ITU-T

G.8051/Y.1345

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (08/2013)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Packet over Transport aspects – Ethernet over Transport aspects

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

Internet protocol aspects - Transport

Management aspects of the Ethernet Transport (ET) capable network element

Recommendation ITU-T G.8051/Y.1345

-01

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600–G.699
DIGITAL TERMINAL EQUIPMENTS	G.700-G.799
DIGITAL NETWORKS	G.800-G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000-G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000-G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000-G.8999
Ethernet over Transport aspects	G.8000-G.8099
MPLS over Transport aspects	G.8100-G.8199
Quality and availability targets	G.8200-G.8299
Service Management	G.8600-G.8699
ACCESS NETWORKS	G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.8051/Y.1345

Management aspects of the Ethernet Transport (ET) capable network element

Summary

Recommendation ITU-T G.8051/Y.1345 addresses management aspects of the Ethernet transport network element containing transport functions of one or more of the layer networks of the Ethernet transport network. The management of the Ethernet layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client. The management functions for fault management, configuration management, performance monitoring, and security management are specified.

The 2009 Revision of this Recommendation has added the management of additional transport functions that have been introduced in the 2009 Revision of Recommendation ITU-T G.8021/Y.1341.

The 2013 revision of this Recommendation has added the management of additional functions, including: client signal fail (CSF); proactive loss measurement using loss measurement message/loss measurement reply (LMM/LMR); proactive delay measurement using delay measurement message/delay measurement reply (DMM/DMR) and one-way delay measurement (1DM); synthetic loss measurement using synthetic loss message/synthetic loss reply (SLM/SLR) and one-way synthetic loss measurement (1SL) (proactive and on-demand); performance management (PM) requirements on protocol data unit (PDU) generation type, message period, measurement interval, repetition period, start time, stop time and session duration; and PM data collection requirements.

History

Edition	Recommendation	Approval	Study Group
1.0	ITU-T G.8051/Y.1345	2007-10-22	15
2.0	ITU-T G.8051/Y.1345	2009-11-13	15
2.1	ITU-T G.8051/Y.1345 (2009) Amd. 1	2011-06-06	15
3.0	ITU-T G.8051/Y.1345	2013-08-29	15

i

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2013

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

1	Scope	
2	Refere	nces
3	Defini	tions
	3.1	Terms defined elsewhere
	3.2	Terms defined in this Recommendation
4	Abbre	viations and acronyms
5	Conve	ntions
6	ET ma	nagement architecture
	6.1	ET network management architecture
	6.2	ET equipment management function architecture
	6.3	Information flows over management points
7	Fault (maintenance) management
	7.1	Fault management applications
	7.2	Fault management functions
8	Config	guration management
	8.1	Hardware
	8.2	Software
	8.3	Protection switching
	8.4	Trail termination
	8.5	Flow termination
	8.6	Adaptation
	8.7	Connection
	8.8	Diagnostic
	8.9	Traffic conditioning and shaping
	8.10	XXX_Reported
	8.11	Alarm severity
	8.12	Alarm reporting control
	8.13	PM thresholds
	8.14	TCM activations
	8.15	Date and time
9	Accou	nting management
10	Perfor	mance management
	10.1	Performance management applications
	10.2	Performance monitoring functions
11	Securi	ty management
Appe	endix I –	MI signals/parameters for PM tools in ITU-T G.8021

Recommendation ITU-T G.8051/Y.1345

Management aspects of the Ethernet Transport (ET) capable network element

1 Scope

This Recommendation addresses management aspects of the Ethernet Transport (ET) capable network element containing transport functions of one or more of the layer networks of the Ethernet transport network. The management of the Ethernet layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client. In this version of this Recommendation, fault management, configuration management, performance management, and security management are specified. Accounting management is for further study. Furthermore, only the management information (MI) of the following ET equipment functions is addressed:

- Ethernet MAC layer (ETH) flow forwarding, flow termination, connection, diagnostic, and traffic conditioning/shaping functions;
- ETH server to ETH client adaptation functions (including ETH/ETH-m and ETHG/ETH);
- ETH link aggregation functions;
- Ethernet PHY layer (ETYn) trail termination functions;
- ETYn server to ETH client adaptation functions;
- Generic framing procedure framed (GFP-F)-based mapping of Ethernet into synchronous digital hierarchy (SDH);
- Generic framing procedure transparent (GFP-T)-based mapping of Gigabit Ethernet code words into VC-4-Xv;
- Plesiochronous digital hierarchy (PDH) server to ETH client adaptation functions; and
- Optical transport networks (OTN) server to ETH client adaptation functions.

The management of the adaptation of other clients and servers with respect to ET is for further study.

This Recommendation also describes the management network organizational model for communication between an element management layer (EML) operations system and the ET equipment management function within an ET network element.

The architecture described in this Recommendation for the management of Ethernet transport networks is based upon the following considerations:

- the management view of network element functional elements should be uniform whether those elements form part of an inter-domain interface or part of an intra-domain interface. The properties necessary to form such a uniform management view are included in this Recommendation;
- Ethernet layer network entities (ELNE) refer to trail termination, adaptation, and connection functions as described in [ITU-T G.8010];
- a network element may only contain Ethernet layer network entities;
- a network element may contain both ELNE and client layer network entities (CLNE);
- client layer entities are managed as part of their own logical domain;
- CLNE and ELNE may or may not share a common message communication function (MCF) and management application function (MAF) depending on application; and

1

- CLNE and ELNE may or may not share the same agent;
- Server layer network entities (SLNE) and ELNE may or may not share the same agent.

2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T G.707]	Recommendation ITU-T G.707/Y.1322 (2007), <i>Network node interface for the synchronous digital hierarchy (SDH)</i> , plus Amendment 1 (07/2007) and Amendment 2 (11/2009).
[ITU-T G.709]	Recommendation ITU-T G.709/Y.1331 (2012), Interfaces for the optical transport network (OTN), plus Amendment 1 (10/2012).
[ITU-T G.805]	Recommendation ITU-T G.805 (2000), Generic functional architecture of transport networks.
[ITU-T G.806]	Recommendation ITU-T G.806 (2012), <i>Characteristics of transport equipment</i> – <i>Description methodology and generic functionality</i> .
[ITU-T G.832]	Recommendation ITU-T G.832 (1998), <i>Transport of SDH elements on PDH networks – Frame and multiplexing structures</i> , plus Amendment 1 (06/2004), <i>Payload type code of virtual concatenation of 34368 kbit/s signals</i> .
[ITU-T G.7041]	Recommendation ITU-T G.7041/Y.1303 (2011), <i>Generic framing procedure</i> (<i>GFP</i>), plus Amendment 1 (02/2012) and Amendment 2 (10/2012).
[ITU-T G.7710]	Recommendation ITU-T G.7710/Y.1701 (2012), Common equipment management function requirements.
[ITU-T G.7712]	Recommendation ITU-T G.7712/Y.1703 (2010), Architecture and specification of data communication network.
[ITU-T G.8001]	Recommendation ITU-T G.8001/Y.1354 (2013), Terms and definitions for Ethernet frames over transport.
[ITU-T G.8010]	Recommendation ITU-T G.8010/Y.1306 (2004), Architecture of Ethernet layer networks, plus Amendment 1 (05/2006) and Amendment 2 (07/2010).
[ITU-T G.8012]	Recommendation ITU-T G.8012/Y.1308 (2004), <i>Ethernet UNI and Ethernet NNI</i> , plus Amendment 1 (05/2006).
[ITU-T G.8013]	Recommendation ITU-T G.8013/Y.1731 (2011), OAM functions and mechanisms for Ethernet based networks, plus Amendment 1 (05/2012).
[ITU-T G.8021]	Recommendation ITU-T G.8021/Y.1341 (2012), Characteristics of Ethernet transport network equipment functional blocks, plus Amendment 1 (10/2012).
[ITU-T M.20]	Recommendation ITU-T M.20 (1992), Maintenance philosophy for telecommunication networks.
[ITU-T M.3010]	Recommendation ITU-T M.3010 (2000), <i>Principles for a telecommunications management network</i> , plus Amendment 1 (12/2003) and Amendment 2 (11/2005).

[ITU-T M.3013]	Recommendation ITU-T M.3013 (2000), Considerations for a telecommunications management network.
[ITU-T M.3100]	Recommendation ITU-T M.3100 (2005), Generic network information model.
[ITU-T X.700]	Recommendation ITU-T X.700 (1992), Management framework for Open Systems Interconnection (OSI) for CCITT applications.
[ITU-T X.701]	Recommendation ITU-T X.701 (1997) ISO/IEC 10040:1998, Information technology – Open Systems Interconnection – Systems management overview.
[ITU-T X.733]	Recommendation ITU-T X.733 (1992) ISO/IEC 10164-4:1992, Information technology – Open Systems Interconnection – Systems Management: Alarm reporting function, plus Amendment 1 (04/1995).
[ITU-T X.735]	Recommendation ITU-T X.735 (1992) ISO/IEC 10164-6:1993, Information technology – Open Systems Interconnection – Systems Management: Log control function, plus Amendment 1 (04/1995).
[ITU-T Y.1563]	Recommendation ITU-T Y.1563 (01/2009), <i>Ethernet frame transfer and availability performance</i> , plus Amendment 1 (12/2009).
[ITU-T Y.1731]	Recommendation ITU-T G.8013/Y.1731 (2011), OAM functions and mechanisms for Ethernet based networks, plus Amendment 1 (05/2012).
[IEEE 802.3]	IEEE 802.3 (2002), Information technology – Telecommunications and information exchange between systems – Local and Metropolitan Area Networks – Specific requirements – Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

- **3.1.1** Terms defined in [ITU-T G.7710]:
- Local craft terminal (LCT);
- Management application function (MAF).
- **3.1.2** Term defined in [ITU-T G.7712]:
- Data communication network (DCN).
- **3.1.3** Terms defined in [ITU-T G.806]:
- Atomic function (AF);
- Management point (MP).
- **3.1.4** Terms defined in [ITU-T M.3010]:
- Network element (NE);
- Network element function (NEF);
- Operations system (OS);
- Q-interface;
- Workstation function (WF).

- **3.1.5** Term defined in [ITU-T M.3013]:
- Message communication function (MCF).
- **3.1.6** Terms defined in [ITU-T M.3100]:
- Alarm reporting;
- Alarm reporting control (ARC);
- Managed entity;
- Management interface;
- Persistence interval;
- Operations system (OS);
- Operations system function (OSF);
- Qualified problem;
- Reset threshold report;
- Threshold report;
- Timed interval.
- **3.1.7** Term defined in [ITU-T X.700]:
- Managed object (MO).
- **3.1.8** Terms defined in [ITU-T X.701]:
- Agent;
- Manager;
- Managed object class (MOC).
- **3.1.9** Terms defined in [ITU-T G.8001]:
- ET management network (ET.MN);
- ET management subnetwork (ET.MSN);
- ET network element (ET.NE);
- ET management communication channel (ET.MCC).
- **3.2** Terms defined in this Recommendation

None

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations:

1DM **One-way Delay Measurement** 1LM **One-way Loss Measurement** 1SL **One-way Synthetic Loss Measurement** AcSL Accepted Signal Label AF Atomic Function AIS Alarm Indication Signal ALM ALarM reporting APP Access Point Pool

ARC	Alarm Reporting Control
CC	Continuity Check
CCM	Continuity Check Message
CLNE	Client Layer Network Entity
CFS	Client Signal Fail
СТР	Connection Termination Point
CtrlP	Control Plane
DA	Destination Address
DCN	Data Communication Network
DE	Drop Eligibility
DEG	Degraded
DEGM	Degraded M
DEGTHR	Degraded Threshold
DM	Delay Measurement
DMM	Delay Measurement Message
DMR	Delay Measurement Reply
ECC	Embedded Communication Channel
EMF	Equipment Management Function
ET	Ethernet Transport
ET.C	ET Channel layer
ET.MN	ET Management Network
ET.MSN	ET Management SubNetwork
ET.NE	ET Network Element
ET.P	ET Path layer
ET.S	ET Section layer
ETHx	Ethernet MAC layer network – x, x=s for section, x=p for path, x=t for TCM
FCAPS	Fault, Configuration, Account, Performance, Security Management
FFS	For Further Study
FLR	Frame Loss Ratio
FM	Fault Management
FTS	Forced Transmitter Shutdown
GNE	Gateway Network Element
IP	Interworking Protocol
IS	Intermediate System
LAN	Local Area Network
LCN	Local Communications Network
LCT	Local Craft Terminal

LMM	Loss Measurement Message
LMR	Loss Measurement Reply
MAF	Management Application Function
MCC	Management Communication Channel
MCF	Message Communication Function
MD	Mediation Device
ME	Maintenance Entity
MEG	ME Group
MEL	MEG Level
MEP	MEG End Point
MF	Mediation Function
MgmtP	Management Plane
MI	Management Information
MIB	Management Information Base
MIP	MEG Intermediate Point
MN	Management Network
МО	Managed Object
MOC	Managed Object Class
MP	Management Point
MSN	Management SubNetwork
NALM	No ALaRm reporting
NALM-CD	No ALaRm reporting, CountDown
NALM-NR	No ALaRm reporting, NotReady
NALM-QI	No ALaRm reporting, Qualified Inhibit
NALM-TI	No ALaRm reporting, Timed Inhibit
NE	Network Element
NEF	Network Element Function
NEL	Network Element Layer
OAM	Operations, Administration, Maintenance
OAM&P	Operations, Administration, Maintenance and Provisioning
OS	Operations System
OSF	Operations System Function
OSI	Open Systems Interconnection
Р	Priority
PDU	Protocol Data Unit
PM	Performance Management
PMC	Performance Monitoring Clock

PRS	Persistency filter
PS	Protection Switching
QoS	Quality of Service
RDI	Remote Defect Indication
RTC	Real-Time Clock
SA	Source Address
SCC	Signalling Communication Channel
SL	Synthetic Loss
SLM	Synthetic Loss Message
SLNE	Server Layer Network Entity
SLR	Synthetic Loss Reply
TCM	Tandem Connection Monitoring
TF	Transmitted Frames
TFP	Termination Flow Point
TFPP	Termination Flow Point Pool
TMN	Telecommunications Management Network
TTP	Trail Termination Point
WAN	Wide Area Network
WS	WorkStation
WTR	Wait To Restore

5 Conventions

In this Recommendation, ET.MN stands for Ethernet transport (ET) management network, ET.MSN for ET management subnetwork, ET.NE for ET network element, ET.C for ET channel layer, ET.P for ET path layer, and ET.S for ET section layer.

6 ET management architecture

See clause 6 of [ITU-T G.7710] for the generic architecture for managing transport equipment. ET specific management architecture is described below.

6.1 ET network management architecture

The transport layer networks of Ethernet over Transport (ET) are described in [ITU-T G.8010], [ITU-T G.8012], and [ITU-T Y.1731]. The management of the ET layer networks is separable from that of its client layer networks so that the same means of management can be used regardless of the client.

