ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital networks - General aspects

Architecture of transport networks based on the synchronous digital hierarchy (SDH) **Amendment 1**

ITU-T Recommendation G.803 (2000) - Amendment 1

ITU-T G-SERIES RECOMMENDATIONS TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA CHARACTERISTICS	G.600-G.699
DIGITAL TERMINAL EQUIPMENTS	G.700-G.799
DIGITAL NETWORKS	G.800-G.899
General aspects	G.800-G.809
Design objectives for digital networks	G.810-G.819
Quality and availability targets	G.820–G.829
Network capabilities and functions	G.830–G.839
SDH network characteristics	G.840-G.849
Management of transport network	G.850–G.859
SDH radio and satellite systems integration	G.860–G.869
Optical transport networks	G.870–G.879
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900–G.999
QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000–G.7999
ETHERNET OVER TRANSPORT ASPECTS	G.8000–G.8999
ACCESS NETWORKS	G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation G.803

Architecture of transport networks based on the synchronous digital hierarchy (SDH)

Amendment 1

Summary

This amendment replaces some definitions with a reference to ITU-T Rec. G.780/Y.1351 and the modifications contained in Study Group 15 Report COM 15-R 5 Annex C.

Source

Amendment 1 to ITU-T Recommendation G.803 (2000) was approved on 29 June 2005 by ITU-T Study Group 15 (2005-2008) under the ITU-T Recommendation A.8 procedure.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

© ITU 2005

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

CONTENTS

Page

1)	Clause 2 References	1
2)	Clause 3 Terms and definitions	1
3)	Clause 6.3 Sublayer monitoring	2

ITU-T Recommendation G.803

Architecture of transport networks based on the synchronous digital hierarchy (SDH)

Amendment 1

1) Clause 2 References

Add the following new reference alphanumerically:

- ITU-T Recommendation G.808.1 (2003), *Generic protection switching – Linear trail and subnetwork protection*.

2) Clause 3 Terms and definitions

Replace the original terms and definitions with the new text as follows and remove footnotes:

Original term	Replacement text
3.1 SDH higher-order path layer networks : Those layer networks with characteristic information of VC-3 ¹ , VC-3-Xv $(X = 2 \dots 48)^2$, VC-4, VC-4-Xc $(X = 4, 16)^3$ or VC-4-Xv $(X = 2 \dots 16)^3$.	3.1 SDH higher-order path layer networks : See ITU-T Rec. G.780/Y.1351.
3.2 SDH lower-order path layer networks : Those layer networks with characteristic information of VC-11, VC-11-Xv $(X = 2 \dots 84)$, VC-12, VC-12-Xv $(X = 2 \dots 63)$, VC-2, VC-2-Xc $(X = 2 \dots 7)^4$, VC-2-Xv $(X = 2 \dots 21)^5$ or VC-3 ¹ or VC-3-Xv $(X = 2 \dots 3)^5$.	3.2 SDH lower-order path layer networks : See ITU-T Rec. G.780/Y.1351.
3.3 SDH path layer : A transport assembly composed of the SDH higher-order path layer network and lower-order path layer network together with the associated adaptation functions.	3.3 SDH path layer : See ITU-T Rec. G.780/Y.1351.
3.4 SDH section layer : A transport assembly composed of the SDH multiplex section layer network and regenerator section layer network together with the associated adaptation functions.	3.4 SDH section layer : See ITU-T Rec. G.780/Y.1351.
3.5 SDH multiplex section layer : A layer network with characteristic information of STM-N, i.e., with a bit rate of STM-N and the multiplex section overhead as defined in ITU-T Rec. G.707.	3.5 SDH multiplex section layer : See ITU-T Rec. G.780/Y.1351.

Original term	Replacement text
3.6 SDH regenerator section layer : A layer network with characteristic information of STM-N, i.e., with a bit rate of STM-N and the regenerator section overhead as defined in ITU-T Rec. G.707.	3.6 SDH regenerator section layer : See ITU-T Rec. G.780/Y.1351.
Footnotes:	
1 The VC-3 is considered to be a higher-order path if it is supported directly by an AU-3 in a multiplex section layer network; it is considered a lower-order path if it is supported by a TU-3 in a VC-4 layer network.	
2 Values of X larger than 48 may be required.	
3 Values of X larger than 16 may be required.	
4 Transported in one higher order VC-3	
5 Transported in one higher order VC-4.	

3) Clause 6.3 Sublayer monitoring

After Figure 6-1 insert the following text and figures:

Note that SDH supports only one level of TCM per VC-n path level. Nesting and overlapping of TCM as shown in Figure 6-1a is, therefore, not supported.

Figure 6-1a/G.803 – Not supported SDH tandem connection monitoring (nesting, overlapping)

Together with VC-n subnetwork protection SNC (see 11.2/G.808.1) TCM can be used to provide the protection switching criteria by monitoring the working and protection subnetwork connection between the protection switching points (SNC/S as defined in 11.2/G.808.1) or for monitoring of the protected signal as shown in Figure 6-1b.

Figure 6-1b/G.803 – SDH tandem connection monitoring SNC protection

Note that TCM for the working and protection connection and the protected connection at the same time is not possible as nesting of TCM is not supported.

Overlapping of TCM and subnetwork connection protection is not allowed as the relation between TCM source and sink functions will change with every protection switch.

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems