.3.10/G.798 ODUkP/ODUj-21 A

PT=0x21

Additional control here is MI_AUTOpayloadtype.

Further additional control is on a per LO ODUj basis, which can be performed as part of LO ODU connection management:

MI_TxMSI. MI_ExMSI[p], MI_ODUType_Rate[i], MI_AdminState[n], MI_APS_EN [n], MI_APS_LVL [n]

14.3.11/G.798 ODUkP/ETH_A, see 11.5.1/G.8021 ODUkP/ETH_A

PT=0x06.

vcPT=0x05.

Additional control here is MI_CSFEnable and MI_CSFrdifdiEnable, MI_FilterConfig, MI_CSF_Reported, MI_MAC_Length.

- 14.3.12/G.798 ODUkP-h/ETH_A, k=flex

PT=0x05. The same PT value is used for this hitless adjustment of ODUflex(GFP) (HAO) capable function as for the regular, non-HAO capable function.

Additional control here is MI_ODUflexRate, MI_CSFEnable, MI_CSFrdifdiEnable, MI_FilterConfig, MI_CSF_Reported, MI_MAC_Length.

Further additional control here is for HAO; i.e., MI_INCREASE, MI_DECREASE, MI_TSNUM.

14.3.13/G.798 ODUkP-h/ODUj-21 A

PT=0x21. The same PT value is used for this HAO capable function as for the regular, non-HAO capable function.

Additional control here is MI_AUTOpayloadtype.

Further additional control is on a per LO ODUj basis, which can be performed as part of LO ODU connection management:

MI_TxMSI[p]. MI_ExMSI[p], MI_ODUType_Rate[i], MI_AdminState[n], MI_APS_EN [n], MI_APS_LVL [n]

Further additional control here is for HAO of a LO ODUflex; i.e., MI_INCREASE, MI_DECREASE, MI_TSMAP, MI_TPID.

- [14.3.15/G.798 ODU2eP/FC1200_A] to be added PT=0x08.
- [14.3.19/G.798 ODUkP/MT A] see 11.2.1/G.8121 ODUkP/MT A

PT=0x05. This PT value is the same as for ODUkP/ETH_A functions.

Additional control here is MI_CCCType.

Further additional control is on a per PW/LSP basis, which can be performed as part of LO ODU connection management:

MI_Label[1...M], MI_LSPType[1...M], MI_CoS[1...M], MI_PHB2TCMapping[1...M], MI_QoSEncodingMode[1...M], MI_TC2PHBMapping[1...M], MI_QoSDecodingMode[1...M], MI_LCK_Period[1...M], MI_LCK_CoS[1...M], MI_Admin_State, MI_AIS_Period[1...M], MI_AIS_CoS[1...M], MI_GAL_Enable[1...M]

- [14.3.14/G.798 ODUkP-h/MT_A] see clause 11.2.2 of [ITU-T G.8121]
- [17.13/G.709] Mapping a 64b/66b PCS coded signal into OPUflex using BMP and 2-bit alignment of 66b code words

PT=0x30, 25GBASE-R mapping into OPUflex

PT=0x31, 200GBASE-R mapping into OPUflex

PT=0x32, 400GBASE-R mapping into OPUflex

PT=0x33, 50GBASE-R mapping into OPUflex

- [17.11/G.709] OPUflexP/FlexE

Mapping of FlexE Client signals into OPUflex using IMP FlexE Client signal bit rates are $s \times 5,156,250.000$ kbit/ $s \pm 100$ ppm, with s = 2, 8, n*5 ($n \ge 1$). Refer to [OIF FlexE IA].

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	Tariff and accounting principles and international telecommunication/ICT economic and policy issues
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Telephone transmission quality, telephone installations, local line networks
Series Q	Switching and signalling, and associated measurements and tests
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities
Series Z	Languages and general software aspects for telecommunication systems