6.1.1 Relationship between TMN, ET.MN, and ET.MSN

The ET management network (ET.MN) may be partitioned into ET management subnetworks (ET.MSNs). The inter-relationship among a management network, its subnetworks and a telecommunications management network (TMN), as generically described in clause 6 of [ITU-T G.7710], is applicable to ET.

6.1.2 Access to the ET.MSN

See clause 6.1.2 of [ITU-T G.7710] for the generic requirements.

6.1.3 ET.MSN requirements

See clause 6.1.3 of [ITU-T G.7710] for the generic requirements.

Furthermore, all ET network elements (ET.NEs) must support management communication functions. The message communication function (MCF) of an ET.NE initiates/terminates (in the sense of the lower protocol layers), forwards, or otherwise processes management messages over management communication channel (MCCs), or over other data communication network (DCN) interfaces. In addition:

- All ET.NEs are required to terminate the ET.S-MCCs, see clause 6.1.4. In open systems interconnection (OSI) terms, this means that each network element (NE) must be able to perform the functions of an end system.
- ET.NEs may also be required to forward management messages between ports according to routing control information held in the ET.NE. In OSI terms, this means that some ET.NEs may be required to perform the functions of an intermediate system.
- In addition to supporting interfaces for the ET.S-MCC, an ET.NE may also be required to support other DCN interfaces, which may include ET.P-MCCs, or ET.C-MCCs or an Ethernet DCN interface.

The use of the ET.P-MCCs and ET.C-MCCs for management communications is within the scope of this Recommendation, see clause 6.1.7.

6.1.4 ET.MSN data communication network

Refer to clause 6.1.4 of [ITU-T G.7710] for the generic requirements.

6.1.4.1 Management communication channel

The ET.MN supports the following three management communication channels :

- 1) ET.S-MCC (MCC_S)
- 2) ET.P-MCC (MCC_P)
- 3) ET.C-MCC (MCC_c)

ET.S-, ET.P-, and ET.C-MCCs are specified in [ITU-T G.8010].

Figure 6-1 illustrates a network scenario consisting of two operators. Operator B provides an ET path layer service to operator A (i.e., Operator B transports the ET path layer signal that begins and ends Operator A's domain). According to [ITU-T G.8010], the MCC_P and the MCC_C signals pass transparently through Operator B's network.

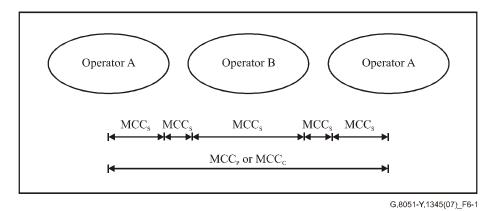


Figure 6-1 – MCC scenarios

The physical layer is terminated in every NE, and its related adaptation function provides the ET section layer signals as well as the MCC_S . Hence, the MCC_S cannot cross administrative domains. Figures 6-2 and 6-3 illustrate scenarios where the MCC_P is transported transparently through Operator B's domain (the Operator B network elements are not shown in Figures 6-2 and 6-3). In these scenarios, it is possible that Operator B may use the MCC_S within its own domain for the management of its domain.

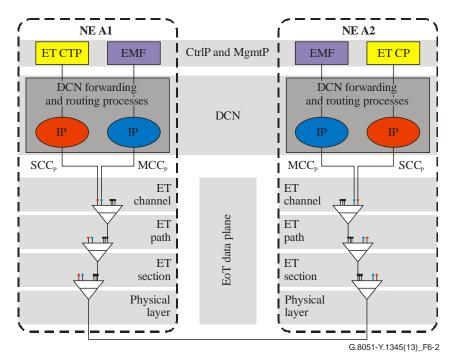
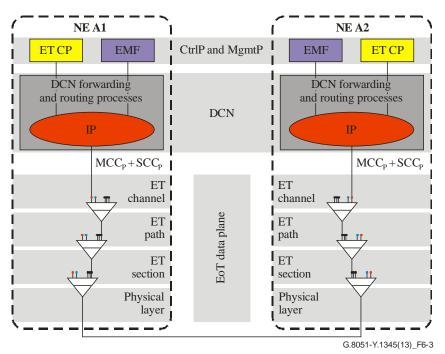
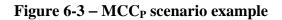




Figure 6-2 – MCC_P scenario example

6.1.4.2 MCC physical characteristics

The ET.S-, ET.C- and ET.P-MCCs are logical elements within the ET transport module (ETM-n). The MCC provides general management communications between two ET network elements with

access to the ET.S, ET.P, and ET.C characteristic information respectively. The ET.S-, ET.P-, or ET.C-MCC is provided by the ET operations, administration, maintenance (OAM) function at section, path, or channel layer as defined in [ITU-T Y.1731] or by any other embedded communication channel (ECC) of the ET transport network.

The ET.S management communication channel (MCC_s) shall operate as a single message channel between ET.S termination points. The bit rate of the MCC_s shall be configurable.

The ET.P management communication channel (MCC_P) shall operate as a single message channel between any network elements that terminate the ET.P layer. The MCC_P is transported transparently through ET.NEs that only terminate the ET.S layer and forward the ET.P signal. The bit rate of the MCC_P shall be configurable.

The ET.C management communication channel (MCC_C) shall operate as a single message channel between any network elements that terminate the ET.C layer. The MCC_C is transported transparently through ET.NEs that only terminate the ET.S layer or the ET.S and ET.P layers and forward the ET.C signal. The bit rate of the MCC_C shall be configurable.

6.1.4.3 MCC data link layer protocol

The MCC data link protocols for management applications are under study for [ITU-T G.7712].

6.1.5 Management of DCN

See clause 6.1.5 of [ITU-T G.7710] for the generic requirements.

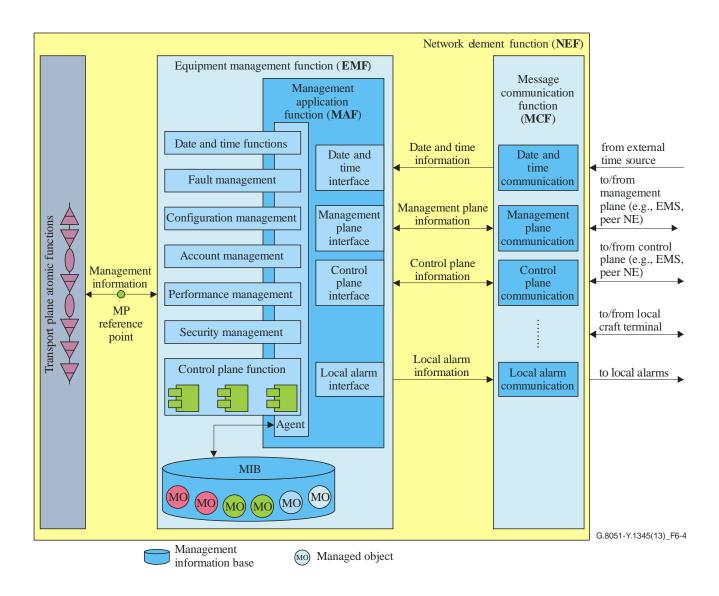
6.1.6 Remote log-in

See clause 6.1.6 of [ITU-T G.7710] for the generic requirements.

6.1.7 Relationship between technology domains

See clause 6.1.7 of [ITU-T G.7710] for the generic requirements.

6.2 ET equipment management function architecture


This clause provides an overview of the minimum functions which are required to support inter-vendor/network communications and single-ended maintenance of ET.NEs within a management subnetwork (MSN), or between communicating peer ET.NEs across a network interface. Single-ended maintenance is the ability to access remotely located ET.NEs to perform maintenance functions (see the performance management applications, clause 10.1 of [ITU-T G.7710]).

It should be noted that the management functions have been categorized according to the classifications given in [ITU-T X.700].

Detailed specifications of the management functions, in terms of managed objects classes, attributes and message specification are for further study.

The ET equipment management function (EMF) (see Figure 6-4) provides the means through which the ET network element function (NEF) is managed by an internal or external manager. If a NE contains an internal manager, this manager will be part of the ET EMF.

The ET EMF interacts with the other atomic functions (refer to [ITU-T G.8021]) by exchanging information across the management point (MP) reference points. See [ITU-T G.806] and [ITU-T G.8021] for more information on atomic functions (AF) and on MPs. The ET EMF contains a number of functions that provide a data reduction mechanism on the information received across the MP reference points. The outputs of these functions are available to the agent via the network element resources and management applications functions (MAF) which represent this information as managed objects.

Figure 6-4 – ET equipment management function

Network element resources provide event processing and storage. The MAF processes the information provided to and by the NE resources. The agent converts this information to management messages and responds to management messages from the manager by performing the appropriate operations on the managed objects.

This information to and from the agent is passed across the V reference point to the MCF.

6.3 Information flows over management points

The information flows described in this clause are functional. The existence of these information flows in the equipment will depend on the functionality provided by the ET.NE and the options selected.

The information flow over the MP reference points that arises from anomalies and defects detected in the atomic functions is described in specific details for each atomic function in [ITU-T G.8021].

The information flow over the MP reference points that arises from provisioning and reporting data is described in specific details for each atomic function in [ITU-T G.8021]. The information listed under the Input column refers to the provisioning data that is passed from the ET EMF to the atomic functions. The information listed under the Output column refers to the reports passed to the ET EMF from the atomic functions.

7 Fault (maintenance) management

Fault management is a set of functions which enables the detection, isolation and correction of abnormal operation of the telecommunication network and its environment. It provides facilities for the performance of the maintenance phases from [ITU-T M.20]. The quality assurance measurements for fault management include component measurements for reliability, availability and survivability.

7.1 Fault management applications

See [ITU-T G.7710] for a description of the basic fault management applications.

7.1.1 Supervision

The supervision process describes the way in which the actual occurrence of a disturbance or fault is analysed with the purpose of providing an appropriate indication of performance and/or detected fault condition to maintenance personnel. The supervision philosophy is based on the concepts underlying the functional model of [ITU-T G.805], [ITU-T G.8010], and the alarm reporting function of [ITU-T X.733].

The five basic supervision categories are related to transmission, quality of service, processing, equipment and environment. These supervision processes are able to declare fault causes, which need further validation before the appropriate alarm is reported. See [ITU-T G.7710] for additional discussion of these categories.

The ET.NE shall indicate to the OS when a termination point is no longer able to supervise the signal (e.g., implementing equipment has a fault or loss of power).

7.1.1.1 Transmission supervision

See clause 7.1.1.1 of [ITU-T G.7710] for a general description of transmission supervision.

For ET.NE, the following defects are monitored for the purpose of transmission supervision:

continuity supervision: loss of continuity defect (dLOC[i]);

Ethernet continuity check (CC) management jobs, using [ITU-T Y.1731] continuity check message (CCM), can be separately established (within a maintenance entity group (MEG) end point (MEP)) for fault management, performance management, and protection switching.

As a default, one MEP (with MEG level (MEL) = 7, OAM message period = 1 s, and priority = 7) has to be instantiated per trail termination point (TTP) for fault management (i.e., remote defect indication (RDI));

- connectivity supervision: unexpected MEL defect (dUNL), MisMerge defect (dMMG), and unexpected MEP defect (dUNM);
- signal quality supervision: degraded signal defect (dDEG);
- configuration supervision: unexpected periodicity defect (dUNP) and unexpected priority defect (dUNPr);
- maintenance signal supervision: remote defect indicator defect (dRDI[]), alarm indication signal defect (dAIS), and locked defect (dLCK).

The atomic function associated failure conditions are listed in clause 7.2.1.

7.1.1.2 Quality of service supervision

See [ITU-T G.7710] for a description of quality of service supervision.

7.1.1.3 Processing supervision

See [ITU-T G.7710] for a description of processing supervision.

7.1.1.4 Hardware supervision

See [ITU-T G.7710] for a description of equipment supervision.

7.1.1.5 Environment supervision

See [ITU-T G.7710] for a description of environment supervision.

7.1.2 Validation

See [ITU-T G.7710] for a description of fault cause validation.

7.1.3 Alarm handling

7.1.3.1 Severity assignment

See [ITU-T G.7710] for a description of severity categories.

7.1.3.2 Alarm reporting control

Alarm reporting control (ARC) provides an automatic in-service provisioning capability.

The following ARC states may be specified for a managed entity:

- ALM ALarM reporting; Alarm reporting is turned on.
- NALM No ALarM reporting; Alarm reporting is turned off.
- NALM-CD No ALarM reporting, CountDown; this is a substate of NALM-QI and performs the persistence timing countdown function when the managed entity is qualified problem free.
- NALM-NR No ALarM reporting, NotReady; this is a substate of NALM-QI and performs a wait function until the managed entity is qualified problem free.
- NALM-QI No ALarM reporting, Qualified Inhibit; Alarm reporting is turned off until the managed entity is qualified problem free for a specified persistence interval.
- NALM-TI No ALarM reporting, Timed Inhibit; Alarm Reporting is turned off for a specified timed interval.

Alarm reporting may be turned off (using NALM, NALM-TI, or NALM-QI) on a per-managed entity basis to allow sufficient time for customer testing and other maintenance activities in an "alarm free" state. Once a managed entity is ready, alarm reporting is automatically turned on (to ALM). The managed entity may be automatically turned on either by using NALM-TI or NALM-QI and allowing the resource to transition out automatically, or by invoking first the NALM state from an element management system (EMS) and when maintenance activity is done, invoking the ALM state. This latter automation is carried out by the EMS. For further details relating to ARC, see [ITU-T M.3100].

7.1.3.3 Reportable failures

See [ITU-T G.7710] for a description of reportable failures.

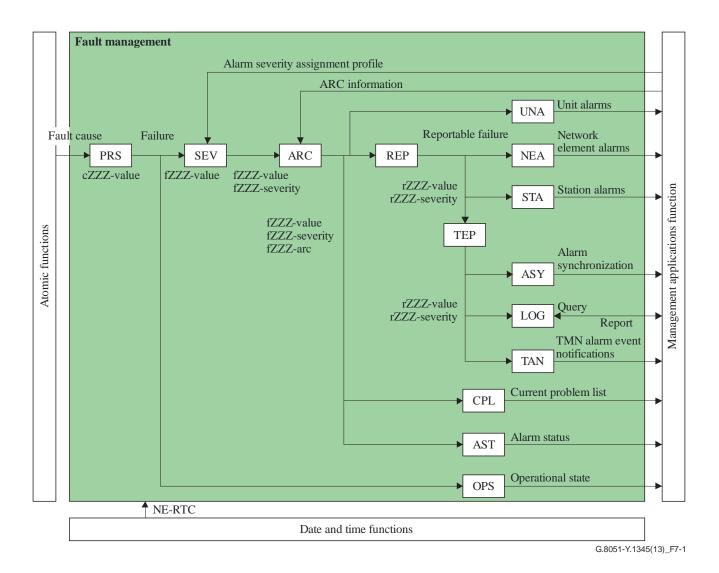
7.1.3.4 Alarm reporting

Alarm surveillance is concerned with the detection and reporting of relevant events and conditions which occur in the network. In a network, events and conditions detected within the equipment and incoming signals should be reportable. In addition, a number of events external to the equipment should also be reportable. Alarms are indications that are automatically generated by an NE as a result of the declaration of a failure. The OS shall have the ability to define which events and conditions generate autonomous reports, and which shall be reported on request.

The following alarm-related functions shall be supported:

- 1) autonomous reporting of alarms;
- 2) request for reporting of all alarms;
- 3) reporting of all alarms;
- 4) allow or inhibit of autonomous alarm reporting;
- 5) reporting on request status of allow or inhibit alarm reporting;
- 6) reporting of protection switch events.

7.1.3.4.1 Local reporting


See [ITU-T G.7710] for a description of local reporting.

7.1.3.4.2 TMN reporting

See [ITU-T G.7710] for a description of TMN reporting.

7.2 Fault management functions

Figure 7-1 contains the functional model of fault management inside the ET EMF. This model is consistent with the alarm flow functional model, specified in [ITU-T M.3100]. It must be noted that it does not address configuration aspects relating to fault management, the full ARC functional model, nor does it define where all possible event report parameters get assigned. Figure 7-1 is intended only to illustrate which well-known functions are impacted by ARC, and which are not, and to provide a generalized alarm flow view.

Figure 7-1 – Fault management within the ET EMF

7.2.1 Fault cause persistency function – PRS

The defect correlations provide a data reduction mechanism on the fault and performance monitoring primitives' information presented at the MP reference points.

The equipment management function within the network element performs a persistency check on the fault causes (that are reported across the MP reference points) before it declares a fault cause a failure. In addition to the transmission failures, hardware failures with signal transfer interruption are also reported at the input of the fault cause function for further processing. See Figure 7-2.

Symbol

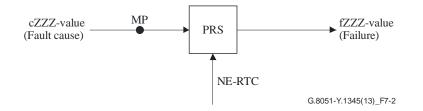


Figure 7-2 – Fault cause persistency function

For an ET.NE that supports the atomic functions listed in Table 7-1, the EMF persistency filter (PRS) process shall supports the persistency check for the associated fault causes.

Atomic Function (see [ITU-T G.8021])	Input	Output
ETHx_FT_Sk	cSSF cLCK cLOC[i] cMMG cUNM cUNP cUNPri cUNL cDEG cRDI	fSSF fLCK fLOC[i] fMMG fUNM fUNP fUNPri fUNL fDEG fRDI
ETHG_FT_Sk	cLOC[i] cUNL cMMG cUNM cDEG cUNP cUNPr cRDI cSSF cLCK	fLOC[i] fUNL fMMG fUNM fDEG fUNP fUNPr fRDI fSSF fLCK
ETHx/ETH_A_Sk	cCSF	fCSF
ETHx/ETH-m_A_Sk	cCSF	fCSF
ETHG/ETH_A_Sk	cCSF	fCSF
ETYn-Np/ETH-LAG-Na_A_Sk	cPLL[1Na] cTLL[1Na]	fPLL[1Na] fTLL[1Na]
ETH-LAG_FT_Sk	cSSF	fSSF
ETYn_TT_Sk	cLOS cRDI cFDI	fLOS fRDI fFDI
Sn/ETH_A_Sk	cPLM cLFD cUPM cEXM cCSF	fPLM fLFD fUPM fEXM fCSF
Sn-X-L/ETH_A_Sk	cPLM cLFD cUPM cEXM cCSF	fPLM fLFD fUPM fEXM fCSF
Sm/ETH_A_Sk	cPLM cLFD cUPM cEXM cCSF	fPLM fLFD fUPM fEXM fCSF

Table 7-1 – Inputs/outputs for the fault cause persistency function

Atomic Function (see [ITU-T G.8021])	Input	Output
Sm-X-L/ETH_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cUPM	fUPM
	cEXM	fEXM
	cCSF	fCSF
Sn-X/ETC3_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cUPM	fUPM
	cEXM	fEXM
	cCSF	fCSF
Pq/ETH_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cUPM	fUPM
	cEXM	fEXM
	cCSF	fCSF
Pq-X-L/ETH_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cUPM	fUPM
	cEXM	fEXM
	cCSF	fCSF
ODUkP/ETH_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cUPM	fUPM
	cEXM	fEXM
	cCSF	fCSF
ODUkP-X-L/ETH_A_Sk	cVcPLM	fVcPLM
	cLFD	fLFD
	cUPM	fUPM
	cEXM	fEXM
	cCSF	fCSF
ODU2P/ETHPP-OS_A_Sk	cPLM	fPLM
	cLFD	fLFD
	cUPM	fUPM
	cEXM	fEXM
	cCSF	fCSF

Table 7-1 – Inputs/outputs for the fault cause persistency function

Process

The equipment management function within the network element performs a persistency check on the fault causes before it declares a fault cause a failure.

A transmission failure (fXXX) shall be declared if the fault cause persists continuously for 2.5 ± 0.5 s. The failure shall be cleared if the fault cause is absent continuously for 10 ± 0.5 s.

The specific set of failures associated with each atomic function is listed in Table 7-1.

The failure declaration and clearing shall be time-stamped. The time-stamp shall indicate the time at which the fault cause is activated at the input of the fault cause persistency (i.e., defect-to-failure integration) function, and the time at which the fault cause is deactivated at the input of the fault cause persistency function.

7.2.2 Severity assignment function – SEV

See [ITU-T G.7710] for a description of the severity assignment function.

7.2.3 Alarm reporting control function – ARC

The ARC function allows a management system to control the alarm reporting on a managed entity basis as defined in [ITU-T M.3100].

The alarms that can be controlled with this function are defined for each atomic function in [ITU-T G.8021].

The ARC states that may be specified for a managed entity are defined in clause 7.1.3.2. For ET.NE:

- the ALM state is required for all managed entities that can detect alarms.
- in addition, at least one of the states: NALM, NALM-TI or NALM-QI must be supported.
- if NALM-QI is supported, then NALM-NR is required and NALM-CD is optional.

In Table 7-2 below, for each managed entity a subset of the plausible failures (defined in Table 7-1) are selected as qualified problems. These qualified problems are recommended as they are deemed essential to the operability of the subject managed entity. Note that for each managed entity, one or more of the qualified problems could then be further selected by the management system to be included in the ARC list (see clause 7.2.3 of [ITU-T G.7710]) for controlling the reporting of alarm for the entity. When an entity is put in the ARC state of NALM-QI, alarm reporting for the entity is turned off until the managed entity is free of all the failures specified in the ARC list.

Default ARC state is also specified for each managed entity. If the ARC function is supported by the ET.NE and an ARC state is not explicitly provisioned from the management system for the managed entity, then the default ARC specified in Table 7-2 should be in effect.

For an ET.NE that supports the atomic functions listed in Table 7-2, the EMF ARC process shall support alarm reporting control for the associated fault causes

Atomic function	Qualified problems	QoS reporting	Default state value
ETHx_FT_Sk	fSSF	FFS	ALM
	fLCK		
	fLOC[i]		
	fMMG		
	fUNM		
	fUNP		
	fUNPri		
	fUNL		
	fDEG		
	fRDI		

Table 7-2 – ARC specifications for ET

Atomic function	Qualified problems	QoS reporting	Default state value
ETHG_FT_Sk	fLOC[i] fUNL fMMG fUNM fDEG fUNP fUNPr	FFS	ALM
	fRDI fSSF fLCK		
ETHx/ETH_A_Sk	fCSF	FFS	ALM
ETHx/ETH-m_A_Sk	fCSF	FFS	ALM
ETHG/ETH_A_Sk	fCSF	FFS	ALM
ETYn-Np/ETH-LAG-Na_A_Sk	fPLL[1Na] fTLL[1Na]	FFS	ALM
ETH-LAG_FT_Sk	fSSF	FFS	ALM
ETYn_TT_Sk	fLOS fRDI fFDI	FFS	ALM
Sn/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	FFS	ALM
Sn-X-L/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	FFS	ALM
Sm/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	FFS	ALM
Sm-X-L/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	FFS	ALM
Sn-X/ETC3_A_Sk	fPLM fLFD fUPM fEXM fCSF	FFS	ALM

Table 7-2 – ARC specifications for ET

Atomic function	Qualified problems	QoS reporting	Default state value
Pq/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	FFS	ALM
Pq-X-L/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	FFS	ALM
ODUkP/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	FFS	ALM
ODUkP-X-L/ETH_A_Sk	fVcPLM fLFD fUPM fEXM fCSF	FFS	ALM
ODU2P/ETHPP-OS_A_Sk	fPLM fLFD fUPM fEXM fCSF	FFS	ALM

Table 7-2 – ARC specifications for ET

7.2.4 Reportable failure function – REP

See [ITU-T G.7710] for a description of the reportable failure function.

7.2.5 Unit alarms function – UNA

See [ITU-T G.7710] for a description of the unit alarms function.

7.2.6 Network element alarms function – NEA

See [ITU-T G.7710] for a description of the network element alarms function.

7.2.7 Station alarms function – STA

See [ITU-T G.7710] for a description of the station alarms function.

7.2.8 TMN event pre-processing function – TEP

See [ITU-T G.7710] for a description of the TMN event pre-processing alarm function.

7.2.9 Alarm synchronization function – ASY

See [ITU-T G.7710] for a description of the alarm synchronization function.

7.2.10 Logging function – LOG

Alarm history management is concerned with the recording of alarms. Historical data shall be stored in registers in the NE. Each register contains all the parameters of an alarm message.

Registers shall be readable on demand or periodically. The OS can define the operating mode of the registers as wrapping or stop when full. The OS may also flush the registers or stop recording at any time.

NOTE – Wrapping is the deletion of the earliest record to allow a new record when a register is full. Flushing is the removal of all records in the register. See [ITU-T X.735] for additional details.

See [ITU-T G.7710] for a description of the logging function.

7.2.11 TMN alarm event notifications function – TAN

See [ITU-T G.7710] for a description of the TMN alarm event notifications function.

7.2.12 Current problem list function – CPL

See [ITU-T G.7710] for a description of the current problem list function.

7.2.13 Alarm status function – AST

See [ITU-T G.7710] for a description of the alarm status function.

7.2.14 Operational state function – OPS

See [ITU-T G.7710] for a description of the operational state function.

Table 7-3 lists the failures that could influence the operational state of the related objects.

For an ET.NE that supports the atomic functions listed in Table 7-3, the EMF OPS process shall support operational state for the associated fault causes.

Atomic function	Failure input (fZZZ value)	Operational state output (Enabled/Disabled) of the trail object
ETHx_FT_Sk	fSSF fLOC[i] fMMG fUNM fUNP fUNPri fUNL fRDI	Enabled Enabled Enabled Enabled Enabled Enabled Enabled Enabled
ETHG_FT_Sk	fLOC[i] fUNL fMMG fUNM fDEG fUNP fUNPr fRDI fSSF fLCK	Enabled Enabled Enabled Enabled Enabled Enabled Enabled Enabled Enabled Enabled Enabled
ETHx/ETH_A_Sk	fCSF	Enabled
ETHx/ETH-m_A_Sk	fCSF	Enabled
ETHG/ETH_A_Sk	fCSF	Enabled

Table 7-3 – Operational state function input and output signals for Ethernet

Atomic function	Failure input (fZZZ value)	Operational state output (Enabled/Disabled) of the trail object
ETYn-Np/ETH-LAG-Na_A_Sk	fPLL[1Na] fTLL[1Na]	Enabled Enabled
ETH-LAG_FT_Sk	fSSF	Enabled
ETYn_TT_Sk	fLOS fRDI fFDI	Disabled Enabled Enabled
Sn/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	Enabled Enabled Enabled Enabled Enabled
Sn-X-L/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	Enabled Enabled Enabled Enabled Enabled
Sm/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	Enabled Enabled Enabled Enabled Enabled
Sm-X-L/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	Enabled Enabled Enabled Enabled Enabled
Sn-X/ETC3_A_Sk	fPLM fLFD fUPM fEXM fCSF	Enabled Enabled Enabled Enabled Enabled
Pq/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	Enabled Enabled Enabled Enabled Enabled
Pq-X-L/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	Enabled Enabled Enabled Enabled Enabled
ODUkP/ETH_A_Sk	fPLM fLFD fUPM fEXM fCSF	Enabled Enabled Enabled Enabled Enabled

Table 7-3 – Operational state function input and output signals for Ethernet

Atomic function	Failure input (fZZZ value)	Operational state output (Enabled/Disabled) of the trail object
ODUkP-X-L/ETH_A_Sk	fVcPLM fLFD fUPM fEXM fCSF	Enabled Enabled Enabled Enabled Enabled
ODU2P/ETHPP-OS_A_Sk	fPLM fLFD fUPM fEXM fCSF	Enabled Enabled Enabled Enabled Enabled

Table 7-3 – Operational state function input and output signals for Ethernet

7.2.15 External events

For further study.

8 Configuration management

See [ITU-T G.7710] for the generic requirements for configuration management. ET specific specifications, if needed, are explicitly described.

8.1 Hardware

See [ITU-T G.7710] for a description of hardware management.

8.2 Software

See [ITU-T G.7710] for a description of software management.

8.3 **Protection switching**

For further study.

8.4 Trail termination

See [ITU-T G.7710] for a description of trail termination management.

This function allows a user to provision and monitor the operation of the Ethernet PHY trail termination process.

The management information (MI) signals listed in Table 8-1 are communicated between the EMF and the PHY trail termination process across the management point within the ET.NE.

For the trail termination functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- provisioning the trail termination management information
- retrieving the trail termination management information
- notifying the changes of the trail termination management information
- receiving the monitored trail termination management information.

MI signal	Value range	Default value
Provisioning		
ETYn_TT_So_MI_FTSEnable	true, false	false
Reporting		
ETYn_TT_So_MI_PHYType	See section 30.3.2.1.2 of [IEEE 802.3]	_
ETYn_TT_So_MI_PHYTypeList	See section 30.3.2.1.3 of [IEEE 802.3]	_
NOTE – According to [ITU-T G.8021].		

8.5 Flow termination

This function allows a user to provision and monitor the operation of the ETHx and ETH-LAG flow termination processes.

The MI signals listed in Table 8-2 are communicated between the EMF and the flow termination processes across the management point within the ET.NE.

For the flow termination functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- provisioning the trail termination management information
- retrieving the trail termination management information
- notifying the changes of the trail termination management information
- receiving the monitored trail termination management information.

Table 8-2 – Pr	ovisioning and	reporting for f	low termination	functions
	ovisioning and	i reporting for n	iow termination	runchons

MI signal	Value range	Default value	
Provisioning			
ETHx_FT_So_MI_MEL	0, 1, 2, 3, 4, 5, 6, 7	by agreement	
ETHx_FT_So_MI_MEP_MAC	Per [ITU-T G.8021]	-	
ETHx_FT_So_MI_CC_Enable	true, false	false	
ETHx_FT_So_MI_LMC_Enable	true, false	true	
ETHx_FT_So_MI_MEG_ID	See Annex A of [ITU-T Y.1731]	-	
ETHx_FT_So_MI_MEP_ID	08191; see Figure 9.2-3 of [ITU-T Y.1731]	-	
ETHx_FT_So_MI_CC_Period	3.33 ms, 10 ms, 100 ms, 1 s, 10 s, 1 min, 10 min	1 s	
ETHx_FT_So_MI_CC_Pri	0, 1, 2, 3, 4, 5, 6, 7	7	
ETHx_FT_So_MI_LML_Enable[1M _{LM}]	true, false	true	
ETHx_FT_So_MI_LM_MAC_DA[1M _{LM}]	Per [ITU-T G.8021]	-	
ETHx_FT_So_MI_LM_Period[1M _{LM}]	100 ms, 1 s, 10 s	100 ms	
ETHx_FT_So_MI_LM_Pri[1M _{LM}]	0, 1, 2, 3, 4, 5, 6, 7	7	
ETHx_FT_So_MI_DM_Enable[1M _{DM}]	true, false	false	
ETHx_FT_So_MI_DM_MAC_DA[1M _{DM}]	Per [ITU-T G.8021]	_	
ETHx_FT_So_MI_DM_Test_ID[1M _{DM}]	Non-negative integer (optional)	_	

MI signal	Value range	Default value
ETHx_FT_So_MI_DM_Length[1M _{DM}]	Non-negative integer representing number of byte for the length of the padding TLV. Note that the total fame size of the delay measurement (DM) protocol data unit (PDU) should be between 64 and 9216 bytes.	0
ETHx_FT_So_MI_DM_Period[1M _{DM}]	100 ms, 1 s, 10 s	100 ms
ETHx_FT_So_MI_DM_Pri[1M _{DM}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHx_FT_So_MI_1DM_Enable[1M _{1DM}]	true, false	false
ETHx_FT_So_MI_1DM_MAC_DA[1M _{1DM}]	Per [ITU-T G.8021]	-
ETHx_FT_So_MI_1DM_Test_ID[1M _{1DM}]	Non-negative integer (optional)	-
ETHx_FT_So_MI_1DM_Length[1M _{1DM}]	Non-negative integer representing number of byte for the length of the padding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHx_FT_So_MI_1DM_Period[1M _{1DM}]	100 ms, 1s, 10 s	100 ms
ETHx_FT_So_MI_1DM_Pri[1M _{1DM}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHx_FT_So_MI_SL_Enable[1M _{SL}]	true, false	false
ETHx_FT_So_MI_SL_MAC_DA[1M _{SL}]	Per [ITU-T G.8021]	_
ETHx_FT_So_MI_SL_Test_ID[1M _{SL}]	Non-negative integer (optional)	_
ETHx_FT_So_MI_SL_Length[1M _{SL}]	Non-negative integer representing number of byte for the length of the padding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
$ETHx_FT_So_MI_SL_Period[1M_{SL}]$	10 ms, 100 ms, 1 s, 10 s	100 ms
ETHx_FT_So_MI_SL_Pri[1M _{SL}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHx_FT_So_MI_1SL_Enable[1M _{1SL}]	true, false	false
ETHx_FT_So_MI_1SL_MAC_DA[1M _{1SL}]	Per [ITU-T G.8021]	-
ETHx_FT_So_MI_1SL_Test_ID[1M _{1SL}]	Non-negative integer (optional)	-
ETHx_FT_So_MI_1SL_Length[1M _{1SL}]	Non-negative integer representing number of byte for the length of the padding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHx_FT_So_MI_1SL_Period[1M _{1SL}]	10 ms, 100 ms, 1 s, 10 s	100 ms
ETHx_FT_So_MI_1SL_Pri[1M _{1SL}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHx_FT_Sk_MI_CC_Enable	true, false	false
ETHx_FT_Sk_MI_LMC_Enable	true, false	true

Table 8-2 – Provisioning and reporting for flow termination functions

MI signal	Value range	Default value		
ETHx_FT_Sk_MI_1second	-	_		
ETHx_FT_Sk_MI_LM_DEGM	2-10; see Table 7-1 of [ITU-T G.806]	10		
ETHx_FT_Sk_MI_LM_M	2-10	10		
ETHx_FT_Sk_MI_LM_DEGTHR	0% 100%; see Table 7-1 of [ITU-T G.806]	30%		
ETHx_FT_Sk_MI_LM_TFMIN	FFS	FFS		
ETHx_FT_Sk_MI_MEL	0, 1, 2, 3, 4, 5, 6, 7	By agreement		
ETHx_FT_Sk_MI_MEG_ID	See Annex A of [ITU-T Y.1731]	-		
ETHx_FT_Sk_MI_PeerMEP_ID[i]	List of peer MEP IDs; 08191 for each ID; see Figure 9.2-3 of [ITU-T Y.1731]	_		
ETHx_FT_Sk_MI_CC_Period	3.33 ms, 10 ms, 100 ms, 1 s, 10 s, 1 min, 10 min	1 s		
ETHx_FT_Sk_MI_CC_Pri	07	7		
ETHx_FT_Sk_MI_GetSvdCCM	(NOTE – Use to request the saved latest CCM frame that caused a defect to be raised.)	_		
ETHx_FT_Sk_MI_1DM_Enable[1M _{1DM}]	true, false	false		
ETHx_FT_Sk_MI_1DM_MAC_SA[1M _{1DM}]	Per [ITU-T G.8021]	-		
ETHx_FT_Sk_MI_1DM_Test_ID[1M _{1DM}]	Non-negative integer (optional)	_		
ETHx_FT_Sk_MI_1SL_Enable[1M _{1SL}]	true, false	false		
ETHx_FT_Sk_MI_1SL_MAC_SA[1M _{1SL}]	Per [ITU-T G.8021]	_		
ETHx_FT_Sk_MI_1SL_Test_ID[1M _{1SL}]	Non-negative integer (optional)	_		
Reporting				
ETHx_FT_Sk_MI_SvdCCM	Last received CCM frame that caused defect	-		
Pro	visioning			
ETHG_FT_So_MI_MEL	0, 1, 2, 3, 4, 5, 6, 7	By agreement		
ETHG_FT_So_MI_MEP_MAC	Per [ITU-T G.8021]			
ETHG_FT_So_MI_CC_Enable	true, false	false		
ETHG_FT_So_MI_LMC_Enable	true, false	true		
ETHG_FT_So_MI_MEG_ID	See Annex A of [ITU-T Y.1731]			
ETHG_FT_So_MI_MEP_ID	08191; see Figure 9.2-3 of [ITU-T Y.1731]	_		
ETHG_FT_So_MI_CC_Period	3.33 ms, 10 ms, 100 ms, 1 s, 10 s, 1 min, 10 min	1 s		
ETHG_FT_So_MI_CC_Pri	0, 1, 2, 3, 4, 5, 6, 7	7		
ETHG_FT_So_MI_LML_Enable[1M _{LM}]	true, false	true		
ETHG_FT_So_MI_LM_MAC_DA[1M _{LM}]	Per [ITU-T G.8021]			
ETHG_FT_So_MI_LM_Period[1M _{LM}]	100 ms, 1 s, 10 s	100 ms		

 Table 8-2 – Provisioning and reporting for flow termination functions

MI signal	Value range	Default value
ETHG_FT_So_MI_LM_Pri[1M _{LM}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHG_FT_So_MI_DM_Enable[1M _{DM}]	true, false	false
ETHG_FT_So_MI_DM_MAC_DA[1M _{DM}]	Per [ITU-T G.8021]	-
ETHG_FT_So_MI_DM_Test_ID[1M _{DM}]	Non-negative integer (optional)	-
ETHG_FT_So_MI_DM_Length[1M _{DM}]	Non-negative integer representing number of byte for the length of the padding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHG_FT_So_MI_DM_Period[1M _{DM}]	100 ms, 1s, 10 s	100 ms
ETHG_FT_So_MI_DM_Pri[1M _{DM}]	0, 1, 2, 3, 4, 5, 6, 7	7
$ETHG_FT_So_MI_1DM_Enable[1M_{1DM}]$	true, false	false
ETHG_FT_So_MI_1DM_MAC_DA[1M _{1DM}]	Per [ITU-T G.8021]	_
ETHG_FT_So_MI_1DM_Test_ID[1M _{1DM}]	Non-negative integer (optional)	_
ETHG_FT_So_MI_1DM_Length[1M _{1DM}]	Non-negative integer representing number of byte for the length of the padding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHG_FT_So_MI_1DM_Period[1M _{1DM}]	100 ms, 1 s, 10 s	100 ms
ETHG_FT_So_MI_1DM_Pri[1M _{1DM}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHG_FT_So_MI_SL_Enable[1M _{SL}]	true, false	false
ETHG_FT_So_MI_SL_MAC_DA[1M _{SL}]	Per [ITU-T G.8021]	_
ETHG_FT_So_MI_SL_Test_ID[1M _{SL}]	Non-negative integer (optional)	_
ETHG_FT_So_MI_SL_Length[1M _{SL}]	Non-negative integer representing number of byte for the length of the padding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHG_FT_So_MI_SL_Period[1M _{SL}]	10 ms, 100 ms, 1 s, 10 s	100 ms
ETHG_FT_So_MI_SL_Pri[1M _{SL}]	0, 1, 2, 3, 4, 5, 6, 7	7
ETHG_FT_So_MI_1SL_Enable[1M _{1SL}]	true, false	false
ETHG_FT_So_MI_1SL_MAC_DA[1M _{1SL}]	Per [ITU-T G.8021]	-
ETHG_FT_So_MI_1SL_Test_ID[1M _{1SL}]	Non-negative integer (optional)	-
ETHG_FT_So_MI_1SL_Length[1M _{1SL}]	Non-negative integer representing number of byte for the length of the padding TLV. Note that the total fame size of the DM PDU should be between 64 and 9216 bytes.	0
ETHG_FT_So_MI_1SL_Period[1M _{1SL}]	10 ms, 100 ms, 1 s, 10 s	100 ms

 Table 8-2 – Provisioning and reporting for flow termination functions

MI signal	Value range	Default value	
ETHG_FT_So_MI_1SL_Pri[1M _{1SL}]	0, 1, 2, 3, 4, 5, 6, 7	7	
Provisioning			
ETHG_FT_Sk_MI_CC_Enable	true, false	false	
ETHG_FT_Sk_MI_LMC_Enable	true, false	true	
ETHG_FT_Sk_MI_1Second	_	-	
ETHG_FT_Sk_MI_LM_DEGM	2-10; see Table 7-1 of [ITU-T G.806]	10	
ETHG_FT_Sk_MI_LM_M	2-10	10	
ETHG_FT_Sk_MI_LM_DEGTHR	0% 100%; see Table 7-1 of [ITU-T G.806]	30%	
ETHG_FT_Sk_MI_LM_TFMIN	FFS	FFS	
ETHG_FT_Sk_MI_MEL	0, 1, 2, 3, 4, 5, 6, 7	By agreement	
ETHG_FT_Sk_MI_MEG_ID	See Annex A of [ITU-T Y.1731]	_	
ETHG_FT_Sk_MI_PeerMEP_ID[i]	List of peer MEP IDs; 08191 for each ID; see Figure 9.2-3 of [ITU-T Y.1731]	_	
ETHG_FT_Sk_MI_CC_Period	3.33 ms, 10 ms, 100 ms, 1 s, 10 s, 1 min, 10 min	1 s	
ETHG_FT_Sk_MI_CC_Pri	07	7	
ETHG_FT_Sk_MI_GetSvdCCM	(NOTE – Use to request the saved latest CCM frame that caused a defect to be raised.)	_	
ETHG_FT_Sk_MI_1DM_Enable[1M _{1DM}]	true, false	false	
ETHG_FT_Sk_MI_1DM_MAC_SA[1M _{1DM}]	Per [ITU-T G.8021]	-	
ETHG_FT_Sk_MI_1DM_Test_ID[1M _{1DM}]	Non-negative integer (optional)	_	
ETHG_FT_Sk_MI_1SL_Enable[1M _{1SL}]	true, false	false	
ETHG_FT_Sk_MI_1SL_MAC_SA[1M _{ISL}]	Per [ITU-T G.8021]	_	
ETHG_FT_Sk_MI_1SL_Test_ID[1M _{1SL}]	Non-negative integer (optional)	_	
Reporting			
ETHG_FT_Sk_MI_SvdCCM	Last received CCM frame that caused defect	_	
Provisioning			
ETH-LAG_FT_Sk_MI_SSF_Reported	true, false	true	

 Table 8-2 – Provisioning and reporting for flow termination functions

8.6 Adaptation

See clause 8.5 of [ITU-T G.7710] for a description of adaptation management.

An Access Point that has multiple adaptation functions connected to it, thereby allowing different clients to be transported via the server signal, requires a mechanism for the selection of the active client.

This function allows a user to provision and monitor the operation of the ET adaptation processes.

The MI signals listed in Table 8-3 are communicated between the EMF and the adaptation processes across the management point within the ET.NE.

For the adaptation functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- provisioning the adaptation management information
- retrieving the adaptation management information
- notifying the changes of the adaptation management information.

Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value	
ETHx/ETH_A_So Provisioning			
ETHx/ETH_A_So_MI_Active	true, false	true	
ETHx/ETH_A_So_MI_MEP_MAC	6 byte Unicast MAC address	-	
ETHx/ETH_A_So_MI_Client_MEL	07	_	
ETHx/ETH_A_So_MI_LCK_Period	1 s, 1 min	1 s	
ETHx/ETH_A_So_MI_LCK_Pri	07	7	
ETHx/ETH_A_So_MI_Admin_State	LCK, Normal	Normal	
ETHx/ETH_A_So_MI_MEL	07	_	
ETHx/ETH_A_So_MI_APS_Pri	07	7	
ETHx/ETH_A_So_MI_CSF_Period	1 s, 1 min	1 s	
ETHx/ETH_A_So_MI_CSF_Pri	07	7	
ETHx/ETH_A_So_MI_CSF_Enable	true, false	true	
ETHx/ETH_A_So_MI_CSFrdifdiEnable	true, false	true	
ETHx/ETH_A_So_MI_CSFdciEnable	true, false	true	
ETHx/ETH_A_Sk	Provisioning		
ETHx/ETH_A_Sk_MI_Active	true, false	true	
ETHx/ETH_A_Sk_MI_MEP_MAC	6 byte Unicast MAC address	_	
ETHx/ETH_A_Sk_MI_Client_MEL	07	_	
ETHx/ETH_A_Sk_MI_LCK_Period	1 s, 1 min	1 s	
ETHx/ETH_A_Sk_MI_LCK_Pri	07	7	
ETHx/ETH_A_Sk_MI_Admin_State	LCK, Normal	Normal	
ETHx/ETH_A_Sk_MI_AIS_Period	1 s, 1 min	1 s	
ETHx/ETH_A_Sk_MI_AIS_Pri	07	7	
ETHx/ETH_A_Sk_MI_MEL	07	7	
ETHx/ETH_A_Sk_MI_CSF_Reported	true, false	true	
ETHx/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true	
ETHx/ETH-m_A_S	So Provisioning		
ETHx/ETH-m_A_So_MI_Active	true, false	true	
ETHx/ETH-m_A_So_MI_MEP_MAC	6 byte Unicast MAC address	-	
ETHx/ETH-m_A_So_MI_Client_MEL[1M]	07	_	

MI signal	Value range	Default value
ETHx/ETH-m_A_So_MI_LCK_Period[1M] (for each of the 1 through M VLANs)	e 1 s, 1 min	1 s
ETHx/ETH-m_A_So_MI_LCK_Pri[1M]	07	7
ETHx/ETH-m_A_So_MI_Admin_State	LCK, Normal	Normal
ETHx/ETH-m_A_So_MI_VLAN_Config[1M]	(Note)	(Note)
ETHx/ETH-m_A_So_MI_Etype	2 byte integer ≥ 0x0600	S-Tag: 0x88a8 C-Tag: 0x8100
ETHx/ETH-m_A_So_PCP_Config	8P0D, 7P1D, 6P2D, 5P3D, 4P4D, DEI	8P0D
ETHx/ETH-m_A_So_MI_MEL	07	7
ETHx/ETH-m_A_So_MI_CSF_Period	1 s, 1 min	1 s
ETHx/ETH-m_A_So_MI_CSF_Pri	07	7
ETHx/ETH-m_A_So_MI_CSF_Enable	true, false	false
ETHx/ETH-m_A_So_MI_CSFrdifdiEnable	true, false	false
ETHx/ETH-m_A_So_MI_CSFdciEnable	true, false	true
ETHx/ETH-m_A_Sk Prov	isioning	
ETHx/ETH-m_A_Sk_MI_Active	true, false	true
ETHx/ETH-m_A_Sk_MI_Admin_State	LCK, Normal	Normal
ETHx/ETH-m_A_Sk_MI_MEP_MAC	6 byte Unicast MAC address	_
ETHx/ETH-m_A_Sk_MI_Client_MEL[1M]	07	_
ETHx/ETH-m_A_Sk_MI_LCK_Period[1M]	1 s, 1 min	1 s
ETHx/ETH-m_A_Sk_MI_LCK_Pri[1M]	07	7
ETHx/ETH-m_A_Sk_MI_AIS_Period[1M]	1 s, 1 min	1 s
ETHx/ETH-m_A_Sk_MI_AIS_Pri[1M]	07	7
ETHx/ETH-m_A_Sk_MI_VLAN_Config[1M]	(Note)	(Note)
ETHx/ETH-m_A_Sk_MI_P_Regenerate	(Note)	(Note)
ETHx/ETH-m_A_Sk_MI_PVID	(Note)	(Note)
ETHx/ETH-m_A_Sk_MI_PCP_Config	8P0D, 7P1D, 6P2D, 5P3D, 4P4D, DEI	8P0D
ETHx/ETH-m_A_Sk_MI_Etype	2 byte integer ≥ 0x0600	S-Tag: 0x88a8 C-Tag: 0x8100
ETHx/ETH-m_A_Sk_MI_MEL	07	_
ETHx/ETH-m_A_Sk_MI_CSF_Reported	true, false	true
ETHx/ETH-m_A_Sk_MI_CSFrdifdiEnable	true, false	true
ETHx/ETH-m_A_Sk_MI_Frametype_Config	AllowTaggedOnly; AllowUntaggedOnly; AllowAll	AllowUntagged Only
ETHx/ETH-m_A_Sk_MI_Filter_Config	(Note)	(Note)

Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
ETHG/ETH_A_So Provisio	oning	
ETHG/ETH_A_So_MI_Active	true, false	true
ETHG/ETH_A_So_MI_MEP_MAC	6 byte Unicast MAC address	_
ETHG/ETH_A_So_MI_Client_MEL[1M]	07	_
ETHG/ETH_A_So_MI_LCK_Period[1M]	1 s, 1 min	1 s
ETHG/ETH_A_So_MI_LCK_Pri[1M]	07	7
ETHG/ETH_A_So_MI_Admin_State	LCK, Normal	Normal
ETHG/ETH_A_So_MI_MEL	07	-
ETHG/ETH_A_So_MI_APS_Pri	07	7
ETHG/ETH_A_So_MI_CSF_Period	1 s, 1 min	1 s
ETHG/ETH_A_So_MI_CSF_Pri	07	7
ETHG/ETH_A_So_MI_CSF_Enable	true, false	false
ETHG/ETH_A_So_MI_CSFrdifdiEnable	true, false	false
ETHG/ETH_A_So_MI_CSFdciEnable	true, false	true
ETHG/ETH_A_Sk Provisi	oning	
ETHG/ETH_A_Sk_MI_Active	true, false	true
ETHG/ETH_A_Sk_MI_MEP_MAC	6 byte Unicast MAC address	-
ETHG/ETH_A_Sk_MI_Client_MEL[1M]	07	_
ETHG/ETH_A_Sk_MI_LCK_Period[1M]	1 s, 1 min	1 s
ETHG/ETH_A_Sk_MI_LCK_Pri[1M]	07	7
ETHG/ETH_A_Sk_MI_Admin_State	LCK, Normal	Normal
ETHG/ETH_A_Sk_MI_AIS_Period[1M]	1 s, 1min	1 s
ETHG/ETH_A_Sk_MI_AIS_Pri[1M]	07	7
ETHG/ETH_A_Sk_MI_MEL	07	_
ETHG/ETH_A_Sk_MI_CSF_Reported	true, false	true
ETHG/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true
ETHx/ETHG_A_So Provisi	oning	
ETHx/ETHG_A_So_MI_Active	true, false	true
ETHx/ETHG_A_So_MI_MEP_MAC	6 byte Unicast MAC address	-
ETHx/ETHG_A_So_MI_Client_MEL[1M]	07	_
ETHx/ETHG_A_So_MI_LCK_Period[1M] (for each of the 1 through M VLANs)	1 s, 1 min	1 s
ETHx/ETHG_A_So_MI_LCK_Pri[1M]	07	7
ETHx/ETHG_A_So_MI_Admin_State	LCK, Normal	Normal
ETHx/ETHG_A_So_MI_VLAN_Config[1M]	(Note)	(Note)
ETHx/ETHG_A_So_MI_Etype	2 byte integer ≥ 0x0600	S-Tag: 0x88a8 C-Tag: 0x8100

Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
ETHx/ETHG_A_So_PCP_Config	8P0D, 7P1D, 6P2D, 5P3D, 4P4D, DEI	8P0D
ETHx/ETHG_A_So_MI_MEL	07	7
ETHx/ETHG_A_Sk Provis	sioning	
ETHx/ETHG_A_Sk_MI_Active	true, false	true
ETHx/ETHG_A_Sk_MI_Admin_State	LCK, Normal	Normal
ETHx/ETHG_A_Sk_MI_MEP_MAC	6 byte Unicast MAC address	-
ETHx/ETHG_A_Sk_MI_Client_MEL[1M]	07	-
ETHx/ETHG_A_Sk_MI_LCK_Period[1M]	1 s, 1 min	1 s
ETHx/ETHG_A_Sk_MI_LCK_Pri[1M]	07	7
ETHx/ETHG_A_Sk_MI_AIS_Period[1M]	1 s, 1 min	1 s
ETHx/ETHG_A_Sk_MI_AIS_Pri[1M]	07	7
ETHx/ETHG_A_Sk_MI_VLAN_Config[1M]	(Note)	(Note)
ETHx/ETHG_A_Sk_MI_P_Regenerate	(Note)	(Note)
ETHx/ETHG_A_Sk_MI_PVID	(Note)	(Note)
ETHx/ETHG_A_Sk_MI_PCP_Config	8P0D, 7P1D, 6P2D, 5P3D, 4P4D, DEI	8P0D
ETHx/ETHG_A_Sk_MI_Etype	2 byte integer ≥ 0x0600	S-Tag: 0x88a8 C-Tag: 0x8100
ETHx/ETHG_A_Sk_MI_MEL	07	_
ETHx/ETHG_A_Sk_MI_Frametype_Config	AllowTaggedOnly; AllowUntaggedOnly; AllowAll	AllowUntagged Only
ETHx/ETHG_A_Sk_MI_Filter_Config	(Note)	(Note)
ETHDi/ETH_A_So Provis	sioning	
ETHDi/ETH_A_So_MI_Active	true, false	false
ETHDi/ETH_A_So_MI_RAPS_MEL	07	_
ETHDi/ETH_A_So_MI_RAPS_Pri	07	7
ETHDi/ETH_A_So_MI_MIP_MAC	6 byte MAC unicast address	_
ETHDi/ETH_A_Sk Provis	sioning	
ETHDi/ETH_A_Sk_MI_Active	true, false	false
ETHDi/ETH_A_Sk_MI_RAPS_MEL	07	-
ETYn-Np/ETH-LAG-Na_A_So Provisioning		
ETYn-Np/ETH-LAG-Na_A_So_MI_Active	true, false	true
ETYn-Np/ETH-LAG-Na_A_So_MI_TxPauseEnable	true, false	false
ETYn-Np/ETH-LAG-Na_A_So_MI_Agg[1Na]_AP_List	(Note)	(Note)
ETYn-Np/ETH-LAG-Na_A_So_MI_AggPort[1Np]_ ActorAdmin_State	See IEEE 802.3 clause 30.7.2.1.20	_

 Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value	
ETYn-Np/ETH-LAG-Na_A_S	So Reporting		
ETYn-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_ActorSystemID	See IEEE 802.3 clause 30.7.1.1.4	-	
ETYn-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_ActorSystemPriority	See IEEE 802.3 clause 30.7.1.1.5	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_ActorOperKey	See IEEE 802.3 clause 30.7.1.1.8	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_PartnerSystemID	See IEEE 802.3 clause 30.7.1.1.10	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_PartnerSystemPriority	See IEEE 802.3 clause 30.7.1.1.11	-	
ETYn-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_PartnerOperKey	See IEEE 802.3 clause 30.7.1.1.12	-	
ETYn-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_DataRate	See IEEE 802.3 clause 30.7.1.1.16	-	
ETYn-Np/ETH-LAG-Na_A_So_ MI_Agg[1Na]_CollectorMaxDelay	See IEEE 802.3 clause 30.7.1.1.32	-	
ETYn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_ActorOperKey	See IEEE 802.3 clause 30.7.2.1.5	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_PartnerOperSystemPriority	See IEEE 802.3 clause 30.7.2.1.7	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_PartnerOperSystemID	See IEEE 802.3 clause 30.7.2.1.9	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_PartnerOperKey	See IEEE 802.3 clause 30.7.2.1.11	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_ActorPort	See IEEE 802.3 clause 30.7.2.1.14	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_ActorPortPriority	See IEEE 802.3 clause 30.7.2.1.15	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_PartnerOperPort	See IEEE 802.3 clause 30.7.2.1.17	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_PartnerOperPortPriority	See IEEE 802.3 clause 30.7.2.1.19	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_ActorOperState	See IEEE 802.3 clause 30.7.2.1.21	_	
ETYn-Np/ETH-LAG-Na_A_So_ MI_AggPort[1Np]_PartnerOperState	See IEEE 802.3 clause 30.7.2.1.23	_	
ETYn-Np/ETH-LAG-Na_A_Sk Provisioning			
ETYn-Np/ETH-LAG-Na_A_Sk_MI_Active	true, false	true	
ETYn-Np/ETH-LAG-Na_A_Sk_MI_PLLThr[1Na]	(Note)	(Note)	
ETH-LAG/ETH_A_So Pro	ETH-LAG/ETH_A_So Provisioning		
ETH-LAG/ETH_A_So_MI_Active	true, false	false	

Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value	
ETH-LAG/ETH_A_Sk Provis	sioning		
ETH-LAG/ETH_A_Sk_MI_Active	true, false	false	
ETH-LAG/ETH_A_Sk_MI_FilterConfig	(Note)	(Note)	
ETYn/ETH_A_So Provisio	oning		
ETYn/ETH_A_So_MI_Active	true, false	true	
ETYn/ETH_A_So_MI_TxPauseEnable	true, false	false	
ETYn/ETH_A_Sk Provisio	oning		
ETYn/ETH_A_Sk_MI_Active	true, false	true	
ETYn/ETH_A_Sk_MI_FilterConfig	(Note)	(Note)	
ETYn/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000	
ETY3/ETC3_A_So Provisi	oning		
ETY3/ETC3_A_So_MI_Active	true, false	true	
ETY3/ETC3_A_Sk Provision	oning		
ETY3/ETC3_A_Sk_MI_Active	true, false	true	
ETY4/ ETHPP-OS_A_So Prov	visioning		
ETY4/ETHPP-OS_A_So_MI_Active	true, false	true	
ETY4/ETHPP-OS_A_Sk Provisioning			
ETY4/ETHPP-OS_A_Sk_MI_Active	true, false	true	
Sn/ETH_A_So Provisioning			
Sn/ETH_A_So_MI_Active	true, false	true	
Sn/ETH_A_So_MI_CSFEnable	true, false	true	
Sn/ETH_A_So_MI_CSFrdifdiEnable	true, false	true	
Sn/ETH_A_Sk Provision	ing		
Sn/ETH_A_Sk_MI_Active	true, false	true	
Sn/ETH_A_Sk_MI_FilterConfig	(Note)	(Note)	
Sn/ETH_A_Sk_MI_CSF_Reported	true, false	false	
Sn/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000	
Sn/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true	
Sn/ETH_A_Sk Reportir	ıg		
Sn/ETH_A_Sk_MI_AcSL (see Table 9-11 of [ITU-T G.707])	0255	_	
Sn/ETH_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_	
Sn/ETH_A_Sk_MI_AcUPI (see Table 6-3 of [ITU-T G.7041])	0255	_	
Sn-X-L/ETH_A_So Provision	oning		
Sn-X-L/ETH_A_So_MI_Active	true, false	true	
Sn-X-L/ETH_A_So_MI_CSFEnable	true, false	true	
Sn-X-L/ETH_A_So_MI_CSFrdifdiEnable	true, false	true	

Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
Sn-X-L/ETH_A_Sk Provisi	oning	
Sn-X-L/ETH_A_Sk_MI_Active	true, false	true
Sn-X-L/ETH_A_Sk_MI_FilterConfig	(Note)	(Note)
Sn-X-L/ETH_A_Sk_MI_CSF_Reported	true, false	false
Sn-X-L/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
Sn-X-L/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true
Sn-X-L/ETH_A_Sk Repor	ting	
Sn-X-L/ETH_A_Sk_MI_AcSL (see Table 9-11 of [ITU-T G.707])	0255	-
Sn-X-L/ETH_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	-
Sn-X-L/ETH_A_Sk_MI_AcUPI (see Table 6-3 of [ITU-T G.7041])	0255	-
Sm/ETH_A_So Provision	ing	
Sm/ETH_A_So_MI_Active	true, false	true
Sm/ETH_A_So_MI_CSFEnable	true, false	true
Sm/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
Sm/ETH_A_Sk Provision	ing	·
Sm/ETH_A_Sk_MI_Active	true, false	true
Sm/ETH_A_Sk_MI_FilterConfig	(Note)	(Note)
Sm/ETH_A_Sk_MI_CSF_Reported	true, false	false
Sm/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
Sm/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true
Sm/ETH_A_Sk Reporti	ng	
Sm/ETH_A_Sk_MI_AcSL (see Tables 9-12 and 9-13 of [ITU-T G.707])	0255	_
Sm/ETH_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_
Sm/ETH_A_Sk_MI_AcUPI (see Table 6-3 of [ITU-T G.7041])	0255	-
Sm-X-L/ETH_A_So Provisi	oning	
Sm-X-L/ETH_A_So_MI_Active	true, false	true
Sm-X-L/ETH_A_So_MI_CSFEnable	true, false	true
Sm-X-L/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
Sm-X-L/ETH_A_Sk Provisi	oning	
Sm-X-L/ETH_A_Sk_MI_Active	true, false	true
Sm-X-L/ETH_A_Sk_MI_FilterConfig	(Note)	(Note)
Sm-X-L/ETH_A_Sk_MI_CSF_Reported	true, false	false
Sm-X-L/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
Sm-X-L/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true

Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
Sm-X-L/ETH_A_Sk Repo	rting	
Sm-X-L/ETH_A_Sk_MI_AcSL (see Tables 9-12 and 9-13 of [ITU-T G.707])	0255	-
Sm-X-L/ETH_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_
Sm-X-L/ETH_A_Sk_MI_AcUPI (see Table 6-3 of [ITU-T G.7041])	0255	-
Sn-X/ETC3_A_So Provisi	oning	
Sn-X/ETC3_A_So_MI_Active	true, false	true
Sn-X/ETC3_A_So_MI_CSFEnable	true, false	true
Sn-X/ETC3_A_Sk Provisi	oning	
Sn-X/ETC3_A_Sk_MI_Active	true, false	true
Sn-X/ETC3_A_Sk_MI_CSF_Reported	true, false	false
Sn-X/ETC3_A_Sk Repor	ting	
Sn-X/ETC3_A_Sk_MI_AcSL (see Table 9-11 of [ITU-T G.707])	0255	-
Sn-X/ETC3_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	-
Sn-X/ETC3_A_Sk_MI_AcPFI (see clause 6.1.3.1 of [ITU-T G.7041])	0 or 1	-
Sn-X/ETC3_A_Sk_MI_AcUPI (see Table 6-3 of [ITU-T G.7041])	0255	_
Pq/ETH_A_So Provision	ing	
Pq/ETH_A_So_MI_Active	true, false	true
Pq/ETH_A_So_MI_CSFEnable	true, false	true
Pq/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
Pq/ETH_A_Sk Provision	ing	
Pq/ETH_A_Sk_MI_Active	true, false	true
Pq/ETH_A_Sk_MI_FilterConfig	(Note)	(Note)
Pq/ETH_A_Sk_MI_CSF_Reported	true, false	false
Pq/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
Pq/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	false
Pq/ETH_A_Sk Reporti	ng	
Pq/ETH_A_Sk_MI_AcSL (see clause 2.1.2 of [ITU-T G.832])	07	_
Pq/ETH_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_
Pq/ETH_A_Sk_MI_AcUPI (see Table 6-3 of [ITU-T G.7041])	0255	_
Pq-X-L/ETH_A_So Provisi	oning	
Pq-X-L/ETH_A_So_MI_Active	true, false	true
Pq-X-L/ETH_A_So_MI_CSFEnable	true, false	true
Pq-X-L/ETH_A_So_MI_CSFrdifdiEnable	true, false	true

Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value
Pq-X-L/ETH_A_Sk Prov	visioning	
Pq-X-L/ETH_A_Sk_MI_Active	true, false	true
Pq-X-L/ETH_A_Sk_MI_FilterConfig	(Note)	(Note)
Pq-X-L/ETH_A_Sk_MI_CSF_Reported	true, false	false
Pq-X-L/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
Pq-X-L/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	false
Pq-X-L/ETH_A_Sk Re	porting	
Pq-X-L/ETH_A_Sk_MI_AcSL (see clause 2.1.2 of [ITU-T G.832])	07	_
Pq-X-L/ETH_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	-
Pq-X-L/ETH_A_Sk_MI_AcUPI (see Table 6-3 of [ITU-T G.7041])	0255	-
ODUkP/ETH_A_So Prov	visioning	
ODUkP/ETH_A_So_MI_Active	true, false	true
ODUkP/ETH_A_So_MI_CSFEnable	true, false	true
ODUkP/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
ODUkP/ETH_A_Sk Prov	visioning	
ODUkP/ETH_A_Sk_MI_Active	true, false	true
ODUkP/ETH_A_Sk_MI_FilterConfig	(Note)	(Note)
ODUkP/ETH_A_Sk_MI_CSF_Reported	true, false	false
ODUkP/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
ODUkP/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true
ODUkP/ETH_A_Sk Re	porting	
ODUkP/ETH_A_Sk_MI_AcPT (see Table 15-8 of [ITU-T G.709])	0255	_
ODUkP/ETH_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_
ODUkP/ETH_A_Sk_MI_AcUPI (see Table 6-3 of [ITU-T G.7041])	0255	_
ODUkP-X-L/ETH_A_So P	rovisioning	
ODUkP-X-L/ETH_A_So_MI_Active	true, false	true
ODUkP-X-L/ETH_A_So_MI_CSFEnable	true, false	true
ODUkP-X-L/ETH_A_So_MI_CSFrdifdiEnable	true, false	true
ODUkP-X-L/ETH_A_Sk P	rovisioning	
ODUkP-X-L/ETH_A_Sk_MI_Active	true, false	true
ODUkP-X-L/ETH_A_Sk_MI_FilterConfig	(Note)	(Note)
ODUkP-X-L/ETH_A_Sk_MI_CSF_Reported	true, false	false
ODUkP-X-L/ETH_A_Sk_MI_MAC_Length	1518, 1522, 2000	2000
ODUkP-X-L/ETH_A_Sk_MI_CSFrdifdiEnable	true, false	true

 Table 8-3 – Provisioning and reporting for adaptation functions

MI signal	Value range	Default value	
ODUkP-X-L/ETH_A_Sk Reporting			
ODUkP-X-L/ETH_A_Sk_MI_AcVcPT (see Table 18-1 of [ITU-T G.709])	0255	-	
ODUkP-X-L/ETH_A_Sk_MI_AcEXI (see Table 6-2 of [ITU-T G.7041])	015	_	
ODUkP-X-L/ETH_A_Sk_MI_AcUPI (see Table 6-3 of [ITU-T G.7041])	0255	_	
ODU2P/ETHPP-OS_A_So Pro	ovisioning		
ODU2P/ETHPP-OS_A_So_MI_Active	true, false	true	
ODU2P/ETHPP-OS_A_So_MI_CSFEnable	true, false	true	
ODU2P/ETHPP-OS_A_Sk Provisioning			
ODU2P/ETHPP-OS_A_Sk_MI_Active	true, false	true	
ODU2P/ETHPP-OS_A_Sk_MI_CSF_Reported	true, false	false	
ODUkP-X-L/ETH_A_Sk Reporting			
ODU2P/ETHPP-OS_A_Sk_MI_AcPT	0255	-	
ODU2P/ETHPP-OS_A_Sk_MI_AcEXI	015	_	
ODU2P/ETHPP-OS_A_Sk_MI_AcUPI	0255	-	
NOTE – According to [ITU-T G.8021].	·	·	

Table 8-3 – Provisioning and reporting for adaptation functions

8.7 Connection

See clause 8.6 of [ITU-T G.7710] for a description of connection management.

This function allows a user to provision the operation of an ETH connection process.

The MI signals listed in Table 8-4 are communicated from the EMF to the connection process through the management point.

For the connection functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- provisioning the connection management information
- retrieving the connection management information
- notifying the changes of the connection management information.

MI signal	Value range	Default value
ETH_C Provisioning		
ETH_C_MI_Create_FF	(Note)	(Note)
ETH_C_MI_Modify_FF	(Note)	(Note)
ETH_C_MI_Delete_FF	(Note)	(Note)
ETH_C Provisioning per Flow Forwarding Process		
ETH_C_MI_FF_Set_PortIds	(Note)	(Note)

MI signal	Value range	Default value
ETH_C_MI_FF_ConnectionType	(Note)	(Note)
ETH_C_MI_FF_Flush_Learned	-	_
ETH_C_MI_FF_Flush_Config	-	_
ETH_C_MI_FF_Group_Default	(Note)	(Note)
ETH_C_MI_FF_ETH_FF	(Note)	(Note)
ETH_C_MI_FF_Ageing	$10 \text{ to } 10^6 \text{ s}$	300 s
ETH_C_MI_FF_Learning	(Note)	(Note)
ETH_C_MI_FF_STP_Learning_State[i] (for each port)	true, false	true
ETH_C Provisioning per SNC/S	protection process	
ETH_C_MI_PS_WorkingPortId	(Note)	(Note)
ETH_C_MI_PS_ProtectionPortId	(Note)	(Note)
ETH_C_MI_PS_ProtType	(Note)	(Note)
ETH_C_MI_PS_OperType	(Note)	(Note)
ETH_C_MI_PS_HoTime	(Note)	(Note)
ETH_C_MI_PS_WTR	(Note)	(Note)
ETH_C_MI_PS_ExtCMD	(Note)	(Note)
ETH_C_MI_PS_BridgeType	0 (Selector bridge), 1(Broadcast bridge)	0
ETH_C_MI_PS_SD_Protection	disabled, enabled	disabled
ETH_C Provisioning per Ring	protection process	
ETH_C_MI_RAPS_RPL_Owner_Node	(Note)	(Note)
ETH_C_MI_RAPS_RPL_Neighbour_Node	(Note)	(Note)
ETH_C_MI_RAPS_Propagate_TC[1M]	(Note)	(Note)
ETH_C_MI_RAPS_Compatible_Version	(Note)	(Note)
ETH_C_MI_RAPS_Revertive	(Note)	(Note)
ETH_C_MI_RAPS_Sub_Ring_Without_Virtual_Channel	(Note)	(Note)
ETH_C_MI_RAPS_HoTime	(Note)	(Note)
ETH_C_MI_RAPS_WTR	(Note)	(Note)
ETH_C_MI_RAPS_GuardTime	(Note)	(Note)
ETH_C_MI_RAPS_ExtCMD	(Note)	(Note)
ETH_C_MI_RAPS_RingID	1to 239 (0x01toEF)	1

 Table 8-4 – Provisioning and reporting for connection functions

8.8 Diagnostic

This function allows a user to provision the operation of an ETH diagnostic process.

The MI signals listed in Table 8-5 are communicated from the EMF to the diagnostic process across the management point within the ET.NE.

For the diagnostic functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- provisioning the trail termination management information
- retrieving the trail termination management information
- notifying the changes of the trail termination management information
- receiving the monitored trail termination management information.

Table 8-5 – Provisioning and reporting for diagnostic functions

MI signal	Value range	Default value
Provisioning of Diagnostic Flow Termination	Source for MEP	
ETHDe_FT_So_MI_LM_Start(DA,P,Period)	For Period: 100 ms, 1 s, 10 s (Also see Notes 1 and 2 for DA and P)	For Period: 100 ms
ETHDe_FT_So_MI_LM_Intermediate_Request	_	-
ETHDe_FT_So_MI_LM_Terminate	_	-
ETHDe_FT_So_MI_LB_Discover(P)	(Note 2)	_
ETHDe_FT_So_MI_LB_Series(DA,DE,P,N,Length,Period)	(Notes 1 and 2)	_
ETHDe_FT_So_MI_LB_Test(DA,DE,P,Pattern, Length, Period)	(Notes 1 and 2)	_
ETHDe_FT_So_MI_LB_Test_Terminate	_	_
ETHDe_FT_So_MI_DM_Start(DA,P, Test_ID,Length,Period)	For Period: 100 ms, 1 s, 10 s (Also see Notes 1 and 2 for DA and P)	For Period: 100 ms
ETHDe_FT_So_MI_DM_Intermediate_Request	_	_
ETHDe_FT_So_MI_DM_Terminate	_	_
ETHDe_FT_So_MI_1DM_Start(DA,P, Test_ID,Length,Period)	For Period: 100 ms, 1 s, 10 s (Also see Notes 1 and 2 for DA and P)	For Period: 100 ms
ETHDe_FT_So_MI_1DM_Terminate	_	_
ETHDe_FT_So_MI_TST(DA,DE,P,Pattern, Length, Period)	(Notes 1 and 2)	_
ETHDe_FT_So_MI_TST_Terminate	-	_
ETHDe_FT_So_MI_LT(TA,TTL,P)	(Note 1)	_
ETHDe_FT_So_MI_MEP_MAC	6 byte MAC unicast address	-
ETHDe_FT_So_MI_MEL	07	_
ETHDe_FT_So_MI_MEP_ID	08191; see Figure 9.2-3 of [ITU-T Y.1731]	_

MI signal	Value range	Default value
ETHDe_FT_So_MI_SL_Start(DA,P, Test_ID,Length,Period)	For Period: 10 ms, 100 ms, 1 s, 10 s (Also see Notes 1 and 2 for DA and P)	For Period: 100 ms
ETHDe_FT_So_MI_SL_Intermediate_Request	_	_
ETHDe_FT_So_MI_SL_Terminate	_	_
ETHDe_FT_So_MI_1SL_Start(DA,P,Test_ID,Length,Period)	For Period: 10 ms, 100 ms, 1 s, 10 s (Also see Notes 1 and 2 for DA and P)	For Period: 100 ms
ETHDe_FT_So_MI_1SL_Terminate	_	_
Reporting of Diagnostic Flow Termination So	ource for MEP	
ETHDe_FT_So_MI_LM_Result(N_TF, N_LF, F_TF, F_LF)	(Note 1)	_
ETHDe_FT_So_MI_LB_Discover_Result(MACs)	6 byte MAC unicast address	_
ETHDe_FT_So_MI_DM_Result(count,B_FD[],F_FD[],N_FD[])		
ETHDe_FT_So_MI_LB_Series_Result(REC,ERR,OO)	(Note 1)	_
ETHDe_FT_So_MI_LB_Test_Result(Sent, REC, CRC, BER, OO)	(Note 1)	_
ETHDe_FT_So_MI_TST_Result(Sent)	(Note 1)	_
ETHDe_FT_So_MI_LT_Results(Results)	(Note 1)	_
ETHDe_FT_So_MI_SL_Result(N_TF,N_LF,F_TF,F_LF)	(Note 1)	_
Provisioning of Diagnostic Flow Termination	Sink for MEP	1
ETHDe_FT_Sk_MI_MEL	07	_
ETHDe_FT_Sk_MI_MEP_MAC	6 byte Unicast MAC address	_
ETHDe_FT_Sk_MI_1DM_Start(SA, Test_ID)	6 byte Unicast MAC address, Non-negative integer	_
ETHDe_FT_Sk_MI_1DM_Intermediate_Request	_	_
ETHDe_FT_Sk_MI_1DM_Terminate	_	_
ETHDe_FT_Sk_MI_TST_Start(SA, pattern)	(Note 1)	_
ETHDe_FT_Sk_MI_TST_Terminate	_	_
ETHDe_FT_Sk_MI_1SL_Start(SA,MEP ID, Test ID)	(Notes 1 and 2)	_
ETHDe_FT_Sk_MI_1SL_Intermediate_Request	_	_
ETHDe_FT_Sk_MI_1SL_Terminate		

 Table 8-5 – Provisioning and reporting for diagnostic functions

MI signal	Value range	Default value						
Reporting of Diagnostic Flow Termination Sink for MEP								
ETHDe_FT_Sk_MI_1DM_Result(count,N_FD[])	(Note 1)	-						
ETHDe_FT_Sk_MI_TST_Result(REC, CRC, BER, OO)	(Note 1)	-						
Provisioning of Diagnostic Flow Termination Source for MEG int	ermediate point (M	IP)						
ETHDi_FT_So_MI_MEL	07	-						
ETHDi_FT_So_MI_MIP_MAC	6 byte MAC	-						
	unicast address							
Provisioning of Diagnostic Flow Termination Sink for MIP								
ETHDi_FT_Sk_MI_MEL	07	—						
ETHDi_FT_Sk_MI_MIP_MAC	6 byte MAC	-						
	unicast address							
NOTE 1 – According to [ITU-T G.8021].								
NOTE 2 – destination address (DA) is 6 byte MAC address, priority (P) is 07, drop eligibility (DE) is								

Table 8-5 – Provisioning and reporting for diagnostic functions

8.9 Traffic conditioning and shaping

0..1.

This function allows a user to provision the operation of an ETH traffic conditioning and shaping process.

The MI signals listed in Table 8-6 are communicated between the EMF and the traffic conditioning and shaping process across the management point within the ET.NE.

For the traffic conditioning and shaping functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- provisioning the trail termination management information
- retrieving the trail termination management information
- notifying the changes of the trail termination management information
- receiving the monitored trail termination management information.

Table 8-6 – Provisioning for traffic conditioning and shaping functions

MI signal	Value range	Default value
E	TH_TCS_So Provisioning	
ETH_TCS_So_MI_PrioConfig	(Note)	(Note)
ETH_TCS_So_MI_QueueConfig[]	(Note)	(Note)
ETH_TCS_So_MI_SchedConfig	(Note)	(Note)
E		
ETH_TCS_Sk_MI_PrioConfig	(Note)	(Note)
ETH_TCS_Sk_MI_CondConfig[]	(Note)	(Note)

MI signal	Value range	Default value						
ET	H_GTCS_So Provisioning							
ETH_GTCS_So_MI_PrioConfig[]	(Note)	(Note)						
ETH_GTCS_So_MI_QueueConfig[][]	(Note)	(Note)						
ETH_GTCS_So_MI_SchedConfig[]	(Note)	(Note)						
NOTE – According to [ITU-T G.8021].								

Table 8-6 – Provisioning for traffic conditioning and shaping functions

8.10 XXX_Reported

See clause 8.8 of [ITU-T G.7710] for a description of XXX_Reported management.

Table 8-7 provides the MI signals that need to be provisioned for consequential defect/failure.

For the XXX_Reported functions supported by an ET.NE, the ET.NE EMF shall support the following management functions:

- provisioning the trail termination management information
- retrieving the trail termination management information
- notifying the changes of the trail termination management information.

Table 8-7 – Consequential defect/failure related provisioning

MI signal	Value range	Default value	
MI_CSF_Reported	true, false	false	

8.11 Alarm severity

See clause 8.9 of [ITU-T G.7710] for a description of alarm severity.

8.12 Alarm reporting control

See clause 8.10 of [ITU-T G.7710] for a description of alarm reporting control.

8.13 PM thresholds

For further study.

8.14 TCM activations

For further study.

8.15 Date and time

The date and time functions within the ET EMF comprise the local real-time clock (RTC) function and the performance monitoring clock (PMC) function. The message communication function within the ET NEF shall be capable of setting the local real-time clock function.

The date and time values are incremented by a free running local clock, or by an external timing source. The fault, configuration, account, performance, security (FCAPS) management functions that need date and time information, e.g., to time-stamp event reports, obtain this information from the date and time function.

8.15.1 Date and time application

Clause 8.13.1 of [ITU-T G.7710] identifies three date and time applications. These are:

- time-stamping
- performance monitoring clock signals
- activity scheduling.

The ET NEF functional requirements for these applications are specified in the following subclauses.

8.15.1.1 Time-stamping

See clause 8.13.1.1 of [ITU-T G.7710] for a description of the time-stamping application.

8.15.1.2 Performance monitoring clock signals

See clause 8.13.1.2 of [ITU-T G.7710] for a description of the PMC signals.

8.15.1.3 Activity scheduling

See clause 8.13.1.3 of [ITU-T G.7710] for a description of the activity scheduling application.

8.15.2 Date and time functions

There are three date and time functions defined. The local RTC function is required for timestamping and activity scheduling. The local real-time clock alignment function is required for aligning the clock with an external time reference. The PMC function, in addition to RTC, is typical for digital counter measurements.

8.15.2.1 Local real-time clock function

The local real-time clock function is specified in clause 8.13.2.1 of [ITU-T G.7710].

8.15.2.2 Local real-time clock alignment function with external time reference

The local real-time clock alignment function with external time reference is specified in clause 8.13.2.2 of [ITU-T G.7710].

8.15.2.3 Performance monitoring clock function

The performance monitoring clock function is specified in clause 8.13.2.3 of [ITU-T G.7710].

9 Accounting management

For further study.

10 Performance management

See clause 10 of [ITU-T G.7710] for the generic requirements for performance management. ET specific management requirements are described below.

10.1 Performance management applications

See clause 10.1 of [ITU-T G.7710] for the generic description for performance management applications.

10.2 Performance monitoring functions

See clause 10.2 of [ITU-T G.7710] for the generic requirements of performance monitoring functions.

The following are ET specific performance management requirements:

- 1) PM measurements are managed at TTPs and connection termination point (CTPs) (i.e., MEPs/ MEG intermediate point (MIP)s are created and deleted)
- 2) One MEP has to be created per MEL if that has to be supervised
- 3) Two kinds of measurement jobs have to be supported (Proactive, On-Demand)
- 4) ProActive measurement jobs are managed at MEPs (establish, disable, enable, terminate)
- 5) On-Demand measurement jobs are managed at MEPs (establish, modify, abort)
- 6) On-Demand measurements can be done using four different OAM PDU generation mechanisms: single instance, repetitive instance, single series, and repetitive series. To describe these mechanisms, the following terms are used:
 - OAM PDU Generation Type:

Generation pattern of the on-demand OAM message

Valid types are: single instance, repetitive instance, single series, and repetitive series.

– Message Period (x)

Frequency of the OAM message generation within a series.

Note that a value of zero (i.e., x = 0) means that only one OAM message per measurement interval is generated.

– Measurement Interval (y)

Defines discrete non overlapping periods of time during which measurements are performed (i.e., OAM messages are generated) and reports are gathered at the end of the measurement intervals.

Note that a value of zero means a degenerated measurement interval with a single OAM message and the report is sent as immediately as possible.

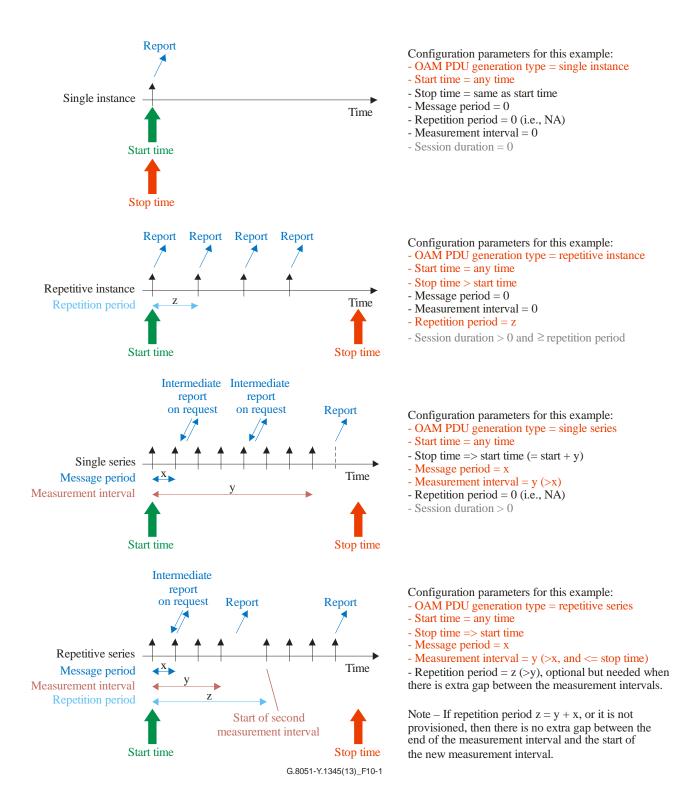
– Repetition Period (z)

Defines the time between the start of two measurement intervals. This IS applicable for the repetitive instance type and MAY be applicable for the repetitive series type.

Note that a value of zero means not applicable (NA), which is for the cases of single instance, single series, or repetitive series without extra gap in between the measurement intervals (i.e., also as known as continuous series).

– Start Time

Define the start of the on-demand session


Stop Time

Define the stop of the on-demand session

- Session Duration
 - Stop Time Start Time.

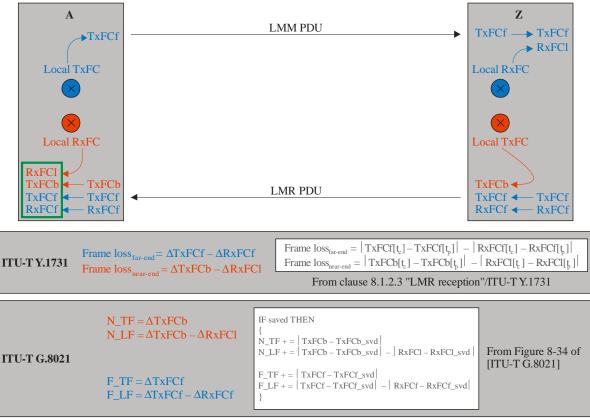
Note that session duration is not a configuration parameter. That is, it is not needed in the configuration.

The four on-demand measurements are illustrative in Figure 10-1. In each mechanism, the mandatory parameters (i.e., the required minimum set of parameters) are in red font. The optional parameters are in black font. Optional parameters are not needed, but may be used for validation purpose.

Figure 10-1 – On Demand OAM PDU generation mechanisms

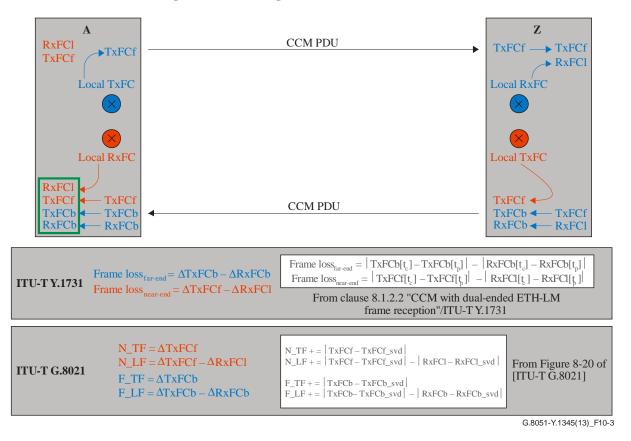
Note that in the repetitive series case, if the repetition period z = y + x, or the value is not provisioned, then there is no extra gap between the end of the measurement interval and the start of the new measurement interval. This pattern is also known as the continuous series cases. The repetition period (z) is needed if there is extra gap between the measurement intervals.

- 7) It shall be possible to configure the following on-demand measurement parameters (including the default values)
 - a) OAM PDU Generation Type; default = repetitive instance


- b) Start Time; default = current time
- c) Stop Time; default = current time + 1 hour
- d) OAM Message Period; default = 0
- e) Measurement Interval; default = 0
- e) Repetition Period; default = 0.
- 8) Parallel measurement jobs, one per priority, can be established
- 9) Performance data is stored in registers associated to the measurement job
- 10) On-Demand measurement jobs are automatically terminated after (last) report is sent
- 11) Threshold profiles are managed at the Managed Element (create, modify, delete)
- 12) It shall be possible to retrieve the following configuration information:
 - a) all existing MEPs/MIPs within a TP (TTP or CTP)
 - b) all existing measurement jobs within a MEP
 - c) all existing threshold profiles within a network element
 - d) all threshold settings within a Proactive PM measurement job.
- 13) It shall be possible to retrieve all Proactive PM measurement current and history performance data within a MEP
- 14) It shall be possible to request intermediate reports on an On-Demand PM measurement job of "single series" and "repetitive series" types
- 15) It shall be possible to request an autonomous continuous reporting of performance data from all Proactive PM measurement jobs within a MEP (i.e., automatic "push" of the measured PM data)
- 16) If on-demand LM (e.g., LMM/LMR) is supported, for each on-demand LM Measurement Interval, the Ethernet NE should:
 - Receive from the transport plane the measurements (i.e., N_TF, N_LF, F_TF, F_LF) at the end of each Measurement Interval.

Note that according to the definition of near-end and far-end frame loss in clause 8.1 of [ITU-T Y.1731], for a MEP, N_TF and N_LF refer to the transmitted and lost ingress frames while F_TF and F_LF refer to the transmitted and lost egress frames.

- Store the measurements (TN_TF, TN_LF, TF_TF, TF_LF) and calculate the FLRs (TN_FLR=TN_LF/TN_TF, TF_FLR=TF_LF/TF_TF). The measurements and FLRs shall be reported to the management system.
- At the instruction of the management system, the NE shall be able to request from the transport plane the intermediate (i.e., before the end of the Measurement Interval) measurements, calculate the intermediate FLRs, and report the intermediate results (TN_TF, TN_LF, TN_FLR, TF_TF, TF_LF, TF_FLR) to the management system.


Figures 10-2 and 10-3 below illustrate the derivation of the on-demand (single-ended) and proactive (dualended) loss measurement from the counter values.

NOTE – An on-demand LM or DM session could be a single series of OAM messages or a single instance of OAM message. A single instance OAM could be considered as a special case of a single series OAM.

G.8051-Y.1345(13)_F10-2

Figure 10-2 – Single-ended loss measurement

Figure 10-3 – Dual-ended loss measurement

17) If proactive LM (e.g., CCM-based or LMM/LMR) is supported, for each proactive LM session the Ethernet NE should:

- Receive from the transport plane the measurements (i.e., pN_TF, pN_LF, pF_TF, pF_LF) for each OAM period.
- Calculate the frame loss ratio (FLR)s (N_FLR=pN_LF/pN_TF, F_FLR=pF-LF/pF_TF) for each OAM period; store the temporal minimum, average, and maximum statistics (mN_FLR, aN_FLR, xN_FLR, mF_FLR, aF_FLR, xF_FLR) in the current 15-minute and 24-hour registers. The stored statistics shall be available for retrieval by the management system.
- The FLR measurements of a monitored entity measured during an severe errored second (SES) shall be included in the computation of its FLR statistics, unless the SES is part of the unavailable time period. NOTE This is in line with the definition made in Note 1 of clause 1 in [ITU-T Y.1563].

 At the maturity of the current 15-minute and 24-hour periods, the statistics in the current registers shall move to the history registers and then reset the current registers to zeros. See detailed requirements in [ITU-T G.7710].

- 18) If on-demand 1-way DM (1DM) is supported, for each on-demand 1DM Measurement Interval, the Ethernet NE should:
 - Receive from the transport plane the array of near-end measurements (count, N_FD[]) at the end of each Measurement Interval.
 - Store the measurements, compute the corresponding array of N_FDV[] and report the near-end measurements (count, N_FD[], N_FDV[]) to the management system.
 - At the instruction of the management system, the NE shall be able to request from the transport plane the intermediate measurements, calculate the intermediate N_FDV[], and report the intermediate results (count, N_FD[], N_FDV[]) to the management system.
- 19) If proactive 1-way DM (i.e., 1DM) is supported, for each proactive 1-way DM session the Ethernet NE should:
 - Receive from the transport plane the near-end measurements (pN_FD, pN_FDV) for each OAM period.
 - Store the temporal minimum, average, and maximum (N_FD, N_FDV) in the current 15-minute and 24-hour registers. The stored statistics shall be available for retrieval by the management system.
 - At the maturity of the current 15-minute and 24-hour periods, the statistics in the current registers shall move to the history registers and then reset the current registers to zeros. See detailed requirements in [ITU-T G.7710].

NOTE – Version 1 of the 1DM PDU format has been defined in the 2011 revision of [ITU-T Y.1731] to support both proactive and on-demand 1-way DM applications, in which proactive and on-demand 1DM applications are distinguished by using the Type bit of the Flags field of the 1DM PDU. Proactive 1DM application is configured at the ETHx flow termination functions (ETHx_FT) with the Type bit is set to 1, while the on-demand 1DM application is configured at the ETH Diagnostic flow termination function (ETHDe_FT) with the Type bit being set to 0. See clause 8.1.11 of [ITU-T G.8021] for details.

- 20) If on-demand 2-way DM (i.e., DMM/DMR) is supported, for each on-demand 2-way DM Measurement Interval, the Ethernet NE should:
 - Receive from the transport plane the array of near-end, far-end, and bidirectional measurements (count, N_FD[], F_FD[], B_FD[]) at the end of each Measurement Interval.
 - Store the measurements, compute the corresponding array of FDV[], and report the Near-end, Far-end, and Bidirectional (2-way) measurements (count, N_FD[], F_FD[], B_FD[]; N_FDV[], F_FDV[], B_FDV[]) to the management system.

- At the instruction of the management system, the NE shall be able to request from the transport plane the intermediate measurements, calculate the intermediate FDV[], and report the intermediate results (count, N_FD[], F_FD[], B_FD[]; N_FDV[], F_FDV[], B_FDV[]) to the management system.
- 21) If proactive 2-way DM (i.e., DMM/DMR) is supported, for each proactive 2-way DM session the Ethernet NE should:
 - Receive from the transport plane the near-end, far-end, and bidirectional measurements (N_FD, F_FD, B_FD; N_FDV, F_FDV, B_FDV) for each OAM period.
 - Store the temporal minimum, average, and maximum for each type of the measurements (N_FD, F_FD, B_FD; N_FDV, F_FDV, B_FDV) for the current 15-minute and 24-hour registers. The stored statistics shall be available for retrieval by the management system.
 - At the maturity of the current 15-minute and 24-hour periods, the statistics in the current registers shall move to the history registers and then reset current registers to zeros. See detailed requirements in [ITU-T G.7710].

NOTE – Version 1 of the 1DM PDU format has been defined in the 2011 Revision of [ITU-T Y.1731] to support both proactive and on-demand 1-way DM applications, in which proactive and on-demand 1DM applications are distinguished by using the Type bit of the Flags field of the 1DM PDU. Proactive 1DM application is configured at the ETHx flow termination functions (ETHx_FT) with the Type bit is set to 1, while the on-demand 1DM application is configured at the ETH diagnostic flow termination function (ETHDe_FT) with the Type bit being set to 0. See clause 8.1.11 of [ITU-T G.8021] for details.

22) The Ethernet NE should support the ability to configure for the start and stop at the respondent-end MEP of a single-ended measurement session (such as LMM/LMR and DMM/DMR).

ET.NE provides the following PM management information (see Table 10-1).

PM management information	G.8021 function		
ETH_FT_Sk_MI_pN_LF			
ETH_FT_Sk_MI_pN_TF			
ETH_FT_Sk_MI_pF_LF			
ETH_FT_Sk_MI_pF_TF			
ETH_FT_Sk_MI_pF_DS			
ETH_FT_Sk_MI_pN_DS			
ETH_FT_Sk_MI_pB_FD	ETHx_FT_Sk		
ETH_FT_Sk_MI_pB_FDV			
ETH_FT_Sk_MI_pF_FD			
ETH_FT_Sk_MI_pF_FDV			
ETH_FT_Sk_MI_pN_FD			
ETH_FT_Sk_MI_pN_FDV			
ETHx_FT_Sk_MI_pN_TF			
ETHx_FT_Sk_MI_pN_LF			
ETHx_FT_Sk_MI_pF_TF	ETHDe_FT_So		
ETHx_FT_Sk_MI_pF_LF			

 Table 10-1 – PM management information

PM management information	G.8021 function
ETHG_FT_Sk_MI_pN_TF	
ETHG_FT_Sk_MI_pN_LF	
ETHG_FT_Sk_MI_pF_TF	
ETHG_FT_Sk_MI_pF_LF	
ETHG_FT_Sk_MI_pF_DS	
ETHG_FT_Sk_MI_pN_DS	ETHG_FT_Sk
ETHG_FT_Sk_MI_pB_FD	
ETHG_FT_Sk_MI_pB_FDV	
ETHG_FT_Sk_MI_pF_FD	
ETHG_FT_Sk_MI_pF_FDV ETHG_FT_Sk_MI_pN_FD	
ETHG_FT_Sk_MI_pN_FDV	
ETTIO_TT_SK_MI_pN_TDV ETYn-Np/ETH-LAG-Na_A_So_MI_pAggOctetsTxOK[1Na] ETYn-Np/ETH-LAG-Na_A_So_MI_pAggFramesTxOK[1Na] ETYn-Np/ETH-LAG-Na_A_So_MI_pFramesTransmittedOK[1Np] ETYn-Np/ETH-LAG-Na_A_So_MI_pOctetsTransmittedOK[1Np]	ETYn-Np/ETH-LAG-Na_A_So
ETYn-Np/ETH-LAG-Na_A_Sk_MI_pAggOctetsRxOK[1Na] ETYn-Np/ETH-LAG-Na_A_Sk_MI_pAggFramesRxOK[1Na] ETYn-Np/ETH-LAG-Na_A_Sk_MI_pFramesReceivedOK[1Np] ETYn-Np/ETH-LAG-Na_A_Sk_MI_pOctetsReceivedOK[1Np] ETYn-Np/ETH-LAG-Na_A_Sk_MI_pFCSErrors[1Np]	ETYn-Np/ETH-LAG-Na_A_Sk
ETYn/ETH_A_So_MI_pFramesTransmittedOK ETYn/ETH_A_So_MI_pOctetsTransmittedOK	ETYn/ETH_A_So
ETYn/ETH_A_Sk_MI_pErrors ETYn/ETH_A_Sk_MI_pFramesReceivedOK ETYn/ETH_A_Sk_MI_pOctetsReceivedOK	ETYn/ETH_A_Sk
Sn/ETH_A_Sk_MI_pFCSErrors	Sn/ETH_A_Sk
Sn-X-L/ETH_A_Sk_MI_pFCSError	Sn-X-L/ETH_A_Sk
Sm/ETH_A_Sk_MI_pFCSError	Sm/ETH_A_Sk
Sm-X-L/ETH_A_Sk_MI_pFCSError	Sm-X-L/ETH_A_Sk
Sn-X/ETC3_A_Sk_MI_pCRC16Errors	Sn-X/ETC3_A_Sk
Pq/ETH_A_Sk_MI_pFCSError	Pq/ETH_A_Sk
Pq-X-L/ETH_A_Sk_MI_pFCSError	Pq-X-L/ETH_A_Sk
ODUkP/ETH_A_Sk_MI_pFCSErrors	ODUkP/ETH_A_Sk
ODUkP-X-L/ETH_A_Sk_MI_pFCSError	ODUkP-X-L/ETH_A_Sk
ODU2P/ETHPP-OS_A_Sk_MI_pFCSErrors ODU2P/ETHPP-OS_A_Sk_MI_pCRC16Errors	ODU2P/ETHPP-OS_A_Sk

Table 10-1 – PM management information

The EMF shall support the following function:

– notifying of the PM management information.

11 Security management

See [ITU-T G.7710] for a description of security management.

Appendix I

MI signals/parameters for PM tools in ITU-T G.8021

(This appendix does not form an integral part of this Recommendation.)

The following two tables summarize the MI signals defined in [ITU-T G.8021] for the proactive and on-demand performance monitoring tools.

						Μ	I signals				
OAM Type	dir	dir		M	AC		ID	T (I	D • 1	р.	0.1
- , pe		Enable	DA	SA	Test	MEP	Length	Period	Pri	Others	
CC	So	✓LMC (*1)	(*6)				(*5)	~	\checkmark		
	Sk	✓LMC (*1)						✓ (*7)	✓ (*7)	GetSvdCCM, SvtCCM	
LM	So	✓LML (*1)	~		(*3)		(*5)	~	√		
	Sk									DEGM, M, DEGTHER, TFMIN	
1SL	So	✓	✓		✓		✓	✓	\checkmark		
	Sk	~		✓ (*2)	~	(*4)					
SL	So	✓	✓		✓		✓	✓	√		
	Sk										
1DM	So	~	✓		✓		✓	✓	\checkmark		
	Sk	~		✓ (*2)	~						
DM	So	~	✓		✓		✓	✓	\checkmark		
	Sk										

Table I.1 – MI signals for proactive PM (ETHx_FT)

NOTE:

*1 MI_{LMC,LML}_Enable are used to activate the loss measurement process by proactive CCM/ LMx, respectively. Since the calculation of CCM is performed at sink side, the MI_LMC_Enable signal is required at sink side (as well as source side, where other protocols have). Note that the latest G.8021 has removed the functionality of MI signals for the allocation of the local counter resources.

*2 MI_MAC_SA for 1SL/1DM is used to verify that the received PDU is properly sent from the expected peer node.

*3 MI_Test_ID is not specified in LM until now.

*4 MI_MEP_ID was removed during G.8021v4 AAP because MEP_ID carried in PDU is not evaluated at sink side

*5 MI_Length is not applicable for CC/LM because the length of both PDUs is always fixed.

*6 MI_MAC_DA is not explicitly specified for CCM protocol because it uses the multicast class 1 address as the default MAC DA.

*7 MI_Period/Priority are configured for sink side of CCM process (as well as the source side) to detect the mismatch defects (dUNP and dUNPr). Note that other protocols do not need to specify neither of MI signals at sink side.

				MI_Start						MIs for retrieval			
OAM Type	dir	dir	MI_ Enable	М	AC	I	D					MI_Interm	MI_
Type		Linubic	DA	SA	Test	MEP	Length	Period	Pri	Termi- nate	ediate_Req uest	Result()	
LM	So	(*1)	~		(*3)		(*5)	~	~	~	~		
	Sk	(*1)											
1SL	So		✓		✓		~	✓	\checkmark	✓			
	Sk			✓ (*2)	~	(*4)				~	~	✓ (N_TF, N_LF)	
SL	So		~		~		~	~	~	~	~	✓ (N_TF, N_LF, F_TF, F_LF)	
	Sk												
1DM	So		~		~		~	✓	\checkmark	~			
	Sk			✓ (*2)	~					~	~	✓ (count, N_FD[])	
DM	So		~		~		~	~	✓	~	×	✓ (count, B_FD[], F_FD[], N_FD[])	
	Sk												

Table I.2 –MI signals/parameters for on-demand PM (ETHDe_FT)

NOTE:

*1 MI_Enable is no longer used to allocate the counter resources for loss measurement. Note that the latest G.8021 has removed MI signals for the allocation of the local counter resources.

*2 The parameter 'SA' for MI_{1SL,1DM}_Start() is used to verify that the received PDU is properly sent from the expected peer node.

*3 The parameter 'Test_ID' for MI_LM_Start() is not specified in LM until now.

*4 The parameter 'MEP_ID' for MI_1SL_Start() was removed during G.8021v4 AAP because MEP_ID carried in PDU is not evaluated at sink side.

*5 The parameter 'Length' is not applicable for CC/LM because the length of both PDUs is always fixed.

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300-Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600-Y.699
Security	Y.700-Y.799
Performances	Y.800-Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Enhancements to NGN	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Network control architectures and protocols	Y.2500-Y.2599
Packet-based Networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
Carrier grade open environment	Y.2900-Y.2999
FUTURE NETWORKS	Y.3000-Y.3499
CLOUD COMPUTING	Y.3500-Y.3999

For further details, please refer to the list of ITU-T Recommendations.

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Terminals and subjective and objective assessment methods
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems