МСЭ-Т

G.8262/Y.1362

СЕКТОР СТАНДАРТИЗАЦИИ ЭЛЕКТРОСВЯЗИ МСЭ (01/2015)

СЕРИЯ G: СИСТЕМЫ И СРЕДА ПЕРЕДАЧИ, ЦИФРОВЫЕ СИСТЕМЫ И СЕТИ

Аспекты передачи пакетов по транспортным сетям – Целевые параметры синхронизации, качества и готовности

СЕРИЯ Ү: ГЛОБАЛЬНАЯ ИНФОРМАЦИОННАЯ ИНФРАСТРУКТУРА, АСПЕКТЫ ПРОТОКОЛА ИНТЕРНЕТ И СЕТИ ПОСЛЕДУЮЩИХ ПОКОЛЕНИЙ

Аспекты протокола Интернет – Транспортирование

Характеристики хронирования ведомых тактовых генераторов оборудования синхронного Ethernet

Рекомендация MCЭ-T G.8262/Y.1362

РЕКОМЕНДАЦИИ МСЭ-Т СЕРИИ G

СИСТЕМЫ И СРЕДА ПЕРЕДАЧИ, ЦИФРОВЫЕ СИСТЕМЫ И СЕТИ

МЕЖДУНАРОДНЫЕ ТЕЛЕФОННЫЕ СОЕДИНЕНИЯ И ЦЕПИ	G.100-G.199
ОСНОВНЫЕ ХАРАКТЕРИСТИКИ, ОБЩИЕ ДЛЯ ВСЕХ АНАЛОГОВЫХ СИСТЕМ	G.200-G.299
ПЕРЕДАЧИ	
ИНДИВИДУАЛЬНЫЕ ХАРАКТЕРИСТИКИ МЕЖДУНАРОДНЫХ ВЧ-СИСТЕМ	G.300-G.399
ТЕЛЕФОННОЙ СВЯЗИ ПО МЕТАЛЛИЧЕСКИМ ЛИНИЯМ	
ОБЩИЕ ХАРАКТЕРИСТИКИ МЕЖДУНАРОДНЫХ СИСТЕМ ТЕЛЕФОННОЙ	G.400-G.449
СВЯЗИ НА ОСНОВЕ РАДИОРЕЛЕЙНЫХ ИЛИ СПУТНИКОВЫХ ЛИНИЙ	
И ИХ СОЕДИНЕНИЕ С МЕТАЛЛИЧЕСКИМИ ПРОВОДНЫМИ ЛИНИЯМИ	
КООРДИНАЦИЯ РАДИОТЕЛЕФОНИИ И ПРОВОДНОЙ ТЕЛЕФОНИИ	G.450–G.499
ХАРАКТЕРИСТИКИ СРЕДЫ ПЕРЕДАЧИ И ОПТИЧЕСКИХ СИСТЕМ	G.600-G.699
ЦИФРОВОЕ ОКОНЕЧНОЕ ОБОРУДОВАНИЕ	G.700-G.799
ЦИФРОВЫЕ СЕТИ	G.800-G.899
ЦИФРОВЫЕ УЧАСТКИ И СИСТЕМА ЦИФРОВЫХ ЛИНИЙ	G.900-G.999
КАЧЕСТВО ОБСЛУЖИВАНИЯ И ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ –	G.1000-G.1999
ОБЩИЕ И СВЯЗАННЫЕ С ПОЛЬЗОВАТЕЛЕМ АСПЕКТЫ	
ХАРАКТЕРИСТИКИ СРЕДЫ ПЕРЕДАЧИ	G.6000-G.6999
ПЕРЕДАЧА ДАННЫХ ПО ТРАНСПОРТНЫМ СЕТЯМ – ОБЩИЕ ПОЛОЖЕНИЯ	G.7000-G.7999
АСПЕКТЫ ПЕРЕДАЧИ ПАКЕТОВ ПО ТРАНСПОРТНЫМ СЕТЯМ	G.8000-G.8999
Аспекты передачи данных Ethernet по транспортным сетям	G.8000-G.8099
Аспекты передачи сообщений MPLS по транспортным сетям	G.8100-G.8199
Целевые параметры синхронизации, качества и готовности	G.8200-G.8299
Управление обслуживанием	G.8600-G.8699
СЕТИ ДОСТУПА	G.9000-G.9999

Для получения более подробной информации просьба обращаться к перечню Рекомендаций МСЭ-Т.

Рекомендация МСЭ-Т G.8262/Y.1362

Характеристики хронирования ведомых тактовых генераторов оборудования синхронного Ethernet

Резюме

В Рекомендации МСЭ-Т G.8262/Y.1362 изложены требования к хронирующим устройствам, применяемым при синхронизации сетевого оборудования, которое используется в синхронной сети Ethernet. В данной Рекомендации определяются требования к тактовым генераторам, например ширина полосы, точность частоты, удержание и генерация шума.

Хронологическая справка

Издание	Рекомендация	Утверждение	Исследовательская комиссия	Уникальный идентификатор st
1.0	MCЭ-T G.8262/Y.1362	13.08.2007 г.	15-я	11.1002/1000/9190
1.1	МСЭ-Т G.8262/Y.1362 (2007), Попр. 1	29.04.2008 г.	15-я	11.1002/1000/9417
1.2	МСЭ-Т G.8262/Y.1362 (2007), Попр. 2	13.01.2010 г.	15-я	11.1002/1000/10432
2.0	MCЭ-T G.8262/Y.1362	29.07.2010 г.	15-я	11.1002/1000/10909
2.1	МСЭ-Т G.8262/Y.1362 (2010), Попр. 1	13.02.2012 г.	15-я	11.1002/1000/11523
2.2	МСЭ-Т G.8262/Y.1362 (2010), Попр. 2	29.10.2012 г.	15-я	11.1002/1000/11814
3.0	MCЭ-T G.8262/Y.1362	13.01.2015 г.	15-я	11.1002/1000/12389

Ключевые слова

Тактовый генератор, дрожание, синхронизация, фазовый дрейф.

^{*} Для получения доступа к Рекомендации наберите в адресном поле вашего браузера URL: http://handle.itu.int/, после которого следует уникальный идентификатор Рекомендации. Например, http://handle.itu.int/11.1002/1000/11830-en.

ПРЕДИСЛОВИЕ

Международный союз электросвязи (МСЭ) является специализированным учреждением Организации Объединенных Наций в области электросвязи и информационно-коммуникационных технологий (ИКТ). Сектор стандартизации электросвязи МСЭ (МСЭ-Т) — постоянный орган МСЭ. МСЭ-Т отвечает за изучение технических, эксплуатационных и тарифных вопросов и за выпуск Рекомендаций по ним с целью стандартизации электросвязи на всемирной основе.

На Всемирной ассамблее по стандартизации электросвязи (ВАСЭ), которая проводится каждые четыре года, определяются темы для изучения исследовательскими комиссиями МСЭ-Т, которые, в свою очередь, вырабатывают Рекомендации по этим темам.

Утверждение Рекомендаций МСЭ-Т осуществляется в соответствии с процедурой, изложенной в Резолюции 1 ВАСЭ.

В некоторых областях информационных технологий, которые входят в компетенцию МСЭ-Т, необходимые стандарты разрабатываются на основе сотрудничества с ИСО и МЭК.

ПРИМЕЧАНИЕ

В настоящей Рекомендации термин "администрация" используется для краткости и обозначает как администрацию электросвязи, так и признанную эксплуатационную организацию.

Соблюдение положений данной Рекомендации осуществляется на добровольной основе. Однако данная Рекомендация может содержать некоторые обязательные положения (например, для обеспечения функциональной совместимости или возможности применения), и в таком случае соблюдение Рекомендации достигается при выполнении всех указанных положений. Для выражения требований используются слова "следует", "должен" ("shall") или некоторые другие обязывающие выражения, такие как "обязан" ("must"), а также их отрицательные формы. Употребление таких слов не означает, что от какой-либо стороны требуется соблюдение положений данной Рекомендации.

ПРАВА ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ

МСЭ обращает внимание на вероятность того, что практическое применение или выполнение настоящей Рекомендации может включать использование заявленного права интеллектуальной собственности. МСЭ не занимает какую бы то ни было позицию относительно подтверждения, действительности или применимости заявленных прав интеллектуальной собственности, независимо от того, доказываются ли такие права членами МСЭ или другими сторонами, не относящимися к процессу разработки Рекомендации.

На момент утверждения настоящей Рекомендации МСЭ получил извещение об интеллектуальной собственности, защищенной патентами, которые могут потребоваться для выполнения настоящей Рекомендации. Однако те, кто будет применять Рекомендацию, должны иметь в виду, что вышесказанное может не отражать самую последнюю информацию, и поэтому им настоятельно рекомендуется обращаться к патентной базе данных БСЭ по адресу: http://www.itu.int/ITU-T/ipr/.

© ITU 2016

Все права сохранены. Ни одна из частей данной публикации не может быть воспроизведена с помощью каких бы то ни было средств без предварительного письменного разрешения МСЭ.

СОДЕРЖАНИЕ

1	C4	The state of the s	
1		рименения	
2	Справочные документы		
3	Определ	іения	
4	Сокращ	ения и акронимы	
5	Соглаш	ения по терминологии	
6	Точност	ъ частоты	
	6.1	ЕЕС-вариант 1	
	6.2	ЕЕС-вариант 2	
7	Полосы	захвата, удержания и потери синхронизации	
	7.1	Полоса захвата	
	7.2	Полоса удержания	
	7.3	Полоса потери синхронизации	
8	Генерац	ия шума	
	8.1	Фазовый дрейф в синхронном режиме	
	8.2	Фазовый дрейф без синхронизации	
	8.3	Дрожание	
9	Устойчи	вость к шуму	
	9.1	Устойчивость к фазовому дрейфу	
	9.2	Устойчивость к дрожанию	
10	Передач	а шума	
	10.1	ЕЕС-вариант 1	
	10.2	ЕЕС-вариант 2	
11	Переход	цные характеристики и характеристики удержания синхронизации	
	11.1	Краткосрочная фазовая переходная характеристика	
	11.2	Долгосрочная характеристика фазового переходного состояния (удержание)	
	11.3	Фазовая характеристика при прерываниях входного сигнала	
	11.4	Скачок фазы	
12	Интерф	ейсы	
	12.1	Внешние интерфейсы синхронизации	
Допо		Гибридные сетевые элементы с использованием интерфейсов STM-N и (ETY)	
Допо	Рекомен	- Взаимосвязь между требованиями, содержащимися в настоящей ідации, и другими ключевыми Рекомендациями, относящимися к іизации	
Допо	лнение III	– Перечень интерфейсов Ethernet, применимых для синхронного Ethernet	
	лнение IV	– Вопросы, связанные с синхронным Ethernet по интерфейсам 1000BASE-T	
Допо		– Соображения по вопросам измерения передачи шума для тактовых оров EEC-вариант 2	
Библ	•	· · · · · · · · · · · · · · · · · · ·	
	_ *		

Введение

Метод синхронного Ethernet относится к методу распределенных первичных эталонных тактовых генераторов (PRC) или первичных эталонных генераторов сигнала хронирования (PRTC) (например, на основе глобальной навигационной спутниковой системы (GNSS)) или методу "ведущий-ведомый" с использованием синхронного физического уровня (например, ETY, STM-N). Эти методы широко применяются для синхронизации сетей с временным разделением каналов (TDM) и сетей подвижной транзитной связи.

Рекомендация МСЭ-Т G.8262/Y.1362

Характеристики хронирования ведомых тактовых генераторов оборудования синхронного Ethernet

1 Сфера применения

В настоящей Рекомендации описываются минимальные требования к устройствам хронирования, используемым для синхронизации сетевого оборудования, которое поддерживает синхронный Ethernet. Поддерживается распределение тактовых генераторов на основе методов линейного кода синхронной сети (например, синхронного Ethernet).

Данная Рекомендация позволяет обеспечить правильную работу сети, когда тактовый генератор оборудования синхронного Ethernet (EEC-вариант 1 или 2) хронируется другим тактовым генератором сетевого оборудования или более высококачественным тактовым генератором.

В этой Рекомендации содержатся требования к точности тактового сигнала, передаче шума, характеристикам удержания, помехоустойчивости и генерации шума. Данные требования применяются при нормальных условиях окружающей среды, предусмотренных для оборудования.

В настоящей Рекомендации рассматриваются два варианта синхронного Ethernet. Первый вариант, называемый "ЕЕС-вариант 1", относится к оборудованию синхронного Ethernet, предназначенному для взаимодействия с сетями, оптимизированными для иерархии 2048 кбит/с. Эти сети допускают наихудший вариант эталонной цепи синхронизации, как указано на рисунке 8-5 [ITU-T G.803]. Второй вариант, называемый "ЕЕС-вариант 2", применяется к оборудованию синхронного Ethernet, предназначенному для взаимодействия с сетями, оптимизированными для иерархии 1544 кбит/с. Эталонная цепь синхронизации для этих сетей определяется в разделе II.3 [ITU-T G.813].

Ведомый тактовый генератор оборудования синхронного Ethernet должен соответствовать всем требованиям, установленным для какого-либо одного варианта, без смешивания требований к EEC для вариантов 1 и 2. В тех разделах, где указывается только одно требование, это требование является общим для обоих вариантов. В будущем предполагается согласовать варианты 1 и 2 EEC. Задачей синхронного Ethernet является обеспечение взаимодействия с существующими сетями синхронизации на основе [ITU-T G.813].

Особое внимание следует уделять взаимодействию между сетями с оборудованием синхронного Ethernet на основе EEC-вариант 1 и сетями с оборудованием синхронного Ethernet на основе EEC-вариант 2.

Некоторые сетевые элементы (NE) синхронного Ethernet могут иметь более высококачественный тактовый генератор. Настоящая Рекомендация позволяет обеспечить правильную работу сети, когда оборудование синхронного Ethernet (EEC-вариант 1 или 2) хронируется другим оборудованием синхронного Ethernet (аналогичный вариант), оборудованием тактового генератора СЦИ (SEC) или более высококачественным тактовым генератором. Для сетей синхронного Ethernet рекомендуется иерархическое распределение сигналов синхронизации. Сигналы синхронизации не должны переходить от синхронного Ethernet, работающего в автономном режиме/режиме удержания, к генератору более высокого качества, поскольку последний не должен следовать за сигналом синхронного Ethernet, находящегося в состоянии отказа.

Некоторые виды оборудования Ethernet, такие как регенераторы/ретрансляторы, должны обеспечивать возможность сквозной синхронизации для передачи сигналов хронирования через синхронный Ethernet. Такое оборудование является предметом дальнейшего изучения.

Более подробная информация о синхронном Ethernet содержится в [ITU-T G.781], [ITU-T G.8261] и [ITU-T G.8264].

2 Справочные документы

Указанные ниже Рекомендации МСЭ-Т и другие справочные документы содержат положения, которые путем ссылок на них в данном тексте составляют положения настоящей Рекомендации. На момент публикации указанные издания были действующими. Все Рекомендации и другие справочные документы могут подвергаться пересмотру; поэтому всем пользователям данной Рекомендации предлагается изучить возможность применения последнего издания Рекомендаций и других справочных документов, перечисленных ниже. Перечень действующих на настоящий момент Рекомендаций МСЭ-Т регулярно публикуется. Ссылка на документ, приведенный в настоящей Рекомендации, не придает ему как отдельному документу статус Рекомендации.

[ITU-T G.703]	Recommendation ITU-T G.703 (2001), <i>Physical/electrical characteristics</i> of hierarchical digital interfaces.
[ITU-T G.781]	Recommendation ITU-T G.781 (1999), Synchronization layer functions.
[ITU-T G.803]	Recommendation ITU-T G.803 (2000), Architecture of transport networks based on the synchronous digital hierarchy (SDH).
[ITU-T G.810]	Recommendation ITU-T G.810 (1996), Definitions and terminology for synchronization networks.
[ITU-T G.811]	Recommendation ITU-T G.811 (1997), Timing characteristics of primary reference clocks.
[ITU-T G.812]	Recommendation ITU-T G.812 (2004), Timing requirements of slave clocks suitable for use as node clocks in synchronization networks.
[ITU-T G.813]	Recommendation ITU-T G.813 (2003), Timing characteristics of SDH equipment slave clocks (SEC).
[ITU-T G.825]	Recommendation ITU-T G.825 (2000), The control of jitter and wander within digital networks which are based on the synchronous digital hierarchy (SDH).
[ITU-T G.8261]	Рекомендация МСЭ-Т G.8261/Y.1361 (2008 г.), <i>Аспекты хронирования</i> и синхронизации в пакетных сетях.
[ITU-T G.8264]	Recommendation ITU-T G.8264/Y.1364 (2008), <i>Distribution of timing information through packet networks</i> .
[ITU-T G.8272]	Рекомендация МСЭ-Т G.8272 (2015 г.), <i>Характеристики хронирования первичных эталонных тактовых генераторов</i> .
[IEEE 802.3]	IEEE Standard 802.3 (2012), IEEE Standard for Ethernet.

3 Определения

В настоящей Рекомендации используются термины и определения, приведенные в [ITU-T G.810].

4 Сокращения и акронимы

В настоящей Рекомендации используются следующие сокращения и акронимы.

BITS	Building Integrated Timing Source	Встроенный интегрированный источник синхронизации
BPSK	Binary Phase Shift Keying	Двухпозиционная фазовая манипуляция
CSMA/CD	Carrier Sense Multiple Access with Collision Detection	Многостанционный доступ с контролем несущей и обнаружением конфликтов
DSL	Digital Subscriber Line	Цифровая абонентская линия
EC	Equipment Clock	Тактовый генератор оборудования
EEC	Synchronous Ethernet Equipment Clock	Тактовый генератор оборудования синхронной сети Ethernet

ESMC	Ethernet Synchronization Message Channel		Канал передачи сообщений синхронизации Ethernet
ETH	Ethernet MAC layer network		Сеть Ethernet уровня MAC
ETY	Ethernet PHY layer network		Сеть Ethernet уровня РНҮ
GNSS	Global Navigation Satellite System		Глобальная навигационная спутниковая система
MAC	Media Access Control		Управление доступом к среде передачи данных
MTIE	Maximum Time Interval Error		Максимально допустимая ошибка временного интервала
NE	Network Element		Элемент сети
NRZ	Non-Return to Zero		Без возврата к нулю
OAM	Operations, Administration and Maintenance		Эксплуатация, администрирование и техническое обслуживание
PAM	Pulse Amplitude Modulation		Амплитудно-импульсная модуляция
PHY	Physical (layer)		Физический (уровень)
ppm	parts per million		частей на миллион
PRC	Primary Reference Clock		Первичный эталонный тактовый генератор
PRTC	Primary Reference Time Clock		Первичный эталонный генератор сигналов хронирования
SDH	Synchronous Digital Hierarchy	СЦИ	Синхронная цифровая иерархия
SEC	SDH Equipment Clock		Тактовый сигнал оборудования СЦИ
SSM	Synchronization Message Channel		Канал передачи сообщений синхронизации
SSU	Synchronization Supply Unit		Источник синхронизации
STM-N	Synchronous Transport Module-N		Синхронный транспортный модуль уровня N
TDEV	Time Deviation		Отклонение времени
TDM	Time Division Multiplexing		Временное уплотнение (каналов)
UI	Unit Interval		Единичный интервал
UTC	Coordinated Universal Time		Всемирное координированное время

5 Соглашения по терминологии

Отсутствуют.

6 Точность частоты

6.1 EEC-вариант 1

В условиях автономной работы погрешность выходной частоты EEC не должна превышать 4,6 ppm по отношению к опорному сигналу, прослеживаемому до тактового генератора [ITU-T G.811] или [ITU-T G.8272].

ПРИМЕЧАНИЕ. – Интервал времени, на котором должна соблюдаться указанная точность, подлежит дальнейшему изучению. Были предложены значения для этого интервала в один месяц и один год.

6.2 ЕЕС-вариант 2

В условиях длительного удержания синхронизации погрешность выходной частоты для узловых тактовых генераторов различных типов не должна превышать 4,6 ppm по отношению к опорному сигналу, прослеживаемому до первичного эталонного тактового генератора, в течение периода времени T одного года.

 Π РИМЕЧАНИЕ. – Период времени T применяется после непрерывной синхронной работы в течение 30 дней.

7 Полосы захвата, удержания и потери синхронизации

7.1 Полоса захвата

7.1.1 EEC-вариант 1

Минимальная полоса захвата должна составлять $\pm 4,6$ ppm, независимо от смещения частоты внутреннего генератора колебаний.

7.1.2 EEC-вариант 2

Минимальная полоса захвата должна составлять $\pm 4,6$ ppm, независимо от смещения частоты внутреннего генератора.

7.2 Полоса удержания

7.2.1 EEC-вариант 1

Полоса удержания для ЕЕС-вариант 1 не требуется.

7.2.2 EEC-вариант 2

Полоса удержания для EEC-вариант 2 должна составлять $\pm 4,6$ ppm, независимо от смещения частоты внутреннего генератора.

7.3 Полоса потери синхронизации

7.3.1 EEC-вариант 1

Полоса потери синхронизации подлежит дальнейшему изучению. Было предложено минимальное значение $\pm 4,6$ ppm.

7.3.2 EEC-вариант 2

Полоса потери синхронизации неприменима.

8 Генерация шума

Шум, генерируемый ЕЕС, представляет собой фазовый шум, который создается на выходе при идеальном входном опорном сигнале или когда тактовый генератор находится в состоянии удержания синхронизации. Подходящий опорный сигнал для целей практических испытаний предполагает уровень характеристик со стабильностью по крайней мере в десять раз превышающей требования к выходному сигналу. Способность тактового генератора ограничить этот шум описывается его характеристикой стабильности частоты. Полезными показателями генерируемого шума служат максимальная погрешность временного интервала (МТІЕ) и отклонение времени (TDEV).

Значения МТІЕ и TDEV измеряются через эквивалент 10- Γ ц измерительного фильтра низких частот первого порядка с максимальным временем стробирования, $\tau_0 = 1/30$ секунды. Минимальный период измерения TDEV составляет двенадцатикратный период интеграции ($T=12\,\tau$).

8.1 Фазовый дрейф в синхронном режиме

8.1.1 EEC-вариант 1

Когда ЕЕС находится в синхронном режиме и синхронизирован с опорным генератором без фазового дрейфа, величина МТІЕ, измеренная с помощью конфигурации синхронизированного тактового генератора, представленной на рисунке 1а [ITU-T G.810], при постоянной температуре (в пределах $\pm 1^{\circ}$ K), должна находиться в пределах, указанных в таблице 1.

Таблица 1 – Генерация фазового дрейфа (MTIE) для EEC-вариант 1 при постоянной температуре

Предельное значение МТІЕ (нс)	Интервал наблюдения, τ (c)
40	$0,1 \le \tau \le 1$
$40 \ au^{0,1}$	$1 < \tau \le 100$
$25,25 \tau^{0,2}$	$100 < \tau \le 1000$

Результирующее требование показано толстой сплошной линией на рисунке 1.

С учетом влияния температуры допуск на вклад одного ЕЕС в общее значение МТІЕ увеличивается на значения, указанные в таблице 2.

Таблица 2 — Дополнительная генерация фазового (MTIE) для EEC-вариант 1 с учетом влияния температуры

Дополнительный допуск MTIE (нc)	Интервал наблюдения, τ (с)
0,5 τ	$\tau \le 100$
50	τ > 100

Результирующие требования показаны тонкой сплошной линией на рисунке 1.

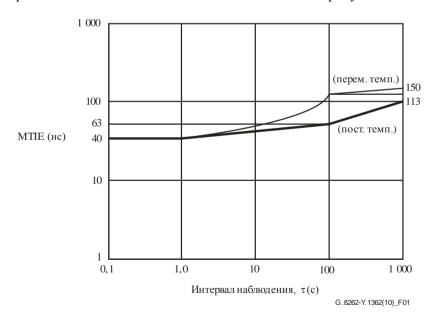


Рисунок 1 – Генерация фазового дрейфа (МТІЕ) для ЕЕС-вариант 1

Когда EEC работает в синхронном режиме, значение TDEV, измеренное с помощью конфигурации синхронизированного тактового генератора, представленной на рисунке 1a [ITU-T G.810], при постоянной температуре (в пределах $\pm 1^{\circ}$ K), должно находиться в пределах, указанных в таблице 3.

Таблица 3 – Генерация фазового дрейфа (TDEV) для EEC-вариант 1 при постоянной температуре

Предельное значение TDEV (нс)	Интервал наблюдения, τ (с)
3,2	$0.1 < \tau \le 25$
$0,64 \ au^{0,5}$	$25 < \tau \le 100$
6,4	$100 < \tau \le 1\ 000$

Результирующие требования показаны на рисунке 2.

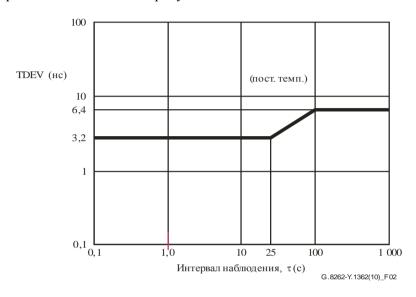


Рисунок 2 – Генерация фазового дрейфа (TDEV) для EEC-вариант 1 при постоянной температуре

Допуск на вклад одного ЕЭС в общее значение TDEV с учетом влияния температуры подлежит дальнейшему изучению.

8.1.2 EEC-вариант 2

Когда EEC работает в синхронном режиме и синхронизирован с эталонным генератором без фазового дрейфа, значения MTIE и TDEV, измеренные на выходе при постоянной температуре (в пределах $\pm 1^{\circ}$ K), должны находиться в пределах, указанных соответственно в таблицах 4 и 5.

Таблица 4 — Генерация фазового дрейфа (MTIE) для EEC-вариант 2 при постоянной температуре

Предельное значение MTIE (нс)	Интервал наблюдения, τ (с)
20	$0,1 < \tau \le 1$
$20 \ au^{0,48}$	$1 < \tau \le 10$
60	$10 < \tau \le 1\ 000$

Таблица 5 — Генерация фазового дрейфа (TDEV) для EEC-вариант 2 при постоянной температуре

Предельное значение TDEV (нс)	Интервал наблюдения, τ (с)
3,2 τ ^{-0,5}	$0,1 < \tau \le 2,5$
2	$2,5 < \tau \le 40$
$0,32 \ au^{0,5}$	$40 < \tau \le 1\ 000$
10	$1~000 < \tau \le 10~000$

Результирующие требования показаны на рисунках 3 и 4.

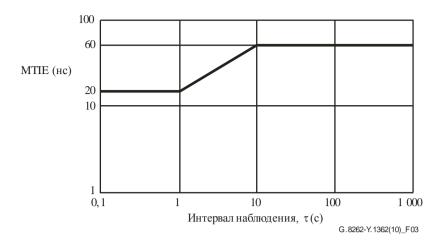


Рисунок 3 – Генерация фазового дрейфа (MTIE) для EEC-вариант 2 при постоянной температуре

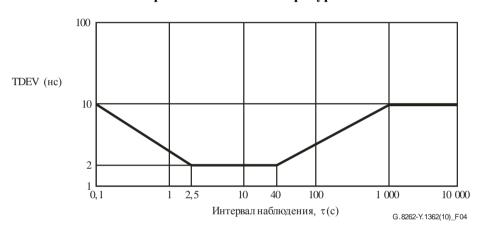


Рисунок 4 – Генерация фазового дрейфа (TDEV) для EEC-вариант 2 при постоянной температуре

8.2 Фазовый дрейф без синхронизации

Когда тактовый генератор не привязан к опорному сигналу синхронизации, случайные составляющие шума незначительны по сравнению с детерминированными эффектами, такими как начальное смещение частоты. Поэтому эффекты фазового дрейфа без синхронизации рассматриваются в разделе 11.2.

8.3 Дрожание

Большинство требований настоящей Рекомендации не зависят от выходного интерфейса, на котором они измеряются, однако для создаваемого дрожания это не так; требования к создаваемому дрожанию опираются на существующие рекомендации, в которых для разных скоростей интерфейсов указаны разные предельные значения. Для интерфейсов, указанных в разделе 12, эти требования излагаются отдельно.

8.3.1 EEC-варианты 1 и 2

Дрожание на выходе для интерфейса синхронного Ethernet

При отсутствии дрожания на входе интерфейса синхронизации внутреннее дрожание на выходах интерфейсов синхронного Ethernet, измеренное в течение 60-секундного интервала, не должно превышать пределов, указанных в таблице 6.

Таблица 6 – Возникновение дрожания в синхронном Ethernet для EEC-варианты 1 и 2

Интерфейс	Измерительный фильтр	Полный размах амплитуды (UI)
1G (Примечания 1, 2, 4, 5)	От 2,5 кГц до 10 МГц	0,50
10G (Примечания 1, 3, 4, 5)	От 20 кГц до 80 МГц	0,50
25G (Примечания 1, 4, 5, 6)	От 20 кГц до 200 МГц	1,2

ПРИМЕЧАНИЕ 1. — Для синхронного Ethernet отсутствуют конкретные требования по дрожанию на высоких частотах. В дополнение к конкретным требованиям по дрожанию в широкой полосе для синхронного Ethernet, приведенным в этой таблице, должны выполняться соответствующие требования по дрожанию [IEEE 802.3]. [IEEE 802.3] определяет методику измерения. Применимость этой методики измерений в условиях сети синхронизации подлежит дальнейшему изучению.

ПРИМЕЧАНИЕ 2. – Диапазон 1G включает в себя интерфейсы 1000BASE-KX, -SX, -LX; многополосные интерфейсы подлежат дальнейшему изучению.

ПРИМЕЧАНИЕ 3. – Диапазон 10G включает в себя интерфейсы 10GBASE-SR/LR/ER, 10GBASE-LRM, 10GBASE-SW/LW/EW и многополосные интерфейсы, состоящие из полос 10G, в том числе 40GBASE-KR4/CR4/SR4/LR4 и 100GBASE-CR10/SR10.

ПРИМЕЧАНИЕ 4. – Диапазон 25G включает в себя многополосные интерфейсы, состоящие из полос 25G, в том числе 100GBASE-LR4/ER4.

ПРИМЕЧАНИЕ 5. – 1G: (1000BASE-KX, -SX, -LX) 1 UI = 0,8 нс

10G (10GBASE-SR/LR/ER, -LRM, 40GBASE-KR4/CR4/SR4/LR4,

100GBASE-CR10/SR10): 1 UI = 96,97 πc 10G (10GBASE-SW/LW/EW): 1 UI = 100,47 πc 25G (100GBASE-LR4/ER4): 1 UI = 38,79 πc

ПРИМЕЧАНИЕ 6. — Размах амплитуды дрожания для полос 25G увеличен с 0,5 UI до 1,2 UI, то есть в 2,4 раза. Для компенсации этого увеличения сопрягающую частоту фильтра высоких частот, используемую для интерфейса 10G, нужно сначала увеличить в 2,5 раза, чтобы учесть повышение скорости в линии относительно 10G, а затем уменьшить в 2,4 раза, чтобы учесть увеличение амплитуды. Это дает сопрягающую частоту фильтра высоких частот 20,833 к Γ ц, которая для удобства округляется до 20 к Γ ц; это округление до меньшего значения немного ужесточает данное требование.

Дрожание на выходе интерфейсов 2048 кГц, 2048 кбит/с, 1544 кбит/с и STM-N

Дрожание, создаваемое в интерфейсах 2048 кГц и 2048 кбит/с, а также в интерфейсе синхронного транспортного модуля-N (STM-N) для варианта 1, определяется в разделе 7.3 [ITU-T G.813].

Дрожание, создаваемое в интерфейсе 1544 кбит/с и в интерфейсах STM-N для варианта 2, определяется в разделе 7.3 [ITU-T G.813].

9 Устойчивость к шуму

Устойчивость ЕЕС к шуму означает минимально допустимый уровень фазового шума на входе тактового генератора, который должен соблюдаться, в то же время:

- оставаясь в пределах установленных характеристик тактового сигнала. Точные пределы характеристик подлежат дальнейшему изучению;
- не вызывая появления каких-либо аварийных сигналов;
- не вызывая смену опорного тактового генератора;
- не вызывая переход тактового генератора в режим удержания синхронизации.

В общем случае устойчивость ЕЕС к шуму — это же самое, что и сетевые ограничения интерфейса синхронизации в целях сохранения приемлемых характеристик. Однако сетевые ограничения интерфейса синхронизации могут различаться в зависимости от приложения. Поэтому для определения устойчивости ЕЕС к шуму следует использовать сетевые ограничения для наихудшего случая. Различные сетевые ограничения рассматриваются в Дополнении I [ITU-T G.813].

Допуски на фазовый дрейф и дрожание, приведенные в разделах 9.1 и 9.2, соответствуют наихудшим допустимым уровням для интерфейса синхронизации. Сигнал TDEV, используемый для испытаний на соответствие, должен формироваться путем добавления источников белого гауссова шума, каждый из которых отфильтрован так, чтобы получить подходящий тип шумового процесса с надлежащей амплитудой.

МТІЕ и TDEV измеряются через эквивалент 10-Гц измерительного фильтра низких частот первого порядка с максимальным временем стробирования, $\tau_0 = 1/30$ секунды. Минимальный период измерения TDEV составляет двенадцатикратный период интеграции ($T = 12 \tau$).

9.1 Устойчивость к фазовому дрейфу

9.1.1 ЕЕС-вариант 1

Значения допустимого фазового дрейфа на входе, выраженные в форме ограничений MTIE и TDEV, приведены в таблицах 7 и 8 соответственно.

Таблица 7 – Допустимый фазовый дрейф на входе (МТІЕ) для EEC-вариант 1

Предельное значение МТІЕ (мкс)	Интервал наблюдения, τ (с)	
0,25	$0.1 < \tau \le 2.5$	
0,1 τ	$2,5 < \tau \le 20$	
2	$20 < \tau \le 400$	
0,005 τ	400 < τ ≤ 1 000	

Таблица 8 – Допустимый фазовый дрейф на входе (TDEV) для EEC-вариант 1

Предельное значение TDEV (нс)	Интервал наблюдения, τ (с)	
12	$0.1 < \tau \le 7$	
1,7 τ	$7 < \tau \le 100$	
170	$100 < \tau \le 1\ 000$	

Результирующие требования показаны на рисунках 5 и 6.

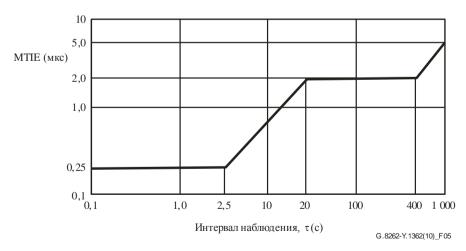


Рисунок 5 – Допустимый фазовый дрейф на входе (МТІЕ) для ЕЕС-вариант 1

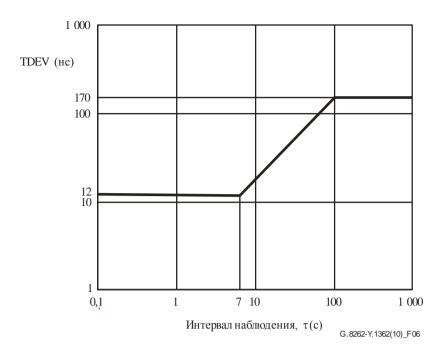


Рисунок 6 – Допустимый фазовый дрейф на входе (TDEV) для EEC-вариант 1

Подходящие тестовые сигналы для проверки соответствия маске, приведенной на рисунке 6, находятся в стадии изучения. Для проверки соответствия маске, показанной на рисунке 5, можно использовать тестовые сигналы с синусоидальными колебаниями фазы в соответствии с уровнями, указанными в таблице 9.

Таблица 9 — Нижний предел максимально допустимого синусоидального фазового дрейфа на входе для EEC-вариант 1

Полны	Полный размах амплитуды			Часто	та фазового д	рейфа	
А1 (мкс)	А2 (мкс)	А3 (мкс)	<i>f</i> ₄ (мГц)	<i>f</i> ₃ (мГц)	f_2 (м Γ ц)	f_1 (Гц)	f_0 (Гц)
0,25	2	5	0,32	0,8	16	0,13	10

Результирующие требования показаны на рисунке 7.

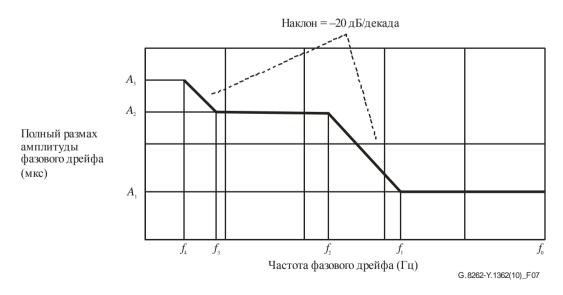


Рисунок 7 — Нижний предел максимально допустимого синусоидального фазового дрейфа на входе для EEC-вариант 1

9.1.2 ЕЕС-вариант 2

Допустимая величина фазового дрейфа EEC, выраженная в TDEV, приведена в таблице 10.

Таблица 10 – Допустимый фазовый дрейф на входе (TDEV) для EEC-вариант 2

Предельное значение TDEV (нс)	Интервал наблюдения, τ (с)
17	$0,1 < \tau \le 3$
5,77 τ	$3 < \tau \le 30$
$31,6325 \tau^{0,5}$	$30 < \tau \le 1000$

Результирующее требование показано на рисунке 8. Требование, выраженное в МТІЕ, не определяется.

Рисунок 8 – Допустимый фазовый дрейф на входе (TDEV) для EEC-вариант 2

9.2 Устойчивость к дрожанию

9.2.1 ЕЕС-варианты 1 и 2

Допустимая величина дрожания для интерфейса синхронного Ethernet:

Нижний предел максимально допустимого дрожания на входе интерфейсов Ethernet 1G для EEC-варианты 1 и 2 приведен в таблице 11 и на рисунке 9.

Таблица 11 – Допуск на дрожание в широкой полосе для синхронного Ethernet 1G в случае EEC-варианты 1 и 2

Размах амплитуды дрожания (UI)	Частота f (Гц)	
312,5	10 < <i>f</i> ≤ 12,1	
3 750 f ⁻¹	$12,1 < f \le 2,5 \ k$	
1,5 $2,5 \ k < f \le 50 \ k$		
ПРИМЕЧАНИЕ. – Диапазон 1G включает в себя 1000BASE-KX, -SX, -LX; многополосные интерфейсы подлежат дальнейшему изучению.		

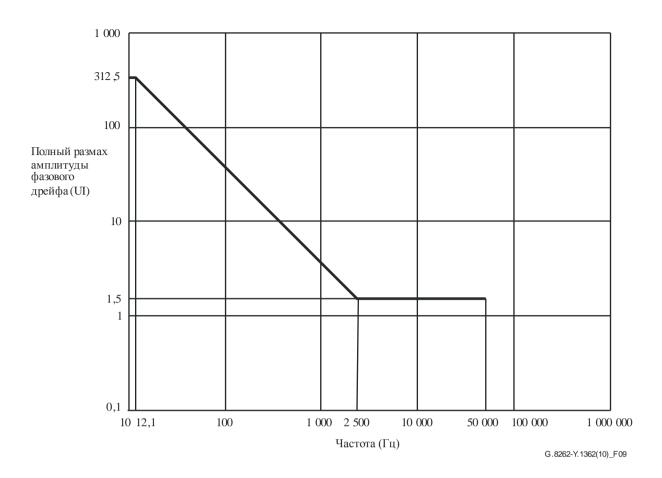


Рисунок 9 – Допуск на дрожание в широкой полосе для синхронного Ethernet 1G в случае EEC-варианты 1 и 2

ПРИМЕЧАНИЕ 1. – В дополнение к конкретным требованиям по допуску на дрожание в широкой полосе для синхронного Ethernet должны выполняться соответствующие требования по допуску на дрожание [IEEE 802.3].

ПРИМЕЧАНИЕ 2. – Допуск на высокочастотное дрожание и способ генерирования тестового сигнала для интерфейсов с трафиком Ethernet свыше 637 кГц для целей тестирования указаны в [IEEE 802.3].

ПРИМЕЧАНИЕ 3. — Наклон выше уровня 50 к Γ ц составляет 20 дБ/декада. Фактические значения в интервале между 50 к Γ ц и 637 к Γ ц подлежат дальнейшему исследованию, так как методы измерения [IEEE 802.3] и МСЭ-Т не полностью сопоставимы. Информация по характеристикам дрожания МСЭ приведена в Дополнении I [ITU-T G.825].

Значения нижнего предела максимально допустимого дрожания на входе интерфейсов Ethernet 10G для EEC-варианты 1 и 2 приведены в таблице 12 и на рисунке 10.

Таблица 12 – Допуск на дрожание в широкой полосе для синхронного Ethernet 10G в случае EEC-варианты 1 и 2

Размах амплитуды дрожания (UI)	Частота F (Гц)
2 488	$10 < f \le 12,1$
30 000 f ⁻¹	$12,1 < f \le 20 \ k$
1,5	$20 \ k < f \le 40 \ k$

ПРИМЕЧАНИЕ. – Диапазон 10G включает в себя интерфейсы 10GBASE-SR/LR/ER, 10GBASE-LRM, 10GBASE-SW/LW/EW и многополосные интерфейсы, состоящие из полос 10G, в том числе 40GBASE-KR4/CR4/SR4/LR4 и 100GBASE-CR10/SR10.

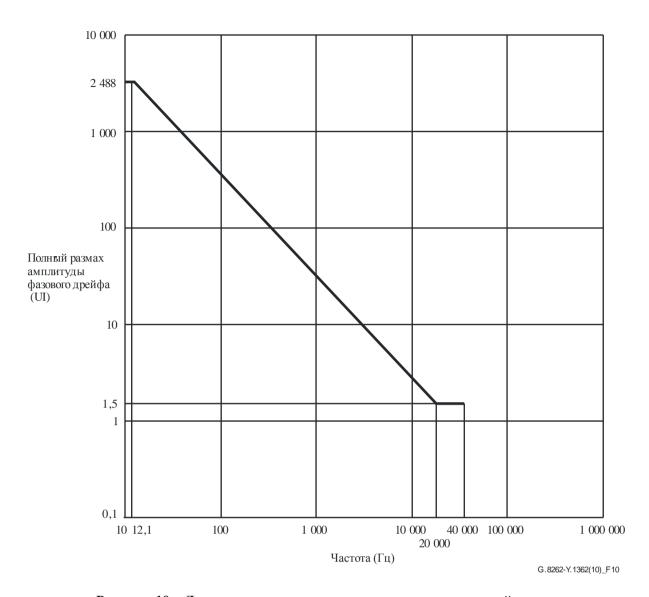


Рисунок 10 – Допуск на широкополосное дрожание в широкой полосе для синхронного Ethernet 10G в случае EEC-варианты 1 и 2

ПРИМЕЧАНИЕ 4. – В дополнение к конкретным требованиям по дрожанию в широкой полосе для синхронного Ethernet должны выполняться соответствующие требования по допуску на дрожание [IEEE 802.3].

ПРИМЕЧАНИЕ 5. — Методы измерения [IEEE 802.3] и МСЭ-Т не вполне сопоставимы. Информация по характеристикам дрожания МСЭ приведена в Дополнении I [ITU-T G.825].

Нижний предел максимально допустимого дрожания на входе интерфейсов Ethernet 25G для EEC-варианты 1 и 2 приведен в таблице 13.

Таблица 13 – Допуск на дрожание в широкой полосе для синхронного Ethernet 25G в случае EEC-варианты 1 и 2

Размах амплитуды дрожания (UI)	Частота $f(\Gamma$ ц)
6 445	$10 < f \le 11,17$
72 000f ⁻¹	$11,17 < f \le 20 \ k$
3,6	$20 \ k < f \le 100 \ k$

ПРИМЕЧАНИЕ. – Диапазон 25G включает в себя многополосные интерфейсы, состоящие из полос по 25G, в том числе 100GBASE-LR4/ER4.

Допуск на дрожание для интерфейсов 2048 кГи, 2048 кбит/с, 1544 кбит/с и STM-N:

Нижний предел максимально допустимого входного дрожания сигналов 2048 кГц и 2048 кбит/с для варианта 1 определяется в разделе 8.2 [ITU-T G.813].

Нижний предел максимально допустимого входного дрожания сигналов внешней синхронизации 1544 кбит/с для варианта 2 определяется в разделе 8.2 [ITU-T G.813].

Нижний предел максимально допустимого входного дрожания для интерфейсов STM-N определяется в [ITU-T G.825].

10 Передача шума

Передаточная характеристика тактового генератора ЕЕС определяет его свойства в отношении передачи ухода входной фазы относительно фазы несущей. ЕЕС можно рассматривать как фильтр нижних частот для значений разности между фактической входной фазой и идеальной входной фазой опорного сигнала. Минимальные и максимальные допустимые полосы пропускания такого фильтра нижних частот основаны на соображениях, описываемых в Дополнении II [ITU-T G.813], и приводятся ниже

В полосе пропускания усиление фазы ЕЕС должно быть меньше 0,2 дБ (2,3%). Вышесказанное относится к линейной модели ЕЕС. Тем не менее реализация не должна ограничиваться этой моделью.

10.1 EEC-вариант 1

Минимально допустимая полоса пропускания для EEC составляет 1 Γ ц. Максимально допустимая полоса пропускания для EEC составляет 10 Γ ц.

10.2 ЕЕС-вариант 2

Сетевые элементы синхронного Ethernet или СЦИ, опирающиеся на сигнал хронирования Ethernet или STM-N, соответствующий маске входного TDEV, указанной на рисунке 8 и в таблице 10, должны выдавать на выходе сигналы, отвечающие ограничениям по выходному TDEV, приведенным в таблице 14.

Таблица 14 — Передача фазового дрейфа для EEC-вариант 2 (максимальный фазовый дрейф на выходе, когда входной фазовый дрейф отвечает требованиям, указанным в таблице 10)

Предельное значение TDEV (нс)	Интервал наблюдения, τ (с)
10,2	$0.1 < \tau \le 1.73$
5,88 τ	$1{,}73 < \tau \leq 30$
$32,26 \tau^{0,5}$	$30 < \tau \le 1\ 000$

Результирующее требование показано в маске, изображенной на рисунке 11. Цель этих масок – обеспечить максимальную полосу пропускания ЕЕС 0,1 Гц. Эти маски не следует использовать для проверки пиковых значений фазового сдвига. Требования к минимальной полосе пропускания отсутствуют.

TDEV измеряется через эквивалент 10- Γ ц измерительного фильтра низких частот первого порядка с максимальным временем стробирования $\tau_0 = 1/30$ с. Минимальный период измерения TDEV составляет двенадцатикратный период интеграции ($T = 12 \tau$).

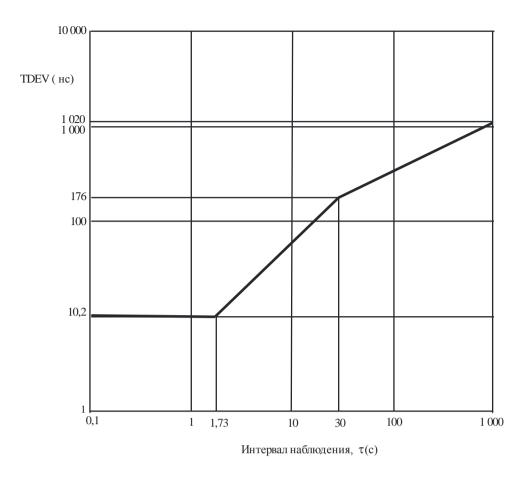


Рисунок 11 — Передача фазового дрейфа EEC-вариант 2 (максимальный фазовый дрейф на выходе, когда входной фазовый дрейф отвечает требованиям, указанным на рисунке 8)

ПРИМЕЧАНИЕ. – Значения, представленные на этой маске передачи, на 2% выше, чем у маски на рисунке 8.

Маски, приведенные на рисунках 8 и 11, используются соответственно для проверки допустимого фазового дрейфа в сети и измерения передачи TDEV; они не указывают ограничение фазового дрейфа в сети, которое должно соблюдаться для удовлетворения требований по накоплению фазового дрейфа нагрузкой. На практике это не приведет к потере синхронизации в EEC, поскольку ограничение на допустимый фазовый дрейф в сети, указанное на рисунке 11, находится в полосе пропускания тактового генератора EEC-вариант 2. Тем не менее это вызовет повышенное накопление фазового дрейфа.

11 Переходные характеристики и характеристики удержания синхронизации

Требования настоящего раздела распространяются на ситуации, когда на входной сигнал действуют сбои или ошибки передачи (например, короткие прерывания, переключение между разными сигналами синхронизации, потеря опорного сигнала и т. д.), приводящие к фазовым переходным процессам на выходе EEC. Во избежание дефектов или отказов передачи необходима устойчивость к таким нарушениям. Отказы и нарушения передачи — это обычные стрессовые условия в среде передачи.

Рекомендуется, чтобы все фазовые изменения на выходе ЕЕС оставались в пределах уровней, указываемых в следующих разделах.

Измерения МТІЕ для тактовых генераторов ЕЕС-вариант 2 осуществляются через эквивалент 100-Гц измерительного фильтра низких частот первого порядка.

11.1 Краткосрочная фазовая переходная характеристика

11.1.1 ЕЕС-вариант 1

Данное требование отражает характеристику тактового генератора в тех случаях, когда (выбранный) входной опорный сигнал потерян из-за отказа в канале опорного сигнала и когда одновременно с обнаружением отказа или вскоре после этого (например, в случаях автономного восстановления) доступен второй входной опорный сигнал, прослеживаемый до того же источника опорной частоты. В таких случаях опорный сигнал теряется не более чем на 15 секунд. Изменение выходной фазы по отношению к входному опорному сигналу до его потери ограничивается следующими требованиями:

Фазовая погрешность не должна превышать $\Delta t + 5 \times 10^{-8} \times S$ секунд за любой период времени S менее 15 с. Время Δt соответствует двум фазовым скачкам, которые могут возникнуть при переходе в состояние удержания синхронизации и обратно, и не должно превышать 120 нс при временном смещении частоты не более чем на 7,5 ppm.

Результирующее общее требование приведено на рисунке 12. Этот рисунок отражает наихудший случай изменения фазы, связанный с переключением опорного тактового сигнала ЕЕС. Тактовые генераторы могут изменять состояние быстрее, чем показано здесь. Справочная информация по требованиям, которые привели к данному требованию, содержится в Дополнении II [ITU-T G.813].

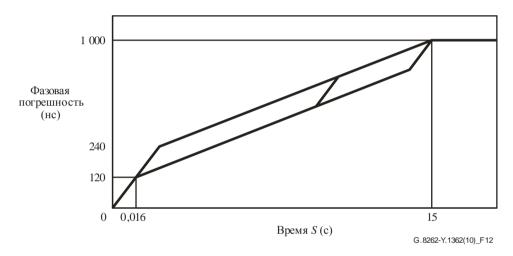


Рисунок 12 — Максимальные переходные состояния фазы на выходе из-за переключения опорного сигнала для EEC-вариант 1

На рисунке 12 показаны два скачка фазы при переключении тактового генератора. Первый скачок отражает первоначальную реакцию на потерю опорного сигнала синхронизации с последующим переходом в режим удержания синхронизации. Величина этого скачка соответствует смещению частоты менее чем на 7,5 ppm за период времени менее 16 мс. Через 16 мс изменение фазы ограничивается линией с наклоном 5×10^{-8} для сдерживания активности указателя на приборе. Второй скачок, который происходит в течение 15 с после входа в режим удержания, вызван переключением на дополнительный опорный сигнал. К этому скачку применяются те же требования. После второго скачка фазовая погрешность должна оставаться постоянной и меньшей 1 мкс.

ПРИМЕЧАНИЕ. – Уход фазы на выходе при переключении между опорными сигналами, которые не относятся к одному и тому же первичному эталонному тактовому генератору (PRC), подлежит дальнейшему изучению.

В тех случаях, когда входной сигнал синхронизации теряется на время более чем 15 с, применяются требования раздела 11.2.

11.1.2 ЕЕС-вариант 2

Во время операций по перенастройке синхронизации (например, переключению опорных сигналов) выходной сигнал тактового генератора должен соответствовать требованиям МТІЕ, указанным в разделе 11.4.2.

11.2 Долгосрочная характеристика фазового переходного состояния (удержание)

Это требование ограничивает максимальный уход фазы в выходном сигнале хронирования. Кроме того, он ограничивает накопление сдвига фазы во время искажений входного сигнала или внутренних возмущений.

11.2.1 ЕЕС-вариант 1

Когда тактовый генератор EEC теряет все свои опорные сигналы, говорят, что он входит в состояние удержания синхронизации. Фазовая погрешность ΔT на выходе EEC по отношению ко входу в момент потери опорного сигнала за любой период S > 15 с не должна превышать следующих пределов:

$$\Delta T(S) = \{(a_1 + a_2)S + 0.5bS^2 + c\}$$
 (HC)

где:

 $a_1 = 50 \text{ нс/с (см. Примечание 1);}$

 $a_2 = 2000$ нс/с (см. Примечание 2);

 $b = 1,16 \times 10^{-4} \text{ нс/c}^2 \text{ (см. Примечание 3);}$

c = 120 нс (см. Примечание 4).

Это ограничение относится к максимальному смещению частоты $\pm 4,6$ ppm. Поведение для S <15 с определяется в разделе 11.1.

ПРИМЕЧАНИЕ 1. — Сдвиг частоты a_1 соответствует начальному смещению частоты в пределах $5 \times 10^{-8} \, (0.05 \, \mathrm{ppm})$.

ПРИМЕЧАНИЕ 2. — Смещение частоты a_2 вызвано изменением температуры после входа тактового генератора в режим удержания и соответствует $2 \times 10^{-6} (2 \text{ ppm})$. При отсутствии изменения температуры член a_2S не вносит никакого вклада в фазовую погрешность.

ПРИМЕЧАНИЕ 3. — Дрейф b вызван старением: $1{,}16 \times 10^{-4}\,\mathrm{hc/c^2}$ соответствует дрейфу частоты $1 \times 10^{-8}\,\mathrm{B}$ сутки (0,01 ppm/сутки). Это значение является производным от типичных характеристик старения через десять дней непрерывной работы. Ежедневное измерение этого параметра не предполагается, поскольку будет доминировать температурный эффект.

ПРИМЕЧАНИЕ 4. – Смещение фазы, c, учитывает любой дополнительный фазовый сдвиг, который может возникнуть во время перехода в состояние удержания синхронизации.

Результирующее общее требование для постоянной температуры (то есть когда влиянием температуры можно пренебречь) приведено на рисунке 13.

$$\Delta T(S) = \left(a_1 S + \frac{b}{2} S^2 + c\right)$$
 (нс).

Рисунок 13 – Допустимая фазовая погрешность для EEC-вариант 1 в режиме удержания синхронизации при постоянной температуре

G.8262-Y.1362(10)_F13

11.2.2 ЕЕС-вариант 2

Когда тактовый генератор EEC теряет все свои опорные сигналы, он входит в состояние удержания синхронизации. Фазовая погрешность ΔT на выходе ведомого тактового генератора с момента потери опорного сигнала за любой период времени S секунд должна удовлетворять следующему ограничению:

$$|\Delta T(S)| \le \{(a_1 + a_2)S + 0.5bS^2 + c\}$$
 (HC).

Производная от $\Delta T(S)$ — относительное смещение частоты — за любой период времени S секунд должна удовлетворять следующему ограничению:

$$|d(\Delta T(S))/dS| \le \{a_1 + a_2 + bS\}$$
 (HC/C).

Вторая производная от $\Delta T(S)$ — дрейф относительного смещения частоты — за любой период времени S секунд должна удовлетворять следующему ограничению:

$$\left|d^2(\Delta T(S))/dS^2\right| \le d$$
 (HC/C²).

При применении вышеуказанных требований для производной $\Delta T(S)$ и второй производной $\Delta T(S)$ период S должен начинаться по окончании любого переходного процесса, связанного с вступлением в режим удержания. Во время этого периода перехода применяются требования по переходным процессам из раздела 11.4.2.

ПРИМЕЧАНИЕ 1. – Параметр a_1 – это начальное смещение частоты при постоянной температуре (± 1 K).

ПРИМЕЧАНИЕ 2. — Параметр a_2 учитывает колебания температуры после перехода тактового генератора в режим удержания. При отсутствии колебаний температуры член $a_2 S$ не вносит вклад в фазовую погрешность.

ПРИМЕЧАНИЕ 3. — Параметр b соответствует среднему дрейфу частоты, вызванному старением. Это значение является производным от типичных характеристик старения через 60 дней непрерывной работы. Ежедневное измерение этого параметра не предполагается, поскольку температурный эффект будет доминировать.

ПРИМЕЧАНИЕ 4. — Смещение фазы, c, учитывает любой дополнительный фазовый сдвиг, который может возникнуть во время перехода в состояние удержания синхронизации.

ПРИМЕЧАНИЕ 5. — Параметр d соответствует максимально допустимой скорости временного дрейфа частоты при постоянной температуре в течение периода удержания. Однако значения d и b не обязательно должны быть равными. Следует отметить, что для некоторых периодов времени, особенно коротких, этот параметр может быть трудно проверяемым и измеренное значение может оказаться незначащим.

Допустимая характеристика фазовой погрешности для ЕЕС-вариант 2 указана в таблице 15.

 EEC-вариант 2

 Применяется для
 S > TBD

 a_1 (Hc/c)
 50

 a_2 (Hc/c)
 300

 b (Hc/c²)
 $4,63 \times 10^{-4}$

 c (Hc)
 1000

 d (Hc/c²)
 $4,63 \times 10^{-4}$

 TBD: подлежит определению.

Таблица 15 – Переходная характеристика во время удержания

11.3 Фазовая характеристика при прерываниях входного сигнала

11.3.1 ЕЕС-вариант 1

При кратковременных прерываниях входных сигналов синхронизации, которые не вызывают переключения опорных сигналов, изменение фазы выходного сигнала не должно превышать 120 нс со смещением частоты не более 7,5 ppm в течение максимального периода в 16 мс.

11.3.2 ЕЕС-вариант 2

Это предмет дальнейшего изучения.

11.4 Скачок фазы

11.4.1 ЕЕС-вариант 1

В редких случаях внутреннего тестирования или других внутренних возмущений оборудования тактового генератора синхронного Ethernet (но исключая серьезные отказы аппаратуры, которые могут привести к срабатыванию защиты оборудования тактового генератора) должны соблюдаться следующие условия:

- изменение фазы в течение любого периода S (мс) длительностью до 16 мс не должно превышать 7.5S нс;
- изменение фазы в течение любого периода S (мс) длительностью от 16 мс до 2,4 с не должно превышать 120 нс;
- для периодов, превышающих 2,4 с, изменение фазы за каждый интервал в 2,4 с не должно превышать 120 нс с временным смещением не более 7,5 ppm до общего значения 1 мкс.

11.4.2 ЕЕС-вариант 2

В редких случаях внутреннего тестирования или операций перенастройки внутри ведомого тактового генератора изменение фазы на выходе EEC-вариант 2 должно соответствовать характеристикам МТІЕ, указанным в таблице 16.

Таблица 16 – Значение МТІЕ на выходе, вызванное операциями переключения/ перенастройки опорных сигналов, для EEC-вариант 2

Предельное значение MTIE (нс)	Интервал наблюдения, τ (с)	
Не указано	$\tau \le 0.014$	
$7,6 + 885 \tau$	$0.014 < \tau \le 0.5$	
300 + 300 τ	$0.5 < \tau \le 2.33$	
1 000	2,33 < τ	

Это требование к МТІЕ иллюстрируется на рисунке 14.

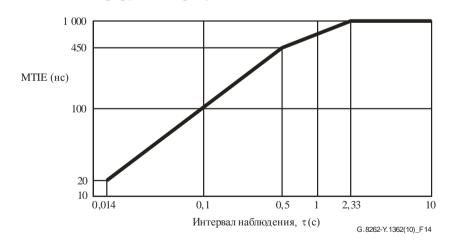


Рисунок 14 — Значение MTIE на выходе, вызванное операциями переключения/перенастройки опорных сигналов, для EEC-вариант 2

12 Интерфейсы

Требования настоящей Рекомендации относятся к внутренним опорным точкам сетевых элементов (NE), в которые встроен тактовый генератор и которые, следовательно, могут быть недоступны для измерения и анализа пользователем. Поэтому характеристики EEC определяются не в этих внутренних опорных точках, а на внешних интерфейсах оборудования.

Входные и выходные интерфейсы синхронизации оборудования Ethernet, в котором могут содержаться тактовые генераторы EEC, это:

- интерфейсы 1544 кбит/с в соответствии с [ITU-T G.703];
- внешние интерфейсы 2048 кГц в соответствии с [ITU-T G.703];
- интерфейсы 2048 кбит/с в соответствии с [ITU-Т G.703];
- интерфейсы трафика STM-N (для гибридных сетевых элементов);
- интерфейс 64 кГц в соответствии с [ITU-T G.703];
- внешние интерфейсы 6312 кГц в соответствии с [ITU-T G.703];
- интерфейсы синхронного Ethernet.

Все перечисленные выше интерфейсы не могут быть реализованы во всех видах оборудования. Эти интерфейсы должны соответствовать требованиям по дрожанию и фазовому дрейфу, установленным в настоящей Рекомендации.

Меднопроводные интерфейсы Ethernet допускают полудуплексный режим и коллизии на линии, что может приводить к подавлению сигналов и нарушению хронирования; поэтому интерфейсы синхронного Ethernet должны работать только в дуплексном режиме и обеспечивать непрерывный поток битов.

ПРИМЕЧАНИЕ. – В целях функциональной совместимости с существующим сетевым оборудованием интерфейсы к тактовым сигналам и от тактовых сигналов внешних сетей могут поддерживать канал сообщений синхронизации (SSM).

12.1 Внешние интерфейсы синхронизации

Для синхронизации оборудования Ethernet потребуется поддержка целого ряда разновидностей внешних интерфейсов синхронизации, позволяющих получать сигналы синхронизации от тактовых генераторов SSU/BITS [ITU-T G.812], от тактовых генераторов оборудования СЦИ (SEC) [ITU-T G.813] или от любого другого оборудования синхронного Ethernet, как указано в настоящей Рекомендации.

Основные задачи:

- обеспечить простой путь перехода от существующих архитектур распределения сигналов синхронизации на основе передачи с цифровой иерархией (СЦИ) к будущим архитектурам синхронизации, основанным на больших транспортных сетях Ethernet со встроенными EEC;
- обеспечить транспортировку (частоты) синхронизации на физическом уровне, где она не подвержена нарушениям, вызванным нагрузкой.

Тип внешнего интерфейса указан в таблице 17.

Таблица 17 – Тип внешнего интерфейса

Внешний интерфейс	Поддерживает
Интерфейс 2,048 МГц/2,048 Мбит/с 1,544 МГц/1,544 Мбит/с на базе [ITU-T G.703]	Устаревшую/исходную архитектуру по частоте ПРИМЕЧАНИЕ. Позволяет перейти от устаревшей архитектуры, основанной на СЦИ, на расширяемую исходную архитектуру сетей на основе синхронного Ethernet с использованием функциональности существующего источника синхронизации (SSU)
Синхронный Ethernet (скорость передачи данных подлежит уточнению)	Исходные требования по частоте

Внешние интерфейсы других типов подлежат дальнейшему изучению.

ПРИМЕЧАНИЕ. – Поддержка синхронного Ethernet для передачи сигналов хронирования (то есть сигналов как частоты, так и времени) подлежит дальнейшему исследованию.

Дополнение I

Гибридные сетевые элементы с использованием интерфейсов STM-N и Ethernet (ETY)

(Настоящее Дополнение не является неотъемлемой частью настоящей Рекомендации.)

Тактовые генераторы ЕЕС могут поддерживать использование гибридных сетевых элементов (NE) в любом месте цепи синхронизации, как показано в Дополнении XII [ITU-T G.8261]. Рисунок I.1 иллюстрирует гибридные NE и взаимосвязи синхронизации между тактовым генератором оборудования (EC) и интерфейсами STM-N и ETY.

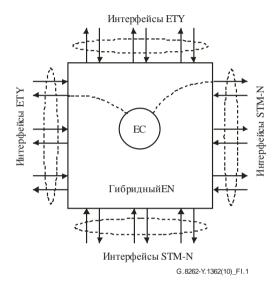


Рисунок I.1 – Гибридный сетевой элемент с использованием интерфейсов STM-N и Ethernet (ETY)

Для гибридных сетевых элементов может поддерживаться передача сигналов хронирования из входного интерфейса любого типа в выходной интерфейс любого типа, как показано в таблице I.1.

Таблица I.1 — Сочетание входных и выходных портов для распределения сигналов хронирования

Вход хронирования	Выход хронирования	
STM-N	STM-N	
STM-N	ETY	
STM-N	T4	
ETY	STM-N	
ETY	ETY	
ETY	T4	
Т3	STM-N	
Т3	ETY	

Для использования интерфейсов ETY в целях распределения сигналов хронирования и использования гибридных сетевых элементов не должна требоваться модификация уже развернутых сетевых элементов СЦИ или тактовых генераторов (PRC, SSU), например настройка новой кодовой точки SSM для интерфейсов STM-N. Также не должна использоваться кодовая точка "0000".

Дополнение II

Взаимосвязь между требованиями, содержащимися в настоящей Рекомендации, и другими ключевыми Рекомендациями, относящимися к синхронизации

(Настоящее Дополнение не является неотъемлемой частью настоящей Рекомендации.)

В настоящем Дополнении описывается взаимосвязь между требованиями к характеристикам тактовых генераторов, содержащимися в настоящей Рекомендации, и ключевыми Рекомендациями по синхронизации, которые находятся в стадии разработки или разработаны в рамках Вопроса 13 (Характеристики системы синхронизации сетей и распределения сигналов времени) 15-й Исследовательской комиссии МСЭ-Т.

В настоящей Рекомендации описываются требования к характеристикам тактовых генераторов синхронного Ethernet. Основная концепция синхронного Ethernet изложена в [ITU-T G.8261] — первой Рекомендации МСЭ-Т, в которой подробно рассматриваются вопросы синхронизации пакетных сетей.

Тактовые генераторы, описываемые в настоящей Рекомендации и встроенные в сетевые элементы Ethernet, позволяют передавать отслеживаемые в сети сигналы хронирования через физический уровень Ethernet. Физический уровень Ethernet в этом контексте определяется в [IEEE 802.3].

Требования к характеристикам, изложенные в настоящей Рекомендации, устанавливаются исходя из существующих Рекомендаций. Требования к EEC-вариант 1 основываются на тактовом генераторе [ITU-T G.813] — вариант 1, а требования к EEC-вариант 2 основываются на тактовом генераторе типа IV из [ITU-T G.812], развертываемом в сетевом элементе СЦИ.

Оба тактовых генератора EEC обеспечивают аналогичные характеристики, но предназначены для использования в сетях, оптимизированных в отношении иерархии 2 Мбит/с (для варианта 1) или в отношении иерархии 1544-кбит/с (для варианта 2). Поскольку тактовые генераторы EEC согласуются с существующими тактовыми генераторами сетевых элементов СЦИ, используемыми при распределении частоты, для проектирования сети синхронизации не потребуется вносить какие-либо изменения в существующую практику проектирования сетей.

Сети синхронизации в общем случае основываются на распределении сигналов синхронизации СЦИ, как это описывается в [ITU-T G.803]. Распределение сигналов синхронизации может соответствовать конкретной региональной практике в целях удовлетворения требований к основным характеристикам и ограничений сетевого интерфейса согласно [b-ITU-T G.823] или [b-ITU-T G.824] для иерархии 2048 кбит/с или 1544 кбит/с соответственно. Как [b-ITU-T G.823], так и [b-ITU-T G.824] исходят из основных целей по скорости проскальзывания, установленных в [b-ITU-T G.822].

Тактовые генераторы EEC специально предназначены для согласованной работы с существующими сетями синхронизации. Тактовые генераторы EEC-вариант 1 можно устанавливать в сетях распределения сигналов синхронизации точно так же, как SEC [ITU-T G.813], а EEC-вариант 2 – как существующие тактовые генераторы [ITU-T G.812] типа IV.

Дополнение III

Перечень интерфейсов Ethernet, применимых для синхронного Ethernet

(Настоящее Дополнение не является неотъемлемой частью настоящей Рекомендации.)

В таблице III.1 приведен перечень всех интерфейсов Ethernet, перечисленных в [IEEE 802.3]. В нем указаны интерфейсы Ethernet, пригодные для работы с синхронным Ethernet. Могут существовать и другие интерфейсы; перечень интерфейсов не является исчерпывающим и может обновляться.

При составлении этого перечня принимались во внимание следующие соображения.

CSMA/CD

В [IEEE 802.3] определяются два режима работы: полудуплексный и дуплексный.

Первоначально интерфейсы Ethernet были разработаны для единой среды, совместно используемой несколькими конечными станциями с применением системы многостанционного доступа с контролем несущей и обнаружением коллизий в сети (CSMA/CD). Для двусторонней связи между двумя конечными станциями в большинстве интерфейсов используются отдельные среды передачи (или отдельные несущие). Применение полудуплексного режима работы в такой среде двусторонней сквозной передачи служит для имитации поведения устаревших систем с совместно используемой средой передачи. В любом случае в поведении физического уровня, работающего в полудуплексном или в дуплексном режиме, нет никакой разницы. Работа в полудуплексном режиме регулируется подуровнем управления доступом к среде передачи (МАС) и влияет только на транспортировку пакетов на уровне 2 и выше.

Интерфейсы CSMA/CD можно применять для целей синхронного Ethernet во всех случаях, где используется среда для сквозной передачи.

Непрерывный сигнал

Интерфейс должен передавать сигнал непрерывно.

Этот сигнал должен быть закодирован так, чтобы создавались гарантированные переходы, позволяющие восстанавливать тактовый сигнал. В некоторых интерфейсах 10G это достигается путем кодирования 64B/66B; в интерфейсах 10G по медному кабелю парной скрутки — путем сигнализации DSQ-128 (2 × 2 пары, PAM-16); в некоторых интерфейсах 1G и 10G по 4-канальному оптоволоконному или медному кабелю — путем кодирования 8B/10B; в интерфейсах 1G по медному кабелю парной скрутки — путем кодирования 4D-PAM-5; в некоторых интерфейсах 100М — путем кодирования 4B/5B и в интерфейсах 100М по медному кабелю парной скрутки — путем кодирования MLT-3.

Во всех физических уровнях (РНУ) для сквозной связи IEEE 802.3, работающих на скорости 100 Мбит/с или выше, используется непрерывная сигнализация.

Ведущий/ведомый

Некоторые двусторонние интерфейсы проектируются таким образом, чтобы с одной стороны размещался ведущий тактовый генератор, который выступает в качестве генератора тактового сигнала, а с другой стороны — ведомый, который работает на восстановление тактового сигнала.

Такая конфигурация поддерживает только однонаправленный синхронный Ethernet. Такие условия могут быть заявлены под контролем процесса в канале передачи сообщений синхронизации Ethernet (ESMC), как указано в [ITU-T G.8264], где вводятся сокращенные интерфейсы синхронного Ethernet. В таких интерфейсах состояние ведущий/ведомый может определяться протоколом управления станциями, как указано в соответствующем разделе [IEEE 802.3], в соответствии с архитектурой сети синхронизации. Состояние сокращенного интерфейса ESMC должно быть синхронизировано с состоянием "ведущий/ведомый".

Двумя примерами работы с ведущим/ведомым тактовыми генераторами служат интерфейсы 1000BASE-T и 10GBASE-T.

Автоматическое согласование

Механизм автоматического согласования, определенный для некоторых наборов физических уровней (РНҮ), используется для поиска наилучшего взаимно поддерживаемого режима работы двух партнеров в момент запуска линии связи. Этот алгоритм всегда отдает предпочтение более высокой скорости передачи перед более низкой скоростью и дуплексному режиму перед полудуплексным. Так как согласование происходит в момент запуска линии, оно должно быть совместимо с синхронным Ethernet, но может не совмещаться с планом распределения сигналов синхронизации. Следует отметить, что согласование — это возможный вариант для некоторых типов физического уровня, и поддерживаемые на физическом уровне скорость передачи и дуплексный режим могут быть заданы протоколом управления.

Следует также отметить, что в некоторых случаях автосогласование может производиться во время работы, например во время модернизации. Для того чтобы быть совместимым с синхронным Ethernet, автоматическое согласование не должно оказывать никакого влияния на скорости передачи и на тактовые генераторы.

Петлевой режим на физическом уровне

С синхронным Ethernet не совместимы никакие функции петлевого режима на физическом уровне, определенные для дуплексных линий, которые прерывают связь в целях испытания/проверки "в процессе эксплуатации". Поэтому они должны быть разрешены только в процессе настройки линии связи.

Связь пункта со многими пунктами

Некоторые физические интерфейсы предназначены для связи пункта со многими пунктами по пассивным оптическим сетям (PON). В таких линиях используется прерывистая сигнализация в восходящем направлении, но они могут быть пригодны для однонаправленного синхронного Ethernet.

Другие вопросы

Некоторые устаревшие типы физического уровня используются редко, и их можно не рассматривать, например два типа физического уровня, предназначенные для использования в цифровой абонентской линии (DSL).

Вопросы реализации

В некоторых интерфейсах сигналы передаются по параллельным кабелям или по оптоволокну. В этих интерфейсах для всех физических линий используется один источник тактового сигнала, но восстановленный тактовый сигнал (и эталонная точка для меток времени) может варьироваться в зависимости от определения многоканальной работы. Пока неясно, потребуется ли новое определение для работы синхронного Ethernet через эти интерфейсы.

Исходя из приведенных выше соображений, в таблице III.1 перечислены интерфейсы физического уровня, определенные в [IEEE 802.3], и указано, какие из них можно считать совместимыми с синхронным Ethernet, какие нельзя, а какие можно только как однонаправленные.

Таблица III.1 – Перечень интерфейсов Ethernet, подходящих для синхронного Ethernet

Физический уровень	Описание	Раздел [IEEE 802.3]	Код	Подходит ли для синхронного Ethernet
10BASE2	10 Мбит/с, по коаксиальному кабелю	10	Манчестерский, прерывающийся	Нет
10BASE5	10 Мбит/с, по коаксиальному кабелю	8	Манчестерский, прерывающийся	Нет (Примечание 1)
10BASE-F	10 Мбит/с, по оптоволокну	15	NRZ, прерывающийся	Нет

Таблица III.1 – Перечень интерфейсов Ethernet, подходящих для синхронного Ethernet

Физический уровень	Описание	Раздел [IEEE 802.3]	Код	Подходит ли для синхронного Ethernet
10BASE-FP	10 Мбит/с, по оптоволокну, со звездообразной топологией	16	NRZ, прерывающийся	Нет (Примечание 1)
10BASE-T	10 Мбит/с, по медному кабелю парной скрутки	14	Манчестерский, прерывающийся	Нет
100BASE- BX10	100 Мбит/с, двунаправленный по оптоволокну	58, 66	4B/5B	Да
100BASE- FX	100 Мбит/с, по оптоволокну	24, 26	4B/5B	Да
100BASE- LX10	100 Мбит/с, по оптоволокну	58, 66	4B/5B	Да
100BASE-T2	100 Мбит/с, по медному кабелю парной скрутки	32	PAM-5	Нет (Примечание 1)
100BASE-T4	100 Мбит/с, по медному кабелю парной скрутки	23	8B6T	Нет (Примечание 1)
100BASE- TX	100 Мбит/с, по медному кабелю парной скрутки	24, 25	MLT-3	Да
1000BASE- BX10	1 Гбит/с, двунаправленный по оптоволокну	59, 66	8B/10B	Да
1000BASE- CX	1 Гбит/с, по биаксиальному кабелю	39	8B/10B	Да
1000BASE- KX	1 Гбит/с, на объединительной плате	70	8B/10B	Да
1000BASE- LX	1 Гбит/с по оптоволокну	38	8B/10B	Да
1000BASE- PX	1 Гбит/с, PON	38	8B/10B	Однонаправленный
1000BASE- SX	1 Гбит/с, по оптоволокну	38	8B/10B	Да
1000BASE-T	1 Гбит/с, по медному кабелю парной скрутки	40	4D-PAM5	Однонаправленный (Примечание 2)
10BROAD36	10 Мбит/с, по коаксиальному кабелю	11	BPSK	Нет (Примечание 1)
10GBASE- CX4	10 Гбит/с, по четырехпарному биаксиальному кабелю	54	8B/10B	Да

Таблица III.1 – Перечень интерфейсов Ethernet, подходящих для синхронного Ethernet

Физический уровень	Описание	Раздел [IEEE 802.3]	Код	Подходит ли для синхронного Ethernet
10GBASE- ER	10 Гбит/с, по оптоволокну	49, 52	64B/66B	Да
10GBASE- EW	10 Гбит/с, по оптоволокну	50, 52	64B/66B	Да
10GBASE- KR	10 Гбит/с, на объединительной плате	72	64B/66B	Да
10GBASE- KX4	10 Гбит/с, четырехпарный на объединительной плате	71	8B/10B	Да
10GBASE- LR	10 Гбит/с, по оптоволокну	49, 52	64B/66B	Да
10GBASE- LRM	10 Гбит/с, по оптоволокну	68	64B/66B	Да
10GBASE- LW	10 Гбит/с, по оптоволокну	50, 52	64B/66B	Да
10GBASE- LX4	10 Гбит/с, по оптоволокну 4λ	50, 52	8B/10B	Да
10GBASE- SR	10 Гбит/с, по оптоволокну	49, 52	64B/66B	Да
10GBASE- SW	10 Гбит/с, по оптоволокну	50, 52	64B/66B	Да
10GBASE-T	10 Гбит/с, по медному кабелю парной скрутки	55	DSQ-128	Да (Примечание 3)
10PASS-TS	> 10 Мбит/c DSL	61, 62	DMT	Нет
1BASE-5	1 Мбит/с, по медному кабелю парной скрутки	12	Манчестерский	Нет (Примечание 1)
2BASE-TL	> 2 Мбит/c, DSL	61, 63	PAM	Нет
10/1GBASE- PR	10 Гбит/с/1 Гбит/с, PON	76	64B/66B/8B/10B	Однонаправленный
10GBASE- PR	10 Гбит/с, PON	76	64B/66B	Однонаправленный
40GBASE- KR4	40 Гбит/с, четырехпарный на объединительной плате	84	64B/66B	Да
40GBASE- CR4	40 Гбит/с, по четырехпарному биаксиальному кабелю	85	64B/66B	Да
40GBASE- SR4	40 Гбит/с, по четырехпарному оптоволокну 4λ	86	64B/66B	Да
40GBASE- LR4	40 Гбит/с, по оптоволокну 4λ	87	64B/66B	Да

Таблица III.1 – Перечень интерфейсов Ethernet, подходящих для синхронного Ethernet

Физический уровень	Описание	Раздел [IEEE 802.3]	Код	Подходит ли для синхронного Ethernet
100GBASE- CR10	100 Гбит/с, по десятипарному биаксиальному кабелю	85	64B/66B	Да
100GBASE- SR10	100 Гбит/с, по десятипарному оптоволокну	86	64B/66B	Да
100GBASE- LR4	100 Гбит/с, по оптоволокну 4λ	88	64B/66B	Да
100GBASE- ER4	100 Гбит/с, по оптоволокну 4λ	88	64B/66B	Да

ПРИМЕЧАНИЕ 1. – Эти строки (выделенные курсивом) – не рекомендуемые.

ПРИМЕЧАНИЕ 2. – В интерфейсе, синхронизированном в петлевом режиме, передача шума не измеряется.

ПРИМЕЧАНИЕ 3. – Интерфейс 10GBASE-Т может поддерживать синхронизацию с двумя ведущими или с ведущим и ведомым тактовыми генераторами (то есть однонаправленный синхронный Ethernet).

Дополнение IV

Вопросы, связанные с синхронным Ethernet по интерфейсам 1000BASE-T и 10GBASE-T

(Настоящее Дополнение не является неотъемлемой частью настоящей Рекомендации.)

Для синхронного Ethernet надлежащие параметры синхронизации сетевых элементов (например, канал, выбранный в качестве потенциального приоритетного эталонного канала синхронизации) должны быть настроены в соответствии с планом синхронизации сети.

Ниже речь пойдет об интерфейсах 1000BASE-T и 10GBASE-T, для которых направление хронирования может оказаться несовместимым с планом синхронизации сети из-за конфигурации взаимосвязи ведущий—ведомый, определенной в [IEEE 802.3].

ПРИМЕЧАНИЕ. – Следующая информация относится к однонаправленным (с точки зрения синхронизации) интерфейсам. Применение подобных правил к линиям в кольцевой схеме, где цепочка хронирования может менять направление, подлежит дальнейшему изучению.

Ниже используются следующие обозначения:

- ведущий/ведомый тактовый генератор (clock master/slave): состояние ведущий/ведомый согласно IEEE 802.3;
- ведущая/ведомая синхронизация (sync master/slave): состояние ведущей/ведомой цепи синхронизации согласно ITU-T G.8264.

Для того чтобы обеспечить правильную установку SyncE в линиях через интерфейсы 1000BASE-T и 10GBASE-T, физический уровень Ethernet можно настроить либо вручную, либо посредством автоматического согласования.

При использовании ручной настройки оператор должен позаботиться о правильной конфигурации параметров ведущего/ведомого тактового генератора для физических портов в соответствии с планом синхронизации сети, так чтобы возможными кандидатами для ведомых портов синхронизации были ведомые тактовые генераторы, а для ведущих портов синхронизации — ведущие тактовые генераторы. Использование ручной настройки, если она выполнена неправильно, может привести к неисправности с последующей потерей подключения трафика к оборудованию.

Например, если оба конца по ошибке сделаны ведущими, то результирующая конфигурация будет ошибочной (см. таблицу 40-5 — Таблица с детализацией конфигурации 1000BASE-T MASTER-SLAVE в [IEEE 802.3]).

При использовании автоматического согласования эти потенциальные проблемы предотвращаются сетевыми элементами, что исключает результат с неработающей линией.

ПРИМЕЧАНИЕ. — В этом случае даже если физические порты настроены не в соответствии с планом синхронизации сети, то автосогласование может привести к неработающей сетевой синхронизации (без индикации такого отсутствия синхронизации), но это не помешает обслуживать Ethernet-трафик и оставляет возможность для последующих действий, направленных на исправление ошибок настройки физического порта.

Ниже описывается возможная последовательность шагов, рекомендуемая при использовании автосогласования.

ПРИМЕЧАНИЕ. – Предполагается, что эти интерфейсы синхронного Ethernet настраиваются на синхронный режим работы.

- 1 Все порты 1000BASE-Т и 10GBASE-Т должны допускать автоматическое согласование.
- 2 Автоматическое согласование инициируется, как указано ниже:
 - В случае 1000BASE-Т все порты должны быть настроены с битом 9.12 = 0 (автоматическое согласование не принудительно). Если порт задействован в плане синхронизации сети, то порт, который должен выступать в качестве ведущего источника синхронизации, настраивается с битом 9.10 = 1 (см. таблицу 40-3 в [IEEE 802.3]), а порт, который должен выступать в качестве ведомого источника синхронизации с битом 9.10 = 0. Если сведения о плане синхронизации сети недоступны, то порты должны настраиваться с

битом 9.10 = 1. Настройка выполняется в соответствии с таблицей 40-5 из [IEEE 802.3] ("Устройство с более высоким значением SEED настраивается как ВЕДУЩЕЕ, в противном случае — как ВЕДОМОЕ"). Если сведения о плане синхронизации сети доступны, то использование портов с битом 9.10 = 1 в качестве предпочтительного состояния по умолчанию позволяет изменить бит 9.10 только на стороне ведомого устройства синхронизации, как правило, в нисходящем канале передачи данных (см. ниже пункт 4).

ПРИМЕЧАНИЕ. – К аналогичному результату приведет использование портов с битом 9.10 = 0 в качестве предпочтительного состояния по умолчанию, для чего необходимо изменить бит 9.10 только на стороне ведущего устройства синхронизации. В этой Рекомендации для облегчения взаимодействия предлагается вариант конфигурации по умолчанию.

• В случае интерфейса 10GBASE-Т все порты настраиваются с битом U11 = 0 (см. таблицу 55-11 в [IEEE 802.3]). Если тот или иной порт задействован в плане синхронизации сети, то порт, который должен выступать в качестве ведущего звена синхронизации, настраивается с битом U13 = 1 (многопортовое устройство, см. таблицу 55-11 в [IEEE 802.3]), а порт, который должен выступать в качестве ведомого звена синхронизации, настраивается с битом U13 = 0 (однопортовое устройство, см. таблицу 55-11 в [IEEE 802.3]). Если сведения о плане синхронизации сети недоступны, то порты должны настраиваться с битом U13 = 1.

Если сведения о плане синхронизации сети доступны, то использование портов с битом U13=1 в качестве предпочтительного состояния по умолчанию позволяет изменить бит U13 только на стороне ведомого устройства синхронизации, как правило, в нисходящем канале передачи данных (см. ниже пункт 4).

ПРИМЕЧАНИЕ. – К аналогичному результату приведет использование портов с битом U13 = 0 в качестве предпочтительного состояния по умолчанию, для чего необходимо изменить бит U13 только на стороне ведущего звена синхронизации. В этой Рекомендация для облегчения взаимодействия предлагается вариант конфигурации по умолчанию.

- 3 Настройка параметров синхронизации сети в узле в соответствии с планом синхронизации сети должна производиться и проверяться тогда, когда ведущий/ведомый тактовые генераторы портов 1000BASE-Т или 10GBASE-Т уже настроены. На этом этапе те звенья узлов, которые служат ведомыми тактовыми генераторами, могут быть настроены в качестве потенциальных источников сигнала синхронизации (если этого требует план синхронизации сети).
- 4 Если план синхронизации сети доступен только после завершения процедуры настройки ведущих/ведомых тактовых генераторов и если порт 1000BASE-Т или 10GBASE-Т не является ведомым тактовым генератором, но должен быть потенциальным ведомым источником сигналов синхронизации в соответствии с планом синхронизации сети ("ведомое звено синхронизации"), то этот порт должен инициировать изменение направления синхронизации (как часть потенциальной конфигурации синхронизации) с помощью инструментов, определенных в таблице 40-3 (1000BASE-Т) и таблице 55-11 (10GBASE-Т) [IEEE 802.3]. В частности,
 - в случае 1000BASE-Т для этого порта устанавливается бит 9.10 = 0;
 - в случае 10GBASE-Т для этого порта устанавливается бит U13 = 0.

ПРИМЕЧАНИЕ 1. – Любое изменение параметров для автосогласования IEEE 802.3 вызовет сброс интерфейса, что приведет к отказу линии на некоторое время (до нескольких секунд).

ПРИМЕЧАНИЕ 2. – Если эти шаги не выполнены надлежащим образом (например, некоторые узлы были настроены вручную), то может потребоваться специальный предупредительный сигнал, чтобы уведомить оператора о принятии необходимых мер.

Дополнение V

Соображения по вопросам измерения передачи шума для тактовых генераторов ЕЕС-вариант 2

(Настоящее Дополнение не является неотъемлемой частью настоящей Рекомендации.)

В общем случае передачу шума тактового генератора ЕЕС можно характеризовать как систему второго порядка. Основные параметры, влияющие на накопление фазового дрейфа в сети, – это ширина полосы передачи и допустимый пиковый коэффициент усиления.

Общий метод измерения передачи шума для сетей по варианту 2 предполагает использование измерений TDEV. Поскольку допуск тактового генератора измеряется с помощью сигнала, соответствующего сетевому ограничению TDEV, измерение выходного TDEV позволит получить данные о фильтрации, обеспечиваемой тактовым генератором. Для учета пиковых значений коэффициента усиления необходимо выполнить определенные расчеты. Чтобы учесть соответствующий коэффициент усиления для EEC-вариант 2, значение TDEV на выходе увеличивают приблизительно на 2%.

Значение TDEV на выходе не должно превышать уровней маски, показанной на рисунке 11, когда опорный сигнал находится на уровне шума, установленном маской допустимых значений TDEV, приведенной на рисунке 8 настоящей Рекомендации.

Полоса пропускания тактового генератора аппроксимируется точкой перелома, наблюдаемой на третьей секунде времени наблюдения. Данные о приближенном соотношении между полосой пропускания тактового генератора и TDEV можно найти в Дополнении I [ITU-T G.812].

Следует отметить, что при использовании этой методики для проверки характеристик передачи, возможно, потребуется рассмотреть дополнительные источники погрешности измерений в соответствии с [b-ITU-T O.174]. Согласно [b-ITU-T O.174], требуемая точность оборудования для измерения генерируемого шума TDEV составляет всего 20%; поэтому перед измерением передаточной функции тактового генератора амплитуда шума должна быть тщательно откалибрована.

В некоторых случаях для определения передаточных характеристик тактового генератора, как указано для тактовых генераторов по варианту 1, допустимо применение синусоидальных сигналов, поступающих на вход и измеренных на выходе. Учитывая, что допустимый коэффициент усиления передачи испытываемого оборудования составляет всего 2%, необходимо позаботиться о точности метода испытаний и измерительного оборудования. Спецификация этого метода требует дальнейшего изучения.

Маска передачи выходного шума TDEV для тактовых генераторов EEC-вариант 2 приведена в таблице 13. Результирующее значение TDEV показано на маске, изображенной на рисунке 11.

Библиография

[b-ITU-T G.783]	Рекомендация ITU-T G.783 (2006 г.), Характеристики функциональных блоков оборудования для синхронной цифровой иерархии (СЦИ)
[b-ITU-T G.801]	Recommendation ITU-T G.801 (1988), Digital transmission models
[b-ITU-T G.822]	Recommendation ITU-T G.822 (1988), Controlled slip rate objectives on an international digital connection
[b-ITU-T G.823]	Recommendation ITU-T G.823 (2000), The control of jitter and wander within digital networks which are based on the 2048 kbit/s hierarchy
[b-ITU-T G.824]	Recommendation ITU-T G.824 (2000), The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchy
[b-ITU-T G.8010]	Рекомендация МСЭ-Т G.8010/Y.1306 (2004 г.), Архитектура сетей уровня Ethernet
[b-ITU-T O.174]	Recommendation ITU-T O.174 (2009), <i>Jitter and wander measuring equipment for digital systems which are based on synchronous Ethernet technology</i>
[b-ITU-T Q.551]	Recommendation ITU-T Q.551 (2002), Transmission characteristics of digital exchanges

РЕКОМЕНДАЦИИ МСЭ-Т СЕРИИ Ү

ГЛОБАЛЬНАЯ ИНФОРМАЦИОННАЯ ИНФРАСТРУКТУРА, АСПЕКТЫ ПРОТОКОЛА ИНТЕРНЕТ И СЕТИ ПОСЛЕДУЮЩИХ ПОКОЛЕНИЙ

ГЛОБАЛЬНАЯ ИНФОРМАЦИОННАЯ ИНФРАСТРУКТУРА	
Общие положения	Y.100-Y.199
Услуги, приложения и промежуточные программные средства	Y.200-Y.299
Сетевые аспекты	Y.300-Y.399
Интерфейсы и протоколы	Y.400-Y.499
Нумерация, адресация и присваивание имен	Y.500-Y.599
Эксплуатация, управление и техническое обслуживание	Y.600-Y.699
Безопасность	Y.700-Y.799
Рабочие характеристики	Y.800-Y.899
АСПЕКТЫ ПРОТОКОЛА ИНТЕРНЕТ	
Общие положения	Y.1000-Y.1099
Услуги и приложения	Y.1100-Y.1199
Архитектура, доступ, возможности сетей и административное управление ресурсами	Y.1200-Y.1299
Транспортирование	Y.1300-Y.1399
Взаимодействие	Y.1400-Y.1499
Качество обслуживания и сетевые показатели качества	Y.1500-Y.1599
Сигнализация	Y.1600-Y.1699
Эксплуатация, управление и техническое обслуживание	Y.1700-Y.1799
Начисление платы	Y.1800-Y.1899
ΙΡΤΥ πο СΠΠ	Y.1900-Y.1999
СЕТИ ПОСЛЕДУЮЩИХ ПОКОЛЕНИЙ	
Структура и функциональные модели архитектуры	Y.2000-Y.2099
Качество обслуживания и рабочие характеристики	Y.2100-Y.2199
Аспекты обслуживания: возможности услуг и архитектура услуг	Y.2200-Y.2249
Аспекты обслуживания: взаимодействие услуг и СПП	Y.2250-Y.2299
Совершенствование СПП	Y.2300-Y.2399
Управление сетью	Y.2400-Y.2499
Архитектура и протоколы сетевого управления	Y.2500-Y.2599
Пакетные сети	Y.2600-Y.2699
Безопасность	Y.2700-Y.2799
Обобщенная мобильность	Y.2800-Y.2899
Открытая среда операторского класса	Y.2900-Y.2999
БУДУЩИЕ СЕТИ	Y.3000-Y.3499
ОБЛАЧНЫЕ ВЫЧИСЛЕНИЯ	Y.3500-Y.3999

Для получения более подробной информации просьба обращаться к перечню Рекомендаций МСЭ-Т.

СЕРИИ РЕКОМЕНДАЦИЙ МСЭ-Т Серия А Организация работы МСЭ-Т Серия D Общие принципы тарификации Общая эксплуатация сети, услуга телефонной связи, эксплуатация услуги Серия Е и человеческие факторы Серия F Нетелефонные службы электросвязи Серия G Системы и среда передачи, цифровые системы и сети Серия Н Аудиовизуальные и мультимедийные системы Серия I Цифровая сеть с интеграцией служб Серия Ј Кабельные сети и передача сигналов телевизионных и звуковых программ и других мультимедийных сигналов Серия К Защита от помех Конструкция, прокладка и защита кабелей и других элементов Серия L линейно-кабельных сооружений Серия М Управление электросвязью, включая СУЭ и техническое обслуживание сетей Серия N Техническое обслуживание: международные каналы передачи звуковых и телевизионных программ Серия О Требования к измерительной аппаратуре Серия Р Оконечное оборудование, субъективные и объективные методы оценки Серия Q Коммутация и сигнализация Серия R Телеграфная передача Серия S Оконечное оборудование для телеграфных служб Серия Т Оконечное оборудование для телематических служб Серия U Телеграфная коммутация Серия V Передача данных по телефонной сети Серия Х Сети передачи данных, взаимосвязь открытых систем и безопасность Серия Ү Глобальная информационная инфраструктура, аспекты протокола Интернет и сети последующих поколений Серия Z Языки и общие аспекты программного обеспечения для систем электросвязи