ITU-T

1-0-1

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.8273/Y.1368

Amendment 1 (01/2015)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Packet over Transport aspects – Synchronization, quality and availability targets

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

Internet protocol aspects - Transport

Framework of phase and time clocks Amendment 1

Recommendation ITU-T G.8273/Y.1368 (2013) – Amendment 1

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600–G.699
DIGITAL TERMINAL EQUIPMENTS	G.700–G.799
DIGITAL NETWORKS	G.800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000-G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000-G.8999
Ethernet over Transport aspects	G.8000-G.8099
MPLS over Transport aspects	G.8100-G.8199
Synchronization, quality and availability targets	G.8200-G.8299
Service Management	G.8600–G.8699
ACCESS NETWORKS	G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.8273/Y.1368

Framework of phase and time clocks

Amendment 1

Summary

Amendment 1 to Recommendation ITU-T G.8273/Y.1368 (2013) adds text to clause B.4, and adds the following appendices:

- Appendix I Variable temperature testing methodology
- Appendix II Variable temperature holdover testing methodology.

History

Edition	Recommendation	Approval	Study Group	Unique ID*
1.0	ITU-T G.8273/Y.1368	2013-08-29	15	<u>11.1002/1000/12012</u>
1.1	ITU-T G.8273/Y.1368 (2013) Cor. 1	2014-05-14	15	<u>11.1002/1000/12195</u>
1.2	ITU-T G.8273/Y.1368 (2013) Amd. 1	2015-01-13	15	<u>11.1002/1000/12394</u>

^{*} To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID. For example, <u>http://handle.itu.int/11.1002/1000/11</u> <u>830-en</u>.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2015

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Recommendation ITU-T G.8273/Y.1368

Framework of phase and time clocks

Amendment 1

1) Clause B.4

Replace:

"Measurement methods for transparent clocks are for further study."

with:

B.4.1 Active measurement set-up for systems with telecom transparent clocks

Figure B.4-1 shows an active measurement set-up for a T-TC.

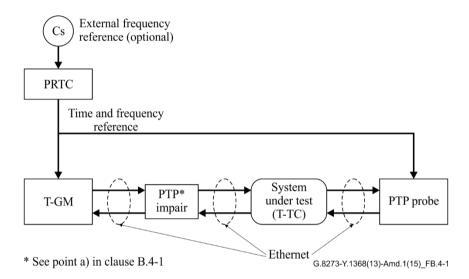


Figure B.4-1 – Active measurement set-up for systems with T-TC

With respect to the test arrangement shown:

- a) One PTP impair function is used to emulate network impairments between the SUT and the GM in order to perform stress testing, where necessary, of the PEC function of the T-TC.
- b) Suitable means are provided for injecting interfering traffic to mimic network loading conditions. The non-PTP traffic loading must include the ports carrying the PTP traffic.
- c) When calculating the T-TC noise generation and noise transfer using the above set-up, the PTP impairment must be known and compared with the PTP probe measurements.

B.4.2 Passive measurement set-up for systems with telecom transparent clocks

Figure B.4-2 shows a passive measurement set-up for a T-TC.

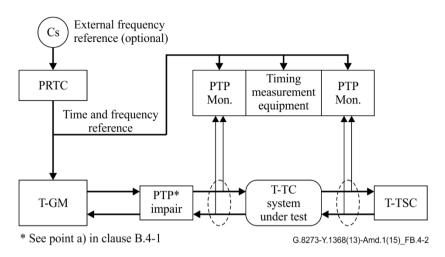
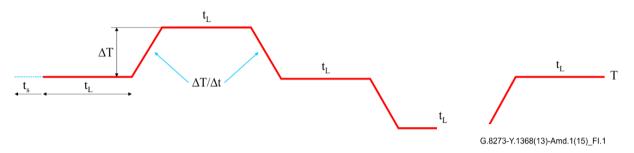


Figure B.4-2 – Measurement setup for systems with T-TC

The statements regarding the test arrangement provided in clause B.4.1 for the active measurement set-up apply to the passive measurement set-up shown in Figure B.4-2.

2) Appendices

Add the following appendices after Annex B:


- Appendix I Variable temperature testing methodology
- Appendix II Variable temperature holdover testing methodology.

Appendix I

Variable temperature testing methodology

(This appendix does not form an integral part of this Recommendation.)

Where variable temperature testing is required, it should be conducted using the temperature profile shown in Figure I.1.

Figure I.1 – Temperature profile

The test should be repeated at different test reference temperatures, T, to cover the required temperature range. As a minimum the tests should be performed at nominal and temperature extremes, i.e., the reference temperature T set to $T_{\min} + \Delta T$, T_{nom} and $T_{\max} - \Delta T$.

The test stabilisation time t_s should be long enough to remove start-up effects. The loop recovery time t_L is dictated by the loop time constant and should be as a minimum three times the loop time constant to allow the loop to recover.

The constrained temperature excursion ΔT and the ramp rate $\Delta T/\Delta t$ should be aligned to the environmental profile.

As an example, the constrained temperature excursion ΔT could be set to 20°C and the ramp rate $\Delta T/\Delta t$ to 0.5°C/minute, if these are the applicable environmental conditions.

An additional consideration is the abruptness of the transition between ramping and constant temperature conditions. The second derivative of temperature versus time that occurs at such transitions is relevant for properties such as the oscillator thermal control and system loop responses. If these transitions are applied too rapidly, it could cause unrealistic environmental conditions. The rate of change between ramping temperature and stable temperature conditions is for further study.

Appendix II

Variable temperature holdover testing methodology

(This appendix does not form an integral part of this Recommendation.)

Appendix I describes temperature profile for generic variable temperature testing. This appendix describes details for variable temperature holdover testing methodology.

For testing holdover, the duration of the test should correspond to the duration of the holdover period. The worst-case pattern is a temperature change that takes effect during the holdover period.

Figure II.1 depicts negative and positive slope cases. Various starting temperatures would be used to cover the operating temperature range.

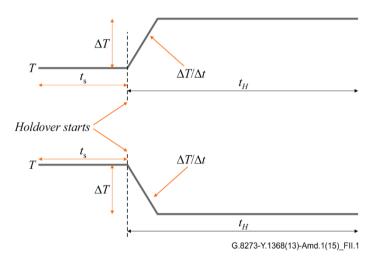


Figure II.1 – Variable temperature profile for holdover testing

The test should be repeated at different test reference temperatures T, to cover the required temperature range. At a minimum the tests should be performed at nominal and temperature extremes, i.e., the reference temperature T set to $T_{\min} + \Delta T$, T_{nom} and $T_{\max} - \Delta T$.

The test stabilisation time of t_s period should be long enough to remove start-up effects while t_H equates to the duration of the test for the corresponding period of the required holdover duration. The worst-case pattern is a temperature change that remains during the holdover period.

The constrained temperature excursion ΔT and the ramp rate $\Delta T/\Delta t$ should be aligned to the environmental profile.

As an example, the constrained temperature excursion ΔT could be set to 20°C and the ramp rate $\Delta T/\Delta t$ to 0.5C/minute, if these are the applicable environmental conditions.

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300-Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600-Y.699
Security	Y.700-Y.799
Performances	Y.800-Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Enhancements to NGN	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Network control architectures and protocols	Y.2500-Y.2599
Packet-based Networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
Carrier grade open environment	Y.2900-Y.2999
FUTURE NETWORKS	Y.3000-Y.3499
CLOUD COMPUTING	Y.3500-Y.3999

For further details, please refer to the list of ITU-T Recommendations.

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Terminals and subjective and objective assessment methods
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects and next-generation networks
Series Z	Languages and general software aspects for telecommunication systems