

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Packet over Transport aspects – Quality and availability targets

The control of jitter and wander within the optical transport network (OTN)

Amendment 2

Recommendation ITU-T G.8251 (2010) - Amendment 2

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600-G.699
DIGITAL TERMINAL EQUIPMENTS	G.700-G.799
DIGITAL NETWORKS	G.800-G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000-G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000-G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000-G.8999
Ethernet over Transport aspects	G.8000-G.8099
MPLS over Transport aspects	G.8100-G.8199
Quality and availability targets	G.8200-G.8299
Service Management	G.8600-G.8699
ACCESS NETWORKS	G.9000-G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.8251

The control of jitter and wander within the optical transport network (OTN)

Amendment 2

Summary

Amendment 2 to Recommendation ITU-T G.8251 (2010) contains text additions to include support of new clients in the optical transport network (OTN) transport.

History

Edition	Recommendation	Approval	Study Group
1.0	ITU-T G.8251	2001-11-29	15
1.1	ITU-T G.8251 (2001) Cor. 1	2002-06-13	15
1.2	ITU-T G.8251 (2001) Amd. 1	2002-06-13	15
1.3	ITU-T G.8251 (2001) Cor. 2	2008-05-22	15
1.4	ITU-T G.8251 (2001) Amd.2	2010-01-13	15
2.0	ITU-T G.8251	2010-09-22	15
2.1	ITU-T G.8251 (2010) Amd. 1	2011-04-13	15
2.2	ITU-T G.8251 (2010) Cor. 1	2012-02-13	15
2.3	ITU-T G.8251 (2010) Amd. 2	2012-02-13	15

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

			Page
1)	Scope		1
2)	Text n	nodification for ITU-T G.8251	1
	2.1)	Clause 4, Abbreviations and acronyms	1
	2.2)	Clause 6.2, Jitter and wander tolerance of client interfaces	1
	2.3)	Annex A, Specification of the ODUk clock (ODC)	1
	2.4)	Clause A.3, Frequency accuracy	7
	2.5)	Clause A.4, Pull-in and pull-out ranges	7
	2.6)	Clause A.6, Noise tolerance	7
	2.7)	Clause A.7.3, Jitter transfer for ODCp	8
	2.8)	Clause A.8, Jitter transfer for ODCp	8
	2.9)	Bibliography	9

Recommendation ITU-T G.8251

The control of jitter and wander within the optical transport network (OTN)

Amendment 2

1) Scope

This amendment contains modified text to be added to Recommendation ITU-T G.8251, *The control of jitter and wander within the optical transport network (OTN)*.

2) Text modification for ITU-T G.8251

The following text modifications are to be inserted in ITU-T G.8251.

2.1) Clause 4, Abbreviations and acronyms

Add the abbreviations below:

DDR Double Data Rate

IB InfiniBand

NOS Not_Operational

QDR Quad Data Rate

SDR Single Data Rate

2.2) Clause 6.2, Jitter and wander tolerance of client interfaces

Add the following paragraphs underneath the existing text of clause 6.2:

The SBCON (often ESCON used) mapped into ODU0 according to clause 17.7.1 of [ITU-T-G.709] shall support the parameters as given in the ANSI dpANS X3.296-199x SBCON specification.

The IB (InfiniBand) signals IB SDR, IB DDR, IB QDR mapped into ODUflex according to clause 17.9 of [ITU-T-G.709] shall support the InfiniBand Architecture SpecificationVolume 2, Release 1.2.1 (2006) specification

2.3) Annex A, Specification of the ODUk clock (ODC)

In Table A.1-1, modify the entries as shown below:

1

	ODCa (Note 4)	ODCb (Note 4)	ODCr	ODCp (Note 4)
Atomic function	ODUkP/CBRx-a_A_So ODUkP/GFP_A_So ODUkP/NULL_A_So ODUkP/PRBS_A_So ODUkP/PRBS_A_So ODUkP/VP_A_So ODUkP/ODU[i]j_A_So ODUkP/ODUj_A_So ODUkP/ODUj_A_Sk (AIS clock) OTUk/ODUk_A_Sk (AIS clock) OTUkV/ODUk_A_Sk (AIS clock)	ODUkP/CBRx-b_A_So ODUkP/RSn-b_A_So	OTUk/ODUk_A_So and OTUk/ODUk_A_Sk (i.e., the clocks of these atomic functions are concentrated in a single ODCr; see [ITU-T G.798])	ODUkP/CBRx_A_Sk ODUkP/ODU[i]j_A_Sk ODUkP/ODUj_A_Sk

	ODCa (Note 4)	ODCb (Note 4)	ODCr	ODCp (Note 4)
Frequency accuracy	±20 ppm	± 20 ppm for ODUk (k = 0, 1, 2, 3, 4) ± 20 ppm for CBRx (x = 2G5, 10G, 40G) ± 100 ppm for ODU2e, ODUflex, 10GE, and FC-x (x = 100, 200, 400, 800, 1200), IB SDR; IB DDR, IB QDR	±20 ppm	$\pm 20 \text{ ppm for ODUk}$ (k = 0, 1, 2, 3, 4) $\pm 20 \text{ ppm for CBRx (x = 0G155, 0G622, 2G5, 10G, 40G)}$ $\pm 100 \text{ ppm for 1GE, 10GE, 10GE, 100GE, FC-x, -IB}$ SDR; IB DDR , IB QDR IB SDR; IB DDR , IB QDR IB SDR; IB DDR , IB QDR IB SDR; ODUflex, and ODU2e $\pm 200 \text{ ppm for}$ SBCON ± 200 ppm for <u>SBCON</u>
Free-run mode supported	Yes	Yes	Yes	Yes
Locked mode supported	No	Yes	Yes	Yes
Holdover mode supported	No	No	No	No
Pull-in range	NA	± 20 ppm (SDH clients) ± 100 ppm (Ethernet and FC-x (x = 100, 200, 400, 800, 1200)-, IB SDR; IB DDR, IB QDR clients)	±20 ppm	$\pm 20 \text{ ppm (SDH}$ clients) $\pm 100 \text{ ppm (Ethernet and}$ FC-x (x = 100, 200, 400, 800, 1200), IB SDR, IB DDR, IB QDR clients) $\pm 200 \text{ ppm for SBCON}$ clients

	ODCa (Note 4)	ODCb (Note 4)	ODCr	ODCp (Note 4)
Pull-out range	NA	± 20 ppm (SDH clients) ± 100 ppm (Ethernet and FC-x (x = 400, 800, 1200), <u>IB SDR; IB DDR , IB</u> <u>QDR</u> clients)	±20 ppm	± 20 ppm (SDH clients) ± 100 ppm (Ethernet and FC-x (x = 100, 200, 400, 800, 1200), <u>IB SDR, IB</u> <u>DDR, IB QDR</u> clients) ± 200 ppm for SBCON <u>clients</u>
Jitter generation	Table A.5-1	Table A.5-1	Table A.5-1	Table A.5-2
Wander generation	NA	NA (Note 1)	NA	NA (Note 2)
Jitter tolerance	NA	[ITU-T G.825] for SDH clients [IEEE 802.3] for Ethernet clients	Table 6.1-1, Figure 6.1-1 (OTU1) Table 6.1-2, Figure 6.1-2 (OTU2) Table 6.1-3, Figure 6.1-3 (OTU3) Table 6.1-4, Figure 6.1-4 (OTU3/ OTL3.4) Table 6.1-5, Figure 6.1-5 (OTU4/ OTL4.4)	Table 6.1-1, Figure 6.1-1 (OTU1) Table 6.1-2, Figure 6.1-2 (OTU2) Table 6.1-3, Figure 6.1-3 (OTU3) Table 6.1-4, Figure 6.1-4 (OTU3/OTL3.4) [IEEE 802.3] for Ethernet clients
Wander tolerance	NA	[ITU-T G.825]	Clause 6.1	Clause 6.1

	ODCa (Note 4)	ODCb (Note 4)	ODCr	ODCp (Note 4)
Jitter transfer	NA	Maximum bandwidth: ODU0: 0.5 kHz ODU1: 1 kHz ODU2: 4 kHz ODU2: 4 kHz ODU3: 16 kHz ODU3: 16 kHz ODUflex: FFS Maximum gain peaking: 0.1 dB for ODU0, 1, 2, 2e, and 3 FFS for ODUflex (see Table A.7-1 and Figure A.7-1)	Maximum bandwidth: OTU1: 250 kHz OTU2: 1000 kHz OTU3: 4000 kHz OTU4: 10000 kHz Maximum gain peaking: 0.1 dB for OTU1, 2, 3 and 4 (see Table A.7-2 and Figure A.7-1)	Maximum bandwidth: 300 Hz for ODUk (k = 0, 1, 2, 2e, 3, flex) 300 Hz for CBRx (x = 0G155, 0G622, 2G5, 10G, 40G), 10GE, 40GE, 100GE, FC-x (x = 100, 200, 400, 800, 1200), IB <u>SDR; IB DDR, - IB QDR;</u> <u>SBCON</u> 100 Hz for 1GE Maximum gain peaking: 0.1 dB (see clause A.7.3)
Output when input signal is lost	AIS (CBRx client) OTUk: no frame hit OTUk frequency unchanged	AIS (CBRx client) Local Fault (Ethernet and FC-x (x = 100, 200, 400, 800, 1200) clients) OTUk: no frame hit OTUk initial frequency change ≤ 9 ppm (See clause A.8)	AIS (OTUk) OTUk: frame hit allowed Temporary OTUk frequency offset > 20 ppm allowed	AIS (CBRx client), AIS (ODUj[/i] client) Frequency offset ≤ 20 ppm Local Fault (Ethernet and FC-x (x = 100, 200, 400, 800, 1200) clients) Frequency offset ≤ 100 ppm <u>NOS for SBCON</u> <u>Frequency offset ≤ 200 ppm</u>

NA No requirement because not applicable

NOTE 1 – The wander generation of ODCb is expected to be negligible compared to the wander on the input CBR (e.g., SDH) client signal, because the ODCb bandwidth is relatively wideband.

NOTE 2 – The intrinsic wander generation of the ODCp is negligible compared to the wander generated by the demapping process.

NOTE 3 – To achieve the compliance of STM-1 and STM-4 signals mapped with GMP into ODU0 with SDH jitter wander specification in addition to the ODCp clock filtering, the use of one bit additional phase information as specified in [ITU-T G.709] and [ITU-T G.798] is required.

NOTE 4 – An ODCa, ODCb, or ODCp for one client is not required to support another client simultaneously.

2.4) Clause A.3, Frequency accuracy

Modify clause A.3 as indicated below:

A.3 Frequency accuracy

Under free-running conditions, the output frequency accuracy of ODCa and ODC<u>pr</u> shall not be worse than 20 ppm with respect to a reference traceable to an [ITU-T G.811] clock. Under free-running conditions, the output frequency accuracy of ODCb shall not be worse than 100 ppm for 1GE, 10GE, 40GE, 100GE, and-FC-x-, and InfiniBand clients and ODU2e, and shall not be worse than 20 ppm for all other respective clients and ODUs (see Table A.1-1). Under free-running conditions, the output frequency accuracy of ODCp shall not be worse than 100 ppm for 1GE, 10GE, 40GE, 100GE, and FC-x clients and ODU2e, shall not be worse than 100 ppm for 1GE, 10GE, 40GE, 100GE, and FC-x clients and ODU2e, shall not be worse than 200 ppm for SBCON client, and shall not be worse than 20 ppm for all other respective clients and ODUs (see Table A.1-1).

2.5) Clause A.4, Pull-in and pull-out ranges

Modify clause A.4 as indicated below:

A.4.1 Pull-in range

The minimum pull-in range of ODCb, ODCr, and ODCp shall be ± 100 ppm for 1GE, 10GE, 40GE, 100GE, and-FC-x, and InfiniBand clients and ODU2e. The minimum pull-in range of ODCp shall be ± 200 ppm for SBCON client. The minimum pull-in range of ODCb, ODCr, and ODCp shall be $\frac{1}{2}$ and ± 20 ppm for all other clients and ODUs (see Table A.1-1), whatever the internal oscillator frequency offset may be. There is no requirement for the pull-in range of ODCa because it is freerunning.

A.4.2 Pull-out range

The minimum pull-out range of ODCb, ODCr, and ODCp shall be ± 100 ppm for 1GE, 10GE, 40GE, 100GE, and FC-x, and InfiniBand clients and ODU2e. The minimum pull-out range of ODCp shall be ± 200 ppm for SBCON client, The minimum pull-out range of ODCb, ODCr, and ODCp shall beand ± 20 ppm for all other clients and ODUs (see Table A.1-1), whatever the internal oscillator frequency offset may be. There is no requirement for the pull-out range of ODCa because it is free-running.

2.6) Clause A.6, Noise tolerance

Modify clause A.6 as indicated below:

A.6 Noise tolerance

This clause specifies the jitter and wander tolerance of ODCb, ODCr, and ODCp. There are no jitter and wander tolerance requirements for ODCa because ODCa is free-running.

ODCb must satisfy the same jitter and wander tolerance requirements as CBR2G5, CBR10G, CBR40G, 1GE, 10GE, 40GE, 100GE, or-FC-x or InfiniBand client interfaces (the input to the ODUkP/CBRx-b_A_So atomic function). These requirements are given in clause 6.2, which references [ITU-T G.825] and the Ethernet specifications in [IEEE 802.3].

Note that the ODCb is contained in the ODUkP/CBRx-b_A_So atomic function.

ODCr and ODCp must satisfy the same jitter and wander tolerance requirements as OTUk input ports (the input to the OCh/OTUk_A_Sk atomic function). These requirements are given in clause 6.1 and its subclauses. Note that the ODCr is contained in the OTUk/ODUk_A_So and

 $OTUk/ODUk_A_Sk$ atomic functions, and the ODCp is contained in the ODUkP/CBRx_A_Sk atomic function.

2.7) Clause A.7.3, Jitter transfer for ODCp

Modify clause A.7.3 as indicated below:

A.7.3 Jitter transfer for ODCp

The jitter transfer requirements for ODCp are, essentially, the transfer requirements for a CBR (e.g., SDH) demapper (i.e., a desynchronizer) or ODU[i]j demultiplexer. The demapper function, including the ODCp, is contained in the ODUkP/CBRx_A_Sk and ODUkP/RSn_A_Sk atomic functions. The demultiplexer functions, including the ODCp, are contained in the ODUkP/ODU[i]j_A_Sk atomic function. The ODCp performs filtering, which is necessary to control the mapping/demapping jitter and wander accumulation over multiple OTN islands.

The 3 dB bandwidth of the desynchronizer shall not exceed 300 Hz for:

- ODUk (k=0, 1, 2, 2e, 3, flex);
- CBRx (x = 0G155, 0G622, 2G5, 10G, 40G);
- 10GE, 40GE, 100GE;
- FC-x (x = 100, 200, 400, 800, 1200);
- IB SDR, IB DDR , IB QDR;

```
– SBCON.
```

The 3 dB bandwidth of the desynchronizer shall not exceed 100 Hz for 1GE.

The maximum gain peaking of the desynchronizer shall be 0.1 dB. These requirements apply to all ODUk rates. Additional information, on demapper phase error, is given in Appendix V.

2.8) Clause A.8, Jitter transfer for ODCp

Modify clause A.8 as indicated below:

A.8 Transient response

When a CBR client signal is lost and AIS is inserted, or when the CBR client is restored and AIS is removed, the ODUk and OTUk timing must be maintained. This requirement is met automatically for asynchronous mappings because the ODCa is free-running and therefore independent of the client signal clock. However for bit-synchronous mapping, the ODCb takes its timing from the client. Specifically, the client signal timing is recovered by the clock recovery circuit that resides in the OS/CBR A Sk atomic function; the output of this clock recovery circuit is input to the ODCb (see Appendix VI for a summary of the atomic functions). Loss of the client signal results in the ODCb either entering free-run or switching to a free-running AIS clock or Ethernet local fault clock; restoration of the client signal results in the ODCb switching from free-run condition or from a free-running AIS clock to an independent client-signal clock. In addition, there may be a short period between the instant the client input to the clock recovery circuit is lost and the detection of this loss; during this period, the clock recovery circuit output may be off frequency and still be input to the ODCb. In all these cases, [ITU-T G.798] requires that the ODUk clock shall stay within its limits and no frame phase discontinuity shall be introduced. The maximum possible frequency difference between a ±20 ppm CBRx (e.g., SDH) client and free-running ODCb or free-running AIS clock is 40 ppm (because the largest possible offset for each signal is ± 20 ppm). The maximum possible frequency difference between a ±100 ppm 1GE, 10GE, 40GE, 100GE, or-FC-x, or InfiniBand client and free-running replacement signal (local fault) clock is 200 ppm. The maximum possible frequency difference between a ±200 ppm SBCON client and free-running replacement signal NOS clock is 400 ppm.

The above requirements mean that the ODCb must adequately filter a frequency step whose size is the maximum possible frequency difference, as indicated above, between the client and either AIS clock or replacement signal (local fault) clock, such that downstream equipment in the OTN, i.e., 3R regenerators, can tolerate the resulting filtered phase transient. Specifically, this means that the phase transient shall not cause buffer overflow in an ODCr that meets the jitter and wander tolerance requirements of clause 6.2. In addition, the ODCb must adequately filter the clock recovery circuit output during the short period between the loss of the client input to the clock recovery circuit and the removal of the clock recovery circuit output from the ODCb input.

If:

- 1) the clock recovery circuit in the OS/CBR_A_So atomic function loses its input and/or the ODCb loses its input and either enters free-run or switches to an AIS clock; or
- 2) the ODCb recovers from AIS to the output of the clock recovery circuit,

the ODCb output shall meet the following requirements:

- a) Any initial frequency step shall not exceed 9 ppm.
- b) Any frequency drift rate following the initial frequency step shall not exceed 200 ppm/s.
- c) The total change in frequency shall not exceed the maximum possible frequency difference between the client signal and either the AIS clock or the replacement signal (local fault) clock.

Then, the ODCb is allowed to lose synchronization for a period up to 600 ms.

NOTE – An ODCb, for one client is not required to support another client simultaneously.

2.9) Bibliography

Add two new references to the bibliography:

[b-ANSI dpANS X3.296-199x]	ANSI dpANS X3.296-199x, Single-Byte Command Code Sets
	CONnection architecture (SBCON) REV 2.3.
	X3T11/95-469/Project 1132-D/Rev2.3, working draft
	proposed American National Standard for Information
	Systems, September 30, 1996.
[b- InfiniBand TM]	InfiniBand TM Architecture Specification Volume 2,
- ·	Release 1.2.1, InfiniBand TM Trade Association,
	<u>October, 2006.</u>

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Terminals and subjective and objective assessment methods
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems