Recommendation

ITU-T G.8051/Y.1345 (2020) Amd. 1 (06/2023)

SERIES G: Transmission systems and media, digital systems and networks

Packet over Transport aspects – Ethernet over Transport aspects

SERIES Y: Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities

Internet protocol aspects – Transport

Management aspects of the Ethernet transport (ET) capable network element

Amendment 1

ITU-T G-SERIES RECOMMENDATIONS

Transmission systems and media, digital systems and networks

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-	G.100-G.199
	G.200-G.299
TRANSMISSION SYSTEMS	
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE	G.300-G.399
SYSTEMS ON METALLIC LINES	3.300 3.377
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE	
SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH	G.400-G.449
METALLIC LINES	
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600-G.699
DIGITAL TERMINAL EQUIPMENTS	G.700-G.799
DIGITAL NETWORKS	G.800-G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-	
RELATED ASPECTS	G.1000-G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000-G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000-G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000-G.8999
	G.8000-G.8099
Ethernet over Transport aspects	G.8100-G.8199
MPLS over Transport aspects	
Synchronization, quality and availability targets	G.8200-G.8299
Mobile network transport aspects	G.8300-G.8399
Service Management	G.8600-G.8699
ACCESS NETWORKS	G.9000-G.9999

 $For {\it further details, please refer to the list of ITU-T Recommendations.}$

Recommendation ITU-T G.8051/Y.1345

Management aspects of the Ethernet transport (ET) capable network element

Amendment 1

Summary

Recommendation ITU-T G.8051/Y.1345 addresses management aspects of the Ethernet transport (ET) capable network element containing transport functions of one or more of the layer networks of the Ethernet transport network. The management of the Ethernet layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client. The management functions for fault management, configuration management, performance monitoring and security management are specified.

The 2009 revision of this Recommendation added the management of additional transport functions that were introduced in the 2009 revision of Recommendation ITU-T G.8021/Y.1341.

The 2013 revision of this Recommendation added the management of additional functions, including: client signal fail (CSF); proactive loss measurement using loss measurement message (LMM)/loss measurement reply (LMR); proactive delay measurement using delay measurement message (DMM)/delay measurement reply (DMR) and one-way delay measurement (1DM); synthetic loss measurement using synthetic loss message (SLM)/synthetic loss reply (SLR) and one-way synthetic loss measurement (1SL) (proactive and on-demand); performance management (PM) requirements on protocol data unit (PDU) generation type, message period, measurement interval, repetition period, start time, stop time and session duration; and PM data collection requirements.

The 2015 revision of this Recommendation updated the management information (MI) signals for the ETHx_FT function in clause 8.5, the MI signals for the ETHx/MCC function in clause 8.6, the one-way synthetic loss measurement (1SL) management information (MI) signal for the ETHDe_FT_Sk function in clause 8.8 and the on-demand and proactive loss measurement requirements in clause 10.2.

The 2018 revision of this Recommendation updated the fault cause persistency function at the ETH connection (ETH-C) function for ring protection, the configuration management for protection switching and connection functions. Finally, in alignment with Recommendation ITU-T G.8021/Y.1341, this revision removed both fault management functions and the management information (MI) signals that are related to ETYn_TT, ODUkP-X-L/MT_A and ETYn/ETH_A. This revision also removed the MI signals to activate processes in adaptation functions (i.e., MI_Active).

The 2020 revision of this Recommendation has updated clause 6 to clause 8 by referring to Recommendation ITU-T G.7710/Y.1701; the fault cause persistency function, and the provisioning and reporting for adaptation functions for FlexE related functions as defined in Recommendation ITU-T G.8023; and transferring ODU related adaptation functions in some tables to Recommendation ITU-T G.874.

Amendment 1 (2023) has updated the fault cause persistency function; alarm reporting control function; operational state function in clause 7; the provisioning and reporting for flow termination and adaptation functions in clause 8 in alignment with ITU-T G.8021 and ITU-T G.8023. Also, this Amendment created clause 8.14 "Administrative state" in alignment with ITU-T G.7710.

i

History *

Recommendation	Approval	Study Group	Unique ID
ITU-T G.8051/Y.1345	2007-10-22	15	11.1002/1000/9186
ITU-T G.8051/Y.1345	2009-11-13	15	11.1002/1000/10430
ITU-T G.8051/Y.1345 (2009) Amd. 1	2011-06-06	15	11.1002/1000/11139
ITU-T G.8051/Y.1345	2013-08-29	15	11.1002/1000/12024
ITU-T G.8051/Y.1345 (2013) Amd. 1	2014-05-14	15	11.1002/1000/12186
ITU-T G.8051/Y.1345	2015-08-13	15	11.1002/1000/12549
ITU-T G.8051/Y.1345 (2015) Amd. 1	2017-08-13	15	11.1002/1000/13314
ITU-T G.8051/Y.1345	2018-03-16	15	11.1002/1000/13546
ITU-T G.8051/Y.1345	2020-12-07	15	11.1002/1000/14505
ITU-T G.8051/Y.1345 (2020) Amd. 1	2023-06-13	15	11.1002/1000/15564
	ITU-T G.8051/Y.1345 ITU-T G.8051/Y.1345 ITU-T G.8051/Y.1345 (2009) Amd. 1 ITU-T G.8051/Y.1345 ITU-T G.8051/Y.1345 (2013) Amd. 1 ITU-T G.8051/Y.1345 ITU-T G.8051/Y.1345 (2015) Amd. 1 ITU-T G.8051/Y.1345 ITU-T G.8051/Y.1345	ITU-T G.8051/Y.1345 2007-10-22 ITU-T G.8051/Y.1345 2009-11-13 ITU-T G.8051/Y.1345 (2009) Amd. 1 2011-06-06 ITU-T G.8051/Y.1345 2013-08-29 ITU-T G.8051/Y.1345 (2013) Amd. 1 2014-05-14 ITU-T G.8051/Y.1345 2015-08-13 ITU-T G.8051/Y.1345 (2015) Amd. 1 2017-08-13 ITU-T G.8051/Y.1345 2018-03-16 ITU-T G.8051/Y.1345 2020-12-07	ITU-T G.8051/Y.1345 2007-10-22 15 ITU-T G.8051/Y.1345 2009-11-13 15 ITU-T G.8051/Y.1345 (2009) Amd. 1 2011-06-06 15 ITU-T G.8051/Y.1345 2013-08-29 15 ITU-T G.8051/Y.1345 (2013) Amd. 1 2014-05-14 15 ITU-T G.8051/Y.1345 2015-08-13 15 ITU-T G.8051/Y.1345 (2015) Amd. 1 2017-08-13 15 ITU-T G.8051/Y.1345 2018-03-16 15 ITU-T G.8051/Y.1345 2020-12-07 15

Keywords

Carrier Ethernet, network management, transport resource.

[.]

^{*} To access the Recommendation, type the URL https://handle.itu.int/ in the address field of your web browser, followed by the Recommendation's unique ID.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents/software copyrights, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at http://www.itu.int/ITU-T/ipr/.

© ITU 2023

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

1	Scope	
2	Refere	ences
3	Defini	tions
	3.1	Terms defined elsewhere
	3.2	Terms defined in this Recommendation
4	Abbre	viations and acronyms
5	Conve	ntions
6	ET ma	nnagement architecture
	6.1	ET management network architecture
	6.2	ET equipment management function architecture
	6.3	Information flows over management points
7	Fault (maintenance) management
	7.1	Fault management applications
	7.2	Fault management functions
8	Config	guration management
	8.1	Hardware
	8.2	Software
	8.3	Protection switching
	8.4	Trail termination
	8.5	Flow termination
	8.6	Adaptation
	8.7	Connection
	8.8	Diagnostic
	8.9	Traffic conditioning and shaping
	8.10	ZZZ_Reported
	8.11	Alarm severity
	8.12	Alarm reporting control (ARC)
	8.13	Date and time
	8.14	Administrative state
9	Accou	nting management
10	Perfor	mance management
	10.1	Performance management applications
	10.2	Performance monitoring functions
11	Securi	ty management
Appe	endix I –	MI signals/parameters for PM tools in ITU-T G.8021
Bibli	ography.	

Recommendation ITU-T G.8051/Y.1345

Management aspects of the Ethernet transport (ET) capable network element

Amendment 1

Editorial note: This is a complete-text publication. Modifications introduced by this amendment are shown in revision marks relative to Recommendation ITU-T G.8051/Y.1345 (2020).

1 Scope

This Recommendation addresses management aspects of the Ethernet transport (ET) capable network element containing transport functions of one or more of the layer networks of the Ethernet transport network. The management of the Ethernet layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client. In this version of this Recommendation, fault management, configuration management, performance management (PM) and security management are specified. Furthermore, only the management information (MI) of the following ET equipment functions is addressed:

- Ethernet MAC layer (ETH) flow forwarding, flow termination, connection, diagnostic and traffic conditioning/shaping functions;
- ETH server to ETH client adaptation functions (including ETH/ETH-m, ETHG/ETH, FlexEC/ETH);
- ETH link aggregation functions;
- GFP-F-based mapping of Ethernet into SDH;
- GFP-T-based mapping of Gigabit Ethernet code words into VC-4-Xv;
- PDH server to ETH client adaptation functions;
- Flex Ethernet (FlexE) trail termination functions; and
- FlexE to FlexE client adaptation functions.

This Recommendation also describes the management network organizational model for communication between an element management layer (EML) operations system and the ET equipment management function (EMF) within an ET network element.

The architecture described in this Recommendation for the management of Ethernet transport networks is based upon the following considerations:

- the management view of network element functional elements should be uniform whether
 those elements form part of an inter-domain interface or part of an intra-domain interface.
 Those properties necessary to form such a uniform management view are to be included in
 this Recommendation:
- Ethernet layer network entities (ELNEs) refer to trail termination, adaptation and connection functions as described in [ITU-T G.8010];
- a network element may only contain Ethernet layer network entities (ELNEs);
- a network element may contain both Ethernet layer network entities (ELNEs) and client layer network entities (CLNEs);
- client layer entities are managed as part of their own logical domain;
- CLNEs and ELNEs may or may not share a common message communication function (MCF) and management application function (MAF) depending on application; and

- CLNEs and ELNEs may or may not share the same agent,
- server layer network entities (SLNEs) and ELNEs may or may not share the same agent.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T G.707]	Recommendation ITU-T G.707/Y.1322 (2007), Network node interface for the synchronous digital hierarchy (SDH).
[ITU-T G.806]	Recommendation ITU-T G.806 (2012), Characteristics of transport equipment – Description methodology and generic functionality.
[ITU-T G.832]	Recommendation ITU-T G.832 (1998), Transport of SDH elements on PDH networks—Frame and multiplexing structures.
[ITU-T G.7041]	Recommendation ITU-T G.7041/Y.1303 (2016), Generic framing procedure.
[ITU-T G.7710]	Recommendation ITU-T G.7710/Y.1701 (20 <u>2012</u>), <i>Common equipment management function requirements</i> .
[ITU-T G.7712]	Recommendation ITU-T G.7712/Y.1703 (2019), Architecture and specification of data communication network.
[ITU-T G.8010]	Recommendation ITU-T G.8010/Y.1306 (2004), <i>Architecture of Ethernet layer networks</i> .
[ITU-T G.8012]	Recommendation ITU-T G.8012/Y.1308 (20 <u>22</u> 04), <i>Ethernet UNI and Ethernet NNI</i> .
[ITU-T G.8013]	Recommendation ITU-T G.8013/Y.1731 (20 <u>2315</u>), <i>Operations, administration and maintenance (OAM) functions and mechanisms for Ethernet-based networks</i> .
[ITU-T G.8021]	Recommendation ITU-T G.8021/Y.1341 (20 <u>22</u> 18), <i>Characteristics of Ethernet transport network equipment functional blocks</i> .
[ITU-T G.8023]	Recommendation ITU-T G.8023 (2018), Characteristics of equipment functional blocks supporting Ethernet physical layer and Flex Ethernet interfaces.
[ITU-T M.3010]	Recommendation ITU-T M.3010 (2000), <i>Principles for a telecommunications management network</i> .
[ITU-T M.3013]	Recommendation ITU-T M.3013 (2000), Considerations for a telecommunications management network.
[ITU-T M.3100]	Recommendation ITU-T M.3100 (2005), Generic network information model.
[ITU-T X.700]	Recommendation ITU-T X.700 (1992), Management framework for Open Systems Interconnection (OSI) for CCITT applications.
[ITU-T X.701]	Recommendation ITU-T X.701 (1997) ISO/IEC 10040:1998, Information technology — Open Systems Interconnection — Systems management overview.

[ITU-T Y.1563] Recommendation ITU-T Y.1563 (2009), Ethernet frame transfer and

availability performance.

[IEEE 802.1AX] IEEE 802.1AX-2020, IEEE Standard for Local and Metropolitan Area

Networks - Link Aggregation.

[IEEE 802.3] IEEE 802.3-202218, IEEE Standard for Ethernet.

[OIF FLEXE IA] OIF IA OIF-FLEXE 2.2+ (2019), Flex Ethernet Implementation

Agreement 2.21.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

- **3.1.1** Terms defined in [ITU-T G.806]:
- Atomic function (AF);
- Management point (MP).
- **3.1.2** Terms defined in [ITU-T G.7710]:
- Local craft terminal;
- Management application function (MAF).
- **3.1.3** Term defined in [ITU-T G.7712]:
- Data communication network (DCN).
- **3.1.4** Terms defined in [ITU-T G.8021]:
- Traffic shaping function
- **3.1.5** Terms defined in [ITU-T M.3010]:
- Network element (NE);
- Network element function (NEF);
- Operations system (OS);
- Q-interface;
- Workstation function (WF).
- **3.1.6** Term defined in [ITU-T M.3013]:
- Message communication function (MCF).
- **3.1.7** Terms defined in [ITU-T M.3100]:
- Alarm reporting;
- Alarm reporting control (ARC);
- Managed entity;
- Management interface;
- Persistence interval;
- Operations system (OS);
- Operations system function (OSF);
- Qualified problem;
- Reset threshold report;

- Threshold report;
- Timed interval.
- **3.1.8** Term defined in [ITU-T X.700]:
- Managed object (MO).
- **3.1.9** Terms defined in [ITU-T X.701]:
- Agent;
- Manager;
- Managed object class (MOC).

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 ET management network (ET.MN): A subset of a telecommunication management network (TMN) that is responsible for managing those parts of a network element that contain Ethernet transport (ET) layer network entities.

NOTE – An ET.MN may be subdivided into a set of ET management subnetworks.

3.2.2 ET management subnetwork (ET.MSN): Subnetwork consisting of a set of separate embedded communication channels (ECCs) and associated intra-site data communication links that are interconnected to form a data communication network (DCN) within any given Ethernet transport (ET) topology.

NOTE – For ET, the physical channel supporting the ECC is the Ethernet management communication channel (MCC) as defined as ETH-MCC in [ITU-T-G.8013] in clause 6.1.4.2. An ET.MSN represents an ET specific local communication network (LCN) portion of a network operator's overall data communication network or TMN.

3.2.3 ET network element (ET.NE): Element containing entities from one or more ET layer networks.

NOTE – An ET.NE may be a stand-alone physical entity or a subset of a network element. It supports at least network element functions (NEFs) and may also support an operations system function (OSF). It contains managed objects (MOs), a message communication function (MCF) and a management application function (MAF). The functions of an ET.NE may be contained within an NE that also supports other layer networks. These layer network entities are considered to be managed separately from ET entities. As such, they are not part of the ET.MN or ET.MSN.

3.2.4 Ethernet management communication channel (ET.MCC): A function providing a management communication channel between Ethernet transport (ET) network elements (NEs).

NOTE – The management communication channel (MCC) can be used to perform remote management. The specific use of MCC is outside the scope of this Recommendation.

3.2.5 traffic-conditioning function: A transport processing function that accepts the characteristic information of the layer network at its input, classifies the traffic units according to configured rules, meters each traffic unit within its class to determine its eligibility, polices non-conformant traffic units and presents the remaining traffic units at its output as characteristic information of the layer network.

4 Abbreviations and acronyms

4

This Recommendation uses the following abbreviations and acronyms:

1DM One-way Delay Measurement

1SL One-way Synthetic Loss measurement

AcSL Accepted Signal Label

AF Atomic Function

AIS Alarm Indication Signal

ALM Alarm reporting
APP Access Point Pool

ARC Alarm Reporting Control

CC Continuity Check

CCM Continuity Check Message
CLNE Client Layer Network Entity

COMMS Communication channel

CSF Client Signal Fail

CTP Connection Termination Point

CtrlP Control Plane

DA Destination Address

DCN Data Communication Network

DE Drop Eligibility

DEG Degraded
DEGM Degraded M

DEGTHR Degraded Threshold

DMM Delay Measurement Message
DMR Delay Measurement Reply

ECC Embedded Communication Channel

ELNE Ethernet Layer Network Entity

EMF Equipment Management Function

EMS Element Management System

ET Ethernet Transport
ETC Ethernet Coding
ET.C ET Channel layer

ETCy Ethernet Coding sublayer for PHY y

ET.MN ET MN
ET.MSN ET MSN
ET.NE ET NE

ET.P ET Path layer
ET.S ET Section layer
ETH Ethernet MAC layer
ETH-C ETH Connection

ETHx Ethernet MAC layer network -x, x=s for section, x=p for path, x=t for TCM

FCAPS Fault management, Configuration management, Account management,

Performance management and Security management

FlexEC Flex-Ethernet Client

FlexE Flex-Ethernet

FlexESGM Flex Ethernet subgroup member

FLR Frame Loss Ratio FM Fault Management

FTS Forced Transmitter Shutdown

GNE Gateway Network Element

IP Interworking ProtocolIS Intermediate SystemLAN Local Area Network

LCN Local Communication Network

LCK Locked defect

LMM Loss Measurement Message
LMR Loss Measurement Reply

M-AI Media layer Adapted Information

MAF Management Application Function

MCC Management Communication Channel

MCF Message Communication Function

MD Mediation Device
ME Maintenance Entity

MEG ME Group
MEL MEG Level

MEP MEG End Point

MIP MEG Intermediate Point

MF Mediation Function

MI Management Information

MIB Management Information Base

MN Management Network

MO Managed Object

MOC Managed Object Class

MgmtP Management Plane
MP Management Point

MSN Management SubNetwork

NALM No ALaRm reporting

NALM-CD No ALaRm reporting, CountDown

NALM-NR No ALaRm reporting, NotReady

NALM-QI No ALaRm reporting, Qualified Inhibit

NALM-TI No ALaRm reporting, Timed Inhibit

NE Network Element

NEF Network Element Function
NEL Network Element Layer

OAM Operations, Administration, Maintenance

OAM&P Operations, Administration, Maintenance and Provisioning

OS Operations System

OSF Operations System Function
OSI Open Systems Interconnection

P Priority

PDU Protocol Data Unit

PM Performance Management

PMC Performance Monitoring Clock

PS Protection Switching
QoS Quality of Service

RDI Remote Defect Indication

RTC Real-Time Clock SA Source Address

SES Severely Errored Seconds

SL Synthetic Loss

SLM Synthetic Loss Message

SLNE Server Layer Network Entity

SLR Synthetic Loss Reply

TCM Tandem Connection Monitoring

TF Transmitted Frames

TMN Telecommunications Management Network

TTP Trail Termination Point

WTR Wait To Restore

5 Conventions

In this Recommendation, ET.MN stands for ET management network, ET.MSN for ET management subnetwork, ET.NE for ET NE, ET.C for ET channel layer, ET.P for ET path layer and ET.S for ET section layer.

6 ET management architecture

See clause 6 of [ITU-T G.7710] for the generic architecture for managing transport equipment.

The transport layer networks of Ethernet over Transport (ET) are described in [ITU-T G.8010], [ITU-T G.8012], [ITU-T G.8021], and [ITU-T G.8023]. The management of the ET layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client.

6.1 ET management network architecture

6.1.1 Relationship between TMN, ET.MN and ET.MSN

The inter-relationship between a management network, its subnetworks and a telecommunications management network (TMN), as generically described in clause 6.1.1 of [ITU-T G.7710], is applicable to ET.

This Recommendation defines the ET management network (ET.MN) and subnetworks (ET.MSNs).

6.1.2 Access to the ET.MSN

See clause 6.1.2 of [ITU-T G.7710] for the generic requirements.

6.1.3 ET.MSN requirements

See clause 6.1.3 of [ITU-T G.7710] for the generic requirements.

Furthermore, all ET network elements (ET.NEs) must support management communication functions. The message communication function (MCF) of an ET.NE initiates/terminates (in the sense of the lower protocol layers), forwards, or otherwise processes management messages over management communication channels (MCCs), or over other data communication network (DCN) interfaces. In addition:

- All ET.NEs are required to terminate the ET.S-MCCs, see clause 6.1.4. In OSI terms, this
 means that each network element (NE) must be able to perform the functions of an end
 system.
- ET.NEs may also be required to forward management messages between ports according to routing control information held in the ET.NE. In open systems interconnection (OSI) terms, this means that some ET.NEs may be required to perform the functions of an intermediate system.
- In addition to supporting interfaces for the ET.S-MCC, an ET.NE may also be required to support other DCN interfaces, which may include ET.P-MCCs or ET.C-MCCs or an Ethernet DCN interface.

The use of the ET.P-MCCs and ET.C-MCCs for management communications is within the scope of this Recommendation, see clause 6.1.7.

6.1.4 ET.MSN data communication network

Refer to clause 6.1.4 of [ITU-T G.7710] for the generic requirements.

6.1.4.1 Management communication channel

The ET.MN supports three management communication channels (MCCs):

- 1) ET.S-MCC (MCC_s)
- 2) $ET.P-MCC (MCC_P)$
- 3) $ET.C-MCC (MCC_C)$

Figure 6-1 illustrates a network scenario consisting of two operators. Operator B provides an ET path layer service to operator A (i.e., Operator B transports the ET Path layer signal that begins and ends Operator A's domain).

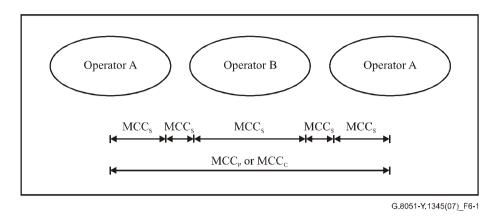


Figure 6-1 – MCC scenarios

The physical layer is terminated in every network element and its related adaptation function provides the ET section layer signals as well as the MCC_S. Hence, the MCC_S cannot cross administrative domains. Figures 6-1, 6-2 and 6-3 illustrate scenarios where the MCC_P is transported transparently through Operator B's domain (the Operator B network elements are not shown in Figures 6-2 and 6-3). In these scenarios, it is possible that Operator B may use the MCC_S within its own domain for the management of its domain.

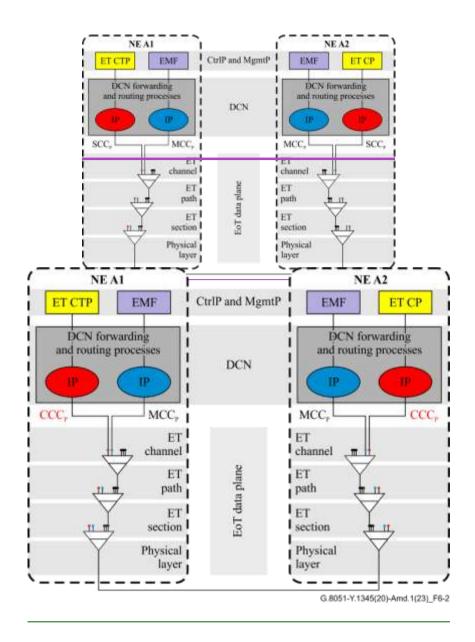


Figure 6-2 – MCC_P scenario example

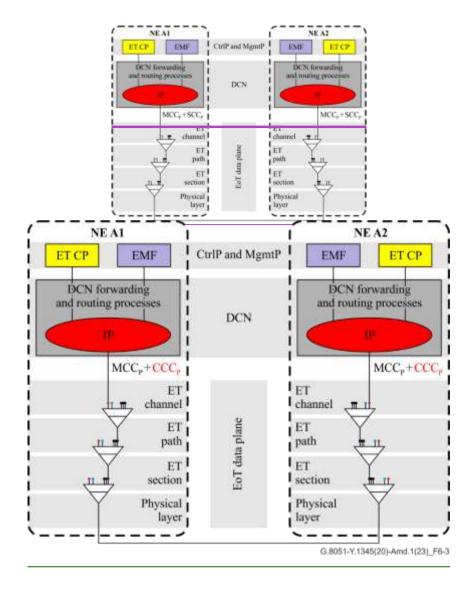


Figure 6-3 – MCC_P scenario example

6.1.4.2 MCC physical characteristics

The ET.S-, ET.C- and ET.P-MCCs are logical elements within the ET transport module (ETM-n). The MCC provides general management communications between two ET network elements with access to the ET.S, ET.P and ET.C characteristic information respectively. The ET.S-, ET.P-, or ET.C-MCC is provided by the ET OAM function at section, path, or channel layer as defined in [ITU-T ¥.G.8013] or by any other ECC of the ET transport network.

The ET.S management communication channel (MCC_S) shall operate as a single message channel between ET.S termination points. The bit rate of the MCC_S shall be configurable.

The ET.P management communication channel (MCC_P) shall operate as a single message channel between any network elements that terminate the ET.P layer. The MCC_P is transported transparently through ET.NEs that only terminate the ET.S layer and forward the ET.P signal. The bit rate of the MCC_P shall be configurable.

The ET.C management communication channel (MCC_C) shall operate as a single message channel between any network elements that terminate the ET.C layer. The MCC_C is transported transparently through ET.NEs that only terminate the ET.S layer or the ET.S and ET.P layers and forward the ET.C signal. The bit rate of the MCC_C shall be configurable.

6.1.4.3 MCC data link layer protocol

The MCC data link protocols for management applications are under study for [ITU-T G.7712].

6.1.5 Management of DCN

See clause 6.1.5 of [ITU-T G.7710] for the generic requirements.

6.1.6 Remote log-in

See clause 6.1.6 of [ITU-T G.7710] for the generic requirements.

6.1.7 Relationship between technology domains

See clause 6.1.7 of [ITU-T G.7710] for the generic requirements.

6.2 ET equipment management function architecture

See clause 6.2 of [ITU-T G.7710] for a generic description of the equipment management architecture.

Figure 6-4 below, taken from Figure 5 of [ITU-T G.7710], shows the functions inside the ET NE.

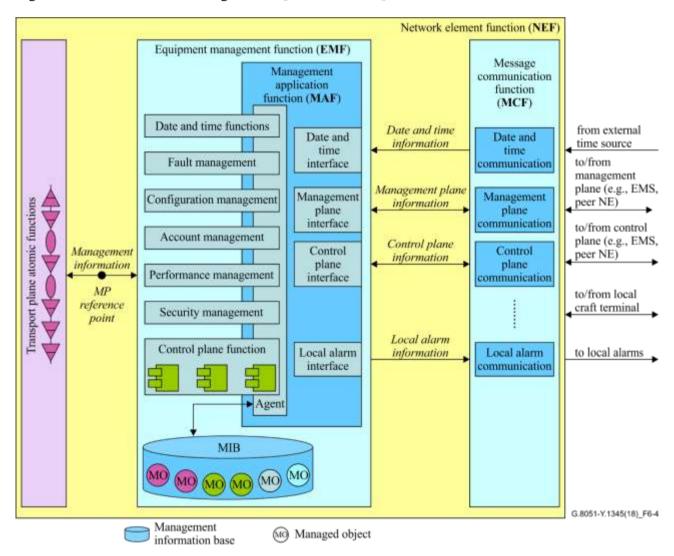


Figure 6-4 – ET equipment management function (from Figure 5 of [ITU-T G.7710])

6.3 Information flows over management points

See clause 6.3 of [ITU-T G.7710] for the generic description of the information flows over management points (MPs).

The information flow over the MP reference points is described in specific detail for each atomic function in [ITU-T G.8021]. Note that these information flows and associated functions apply equally

to both the client and supervisory channel due to the independent nature of these signals. This implies neither that the supervisory channel shall provide all the functions described, nor that [ITU-T G.8021] will provide the details of which functions are available.

7 Fault (maintenance) management

See clause 7 of [ITU-T G.7710] for the generic requirements for fault management. ET-specific specifications, if needed, are explicitly described.

7.1 Fault management applications

See clause 7.1 of [ITU-T G.7710] for a description of the basic fault management applications.

7.1.1 Supervision

The supervision philosophy is based on the concepts underlying the functional model ET of [ITU-T G.8010].

The five basic supervision categories are related to transmission, quality of service, processing, equipment and environment. These supervision processes can declare fault causes, which need further validation before the appropriate alarm is reported. See [ITU-T G.7710] for additional discussion of these categories.

The ET NE shall indicate to the OS when a termination point is no longer able to supervise the signal (e.g., implementing equipment has a fault or loss of power).

7.1.1.1 Transmission supervision

See clause 7.1.1.1 of [ITU-T G.7710] for a general description of transmission supervision.

For ET NE, the following defects are monitored for the purpose of transmission supervision:

- Continuity supervision: Loss of continuity defect (dLOC[i])
 - Ethernet continuity check (CC) management jobs, using ITU-T G.8013/Y.1731 continuity check message (CCM), can be separately established (within a MEP) for fault management, performance management and protection switching.
 - As a default, one MEG end point (MEP) (with MEL = 7, OAM message period = 1 second and priority = 7) has to be instantiated per trail termination point (TTP) for fault management (i.e., RDI)
- Connectivity supervision: Unexpected MEL defect (dUNL), MisMerge defect (dMMG) and Unexpected MEP defect (dUNM)
- Signal quality supervision: Degraded Signal defect (dDEG)
- Configuration supervision: Unexpected periodicity defect (dUNP) and Unexpected priority defect (dUNPr)
- Maintenance signal supervision: Remote defect indicator defect (dRDI[]), alarm indication signal defect (dAIS) and locked defect (dLCK)

The atomic function associated failure conditions are listed in clause 7.2.1.

7.1.1.2 Quality of service supervision

See clause 7.1.1.2 of [ITU-T G.7710] for a description of quality of service supervision.

7.1.1.3 Processing supervision

See clause 7.1.1.3 of [ITU-T G.7710] for a description of processing supervision.

7.1.1.4 Hardware supervision

See clause 7.1.1.4 of [ITU-T G.7710] for a description of equipment supervision.

7.1.1.5 Environment supervision

See clause 7.1.1.5 of [ITU-T G.7710] for a description of environment supervision.

7.1.2 Validation

See clause 7.1.2 of [ITU-T G.7710] for a description of fault cause validation.

7.1.3 Alarm handling

7.1.3.1 Severity assignment

See clause 7.1.3.1 of [ITU-T G.7710] for a description of severity categories.

7.1.3.2 Alarm reporting control

See clause 7.1.3.2 of [ITU-T G.7710] for a description of alarm reporting control (ARC).

Alarm reporting control (ARC) provides an automatic in-service provisioning capability.

7.1.3.3 Reportable failures

See clause 7.1.3.3 of [ITU-T G.7710] for a description of reportable failures.

7.1.3.4 Alarm reporting

See clause 7.1.3.4 of [ITU-T G.7710] for a description of alarm surveillance.

7.1.3.4.1 Local reporting

See clause 7.1.3.4.1 of [ITU-T G.7710] for a description of local reporting.

7.1.3.4.2 TMN reporting

See clause 7.1.3.4.2 of [ITU-T G.7710] for a description of TMN reporting.

7.2 Fault management functions

See clause 7.2 of [ITU-T G.7710] for a description of fault management inside the EMF.

Figure 7-1 below is from Figure 7-1 of [ITU-T G.7710] that shows the functional model of fault management inside the ET EMF.

Figure 7-1 – Fault management within the ET EMF (from Figure 7-1/G.7710)

7.2.1 Fault cause persistency function – PRS

See clause 7.2.1 of [ITU-T G.7710] for a description of PRS.

For an ET.NE that supports the atomic functions listed in Table 7-1, the EMF PRS process shall support the persistency check for the associated fault causes.

Table 7-1 – Inputs/outputs for the fault cause persistency function

Atomic function	Input	Output
ETH_C per ring_SNC/S_protection process	cFOP-PM	fFOP-PM
	cFOP-CM	<u>fFOP-CM</u>
	cFOP-NR	<u>fFOP-NR</u>
	cFOP-TO	<u>fFOP-TO</u>
ETH_C per #Ring port_protection process	cFOP-PM	<u>fFOP-PM</u>
	cFOP-TO[01]	fFOP-TO[01]

Table 7-1 – Inputs/outputs for the fault cause persistency function

Atomic function	Input	Output
ETHx_FT_Sk	cSSF	fSSF
	cLCK	fLCK
	cLOC[i]	fLOC[i]
	cMMG	fMMG
	cUNM	fUNM
	cUNP	fUNP
	cUNPr i	fUNPri
	cUNL	fUNL
	cDEG	fDEG
	cRDI	fRDI
ETHG_FT_Sk	cLOC[i]	fLOC[i]
	cUNL	fUNL
	cMMG	fMMG
	cUNM	fUNM
	cDEG	fDEG
	cUNP	fUNP
	cUNPr	fUNPr
	cRDI	fRDI fSSF
	cSSF	fLCK
	cLCK	
FlexE_TT_Sk	cR <u>PF</u> DI	fR <u>PF</u> DI
	cSSF	fSSF
ETHx/ETH_A_Sk	cCSF	fCSF
ETHx/ETH-m_A_Sk	cCSF	fCSF
ETHG/ETH_A_Sk	cCSF	fCSF
ETH <u>x</u> n-Np/ETH-LAG-Na_A_Sk	cPLL[1Na]	fPLL[1Na]
	cTLL[1Na]	fTLL[1Na]
ETH-LAG_FT_Sk	cSSF	fSSF
Sn/ETH_A_Sk	cPLM	fPLM
	cLFD	<u>fLFD</u>
	eUPM	fUPM
	cEXM	fEXM
	eCSF	fCSF
Sn-X-L/ETH_A_Sk	ePLM	fPLM
	cLFD	fLFD
	eUPM	fUPM
	eEXM	fEXM
	eCSF	fCSF
Sm/ETH_A_Sk	ePLM	fPLM
	cLFD	fLFD
	cUPM	fUPM
	eEXM	fEXM
C., VI ETH A CL	eCSF	fCSF
Sm-X-L/ETH_A_Sk	ePLM	fPLM fl fD
	eLFD eUPM	fLFD fUPM
	cEXM	fEXM
	cexivi cCSF	fCSF
	ccar	resi'

Table 7-1 – Inputs/outputs for the fault cause persistency function

Atomic function	Input	Output
Sn-X/ETC3_A_Sk	ePLM eLFD eUPM eEXM eCSF	fPLM fLFD fUPM fEXM fCSF
Pq/ETH_A_Sk	ePLM eLFD eUPM eEXM eCSF	fPLM fLFD fUPM fEXM fCSF
Pq-X-L/ETH_A_Sk	ePLM eLFD eUPM eEXM eCSF	fPLM fLFD fUPM fEXM fCSF
M-AIOTSiG/FlexE_A_Sk	cLOF cLOM	fLOF fLOM
FlexE-n/FlexEC_A_Sk	cCCM[1 <u>rp</u>] cLOL c <u>PF</u> MM cGIDM	fCCM[1 <u>rp</u>] fLOL f <u>PF</u> MM fGIDM
M-AI/FlexESGM_A_Sk	cLOF cLOM	<u>fLOF</u> <u>fLOM</u>

7.2.2 Severity assignment function – SEV

See [ITU-T G.7710] for a description of the severity assignment function.

7.2.3 Alarm reporting control function – ARC

See clause 7.2.3 of [ITU-T G.7710] for a description of the severity reporting control function (ARC).

The alarms that can be controlled with this function are defined for each AF in [ITU-T G.8021].

In Table 7-2 below, for each managed entity a subset of the plausible failures (defined in Table 7-1) are selected as qualified problems. These qualified problems are recommended as they are deemed essential to the operability of the subject managed entity. Note that for each managed entity, one or more of the qualified problems could then be further selected by the management system to be included in the ARC list for controlling the reporting of alarm for the entity.

Default ARC state is also specified for each managed entity. If the ARC function is supported by the ET.NE and an ARC state is not explicitly provisioned from the management system for the managed entity, then the default ARC specified in Table 7-2 should be in effect.

For an ET.NE that supports the AFs listed in Table 7-2, the EMF ARC process shall support alarm reporting control for the associated fault causes.

Table 7-2 – ARC specifications for ET $\,$

Atomic function	Qualified problems	Default state value
ETH_C per ring-SNC/S protection process	fFOP-PM fFOP-CM fFOP-NR fFOP-TO	ALM
ETH_C per #Ring port_protection process	fFOP-PM fFOP-TO[01]	ALM
ETHx_FT_Sk	fSSF fLCK fLOC[i] fMMG fUNM fUNP fUNPri fUNL fDEG fRDI	ALM
ETHG_FT_Sk	fLOC[i] fUNL fMMG fUNM fDEG fUNP fUNPr fRDI fSSF fLCK	ALM
ETHx/ETH_A_Sk	fCSF	ALM
ETHx/ETH-m_A_Sk	fCSF	ALM
ETHG/ETH_A_Sk	fCSF	ALM
ETHxn-Np/ETH-LAG-Na_A_Sk	fPLL[1Na] fTLL[1Na]	ALM
ETH-LAG_FT_Sk	fSSF	ALM
Sn/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	ALM
Sn X L/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	ALM

Table 7-2 – ARC specifications for ET

Atomic function	Qualified problems	Default state value
Sm/ETH_A_Sk	FPLM FLFD FUPM FEXM FCSF	ALM
Sm-X-L/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	ALM
Sn-X/ETC3_A_Sk	fPLM fLFD fUPM fEXM fCSF	ALM
Pq/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	ALM
Pq-X-L/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	ALM
FlexE_TT_Sk	fRPF fSSF	ALM
M-AI/FlexE_A_Sk	fLOF fLOM	ALM
FlexE-n/FlexEC_A_Sk	fCCM[1r] fLOL fFMM fGIDM	ALM
M-AI/FlexESGM_A_Sk	fLOF fLOM	ALM

7.2.4 Reportable failure function – REP

See clause 7.2.4 of [ITU-T G.7710] for a description of the reportable failure function.

7.2.5 Unit alarms function – UNA

See clause 7.2.5 of [ITU-T G.7710] for a description of the unit alarms function.

7.2.6 Network element alarms function – NEA

See clause 7.2.6 of [ITU-T G.7710] for a description of the network element alarms function.

7.2.7 Station alarms function – STA

See clause 7.2.7 of [ITU-T G.7710] for a description of the station alarms function.

7.2.8 TMN event pre-processing function – TEP

See clause 7.2.8 of [ITU-T G.7710] for a description of the TMN event pre-processing alarm function.

7.2.9 Alarm synchronization function – ASY

See clause 7.2.9 of [ITU-T G.7710] for a description of the alarm synchronization function.

7.2.10 Logging function – LOG

See clause 7.2.4 of [ITU-T G.7710] for a description of the logging function.

7.2.11 TMN alarm event notifications function – TAN

See clause 7.2.4 of [ITU-T G.7710] for a description of the TMN alarm event notifications function.

7.2.12 Current problem list function – CPL

See clause 7.2.4 of [ITU-T G.7710] for a description of the current problem list function.

7.2.13 Alarm status function – AST

See clause 7.2.4 of [ITU-T G.7710] for a description of the alarm status function.

7.2.14 Operational state function – OPS

See clause 7.2.4 of [ITU-T G.7710] for a description of the operational state function.

Table 7-3 lists the failures that could influence the operational state of the related objects.

For an ET.NE that supports the AFs listed in Table 7-3, the EMF OPS process shall support operational state for the associated fault causes.

Table 7-3 – Operational state function input and output signals for Ethernet

Atomic function	Failure input (fZZZ value)	Operational state output (Enabled/Disabled) of the trail object
ETH_C per ring_SNC/S protection process	fFOP-PM	Enabled
	<u>fFOP-CM</u>	<u>Enabled</u>
	fFOP-NR	Enabled
	<u>fFOP-TO</u>	Enabled
ETH_C per #Ring port-protection process	<u>fFOP-PM</u>	Enabled
	fFOP-TO[01]	Enabled
ETHx_FT_Sk	fSSF	Enabled
	<u>fLCK</u>	<u>Enabled</u>
	fLOC[i]	Enabled
	fMMG	Enabled
	fUNM	Enabled
	fUNP	Enabled
	fUNPri	Enabled
	fUNL	Enabled
	<u>fDEG</u>	Enabled
	fRDI	Enabled

Table 7-3 – Operational state function input and output signals for Ethernet

Atomic function	Failure input (fZZZ value)	Operational state output (Enabled/Disabled) of the trail object
ETHG_FT_Sk	fLOC[i]	Enabled
	fUNL	Enabled
	fMMG	Enabled
	fUNM	Enabled
	fDEG	Enabled
	fUNP	Enabled
	fUNPr	Enabled
	fRDI	Enabled
	fSSF	Enabled
	fLCK	Enabled
ETHx/ETH_A_Sk	fCSF	Enabled
ETHx/ETH-m_A_Sk	fCSF	Enabled
ETHG/ETH_A_Sk	fCSF	Enabled
ETHxn-Np/ETH-LAG-Na_A_Sk	fPLL[1Na]	Enabled
	fTLL[1Na]	Enabled
ETH-LAG_FT_Sk	fSSF	Enabled
Sn/ETH_A_Sk	fPLM	Enabled
	fLFD	Enabled
	fUPM	Enabled
	fEXM	Enabled
	fCSF	Enabled
Sn-X-L/ETH_A_Sk	fPLM	Enabled
	fLFD	Enabled
	fUPM	Enabled
	fEXM	Enabled
	fCSF	Enabled
Sm/ETH_A_Sk	fPLM	Enabled
	fLFD	Enabled
	fUPM	Enabled
	fEXM	Enabled
	fCSF	Enabled
Sm-X-L/ETH_A_Sk	fPLM	Enabled
	fLFD	Enabled
	fUPM	Enabled
	fEXM	Enabled
	fCSF	Enabled
Sn-X/ETC3_A_Sk	fPLM	Enabled
	fLFD	Enabled
	fUPM	Enabled Enabled
	fUPM fEXM	Enabled
Pa/ETH A Sk	fUPM fEXM fCSF	Enabled Enabled
Pq/ETH_A_Sk	fUPM fEXM fCSF fPLM	Enabled Enabled Enabled
Pq/ETH_A_Sk	fUPM fEXM fCSF fPLM fLFD	Enabled Enabled Enabled Enabled
Pq/ETH_A_Sk	fUPM fEXM fCSF fPLM	Enabled Enabled Enabled

Table 7-3 – Operational state function input and output signals for Ethernet

Atomic function	Failure input (fZZZ value)	Operational state output (Enabled/Disabled) of the trail object
Pq-X-L/ETH_A_Sk	fPLM fLFD	Enabled Enabled
	fUPM fEXM fCSF	Enabled Enabled Enabled
FlexE TT Sk	fRPF fSSF	Enabled Enabled
M-AI/FlexE_A_Sk	fLOF fLOM	Enabled Enabled
FlexE-n/FlexEC_A_Sk	fCCM[1r] fLOL fFMM fGIDM	Enabled Enabled Enabled Enabled
M-AI/FlexESGM_A_Sk	fLOF fLOM	Enabled Enabled

8 **Configuration management**

See clause 8 of [ITU-T G.7710] for the generic requirements for configuration management. ET specific specifications, if needed, are explicitly described.

8.1 **Hardware**

See clause 8.1 of [ITU-T G.7710] for a description of hardware management.

8.2 **Software**

See clause 8.2 of [ITU-T G.7710] for a description of software management.

8.3 **Protection switching**

See clause 8.3 of [ITU-T G.7710] for a description of protection switching.

This function allows a user to provision and monitor the operation of protection processes deployed in an ETH connection (ETH-C) process.

MI signals concerning the protection processes are listed in Table 8-4 and communicated between the EMF and the protection process through the management point. According these MI signals, the EMF generates a corresponding event notification and state report signals to the MAF.

For the protection processes supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- Provisioning the protection switching management information
- Retrieving the protection switching management information
- Notifying the changes of the protection switching management information
- Receiving the monitored protection switching management information

8.4 **Trail termination**

See clause 8.4 of [ITU-T G.7710] for a description of trail termination management.

8.5 Flow termination

This function allows a user to provision and monitor the operation of the ETHx and ETH-LAG flow termination processes.

The MI signals listed in Table 8-2 are communicated between the EMF and the flow termination processes across the management point within the ET NE.

For the flow termination functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- Provisioning the trail termination management information
- Retrieving the trail termination management information
- Notifying the changes of the trail termination management information
- Receiving the monitored trail termination management information

Table 8-2 – Provisioning and reporting for flow termination functions

MI signal	Value range	Default value
Pro	ovisioning	
ETHx_FT_So_MI_MEL	0, 1, 2, 3, 4, 5, 6, 7	By agreement
ETHx_FT_So_MI_MEP_MAC	Per [ITU-T G.8021]	_
ETHx_FT_So_MI_CC_Enable	true, false	false
ETHx_FT_So_MI_LMC_Enable	true, false	true
ETHx_FT_So_MI_MEG_ID	See Annex A of [ITU-T G.8013]	_
ETHx_FT_So_MI_MEP_ID	08191; see Figure 9.2-3 of [ITU-T G.8013]	_
ETHx_FT_So_MI_CC_Period	3.33 ms, 10 ms, 100 ms, 1 s, 10 s, 1 min, 10 min	1 s
ETHx_FT_So_MI_CC_Pri	0, 1, 2, 3, 4, 5, 6, 7	7
ETHx_FT_So_MI_LML_Enable[1M _{LM}]	true, false	true
ETHx_FT_So_MI_LM_MAC_DA[1M _{LM}]	Per [ITU-T G.8021]	_
ETHx_FT_So_MI_LM_Period[1M _{LM}]	100 ms, 1 s, 10 s	100 ms
ETHx_FT_So_MI_LM_Pri[1M _{LM}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHx_FT_So_MI_DM_Enable[1M _{DM}]	true, false	false
ETHx_FT_So_MI_DM_MAC_DA[1M _{DM}]	Per [ITU-T G.8021]	_
ETHx_FT_So_MI_DM_Test_ID[1M _{DM}]	Non-negative integer (optional)	_
ETHx_FT_So_MI_DM_Length[1M _{DM}]	Non-negative integer representing number of bytes for the length of the Datapadding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHx_FT_So_MI_DM_Period[1M _{DM}]	100 ms, 1 s, 10 s	100 ms
ETHx_FT_So_MI_DM_Pri[1M _{DM}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHx_FT_So_MI_1DM_Enable[1M _{IDM}]	true, false	false
ETHx_FT_So_MI_1DM_MAC_DA[1M _{1DM}]	Per [ITU-T G.8021]	_
ETHx_FT_So_MI_1DM_Test_ID[1M _{IDM}]	Non-negative integer (optional)	_

 $Table \ 8-2-Provisioning \ and \ reporting \ for \ flow \ termination \ functions$

MI signal	Value range	Default value
ETHx_FT_So_MI_1DM_Length[1M _{1DM}]	Non-negative integer representing number of bytes for the length of the Datapadding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHx_FT_So_MI_1DM_Period[1M _{1DM}]	100 ms, 1 s, 10 s	100 ms
ETHx_FT_So_MI_1DM_Pri[1M _{1DM}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHx_FT_So_MI_SL_Enable[1M _{SL}]	true, false	false
ETHx_FT_So_MI_SL_MAC_DA[1M _{SL}]	Per [ITU-T G.8021]	_
ETHx_FT_So_MI_SL_Test_ID[1M _{SL}]	Non-negative integer (optional)	_
ETHx_FT_So_MI_SL_Length[1M _{SL}]	Non-negative integer representing number of bytes for the length of the Datapadding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHx_FT_So_MI_SL_Period[1M _{SL}]	10 ms, 100 ms, 1 s, 10 s	100 ms
ETHx_FT_So_MI_SL_Pri[1M _{SL}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHx_FT_So_MI_1SL_Enable[1M _{1SL}]	true, false	false
ETHx_FT_So_MI_1SL_MAC_DA[1M _{ISL}]	Per [ITU-T G.8021]	_
ETHx_FT_So_MI_1SL_Test_ID[1M _{ISL}]	Non-negative integer (optional)	_
ETHx_FT_So_MI_1SL_Length[1M _{1SL}]	Non-negative integer representing number of bytes for the length of the Datapadding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHx_FT_So_MI_1SL_Period[1M _{1SL}]	10 ms, 100 ms, 1 s, 10 s	100 ms
ETHx_FT_So_MI_1SL_Pri[1M _{1SL}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHx_FT_Sk_MI_CC_Enable	true, false	false
ETHx_FT_Sk_MI_LMC_Enable	true, false	true
ETHx_FT_Sk_MI_1second	-	_
ETHx_FT_Sk_MI_LM_DEGM	2-10; see Table 7-1 of [ITU-T G.806]	10
ETHx_FT_Sk_MI_LM_M	2-10	10
ETHx_FT_Sk_MI_LM_DEGTHR	0% 100%; see Table 7-1 of [ITU-T G.806]	30%
ETHx_FT_Sk_MI_LM_TFMIN	For further study	For further study
ETHx_FT_Sk_MI_MEL	0, 1, 2, 3, 4, 5, 6, 7	By agreement
ETHx_FT_Sk_MI_MEG_ID	See Annex A of [ITU-T G.8013]	_
ETHx_FT_Sk_MI_PeerMEP_ID[i]	List of peer MEP IDs; 08191 for each ID; see Figure 9.2-3 of [ITU-T G.8013]	_

Table 8-2 – Provisioning and reporting for flow termination functions

MI signal	Value range	Default value
ETHx_FT_Sk_MI_CC_Period	3.33 ms, 10 ms, 100 ms, 1 s, 10 s, 1 min, 10 min	1 s
ETHx_FT_Sk_MI_CC_Pri	07	7
ETHx_FT_Sk_MI_GetSvdCCM	(NOTE – Use to request the saved latest CCM frame that caused a defect to be raised.)	_
ETHx_FT_Sk_MI_1DM_Enable[1M _{1DM}]	true, false	false
ETHx_FT_Sk_MI_1DM_MAC_SA[1M _{IDM}]	Per [ITU-T G.8021]	_
ETHx_FT_Sk_MI_1DM_Pri[1M _{1DM}]	07	7
ETHx_FT_Sk_MI_1DM_Test_ID[1M _{1DM}]	Non-negative integer (optional)	_
ETHx_FT_Sk_MI_1SL_Enable[1M _{1SL}]	true, false	false
ETHx_FT_Sk_MI_1SL_MAC_SA[1M _{1SL}]	Per [ITU-T G.8021]	_
ETHx_FT_Sk_MI_1SL_Test_ID[1M _{1SL}]	Non-negative integer (optional)	_
ETHx_FT_Sk_MI_MEP_MAC	Per [ITU-T G.8021]	_
R	eporting	
ETHx_FT_Sk_MI_SvdCCM	Last received CCM frame that caused defect	_
ETHx_FT_Sk_MI_BW_Report(SA, PortID, NominalBW, CurrentBW)	Per configured at peer source	_
Pre	ovisioning	
ETHG_FT_So_MI_MEL	0, 1, 2, 3, 4, 5, 6, 7	By agreement
ETHG_FT_So_MI_MEP_MAC	Per [ITU-T G.8021]	_
ETHG_FT_So_MI_CC_Enable	true, false	false
ETHG_FT_So_MI_LMC_Enable	true, false	true
ETHG_FT_So_MI_MEG_ID	See Annex A of [ITU-TG.8013]	_
ETHG_FT_So_MI_MEP_ID	08191; see Figure 9.2-3 of [ITU-T G.8013]	_
ETHG_FT_So_MI_CC_Period	3.33 ms, 10 ms, 100 ms, 1 s, 10 s, 1 min, 10 min	1 s
ETHG_FT_So_MI_CC_Pri	0, 1, 2, 3, 4, 5, 6, 7	7
ETHG_FT_So_MI_LML_Enable[1M _{LM}]	true, false	true
ETHG_FT_So_MI_LM_MAC_DA[1M _{LM}]	Per [ITU-T G.8021]	_
ETHG_FT_So_MI_LM_Period[1M _{LM}]	100 ms, 1 s, 10 s	100 ms
ETHG_FT_So_MI_LM_Pri[1M _{LM}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHG_FT_So_MI_DM_Enable[1M _{DM}]	true, false	false
ETHG_FT_So_MI_DM_MAC_DA[1M _{DM}]	Per [ITU-T G.8021]	_
ETHG_FT_So_MI_DM_Test_ID[1M _{DM}]	Non-negative integer (optional)	_
ETHG_FT_So_MI_DM_Length[1M _{DM}]	Non-negative integer representing number of bytes for the length of the Datapadding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHG_FT_So_MI_DM_Period[1M _{DM}]	100 ms, 1 s, 10 s	100 ms

 $Table \ 8-2-Provisioning \ and \ reporting \ for \ flow \ termination \ functions$

MI signal	Value range	Default value
ETHG_FT_So_MI_DM_Pri[1M _{DM}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHG_FT_So_MI_1DM_Enable[1M _{1DM}]	true, false	false
ETHG_FT_So_MI_1DM_MAC_DA[1M _{1DM}]	Per [ITU-T G.8021]	_
ETHG_FT_So_MI_1DM_Test_ID[1M _{1DM}]	Non-negative integer (optional)	_
ETHG_FT_So_MI_1DM_Length[1M _{1DM}]	Non-negative integer representing number of bytes for the length of the Datapadding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHG_FT_So_MI_1DM_Period[1M _{1DM}]	100 ms, 1 s, 10 s	100 ms
ETHG_FT_So_MI_1DM_Pri[1M _{1DM}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHG_FT_So_MI_SL_Enable[1M _{SL}]	true, false	false
Pro	ovisioning	
ETHG_FT_So_MI_SL_MAC_DA[1M _{SL}]	Per [ITU-T G.8021]	_
ETHG_FT_So_MI_SL_Test_ID[1M _{SL}]	Non-negative integer (optional)	_
ETHG_FT_So_MI_SL_Length[1M _{SL}]	Non-negative integer representing number of bytes for the length of the Datapadding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHG_FT_So_MI_SL_Period[1M _{SL}]	10 ms, 100 ms, 1 s, 10 s	100 ms
ETHG_FT_So_MI_SL_Pri[1M _{SL}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHG_FT_So_MI_1SL_Enable[1M _{1SL}]	true, false	false
ETHG_FT_So_MI_1SL_MAC_DA[1M _{ISL}]	Per [ITU-T G.8021]	_
ETHG_FT_So_MI_1SL_Test_ID[1M _{1SL}]	Non-negative integer (optional)	_
ETHG_FT_So_MI_1SL_Length[1M _{1SL}]	Non-negative integer representing number of bytes for the length of the Datapadding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHG_FT_So_MI_1SL_Period[1M _{1SL}]	10 ms, 100 ms, 1 s, 10 s	100 ms
ETHG_FT_So_MI_1SL_Pri[1M _{1SL}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHG_FT_Sk_MI_CC_Enable	true, false	false
ETHG_FT_Sk_MI_LMC_Enable	true, false	true
ETHG_FT_Sk_MI_1Second	_	_
ETHG_FT_Sk_MI_LM_DEGM	2-10; see Table 7-1 of [ITU-T G.806]	10
ETHG_FT_Sk_MI_LM_M	2-10	10
ETHG_FT_Sk_MI_LM_DEGTHR	0% 100%; see Table 7-1 of [ITU-T G.806]	30%
ETHG_FT_Sk_MI_LM_TFMIN	For further study	For further study
ETHG_FT_Sk_MI_MEL	0, 1, 2, 3, 4, 5, 6, 7	By agreement
ETHG_FT_Sk_MI_MEG_ID	See Annex A of [ITU-T G.8013]	_

Table 8-2 – Provisioning and reporting for flow termination functions

MI signal	Value range	Default value	
ETHG_FT_Sk_MI_PeerMEP_ID[i]	List of peer MEP IDs; 08191 for each ID; see Figure 9.2-3 of [ITU-T G.8013]	-	
ETHG_FT_Sk_MI_CC_Period	3.33 ms, 10 ms, 100 ms, 1 s, 10 s, 1 min, 10 min	1 s	
ETHG_FT_Sk_MI_CC_Pri	07	7	
ETHG_FT_Sk_MI_GetSvdCCM	(NOTE – Use to request the saved latest CCM frame that caused a defect to be raised.)	-	
Provisioning			
ETHG_FT_Sk_MI_1DM_Enable[1M _{1DM}]	true, false	false	
ETHG_FT_Sk_MI_1DM_MAC_SA[1M _{1DM}]	Per [ITU-T G.8021]	_	
ETHG_FT_Sk_MI_1DM_Pri [1M _{1DM}]	07	7	
ETHG_FT_Sk_MI_1DM_Test_ID[1M _{1DM}]	Non-negative integer (optional)	_	
ETHG_FT_Sk_MI_1SL_Enable[1M _{1SL}]	true, false	false	
ETHG_FT_Sk_MI_1SL_MAC_SA[1M _{1SL}]	Per [ITU-T G.8021]	_	
ETHG_FT_Sk_MI_1SL_Test_ID[1M _{1SL}]	Non-negative integer (optional)	_	
ETHG_FT_Sk_MI_MEP_MAC	Per [ITU-T G.8021]	_	
Reporting			
ETHG_FT_Sk_MI_SvdCCM	Last received CCM frame that caused defect	_	
ETHG_FT_Sk_MI_BW_Report(SA, PortID, NominalBW, CurrentBW)	Per configured at peer source	_	
Pro	ovisioning		
ETH-LAG_FT_Sk_MI_SSF_Reported	true, false	true	

8.6 Adaptation

See clause 8.5 of [ITU-T G.7710] for a description of adaptation management.

An access point that has multiple adaptation functions connected to it, thereby allowing different clients to be transported via the server signal, requires a mechanism for the selection of the active client.

This function allows a user to provision and monitor the operation of the ET adaptation processes.

The MI signals listed in Table 8-3 are communicated between the EMF and the adaptation processes across the management point within the ET NE.

For the adaptation functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- Provisioning the adaptation management information.
- Retrieving the adaptation management information.
- Notifying the changes of the adaptation management information.

 $Table \ 8\text{-}3-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
ETHx/ETH_A_So Provisio	ning	-
ETHx/ETH_A_So_MI_MEP_MAC	6-byte Unicast MAC address	_
ETHx/ETH_A_So_MI_Client_MEL	07	_
ETHx/ETH_A_So_MI_LCK_Period	1 s, 1 min	1 s
ETHx/ETH_A_So_MI_LCK_Pri	07	7
ETHx/ETH_A_So_MI_Admin_State (Note 6)	LCK, Normal	Normal
ETHx/ETH_A_So_MI_MEL	07	_
ETHx/ETH_A_So_MI_APS_Pri	07	7
ETHx/ETH_A_So_MI_CSF_Period	1 s, 1 min	1 s
ETHx/ETH_A_So_MI_CSF_Pri	07	7
ETHx/ETH_A_So_MI_CSF_Enable	true, false	true
ETHx/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
ETHx/ETH_A_So_MI_CSFdciEnable	true, false	true
ETHx/ETH_A_Sk Provisio	ning	
ETHx/ETH_A_Sk_MI_MEP_MAC	6-byte Unicast MAC address	_
ETHx/ETH_A_Sk_MI_Client_MEL	07	_
ETHx/ETH_A_Sk_MI_LCK_Period	1 s, 1 min	1 s
ETHx/ETH_A_Sk_MI_LCK_Pri	07	7
ETHx/ETH_A_Sk_MI_Admin_State (Note 6)	LCK, Normal	Normal
ETHx/ETH_A_Sk_MI_AIS_Period	1 s, 1 min	1 s
ETHx/ETH_A_Sk_MI_AIS_Pri	07	7
ETHx/ETH_A_Sk_MI_MEL	07	7
ETHx/ETH_A_Sk_MI_CSF_Reported	true, false	true
ETHx/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true
ETHx/ETH-m_A_So Provisi	oning	
ETHx/ETH-m_A_So_MI_MEP_MAC	6-byte Unicast MAC address	_
ETHx/ETH-m_A_So_MI_Client_MEL[1M]	07	_
ETHx/ETH-m_A_So_MI_LCK_Period[1M] (for each of the 1 through M VLANs)	1 s, 1 min	1 s
ETHx/ETH-m_A_So_MI_LCK_Pri[1M]	07	7
ETHx/ETH-m_A_So_MI_Admin_State (Note 6)	LCK, Normal	Normal
ETHx/ETH-m_A_So_MI_VLAN_Config[1M]	(Note 1)	(Note 1)
ETHx/ETH-m_A_So_MI_Etype	2-byte integer ≥ 0x0600	S-Tag: 0x88a8 C-Tag: 0x8100

 $Table \ 8\text{-}3-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
ETHx/ETH-m_A_So_PCP_Config	8P0D, 7P1D, 6P2D, 5P3D, 4P4D, DEI	8P0D
ETHx/ETH-m_A_So_MI_MEL	07	7
ETHx/ETH-m_A_So Provi	sioning	_
ETHx/ETH-m_A_So_MI_CSF_Period	1 s, 1 min	1 s
ETHx/ETH-m_A_So_MI_CSF_Pri	07	7
ETHx/ETH-m_A_So_MI_CSF_Enable	true, false	false
ETHx/ETH-m_A_So_MI_CSFrdifdiEnable	true, false	false
ETHx/ETH-m_A_So_MI_CSFdciEnable	true, false	true
ETHx/ETH-m_A_Sk Provi	sioning	
ETHx/ETH-m_A_Sk_MI_Admin_State (Note 6)	LCK, Normal	Normal
ETHx/ETH-m_A_Sk_MI_MEP_MAC	6-byte Unicast MAC address	_
ETHx/ETH-m_A_Sk_MI_Client_MEL[1M]	07	_
ETHx/ETH-m_A_Sk_MI_LCK_Period[1M]	1 s, 1 min	1 s
ETHx/ETH-m_A_Sk_MI_LCK_Pri[1M]	07	7
ETHx/ETH-m_A_Sk_MI_AIS_Period[1M]	1 s, 1 min	1 s
ETHx/ETH-m_A_Sk_MI_AIS_Pri[1M]	07	7
ETHx/ETH-m_A_Sk_MI_VLAN_Config[1M]	(Note 1)	(Note 1)
ETHx/ETH-m_A_Sk_MI_P_Regenerate	(Note 1)	(Note 1)
ETHx/ETH-m_A_Sk_MI_PVID	(Note 1)	(Note 1)
ETHx/ETH-m_A_Sk_MI_PCP_Config	8P0D, 7P1D, 6P2D, 5P3D, 4P4D, DEI	8P0D
ETHx/ETH-m_A_Sk_MI_Etype	2-byte integer ≥ 0x0600	S-Tag: 0x88a8 C-Tag: 0x8100
ETHx/ETH-m_A_Sk_MI_MEL	07	_
ETHx/ETH-m_A_Sk_MI_CSF_Reported	true, false	true
ETHx/ETH-m_A_Sk_MI_CSFrdifdiEnable	true, false	true
ETHx/ETH-m_A_Sk_MI_Frametype_Config	AllowTaggedOnly; AllowUntaggedOnly; AllowAll	AllowUnt aggedOnl y
ETHx/ETH-m_A_Sk_MI_Filter-Config-Config	(Note 2)	(Note 2)
ETHG/ETH_A_So Provis	ioning	
ETHG/ETH_A_So_MI_MEP_MAC	6-byte Unicast MAC address	_
ETHG/ETH_A_So_MI_Client_MEL[1M]	07	_
ETHG/ETH_A_So_MI_LCK_Period[1M]	1 s, 1 min	1 s
ETHG/ETH_A_So_MI_LCK_Pri[1M]	07	7

 $Table \ 8\text{-}3-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
ETHG/ETH_A_So_MI_Admin_State (Note 6)	LCK, Normal	Normal
ETHG/ETH_A_So_MI_MEL	07	_
ETHG/ETH_A_So_MI_APS_Pri	07	7
ETHG/ETH_A_So_MI_CSF_Period	1 s, 1 min	1 s
ETHG/ETH_A_So Provisio	ning	
ETHG/ETH_A_So_MI_CSF_Pri	07	7
ETHG/ETH_A_So_MI_CSF_Enable	true, false	false
ETHG/ETH_A_So_MI_CSFrdifdiEnable	true, false	false
ETHG/ETH_A_So_MI_CSFdciEnable	true, false	true
ETHG/ETH_A_Sk Provisio	ning	
ETHG/ETH_A_Sk_MI_MEP_MAC	6-byte Unicast MAC address	_
ETHG/ETH_A_Sk_MI_Client_MEL[1M]	07	_
ETHG/ETH_A_Sk_MI_LCK_Period[1M]	1 s, 1 min	1 s
ETHG/ETH_A_Sk_MI_LCK_Pri[1M]	07	7
ETHG/ETH_A_Sk_MI_Admin_State (Note 6)	LCK, Normal	Normal
ETHG/ETH_A_Sk_MI_AIS_Period[1M]	1 s, 1min	1 s
ETHG/ETH_A_Sk_MI_AIS_Pri[1M]	07	7
ETHG/ETH_A_Sk_MI_MEL	07	_
ETHG/ETH_A_Sk_MI_CSF_Reported	true, false	true
ETHG/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true
ETHx/ETHG_A_So Provisioning		
ETHx/ETHG_A_So_MI_MEP_MAC	6-byte Unicast MAC address	_
ETHx/ETHG_A_So_MI_Client_MEL[1M]	07	_
ETHx/ETHG_A_So_MI_LCK_Period[1M] (for each of the 1 through M VLANs)	1 s, 1 min	1 s
ETHx/ETHG_A_So_MI_LCK_Pri[1M]	07	7
ETHx/ETHG_A_So_MI_Admin_State_(Note 6)	LCK, Normal	Normal
ETHx/ETHG_A_So_MI_VLAN_Config[1M]	(Note 1)	(Note 1)
ETHx/ETHG_A_So_MI_Etype	2-byte integer ≥ 0x0600	S-Tag: 0x88a8 C-Tag: 0x8100
ETHx/ETHG_A_So_PCP_Config	8P0D, 7P1D, 6P2D, 5P3D, 4P4D, DEI	8P0D
ETHx/ETHG_A_So_MI_MEL	07	7

Table 8-3 – Provisioning and reporting for adaptation functions

ETHx/ETHG_A_Sk Provision ETHx/ETHG_A_Sk_MI_Admin_State (Note 6) ETHx/ETHG_A_Sk_MI_MEP_MAC ETHx/ETHG_A_Sk_MI_Client_MEL[1M]	LCK, Normal 6-byte Unicast MAC address 07	Normal
ETHx/ETHG_A_Sk_MI_MEP_MAC	6-byte Unicast MAC address	Normal _
	address	
ETHx/ETHG_A_Sk_MI_Client_MEL[1M]	0.7	
	07	_
ETHx/ETHG_A_Sk_MI_LCK_Period[1M]	1 s, 1 min	1 s
ETHx/ETHG_A_Sk_MI_LCK_Pri[1M]	07	7
ETHx/ETHG_A_Sk_MI_AIS_Period[1M]	1 s, 1 min	1 s
ETHx/ETHG_A_Sk_MI_AIS_Pri[1M]	07	7
ETHx/ETHG_A_Sk Provisi	oning	
ETHx/ETHG_A_Sk_MI_VLAN_Config[1M]	(Note 1)	(Note 1)
ETHx/ETHG_A_Sk_MI_P_Regenerate	(Note 1)	(Note 1)
ETHx/ETHG_A_Sk_MI_PVID	(Note 1)	(Note 1)
ETHx/ETHG_A_Sk_MI_PCP_Config	8P0D, 7P1D, 6P2D, 5P3D, 4P4D, DEI	8P0D
ETHx/ETHG_A_Sk_MI_Etype	2-byte integer $\geq 0x0600$	S-Tag: 0x88a8 C-Tag: 0x8100
ETHx/ETHG_A_Sk_MI_MEL	07	_
ETHx/ETHG_A_Sk_MI_Frametype_Config	AllowTaggedOnly; AllowUntaggedOnly; AllowAll	AllowUnt aggedOnly
ETHx/ETHG_A_Sk_MI_FilterConfig	(Note 2)	(Note 2)
ETHx/MCC_A_So Provision	oning	
ETHx/MCC_A_So_MI_MEL	07	_
ETHx/MCC_A_So_MI_MEP_MAC	6-byte Unicast MAC address	_
ETHx/MCC_A_So_MI_MCC_Pri	07	7
ETHx/MCC_A_So_MI_MEP_ID	08191; see Figure 9.2-3 of [ITU-T G.8013]	_
ETHx/MCC_A_So_MI_EDM_Enable	true, false	false
ETHx/MCC_A_So_MI_EDM_Period	For further study	For further study
ETHx/MCC_A_So_MI_EDM_Duration	Integer represents number of seconds	=
ETHx/MCC_A_Sk Provision	oning	
ETHx/MCC_A_Sk_MI_MEP_MAC	6-byte Unicast MAC address	_
ETHx/MCC_A_Sk_MI_MEL	07	_

 $Table \ 8\text{-}3-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
ETHx/MCC_A_Sk Reporting		
ETHx/MCC_A_Sk_MI_EDM_received (MEP_ID, Duration)	Per provisioning at ETHx/MCC_A_So	_
ETHDi/ETH_A_So Provisio	ning	-
ETHDi/ETH_A_So_MI_ MEL	07	_
ETHDi/ETH_A_So_MI_RAPS_Pri	07	7
ETHDi/ETH_A_So_MI_MIP_MAC	6-byte MAC unicast address	_
ETHDi/ETH_A_Sk Provisio	ning	
ETHDi/ETH_A_Sk_MI_ MEL	07	_
ETH <u>x</u> n-Np/ETH-LAG-Na_A_So Pr	rovisioning	
ETHxn-Np/ETH-LAG-Na_A_So_MI_Agg[1Na]_AP_List	(Note 1)	(Note 1)
ETHxn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_ ActorAdmin_State	See clause 7.3 of [IEEE 802.1AX]	_
ETHx-Np/ETH-LAG-Na_A_Sk Pr	<u>ovisioning</u>	
ETHx-Np/ETH-LAG-Na_A_Sk_MI_PLLThr[1Na]	(Note 1)	(Note 1)
ETH <u>x</u> n-Np/ETH-LAG-Na_A_So I	Reporting	
ETH+x-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_ActorSystemID[IEEE 802.1AX oAggregator mandatory objects]	See clause 7.3-1.1.4 of [IEEE 802.1AX]	_
ETHnx-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_ActorSystemPriority[IEEE 802.1AX oAggregationPort mandatory —objects]	See clause 7.3 .1.1.5 of [IEEE 802.1AX]	-
ETHx-Np/ETH-LAG-Na_A_So_MI_pAggOctetsTxOK[1Na]	See clause 7.3 of [IEEE 802.1AX]	
ETHx-Np/ETH-LAG-Na_A_So_MI_pAggFramesTxOK[1Na]	See clause 7.3 of [IEEE 802.1AX]	
ETHn Np/ETH LAG Na_A_So_ MI_Agg[1Na]_ActorOperKey	See clause 7.3.1.18 of [IEEE 802.1AX]	_
ETHn Np/ETH LAG Na_A_So_ MI_Agg[1Na]_PartnerSystemID	See clause 7.3.1.110 of [IEEE 802.1AX]	_
ETHn Np/ETH LAG Na_A_So_ MI_Agg[1Na]_PartnerSystemPriority	See clause 7.3.1.1.11 of [IEEE 802.1AX]	_
ETHn-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_PartnerOperKey	See clause 7.31.1.12 of [IEEE 802.1AX]	_
ETHn Np/ETH LAG Na_A_So_ MI_Agg[1Na]_DataRate	See clause 7.3.1.1.16 of [IEEE 802.1AX]	_
ETHn Np/ETH LAG Na_A_So_ MI_Agg[1Na]_CollectorMaxDelay	See clause 7.31.1.32 of [IEEE 802.1AX]	_

 $Table \ 8\text{-}3-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
ETHn Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_ActorOperKey	See clause 7.3.2.1.5 of [IEEE 802.1AX]	_
ETHn Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_PartnerOperSystemPriority	See clause 7.3.2.1.7 of [IEEE 802.1AX]	_
ETHn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_PartnerOperSystemID	See clause 7.3.2.1.9 of [IEEE 802.1AX]	_
ETHn Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_PartnerOperKey	See clause 7.3.2.1.11 of [IEEE 802.1AX]	_
ETHn Np/ETH LAG Na_A_So_ MI_AggPort[1Np]_ActorPort	See clause 7.3.2.1.14 of [IEEE 802.1AX]	_
ETHn Np/ETH LAG-Na_A_So_ MI_AggPort[1Np]_ActorPortPriority	See clause 7.3.2.1.15 of [IEEE 802.1AX]	_
ETHn Np/ETH LAG Na_A_So_ MI_AggPort[1Np]_PartnerOperPort	See clause 7.3.2.1.17 of [IEEE 802.1AX]	_
ETHn Np/ETH LAG Na_A_So_ MI_AggPort[1Np]_PartnerOperPortPriority	See clause 7.3.2.1.19 of [IEEE 802.1AX]	_
ETHn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_ActorOperState	See clause 7.3.2.1.21 of [IEEE 802.1AX]	_
ETHn Np/ETH LAG Na_A_So_ MI_AggPort[1Np]_PartnerOperState	See clause 7.3.2.1.23 of [IEEE 802.1AX]	_
ETH <u>x</u> n-Np/ETH-LAG-Na_A_Sk P 1	rovisioning	
ETHxn-Np/ETH-LAG-Na_A_Sk_MI_PLLThr[1Na]	(Note 1)	(Note 1)
ETHx-Np/ETH-LAG-Na_A_Sk R	<u>Reporting</u>	
ETHx-Np/ETH-LAG-Na_A_Sk_MI_pAggOctetsRxOK[1Na]	See clause 7.3 of [IEEE 802.1AX]	
ETHx-Np/ETH-LAG- Na_A_Sk_MI_pAggFramesRxOK[1Na]	See clause 7.3 of [IEEE 802.1AX]	
ETH-LAG/ETH_A_So Provis i	ioning	
ETH-LAG/ETH_A_Sk Provis i	ioning	
ETH-LAG/ETH_A_Sk_MI_FilterConfig	(Note 2)	(Note 2)
Sn/ETH_A_So Provisioni	n g	
Sn/ETH_A_So_MI_Active	true, false	true
Sn/ETH_A_So_MI_CSFEnable	true, false	true
Sn/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
Sn/ETH_A_Sk Provisioning		
Sn/ETH_A_Sk_MI_Active	true, false	true
Sn/ETH_A_Sk_MI_FilterConfig	(Note 2)	(Note 2)
Sn/ETH_A_Sk_MI_CSF_Reported	true, false	false
Sn/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000

Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
Sn/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true
Sn/ETH_A_Sk	Reporting	
Sn/ETH_A_Sk_MI_AcSL	0255 (see Table 9-11 of [ITU-T-G.707])	_
Sn/ETH_A_Sk_MI_AcEXI	015 (see Table 6-2 of [ITU-T-G.7041])	_
Sn/ETH_A_Sk_MI_AcUPI	0255 (see Table 6-3 of [ITU-T-G.7041])	_
Sn-X-L/ETH_A_S	o Provisioning	•
Sn-X-L/ETH_A_So_MI_CSFEnable	true, false	true
Sn-X-L/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
Sn-X-L/ETH_A_S	k Provisioning	•
Sn-X-L/ETH_A_Sk_MI_FilterConfig	(Note 2)	(Note 2)
Sn-X-L/ETH_A_Sk_MI_CSF_Reported	true, false	false
Sn-X-L/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
Sn-X-L/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true
Sn-X-L/ETH_A_	Sk Reporting	
Sn X-L/ETH_A_Sk_MI_AcSL	0255 (see Table 9-11 of [ITU-T-G.707])	_
Sn X L/ETH_A_Sk_MI_AcEXI	015 (see Table 6-2 of [ITU T G.7041])	_
Sn-X-L/ETH_A_Sk_MI_AcUPI	0255 (see Table 6-3 of [ITU-T G.7041])	_
Sm/ETH_A_So l	Provisioning	I.
Sm/ETH_A_So_MI_CSFEnable	true, false	true
Sm/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
Sm/ETH_A_Sk l	Provisioning	
Sm/ETH_A_Sk_MI_FilterConfig	(Note 2)	(Note 2)
Sm/ETH_A_Sk_MI_CSF_Reported	true, false	false
Sm/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
Sm/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true
Sm/ETH_A_Sk	Reporting	
Sm/ETH_A_Sk_MI_AcSL	0255 (see Tables 9-12 and 9-13 of [ITU-T G.707])	_
Sm/ETH_A_Sk_MI_AcEXI	015 (see Table 6-2 of [ITU-T G.7041])	_
Sm/ETH_A_Sk_MI_AcUPI	0255 (see Table 6-3 of [ITU T G.7041])	_

Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
Sm-X-L/ETH_A_So Pro	ovisioning	
Sm-X-L/ETH_A_So_MI_CSFEnable	true, false	true
Sm-X-L/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
Sm-X-L/ETH_A_Sk Pre	ovisioning	
Sm-X-L/ETH_A_Sk_MI_FilterConfig	(Note 2)	(Note 2)
Sm-X-L/ETH_A_Sk_MI_CSF_Reported	true, false	false
Sm-X-L/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
Sm-X-L/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true
Sm X L/ETH_A_Sk R o	eporting	
Sm X-L/ETH_A_Sk_MI_AcSL	0255 (see Tables 9-12 and 9-13 of [ITU-T-G.707])	_
Sm-X-L/ETH_A_Sk_MI_AcEXI	015 (see Table 6-2 of [ITU-T G.7041])	_
Sm-X-L/ETH_A_Sk_MI_AcUPI	0255 (see Table 6-3 of [ITU T G.7041])	_
Sn-X/ETC3_A_So Prov	visioning	1
Sn-X/ETC3_A_So_MI_CSFEnable	true, false	true
Sn-X/ETC3_A_Sk Prov	visioning	1
Sn-X/ETC3_A_Sk_MI_CSF_Reported	true, false	false
Sn-X/ETC3_A_Sk Re	porting	
Sn-X/ETC3_A_Sk_MI_AcSL	0255 (see Table 9-11 of [ITU T G.707])	_
Sn-X/ETC3_A_Sk_MI_AcEXI	015 (see Table 6-2 of [ITU T G.7041])	_
Sn-X/ETC3_A_Sk_MI_AcPFI	0 or 1 (see clause 6.1.3.1 of [ITU T G.7041])	_
Sn-X/ETC3_A_Sk_MI_AcUP	0255 (see Table 6-3 of [ITU T G.7041])	_
Pq/ETH_A_So Provis	sioning	
Pq/ETH_A_So_MI_CSFEnable	true, false	true
Pq/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
Pq/ETH_A_Sk Provis	sioning	
Pq/ETH_A_Sk_MI_FilterConfig	(Note 2)	(Note 2)
Pq/ETH_A_Sk_MI_CSF_Reported	true, false	false
Pq/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
Pq/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	false
Pq/ETH_A_Sk Repo	orting	1
Pq/ETH_A_Sk_MI_AcSL	07 (see clause 2.1.2 of [ITU T G.832])	_

 $Table \ 8\text{-}3-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
Pq/ETH_A_Sk_MI_AcEXI	015 (see Table 6-2 of [ITU T G.7041])	_
Pq/ETH_A_Sk_MI_AcUPI	0255 (see Table 6-3 of [ITU-T G.7041])	_
Pq X L/ETH_A_So Provision	ening ening	
Pq-X-L/ETH_A_So_MI_CSFEnable	true, false	true
Pq-X-L/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
Pq X L/ETH_A_Sk Provisio	o ning	
Pq-X-L/ETH_A_Sk_MI_FilterConfig	(Note 2)	(Note 2)
Pq-X-L/ETH_A_Sk_MI_CSF_Reported	true, false	false
Pq-X-L/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
Pq-X-L/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	false
Pq X L/ETH_A_Sk Report	ing	
Pq-X-L/ETH_A_Sk_MI_AcSL	07 (see clause 2.1.2 of [ITU-T G.832])	_
Pq-X-L/ETH_A_Sk_MI_AcEXI	015 (see Table 6-2 of [ITU-T G.7041])	_
Pq-X-L/ETH_A_Sk_MI_AcUPI	0255 (see Table 6-3 of [ITU-T G.7041])	_
M-AIxTSi[G]/ETH_A_So Provisioning		
M-AI*TSi[G]/ETH_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIxTSi[G]/ETH_A_So_MI_FTSEnable	true, false	false
M-AI/ETH A So MI ESMC Enable	true, false	<u>false</u>
M-AIxTSi[G]/ETH_A_Sk Prov	isioning	
M-AIxTSi[G]/ETH_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AI/ETH A So MI ESMC Enable	true, false	<u>false</u>
xTSi[G]/ETH_A_Sk_MI_FilterConfig	(Note 3)	_
M-AI*TSi[G]/ETH_A_So Re p	orting	•
M-AI*TSi[G]/ETH_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIxTSi[G]/ETH_A_Sk Rep	orting	
M-AI*TSi[G]/ETH_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIOTSi/ERS10G_A_So Prov	visioning	•
M-AIOTSi/ERS10G_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIOTSi/ERS10G_A_Sk Prov	visioning	
M-AIOTSi/ERS10G_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIOTSi/ERS10G_A_So Rej	porting	
M-AIOTSi/ERS10G_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIxTSi[G]/ERS10ETH_A_Sk Reporting		
M-AIOTSi/ERS10G_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	

 $Table \ 8\text{-}3-Provisioning \ and \ reporting \ for \ adaptation \ functions$

MI signal	Value range	Default value
M-AI*TSi[G]/ETCy_A_So Provisioning		
M-AIxTSi[G]/ETCy_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIxTSi[G]/ETCy_A_Sk Prov	risioning	
M-AIxTSi[G]/ETCy_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIxTSi[G]/ETCy_A_So Rep	porting	
M-AIxTSi[G]/ETCy_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
<u>M-AI×TSi[G]</u> /ETCy_A_Sk Rep	porting	'
M-AIxTSi[G]/ETCy_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIOTSi/CBR10G3_A_So Pro	visioning	
M-AIOTSi/CBR10G3_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIOTSi/CBR10G3_A_Sk Pro	visioning	
M-AIOTSi/CBR10G3_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AI OTSi /CBR10G3_A_So Re	porting	
M-AIOTSi/CBR10G3_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIOTSi/CBR10G3_A_Sk Re		
M-AIOTSi/CBR10G3_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIOTSiG/FlexE_A_So Provi		
M-AI/FlexE_A_So_MI_[IEEE 802.3]—	See [IEEE 802.3]—	_
M-AIOTSiG/FlexE_A_Sk Provi		
M-AI/FlexE A So MI [IEEE 802.3]OTSiG/FlexE A Sk MI 1second	See [IEEE 802.3]—	_
M-AIOTSiG/FlexE_A _So Rep	orting	
M-AIOTSiG/FlexE_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
M-AIOTSiG/FlexE_A_Sk Rep		
M-AiOTSiG/FlexE_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	_
FlexE-n/FlexEC_A_So Provis		
FlexE-n/FlexEC_A_So_MI_TxCC (Note 4)	0, 1	By agreement
FlexE-n/FlexEC_A_So_MI_TxCCA (Notes 4 and 5)	See clause 7.3.4 of [OIF FlexE IA]	-
FlexE-n/FlexEC_A_So_MI_TxCCB (Notes 4 and 5)	See clause 7.3.4 of [OIF FlexE IA]	_
FlexE-n/FlexEC_A_So_MI_TxCR (Note 4)	0, 1	_
FlexE-n/FlexEC_A_So_MI_TxCA (Note 4)	0, 1	_
FlexE-n/FlexEC_A_So_MI_TxGID (Notes 4 and 5)	11048575	_
FlexE-n/FlexEC_A_So_MI_Tx_FlexE_PHYMAP (Notes 4 and 5)	String, length 256	_
FlexE-n/FlexE_A_Sk Provisi	oning	•
FlexE-n/FlexEC_A_Sk_MI_ExCC (Note 4)	(Note 3)	_
FlexE-n/FlexEC_A_Sk_MI_ExCCA (Note 5)	(Note 3)	_

Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default
_		value
FlexE-n/FlexEC_A_Sk_MI_ExCCB (Note 5)	(Note 3)	
FlexE-n/FlexEC_A_Sk_MI_ExGID (Note 5)	(Note 3)	
FlexE-n/FlexEC_A_Sk_MI_ExFlexEPHYMAP (Note 5)	(Note 3)	
FlexE-n/FlexEC_A_So Re	porting	1
_		_
FlexE-n/FlexEC_A_Sk Re	porting	
FlexE-n/FlexEC_A_Sk_MI_AcCC	(Note 3)	_
FlexE-n/FlexEC_A_Sk_MI_AcCR	(Note 3)	_
FlexE-n/FlexEC_A_Sk_MI_AcCA	(Note 3)	_
FlexE-n/FlexEC_A_Sk_MI_AcCCA		
FlexE-n/FlexEC_A_Sk_MI_AcCCB		
FlexE-n/FlexEC_A_Sk_MI_AcFlexEMAP[1n]		
FlexE-n/FlexEC_A_Sk_MI_AcGID[1n]		
FlexE-n/FlexEC_A_Sk_MI_AcIID[1n]		
FlexEC/ETH_A_So Provi	 isioning	
FlexEC/ETH_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
FlexEC/ETH_A_Sk Provi		
FlexEC/ETH_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	_
FlexEC/ETH_A_So Rep		
FlexEC/ETH_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	_
FlexEC/ETH_A_So Rep		
FlexEC/ETH _A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	_
FlexEC/ETH_A_Sk_MI_FilterConfig	(Note 3)	
M-AI/FlexESGM_A_So Pro		
M-AI/FlexESGM_A_So_MI_[IEEE 802.3]	See [IEEE 802.3]	=
M-AI/FlexESGM_A_Sk Pro		
M-AI/FlexESGM_A_Sk_MI_[IEEE 802.3]	See [IEEE 802.3]	1_
M-AI/FlexESGM_A_So Ro		=
M-AI/FlexESGM A So MI [IEEE 802.3]	See [IEEE 802.3]	
M-AI/FlexESGM_A_Sk R		=
M-AI/FlexESGM A Sk MI [IEEE 802.3]	See [IEEE 802.3]	
	See [IEEE 802.3]	=
NOTE 1 – According to [ITU-T G.8021]. NOTE 2 – According to clause 8.3 of [ITU-T G.8021]. It is not	ot exposed to the operator as	ด
configuration parameter of the equipment management interfa		<u>u</u>
NOTE 3 – According to [ITU-T G.8023].		
NOTE 4 – The EMF configures this value according to clause	7.3.2 and 7.3.4 of [OIF Flex	IA].
NOTE 5 – The EMF shall configure the same value for the M		
FlexE-n/FlexEC_A_So and FlexE-n/FlexEC_A_Sk functions.		
NOTE 6 – See clause 8.14 for Administrative state manageme	ent.	

8.7 Connection

See clause 8.6 of [ITU-T G.7710] for a description of connection management.

This function allows a user to provision the operation of an ETH connection function.

The MI signals listed in Table 8-4 are communicated from the EMF to the connection function through the management point.

For the connection functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- Provisioning the connection management information
- Retrieving the connection management information
- Notifying the changes of the connection management information

Table 8-4 – Provisioning and reporting for connection functions

MI signal	Value range	Default value
ETH_C Provisioning		
ETH_C_MI_Create_FF	(Note)	(Note)
ETH_C_MI_Modify_FF	(Note)	(Note)
ETH_C_MI_Delete_FF	(Note)	(Note)
ETH_C Provisioning per flow for	orwarding process	
ETH_C_MI_FF_Set_PortIds[IEEE 802.1Q]	(Note)	(Note)
ETH_C_MI_FF_ConnectionType	(Note)	(Note)
ETH_C_MI_FF_Flush_Learned	_	_
ETH_C_MI_FF_Flush_Config	_	_
ETH_C_MI_FF_Group_Default	(Note)	(Note)
ETH_C_MI_FF_ETH_FF	(Note)	(Note)
ETH_C_MI_FF_Ageing	10 to 10 ⁶ seconds	300 seconds
ETH_C_MI_FF_Learning	(Note)	(Note)
ETH_C_MI_FF_STP_Learning_State[i] (for each port)	true, false	true
ETH_C Provisioning per SNC/S	protection process	
ETH_C_MI_PS_WorkingPortId	(Note)	(Note)
ETH_C_MI_PS_ProtectionPortId	(Note)	(Note)
ETH_C_MI_PS_ProtType	(Note)	(Note)
ETH_C_MI_PS_OperType	(Note)	(Note)
ETH_C_MI_PS_HoTime	0 and 10 s in steps of 100 ms (Note)	0 ms
ETH_C_MI_PS_WTR	1-minute steps between 5 and 12 minutes (Note)	5 minutes
ETH_C_MI_PS_ExtCMD	(Note)	(Note)
ETH_C_MI_PS_BridgeType	0 (Selector bridge), 1(Broadcast bridge)	0
ETH_C_MI_PS_SD_Protection	disabled, enabled	disabled

Table 8-4 – Provisioning and reporting for connection functions

MI signal	Value range	Default value
ETH_C Reporting per SNC/S protection process		
ETH_C_MI_PS_RequestState	"LO", "SF-P", "FS", "SF", "SD", "MS", "WTR", "EXER", "RR", "DNR", "NR"	_
ETH_C_MI_PS_RequestedSignal	"Null", "Normal"	_
ETH_C_MI_PS_BridgedSignal	"Null", "Normal"	_
ETH_C Provisioning per ring pr	rotection process	
ETH_C_MI_RAPS_PortIds[01]	(Note)	(Note)
ETH_C_MI_RAPS_RPL_Owner_Node	(Note)	(Note)
ETH_C_MI_RAPS_RPL_Neighbour_Node	(Note)	(Note)
ETH_C_MI_RAPS_Propagate_TC[1M]	(Note)	(Note)
ETH_C_MI_RAPS_Compatible_Version	(Note)	(Note)
ETH_C_MI_RAPS_Revertive	(Note)	(Note)
ETH_C_MI_RAPS_Sub_Ring_Without_Virtual_Channel	(Note)	(Note)
ETH_C_MI_RAPS_HoTime	(Note)	(Note)
ETH_C_MI_RAPS_WTR	(Note)	(Note)
ETH_C_MI_RAPS_GuardTime	(Note)	(Note)
ETH_C_MI_RAPS_ExtCMD	(Note)	(Note)
ETH_C_MI_RAPS_RingID	1to239 (0x01toEF)	1
ETH_C Reporting per ring protection process		
ETH_C_MI_RAPS_NodeState	"-", "Idle", "Protection", "Manual switch", "Forced switch", "Pending"	_
ETH_C_MI_RAPS_PortState[01]	"Blocked", "Unblocked"	_
NOTE – According to [ITU-T G.8021].		

8.8 Diagnostic

This function allows a user to provision the operation of an ETH diagnostic process.

The MI signals listed in Table 8-5 are communicated from the EMF to the diagnostic process across the management point within the ET NE.

For the diagnostic functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- Provisioning the trail termination management information
- Retrieving the trail termination management information
- Notifying the changes of the trail termination management information
- Receiving the monitored trail termination management information

 $Table \ 8\text{-}5-Provisioning \ and \ reporting \ for \ diagnostic \ functions$

MI signal	Value range	Default value	
Provisioning of diagnostic flow termination source for MEP			
ETHDe_FT_So_MI_LM_Start(DA,P,Period)	For period: 100 ms, 1 s, 10 s (Also see Notes 1 and 2 for DA and P)	For period: 100 ms	
ETHDe_FT_So_MI_LM_Intermediate_Request	_	_	
ETHDe_FT_So_MI_LM_Terminate	_	_	
ETHDe_FT_So_MI_LB_Discover(P)	(Note 2)	_	
ETHDe_FT_So_MI_LB_Series(DA,DE,P,N,Length,Period)	(Notes 1 and 2)	_	
ETHDe_FT_So_MI_LB_Test(DA,DE,P,Pattern, Length, Period)	(Notes 1 and 2)	_	
ETHDe_FT_So_MI_LB_Test_Terminate	_	_	
ETHDe_FT_So_MI_DM_Start(DA,P, Test_ID,Length,Period)	For period: 100 ms, 1 s, 10 s (Also see Notes 1 and 2 for DA and P)	For period: 100 ms	
ETHDe_FT_So_MI_DM_Intermediate_Request		_	
ETHDe_FT_So_MI_DM_Terminate	_	_	
ETHDe_FT_So_MI_1DM_Start(DA,P, Test_ID,Length,Period)	For period: 100 ms, 1 s, 10 s (Also see Notes 1 and 2 for DA and P)	For period: 100 ms	
ETHDe_FT_So_MI_1DM_Terminate	_	_	
ETHDe_FT_So_MI_TST(DA,DE,P,Pattern, Length, Period)	(Notes 1 and 2)	_	
ETHDe_FT_So_MI_TST_Terminate	_	_	
ETHDe_FT_So_MI_LT(TA,TTL,P)	(Note 1)	_	
ETHDe_FT_So_MI_MEP_MAC	6-byte MAC unicast address	_	
ETHDe_FT_So_MI_MEL	07	_	
ETHDe_FT_So_MI_MEP_ID	08191; see Figure 9.2-3 of [ITU-T G.8013]	_	
ETHDe_FT_So_MI_SL_Start(DA,P, Test_ID,Length,Period)	For period: 10 ms, 100 ms, 1 s, 10 s (Also see Notes 1 and 2 for DA and P)	For period: 100 ms	
ETHDe_FT_So_MI_SL_Intermediate_Request		_	
ETHDe_FT_So_MI_SL_Terminate	_	_	

Table 8-5 – Provisioning and reporting for diagnostic functions

MI signal	Value range	Default value	
Provisioning of diagnostic flow termination source for MEP			
ETHDe_FT_So_MI_1SL_Start(DA,P,Test_ID,Length,Period)	For period: 10 ms, 100 ms, 1 s, 10 s (Also see Notes 1 and 2 for DA and P)	For period: 100 ms	
ETHDe_FT_So_MI_1SL_Terminate	_	_	
Reporting of diagnostic flow termination sou	rce for MEP		
ETHDe_FT_So_MI_LM_Result(N_TF, N_LF, F_TF, F_LF)	(Note 1)	_	
ETHDe_FT_So_MI_LB_Discover_Result(MACs)	6-byte MAC unicast address	_	
ETHDe_FT_So_MI_DM_Result(count,B_FD[],F_FD[],N_FD[])			
ETHDe_FT_So_MI_LB_Series_Result(REC,ERR,OO)	(Note 1)	_	
ETHDe_FT_So_MI_LB_Test_Result(Sent, REC, CRC, BER, OO)	(Note 1)	_	
ETHDe_FT_So_MI_TST_Result(Sent)	(Note 1)	_	
ETHDe_FT_So_MI_LT_Results(Results)	(Note 1)	_	
ETHDe_FT_So_MI_SL_Result(N_TF,N_LF,F_TF,F_LF)	(Note 1)	_	
Provisioning of diagnostic flow termination s	sink for MEP		
ETHDe_FT_Sk_MI_MEL	07	_	
ETHDe_FT_Sk_MI_MEP_MAC	6-byte Unicast MAC address	_	
ETHDe_FT_Sk_MI_1DM_Start(SA, P,Test_ID)	6-byte Unicast MAC address, Non-negative integer	_	
ETHDe_FT_Sk_MI_1DM_Intermediate_Request	_	_	
ETHDe_FT_Sk_MI_1DM_Terminate	_	_	
ETHDe_FT_Sk_MI_TST_Start(SA, pattern)	(Note 1)	_	
ETHDe_FT_Sk_MI_TST_Terminate	_	_	
ETHDe_FT_Sk_MI_1SL_Start(SA,MEP ID, Test ID)	(Notes 1 and 2)	_	
ETHDe_FT_Sk_MI_1SL_Intermediate_Request	_	_	
ETHDe_FT_Sk_MI_1SL_Terminate	_	_	
Reporting of diagnostic flow termination si	nk for MEP	•	
ETHDe_FT_Sk_MI_1DM_Result(count,N_FD[])	(Note 1)	_	
ETHDe_FT_Sk_MI_1SL_Result(N_TF,N_LF)	(Note 1)		
ETHDe_FT_Sk_MI_TST_Result(REC, CRC, BER, OO)	(Note 1)		
Provisioning of diagnostic flow termination so	ource for MIP		
ETHDi_FT_So_MI_MEL	07	_	
ETHDi_FT_So_MI_MIP_MAC	6-byte MAC unicast address	_	

Table 8-5 – Provisioning and reporting for diagnostic functions

MI signal	Value range	Default value				
Provisioning of diagnostic flow termination sink for MIP						
ETHDi_FT_Sk_MI_MEL	07	_				
ETHDi_FT_Sk_MI_MIP_MAC	6-byte MAC unicast address	_				
NOTE 1 – According to [ITU-T G.8021]. NOTE 2 – DA is 6-byte MAC address, P is 07, DE is 01.						

8.9 Traffic conditioning and shaping

This function allows a user to provision the operation of an ETH traffic conditioning and shaping process.

The MI signals listed in Table 8-6 are communicated between the EMF and the traffic conditioning and shaping process across the management point within the ET NE.

For the traffic conditioning and shaping functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- Provisioning the trail termination management information
- Retrieving the trail termination management information
- Notifying the changes of the trail termination management information
- Receiving the monitored trail termination management information

Table 8-6 – Provisioning for traffic conditioning and shaping functions

MI signal	Value range	Default value						
E	ETH_TCS_So Provisioning							
ETH_TCS_So_MI_ PrioConfig [IEEE 802.1Q]	(Note)	(Note)						
ETH_TCS_So_MI_QueueConfig[]	(Note)	(Note)						
ETH_TCS_So_MI_SchedConfig	(Note)	(Note)						
E	TH_TCS_Sk Provisioning							
ETH_TCS_Sk_MI_ PrioConfig [<u>IEEE</u> 802.1Q MEF_10.4]	(Note)	(Note)						
ETH_TCS_Sk_MI_CondConfig[]	(Note)	(Note)						
ET	TH_GTCS_So Provisioning							
ETH_GTCS_So_MI_PrioConfig[]	(Note)	(Note)						
ETH_GTCS_So_MI_QueueConfig[][]	(Note)	(Note)						
ETH_GTCS_So_MI_SchedConfig[]	(Note)	(Note)						
NOTE – According to [ITU-T G.8021].								

8.10 ZZZ_Reported

See clause 8.8 of [ITU-T G.7710] for a description of ZZZ_Reported management.

Table 8-7 provides the MI signals that need to be provisioned for consequential defect/failure.

For the XXX_Reported functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- Provisioning the trail termination management information
- Retrieving the trail termination management information

Table 8-7 – Notifying the changes of the trail termination management information – Consequential defect/failure related provisioning

MI signal	Value range	Default value
MI_CSF_Reported	true, false	false

8.11 Alarm severity

See clause 8.9 of [ITU-T G.7710] for a description of alarm severity.

8.12 Alarm reporting control (ARC)

See clause 8.10 of [ITU-T G.7710] for a description of alarm reporting control.

8.13 Date and time

The date and time functions within the ET EMF comprise the local real-time clock (RTC) function and the performance monitoring clock (PMC) function. The message communication function within the ET NEF shall be capable of setting the local real-time clock function.

The date and time values are incremented by a free running local clock, or by an external timing source. The fault, configuration, account, performance and security management (FCAPS) functions that need date and time information, e.g., to time stamp event reports, obtain this information from the date and time function.

8.13.1 Date and time application

Clause 8.13.1 of [ITU-T G.7710] identifies three date and time applications. These are:

- time-stamping;
- performance monitoring clock signals;
- activity scheduling.

The ET NEF functional requirements for these applications are specified in the following clauses.

8.13.1.1 Time-stamping

See clause 8.13.1.1 of [ITU-T G.7710] for a description of the time-stamping application.

8.13.1.2 Performance monitoring clock signals

See clause 8.13.1.2 of [ITU-T G.7710] for a description of the PMC signals.

8.13.1.3 Activity scheduling

See clause 8.13.1.3 of [ITU-T G.7710] for a description of the activity scheduling application.

8.13.2 Date and time functions

See clause 8.13.2 of [ITU-T G.7710] for a description of the date and time application.

8.13.2.1 Local real-time clock function

The local real-time clock (RTC) function is specified in clause 8.13.2.1 of [ITU-T G.7710].

8.13.2.2 Local real-time clock alignment function with external time reference

The local real-time clock alignment function with external time reference is specified in clause 8.13.2.2 of [ITU-T G.7710].

8.13.2.3 Performance monitoring clock function

The performance monitoring clock (PMC) function is specified in clause 8.13.2.3 of [ITU-T G.7710].

8.14 Administrative state

See clause 8.15 of [ITU-T G.7710] for a description of Administrative state configuration functions.

The ETH atomic functions supporting the Administrative state are listed within Table 8-3, i.e., those adaptation functions that are appended with MI_Admin_State.

NOTE – In this Recommendation the state values LCK and Normal are used in place of LOCKED and UNLOCKED respectively.

9 Accounting management

Accounting management is not defined in this version of the Recommendation.

10 Performance management

See clause 10 of [ITU-T G.7710] for the generic requirements for performance management. ET specific management requirements are described below.

10.1 Performance management applications

See clause 10.1 of [ITU-T G.7710] for the generic description for performance management applications.

10.2 Performance monitoring functions

See clause 10.2 of [ITU-T G.7710] for the generic requirements of performance monitoring functions.

The following are ET specific performance management requirements:

- 1) PM measurements are managed at TTPs and CTPs (i.e., MEPs/MIPs are created and deleted)
- 2) One MEP has to be created per MEL if that has to be supervised
- 3) Two kinds of measurement jobs have to be supported (ProActive, OnDemand)
- 4) ProActive measurement jobs are managed at MEPs (establish, disable, enable, terminate)
- 5) OnDemand measurement jobs are managed at MEPs (establish, modify, abort)
- 6) On-Demand measurements can be done using 4 different OAM PDU generation mechanisms: single instance, repetitive instance, single series and repetitive series. To describe these mechanisms, the following terms are used:
 - OAM PDU generation type:
 - Generation pattern of the on-demand OAM message
 - Valid types are: single instance, repetitive instance, single series and repetitive series.
 - Message period (x)
 - Frequency of the OAM message generation within a series.
 - Note that a value of zero (i.e., x = 0) means that only one OAM message per measurement interval is generated.
 - Measurement interval (y)

Defines discrete non overlapping periods of time during which measurements are performed (i.e., OAM messages are generated) and reports are gathered at the end of the measurement intervals.

Note that a value of zero means a degenerated measurement interval with a single OAM message and the report is sent as immediately as possible.

Repetition period (z)

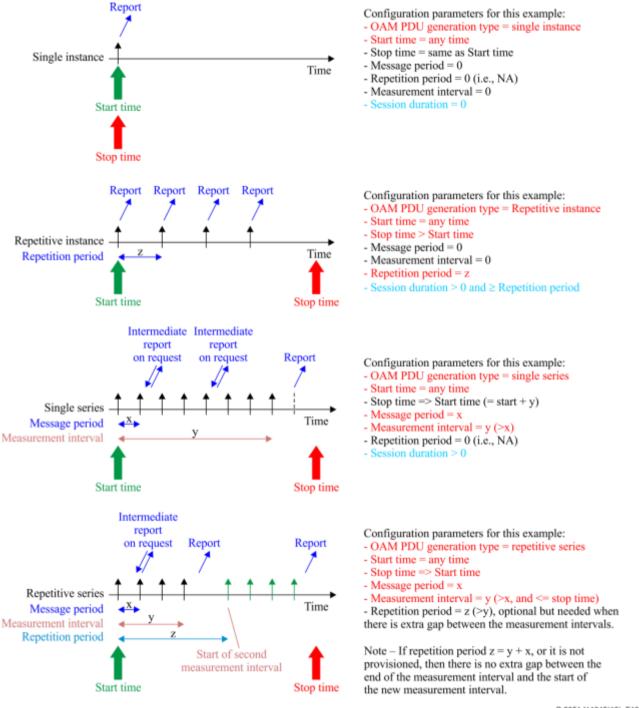
Defines the time between the start of two measurement intervals. This IS applicable for the repetitive instance type and MAY be applicable for the repetitive series type.

Note that a value of zero means not applicable (NA), which is for the cases of single instance, single series, or repetitive series without extra gap in between the measurement intervals (i.e., also as known as continuous series).

Start time

Defines the start of the on-demand session

Stop time


Defines the stop of the on-demand session

Session Duration

Stop time – Start time.

Note that session duration is not a configuration parameter. That is, it is not needed in the configuration.

The four on-demand measurements are illustrated in Figure 10-1. In each mechanism, the mandatory parameters (i.e., the required minimum set of parameters) are in red font. The optional parameters are in black font. Optional parameters are not needed but may be used for validation purposes.

G.8051-Y.1345(18)_F10-1

Figure 10-1 – On-demand OAM PDU generation mechanisms

Note that in the repetitive series case, if the repetition period z = y + x, or the value is not provisioned, then there is no extra gap between the end of the measurement interval and the start of the new measurement interval. This pattern is also known as the continuous series cases. The repetition period (z) is needed if there is extra gap between the measurement intervals.

- 7) It shall be possible to configure the following on-demand measurement parameters (including the default values)
 - a) OAM PDU generation type; default = repetitive instance
 - b) Start time; default = current time
 - c) Stop time; default = $\frac{\text{current time} + 1 \text{ hournever stop}}{1 \text{ hournever stop}}$

- d) OAM message period; default = 0
- e) Measurement interval; default = 0
- e) Repetition period; default = 0
- 8) Parallel measurement jobs, one per priority, can be established
- 9) Performance data is stored in registers associated to the measurement job
- On demand measurement jobs are automatically terminated after (last) report is sentBehaviour of on-demand OAM process with respect to the creation/deletion should follow Start time and Stop time on on-demand measurement job
 - a) The behaviour of on-demand OAM process, resources, message and PM data with respect to the status of the current time is summarized in Table 10-0A.

<u>Table 10-0A – Behaviour of on-demand OAM process, resources, message and PM data</u>

Status of currentTime		Dual-ended me	Single-ended	
		The initiator controller	The target comtroller	<u>measurement job</u>
The start time is not reached yet.		The OAM PM process is not running; The OAM PM resources are allocated but the OAM messages are not generated.	The OAM PM process is not running; The OAM PM resources are allocated but any received OAM message is ignored and no PM data is reported.	The OAM PM process is not running; The OAM PM resources are allocated; The OAM messages are not generated and any received OAM message is ignored; No PM data is reported.
The start time is reached and;	The stop time is not reached yet.	The OAM PM process may be running or not running, based on the behaviour of the configured OAM PDU generation type.	The OAM PM process may be running or not running and some PM data may be reported.	The OAM PM process may be running or not running: Some PM data may be reported, based on the behaviour of the configured OAM PDU generation type.
	The stop time is reached.	The OAM PM process is stopped; The OAM PM process resources are still allocated but OAM messages are not generated.	The OAM PM process is stopped; The OAM PM process resources are still allocated but any received OAM message is ignored; The PM data collected at the time the measurement job has been stopped are still reported.	The OAM PM process is stopped; The OAM PM process resources are still allocated but OAM messages are not generated; Any received OAM message is ignored; The PM data collected at the time the measurement job has been stopped are still reported.

b) For the request of the deletion of measurement job instance, the behaviour with respect to the status of the current time is summarized in Table 10-0B.

Table 10-0B – Behaviour of the measurement job instance for deletion

Status of	Dual-ended me	Single-ended	
<u>currentTime</u>	The initiator controller	The target controller	measurement job
Before the stop time is reached.	The ongoing OAM PM process is stopped; the OAM PM process resources are released, and then the measurement job instance is deleted.	The ongoing OAM PM process is stopped, the OAM PM process resources are released, and then the measurement job instance is deleted, including all of its reports.	The ongoing OAM PM process is stopped, the OAM PM process resources are released, and then the measurement job instance is deleted, including all of its reports.
After the stop time is reached.	The OAM PM process resources are released and then the measurement job instance is deleted.	The OAM PM process resources are released, and then the measurement job instance is deleted, including all of its reports.	The OAM PM process resources are released, and then the measurement job instance is deleted, including all of its reports.

- c) Allowed re-configuration of the start time and/or stop time
 - i) If the current time is less than (i.e., before) the configured start time The following reconfiguration are allowed:
 - <u>currentTime < new_startTime < stopTime</u>
 - <u>currentTime < startTime < new_stopTime</u>
 - currentTime < new_startTime < new_stopTime</p>
 - <u>ii)</u> If the current time is between the configured start time and configured stop time The following reconfiguration is allowed:
 - currentTime < new_stopTime</p>
 - iii) If the current time is greater than (i.e., already passed) the configured stop time The following reconfiguration is allowed:
 - currentTime < new_StartTime < new_stopTime</p>

Figure 10-1a illustrates the allowed reconfiguration of the start time and/or stop time.

Allowed reconfiguration to startTime and/or stopTime

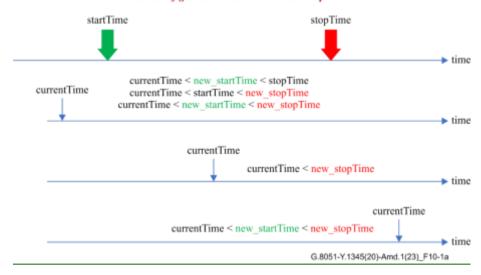


Figure 10-1a – Allowed reconfiguration to startTime and/or stopTime

- d) When the start time is reached, the list of the existing reports, if any, is emptied out
- 11) Threshold profiles are managed at the managed element (create, modify, delete)
- 12) It shall be possible to retrieve the following configuration information:
 - a) all existing MEPs/MIPs within a TP (TTP or CTP)
 - b) all existing measurement jobs within a MEP
 - c) all existing threshold profiles within a network element
 - d) all threshold settings within a ProActive PM measurement job
- 13) It shall be possible to retrieve all ProActive PM measurement current and history performance data within a MEP
- 14) It shall be possible to request intermediate reports on an on-demand PM measurement job of "single series" and "repetitive series" types
- 15) It shall be possible to request an autonomous continuous reporting of performance data from all proactive PM measurement jobs within a MEP (i.e., automatic "push" of the measured PM data)
- On-demand loss measurement can be measured by directly counting the data traffic (e.g., using the [ITU-T G.8013] defined loss measurement message (LMM)/loss measurement reply (LMR)) or can be inferred by counting the synthetic traffic (e.g., using the [ITU-T G.8013] defined SLM/SLR or 1SL). If on-demand loss measurement is supported, for each measurement interval, the Ethernet NE should:
 - Receive from the transport plane the measurements (i.e., N_TF, N_LF, F_TF, F_LF) at the end of each measurement interval.
 - Note that according to the definition of near-end and far-end frame loss in clause 8.1 of [ITU-T G.8013], for a MEP, N_TF and N_LF refer to the transmitted and lost ingress frames while F_TF and F_LF refer to the transmitted and lost egress frames.
 - Note that 1SL can provide only near-end measurement (i.e., N TF, N LF).
 - Store the measurements (TN_TF, TN_LF, TF_TF, TF_LF) and calculate the frame loss ratios (FLRs) (TN_FLR=TN_LF/TN_TF, TF_FLR=TF_LF/TF_TF). The measurements and FLRs shall be reported to the management system.

- At the instruction of the management system, the NE shall be able to request from the transport plane the intermediate (i.e., before the end of the measurement interval) measurements, calculate the intermediate FLRs and report the intermediate results (TN_TF, TN_LF, TN_FLR, TF_TF, TF_LF, TF_FLR) to the management system.
- NOTE An on-demand LM or DM session could be a single series of OAM messages or a single instance of OAM message. A single instance OAM could be considered as a special case of a single series OAM.
- 17) Proactive loss measurement can be measured by directly counting the data traffic (e.g., using the [ITU-T G.8013] defined CCM or LMM/LMR) or can be inferred by counting the synthetic traffic (e.g., using the [ITU-T G.8013] defined SLM/SLR or 1SL). If proactive loss measurement is supported, for each loss measurement session the Ethernet NE should:
 - Receive from the transport plane the measurements (i.e., pN_TF, pN_LF, pF_TF, pF_LF) for each OAM period.
 - Note that 1SL can support only near-end measurement (i.e., N_TF, N_LF).
 - Calculate the FLRs (N_FLR=pN_LF/pN_TF, F_FLR=pF-LF/pF_TF) for each OAM period; store the temporal minimum, average and maximum statistics (mN_FLR, aN_FLR, xN_FLR, mF_FLR, aF_FLR, xF_FLR) in the current 15-minute and 24-hour registers. The stored statistics shall be available for retrieval by the management system.
 - The FLR measurements of a monitored entity measured during an SES shall be included in the computation of its FLR statistics, unless the SES is part of the unavailable time period.
 - Note This is in line with the definition made in Note 1 of clause 1 in [ITU-T Y.1563].
 - At the maturity of the current 15-minute and 24-hour periods, the statistics in the current registers shall move to the history registers and then reset the current registers to zeros. See detailed requirements in [ITU-T G.7710].
- 18) If on-demand 1-way DM (i.e., 1DM) is supported, for each on-demand 1-way DM measurement interval, the Ethernet NE should:
 - Receive from the transport plane the array of near-end measurements (count, N_FD[]) at the end of each measurement interval.
 - Store the measurements, compute the corresponding array of N_FDV[] and report the near-end measurements (count, N_FD[], N_FDV[]) to the management system.
 - At the instruction of the management system, the NE shall be able to request from the transport plane the intermediate measurements, calculate the intermediate N_FDV[] and report the intermediate results (count, N FD[], N FDV[]) to the management system.
- 19) If proactive 1-way DM (i.e., 1DM) is supported, for each proactive 1-way DM session the Ethernet NE should:
 - Receive from the transport plane the near-end measurements (pN_FD, pN_FDV) for each OAM period.
 - Store the temporal minimum, average and maximum (N_FD, N_FDV) in the current 15-minute and 24-hour registers. The stored statistics shall be available for retrieval by the management system.
 - At the maturity of the current 15-minute and 24-hour periods, the statistics in the current registers shall move to the history registers and then reset the current registers to zeros. See detailed requirements in [ITU-T G.7710].
 - NOTE Version 1 of the 1DM PDU format has been defined in the 2011 revision of [ITU-T G.8013] to support both proactive and on-demand 1-way DM applications, in which proactive and on-demand 1DM applications are distinguished by using the Type bit of the Flags field of the 1DM PDU. Proactive 1DM application is configured at the ETHx Flow Termination

- functions (ETHx_FT) with the Type bit is set to 1, while the on-demand 1DM application is configured at the ETH Diagnostic Flow Termination Function (ETHDe_FT) with the Type bit being set to 0. See clause 8.1.11 of -[ITU-T G.8021] for details.
- 20) If on-demand 2-way DM (i.e., delay measurement message (DMM)/delay measurement reply (DMR)) is supported, for each on-demand 2-way DM measurement interval, the Ethernet NE should:
 - Receive from the transport plane the array of near-end, far-end and bidirectional measurements (count, N_FD[], F_FD[], B_FD[]) at the end of each measurement interval.
 - Store the measurements, compute the corresponding array of FDV[] and report the near-end, far-end and bidirectional (2-way) measurements (count, N_FD[], F_FD[], B_FD[]; N_FDV[], F_FDV[], B_FDV[]) to the management system.
 - At the instruction of the management system, the NE shall be able to request from the transport plane the intermediate measurements, calculate the intermediate FDV[] and report the intermediate results (count, N_FD[], F_FD[], B_FD[]; N_FDV[], F_FDV[], B_FDV[]) to the management system.
- 21) If proactive 2-way DM (i.e., DMM/DMR) is supported, for each proactive 2-way DM session the Ethernet NE should:
 - Receive from the transport plane the near-end, far-end and bidirectional measurements (N_FD, F_FD, B_FD; N_FDV, F_FDV, B_FDV) for each OAM period.
 - Store the temporal minimum, average and maximum for each type of the measurements (N_FD, F_FD, B_FD; N_FDV, F_FDV, B_FDV) for the current 15-minute and 24-hour registers. The stored statistics shall be available for retrieval by the management system.
 - At the maturity of the current 15-minute and 24-hour periods, the statistics in the current registers shall move to the history registers and then reset current registers to zeros. See detailed requirements in [ITU-T G.7710].
 - NOTE Version 1 of the 1DM PDU format has been defined in the 2011 revision of [ITU-T G.8013] to support both proactive and on-demand 1-way DM applications, in which proactive and on-demand 1DM applications are distinguished by using the Type bit of the Flags field of the 1DM PDU. Proactive 1DM application is configured at the ETHx Flow Termination functions (ETHx_FT) with the Type bit is set to 1, while the on-demand 1DM application is configured at the ETH Diagnostic Flow Termination Function (ETHDe_FT) with the Type bit being set to 0. See clause 8.1.11 of [ITU-T G.8021] for details.
- The Ethernet NE should support the ability to configure for the start and stop at the respondent-end MEP of a single-ended measurement session (such as LMM/LMR and DMM/DMR).

For illustrative purposes, Figure 10-2 through Figure 10-5 below illustrate the derivation of the loss measurement from the counter values provided by the single-ended and dual-ended mechanisms.

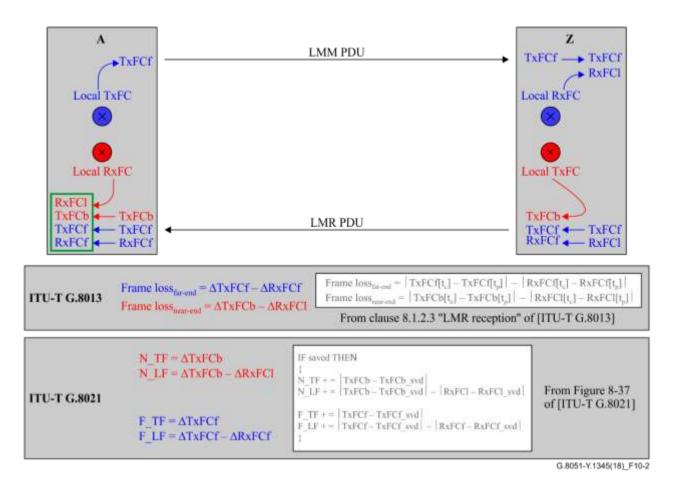


Figure 10-2 - Single-ended loss measurement using LMM/LMR

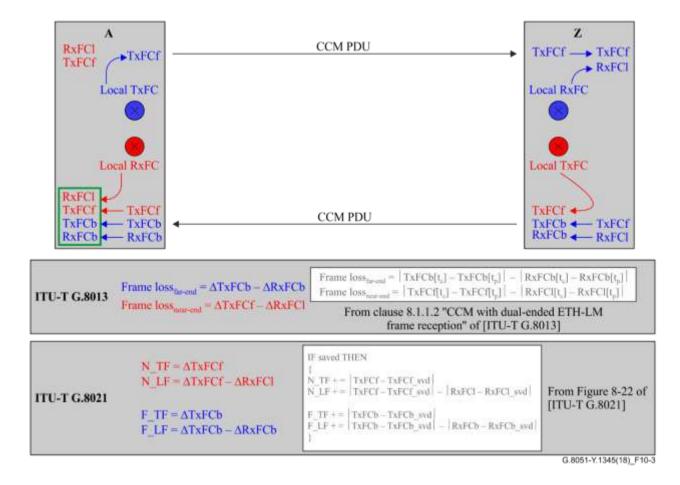


Figure 10-3 – Dual-ended loss measurement using CCM

(Note that for loss measurement, CCM is proactive only.)

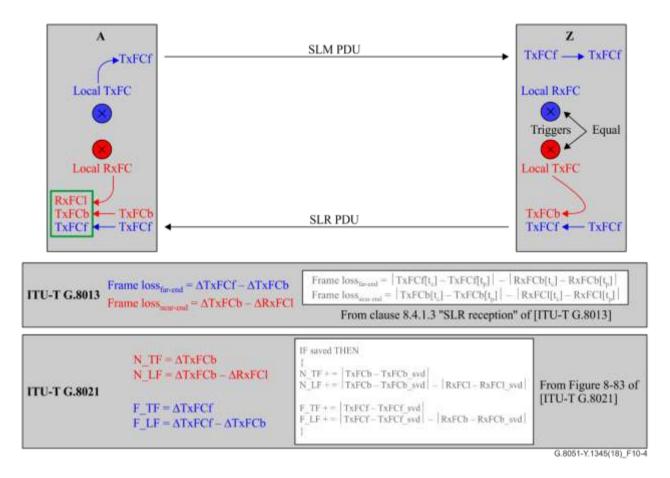


Figure 10-4 - Single-ended loss measurement using SLM/SLR

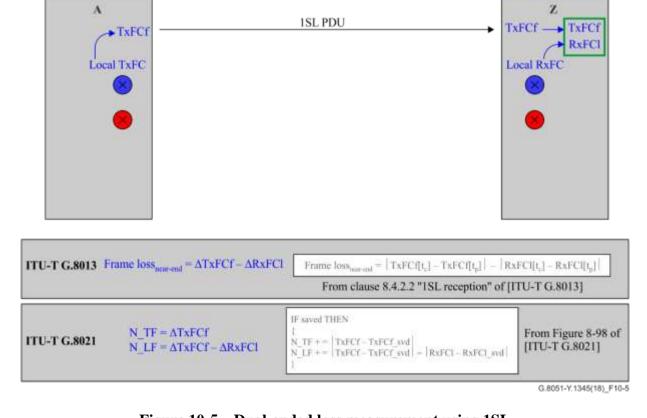


Figure 10-5 – Dual-ended loss measurement using 1SL

ET NE provides the following PM management information (see Table 10-1).

Table 10-1 – PM management information

PM management information	ITU-T G.8021 function
ETHx_FT_Sk_MI_pN_LF ETHx_FT_Sk_MI_pN_TF ETHx_FT_Sk_MI_pF_LF ETHx_FT_Sk_MI_pF_TF ETHx_FT_Sk_MI_pF_DS ETHx_FT_Sk_MI_pN_DS ETHx_FT_Sk_MI_pB_FD ETHx_FT_Sk_MI_pB_FD ETHx_FT_Sk_MI_pB_FDV ETHx_FT_Sk_MI_pF_FD ETHx_FT_Sk_MI_pF_FD ETHx_FT_Sk_MI_pF_FDV ETHx_FT_Sk_MI_pN_FD ETHx_FT_Sk_MI_pN_FD	ETHx_FT_Sk
ETHx_FT_Sk_MI_pN_TF ETHx_FT_Sk_MI_pN_LF ETHx_FT_Sk_MI_pF_TF ETHx_FT_Sk_MI_pF_LF	ETHDe_FT_So
ETHG_FT_Sk_MI_pN_TF ETHG_FT_Sk_MI_pN_LF ETHG_FT_Sk_MI_pF_TF ETHG_FT_Sk_MI_pF_LF ETHG_FT_Sk_MI_pF_DS ETHG_FT_Sk_MI_pN_DS ETHG_FT_Sk_MI_pB_FD ETHG_FT_Sk_MI_pB_FDV ETHG_FT_Sk_MI_pF_FD ETHG_FT_Sk_MI_pF_FD ETHG_FT_Sk_MI_pF_FDV ETHG_FT_Sk_MI_pN_FD ETHG_FT_Sk_MI_pN_FD	ETHG_FT_Sk
ETHxn-Np/ETH-LAG-Na_A_So_MI_pAggOctetsTxOK[1Na] ETHxn-Np/ETH-LAG-Na_A_So_MI_pAggFramesTxOK[1Na]	ETHxn-Np/ETH-LAG-Na_A_So
ETHxn-Np/ETH-LAG-Na_A_Sk_MI_pAggOctetsRxOK[1Na] ETHxn-Np/ETH-LAG-Na_A_Sk_MI_pAggFramesRxOK[1Na] ETHn Np/ETH LAG Na_A_Sk_MI_pFramesReceivedOK[1Np] ETHn Np/ETH LAG Na_A_Sk_MI_pOctetsReceivedOK[1Np]	ETH <u>x</u> n-Np/ETH-LAG-Na_A_Sk
Sn/ETH_A_Sk_MI_pFCSErrors	Sn/ETH_A_Sk
Sn-X-L/ETH_A_Sk_MI_pFCSError	Sn-X-L/ETH_A_Sk
Sm/ETH_A_Sk_MI_pFCSError	Sm/ETH_A_Sk
Sm-X-L/ETH_A_Sk_MI_pFCSError	Sm-X-L/ETH_A_Sk
Sn-X/ETC3_A_Sk_MI_pCRC16Errors	Sn-X/ETC3_A_Sk
Pq/ETH_A_Sk_MI_pFCSError	Pq/ETH_A_Sk
Pq X-L/ETH_A_Sk_MI_pFCSError	Pq-X-L/ETH_A_Sk

The EMF shall support the following functions:

Notifying of the PM management information.

11 Security management

See [ITU-T G.7710] for a description of security management.

Appendix I

MI signals/parameters for PM tools in ITU-T G.8021

(This appendix does not form an integral part of this Recommendation.)

Tables I.1 and I.2 summarize the MI signals defined in [ITU-T G.8021] for the proactive and on-demand performance monitoring tools.

Table I.1 – MI signals for proactive PM (ETHx_FT)

OAM	dir					N	/II signals			
Type		Enable	M	AC	I	D	Length	Period	Pri	Others
			DA	SA	Test	MEP				
CC	So	✓LMC (*1)	(*6)				(*5)	√	✓	
	Sk	✓LMC (*1)						√ (*7)	√ (*7)	GetSvdCCM, SvtCCM
LM	So	✓LML (*1)	✓		(*3)		(*5)	√	✓	
	Sk									DEGM, M, DEGTHER, TFMIN
1SL	So	✓	✓		✓		✓	✓	✓	
	Sk	✓		√ (*2)	✓	(*4)				
SL	So	✓	✓		✓		✓	✓	✓	
	Sk									
1DM	So	✓	✓		✓		✓	✓	✓	
	Sk	✓		√ (*2)	✓					
DM	So	✓	✓		✓		✓	✓	✓	
	Sk									

NOTES:

- *1 MI_{LMC,LML}_Enable are used to activate the loss measurement process by proactive CCM/ LMx, respectively. Since the calculation of CCM is performed at sink side, the MI_LMC_Enable signal is required at sink side (as well as source side, where other protocols have). Note that the latest [ITU-T G.8021] has removed the functionality of MI signals for the allocation of the local counter resources.
- *2 MI_MAC_SA for 1SL/1DM is used to verify that the received PDU is properly sent from the expected peer node.
- *3 MI_Test_ID is not specified in LM until now.
- *4 MI_ MEP_ID was removed during [ITU-T G.8021] v4 AAP because MEP_ID carried in PDU is not evaluated at sink side
- *5 MI_Length is not applicable for CC/LM because the length of both PDUs is always fixed.
- *6 MI_MAC_DA is not explicitly specified for CCM protocol because it uses the multicast class 1 address as the default MAC DA.
- *7 MI_Period/Priority are configured for sink side of CCM process (as well as the source side) to detect the mismatch defects (dUNP and dUNPr). Note that other protocols do not need to specify neither of MI signals at sink side.

Table I.2 – MI signals/parameters for on-demand PM (ETHDe_FT)

OAM	dir	MI_		MI_Start ()			art ()		MIs for retrieval			
Type		Enable	M	AC]	D	Length	Period	Pri	MI_	MI_Intermediate_Request	
			DA	SA	Test	MEP				Termi- nate		Result()
LM	So	(*1)	√		(*3)		(*5)	√	✓	√	✓	✓ (N_TF, N_LF, F_TF, F_LF)
	Sk	(*1)										
1SL	So		✓		✓		✓	✓	✓	✓		
	Sk			✓ (*2)	√	(*4)				√	√	✓ (N_TF, N_LF)
SL	So		√		√		√	√	√	√	√	✓ (N_TF, N_LF, F_TF, F_LF)
	Sk											-
1DM	So		✓		✓		✓	✓	✓	✓		
	Sk			✓ (*2)	√					✓	√	✓ (count, N_FD[])
DM	So		✓		✓		✓	√	✓	✓	✓	✓ (count, B_FD[], F_FD[], N_FD[])
	Sk											

NOTES:

^{*1} MI_Enable is no longer used to allocate the counter resources for loss measurement. Note that the latest [ITU-T G.8021] has removed MI signals for the allocation of the local counter resources.

^{*2} The parameter 'SA' for MI_{1SL,1DM}_Start() is used to verify that the received PDU is properly sent from the expected peer node.

^{*3} The parameter 'Test_ID' for MI_LM_Start() is not specified in LM until now.

^{*4} The parameter 'MEP_ID' for MI_1SL_Start() was removed during [ITU-T G.8021] v4 AAP because MEP_ID carried in PDU is not evaluated at sink side.

^{*5} The parameter 'Length' is not applicable for CC/LM because the length of both PDUs is always fixed.

Bibliography

[b-ITU-T G.874] Recommendation ITU-T G.874 (2020), Management aspects of optical transport network elements.

ITU-T Y-SERIES RECOMMENDATIONS

Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities

GLOBAL INFORMATION INFRASTRUCTURE	Y.100-Y.999
INTERNET PROTOCOL ASPECTS	Y.1000-Y.1999
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	Y.2000-Y.2999
FUTURE NETWORKS	Y.3000-Y.3499
CLOUD COMPUTING	Y.3500-Y.3599
BIG DATA	Y.3600-Y.3799
QUANTUM KEY DISTRIBUTION NETWORKS	Y.3800-Y.3999
INTERNET OF THINGS AND SMART CITIES AND COMMUNITIES	Y.4000-Y.4999

For further details, please refer to the list of ITU-T Recommendations.

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	Tariff and accounting principles and international telecommunication/ICT economic and policy issues
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Telephone transmission quality, telephone installations, local line networks
Series Q	Switching and signalling, and associated measurements and tests
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of Things and smart cities
Series Z	Languages and general software aspects for telecommunication systems