

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T G.8021/Y.1341
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Amendment 1
(07/2011)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA,
DIGITAL SYSTEMS AND NETWORKS

Packet over Transport aspects – Ethernet over Transport
aspects

SERIES Y: GLOBAL INFORMATION
INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS
AND NEXT-GENERATION NETWORKS

Internet protocol aspects – Transport

 Characteristics of Ethernet transport network

equipment functional blocks

Amendment 1

 Recommendation ITU-T G.8021/Y.1341 (2010) –
Amendment 1

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS G.100–G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-
TRANSMISSION SYSTEMS

G.200–G.299

INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE
SYSTEMS ON METALLIC LINES

G.300–G.399

GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS
ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC
LINES

G.400–G.449

COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY G.450–G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS G.600–G.699
DIGITAL TERMINAL EQUIPMENTS G.700–G.799
DIGITAL NETWORKS G.800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM G.900–G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-
RELATED ASPECTS

G.1000–G.1999

TRANSMISSION MEDIA CHARACTERISTICS G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS G.7000–G.7999
PACKET OVER TRANSPORT ASPECTS G.8000–G.8999

Ethernet over Transport aspects G.8000–G.8099
MPLS over Transport aspects G.8100–G.8199
Quality and availability targets G.8200–G.8299
Service Management G.8600–G.8699

ACCESS NETWORKS G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) i

Recommendation ITU-T G.8021/Y.1341

Characteristics of Ethernet transport network equipment functional blocks

Amendment 1

Summary

Amendment 1 to Recommendation ITU-T G.8021/Y.1341 (2010) presents enhancements concerning
ETH performance monitoring functions, Client Signal Failure function, and ODU server to ETH
adaptation functions.

History

Edition Recommendation Approval Study Group

1.0 ITU-T G.8021/Y.1341 2004-08-22 15

1.1 ITU-T G.8021/Y.1341 (2004) Amd. 1 2006-06-06 15

2.0 ITU-T G.8021/Y.1341 2007-12-22 15

2.1 ITU-T G.8021/Y.1341 (2007) Amd. 1 2009-01-13 15

2.2 ITU-T G.8021/Y.1341 (2007) Amd. 2 2010-02-22 15

3.0 ITU-T G.8021/Y.1341 2010-10-22 15

3.1 ITU-T G.8021/Y.1341 (2010) Amd. 1 2011-07-22 15

ii Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of
telecommunications, information and communication technologies (ICTs). The ITU Telecommunication
Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,
operating and tariff questions and issuing Recommendations on them with a view to standardizing
telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,
establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on
these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain
mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the
Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some
other obligatory language such as "must" and the negative equivalents are used to express requirements. The
use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementers
are cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the
prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 1

Recommendation ITU-T G.8021/Y.1341

Characteristics of Ethernet transport network equipment functional blocks

Amendment 1

1) Figure 1-1

2 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

G
.8

02
1-

Y.
13

41
(1

0)
-A

m
d.

1(
11

)_
F1

-1

<
cl

ie
nt

>
_F

P
<c

li
en

t>
_C

P
B

P_
FP

E
T

H
_F

P

E
T

C
n_

A
P

E
T

C
n_

T
C

P

E
T

H
_A

P

E
T

H
_A

P

E
T

H
_A

P

E
T

H
_A

P
E

T
H

_A
P

E
T

H
_A

P

E
T

H
_T

FP

E
T

H
_T

FP

E
T

H
_F

P
E

T
H

_T
FP

E
T

C
n

E
T

Y
n

S
n-

X
-L

/E
T

H
S4

-6
4c

/E
T

H
w

E
T

Y
3/

C
B

R
x

O
D

U
0P

/C
B

R
x

Sn
-X

/E
T

C
3

ET
Y

n/
ET

C
n

O
D

U
2P

/
E

T
H

PP
-O

S
E

T
Y

4/
E

T
H

PP
-O

S

E
T

Y
n-

N
p/

E
T

H
-L

A
G

-N
a

S
m

-X
-L

/E
T

H
Pq

-X
-L

/E
T

H

E
T

C
n/

E
T

H
E

T
Y

n/
E

T
H

E
T

H
x

E
T

H
x/

E
T

H

E
T

H
D

/E
T

H
E

T
H

D
/E

T
H

E
T

H
D

/E
T

H
E

T
H

D
/E

T
H

E
T

H
D

/E
T

H
E

T
H

D
/E

T
H

E
T

H
D

/E
T

H

E
T

H
x

E
T

H
x/

B
P

E
TH

x/
<c

lie
nt

>

S
n/

E
T

H
Sm

/E
T

H
P

q/
E

T
H

S
n_

A
P

P
q_

A
P

Pq
-X

-L
_A

P
S

m
-X

-L
_A

P
S

n-
X

-L
_A

P

Sn
-X

_A
P

O
D

U
0P

_A
P

O
D

U
2P

_A
P

S4
-6

4c
_A

P
O

D
U

kP
-X

-L
_A

P
V

C
_A

P
<

se
rv

er
>

_A
P

O
D

U
kP

_A
P

M
P

L
S_

A
P

R
P

R
_A

P

O
D

U
kP

/E
T

H
M

P
L

S/
E

T
H

R
PR

/E
T

H

O
D

U
kP

-X
-L

/E
T

H
V

C
/E

T
H

<
se

rv
er

>
/E

T
H

S
m

_A
P

E
T

H
_A

P

E
T

H
_A

P
E

T
H

_A
P

E
T

H
_T

FP

E
T

H
_T

FPE
T

H
x

E
T

H
D

e
E

T
H

D
e

E
T

H
D

e
E

T
H

D
e

E
T

H
D

e
E

T
H

D
i

E
T

H
D

i

E
T

H
x/

E
T

H
-m

n

E
T

H
G

_A
P

P

E
T

H
G

_T
F

PP

E
T

H
G

_T
F

PP

E
T

H
G

E
T

H
G

/E
T

H

n
(N

ot
e)

E
T

H
_F

P
E

T
H

_F
P

E
T

H
_F

P
E

T
H

_F
P

E
T

H
_F

P
E

T
H

_F
P

E
T

H
_F

P

E
T

H
_F

P
E

T
H

_F
P

E
T

H
_F

P
E

T
H

_F
P

E
T

H
_F

P
E

T
H

_F
P

E
T

H
_F

P

E
T

H
-L

A
G

_A
P

E
T

H
-L

A
G

_F
PE
T

H
-

L
A

G

(N
ot

e)
(N

ot
e)

E
T

H

E
T

H
-L

A
G

/E
T

H

E
T

H
_A

P

E
T

H
_A

P

E
T

H
_T

FP

E
T

H
_T

FP
E

T
H

_T
FP

E
T

H
_T

FP
E

T
H

_T
FP

E
T

H
x

E
T

H
x/

E
T

H
G

n n n

N
a

N
p

E
T

H
_F

P
(N

ot
e)

(N
ot

e)
(N

ot
e)

(N
ot

e)
(N

ot
e)

(N
ot

e)
(N

ot
e)

(N
ot

e)
(N

ot
e)

(N
ot

e)
(N

ot
e)

(N
ot

e)
(N

ot
e)

(N
ot

e)

n

E
T

H
_F

P
E

T
H

_T
FP

E
T

H
_F

P
E

T
H

_T
FP

E
T

Y
n_

A
P

E
T

Y
_T

C
P

N
O

T
E

 –
 E

T
H

_T
FP

 in
te

rf
ac

e
of

 a
da

pt
at

io
n

fu
nc

tio
ns

 to
w

ar
ds

 th
e

E
T

H
_F

T
 f

un
ct

io
ns

 c
on

ne
ct

s
to

 lo
gi

ca
l l

in
k

co
nt

ro
l.

Se
e

[I
T

U
-T

 G
.8

01
0]

 a
nd

 f
un

ct
io

n
de

fi
ni

tio
n

fo
r

de
ta

ils
.

Figure 1-1 – Overview of ITU-T G.8021/Y.1341 atomic model functions

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 3

2) Add new definition

Add the following definition:

3.1.69 timing point: [ITU-T G.806].

Existing clauses 3.1.69 to 3.1.75 are to be renumbered.

3) Clause 4

Add the following abbreviations:

CSF Client Signal Fail

DCI Defect Clear Indication

FDI Forward Defect Indication

PI Replication Information

PP Replication Point

SL Synthetic Loss

SLM Synthetic Loss Message

SLR Synthetic Loss Reply

TCP Trail Connection Point

TP Timing Point

4) Table 6-1

Add the following rows to Table 6-1 for CSF and dFOP-TO

CSF-LOS Reception of a CSF frame that indicates client loss of signal.

CSF-FDI Reception of a CSF frame that indicates client forward defect indication.

CSF-RDI Reception of a CSF frame that indicates client reverse defect indication.

expRAPS Reception of a valid R-APS frame.

5) Table 6-2

Add the following rows to Table 6-2 for CSF and dFOP-TO and modify the first paragraph after the
table as shown.

dCSF-LOS CSF-LOS
#CSF-LOS == 0
(K*CSF_Period or CSF-DCI)

dCSF-FDI CSF-FDI
#CSF-FDI == 0
(K*CSF_Period or CSF-DCI)

dCSF-RDI CSF-RDI
#CSF-RDI == 0
(K*CSF_Period or CSF-DCI)

dFOP-TO #expAPS==0 (K * long APS interval) or
#expRAPS==0 (K * long R-APS frame
interval)

expAPS or expRAPS

Note that for the case of CCM_Period, AIS_Period, and LCK_Period, and CSF_Period the values
for the CCM, AIS, and LCK, and CSF periods are based on the periodicity as indicated in the CCM,
AIS or, LCK, or CSF frame that triggered the timer to be started.

4 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

6) Figure 6-2

Replace Figure 6-2 with the following figure:

Figure 6-2 – Defect detection and clearance process for dUNL, dMMG, dUNM, dUNP,
dUNPr, dAIS, dLCK, and dCSF

7) New clause 6.1.4.3.4 for dFOP-TO

Add the following new clause with respect to dFOP-TO:

6.1.4.3.4 Linear or ring protection failure of protocol time out (dFOP-TO)

The Failure of Protocol Time Out defect is calculated at the ETH layer. It monitors time-out defect
of:

• linear protection by detecting the prolonged absence of expected APS frames; or

• ring protection by detecting the prolonged absence of expected R-APS frames.

<Defect> Deteced

<Event>(Period) Timer

<Defect> Cleared

Period<Old_Period

N

Y

Old_Period=Period

Reset(Timer)

<Event>(Period)

<Defect>

Set(K*Period, Timer)
Old_Period=Period

Set(K*Period, Timer)Set(K*Old_Period, Timer)

<Defect> Deteced

<Event>(Period)

<Defect> Cleared

Period<Old_Period

N

Y

Old_Period=Period

Reset(Timer)

<Event>(Period)

<Defect>

Set(K*Period, Timer)
Old_Period=Period

Set(K*Period, Timer)Set(K*Old_Period, Timer)

Timer

!<Defect>

Timer

!<Defect>

<Clear_event>

Reset(Timer)Reset(Timer)

!<Defect>!<Defect>

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 5

Its detection and clearance are defined in Table 6-2.

In the case of linear protection, dFOP-TO is detected on receipt of no expAPS event during K times
the long APS interval defined in ITU-T G.8031/Y.1342 (where K ≥ 3.5) when neither dLOC nor
CI_SSF are reported. dFOP-TO is cleared on receipt of an expAPS event. These events are
generated by the subnetwork connection protection process (clause 9.1.2).

In the case of ring protection, dFOP-TO is detected on receipt of no expRAPS event during K times
the long R-APS frame intervals defined in ITU-T G.8032/Y.1344 (where K ≥ 3.5) on a ring port
reporting no link level failure and neither administratively disabled, nor blocked from R-APS
message reception. dFOP-TO is cleared on receipt of an expRAPS event. These events are
generated by the ring protection control process (clause 9.1.3).

8) New clause 6.1.5.4 for CSF

Add the following new clause with respect to CSF:

6.1.5.4 Client Signal Fail defect (dCSF)

The CSF (CSF-LOS, CSF-FDI, and CSF-RDI) defect is calculated at the ETH layer. It monitors the
presence of a CSF maintenance signal.

Its detection and clearance conditions are defined in Figure 6-2. The <Defect> in Figure 6-2 is
dCSF-LOS, dCSF-FDI, or dCSF-RDI. The <Event> in Figure 6-2 is the CSF event (as generated by
the CSF reception process in clause 9.3.2.2) and the period is the period carried in the CSF frame
that triggered the event, unless an earlier CSF frame carried a greater period.

The <Clear_event> in Figure 6-2 is the CSF event which indicates detect clearance indication
(DCI).

9) Clause 8.1.7.2

Update clause 8.1.7.2 with respect to in-profile as follows:

6 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

8.1.7.2 CCM Generation process

Figure 8-17 – CCM Generation behaviour

Figure 8-17 shows the state diagram for the CCM Generation process. The CCM Generation
process can be enabled and disabled using the MI_CC_Enable signal, where the default value is
FALSE.

In the Enabled state there are two main parts:

– counter part that is triggered by the receipt of a data frame;

– CCM generation part that is triggered by the expiration of the timer.

Counter part

The counter part of the CCM Generation process forwards data frames and counts all ETH_AI
frames with Priority (P) (i.e., ETH_AI_P) equal to MI_CC_Pri and Drop Eligibility (DE) (i.e.,
ETH_AI_DE) equal to <false (0)>. The D, P and DE signals are forwarded unchanged as indicated
by the dotted lines in Figure 8-16.

10) Clause 8.1.7.3

Update clause 8.1.7.3 with respect to in-profile as follows:

Enabled

Timer

D(OAM), P(MI_CC_Pri),
DE(0)

Disabled

MI_CC_Enable

!MI_CC_Enable

CCM Generation

Set(MI_CC_Period, Timer)

Stop(Timer)

Set(MI_CC_Period, Timer)

D(D),P(P),DE
(DE)

D(D),P(P),DE
(DE)

P==MI_CC_Pri

Y

N

Counter

TxFCl++

MI_LM_Enable?

OAM=CCM(
MI_CC_MEG,
MI_CC_MEP,
MI_CC_Period,
RI_CC_RDI,

,
RI_CC_RxFCl,

)

OAM=CCM(
MI_CC_MEG,
MI_CC_MEP,
MI_CC_Period,
RI_CC_RDI,
0,
0,
0
)

N

Y

TxFCl

RI_CC_TxFCf

& DE==<false>

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 7

8.1.7.3 CCM Reception process

G.8021-Y.1341(10)-Amd.1(11)_F8-19

D(OAM),
P(P), DE(DE)

MEL(OAM)==
MI_MEL

unexpMEL
(Period(OAM))

MEG(OAM)==
MI_MEG_ID

MEP(OAM) in
MI_PeerMEP_ID[]

Period(OAM)==
MI_CCM_Period

SvdCCM:=(D,P,DE)

MI_Get_SvdCCm

MI_SvdCCM
(SvdCCM)Period(OAM)=000

unexpMEG
(Period(OAM))

unexpMEP
(Period(OAM))

unexpPeriod
(Period(OAM))

SvdCCM:=(D,P,DE)

unexpPriority
(Period(OAM))

DE)SvdCCM:=(D,P,

P==
MI_CC_Pri

N

N

N

N

N

Y

Y

Y

Y

Y

Y

N

expCCM[Index(OAM.MEP)]

TxFCf(TxFCf(OAM))
RxFCb(RxFCb(OAM))
TxFCb(TxFCb(OAM))
RxFCl(RxFCl)

N

Y

RDI[Index(MEP(OAM))](RDI(OAM))

CCM Reception

RxFCl++

P==MI_CC_Pri
& DE==<false>

D(D),P(P),DE
(DE)

D(D),P(P),DE
(DE)

RI_CC_RxFCl(RxFCl)
RI_CC_TxFCf(TxFCf(OAM))

Counter

Waiting

Figure 8-19 – CCM Reception behaviour

8 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

The CCM reception process consists of two parts: Counter and CCM Reception.

Counter part

The counter part of the CCM reception process receives ETH_CI, extracts pro-active ETH OAM
frames and forwards remainder as ETH_AI traffic units. It the data frames and counts this number
of ETH_AI traffic units all data frames that have priority (P) (i.e., ETH_AI_P) equal to MI_CC_Pri
and Drop Eligibility (DE) (i.e., ETH_AI_DE) equal to <false (0)>.

CCM Reception part

The CCM reception part of the CCM reception process processes CCM OAM frames. It checks the
various fields of the frames and generates the corresponding events (as defined in clause 6). If the
Version, MEL, MEG and MEP are valid, the values of the frame counters are sent to the
performance counter process.

Note that unexpPriority and unexpPeriod events do not prevent the CCM from being processed,
since the MEL, MEG and MEP are as expected.

11) Clause 8.1.9.3

Update clause 8.1.9.3 with respect to in-profile as shown:

8.1.9.3 LMx Generation process

The LMx Generation process contains both the LMM Generation and LMR Generation
functionalities. Figure 8-35 shows the LMx Generation process.

G.8021-Y.1341(10)-Amd.1(11)_F8-35

LMx Generation

ETH_AI_D/P/DE

LMMLMR

LMM(DA,P) Data

Data

D P

RI_LMM(D,P,DE)

MI_LM_Pri

DE D P DE D P DE

Figure 8-35 – LMx Generation process

Figure 8-36 defines the behaviour of the LMx process. The behaviour consists of three parts:

– LMM Generation part that is triggered by the receipt of the LMM(DA,P) signal;

– LMR Generation part that is triggered by the receipt of RI_LMM(D,P,DE) signals;

– Counter part that is triggered by the receipt of a normal data signal.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 9

Figure 8-36 – LMx Generation behaviour

Counter part

This part receives ETH_CI AI and forwards it. It counts the number of ETH_CI AI traffic units
received with ETH_CIAI_P signal equal to MI_LM_Pri and ETH_AI_DE to <false (0)>.

…
12) Clause 8.1.9.4

Update clause 8.1.9.4 with respect to in-profile as shown:

8.1.9.4 LMx Reception process

The LMx Reception process contains both the LMM Reception and LMR Reception functionalities.
Figure 8-39 shows the LMx Reception process.

G.8021-Y.1341(10)-Amd.1(11)_F8-39

LMx Reception

LMMLMR

RxFCl

Data

Data

D P

RI_LMM(D,P,DE)

DE D P DE D P DE

L
M

R
L

M
M

D P DE

MI_LM_PriTxFCf
RxFCf
TxFCb

Figure 8-39 – LMx Reception process

Figure 8-40 defines the behaviour of the LMx Reception process. The behaviour consists of three
parts:

– LMM Reception part that is triggered by the receipt of an LMM traffic unit;

– LMR Reception part that is triggered by the receipt of an LMR traffic unit;

LMM(DA,P)
Data .D(D),
Data .P(P),

Data.DE(DE)

Data.D(D),
Data .P(P),

Data .DE(DE)

LMM.D(OAM),
LMM.P(P),
LMM.DE(0)

P==MI _LM_Pri

Y

N

RI_LMM(OAM,P,DE)

LMR .D(OAM),
LMR.P(P),

LMR.DE(DE)

OAM =LMM(
DA,
Tx
)

DA(OAM)=SA(OAM)
SA(OAM)=Undefined
OPC(OAM)=LMR
TxFCb=Tx

Tx++

LMM Generation LMR Generation

Counter

Waiting

& DE==<false>

10 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

– Counter part that is triggered by the receipt of a normal data signal.

Figure 8-40 – LMx Reception behaviour

Counter part

This part receives ETH_CI, extracts on-demand ETH OAM frames and forwards the remainder as
ETH_AI traffic unitsit. It counts this the number of ETH_CI AI instances received with
ETH_CIAI_P signal equal to MI_LM_Pri and ETH_AI_DE equal to <false (0)>.

LMM Reception part

This part processes received LMM Traffic Units. It checks the destination address, the DA must be
either the Local MAC address or it should be a Multicast Class 1 Destination Address. If this is the
case the LMM Reception process writes the Rx Counter value to the received traffic unit in the
RxFCf field, and forwards the received traffic unit and complementing P and DE signals as Remote
Information to the LMR Generation process.

LMR Reception part

This part process received LMR traffic units. If the DA equals the local MAC address, it extracts
the counter values TxFCf, RxFCf, TxFCb from the received traffic unit as well as the SA field.
These values together with the value of the Rx counter(RxFCl) are forwarded as RI signals.

13) Clause 8.1.10

Update clause 8.1.10 with respect to DM as follows:

8.1.10 Delay Measurement (DM) processes

8.1.10.1 Overview

Figure 8-41 shows the different processes inside MEPs and MIPs that are involved in the on-
demand delay measurement protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP
OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink
Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in

LMR_D(OAM),
LMR_P(P),

LMR_DE(DE)

Data .D(D),
Data.P(P),

Data.DE(DE)

Data.D(D),
Data .P(P),

Data.DE(DE)

P==MI_LM_Pri

Y

N

LMM_D(OAM),
LMM_P(P),

LMM_DE(DE)

RI_LMM(OAM,P,DE)

RxFCl++

LMR Reception LMM Reception Counter

DA(OAM)=MI_MEP _MAC or
DA(OAM)=MC Class 1

RxFCf (OAM)=Rx

Y

N

DA(OAM)=MI_MEP _MAC

Y

N

Waiting

RI_LMR (
TxFCf(OAM),
RxFCf(OAM),
TxFCb(OAM),
RxFCl)

& DE==<false>

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 11

clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream
of ETH_C_D traffic units and the complementing P and D signals going through an MEP and MIP;
the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the correct
MEL and SA values into the OAM traffic units.

G.8021-Y.1341(10)-Amd.1(11)_F8-41

OnDemand-OAM
Extraction

OnDemand-OAM
Insertion

DMM
Generation

DMR
Reception

DMM Reception

DMR Generation

MEP MIP MEP

D, P, DE

RI_DMM(D, P, DE)

On-demand
DM

Control

MI_DM_Start(DA,P,
Test ID, Length, Period)

MI_DM_Terminate

MI_DM_Result(count,
B_FD[], F_FD[], N_FD[])

DMM(DA, P, 0
Test ID TLV, TLV)

ETH_CIETH_CI ETH_CI ETH_CI

ETH_CIETH_CI ETH_CI ETH_CIOnDemand-OAM
Extraction

OnDemand-OAM
Extraction

OnDemand-OAM
Insertion

OnDemand-OAM
Insertion

D, P, DE

D, P, DE

D, P, DE

MI_MEP_MAC

MI_MEP_MAC

RI_DMR(rSA,
TxTimeStampf,
RxTimeStampf,
TxTimeStampb,
RxTimeb, rTestID)

Figure 8-41 – Overview of processes involved with on-demand delay measurement

The MEP on-demand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP
on-demand-OAM Sink extraction process in clause 9.4.1.2.

The on-demand DM control process controls the on-demand DM protocol. The protocol is activated
upon receipt of the MI_DM_Start(DA,P,Test ID,Length,Period) signal and remains activated until
the MI_DM_Terminate signal is received. The result is communicated via the
MI_DM_Result(count, B_FD[], F_FD[], N_FD[]) signal. If the on-demand DM control process
activates the multiple monitoring on different CoS levels simultaneously, each result is
independently managed per CoS level. Optional Test ID TLV can be utilized to distinguish each
measurement if multiple measurements are simultaneously activated in an ME. If the protocol is
used in multipoint-to-multipoint environments, the multicast class 1 address is used for DA and the
test result is independently managed per peer node.

The DMM generation process generates DMM traffic units that pass through MIPs transparently,
but are received and processed by DMM Reception processes in MEPs. The DMR Generation
process may generate a DMR traffic unit in response. This DMR traffic unit also passes
transparently through MIPs, but is received and processed by DMR Reception processes in MEPs.

At the Source MEP side, the DMM generation process stamps the value of the local time to the
TxTimeStampf field in the DMM message when the first bit of the frame is transmitted. Note well
that at the sink MEP side, the DMM reception process stamps the value of the local time to the
RxTimeStampf field in the DMM message when the last bit of the frame is received.

The DMR generation and reception process stamps with the same way as the DMM generation and
reception process.

12 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Figure 8-41bis shows the different processes inside MEPs and MIPs that are involved in the
proactive delay measurement protocol.

The MEP proactive OAM insertion process is defined in clause 9.2.1.1, the MEP OAM proactive
extraction process in clause 9.2.1.2, the MIP OAM extraction process in clause 9.4.2.2, and the MIP
OAM insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals
into and from the stream of ETH_C_D traffic units and the complementing P and D signals going
through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion
process inserts the correct MEL and SA values into the OAM traffic units.

G.8021-Y.1341(10)-Amd.1(11)_F8-41bis

OnDemand-OAM
Extraction

OnDemand-OAM
Insertion

DMM
Generation

DMR
Reception

DMM Reception

DMR Generation

MEP MIP MEP

D, P, DE

RI_DMM(D, P, DE)
Proactive

DM
Control

MI_DM_Enable

MI_DM_MAC_DA

MI_DM_Test_ID

MI_DM_Length

MI_DM_Period

MI_DM_Pri

DMM(DA, P, 1
Test ID TLV, TLV)

ETH_CIETH_CI ETH_CI ETH_CI

ETH_CIETH_CI ETH_CI ETH_CIOnDemand-OAM
Extraction

OnDemand-OAM
Extraction

OnDemand-OAM
Insertion

OnDemand-OAM
Insertion

D, P, DE

D, P, DE

D, P, DE

MI_MEP_MAC

MI_MEP_MAC

RI_DMR(rSA,
TxTimeStampf,
RxTimeStampf,
TxTimeStampb,
RxTimeb, rTestID)

DM_Result

Figure 8-41bis – Overview of processes involved with proactive delay measurement

The MEP Proactive OAM Source insertion process is defined in clause 9.2.1.1, the MEP Proactive-
OAM Sink extraction process in clause 9.2.1.2.

The proactive DM control process controls the proactive DM protocol. If MI_DM_Enable is set the
DMM frames are sent periodically. The DMM frames are generated with a periodicity determined
by MI_DM_Period and with a priority determined by MI_DM_Pri. The result (B_FD, F_FD,
N_FD) is reported per a DMR reception. If the proactive DM control process activates the multiple
monitoring on different CoS levels simultaneously, each result is independently managed per CoS
level. Optional Test ID TLV can be utilized to distinguish each measurement if multiple
measurements are simultaneously activated in an ME. If the protocol is used in multipoint-to-
multipoint environments, the multicast class 1 address is used for DA and the test result is
independently managed per peer node.

8.1.10.2 DM Control process

The behaviour of the on-demand DM Control process is defined in Figure 8-42.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 13

Figure 8-42 – On-demand DM Control behaviour

Upon receipt of the MI_DM_Start(DA,P,Test ID,Length,Period), the DM protocol is started. Every
Period the generation of a DMM frame is triggered (using the DMM(DA,P,0,Test ID TLV,TLV)
signal), until the MI_DM_Terminate signal is received. The TLV field of the DMM frames can
have two types of TLVs. The first one is the Test ID TLV, which is optionally used for a
discriminator of each test and the value 'Test ID' is included in the TLV. The second one is the Data

Init

MI_DM_Terminate

Running

Timer

DMM(DA,P,0,Test ID TLV,TLV)

Running

RI_DMR(

TxTimeStampf,
RxTimeStampf,
TxTimeStampb,
RxTimeb,
rTestID)

B_FD[count] = (RxTimeb – TxTimeStampf)

Init

Running

Set(0,Timer)

Set(Period,Timer)

– (TxTimeStampb – RxTimeStampf)

Y

N

rSA,

rSA=DA?

MI_DM_Result(
count, B_FD[], F_FD[] ,N_FD[])

F_FD[count] = RxTimeStampf – TxTimeStampf

N_FD[count] = RxTimeb – TxTimeStampb

Y

N TxTimeStampb=
RxTimeStampf=0?

F_FD[count] = Invalid

N_FD[count] = Invalid

count=0

count++

MI_DM_Start(

DA,P,Test ID,Length,Period)

N

Y TestID!=NULL and
rTestID!=TestID

TLV=Generate(Length)

Test ID TLV=GenID (Test ID)

14 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

TLV, which is determined by the Generate(Length) function. Generate(Length) generates a Data
TLV with length 'Length' of arbitrary bit pattern to be included in the DMM frame.

Upon receipt of a DMR traffic unit the delay value recorded by this particular DMR traffic unit is
calculated. This result is reported using the MI_DM_Result(count, B_FD[], F_FD[] ,N_FD[]) signal
after the receipt of the MI_DM_Terminate signal. Note that the measurements of F_FD and N_FD
are not supported by peer MEP if both TxTimeStampb and TxTimeStampf are zero.

Figure 8-42bis – Proactive DM Control behaviour

Disabled

MI_DM_Enable

Enabled

Timer

DMM(MI_DM_MAC_DA,

Running

B_FD = (RxTimeb – TxTimeStampf)

Running

Set(0,Timer)

Set(MI_DM_Period,Timer)

DM_Result(B_FD, F_FD, N_FD)

– (TxTimeStampb – RxTimeStampf)

Y

N
rSA=DA?

F_FD = RxTimeStampf – TxTimeStampf

N_FD = RxTimeb – TxTimeStampb

Y

N TxTimeStampb=
RxTimeStampf=0?

F_FD = Invalid

N_FD = Invalid

!MI_DM_Enable

TLV=Generate(
MI_DM_Length)

MI_DM_Pri,
1,
Test ID TLV,
TLV)

N

Y MI_DM_TestID!=NULL and
rTestID!=MI_DM_TestID

RI_DMR(

TxTimeStampf,
RxTimeStampf,
TxTimeStampb,
RxTimeb,
rTestID)

rSA,

Test ID TLV=GenID (
MI_DM_Test ID)

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 15

The behaviour of the proactive DM Control process is defined in Figure 8-42bis. If the
MI_DM_Enable is asserted, the process starts to generate DMM frames (using the
DMM(MI_DM_MAC_DA,MI_DM_Pri,1,Test ID TLV,TLV) signal). The result (B_FD, F_FD,
N_FD) is reported per a DMR reception.

8.1.10.3 DMM Generation process

The behaviour of the DMM Generation process is defined in Figure 8-43.

Figure 8-43 – DMM Generation behaviour

Upon receiving the DMM(DA,P,Type,Test ID TLV,TLV), a single DMM traffic unit is generated
together with the complementing P and DE signals. The DA of the generated traffic unit is
determined by the DMM(DA) signal. The TxTimeStampf field is assigned the value of the local
time.

The P signal value is defined by DMM(P). The DE signal is set to 0. The Type signal is set to 1 if it
is the proactive OAM, or set to 0 if it is the on-demand OAM operation. The Test ID signal is
determined by the DMM(Test ID TLV) signal. The TLV signal is determined by the DMM(TLV)
signal. If both Test ID TLV and Data TLV are included in the DMM PDU, it is recommended that
Test ID TLV be located at the beginning of the optional TLV field. It makes easier the classification
of the Test ID in the received PDUs.

DMM(DA,P

OAM=DMM(DA,P,
Type,Test ID TLV,TLV)

D(OAM), P(P),
DE(0)

TxTimeStampf(OAM)=
Local Time

Type,Test ID TLV,TLV)

16 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

 1 2 3 4

 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

1 DA=DMM(DA)

5 SA=Undefined

9

13 Ethertype=89-02 MEL=
Undef Version=01 Opcode=47 (DMM)

17 0 0 0 0 0 0 0 Type TLV Offset =32 TxTimeStampf=Local Time

21

25 0 (Reserved for DMM receiving equipment)

29

33 0 (Reserved for DMR)

37

41 0 (Reserved for DMR receiving equipment)

45

49 Test ID TLV=DMM(Test ID TLV) if exists

53 Test ID TLV Continued Data TLV= DMM (TLV) if exists

57
61
:

Last END TLV (0)

49 END TLV=0

Figure 8-44 – DMM traffic unit

8.1.10.4 DMM Reception process

The DMM Reception process processes the received DMM traffic units and the complementing P
and DE signals. The behaviour is defined in Figure 8-45.

Figure 8-45 – DMM Reception behaviour

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 17

First the DA is checked, it should be the Local MAC address or a Multicast Class 1 address,
otherwise the frame is ignored.

If the DA is the Local MAC or a Multicast Class 1 address the RxTimeStampf field is assigned the
value of the local time and traffic unit and the complementing P and DE signals are forwarded as
remote information to the DMR Generation process.

8.1.10.5 DMR Generation process

The DMR Generation process generates a DMR traffic unit and its complementing P and DE
signals. The behaviour is defined in Figure 8-46.

Figure 8-46 – DMR Generation behaviour

Upon the receipt of remote information containing a DMM traffic unit, the DMR Generation
process generates a DMR traffic unit and forwards it to the OAM Insertion process.

As part of the DMR generation the:

– DA of the DMR traffic unit is the SA of the original DMM traffic unit.

– The Opcode is changed into DMR Opcode.

– The TxTimeStampb field is assigned the value of the local time.

– All the other fields (including TLVs and padding after the End TLV) are copied from the
remote information containing the original DMM traffic unit.

The resulting DMR traffic unit is shown in Figure 8-47.

NOTE – In the generated DMR, in the OAM (MEP) Insertion process, the SA will be overwritten with the
local MAC address, and the MEL will be over written with MI_MEL.

The TLVs are copied from the remote information containing the original DMM traffic unit. If
multiple TLVs exist, the order of the TLVs is unchanged.

18 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

 1 2 3 4

 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

1 DA=SA(RI_DMM(D))

5 SA=Undefined

9

13 Ethertype=89-02 MEL=
Undef

Version=0 Version
(RI_DMM(D)) Opcode=46 (DMR)

17 Flags=
Flags(RI_DMM(D))

TLV Offset=
TLV

Offset(RI_DMM(D))

TxTimeStampf=TxTimeStampf(RI_DMM(D))

21

25 RxTimeStampf=RxTimeStampf(RI_DMM(D))

29

33 TxTimeStampb=Local Time

37

41 0 (Reserved for DMR reception process)

45

49 Test ID TLV=Test ID(RI_DMM(D)) if
existsTLV=TLV(RI_DMM(D))

53 Test ID TLV Continued Data TLV= TLV (RI_DMM(D)) if exists

57
61
:

last END TLV=
END

TLV(RI_DMM(D))
49 END TLV=

END
TLV(RI_DMM(D))

Figure 8-47 – DMR traffic unit

8.1.10.6 DMR Reception process

The DMR Reception process processes the received DMR traffic units and the complementing P
and DE signals. The behaviour is defined in Figure 8-48.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 19

Figure 8-48 – DMR Reception behaviour

Upon receipt of a DMR traffic unit the DA field of the traffic unit is checked. If the DA field equals
the local MAC address, the DMR traffic unit is processed further, otherwise it is ignored.

If the DMR traffic unit is processed, the TxTimeStampf, RxTimeStampf, and TxTimeStampb and
Test ID are extracted from the traffic unit and signalled together with the local time.

8.1.11 One-way delay measurement (1DM) processes

8.1.11.1 Overview

Figure 8-49 shows the different processes inside MEPs and MIPs that are involved in the on-
demand one-way delay measurement protocol.

The MEP OnDemand-OAM Source insertion process is defined in clause 9.4.1.1, the MEP
OnDemand-OAM Sink extraction process in clause 9.4.1.2, the MIP OnDemand-OAM Sink
Extraction process in clause 9.4.2.2, and the MIP OnDemand-OAM Source insertion process in
clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM signals into and from the stream
of ETH_CI_D traffic units and the complementing P and DE signals going through an MEP and
MIP; the extraction is based on MEL and Opcode. Furthermore, the insertion process inserts the
correct MEL and SA values into the OAM traffic units.

D(OAM),
P(P),

DE(DE)

RI_DMR(

TxTimeStampf(OAM),

Local Time,
Test ID(OAM))

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

RxTimeStampf(OAM),

TxTimeStampb(OAM),

SA(OAM),

20 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

G.8021-Y.1341(10)-Amd.1(11)_F8-49

MEP MIP MEP

ETH_CI

1DM
Generation

OnDemand-OAM
Extraction

D, P, DE

ETH_CIETH_CIETH_CI OnDemand-OAM
Insertion

OnDemand-OAM
Extraction

D, P, DE

1DM(DA, P, 0,
Test ID TLV, TLV)

1DM
Reception

OnDemand
1DM

Control_Sk

MI_MEP_MAC

1DM(rSA, TxTimeStampf,
RxTimef, rTestID)

MI_1DM_Start(SA,
Test ID)
MI_1DM_Terminate
MI_1DM_Result
(count, N_FD[])

OnDemand
1DM

Control_So

MI_1DM_Start(DA, P,
Test ID, Length, Period)

MI_1DM_Terminate

Figure 8-49 – Overview of processes involved with on-demand one-way delay measurement

The on-demand 1DM protocol is controlled by the on-demand 1DM Control_So and 1DM
Control_Sk processes. The on-demand 1DM Control_So process triggers the generation of 1DM
Traffic Units upon the receipt of an MI_1DM_Start(DA,P,Test ID,Length,Period) signal. The on-
demand 1DM Control_Sk process processes the information from received 1DM Traffic Units after
receiving the MI_1DM_Start(SA,Test ID) signal.

The 1DM generation process generates 1DM messages that pass transparently through MIPs and
are received and processed by the 1DM Reception Process in MEPs.

At the Source MEP side, The the 1DM generation process stamps the value of the Local Time to the
TxTimeStampf field in the 1DM message when the first bit of the frame is transmitted. Note well
that at the sink MEP side, the 1DM reception process records the value of the Local Time when the
last bit of the frame is received.

Figure 8-49bis shows the different processes inside MEPs and MIPs that are involved in the
proactive delay measurement protocol.

G.8021-Y.1341(10)-Amd.1(11)_F8-49bis

1DM(rSA, TxTimeStampf,
RxTimef, rTestID)

MI_1DM_Enable

MI_1DM_TestID

1DM_Result

MI_1DM_MAC_SA

MEP MIP MEP

ETH_CI

1DM
Generation

OnDemand-OAM
Extraction

D, P, DE

ETH_CIETH_CIETH_CI OnDemand-OAM
Insertion

OnDemand-OAM
Extraction

D, P, DE

1DM(DA, P, 1,
Test ID TLV, TLV)

1DM
Reception

Proactive
1DM

Control_Sk

MI_MEP_MAC

Proactive
1DM

Control_So

MI_1DM_Enable

MI_1DM_MAC_DA

MI_1DM_TestID

MI_1DM_Length

MI_1DM_Period

MI_1DM_Pri

Figure 8-49bis – Overview of processes involved with proactive
one-way delay measurement

The MEP Proactive-OAM Source insertion process is defined in clause 9.2.1.1, and the MEP
Proactive-OAM Sink extraction process in clause 9.2.1.2.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 21

The proactive 1DM Control_So process triggers the generation of 1DM traffic units if
MI_1DM_Enable signal is set. The 1DM frames are generated with a periodicity determined by
MI_1DM_Period and with a priority determined by MI_1DM_Pri. The result (N_FD) is reported
per a 1DM reception by the 1DM Control_Sk process.

8.1.11.2 1DM Control_So process

Figure 8-50 shows the behaviour of the on-demand 1DM Control_So process. Upon receipt of the
MI_1DM_Start(DA,P,Test ID,Length,Period) signal the 1DM protocol is started. The protocol will
run until the receipt of the MI_1DM_Terminate signal.

If the DM protocol is running every period (as specified in the MI_1DM_Start signal) the
generation of a 1DM message is triggered by generating the 1DM(DA,P,0,Test ID TLV,TLV)
signal towards the 1DM Generation process. The TLV field of the 1DM frames can have two types
of TLVs. The first one is the Test ID TLV, which is optionally used for a discriminator of each test
and the value 'Test ID' is included in the TLV. The second one is the Data TLV, which is
determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length
'Length' of arbitrary bit pattern to be included in the 1DM frame.

22 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Figure 8-50 – On-demand 1DM Control_So behaviour

Init

MI_1DM_Start(DA

MI_1DM_Terminate

Running

Timer

1DM(DA,P)

Set(0,Timer)

Set(Period,Timer)

Init

MI_1DM_Start(

DA,P,Test ID,Length,Period)

MI_1DM_Terminate

Running

Timer

1DM(DA,P,0,

Set(0,Timer)

Set(Period,Timer)

TLV=Generate(Length)

Test ID TLV=GenID (Test ID)

Test ID TLV,TLV)

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 23

Figure 8-50bis – Proactive 1DM Control_So Behaviour

The behaviour of the proactive 1DM Control process is defined in Figure 8-50bis.

If the MI_1DM_Enable is asserted, the process starts to generate 1DM frames (using the
1DM(MI_1DM_MAC_DA,MI_1DM_Pri,1,Test ID TLV,TLV) signal.

Init

MI_1DM_Start(DA

MI_1DM_Terminate

Running

Timer

Set(0,Timer)

Disabled

MI_1DM_Enable

!MI_1DM_Enable

Enabled

Timer

Set(0,Timer)

TLV=Generate(
MI_1DM_Length)

1DM(MI_1DM_MAC_DA,

Set(MI_1DM_Period,Timer)

MI_1DM_Pri,
1,

TLV)

Test ID TLV,

Test ID TLV=GenID (
MI_1DM_Test ID)

24 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

8.1.11.3 1DM Generation process

Figure 8-51 – 1DM Generation behaviour

Figure 8-51 shows the 1DM Generation process. Upon receiving the 1DM(DA,P,Type,Test ID
TLV,TLV) signal a single 1DM traffic unit is generated by the OAM=1DM (DA,P,Type,
LocalTime, Test ID TLV, TLV) call.

Together with this 1DM traffic unit the complementing P and DE signals are generated. The DA of
the generated 1DM traffic unit is determined by the 1DM(DA) signal. The TxTimeStampf field is
assigned the value of the local time. The value of the P signal is determined by the 1DM(P) signal.
The DE signal is set to 0. The Type signal is set to 1 if it is the proactive OAM, or set to 0 if it is the
on-demand OAM operation. The Test ID signal is determined by the 1DM(Test ID TLV) signal.
The TLV signal is determined by the 1DM(TLV) signal.

The resulting traffic unit is shown in Figure 8-52.

NOTE – In the generated 1DM traffic unit, in the OAM (MEP) Insertion process, the SA will be assigned the
local MAC address, and the MEL will be assigned by MI_MEL.

If both Test ID TLV and Data TLV are included in the 1DM PDU, it is recommended that Test ID
TLV be located at the beginning of the optional TLV field. It makes for the easier classification of
the Test ID in the received PDUs.

1DM(DA,P,

Type,Test ID TLV,TLV)

Waiting

OAM=1DM(
DA,
P,

LocalTime,

)

D(OAM), P(P), DE(0)

Type,

TLV
Test ID TLV,

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 25

 1 2 3 4

 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

1 DA=1DM(DA)

5 SA=Undefined

9

13 Ethertype=89-02 MEL=
Undef

Version=01 Opcode=45 (1DM)

17 0 0 0 0 0 0 Type TLV Offset =16 TxTimeStampf=Local Time

21

25 0 (Reserved for 1DM receiving equipment)

29

33 Test ID TLV=1DM(Test ID TLV)TLV=1DM(TLV) if exists

37 Test ID TLV Continued Data TLV=1DM(TLV) if exists

41
45
:

last END TLV (0)

33 END TLV=0

Figure 8-52 – 1DM traffic unit

8.1.11.4 1DM Reception process

The 1DM Reception process processes the received 1DM traffic units and the complementing P and
DE signals. The behaviour is defined in Figure 8-53.

Figure 8-53 – 1DM Reception behaviour

Upon receipt of an 1DM traffic unit the DA field is checked. The 1DM traffic unit is processed if
the DA is equal to the local MAC address or Multicast Class 1 MAC address. Otherwise, the traffic
unit is ignored.

D(OAM),
P(P),

DE(DE)

1DM(SA(OAM),
TxTimeStampf(OAM),
Local Time,
TestID(OAM))

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

DA(OAM)=MC Class1

or

26 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

If the 1DM traffic unit is processed the SA and TxTimeStampf fields are extracted and forwarded to
the 1DM Control_Sk process together with the local time using the
1DM(rSA,TxTimeStampf,RxTimef,rTestID) signal.

8.1.11.5 1DM Control_Sk process

Figure 8-54 shows the behaviour of the on-demand 1DM Control_Sk process. The
MI_1DM_Start(SA) signal starts the processing of 1DM messages coming from a MEP with SA as
MAC address. The protocol runs until the receipt of the MI_1DM_Terminate signal.

While running the process processes the received 1DM(rSA,TxTimeStampf,RxTimef,rTestID)
information. First the rSA is compared with the SA from the MI_1DM_Start (SA) signal. If the rSA
is not equal to this SA, the information is ignored. Next the rTestID is compared with the TestID
from the MI_1DM_Start (Test ID) signal. If the MI_1DM_Start (Test ID) signal is configured and
rTestID is available but both values are different, the information is ignored. Otherwise the delay
from the single received 1DM traffic unit is calculated. This result is reported using the
MI_1DM_Result(count, N_FD[]) signal after the receipt of the MI_1DM_Terminate signal.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 27

Figure 8-54 – On-demand 1DM Control_Sk process

Init

MI_1DM_Start(SA,Test ID)

MI_1DM_Terminate

Running

1DM(rSA,TxTimeStampf,
RxTimef,rTestID)

N_FD[count] = RxTimef – TxTimeStampf

rSA=SA?

Y

N

Count=0Count=0

count++

MI_1DM_Result (count, N_FD[])

N

Y Test ID!=NULL and
rTestID!=TestID

28 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Figure 8-54bis – Proactive 1DM Control_Sk process

The behaviour of the proactive 1DM Control_Sk Process is defined in Figure 8-54bis. If the
MI_1DM_Enable is asserted, the result (N_FD) is reported per a 1DM reception.

14) New clause 8.1.14

Add the following clause with respect to SLM:

8.1.14 Synthetic loss measurement (SL) processes

8.1.14.1 Overview

Figure 8.1.14-1 shows the different processes inside MEPs and MIPs that are involved in the
on_demand synthetic loss measurement protocol.

Disabled

MI_1DM_Enable

!MI_1DM_Enable

Enabled

N_FD = RxTimef – TxTimeStampf

rSA=
MI_1DM_MAC_SA?

Y

N

1DM_Result(N_FD)

N

Y MI_1DM_TestID!=NULL and
rTestID!=MI_1DM_TestID

1DM(rSA,TxTimeStampf,
RxTimef,rTestID)

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 29

The MEP On-demand OAM Insertion process is defined in clause 9.4.1.1, the MEP OAM
on-demand Extraction process in clause 9.4.1.2, the MIP OAM Extraction process in clause 9.4.2.2,
and the MIP OAM Insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI
OAM signals into and from the stream of ETH_C_D traffic units and the complementing P and D
signals going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore,
the Insertion process inserts the correct MEL and SA values into the OAM traffic units.

G.8021-Y.1341(10)-Amd.1(11)_F8.1.14-1

OnDemand-OAM
Extraction

OnDemand-OAM
Insertion

SLM
Generation

SLR
Reception

SLM
Reception

SLR
Generation

MEP MIP MEP

D, P, DE

RI_SLM(OAM, P,
DE, TxFCb)

OnDemand
SL

Control

MI_SL_Start(DA, P,
Test_ID, Length, Period)

MI_SL_Terminate

MI_MEP_ID

MI_SL_Result(N_TF,
N_LF, F_TF, F_LF)

SLM(DA, P, MEP_ID,
Test_ID, TxFCI, TLV)

ETH_CIETH_CI ETH_CI ETH_CI

MI_MEP_ID

ETH_CIETH_CI ETH_CI ETH_CIOnDemand-OAM
Extraction

OnDemand-OAM
Extraction

OnDemand-OAM
Insertion

OnDemand-OAM
Insertion

D, P, DE

D, P, DE

D, P, DE

MI_MEP_MAC

MI_MEP_MAC

RI_SLR(rMEP_ID,
rTest_ID, TxFCf,
TxFCb)

Figure 8.1.14-1 – Overview of processes involved with on-demand
synthetic loss measurement protocol

The SL protocol is controlled by the SL Control process.

The On-demand SL Control process is activated upon receipt of the
MI_SL_Start(DA,P,Test_ID,Length,Period) signal and remains activated until the
MI_SL_Terminate signal is received. The measured synthetic loss values are output after the
MI_SL_Terminate signal via the MI_SL_Result(N_TF,N_LF,F_TF,F_LF) signal.

The SLM generation process generates SLM traffic units that pass through MIPs transparently, but
are received and processed by SLM reception processes in MEPs. The SLR generation process may
generate an SLR traffic unit in response. This SLR traffic unit also passes transparently through
MIPs, but is received and processed by SLR reception processes in MEPs.

Figure 8.1.14-2 shows the different processes inside MEPs and MIPs that are involved in the
proactive synthetic loss measurement protocol.

The MEP proactive OAM Insertion process is defined in clause 9.2.1.1, the MEP OAM proactive
Extraction process in clause 9.2.1.2, the MIP OAM Extraction process in clause 9.4.2.2, and the
MIP OAM Insertion process in clause 9.4.2.1. In summary, they insert and extract ETH_CI OAM
signals into and from the stream of ETH_C_D traffic units and the complementing P and D signals
going through a MEP and MIP; the extraction is based on MEL and Opcode. Furthermore, the
Insertion process inserts the correct MEL and SA values into the OAM traffic units.

30 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

G.8021-Y.1341(10)-Amd.1(11)_F8.1.14-2

Proactive OAM
Extraction

Proactive OAM
Insertion

SLM
Generation

SLR
Reception

SLM
Reception

SLR
Generation

MEP MIP MEP

D, P, DE

RI_SLM(OAM, P,
DE, TxFCb)

Proactive
SL

Control

MI_SL_Test_ID

MI_SL_Pri
MI_SL_Period
MI_SL_Length

MI_SL_MAC_DA
MI_SL_Enable

MI_MEP_ID
RI_SL_Result(N_TF,

N_LF, F_TF, F_LF)

SLM(DA, P, MEP_ID,
Test_ID, TxFCI, TLV)

ETH_CIETH_CI ETH_CI ETH_CI

MI_MEP_ID

ETH_CIETH_CI ETH_CI ETH_CIProactive OAM
Extraction

OnDemand-OAM
Extraction

Proactive OAM
Insertion

OnDemand-OAM
Insertion

D, P, DE

D, P, DE

D, P, DE

MI_MEP_MAC

MI_MEP_MAC

RI_SLR(rMEP_ID,
rTest_ID, TxFCf,
TxFCb)

Figure 8.1.14-2 – Overview of processes involved with proactive
synthetic loss measurement protocol

The SL protocol is controlled by the proactive SL control processes.

The Proactive SL Control process is activated upon receipt of the MI_SL_Enable signal and
remains activated until the signal is deactivated. The measured results are output every 1 s using the
RI_SL_Result (N_TF, N_LF, F_TF, F_LF) signal.

8.1.14.2 SL Control process

The behaviour of the on-demand SL Control process is defined in Figure 8.1.14-3. There are
multiple instances of the on-demand SL Control process, each handling an independent stream of
SLM frames.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 31

Figure 8.1.14-3 – On-demand SL Control behaviour

Upon receipt of the MI_SL_Start(DA,P,Test ID,Length,Period), the SL protocol is started. Every
designated 'period' the generation of an SLM frame is triggered (using the
SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal), until the MI_SL_Terminate signal is received.
The MEP_ID is the MI_MEP_ID of the MEP itself. The TLV field of the SLM frames is
determined by the Generate(Length) function. Generate(Length) generates a Data TLV with length
'Length' of arbitrary bit pattern, as described in clause 8.1.8.2. If the Length is 0, the TLV is set to
Null.

Upon receipt of an SLR traffic unit, the received counter values are used to count the near-end and
far-end transmitted and lost synthetic frames. This result is reported using the
MI_SL_Result(N_TF,N_LF,F_TF,F_LF) signal after the receipt of the MI_SL_Terminate signal.

The behaviour of the Proactive SL Control process is defined in Figure 8.1.14-4. There are multiple
instances of the Proactive SL Control process, each handling an independent stream of SLM frames.

Init

MI_SL_Start (
DA, P, Test_ID, Length, Period)

Set (0, TxTimer)
N_TF = N_LF = F_TF = F_LF = 0

saved = false

TxTimer
RI_SLR (rMEP_ID, rTest_ID,

TxFCf, TxFCb)
TimeoutTimer MI_SL_Terminate

TLV = Generate
(Length)
TxFCl++

SLM (DA, P,
MEP_ID,
Test_ID,

TxFCl, TLV)

MI_SL_Result (
N_TF, N_LF, F_TF, F_LF)

Set (5s,
TimeoutTimer)

Running

Set (Period,
TxTimer)

If saved THEN {
 N_TF += |TxFCb – TxFCb_svd|
 N_LF += |TxFCb – TxFCb_svd| - |RxFCl – RxFCl_svd|
 F_TF += |TxFCf – TxFCf_svd|
 F_LF += |TxFCf – TxFCf_svd| - |TxFCb – TxFCb_svd|
}

TxFCf_svd = TxFCf
TxFCb_svd = TxFCb
RxFCl_svd = RxFCl
RxFCl++
saved = true

Reset (TxTimer)

32 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Figure 8.1.14-4 – Proactive SL Control behaviour

Upon receipt of the MI_SL_Enable, the SL protocol is started. Every designated MI_SL_Period the
generation of an SLM frame is triggered (using the
SLM(MI_SL_MAC_DA,MI_SL_Pri,MI_MEP_ID,MI_SL_Test_ID,TxFCl,TLV) signal). The TLV
field of the SLM frames is determined by the Generate(MI_SL_Length) function.
Generate(MI_SL_Length) generates a Data TLV with MI_SL_ Length of arbitrary bit pattern, as
described in clause 8.1.8.2. If the MI_SL_Length is 0, the TLV is set to Null.

Upon receipt of an SLR traffic unit, the received counter values are used to count the near-end and
far-end transmitted and lost synthetic frames. The calculation is performed every 1 s and the
RI_SL_Result(N_TF, N_LF, F_TF, N_LF) signal is generated.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 33

8.1.14.3 SLM Generation process

The behaviour of the SLM Generation process is defined in Figure 8.1.14-5.

Figure 8.1.14-5 – SLM Generation behaviour

Upon receiving the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV), a single SLM traffic unit is
generated together with the complementing P and DE signals. The DA, Source MEP_ID, Test_ID
and TxFCf of the generated traffic unit are determined by the DA, MEP_ID, Test_ID and TxFCl
respectively in the SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) signal. If not Null, the specified TLV
is appended to the traffic unit as shown in Figure 8.1.14-6.

The P signal value is defined by SLM(P). The DE signal is set to 0.

 1 2 3 4

 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

1 DA=SLM(DA)

5 SA=Undefined

9

13 Ethertype=89-02 MEL=
Undef

Version=0 Opcode=55 (SLM)

17 Flags=0 TLV Offset = 16 Source_MEP_ID = SLM(MI_MEP_ID)

21 0 (reserved for Responder_MEP_ID) Test_ID = SLM(Test_ID)

25 Test_ID Continued TxFCf = SLM(TxFCl)

29 TxFCf Continued Reserved for TxFCb

33 Reserved Continued TLV = SLM(TLV) if exists

37
41
45
:

last END TLV (0)

Figure 8.1.14-6 – SLM traffic unit

8.1.14.4 SLM Reception process

The SLM Reception process processes the received SLM traffic units and the complementing P and
DE signals. The behaviour is defined in Figure 8.1.14-7.

SLM(DA,P,MEP_ID,

OAM=SLM(DA,P,MEP_ID,
Test_ID,TxFCl,TLV)

D(OAM), P(P),
DE(0)

Test_ID,TxFCl,TLV)

34 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Figure 8.1.14-7 – SLM Reception behaviour

First the DA is checked, it should be the local MAC address or a Multicast Class 1 address,
otherwise the frame is ignored.

If the DA is the local MAC or a Multicast Class 1 address, the MEP_ID and the Test_ID fields are
extracted from the traffic unit. The local received counter RxFCl, maintained per MEP_ID and
Test_ID values, is incremented. The received OAM information, P and DE signals, as well as local
TxFCb value are forwarded as remote information to the SLR generation process using the
RI_SLM(OAM,P,DE, TxFCb) signal.

NOTE – The SLM reception process allocates and maintains local resources for the counter RxFCl per
MEP_ID and Test_ID. To facilitate the automatic release of local resources, a timer for monitoring no
receipt of SLM can be utilized. The SLM reception process must ensure there is no discontinuity in RxFCl
for the given MEP ID and Test ID for some interval (e.g., 5 minutes) after the last received SLM for that
MEP ID and Test ID. The detailed mechanism for the release is out of scope of this Recommendation.

8.1.14.5 SLR Generation process

The SLR Generation process generates an SLR traffic unit and its complementing P and DE signals.
The behaviour is defined in Figure 8.1.14-8.

D(OAM),
P(P),

DE(DE)

DA(OAM)=MI_MEP_MAC or
DA(OAM)=MC Class1

RxFCl(D(MEP_ID), D(Test_ID)) ++

Y

N

Waiting

TxFCb= RxFCl(D(MEP_ID), D(Test_ID))

RI_SLM(OAM, P, DE,
TxFCb)

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 35

Figure 8.1.14-8 – SLR Generation behaviour

Upon the receipt of the RI_SLM (P,DE,OAM, TxFCb) signal containing an SLM traffic unit, the
SLR generation process generates an SLR traffic unit and forwards it to the MEP OAM Insertion
process.

As part of the SLR generation:

– The DA of the SLR traffic unit is the SA of the original SLM traffic unit.

– The Opcode is changed into SLR Opcode.

– The responder MEP_ID is set to MI_MEP_ID.

– TxFCb field is assigned the TxFCb value passed in the SLR(TxFCb).

– The other fields and optional TLVs are copied from the SLM.

The resulting SLR traffic unit is shown in Figure 8.1.14-9.

NOTE – In the generated SLR, in the OAM (MEP) Insertion process, the SA will be overwritten with the
local MAC address, and the MEL will be overwritten with MI_MEL.

Waiting

RI_SLM (OAM,P,DE,
TxFCb)

D(OAM),
D.P(P),

D.DE(DE)

DA(OAM)=SA(OAM)
SA(OAM)=Undefined
OPC(OAM)=SLR
Responder_MEP_ID(OAM)=MI_MEP_ID
TxFCb(OAM)=TxFCb

36 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

 1 2 3 4

 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

1 DA=SA(RI_SLM (OAM))

5 SA=Undefined

9

13
Ethertype=89-02

MEL=
Undef

Version=0 Opcode=54(SLR)

17 Flags=Flags
(RI_SLM(OAM))

TLV Offset =
TLV Offset((RI_SLM(OAM))

Source_MEP_ID = Source_MEP_ID((RI_SLM(OAM))

21 Responder_MEP_ID = MI_MEP_ID Test_ID = Test_ID((RI_SLM(OAM))

25 Test_ID Continued TxFCf = TxFCf((RI_SLM(OAM))

29 TxFCf Continued TxFCb = RI_SLM(TxFCb)

33 TxFCb Continued TLV = TLV((RI_SLM(OAM)) if exists

37
41
45
:

last

END TLV =
END TLV(RI_SLM

(OAM))

Figure 8.1.14-9 – SLR traffic unit

8.1.14.6 SLR Reception process

The SLR reception process processes the received SLR traffic units and the complementing P and
DE signals. The behaviour is defined in Figure 8.1.14-10.

Figure 8.1.14-10 – SLR Reception behavior

D(OAM),
P(P),

DE(DE)

RI_SLR (

Test ID(OAM),

DA(OAM)=MI_MEP_MAC

Y

N

Waiting

TxFCf(OAM),

TxFCb(OAM))

MEP_ID(OAM),

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 37

Upon receipt of an SLR traffic unit, the DA field of the traffic unit is checked. If the DA field
equals the local MAC address, the SLR traffic unit is processed further, otherwise it is ignored.

If the SLR traffic unit is processed, Test_ID, TxFCf, TxFCb, Responder MEP_ID, are extracted
from the traffic unit and signalled, using the RI_SLR(MEP_ID, Test_ID,TxFCf,TxFCb) signal.

15) New clause 8.1.15

Add the following new clause with respect to CSF:

8.1.15 CSF Insert process

CSF
Insert MI_CSF_Period

MI_MEL

MI_CSF_Pri

MI_MEP_MACaCSF-RDI

aCSF-FDI

aCSF-LOS

G.8021-Y.1341(10)-Amd.1(11)_F8.1.15-1

P

P

DE

DED

D

Figure 8.1.15-1 – CSF Insert process

Figure 8.1.15-1 shows the CSF Insert process symbol and Figure 8.1.15-2 defines the behaviour. If
the aCSF signal is true, the CSF Insert process continuously generates ETH_CI traffic units where
the ETH_CI_D signal contains the CSF signal, until the aCSF signal is false. The generated CSF
traffic units are inserted in the incoming stream, i.e., the output stream contains the incoming traffic
units and the generated CSF traffic units.

Figure 8.1.15-2 – CSF Insert behaviour

The period between consecutive CSF traffic units is determined by the MI_CSF_Period parameter.
Allowed values are once per second and once per minute; the encoding of these values is defined in
Table 8.1.15-1. Note that these encoding are the same as for the LCK/AIS generation process.

CSF Disabled

aCSF(1) Timer

D(OAM),
P(MI_CSF_Pri),

DE(0)

OAM=CSF(
MI_MEP_MAC,
MI_MEL,

MI_CSF_Period
)

CSF Enabled

aCSF(0)

Set(0, Timer)

Set(MI_CSF_Period, Timer)

D(D), P(P), DE(DE)

D(D), P(P), DE(DE)

CSF_Type

38 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Table 8.1.15-1 – CSF period values

3-bits Period value Comments

000 Invalid value Invalid value for CSF PDUs

001 FFS FFS

010 FFS FFS

011 FFS FFS

100 1 s 1 frame per second

101 FFS FFS

110 1 min 1 frame per minute

111 FFS FFS

The ETH_CI_D signal contains a source and a destination address field and an M_SDU field. The
format of the M_SDU field for CSF traffic units is defined in clauses 9.1 and 9.21 of
[ITU-T Y.1731]. The MEL in the M_SDU field is determined by the MI_ MEL input parameter.

The values of the Source and Destination address fields in the ETH_CI_D signal are determined by
the Local MAC address (SA) and the Multicast class 1 DA as described in [ITU-T Y.1731] (DA).
The value of the Multicast class 1 DA is 01-80-C2-00-00-3x, where x is equal to MI_MEL as
defined in [IEEE 802.1ag]. The value of MI_MEP_MAC should be a valid unicast MAC address.

The CSF_Type is encoded in the three bits of the Flags field in the CSF PDU using the values from
Table 8.1.15-2.

Table 8.1.15-2 – CSF type values

Value Type Comments

000 LOS Client loss of signal

001 FDI/AIS Client forward defect indication

010 RDI Client reverse defect indication

011 DCI Client defect clear indication

The periodicity (as defined by MI_CSF_Period) is encoded in the three least significant bits of the
Flags field in the CSF PDU using the values from Table 8.1.15-1.

The CSF (SA, MEL, Type, Period) function generates a CSF traffic unit with the SA, MEL, Type
and Period fields defined by the values of the parameters. Figure 8.1.15-3 below shows the
ETH_CI_D signal format resulting from the function call from Figure 8.1.15-2:

OAM=CSF(
MI_MEP_MAC,
MI_MEL,
CSF_Type,
MI_CSF_Period
)

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 39

 1 2 3 4

 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

1 DA=01-80-C2-00-00-3x, where x=MI_MEL

5 SA=MI_MEP_MAC

9

13 Ethertype=89-02 MEL=
MI_MEL

Version=0 Opcode=52 (CSF)

17 0 0 CSF
Type

Period=
MI_CSF_

Period

TLV Offset = 0 END TLV=0

Figure 8.1.15-3 – CSF traffic unit

8.1.16 CSF Extract process

CSF
Extract

MI_MEL

G.8021-Y.1341(10)-Amd.1(11)_F8.1.15-4

PCSF

P

DE

DE D

D

Figure 8.1.15-4 – CSF Extract process

The CSF Extract process extracts ETH_CI_CSF signals from the incoming stream of ETH_CI
traffic units. ETH_CI_CSF signals are only extracted if they belong to the MEL as defined by the
MI_MEL input parameter.

If an incoming traffic unit is a CSF traffic unit belonging to the MEL defined by MI_MEL, the
ETH_CI_CSF signal will be extracted from this traffic unit and the traffic unit will be filtered. The
ETH_CI_CSF is the CSF specific information contained in the received traffic unit. All other traffic
units will be transparently forwarded. The encoding of the ETH_CI_D signal for CSF frames is
defined in clause 9.21 of [ITU-T Y.1731].

The criteria for filtering are based on the values of the fields within the M_SDU field of the
ETH_CI_D signal:

• length/type field equals the OAM Ethertype (89-02), and

• MEL field equals MI_MEL, and

• OAM type equals CSF (52), as defined in clause 9.21 of [ITU-T Y.1731].

This is defined in Figure 8.1.15-4. The function CSF(D) extracts the CSF specific information from
the received traffic unit.

40 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Figure 8.1.15-5 – CSF Extract behaviour

16) Clause 8.6

Revise the first paragraph of clause 8.6 as follows:

This process checks whether the length of the MAC frame is allowed. When the processed signal is
ETYn_AI frames shorter than 64 bytes are discarded. Frames longer than MI_MAC_Length are
passeddiscarded.

17) Clause 9.1.2

Revise clause 9.1.2 with respect to dFOP-TO as follows:

9.1.2 Subnetwork Connection Protection process

SNC Protection with Sublayer monitoring based on TCM is supported.

Figure 9-9 shows the involved atomic functions in SNC/S. The ETH_FT_Sk provides the TSF/TSD
protection switching criterion via the ETH/ETH_A_Sk function (SSF/SSD) to the ETH_C function.

Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &
MEL(D)==MI_MEL &

OPC(D)=52?
D(D),P(P),DE(DE)

CSF(CSF(D))

N

Y

Waiting

D(D),P(P),DE(DE)

Etype(D)=89-02 &
MEL(D)==MI_MEL &

OPC(D)=52?
D(D),P(P),DE(DE)

CSF(CSF(D))

N

Y

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 41

G.8021-Y.1341(10)-Amd.1(11)_F9-9

ETH_CI_D/P/DE

Normal

ETH_C

ProtectionWorking

ETH_CI_
SSF/SSD

ETH_CI_
D/P/DE

ETH_CI_
D/P/DE

ETH_CI_
APS

ETH_CI_
D/P/DE

ETH/ETH ETH/ETH ETH/ETH ETH/ETH

ETH_CI_
D/P/DE

ETH_CI_
SSF/SSD/

APS

ETH_AI_
D/P/DE

ETH_AI_
D/P/DE

ETH_AI_
D/P/DE

ETH_AI_
D/P/DE

ETH_AI_
TSF/TSD

ETH ETH ETHETH

ETH_AI_
TSF/TSD

Figure 9-9 – SNC/S atomic functions

The protection functions at both ends operate the same way, by monitoring the working and
protection subnetwork connections for defects, evaluating the system status taking into
consideration the priorities of defect conditions and of external switch requests, and switching the
appropriate subnetwork flow point (i.e., working or protection) to the protected (sub)network flow
point.

The signal flows associated with the ETH_C SNC protection process are described with reference
to Figure 9-10. The protection process receives control parameters and external switch requests at
the MP reference point. The report of status information at the MP reference point is for further
study.

G.8021-Y.1341(10)-Amd.1(11)_F9-10

ETH_CI_D/P/DE

Normal

SNC protection process

BridgeSelector

W P W P

protectionworking

ETH_C_MI_PS

ETH_CI_D/P/DE ETH_CI_D/P/DE/APS

ETH_CI_SSF/SSDETH_CI_SSF/SSD

Figure 9-10 – SNC/S Protection process

Source direction:

For a 1+1 architecture, the CI coming from the normal (protected) ETH_FP is bridged permanently
to both the working and protection ETH_FP.

42 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

For a 1:1 architecture, the CI coming from the normal (protected) ETH_FP is switched to either the
working or the protection ETH_FP. A switch-over from working to protection ETH_FP or vice
versa is initiated by the switch initiation criteria defined below.

Sink direction:

For a 1+1 or 1:1 architecture, the CI coming from either the working or protection ETH_FP is
switched to the normal (protected) ETH_FP. A switch-over from working to protection ETH_FP or
vice versa is initiated by the switch initiation criteria defined below.

Switch initiation criteria:

Automatic protection switching is based on the defect conditions of the working and protection
(sub)network connections, for SNC/S protection server signal fail (SSF) and server signal degrade
(SSD).

In order to allow interworking between nested protection schemes, a hold-off timer is provided. The
hold-off timer delays switch initiation, in case of signal fail, in order to allow a nested protection to
react and clear the fault condition. The hold-off timer is started by the activation of signal fail and
runs for the hold-off time. Protection switching is only initiated if signal fail is still present at the
end of the hold-off time. The hold-off time shall be provisionable between 0 and 10 s in steps of
100 ms; this is defined in clause 11.12 of [ITU-T G.8031].

Protection switching can also be initiated by external switch commands received via the MP or a
request from the far end via the received ETH_CI_APS. Depending on the mode of operation,
internal states (e.g., wait-to-restore) may also affect a switch-over.

See the switching algorithm described in [ITU-T G.8031].

Switching time:

Refer to [ITU-T G.8031].

Switch restoration:

In the revertive mode of operation, the protected signal shall be switched back from the protection
(sub)network connection to the working (sub)network connection when the working (sub)network
connection has recovered from the fault.

To prevent frequent operation of the protection switch due to an intermittent fault, a failed working
(sub)network connection must become fault-free for a certain period of time before it is used again.
This period, called the wait-to-restore (WTR) period, should be of the order of 5-12 minutes and
should be capable of being set. The WTR is defined in clause 11.13 of [ITU-T G.8031].

In the non-revertive mode of operation no switch back to the working (sub)network connection is
performed when it has recovered from the fault.

Configuration:

The following configuration parameters are defined in [ITU-T G.8031]:

ETH_C_MI_PS_WorkingPortId configures the working port.

ETH_C_MI_PS_ProtectionPortId configures the protection port.

ETH_C_MI_PS_ProtType configures the protection type.

ETH_C_MI_PS_OperType configures to be in revertive mode.

ETH_C_MI_PS_HoTime configures the hold off timer.

ETH_C_MI_PS_WTR configures the wait-to-restore timer.

ETH_C_MI_PS_ExtCMD configures the protection group command.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 43

Defects:

The function detects dFOP-PM, dFOP-CM, and dFOP-NR and dFOP-TO defects in case the APS
protocol is used.

Consequent actions None.

Defect correlations cFOP-TO  dFOP-TO and (not dFOP-CM)

18) Clause 9.1.3

Revise clause 9.1.3 with respect to dFOP-TO as follows:

9.1.3 Ring protection control process

Ring protection with inherent, sub-layer, or test trail monitoring is supported.

Figure 9-11 shows a subset of the atomic functions involved, and the signal flows associated with
the ring protection control process. This is only an overview of the Ethernet ring protection control
process as specified in [ITU-T G.8032]. The ETH_FT_Sk provides the TSF protection switching
criterion via the ETH/ETH_A_Sk function (SSF). [ITU-T G.8032] specifies the requirements,
options and the ring protection protocol supported by the ring protection control process.

G.8021-Y.1341(10)-Amd.1(11)_F9-11

Topology_Change

ETHD/ETHx

ETHDe

ETHx

ETH_AI_TSF

ETHx/ETH-m

ETH_CI_SSF

ETHDi

ETHDi/ETH

ETH_CI_RAPS

ETH_CI_SSF

Topology_Change

ETH_CI_SSF

ETH_CI_RAPS

ETH_C_MI_RAPS
Ring protection
control process

Control ETH_C

Figure 9-11 – Ring protection atomic functions and control process

44 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Configuration:

The following configuration parameters are defined in [ITU-T G.8032]:

ETH_C_MI_RAPS_RPL_Owner_Node configures the node type.

ETH_C_MI_RAPS_RPL_Neighbour_Node configures the adjacency of a node to the RPL Owner.

ETH_C_MI_RAPS_Propagate_TC[1…M] configures the flush logic of an interconnection node.

ETH_C_MI_RAPS_Compatible_Version configures the Backward compatibility logic.

ETH_C_MI_RAPS_Revertive configures the revertive mode.

ETH_C_MI_RAPS_Sub_Ring_Without_Virtual_Channel configures the sub-ring type.

ETH_C_MI_RAPS_HoTime configures the hold off timer.

ETH_C_MI_RAPS_WTR configures the wait-to-restore timer.

ETH_C_MI_RAPS_GuardTime configures the guard timer.

ETH_C_MI_RAPS_ExtCMD configures the protection command.

Defects:

The function detects dFOP-PM and dFOP-TO in case the R-APS protocol is used.

Consequent actions None.

Defect correlations

cFOP-PM  dFOP-PM

cFOP-TO  dFOP-TO

19) Clause 9.2.1.1

Revise clause 9.2.1.1 with respect to DM as shown:

9.2.1.1 ETHx Flow Termination source function (ETHx_FT_So)

Symbol

G.8021-Y.1341(10)-Amd.1(11)_F9-12

ETH_AP

ETH_RP

ETH_FP

ETH_MP
ETHx_FT

Figure 9-12 – ETHx_FT_So symbol

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 45

Interfaces

Table 9-2 – ETHx_FT_So interfaces

Inputs Outputs

ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:

ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETHx_FT_So_RI_DMM(DOAM,P,DE)
ETHx_FT_So_RI_DMR(rSA,Tx,
TimeStampD,P,DE),
RxTimeStampf,TxTimeStampb,RxTimeb)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(MEP_ID,Test ID,TxFCf,
TxFCb)

ETHx_FT_So_MP:

ETHx_FT_So_MI_MEL
ETHx_FT_So_MI_MEP_MAC
ETHx_FT_So_MI_CC_Enable
ETHx_FT_So_MI_LM_Enable
ETHx_FT_So_MI_MEG_ID
ETHx_FT_So_MI_MEP_ID
ETHx_FT_So_MI_CC_Period
ETHx_FT_So_MI_CC_Pri
ETHx_FT_So_MI_DM_Enable
ETHx_FT_So_MI_DM_MAC_DA
ETHx_FT_So_MI_DM_Test_ID
ETHx_FT_So_MI_DM_Length
ETHx_FT_So_MI_DM_Period
ETHx_FT_So_MI_DM_Pri
ETHx_FT_So_MI_1DM_Enable
ETHx_FT_So_MI_1DM_MAC_DA
ETHx_FT_So_MI_1DM_Test_ID
ETHx_FT_So_MI_1DM_Length
ETHx_FT_So_MI_1DM_Period
ETHx_FT_So_MI_1DM_Pri
ETHx_FT_So_MI_SL_Enable
ETHx_FT_So_MI_SL_MAC_DA
ETHx_FT_So_MI_SL_Test_ID
ETHx_FT_So_MI_SL_Length
ETHx_FT_So_MI_SL_Period
ETHx_FT_So_MI_SL_Pri

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_RP:
ETH_RI_DM_Result(B_FD,F_FD,N_FD)
ETH_RI_SL_Result(N_TF,N_LF,F_TF,F_LF)

46 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Processes

G.8021-Y.1341(10)-Amd.1(11)_F9-13

DMM
generation

1DM
generation

SLM
generation

DMR
generation

SLR
generation

ETH_AI_D/P/DE

BlockRI_CC_Blk

RI_CC_RxFCl
RI_CC_TxFCf

RI_CC_RDI
CCM Generation

Data

OAM Data

D

D

D

D

D

D

D

P

P

P

P

P

P

P

DE

DE

DE

DE

DE

DE

DE

Data

MI_DM_Enable

MI_1DM_Enable

MI_SL_Enable

MI_CC_Enable

MI_DM_MAC_DA

MI_1DM_MAC_DA

MI_SL_MAC_DA

MI_LM_Enable

MI_DM_Test_ID

MI_1DM_Test_ID

MI_SL_Test_ID

MI_MEG_ID

MI_DM_Length

MI_1DM_Length

MI_SL_Length

MI_MEP_ID

MI_DM_Period

MI_1DM_Period

MI_SL_Period

MI_DM_Pri

MI_1DM_Pri

MI_SL_Pri

MI_DMR(rSA,
TxTimeStampf,
RxTimeStampf,
TxTimeStampb,

RxTimeb, rTestID)

MI_CC_Period
MI_CC_Pri

C
C

M
D

M
M

1D
M

S
L

M
D

M
R

S
L

R

M
E

P
P

ro
A

ct
iv

e-
O

A
M

 in
se

rt
io

n

MI_MEL

D P DE

ETH_CI_D/P/DE

MI_MEP_MAC
DMM
Mux

1DM
Mux

SLM
Mux

X

X

X

Y

Y

Y

Z

Z

Z

Proactive
DN

Control

Proactive
1DN

Control_So

Proactive
SL

Control

DMM(DA,
P, 1,Test ID
TLV, TLV)

1DM(DA,
P, 1,Test ID
TLV, TLV)

SLM(DA,
P, 1,MEP_ID,
Test_ID,
TxFCI,
TLV)

RI_DM_Result(B_FD,
F_FD, N_FD)

RI_SL_Result(N_TF,
N_LF, F_TF, F_LF)

RI_SLR(rMEP_ID,
rTest_ID, TxFCf,

TxFCb)

RI_DMM(OAM,
P, DE)

RI_SLM(OAM,
P, DE, TxFCb)

Figure 9-13 – ETHx_FT_So process

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 47

MEP ProActive-OAM Insertion process:

This process inserts the OAM traffic units in the stream of ETH_CI, sets the MEL field to MI_MEL
and sets the SA field to MI_MEP_MAC.

If the DA of the OAM Traffic Unit is a Class 1 Multicast DA, the OAM insertion process updates
the DA to reflect the correct MEL.

Figure 9-14 – OAM MEP Insertion behaviour

CCM Generation process:

This process is defined in clause 8.1.7, where the CC protocol is defined. Clause 8.1.7.2 defines the
CCM Generation process.

Block process:

When RI_CC_Blk is raised, the Block process will discard all ETH_CI information it receives. If
RI_CC_Blk is cleared, the received ETH_CI information will be passed to the output port.

Proactive DM Control:

This process is defined in clause 8.1.10, where the DM protocol is defined. Clause 8.1.10.2 defines
the DM Control process.

DMM Generation:

This process is defined in clause 8.1.10, where the DM protocol is defined. Clause 8.1.10.3 defines
the DMM Generation process.

DMR Generation:

This process is defined in clause 8.1.10, where the DM protocol is defined. Clause 8.1.10.5 defines
the DMR Generation process.

DMM Mux:

The DMM Mux process interleaves the signal sets DMM(DA,P,1,Test ID TLV, TLV) from the
input ports (X, Y, Z).

Data.D(D),
Data.P(P),

Data.DE(DE)

D(D),
P(P),

DE(DE)Waiting

OAM.D(D),
OAM.P(P),

OAM.DE(DE)

D(D),
P(P),

DE(DE)

MEL(D)=MI_MEL
IF(DA(D)==01-80-C2-00-00-3*)
{

x=MI_MEL
DA(D)=01-80-C2-00-00-3x

}
SA(D)=MI_MEP_MAC

Data.D(D),
Data.P(P),

Data.DE(DE)

D(D),
P(P),

DE(DE)Waiting

OAM.D(D),
OAM.P(P),

OAM.DE(DE)

D(D),
P(P),

DE(DE)

MEL(D)=MI_MEL
IF(DA(D)==01-80-C2-00-00-3*)
{

x=MI_MEL
DA(D)=01-80-C2-00-00-3x

}
SA(D)=MI_MEP_MAC

48 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Proactive1DM Control_So:

This process is defined in clause 8.1.11, where the 1DM protocol is defined. Clause 8.1.11.2 defines
the 1DM Control_So Process.

1DM Generation:

This process is defined in clause 8.1.11, where the 1DM protocol is defined. Clause 8.1.11.3 defines
the 1DM Generation process.

1DM Mux:

The 1DM Mux process interleaves the signal sets 1DM(DA,P,1,Test ID TLV, TLV) from the input
ports (X, Y, Z).

Proactive SL Control:

This process is defined in clause 8.1.14, where the SL protocol is defined. Clause 8.1.14.2 defines
the SL Control process.

SLM Generation:

This process is defined in clause 8.1.14, where the SL protocol is defined. Clause 8.1.14.3 defines
the SLM generation process.

SLR Generation:

This process is defined in clause 8.1.14, where the SL protocol is defined. Clause 8.1.14.5 defines
the SLR Generation process.

SLM Mux:

The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from
the input ports (X, Y, Z).

Defects None.

Consequent actions None.

Defect correlations None.

Performance monitoring None.

20) Clause 9.2.1.2

Revise clause 9.2.1.2 for DM as shown:

9.2.1.2 ETHx Flow Termination sink function (ETHx_FT_Sk)

The ETHx_FT_Sk Process diagram is shown in Figure 9-15.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 49

Symbol

G.8021-Y.1341(10)-Amd.1(11)_F9-15

ETH_AP

ETH_RP

ETH_FP

ETH_MP
ETHx_FT

Figure 9-15 – ETHx_FT_Sk symbol

Interfaces

Table 9-3 – ETHx_FT_Sk interfaces

Inputs Outputs

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_RP:

ETH_RI_DM_Result(B_FD,F_FD,N_FD)
ETH_RI_SL_Result(
 N_TF,N_LF,F_TF,F_LF)

ETHx_FT_Sk_MP:

ETHx_FT_Sk_MI_CC_Enable
ETHx_FT_Sk_MI_LM_Enable
ETHx_FT_Sk_MI_1Second
ETHx_FT_Sk_MI_LM_DEGM
ETHx_FT_Sk_MI_LM_M
ETHx_FT_Sk_MI_LM_DEGTHR
ETHx_FT_Sk_MI_LM_TFMIN
ETHx_FT_Sk_MI_MEL
ETHx_FT_Sk_MI_MEG_ID
ETHx_FT_Sk_MI_PeerMEP_ID[i]
ETHx_FT_Sk_MI_CC_Period
ETHx_FT_Sk_MI_CC_Pri
ETHx_FT_Sk_MI_GetSvdCCM
ETHx_FT_Sk_MI_1DM_Enable
ETHx_FT_Sk_MI_1DM_MAC_SA
ETHx_FT_Sk_MI_1DM_Test_ID

ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS

ETH_RP:

ETH_RI_CC_RxFCl
ETH_RI_CC_TxFCf
ETH_RI_CC_RDI
ETH_RI_CC_Blk
ETH_RI_DMM(OAM,P,DE)
ETH_RI_DMR(SA,TxTimeStampf,
RxTimeStampf,TxTimeStampb,LocalTime)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(MEP_ID,Test ID,TxFCf,
TxFCb)

ETHx_FT_Sk_MP:

ETHx_FT_Sk_MI_cLOC[i]
ETHx_FT_Sk_MI_cUNL
ETHx_FT_Sk_MI_cMMG
ETHx_FT_Sk_MI_cUNM
ETHx_FT_Sk_MI_cDEG
ETHx_FT_Sk_MI_cUNP
ETHx_FT_Sk_MI_cUNPr
ETHx_FT_Sk_MI_cRDI
ETHx_FT_Sk_MI_cSSF
ETHx_FT_Sk_MI_cLCK
ETHx_FT_Sk_MI_pN_TF
ETHx_FT_Sk_MI_pN_LF
ETHx_FT_Sk_MI_pF_TF

50 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Table 9-3 – ETHx_FT_Sk interfaces

Inputs Outputs

ETHx_FT_Sk_MI_pF_LF
ETHx_FT_Sk_MI_pF_DS
ETHx_FT_Sk_MI_pN_DS
ETHx_FT_Sk_MI_pB_FD
ETHx_FT_Sk_MI_pB_FDV
ETHx_FT_Sk_MI_pF_FD
ETHx_FT_Sk_MI_pF_FDV
ETHx_FT_Sk_MI_pN_FD
ETHx_FT_Sk_MI_pN_FDV
ETHx_FT_Sk_MI_SvdCCM

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 51

Processes

G.8021-Y.1341(10)-Amd.1(11)_F9-16

Pe
rf

or
m

an
ce

m
on

it
or

in
g

MI_cLOC[i]
MI_cUNL

MI_cMMG
MI_cUNM
MI_cDEG
MI_cUNP

MI_cUNPr
MI_cRDI
MI_cSSF

MI_cLCK

D
ef

ec
t c

or
re

la
ti

on

RxFCb

RxFCI

TxFCb

TxFCf

L pM
nF

_L
F

nF
_T

F
nN

_L
F

nN
_T

F

aTSF

1DM_Result

RI_DM_
Result

dRDI[1]

RI_SL_
Result

MI_1Second
MI_pN_TF
MI_pN_LF
MI_pF_TF
MI_pF_LF

MI_pN_DS
MI_pF_DS
MI_pB_FD

MI_pB_FDV
MI_pF_FD

MI_pF_FDV
MI_pN_FD

MI_pN_FDV

MI_LM_DEGM
MI_LM_M

MI_LM_DEGTHR
MI_LM_TFMIN

dL
O

C
[i

]

dLOC[i]

dU
N

L

dUNL

dM
M

G

dMMG

dU
N

M

dUNM

dD
E

G
[1

]

dDEG[1]

dU
N

P

dUNP

dU
N

Pr

dUNPr

dR
D

I[
i]

dRDI[i]

dA
IS

dAIS

dL
C

K

dLCK

C
I_

S
S

F

CI_SSF

M
I_

C
C

_
E

na
bl

e

MI_CC_Enable

RI_CC_RDI
RI_CC_Blk

MI_CC_Enable

MI_1DM_Enable

RI_DM_Result

RI_SL_Result

MI_1DM_MAC_SA

RI_DMM

RI_SLM

MI_1DM_Test_ID

RI_DMR

RI_SLR

Consequent action

aTSF aTSD aAIS

aBlk

ETH_AI_D/P/DE

Block

RI_CC_RxFCl
RI_CC_TxFCf

MI_LM_Enable
CCM Reception

Data

OAM Data

D

D

D

D

D

D

D

D

D

P

P

P

P

P

P

P

P

P

DE

DE

DE

DE

DE

DE

DE

DE

DE

D

Data

MI_MEG_ID
MI_PeerMEP_ID[]
MI_CC_Period
MI_CC_Pri
MI_Get_SvdCCM
MI_SvdCCM

P DE

C
C

M
L

C
K

D
M

M
1D

M
A

IS
D

M
R

S
L

M
S

L
R

M
E

P
P

ro
A

ct
iv

e-
O

A
M

 e
xt

ra
ct

io
n

MI_MEL

ETH_CI_D/P/DE

ETH_AI_TSF/TSD/AIS

dL
O

C
[i

]
dU

N
L

dM
M

G
dU

N
M

dD
E

G
[1

]
dU

N
P

dU
N

P
r

dR
D

I[
i]

dA
IS

dL
C

K

L
C

K
A

IS

C
I_

S
SF

Defect generation

LCK
reception

DMM
reception

1DM
reception

AIS
reception

DMR
reception

DMR
Dmux

1DM
Dmux

Proactive
1DM

Control_Sk

SLR
Dmux

SLM
reception

SLR
reception

ex
pC

C
M

[i
]

un
ex

pM
E

L
un

ex
pM

E
G

un
ex

pM
E

P
un

ex
pP

er
io

d
un

ex
pP

ri
ot

it
y

R
D

I[
i]

ETH_CI_SSF

RI_DMM

RI_SLM

RI_DMR

RI_SLR

X

X

X

Y

Y

Y
Z

1DM_Result

Figure 9-16 – ETHx_FT_Sk process

52 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

MEP Proactive-OAM Extraction process:

The MEP Proactive-OAM Extraction process extracts OAM traffic units that are processed in the
ETHx_FT_Sk process from the stream of traffic units according to the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then
 switch(OPC) {
 case <CCM>: extract ETH-CCM OAM traffic unit and forward to CCM Port
 case <AIS>: extract ETH-AIS OAM traffic unit and forward to AIS Port
 case <LCK>: extract ETH-LCK OAM traffic unit and forward to LCK Port
 case <DMM>: extract ETH-DMM OAM traffic unit and forward to DMM Port
 case <DMR>: extract ETH-DMR OAM traffic unit and forward to DMR Port
 case <1DM>: extract ETH-1DM OAM traffic unit and forward to 1DM Port
 case <SLM>: extract ETH-SLM OAM traffic unit and forward to SLM port
 case <SLR>: extract ETH-SLR OAM traffic unit and forward to SLR port

else if (TYPE=<ETH0AM>) and (MEL<MI_MEL) and (OPC=CCM) then
 extract ETH-CCM OAM traffic unit and forward to CCM Port
else
forward ETH CI traffic unit to Data Port

end if

ETH_AIS Reception process:

This process generates the AIS event upon the receipt of the AIS Traffic Unit from the OAM MEP
Extraction process.

ETH_LCK Reception process:

This process generates the LCK event upon the receipt of the LCK Traffic Unit from the OAM
MEP Extraction Process.

DMM Reception:

This Process is defined in clause 8.1.10, where the DM protocol is defined. Clause 8.1.10.4 defines
the DMM Reception process.

DMR Reception:

This Process is defined in clause 8.1.10, where the DM protocol is defined. Clause 8.1.10.6 defines
the DMR Reception process.

DMR Demux:

The DMR Demux process deinterleaves the incoming signal set (D,P,DE) to the different output
ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

1DM Reception:

This Process is defined in clause 8.1.11, where the 1DM protocol is defined. Clause 8.1.11.4 defines
the 1DM Reception process.

1DM Demux:

The 1DM Demux process deinterleaves the incoming signal set (D,P,DE) to the different output
ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

Proactive 1DM Control_Sk:

This Process is defined in clause 8.1.11, where the 1DM protocol is defined. Clause 8.1.11.5 defines
the 1DM Control_Sk process.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 53

SLM Reception:

This process is defined in clause 8.1.14, where the SL protocol is defined. Clause 8.1.14.4 defines
the SLM Reception process.

SLR Reception:

This process is defined in clause 8.1.14, where the SL protocol is defined. Clause 8.1.14.6 defines
the SLR Reception process.

SLR Demux:

The SLR Demux process deinterleaves the incoming signal set (D,P,DE) to the different output
ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

Block process:

When aBlk is raised, the Block process will discard all ETH_CI information it receives. If aBLK is
cleared, the received ETH_CI information will be passed to the output port.

LMp process:

This process is defined in clause 8.1.7.4.

Defect Generation process:

This process detects and clears the defects (dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP,
dUNPr, dRDI[i], dAIS, dLCK) as defined in clause 6, where [i] = maintenance entity.

CCM Reception process:

This process is defined in clause 8.1.7.3.

Defects

This function detects dLOC[i], dUNL, dMMG, dUNM, dDEG, dUNP, dUNPr, dRDI[i], dAIS,
dLCK.

Consequent actions

aBLK  (dUNL or dMMG or dUNM)

Note that dUNP and dUNPr does not contribute to aBLK, because a mismatch of periodicity is not
considered to be a security issue.

aTSF  (dLOC[1..n] and MI_CC_Enable) or (dAIS and not(MI_CC_Enable)) or (dLCK
and not(MI_CC_Enable)) or dUNL or dMMG or dUNM or CI_SSF

aTSD  dDEG[1] and (not aTSF)

aAIS  aTSF

aRDI  aTSF

Defect correlations

cLOC[i]  dLOC[i] and (not dAIS) and (not dLCK) and (not CI_SSF) and (MI_CC_Enable)

cUNL  dUNL

cMMG  dMMG

cUNM  dUNM

cDEG[1]  dDEG[1] and (not dAIS) and (not dLCK) and (not CI_SSF) and (not (dLOC[1..n]
or dUNL or dMMG or dUNM)) and (MI_CC_Enable))

54 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

cUNP  dUNP

cUNPr  dUNPr

cRDI  (dRDI[1..n]) and (MI_CC_Enable)

cSSF  CI_SSF or dAIS

cLCK  dLCK and (not dAIS)

Performance monitoring

pN_TF  N_TF

pN_LF  N_LF

pF_TF  F_TF

pF_LF  F_LF

pN_DS  aTSF

pF_DS  aRDI[1]

nB_FD  B_FD

nB_FDV  B_FDV

nF_FD  F_FD

nF_FDV  F_FDV

nN_FD  N_FD

nN_FDV  N_FDV

NOTE – A detail calculation formula for FDV is for further study.

21) Clause 9.2.2.1

Update Figure 9-18 in clause 9.2.2.1 for technical clarification, and the paragraph that follows it.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 55

Processes

G.8021-Y.1341(10)-Amd.1(11)_F9-18

ETH_AI_D/P/DEETH_AI_D/P/DEETH_AI_D/P/DE

Block

RI_CC_RxFCl

MI_MEL
MI_MEP_MAC

RI_CC_TxFCf
RI_CC_RDI

RI_CC_Blk

CCM Generation

DataDataData

OAM DataDataData

D

D

P

P

DE

DE

Data

MI_CC_Enable
MI_LM_Enable
MI_MEG_ID
MI_MEP_ID
MI_CC_Period
MI_CC_Pri

O
A

M

M
E

P
 P

ro
A

ct
iv

e-
O

A
M

 i
ns

er
ti

on

D P DE

ETH_CI_D/P/DE ETH_CI_D/P/DE ETH_CI_D/P/DE

Figure 9-18 – ETHG_FT_So process

MEP ProActive-OAM Insertion process:

This process inserts the OAM traffic units in the stream of ETH_CI, sets the MEL field to MI_MEL
and sets the SA field to MI_MEP_MAC. This process resides only in the lowest number in the
contiguous range of ETH_FPs or a selected ETH_FP within the group of arbitrary ETH_FPs(CCM
Generation Process as well). The detail of the OAM Insertion behaviour is described in
clause 9.2.1.1.

22) Clause 9.2.2.2

Update Figure 9-20 in clause 9.2.2.2 for technical clarification, and the paragraph that follows it.

56 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Interfaces

G.8021-Y.1341(10)-Amd.1(11)_F9-20

P
er

fo
rm

an
ce

m
on

it
or

in
g

MI_cLOC[i]
MI_cUNL

MI_cMMG
MI_cUNM
MI_cDEG
MI_cUNP

MI_cUNPr
MI_cRDI
MI_cSSF

MI_cLCK

D
ef

ec
t c

or
re

la
ti

on

RxFCb

RxFCI

TxFCb

TxFCf

L pM

nF
_L

F

nF
_T

F
nN

_L
F

nN
_T

FaTSF
dRDI[1]

MI_1Second
MI_pN_TF
MI_pN_LF
MI_pF_TF
MI_pF_LF

MI_pN_DS
MI_pF_DS

MI_LM_DEGM
MI_LM_M

MI_LM_DEGTHR
MI_LM_TFMIN

dL
O

C
[i

]

dLOC[i]

dU
N

L

dUNL

dM
M

G

dMMG

dU
N

M

dUNM

dD
E

G
[1

]

dDEG[1]

dU
N

P

dUNP

dU
N

P
r

dUNPr

dR
D

I[
i]

dRDI[i]

dA
IS

dAIS

dL
C

K

dLCK

C
I_

S
S

F

CI_SSF

M
I_

C
C

_
E

na
bl

e

MI_CC_Enable

RI_CC_RDI
RI_CC_Blk

MI_CC_Enable

Consequent action

aTSF aTSD aAIS

aBlk

ETH_AI_
D/P/DE

ETH_AI_
D/P/DE

ETH_AI_
D/P/DE

Block

RI_CC_RxFCl

MI_SvdCCM

MI_CC_Pri

RI_CC_TxFCf

MI_MEL

MI_Get_SvdCCM

MI_CC_Period
MI_PeerMEP_ID[]

MI_MEG_ID

MI_LM_Enable

CCM Reception

Data Data Data

OAM Data Data Data

D D D

D

D

D

P P P

P

P

P

DE DE DE

DE

DE

DE

D D D

Data

P P PDE DE DE

C
C

M
L

C
K

A
IS M

E
P

P
ro

A
ct

iv
e-

O
A

M
 e

xt
ra

ct
io

n

ETH_CI_
D/P/DE

ETH_CI_
D/P/DE

ETH_CI_
D/P/DE

ETH_AI_TSF/TSD/AIS

dL
O

C
[i

]
dU

N
L

dM
M

G
dU

N
M

dD
E

G
[1

]
dU

N
P

dU
N

P
r

dR
D

I[
i]

dA
IS

dL
C

K

L
C

K
A

IS

C
I_

S
S

F

Defect generation

LCK
reception

AIS
reception

ex
pC

C
M

[i
]

un
ex

pM
E

L
un

ex
pM

E
G

un
ex

pM
E

P
un

ex
pP

er
io

d
un

ex
pP

ri
ot

it
y

R
D

I[
i]

ETH_CI_SSF

MI_MEL

Figure 9-20 – ETHG_FT_Sk process

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 57

MEP Proactive-OAM Extraction process:

The MEP Proactive-OAM Extraction process extracts OAM traffic units that are processed in the
ETHx_FT_Sk process from the stream of traffic units. This process resides only in the lowest
number in the contiguous range of ETH_FPs or a selected ETH_FP within the group of arbitrary
ETH_FPs (AIS Reception, LCK Reception, LMp, and Defect Generation and CCM Reception
processes as well). The detail of this process is described in clause 9.2.1.2.

23) Clause 9.3.2.1

Revise clause 9.3.2.1 with respect to CSF as follows:

9.3.2.1 ETH to ETH adaptation source function (ETHx/ETH_A_So)

This function maps client ETH_CI traffic units into server ETH_AI traffic units.

Symbol

G.8021-Y1341(10)-Amd.1(11)_F9-21

ETH_FP

ETH/ETH ETH/ETH_A_So_MP

ETH_AP

Figure 9-21 – ETHx/ETH_A_So symbol

Interfaces

Table 9-6 – ETHx/ETH_A_So interfaces

Inputs Outputs

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ETHx/ETH_A_So_MP:

ETHx/ETH_A_So_MI_Active
ETHx/ETH_A_So_MI_MEP_MAC
ETHx/ETH_A_So_MI_Client_MEL
ETHx/ETH_A_So_MI_LCK_Period
ETHx/ETH_A_So_MI_LCK_Pri
ETHx/ETH_A_So_MI_Admin_State
ETHx/ETH_A_So_MI_MEL
ETHx/ETH_A_So_MI_APS_Pri
ETHx/ETH_A_So_MI_CSF_Enable
ETHx/ETH_A_So_MI_CSFrdifdiEnable

ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

58 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Processes

G.8021-Y.1341(10)-Amd.1(11)_F9-22

D

D

D

D

D

P

P

P

P

P

DE

DE

DE

DE

DE

Selector

Normal Lock

LCK
generation

OAM MEL
filter

APS insert

ETH_CI_P/DE/D

ETH_AI_P/DE/D

MI_MEP_MAC
MI_Client_MEL
MI_LCK_Period
MI_LCK_Pri

MI_Admin_State

MI_MEL

MI_CSF_Period

ETH_CI_SSF

MI_APS_Pri

MI_CSF_Pri

CSF insertConsequent
actions

aCSF-RDI

aCSF-FDI
MI_CSF_Enable

aCSF-LOSMI_CSFrdifdiEnable

ETH_CI_APS

Figure 9-22 – ETHx/ETH_A_So process

LCK Generation process:

As defined in clause 8.1.2.

Selector process:

As defined in clause 8.1.3.

OAM MEL Filter process:

As defined in clause 8.1.1.

APS Insert process:

As defined in clause 8.1.5.

When this process is activated, LCK admin state shall be unlocked. See clause 7.5.2.2 of
[ITU-T G.8010].

Defects None.

Consequent actions None.

aCSF-LOS ← CI_SSF and MI_CSFEnable

aCSF-RDI ← CI_SSFrdi and MI_CSFrdifdiEnable and MI_CSFEnable

aCSF-FDI ← CI_SSFfdi and MI_CSFrdifdiEnable and MI_CSFEnable

Defect correlations None.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 59

24) Clause 9.3.2.2

Revise clause 9.3.2.2 with respect to CSF as follows:

9.3.2.2 ETH to ETH adaptation sink function (ETHx/ETH_A_Sk)

This function retrieves client ETH_CI traffic units from server ETH_AI traffic units.

Symbol

G.8021-Y1341(10)-Amd.1(11)_F9-23

ETH_FP

ETH/ETH ETH/ETH_A_Sk_MP

ETH_AP

Figure 9-23 – ETHx/ETH_A_Sk symbol

Interfaces

Table 9-7 – ETHx/ETH_A_Sk interfaces

Inputs Outputs

ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE
ETH_AI_TSF
ETH_AI_TSD
ETH_AI_AIS

ETHx/ETH_A_Sk_MP:

ETHx/ETH_A_Sk_MI_Active
ETHx/ETH_A_Sk_MI_MEP_MAC
ETHx/ETH_A_Sk_MI_Client_MEL
ETHx/ETH_A_Sk_MI_LCK_Period
ETHx/ETH_A_Sk_MI_LCK_Pri
ETHx/ETH_A_Sk_MI_Admin_State
ETHx/ETH_A_Sk_MI_AIS_Period
ETHx/ETH_A_Sk_MI_AIS_Pri
ETHx/ETH_A_Sk_MI_MEL
ETHx/ETH_A_Sk_MI_CSF_Reported
ETHx/ETH_A_Sk_MI_CSFrdifdiEnable

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_APS
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi
ETH_CI_SSD

ETHx/ETH_A_Sk_MP:

ETHx/ETH_A_Sk_MI_cCSF

60 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Processes

G.8021-Y.1341(10)-Amd.1(11)_F9-24

DD

D

D

D

PP

P

P

P

DEDE

DE

DE

DE

Selector

Normal Lock

LCK
generate

OAM MEL
filter

CSF
extract

AIS insert

ETH_AI_P/DE/D

ETH_CI_APS ETH_CI_P/DE/D

MI_MEP_MAC
MI_Client_MEL
MI_LCK_Period
MI_LCK_Pri

MI_Admin_State

MI_CSFrdifdienable

MI_cCSF

MI_CSF_Reported

MI_MEL

MI_AIS_Period

ETH_CI_SSF ETH_CI_SSD

MI_AIS_Pri

APS
extract

Consequent
actions

Defect
correlations

Defect
generation

ETH_AI_TSF/AIS/SSD

aSSF

dCSF

AI_TSF AI_AIS

AI_TSF

aAIS

Figure 9-24 – ETHx/ETH_A_Sk process

APS Extract process:

As defined in clause 8.1.6.

OAM MEL Filter process:

As defined in clause 8.1.1.

AIS Insert process:

As defined in clause 8.1.4.

LCK Generation process:

As defined in clause 8.1.2.

Selector process :

As defined in clause 8.1.3.

Defects None.

dCSF-LOS – See clause 6.1.5.4.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 61

dCSF-RDI – See clause 6.1.5.4.

dCSF-FDI – See clause 6.1.5.4.

Consequent actions

aSSF  (AI_TSF or dCSF-LOS) and (not MI_Admin_State == Locked)

aSSFrdi ← dCSF-RDI and MI_CSFrdifdiEnable

aSSFfrdi ← dCSF-FDI and MI_CSFrdifdiEnable

aAIS  AI_AIS

Defect correlations None.

cCSF  (dCSF-LOS or dCSF-RDI or dCSF-FDI) and (not AI_TSF) and MI_CSF_Reported

Performance monitoring None.

25) Clause 9.3.3.2

In clause 9.3.3.2, revise the description for the VID Demux process as follows:

9.3.3.2 ETH to ETH multiplexing adaptation sink function (ETHx/ETH-m_A_Sk)

…
VID Demux process :

The VID Demux Process deinterleaves the incoming signal set (DE, P, D) to the different ports (X,
Y, Z in Figure 9-27). The VID signal determines the port to be selected, based on the
MI_Vlan_Config input parameter.

The MI_Vlan_Config parameter specifies the possible VID values for the ports to be used. If there
is no port assigned to a specific VID value, and this VID value is used, the VID Demux process will
filter the incoming signal set.

Disabling the Ingress VID Filtering is modelled by setting MI_Vlan_Config [1…4094]. Refer to
Appendix VIII.

…
26) Clause 9.4.1

Revise clause 9.4.1 with respect to DM and other processes, as follows:

9.4.1 ETH Diagnostic Flow Termination functions for MEPs (ETHDe_FT)

The bidirectional ETHDe Flow Termination (ETHDe_FT) function is performed by a co-located
pair of ETHDe flow termination source (ETHDe_FT_So) and sink (ETHDe_FT_Sk) functions.

9.4.1.1 ETH Diagnostic Flow Termination Source function for MEPs (ETHDe_FT_So)

The ETHDe_FT_So process diagram is shown in Figure 9-41.

62 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Symbol

G.8021-Y.1341(10)-Amd.1(11)_F9-41

ETHDe_AP

ETHDe_RP

ETHDe_FP

ETHDe_MP
ETHDe

Figure 9-41 – ETHDe_FT_So symbol

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 63

Interfaces

Table 9-14 – ETHDe_FT_So interfaces

Inputs Outputs

ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH_RP:

ETH_RI_LMM(D,P,DE)
ETH_RI_LMR(TxFCf,RxFCf,TxFCb,RxFCl)
ETH_RI_LBM(D,P,DE)
ETH_RI_LBR(SA,rTLV,TID)
ETH_RI_DMM(D,P,DE)
ETH_RI_DMR(rSA,TxTimeStampf,RxTimeStampf,
TxTimeStampb,RxTimeb, rTestID)
ETH_RI_LTM(D,P,DE)
ETH_RI_LTR(SA,TTL,TID,TLV)
ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(rMEP_ID,rTest_ID,TxFCf,TxFCb)

ETHDe_FT_So_MP:

ETHDe_FT_So_MI_LM_Start(DA,P,Period)
ETHDe_FT_So_MI_LM_Terminate
ETHDe_FT_So_MI_LB_Discover(P)
ETHDe_FT_So_MI_LB_Series(DA,DE,P,N, Length,
Period)
ETHDe_FT_So_MI_LB_Test
(DA,DE,P,Pattern, Length, Period)
ETHDe_FT_So_MI_LB_Test_Terminate
ETHDe_FT_So_MI_DM_Start(DA,P,TestID,Length,
Period)
ETHDe_FT_So_MI_DM_Terminate
ETHDe_FT_So_MI_1DM_Start(DA,P,
TestID,Length,Period)
ETHDe_FT_So_MI_1DM_Terminate
ETHDe_FT_So_MI_TST(DA,DE,P,Pattern, Length,
Period)
ETHDe_FT_So_MI_TST_Terminate
ETHDe_FT_So_MI_LT(TA,TTL,P)
ETHDe_FT_So_MI_MEP_MAC
ETHDe_FT_So_MI_MEL
ETHDe_FT_So_MI_MEP_ID
ETHDe_FT_So_MI_LM_Pri
ETHDe_FT_So_MI_SL_Start(DA,P,
TestID,Length,Period)
ETHDe_FT_So_MI_SL_Terminate

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHDe_FT_So_MP:

ETHDe_FT_So_MI_LM_Result(N_TF, N_LF, F_TF,
F_LF)
ETHDe_FT_So_MI_LB_Discover_Result(MACs)
ETHDe_FT_So_MI_DM_Result(count,B_FD[],F_FD[],
N_FD[])
ETHDe_FT_So_MI_LB_Series_Result(REC,ERR,OO)
ETHDe_FT_So_MI_LB_Test_Result
(Sent, REC, CRC, BER, OO)
ETHDe_FT_So_MI_TST_Result(Sent)
ETHDe_FT_So_MI_LT_Results(Results)
ETHDe_FT_So_MI_SL_Result(N_TF,N_LF,F_TF,F_L
F)

64 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Processes

G.8021-Y.1341(10)-Amd.1(11)_F9-42

SLM
generation

LTM
generation

TST
generation

LT
Control

TST
Control_So

1DM
generation

DMM
generation

SLR
generation

LTR
generation

DMR
generation

LBR
generation

LBM
generation

ETH_AI_D/P/DE

L x GenerationM

Data

LMMLMR Data

D

D

D

D

D

D

D

D

D

D

D

D

D

P

P

P

P

P

P

P

P

P

P

P

P

P

DE

DE

DE

DE

DE

DE

DE

DE

DE

DE

DE

DE

DE

Data

MI_SL_Terminate

MI_DM_Terminate

MI_SL_Start(DA, P,
Test ID, length, Period)

MI_DM_Start(DA, P,
Test ID, length, Period)

MI_1DM_Start(DA, P,
Test ID, length, Period)

MI_LM_Pri

L
M

M
L

M
R

S
L

M
LT

M
T

S
T

1D
M

D
M

M
S

L
R

LT
R

D
M

R
L

B
R

L
B

M

M
E

P
O

n
D

em
an

d
O

A
M

 i
ns

er
ti

on

MI_MEL

ETH_CI_D/P/DE

MI_MEP_MAC

SLM
Mux

1DM
Mux

DMM
Mux

X

X

X

Y

Y

Y

Z

Z

Z

On-demand
SL

Control

On-demand
1DM

Control_So

On-demand
DM

Control

LB
Control

LM
Control

SLM(DA,
P, MEP_ID,
Test_ID,
TxFCI,
TLV)

1DM(DA, P, 0,
Test TD TLV,
TLV)

DMM(DA, P, 0,
Test ID TLV,
TLV)

MI_SL_Result(N_TF,
N_LF, F_LF)

MI_DM_Result(count,
B_FD[], F_FD[], N_FD[])

RI_SLR(rMEP_ID,
rTest_ID, TxFCf,

TxFCb)

RI_DMR(rSA, TxTime
Stampf,TxTimeStampb,

RxTimeb, rTest_ID)

MI_LB_Test_Result(Sent,
REC, CRC, BER, OO)

MI_LB_Test_Terminate

MI_LM_Terminate

MI_LM_Start(DA, P, Period)

RI_LMR(TxFCf, RxFCf,
TxFCb, RxFCI)

RI_LMM(D, P, DE)

MI_LB_Test(DA, DE, P,
Pattern, Length, Period)

MI_LB_Series_Result
(REC, ERR, OO)

MI_LB_Series(DA, DE,
P, N, Length, Period)

MI_LB_Discover(P)
RI_LBR(SA, rTLV, TID)

MI_LM_Result(N_TF,
N_LF, F_FT, F_LF)

MI_LB_Discover_Result
(MACs)

RI_SLM(OAM,
P, DE, TxFCb)

RI_LTM(D, P, DE)

RI_DMM(D, P, DE)

RI_LBM(D, P, DE)

MI_LT(TA, TTL, P)

MI_TST_Terminate

MI_1DM_Terminate

MI_LT_Result(Results)

MI_TST_Result(Sent)

RI_LTR(SA, TTL,
TID, TLV)

MI_TST(DA, DE, P,
Pattern, Length, Period)

LTM(TA, TTL, TID, P)

TST(DA, P, DE, TLV, TLD)

LMM(DA, P)

Figure 9-42 – ETHDe_FT_So process

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 65

MEP On Demand-OAM Insertion process:

The MEP On Demand OAM Insertion process inserts OAM traffic units that are generated in the
ETHDe_FT_So process into the stream of traffic units.

For all ETH_CI_D received on any but the data input port, the SA field is overwritten with the
MI_MEP_MAC value. In the M_SDU field, the MEL field is overwritten with the MI_MEL value.

If the DA of the OAM traffic unit is a Class1 or Class 2 Multicast DA the OAM insertion process
updates the DA to reflect the right MEL.

This ensures that every generated OAM field has the correct SA, DA and MEL.

LB Control:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.2 defines the
LB Control Process.

LBM Generation:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.3 defines the
LBM Generation Process.

LBR Generation:

This Process is defined in clause 8.1.8 where the LB protocol is defined. Clause 8.1.8.6 defines the
LBR Generation Process.

LM Control:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.2 defines the
LM Control Process.

LMx Generation:

This Process is defined in clause 8.1.9 where the LM protocol is defined. Clause 8.1.9.3 defines the
LMx Generation Process.

On-demand DM Control:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.2 defines
the DM Control Process.

DMM Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.3 defines
the DMM Generation Process.

DMM Mux:

The DMM Mux process interleaves the signal sets DMM(DA,P,0,Test ID TLV, TLV) from the
input ports (X, Y, Z).

DMR Generation:

This Process is defined in clause 8.1.10 where the DM protocol is defined. Clause 8.1.10.5 defines
the DMR Generation Process.

On-demand 1DM Control_So:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.2 defines
the 1DM Control_So Process.

66 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

1DM Generation:

This Process is defined in clause 8.1.11 where the 1DM protocol is defined. Clause 8.1.11.3 defines
the 1DM Generation Process.

1DM Mux:

The 1DM Mux process interleaves the signal sets 1DM(DA,P,0,Test ID TLV, TLV) from the input
ports (X, Y, Z).

TST Control_So:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.2 defines
the TST Control Process.

TST Generation:

This Process is defined in clause 8.1.12 where the TST protocol is defined. Clause 8.1.12.3 defines
the TST Generation Process.

LT Control:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.2 defines
the LT Control Process.

LTM Generation:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.3 defines
the LTM Generation Process.

LTR Generation:

This Process is defined in clause 8.1.13 where the LT protocol is defined. Clause 8.1.13.6 defines
the LTR Generation Process.

On-demand SL Control:

This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.2 defines
the SL Control process.

SLM Generation:

This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.3 defines
the SLM Generation process.

SLR Generation:

This process is defined in clause 8.1.14 where the SL protocol is defined. Clause 8.1.14.5 defines
the SLR Generation process.

SLM Mux:

The SLM Mux process interleaves the signal sets SLM(DA,P,MEP_ID,Test_ID,TxFCl,TLV) from
the input ports (X, Y, Z).

Defects None.

Consequent actions None.

Defect correlations None.

Performance monitoring None.

9.4.1.2 ETH Diagnostic Flow Termination Sink Function for MEPs (ETHDe_FT_Sk)

The ETHDe_FT_Sk process diagram is shown in Figure 9-43.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 67

Symbol

G.8021-Y.1341(10)-Amd.1(11)_F9-43

ETHDe_AP

ETHDe_RP

ETHDe_FP

ETHDe_MP

ETHDe_FT

Figure 9-43 – ETHDe_FT_Sk symbol

Interfaces

Table 9-15 – ETHDe_FT_Sk interfaces

Inputs Outputs

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETHDe_FT_Sk_MP:

ETHDe_FT_Sk_MI_Active
ETHDe_FT_Sk_MI_LM_Pri
ETHDe_FT_Sk_MI_MEL

ETHDe_FT_Sk_MI_MEP_MAC

ETHDe_FT_Sk_MI_1DM_Start(SA,Test_ID)

ETHDe_FT_Sk_MI_1DM_Terminate

ETHDe_FT_Sk_MI_TST_Start(SA,Pattern)

ETHDe_FT_Sk_MI_TST_Terminate

ETH_AP:
ETH_AI_D
ETH_AI_P
ETH_AI_DE

ETH De_FT_Sk_RP:

ETHDe_FT_Sk_RI_LMM(D,P,DE)

ETHDe_FT_Sk_RI_LMR(
 TxFCf,RxFCb,TxFCb,RxFCl)
ETHDe_FT_Sk_RI_LBM(D,P,DE)
ETHDe_FT_Sk_RI_LBR(SA,rTLV,TID)
ETHDe_FT_Sk_RI_DMM(D,P,DE)
ETHDe_FT_Sk_RI_DMR(
 SA,TxTimestampf,RxTimeStampf,
 TxTimeStampb,RxTimeb,TestID)
ETHDe_FT_Sk_RI_LTM(D,P,DE)
ETHDe_FT_Sk_RI_LTR(SA,TTL,TID,TLV)

ETH_RI_SLM(OAM,P,DE,TxFCb)
ETH_RI_SLR(
 rMEP_ID,rTest_ID,TxFCf,TxFCb)

ETHDe_FT_Sk_MP:

ETHDe_FT_Sk_MI_1DM_Result(
 count,N_FD[])
ETHDe_FT_Sk_MI_TST_Result(
 REC,CRC,BER,OO)

68 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Processes

G.8021-Y.1341(10)-Amd.1(11)_F9-44

RI_LMR(TxFCf,
RxFCb, TxFCb,

RxFCI)

RI_LMM(D, P, DE)

RI_LBM(D, P, DE)

RI_LMT(D, P, DE)

MI_MEP_MAC

RI_LTR(SA, TTL,
TID, TLV)

RI_SLM(OAM, P,
DE, TxFCb)

RI_SLR(rMEP_ID,
rTest_ID,

TxFCf, TxFCb)

RI_DMM(D, P, DE)

RI_LBR(SA, rTLV,
TID)

RI_DMR(rSA,
TxTimeStampf,
RxTimeStampf,
TxTimeStampb,

RxTimeb, rTest_ID)

MI_1DM_Start(SA,
Test_ID)

MI_TST_Start(SA,
Pattern)

MI_1DM_Result
(count, N_FD[])

MI_TST_Result
(REC, CRC, BER, OO)

MI_1DM_Terminate

MI_TST_Terminate

DMM reception

DMR reception

1DM reception

TST reception

LTR reception

SLM reception

SLR reception

LBR reception

MEP LBM reception

MEP LTM reception

ETH_AI_D/P/DE

L x ReceptionM

Data

LMMLMRL
M

M
L

M
R

Data

D

D

D

D

D

D

D

D

D

D

D

D

D

P

P

P

P

P

P

P

P

P

P

P

P

P

DE

DE

DE

DE

DE

DE

DE

DE

DE

DE

DE

DE

DE

Data

MI_LM_Pri

L
M

M
L

M
R

D
M

M
D

M
R

1D
M

T
S

T
LT

R
SL

M
S

L
R

L
B

R
L

B
M

LT
M

M
E

P
O

n
de

m
an

d-
O

A
M

 e
xt

ra
ct

io
n

MI_MEL

ETH_CI_D/P/DE

SLR
Dmux

DMR
Dmux

1DM
Dmux

X

X

X

Y

Y

Y

Z

Z

Z

1DM
Control_Sk

TST
Control_Sk

Figure 9-44 – ETHDe_FT_Sk processes

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 69

MEP On Demand-OAM extraction process:

The MEP On Demand-OAM Extraction process extracts OAM traffic units that are processed in the
ETHDe_FT_Sk process from the stream of traffic units as defined in the following pseudo code:

if (TYPE=<ETHOAM>) and (MEL=MI_MEL) then
 switch(OPC) {
 case <LMM>: extract ETH-LMM OAM traffic unit and forward to LMM Port
 case <LMR>: extract ETH-LMR OAM traffic unit and forward to LMR Port
 case <DMM>: if (Flag.Type=0) then

extract ETH-DMM OAM traffic unit and forward to DMM Port
 endif
 case <DMR>: if (Flag.Type=0) then

extract ETH-DMR OAM traffic unit and forward to DMR Port
 endif
 case <1DM>: extract ETH-1DM OAM traffic unit and forward to 1DM Port
 case <LTM>: extract ETH-LTM OAM traffic unit and forward to LTM Port
 case <LTR>: extract ETH-LTR OAM traffic unit and forward to LTR Port
 case <LBM>: extract ETH-LBM OAM traffic unit and forward to LBM Port
 case <LBR>: extract ETH-LBR OAM traffic unit and forward to LBR Port
 case <TST>: extract ETH-TST OAM traffic unit and forward to TST Port
 case <SLM>: extract ETH-SLM OAM traffic unit and forward to SLM port
 case <SLR>: extract ETH-SLR OAM traffic unit and forward to SLR port
else
 forward ETH_CI_traffic unit to Data Port

endif

NOTE – If both ETHDe_FT and ETHx_FT are involved in synthetic loss measurements, the MEP On
Demand-OAM Extraction process needs to determine to which flow termination the received ETH-SLM
PDU belongs. The detailed mechanism is for further study.

MEP LBM Reception:

This Process is defined in clause 8.1.8, where the LB protocol is defined. Clause 8.1.8.5 defines the
LBM MEPReception process.

LBR Reception:

This Process is defined in clause 8.1.8, where the LB protocol is defined. Clause 8.1.8.7 defines the
LBR Reception process.

LMx Reception:

This Process is defined in clause 8.1.9, where the LM protocol is defined. Clause 8.1.9.4 defines the
LMx Reception process.

DMM Reception:

This Process is defined in clause 8.1.10, where the DM protocol is defined. Clause 8.1.10.4 defines
the DMM Reception process.

DMR Reception:

This Process is defined in clause 8.1.10, where the DM protocol is defined. Clause 8.1.10.6 defines
the DMR Reception process.

DMR Demux:

The DMR Demux process deinterleaves the incoming signal set (D,P,DE) to the different output
ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

70 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

1DM Reception:

This Process is defined in clause 8.1.11, where the 1DM protocol is defined. Clause 8.1.11.4 defines
the 1DM Reception process.

1DM Demux:

The 1DM Demux process deinterleaves the incoming signal set (D,P,DE) to the different output
ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

1DM Control_Sk:

This Process is defined in clause 8.1.11, where the 1DM protocol is defined. Clause 8.1.11.5 defines
the 1DM Control_Sk process.

TST Reception:

This Process is defined in clause 8.1.12, where the TST protocol is defined. Clause 8.1.12.4 defines
the TST Reception process.

TST Control_Sk:

This Process is defined in clause 8.1.12, where the TST protocol is defined. Clause 8.1.12.5 defines
the TST Control_Sk process.

MEP LTM Reception:

This Process is defined in clause 8.1.13, where the LT protocol is defined. Clause 8.1.13.5 defines
the MEP LTM Reception process.

LTR Reception:

This Process is defined in clause 8.1.13, where the LT protocol is defined. Clause 8.1.13.7 defines
the LTR Reception process.

SLM Reception

This process is defined in clause 8.1.14, where the SL protocol is defined. Clause 8.1.14.4 defines
the SLM Reception process.

SLR Reception

This process is defined in clause 8.1.14, where the SL protocol is defined. Clause 8.1.14.6 defines
the SLR Reception process.

SLR Demux:

The SLR Demux process deinterleaves the incoming signal set (D,P,DE) to the different output
ports (X, Y, Z). P and/or Test_ID signal can be used for the selection of the port.

Defects None.

Consequent actions None.

Defect correlations None.

Performance monitoring None.

27) Clause 9.6.2.2

Revise clause 9.6.2.2 with respect to TCS as follows:

9.6.2.2 ETH Group Traffic Conditioning function (ETH_GTCS_Sk)

For Further Study

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 71

For ETH Group Traffic, the traffic conditioning process is performed per flow point, but there is no
correlation between the various processes. Therefore, an ETH_GTCS_Sk function can be modelled
by multiple ETH_TCS_Sk functions. No specific function is defined in this Recommendation.

28) Clause 10.3

Revise the first paragraph of clause 10.3 with respect to ETYn/ETH-m adaptation as shown:

Figures 10-3 and 10-4 illustrate the Ethernet trail termination to ETH adaptation function
(ETYn/ETH_A and ETYn/ETH-m_A). Information crossing the ETH flow point (ETH_FP) and
ETH termination flow point (ETH_TFP) is referred to as ETH characteristic information (ETH_CI).
Information crossing the ETYn access point (ETY_AP) is referred to as ETYn adapted information
(ETYn_AI). Note that ETYn/ETH-m_A is a compound function of ETYn/ETH_A and ETHx/ETH-
m_A (see clause 9.3.3).

29) Clause 10.4

Revise the first paragraph of clause 10.4 with respect to ETY3/ETC3 as shown:

This adaptation function adapts 1000BASE-SX, -LX, or -CX physical layer signals from/to GMII
data octets. The combination of ETY3_TT and ETY3/ETC3_A represents the functions up to and
including the PCS sublayer in the 802.3 model. The GMII data octets8B/10B-encoded codewords.
Codewords may be extracted from or mapped into GFP-T frames, per clause 11.2, SDH to ETC
Adaptation functions (Sn-X/ETC3_ A). It may also be extracted from and mapped into ODU0, per
clause 14.3.7.1/G.798 (ODU0P/CBRx_A). In the latter case, the ETC3_CP from the
ETY3/ETC3_A function is bound to the CBRx_CP of the ODU0P/CBRx_A function.

30) Clauses 11.5.4 and 10.7

Delete clause 11.5.4 and create clause 10.5 related to ETH PP-OS:

11.5.4

For Further Study.

10.5 ETY4 to Ethernet PP-OS adaptation functions (ETY4/ETHPP-OS_A)

The ETY4 to Ethernet PP-OS adaptation function supports transporting preamble and ordered set
information of the 10GBASE-R signals over enhanced OPU2 payload area.

It adapts 10GBASE-R signals from/to data frames which include the preamble and start-of-frame
delimiter and ordered sets from the inter-frame gap into ETHPP-OS_CI for subsequent mapping
into an OPU2 with extended payload area as described in clause 11.5.3.

Note that there is no Ethernet MAC termination function. Consequently, since no error checking is
performed on the Ethernet MAC frames, errored MAC frames are forwarded in both ingress and
egress directions.

72 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

10.5.1 ETY4 to Ethernet PP-OS adaptation source function (ETY4/ETHPP-OS_A_So)

Symbol

G.8021-Y.1341(10)-Amd.1(11)_F9-12

ETH_AP

ETH_RP

ETH_FP

ETH_MP
ETHx_FT

Figure 10-12 – ETY4/ETHPP-OS_A_So symbol

Interfaces

Table 10-8 – ETY4/ETHPP-OS_A_So interfaces

Inputs Outputs

ETHPP-OS_FP:
 ETHPP-OS_CI_D
 ETHPP-OS_CI_SSF

ETY4/ETHPP-OS_A_So_MP:
 ETY4/ETHPP-OS_A_So_MI_Active

ETY4_AP:
 ETY4_AI_Data
 ETY4_AI_ClocK
 ETY4_AI_SSF

NOTE – ETHPP-OS_CI_D is composed of Preamble, Payload and Ordered Set information as described in
[ITU-T G.7041].

Processes

A process diagram of this function is shown in Figure 10-13.

G.8021-Y.1341(10)-Amd.1(11)_F10-13

ETHPP-OS_CI_D

ETY4 server-specific
processes

ETY4_AI

Figure 10-13 – ETY4/ETHPP-OS_A_So process diagram

Activation: The ETY4/ETHPP-OS_A_So function shall access the ETY4 access point and perform
the processes specified below when it is activated (MI_Active is true). Otherwise, it shall not access
the ETY4 access point.

ETY4 Server-specific processes: None.

NOTE – All source processes related to the Ethernet physical layer are encapsulated in this Recommendation
by the ETYn_TT_So function.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 73

Defects None.

Consequent actions None.

Defect correlations None.

Performance monitoring For further study.

10.5.2 ETY4 to Ethernet PP-OS adaptation sink function (ETY4/ETHPP-OS_A_Sk)

Symbol

G.8021-Y1341(10)-Amd.1(11)_F10-14

ETHPP-OS_CI

ETY4/ETHPP-OS_A_Sk

ETY4_AI

ETY4/ETHPP-OS_A_Sk_MI

Figure 10-14 – ETY4/ETHPP-OS_A_Sk symbol

Interfaces

Table 10-9 – ETY4/ETHPP-OS_A_Sk interfaces

Inputs Outputs

ETY4_API:
ETY4_AI_Data
ETYn_AI_ClocK
ETYn_AI_TSF

ETY4/ETHPP-OS_A_Sk_MP:

ETY4/ETHPP-OS_A_Sk_MI_Active

ETHPP-OS_FP:
ETHPP-OS_CI_D
ETHPP-OS_CI_SSF

Processes

A process diagram of this function is shown in Figure 10-15.

G.8021-Y.1341(10)-Amd.1(11)_F10-15

ETHPP-OS_CI_D ETHPP-OS_CI_SSF

ETY4 server-specific
processes

ETY4_AI

Figure 10-15 – ETY4/ETHPP-OS_A_Sk process diagram

Activation: The ETY4/ETHPP-OS_A_Sk function shall access the ETY4 access point and perform
the processes specified below when it is activated (MI_Active is true). Otherwise, it shall activate
the SSF signal and not report its status via the management point.

ETY4 Server-specific processes: None.

74 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

NOTE – All sink processes related to the Ethernet physical layer are encapsulated in this Recommendation
by the ETYn_TT_Sk function.

Defects None.

Consequent actions

aSSF  AI_TSF

Note that the replacement signal is generated in the subsequent adaptation source function
ODU2P/ETHPP-OS_A_So.

Defect correlations None.

Performance monitoring For further study.

31) Clause 11.1.1.2

Revise clause 11.1.1.2 with respect to aSSFfdi as follows:

11.1.1.2 VC-n to ETH Adaptation sink function (Sn/ETH_A_Sk)

 …
Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi ← dCSF-RDI and CSFrdifdiEnable

aSSFfrdi ← dCSF-FDI and CSFrdifdiEnable

…
32) Clause 11.1.2.2

Revise clause 11.1.2.2 with respect to aSSFfdi as follows:

11.1.2.2 LCAS-capable VC-n-Xv to ETH Adaptation sink function (Sn-X-L/ETH_A_Sk)

…
Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi ← dCSF-RDI and CSFrdifdiEnable

aSSFfrdi ← dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional
contributor to aSSF.

…
33) Clause 11.1.3.2

Revise clause 11.1.3.2 with respect to aSSFfdi as follows:

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 75

11.1.3.2 VC-m to ETH adaptation sink function (Sm/ETH_A_Sk)

…
Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi ← dCSF-RDI and CSFrdifdiEnable

aSSFfrdi ← dCSF-FDI and CSFrdifdiEnable

…
34) Clause 11.1.4.2

Revise clause 11.1.4.2 with respect to aSSFfdi as follows:

11.1.4.2 LCAS-capable VC-m-Xv to ETH Adaptation sink function (Sm-X-L/ETH_A_Sk)

…
Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi ← dCSF-RDI and CSFrdifdiEnable

aSSFfrdi ← dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional
contributor to aSSF.

…
35) Clause 11.2.1

Revise clause 11.2.1 with respect to VC-n Adaptation as follows:

11.2.1 VC-n-X to ETC3 Adaptation Source function (Sn-X/ETC3_A_So)

This function maps ETC_CI information from an ETC3 onto an Sn-X_AI signal (n=3, 4). This
mapping is currently only defined for X=7 for VC-4 and X=22 for VC-3.

Data at the Sn-X_AP is a VC-n-Xv, having a payload as described in [ITU-T G.707], but with
indeterminate POH bytes: J1, B3, G1.

76 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Symbol

G.8021-Y1341(10)-Amd.1(11)_F11-15

S4-X/ETC3_A_So_MI

S4-X_TI

From
ETC3_TCP

ETC3_CI

Sn-X/ETC3_A_So

Sn-X_AI

Figure 11-15 – Sn-X/ETC3_A_So symbol

Interfaces

Table 11-9 – Sn-X/ETC3_A_So interfaces

Inputs Outputs

ETC3_TCP:
 ETC3_CI_Data_Control
 ETC3_CI_Clock
 ETC3_CI_Control_Ind
 ETC3_CI_SSF

Sn-X_TP:
 Sn-X _TI_Clock
 Sn-X _TI_FrameStart

Sn-X/ETC3_A_So_MP:
 Sn-X/ETC3_A_So_MI_Active
 Sn-X/ETC3_A_So_MI_CSFEnable

Sn-X _AP:
 Sn-X _AI_Data
 Sn-X _AI_Clock
 Sn-X _AI_FrameStart

Processes

A process diagram of this function is shown in Figure 11-16.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 77

G.8021-Y1341(10)-Amd.1(11)_F11-16

Sn-X_AI_CK

Sn-X_AI_CK

ETC3_CI_
SSF

ETC3_CI_
Clock

ETC3_CI_
Control_Ind

ETC3_CI_
Data_Control

MI_FCSFenable
ETC3 specific

GFP-T processes

Common
GFP-T processes

VC-n-X specific
GFP-T processes

VC-n4-X specific
processes

Sn-X_AI_D Sn-X_AI_FS

Sn-X_AI_FSSn-X_AI_D

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

Sn-X_TI_CK

Sn-X_TI_FS

CMuxConfig

CmuxActive = false

FCSenable = false

(From ETC3_TCP)

Figure 11-16 – Sn-X/ETC3_A_So process

Ethernet specific GFP-T source process:

See clause 8.5.4.2.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The
UPI value for Transparent Gb Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The
Ethernet codeword information is inserted into the client payload information field of the GFP-T
frames according to clause 8 of [ITU-T G.7041]. 65B rate adaptation is enabled (RAdisable=false).

NOTE – Equipment designed prior to this Amendment may not support configuration of RAdisable; in such
equipment the use of 65B rate adaptation is implicitly enabled.

Response to ETC3_CI_SSF is according to the principles in clauses 8.3 and 8.3.4 of
[ITU-T G.7041] and Appendix VIII of [ITU-T G.806]. Details are for further study.

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported
(CMuxActive=false).

VC-n-X specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the VC-n-X (n=3,4) payload
area according to clause 10.6 of [ITU-T G.707].

VC-n-X specific source process:

C2: Signal label information is derived directly from the Adaptation function type. The value for
"GFP mapping" in Table 9-11 of [ITU-T G.707] is placed in the C2 byte position.

NOTE – For Sn-X/ETC3_A_So, the H4, K3, F2, and F3 bytes are undefined at the Sn-X_AP output of this
function (as per clause 12 of [ITU-T G.783]).

Defects None.

78 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Consequent actions

aCSF-RDI ← CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ← CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ← CI_SSF and CSFEnable

Defect correlations None.

Performance monitoring For further study.

36) Clause 11.4.1.2

Revise clause 11.4.1.2 with respect to aSSFfdi as follows:

…
Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi ← dCSF-RDI and CSFrdifdiEnable

aSSFfrdi ← dCSF-FDI and CSFrdifdiEnable

…
37) Clause 11.4.2.2

Revise clause 11.4.2.2 with respect to aSSFfdi as follows:

Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi ← dCSF-RDI and CSFrdifdiEnable

aSSFfrdi ← dCSF-FDI and CSFrdifdiEnable

NOTE 3 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional
contributor to aSSF.

38) Clause 11.5.1

Revise clause 11.5.1 with respect to ODU Adaptation as follows:

11.5.1 ODUk to ETH adaptation functions (ODUkP/ETH_A; k = 1, 2, 3)

11.5.1.1 ODUk to ETH adaptation source function (ODUkP/ETH_A_So)

The ODUkP/ETH_A_So function creates the ODUk signal from a free running clock. It maps the
ETH_CI information into the payload of the OPUk (k = 1, 2, 3), adds OPUk Overhead (RES, PT)
and default ODUk Overhead.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 79

Symbol

G.8021-Y1341(10)-Amd.1(11)_F11-27

ODUkP/ETH_A_So_MI

(ETHF_PP)

(ETHTF_PP)

ETH_RI

From
ETH_TFP

From
ETH_FP

ETH_CI

ODUkP/ETH_A_So

ODUkP_AI

ETH_PI

Figure 11-27 – ODUkP/ETH_A_So symbol

Interfaces

Table 11-15 – ODUkP/ETH_A_So interfaces

Inputs Outputs

ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ETH_RP:
ETH_RI_RSF

ODUkP/ETH_A_So_MIMP:
ODUkP/ETH_A_So_MI_Active
ODUkP/ETH_A_So_MI_CSFEnable
ODUkP/ETH_A_So_MI_CSFrdifdiEnable

ODUkP_AP:
ODUkP_AI_Data
ODUkP_AI_Clock
ODUkP_AI_FrameStart
ODUkP_AI_MultiframeStart

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-28.

80 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

G.8021-Y1341(10)-Amd.1(11)_F11-28

Replicate
ETH_PI_D
(ETHF_PP)

802.3 MAC FCS

ETH_RI_RSF
ETH_CI_SSF

(ETH_FP)
ETH_CI_D
(ETH_TFP)

ETH_CI_D
(ETH_FP)

Queuing

ETH_PI_D
(ETHTF_PP)

MI_CSFenable

MI_CSFrdifdiEnable

ETH specific
GFP-F processes

Common
GFP-F processes

ODUkP specific
GFP-F processes

ODUkP specific
processes

ODUkP_AI_CK/FSODUkP_AI_D

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

ETH_Frame + FCS

ETH_Frame

CMuxConfig

CmuxActive = false

FCSenable = false

ODUkP_AI_D/CK/FS/MFS

Figure 11-28 – ODUkP/ETH_A_So process

"Queuing" process:

See clause 8.2.

"Replicate" process:

See clause 8.4.

802.3 MAC FCS generation:

See clause 8.8.1.

Ethernet specific GFP-F source process:

See clause 8.5.4.1.1 of [ITU-T G.806]. GFP pFCS generation is disabled (FCSenable=false). The
UPI value for frame-mapped Ethernet shall be inserted (Table 6-3 of [ITU-T G.7041]). The
Ethernet frames are inserted into the client payload information field of the GFP-F frames according
to clause 7.1 of [ITU-T G.7041].

Response to ETH_CI_SSF asserted is for further study.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 81

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported
(CMuxActive=false).

ODUkP specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the ODUk payload area
according to clause 17.43 of [ITU-T G.709].

ODUkP specific source process:

G.8021-Y.1341(10)-Amd.1(11)_F11-29

Free run clock
generator (ODCa)

CK

1
122368

FS

1
256

MI_Active

MFS
CSF

PT

RES

ODUk OH is set to all-0's,
except PM STAT = 001

ODUkP_AP

AI_CK AI_FS AI_MFSAI_D

Figure 11-29 – ODUkP specific source process

Clock and (Multi)Frame Start signal generation:

The function shall generate a local ODUk clock (ODUkP_AI_CK) with a clock rate within the
minimum to maximum clock rate of the specified ODU signal as given in Table 14-2 of [ITU-T
G.798]. of "239/(239 – k) * 4(k–1) * 2 488 320 kHz ± 20 ppm" from a free running oscillator. The
jitter and wander requirements as defined in Annex A of [ITU-T G.8251] (ODCa clock) apply.

The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the
ODUk signal. The AI_FS signal shall be active once per 122 368 clock cycles. AI_MFS shall be
active once every 256 frames.

PT: The payload type information is derived directly from the Adaptation function type. The value
for "GFP mapping" shall be inserted into the PT byte position of the PSI overhead as defined in
clause 15.9.2.1.1 of [ITU-T G.709].

RES: The function shall insert all-0's into the RES bytes.

CSF: The function shall signal the failure of the client signal to the far end by using Bit 1 of the
PSI[2] byte of the Payload Structure Identifier as defined in clause 17.1 of [ITU-T G.709].

All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field
which should be set to the value "normal path signal" (001).

82 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Counter processes:

For further study.

Defects None.

Consequent actions

aCSF-RDI ← CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ← CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ← CI_SSF and CSFEnable

aCSF-OPU ← CI_SSF and CSFEnable

Defect correlations None.

Performance monitoring For further study.

11.5.1.2 ODUk to ETH adaptation sink function (ODUkP/ETH_A_Sk)

The ODUkP/ETH_A_Sk extracts ETH_CI information from the ODUkP payload area, delivering
ETH_CI to ETH_TFP and ETH_FP. It extracts the OPUk Overhead (PT and RES) and monitors the
reception of the correct payload type.

Symbol

G.8021-Y1341(10)-Amd.1(11)_F11-30

To ETH_TFP To ETH_FP

ODUkP/ETH_A_Sk

ODUkP_AI

ETH_CI

ODUkP/ETH_A_Sk_MI
(ETHF_PP)

ETH_PI

(ETHTF_PP)

Figure 11-30 – ODUkP/ETH_A_Sk symbol

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 83

Interfaces

Table 11-16 – ODUkP/ETH_A_Sk interfaces

Inputs Outputs

ODUkP_AP:
ODUkP_AI_Data
ODUkP_AI_ClocK
ODUkP_AI_FrameStart
ODUkP_AI_MultiframeStart
ODUkP_AI_TSF

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ODUkP/ETH_A_Sk_MPI:

ODUkP/ETH_A_Sk_MI_Active
ODUkP/ETH_A_Sk_MI_FilterConfig
ODUkP/ETH_A_Sk_MI_CSF_Reported
ODUkP/ETH_A_Sk_MI_MAC_Length
ODUkP/ETH_A_Sk_MI_CSFrdifdiEnable

ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:

ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ETH_RP:
 ETH_RI_RSF

ODUkP/ETH_A_Sk_MIMP:

ODUkP/ETH_A_Sk_MI_AcPT
ODUkP/ETH_A_Sk_MI_AcEXI
ODUkP/ETH_A_Sk_MI_AcUPI
ODUkP/ETH_A_Sk_MI_cPLM
ODUkP/ETH_A_Sk_MI_cLFD
ODUkP/ETH_A_Sk_MI_cUPM
ODUkP/ETH_A_Sk_MI_cEXM
ODUkP/ETH_A_Sk_MI_cCSF
ODUkP/ETH_A_Sk_MI_pFCSErrors

Processes

A process diagram of this function is shown in Figure 11-31.

84 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

G.8021-Y1341(10)-Amd.1(11)_F11-31

Replicate
ETH_PI_D
(ETHTF_PP)

802.3 MAC Frm Chk

MAC Length Chk

MI_CSFrdifdiEnable

ETH specific
GFP-F processes

Common
GFP-F processes

ODUkP specific
GFP-F processes

ODUkP specific
processes

GFP_Frame/FS/SF

ETH_Frame + FCS

ETH_Frame + FCS

ETH_Frame

CMuxConfig
CMuxActive = false

FCSdiscard = false

Filter

ETH_PI_D
(ETHF_PP)

SF

SF

SF

ODUkP_AI_D/CK/FS/MFS/TSF

ODUkP_AI_D/CK/FS/TSF

AcPT

AcEXI

cLFD

cPLM

cCSF

cEXM

cUPM

pFCSErrors

MI_FilterConfig

MI_MAC_Length

GFP_Frame/FS/SF

AcUPI

ETH_CI_D
ETH_CI_SSF
(ETH_TFP)

ETH_CI_D
E
(
ETH_CI_SSF
(ETH_FP)

Figure 11-31 – ODUkP/ETH_A_Sk process

"Filter" process:

See clause 8.3.

"Replicate" process:

See clause 8.4.

"802.3 MAC FCS Check" process:

See clause 8.8.2.

Ethernet specific GFP-F sink process:

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not
supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected
(Table 6-3 of [ITU-T G.7041]). The Ethernet frames are extracted from the client payload
information field of the GFP-F frames according to clause 7.1 of [ITU-T G.7041].

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported
(MI_CMuxActive=false).

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 85

ODUkP specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the ODUk payload area
according to clause 17.3 4 of [ITU-T G.709].

ODUkP specific sink process:

G.8021-Y.1341(10)-Amd.1(11)_F11-32

MI_cCSF

MI_cPLM

MI_AcPT

ODUkP_AP

AI_TSFAI_CKAI_D AI_FS AI_MFS

AI_TSF

dCSF

dPLM

dCSF

D
ef

ec
t

co
rr

el
at

io
ns

Extract PT

Extract CSF

PT process

dPLM

MI_Active

Figure 11-32 – ODUkP specific sink process

PT: The function shall extract the PT byte from the PSI overhead as defined in clause 8.7.1 of
[ITU-T G.798]. The payload type value for "GFP mapping" in clause 15.9.2.1.1 of [ITU-T G.709]
shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM
defect detection.

RES: The value in the RES bytes shall be ignored.

CSF: The function shall extract the CSF signal indicating the failure of the client signal from Bit 1
of the PSI[2] byte of the Payload Structure Identifier as defined in clause 17.1 of [ITU-T G.709].

Defects

dPLM – See clause 6.2.4.1 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.

Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi ← dCSF-RDI and CSFrdifdiEnable

aSSFfrdi ← dCSF-FDI and CSFrdifdiEnable

86 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault
cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM ← dPLM and (not AI_TSF);

cLFD ← dLFD and (not dPLM) and (not AI_TSF);

cUPM ← dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM ← dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF ← (dCSF-LOS or dCSF-OPU dCSF-RDI or dCSF-FDI) and (not dEXM) and (not dUPM)
and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The
performance monitoring primitives shall be reported to the EMF.

pFCSErrors: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC FCS Check process.

39) Clause 11.5.2

Revise clause 11.5.2 with respect to ODU Adaptation as follows:

11.5.2 LCAS-capable ODUk-Xv to ETH adaptation functions (ODUkP-X-L/ETH_A; k = 1,
2, 3)

11.5.2.1 LCAS-capable ODUk-Xv to ETH adaptation source function (ODUkP-X-
L/ETH_A_So)

The ODUkP-X-L/ETH_A_So function creates the ODUk-X-L signal from a free running clock. It
maps the ETH_CI information into the payload of the OPUk-Xv (k = 1, 2, 3), adds OPUk-Xv
Overhead (RES, vcPT).

Symbol

G.8021-Y1341(10)-Amd.(11)_F11-33

From ETH_TFP From ETH_FP

ODUkP-X-L/ETH_A_So

ODUkP-X-L_AIODUkP-X-L_AI_X AT

ETH_CI

ODUkP-X-L/ETH_A_So_MI

ETH_RI (ETHF_PP)
ETH_PI

(ETHTF_PP)

Figure 11-33 – ODUkP-X-L/ETH_A_So symbol

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 87

Interfaces

Table 11-17 – ODUkP-X-L/ETH_A_So interfaces

Inputs Outputs

ETH_TFP:
ETH_CI_D
ETH_CI_DE
ETH_CI_P

ETH_FP:

ETH_CI_D
ETH_CI_DE
ETH_CI_P
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP-X-L_AP:

ODUkP-X-L_AI_XAT

ODUkP-X-L/ETH_A_So_MIMP:

ODUkP-X-L/ETH_A_So_MI_Active
ODUkP-X-L/ETH_A_So_MI_CSFEnable
ODUkP-X-L/ETH_A_So_MI_CSFrdifdiEnable

ODUkP-X-L_AP:
ODUkP-X-L_AI_Data
ODUkP-X-L_AI_ClocK
ODUkP-X-L_AI_FrameStart
ODUkP-X-L_AI_MultiframeStart

ETHTF_PP:

ETH_PI_D
ETH_PI_DE
ETH_PI_P

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

Processes

A process diagram of this function is shown in Figure 11-34.

88 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

G.8021-Y1341(10)-Amd.1(11)_F11-34

Replicate
ETH_PI_D
(ETHF_PP)

802.3 MAC FCS

ETH_CI_SSF
(ETH_FP)

ETH_CI_D
(ETH_TFP)

ETH_CI_D
(ETH_FP)

Queuing

ETH_PI_D
(ETHTF_PP)

MI_CSFenable

MI_CSFrdifdiEnable

ETH specific
GFP-F processes

Common
GFP-F processes

 ODUkP-X-L specific
GFP-F processes

ODUkP-X-L specific
processes

ODUkP-X-L_AI_D/CK/FS/MFS

ODUk-X-L_AI_CK/FSODUkP-X-L_AI_D

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

ETH_Frame + FCS

ETH_Frame

CMuxConfig

CMuxActive = false

FCSenable = false

ODUkP-X-L_AI_XAT

Figure 11-34 – ODUkP-X-L/ETH_A_So process

See clause 11.5.1.1 for a description of ODUkP-X-L/ETH_A processes.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 89

ODUkP-X-L specific source process:

G.8021-Y.1341(10)-Amd.1(11)_F11-35

Free run clock
generator (ODCa)

CK

1
(X *122368)AT

FS

1
256

MI_Active

MFS
CSF

PT

RES

ODUk OH is set to all-0's,
except PM STAT = 001

ODUkP-X-L_AP

AI_CK AI_FS AI_MFSAI_D

Figure 11-35 – ODUkP-X-L specific source process

Clock and (Multi)Frame Start signal generation:

The function shall generate a local ODUk clock (ODUkP_AI_CK) with a clock rate within the
minimum to maximum clock rate of the specified ODU signal as given in Table 14-2 of [ITU-T
G.798] of " XAT * 239/(239 – k) * 4(k–1) * 2 488 320 kHz ± 20 ppm" from a free running oscillator.
The jitter and wander requirements as defined in Annex A of [ITU-T G.8251] (ODCa clock) apply.

The function shall generate the (multi)frame start reference signals AI_FS and AI_MFS for the
ODUk signal. The AI_FS signal shall be active once per XAT *122 368 clock cycles. AI_MFS shall
be active once every 256 frames.

vcPT: The payload type information is derived directly from the Adaptation function type. The
value for "GFP mapping" shall be inserted into the vcPT byte position of the PSI overhead as
defined in clause 18.1.2.2 of [ITU-T G.709].

RES: The function shall insert all-0's into the RES bytes.

CSF: The function shall signal the failure of the client signal to the far end by using Bit 1 of the
PSI[2] byte of the Payload Structure Identifier as defined in clause 18.1.2.2.1.3 of [ITU-T G.709].

All other bits of the ODUk overhead should be sourced as "0"s, except the ODUk-PM STAT field
which should be set to the value "normal path signal" (001).

Counter processes:

For further study.

90 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Defects None.

Consequent actions

aCSF-RDI ← CI_SSFrdi and CSFrdifdiEnable and CSFEnable

aCSF-FDI ← CI_SSFfdi and CSFrdifdiEnable and CSFEnable

aCSF-LOS ← CI_SSF and CSFEnable

aCSF-OPU ← CI_SSF and CSFEnable

Defect correlations None.

Performance monitoring For further study.

11.5.2.2 LCAS-capable ODUk-Xv to ETH adaptation sink function (ODUkP-X-
L/ETH_A_Sk)

The ODUkP-X-L/ETH_A_Sk extracts ETH_CI information from the ODUkP-Xv payload area,
delivering ETH_CI to ETH_TFP and ETH_FP. It extracts the OPUk-Xv Overhead (vcPT and RES)
and monitors the reception of the correct payload type.

Symbol

G.8021-Y1341(10)-Amd.1(11)_F11-36

To ETH_TFP To ETH_FP

ODUkP-X-L/ETH_A_Sk

ODUkP-X-L_AIODUkP-X-L_AI_X AR

ETH_CI

ODUkP-X-L/ETH_A_Sk_MI
(ETHF_PP)

ETH_PI

(ETHTF_PP)

Figure 11-36 – ODUkP-X-L/ETH_A_Sk symbol

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 91

Interfaces

Table 11-18 – ODUkP-X-L/ETH_A_Sk interfaces

Inputs Outputs

ODUkP-X-L_AP:
ODUkP-X-L_AI_Data
ODUkP-X-L_AI_ClocK
ODUkP-X-L_AI_FrameStart
ODUkP-X-L_AI_MultiframeStart
ODUkP-X-L_AI_TSF
ODUkP-X-L_AI_XAR

ETHF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ETHTF_PP:

ETH_PI_D
ETH_PI_P
ETH_PI_DE

ODUkP-X-L/ETH_A_Sk_MI:

ODUkP-X-L/ETH_A_Sk_MI_Active
ODUkP-X-L/ETH_A_Sk_MI_FilterConfig
ODUkP-X-L/ETH_A_Sk_MI_CSF_Reported
ODUkP-X-L/ETH_A_Sk_MI_MAC_Length
ODUkP-X-L/ETH_A_Sk_MI_CSFrdifdiEnable

ETH_TFP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF

ETH_FP:
ETH_CI_D
ETH_CI_P
ETH_CI_DE
ETH_CI_SSF
ETH_CI_SSFrdi
ETH_CI_SSFfdi

ODUkP-X-L/ETH_A_Sk_MI:
ODUkP-X-L/ETH_A_Sk_MI_AcVcPT
ODUkP-X-L/ETH_A_Sk_MI_AcEXI
ODUkP-X-L/ETH_A_Sk_MI_AcUPI
ODUkP-X-L/ETH_A_Sk_MI_cVcPLM
ODUkP-X-L/ETH_A_Sk_MI_cLFD
ODUkP-X-L/ETH_A_Sk_MI_cUPM
ODUkP-X-L/ETH_A_Sk_MI_cEXM
ODUkP-X-L/ETH_A_Sk_MI_cCSF
ODUkP-X-L/ETH_A_Sk_MI_pFCSError

Processes

See process diagram and process description in clause 11.5.1.2. The additional ODUkP-X-
L_AI_XAR interface is not connected to any of the internal processes.

92 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

ODUkP-X-L specific sink process:

G.8021-Y.1341(10)-Amd.1(11)_F11-37

MI_cCSF

MI_cVcPLM

MI_AcVcPT

ODUkP-X-L_AP

AI_TSFAI_CKAI_D AI_FS AI_MFS

AI_TSF

dCSF

dVcPLM

dCSF

D
ef

ec
t

co
rr

el
at

io
ns

Extract vcPT

Extract CSF

vcPT process

dVcPLM

MI_Active

Figure 11-37 – ODUkP-X-L specific sink process

PT: The function shall extract the vcPT byte from the PSI overhead as defined in clause 8.7.3 of
[ITU-T G.798]. The payload type value for "GFP mapping" in clause 18.1.2.2 of [ITU-T G.709]
shall be expected. The accepted PT value is available at the MP (MI_AcPT) and is used for PLM
defect detection.

RES: The value in the RES bytes shall be ignored.

CSF: The function shall extract the CSF signal indicating the failure of the client signal from Bit 1
of the PSI[2] byte of the Payload Structure Identifier as defined in clause 18.1.2.2.1.3 of [ITU-T
G.709].

Defects

dVcPLM – See clause 6.2.4.2 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

dCSF-RDI – See clause 8.8.6.2.

dCSF-FDI – See clause 8.8.6.2.

Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dVcPLM or dLFD or dUPM or dEXM or dCSF-LOS

aSSFrdi ← dCSF-RDI and CSFrdifdiEnable

aSSFfrdi ← dCSF-FDI and CSFrdifdiEnable

NOTE 1 – XAR = 0 results in AI_TSF being asserted, so there is no need to include it as additional
contributor to aSSF.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 93

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault
cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cVcPLM ← dVcPLM and (not AI_TSF);

cLFD ← dLFD and (not dVcPLM) and (not AI_TSF);

cCSF ← (dCSF-LOS or dCSF-OPUdCSF-RDI or dCSF-FDI) and (not dEXM) and (not
dUPM) and (not dPLM) and (not dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

The function shall perform the following performance monitoring primitives processing. The
performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 2 – This primitive is calculated by the MAC FCS Check process.

40) Clause 11.5.3.1

Revise clause 11.5.3.1 with respect to ODU Adaptation as follows:

11.5.3.1 ODU2P to Ethernet PP-OS adaptation source function (ODU2P/ETHPP-OS_A_So)

The ODU2P/ETHPP-OS_A_So function creates the ODU2P signal from a free running clock. It
maps the ETHPP-OS_CI information into the payload of the OPU2P, adds OPU2P Overhead (RES,
PT) and default ODU2P Overhead.

Symbol

G.8021-Y1341(10)-Amd.1(11)_F11-38

ETHPP-OS_CI

ODU2P/ETHPP-OS_A_So

ODU2P_AI

ODU2P/ETHPP-OS_A_So_MI

Figure 11-38 – ODU2P/ETHPP-OS_A_So symbol

Interfaces

Table 11-19 – ODU2P/ETHPP-OS_A_So interfaces

Inputs Outputs

ETHPP-OS_CP:
 ETHPP-OS_CI_D
 ETHPP-OS_CI_SSF

ODU2P/ETHPP-OS_A_So_MI:
 ODU2P/ETHPP-OS_A_So_MI_Active
 ODU2P/ETHPP-OS_A_So_MI_CSFEnable

ODU2P_AP:
 ODU2P_AI_Data
 ODU2P_AI_Clock
 ODU2P_AI_FrameStart
 ODU2P_AI_MultiframeStart

NOTE – ETHPP-OS_CI_D is composed of preamble, payload and order set information in [ITU-T G.7041].

94 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Processes

A process diagram of this function is shown in Figure 11-39.

G.8021-Y1341(10)-Amd.1(11)_F11-39

CI_D_SSFETHPP-OS_CI_D

MI_CSFEnable
ETHPP-OS specific

GFP-F processes

Common
GFP-F processes

ODU2P specific
GFP-F processes

ODU2P specific
processes

ODU2P_AI_D/CK/FS/MFS

GFP_FS

GFP_FS

GFP_Frame

GFP_Frame

CMuxConfig

CMuxActive = false

FCSenable = false

ODU2P_AI_D/CK/FS

Figure 11-39 – ODU2P/ETHPP-OS_A_So process

Ethernet specific GFP-F source process:

The Ethernet frames are inserted into the client payload information field of the GFP-F frames
according to clause 7.9.2 of [ITU-T G.7041].

The UPI values for frame-mapped Ethernet shall be inserted for data or Ordered Sets respectively.
(Table 6-3 of [ITU-T G.7041]). The rest of the fields but UPI field in type header are static as:

• PTI = 000 (Client Data)

• PFI = 0 (No FCS)

• EXI = 0000 (Null Extension Header)

GFP client management frames (PTI = 100) are inserted if CI_SSF is input and GFP pFCS
generation is disabled (FCSenable=false).

Common GFP source process:

See clause 8.5.3.1 of [ITU-T G.806]. GFP channel multiplexing is not supported
(CMuxActive=false).

ODU2P specific GFP source process:

See clause 8.5.2.1 of [ITU-T G.806]. The GFP frames are mapped into the ODU2 payload area
according to clause 17.3 of [ITU-T G.709]. OPU CSF may be generated if CI_SSF is input.

ODU2P specific source process:

See clause 11.5.1.1 (k=2).

Defects None.

Consequent actions aCSF-LOS ← CI_SSF and CSFEnable

 aCSF-OPU ← CI_SSF and CSFEnable

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 95

Defect correlations None.

Performance monitoring For further study.

41) Clause 11.5.3.2

Revise clause 11.5.3.2 with respect to ODU Adaptation as follows:

11.5.3.2 ODU2P to Ethernet PP-OS adaptation sink function (ODU2P/ETHPP-OS_A_Sk)

The ODU2P/ETHPP-OS_A_Sk extracts ETHPP-OS_CI information from the ODU2P payload
area, delivering ETHPP-OS_CI to ETHPP-OS_TCP. It extracts the OPU2P Overhead (PT and RES)
and monitors the reception of the correct payload type.

Symbol

G.8021-Y1341(10)-Amd.1(11)_F11-40

ETHPP-OS_CI

ODU2P/ETHPP-OS_A_Sk

ODU2P_AI

ODU2P/ETHPP-OS_A_Sk_MI

Figure 11-40 – ODU2P/ETHPP-OS_A_Sk symbol

Interfaces

Table 11-20 – ODU2P/ETHPP-OS_A_Sk interfaces

Inputs Outputs

ODU2P_AP:
 ODU2P_AI_Data
 ODU2P_AI_ClocK
 ODU2P_AI_FrameStart
 ODU2P_AI_MultiframeStart
 ODU2P_AI_TSF

ODU2P/ETHPP-OS_A_Sk_MP:
 ODU2P/ETHPP-OS_A_Sk_MI_Active
 ODU2P/ETHPP-
 OS_A_Sk_MI_CSF_Reported
 ODU2P/ETHPP-
 OS_A_Sk_MI_MAC_Length

ETHPP-OS_CP:
 ETHPP-OS_CI_D

ODU2P/ETHPP-OS_A_Sk_MP:
 ODU2P/ETHPP-OS_A_Sk_MI_AcPT
 ODU2P/ETHPP-OS_A_Sk_MI_AcEXI
 ODU2P/ETHPP-OS_A_Sk_MI_AcUPI
 ODU2P/ETHPP-OS_A_Sk_MI_cPLM
 ODU2P/ETHPP-OS_A_Sk_MI_cLFD
 ODU2P/ETHPP-OS_A_Sk_MI_cUPM
 ODU2P/ETHPP-OS_A_Sk_MI_cEXM
 ODU2P/ETHPP-OS_A_Sk_MI_cCSF
 ODU2P/ETHPP-
OS_A_Sk_MI_pFCSErrors
 ODU2P/ETHPP-OS_A_Sk_MI_AcSL
 ODU2P/ETHPP-OS_A_Sk_MI_AcPFI
 ODU2P/ETHPP-
 OS_A_Sk_MI_pCRC16Errors

Processes

A process diagram of this function is shown in Figure 11-41.

96 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

G.8021-Y1341(10)-Amd.1(11)_F11-41

AcPFI
AcUPI pCRC 16

dUPM

cCSF

cEXM

dLFD

cPLM

AcEXI

AcPT

ETHPP-OS specific
GFP-F processes

Common
GFP-F processes

ODU2P specific
GFP-F processes

ODU2P specific
processes

ODU2P_AI_D/CK/FS/MFS/TSF

GFP_Frame/FS/SF

GFP_Frame/FS/SF

CMuxConfig
CMuxActive = false

FCSdiscard = false

ODU2P_AI_D/CK/FS/TSF

ETHPP_OS_CI_D

Figure 11-41 – ODU2P/ETHPP-OS_A_Sk process

Ethernet specific GFP-F sink process:

The Ethernet frames are extracted from the client payload information field of the GFP-F frames
according to clause 7.9 of [ITU-T G.7041].

See clause 8.5.4.1.2 of [ITU-T G.806]. GFP pFCS checking, GFP p_FCSError, p_FDis are not
supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected for
data or Ordered Sets respectively (Table 6-3 of [ITU-T G.7041]).

Client signal fail from GFP-F or OPU may generate LF as included ETHPP-OS_CI_D.

Common GFP sink process:

See clause 8.5.3.2 of [ITU-T G.806]. GFP channel multiplexing is not supported
(MI_CMuxActive=false).

ODU2 specific GFP sink process:

See clause 8.5.2.2 of [ITU-T G.806]. The GFP frames are demapped from the ODU2 payload area
according to clause 17.4.1 of [ITU-T G.709].

ODU2P specific sink process:

See clause 11.5.1.2 (k=2).

Defects

dPLM – See clause 6.2.4.1 of [ITU-T G.798].

dLFD – See clause 6.2.5.2 of [ITU-T G.806].

dUPM – See clause 6.2.4.3 of [ITU-T G.806].

dEXM – See clause 6.2.4.4 of [ITU-T G.806].

dCSF-LOS – See clause 8.8.6.2.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 97

dCSF-OPU – For further study.

Consequent actions

The function shall perform the following consequent actions:

aSSF ← AI_TSF or dPLM or dLFD or dUPM or dEXM or dCSF-LOS or dCSF-OPU

Defect correlations

The function shall perform the following defect correlations to determine the most probable fault
cause (see clause 6.4 of [ITU-T G.806]). This fault cause shall be reported to the EMF.

cPLM ← dPLM and (not AI_TSF);

cLFD ← dLFD and (not dPLM) and (not AI_TSF);

cUPM ← dUPM and (not dEXM) and (not dPLM) and (not dLFD) and (not AI_TSF);

cEXM ← dEXM and (not dPLM) and (not dLFD) and (not AI_TSF)

cCSF ← (dCSF-LOS or dCSF-OPU) and (not dEXM) and (not dUPM) and (not dPLM) and (not
dLFD) and (not AI_TSF) and CSF_Reported

Performance monitoring

For further study.

The function shall perform the following performance monitoring primitives processing. The
performance monitoring primitives shall be reported to the EMF.

pFCSErrors: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC FCS Check process.

42) Renumbering and revision of clause 11.5.5

Renumber clause 11.5.5 to 11.5.4 and update clause 11.5.4 with respect to ODU Adaptation as
shown:

11.5.4 ODU0P to 1 GbE client adaptation functions (ODU0P/CBRx_A)

The adaptation function that supports the transport of 1GbE signals in the OTN is the ODU0P to
Client adaptation function (ODU0P/CBRx_A) (0≤x≤1.25G) described in [ITU-T G.798]. When the
client is 1 GbE, the CBRx and ETC3 signals are equivalent; as such the ETY3/ETC3_A functions
are bound to the ODU0P/CBRx_A functions.

43) Deletion of clause 11.5.6

Remove clause 11.5.6, ETY3 to 1-GbE Client Adaptation Functions (ETY3/CBRx_A)

11.5.6 ETY3 to 1 GbE client adaptation functions (ETY3/CBRx _A)

For Further Study.

44) New Appendix VIII

Add the following new Appendix VIII related to VID filtering:

98 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

Appendix VIII

Configurations for ingress VID filtering

(This appendix does not form an integral part of this Recommendation.)

This appendix describes an example of the configuration for ingress VID filtering described in
[IEEE 802.1Q].

G.8021-Y.1341(10)-Amd.1(11)_FVIII.1

FF10 FF20 FF30 FF40 FFx

ETH_C

1...4094 1...4094

20 30

Sk Sk

So So

Sk

Port CPort BPort A

So So

Port D

Sk

10

10

1020

20

2030

30

40

40

40

10 20 40

Figure VIII.1 – Example of configuration for ingress VID filtering

Table VIII-1 – VID Configuration

VID
Port A Port B Port C Port D

Ingress Egress Ingress Egress Ingress Egress Ingress Egress

10      

20       

30     

40      

Others  

Figure VIII.1 and Table VIII-1 show an example of the configuration. For the ingress configuration,
MI_Vlan_Config[] signal is set to ETHx/ETH-m_A_Sk function and ETH_CI signals
corresponding VIDs are connected to ETH_FF processes in ETH_C function. For the egress
configuration, MI_Vlan_Config[] signal is set to ETHx/ETH-m_A_So function and ETH_CI
signals corresponding VIDs are connected to ETH_FF processes in ETH_C function.

 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011) 99

On ports A and B in this example, MI_Vlan_Config[1…4094] are set to ETHx/ETH-m_A_Sk in
order to disable Ingress VID filtering. In this case, all incoming VIDs traffic is forwarded to
ETH_C. Since ETH_FF is connected to configured ingress and egress ports only, the traffic is
forwarded to the appropriate ports.

45) Addition of MI_Active signals to various tables

Add the following MI_Active input signals to the respective table to disable/enable the whole
features of its adaptation function.

– ETHx/ETH_A_So_MI_Active (Table 9-6)

– ETHx/ETH_A_Sk_MI_Active (Table 9-7)

– ETHx/ETH-m_A_So_MI_Active (Table 9-8)

– ETHx/ETH-m_A_Sk_MI_Active (Table 9-9)

– ETHG/ETH_A_So_MI_Active (Table 9-10)

– ETHG/ETH_A_Sk_MI_Active (Table 9-11)

– ETHx/ETHG_A_So_MI_Active (Table 9-12)

– ETHx/ETHG_A_Sk_MI_Active (Table 9-13)

– ETHD/ETH_A_So_MI_Active (Table 9-18)

– ETHD/ETH_A_Sk_MI_Active (Table 9-19)

– ETHDi/ETH_A_So_MI_Active (Table 9-20)

– ETHDi/ETH_A_Sk_MI_Active (Table 9-21)

– ETY-Np/ETH-LAG-Na_A_So_MI_Active (Table 9-25)

– ETY-Np/ETH-LAG-Na_A_Sk_MI_Active (Table 9-26)

– ETH-LAG/ETH_A_So_MI_Active (Table 9-29)

– ETH-LAG/ETH_A_Sk_MI_Active (Table 9-30)

– ETYn/ETH_A_So_MI_Active (Table 10-4)

– ETYn/ETH_A_Sk_MI_Active (Table 10-5)

– ETY3/ETC3_A_So_MI_Active (Table 10-6)

– ETY3/ETC3_A_Sk_MI_Active (Table 10-7)

– Sn/ETH_A_So_MI_Active (Table 11-1)

– Sn/ETH_A_Sk_MI_Active (Table 11-2)

– Sn-X-L/ETH_A_So_MI_Active (Table 11-3)

– Sn-X-L/ETH_A_Sk_MI_Active (Table 11-4)

– Sm/ETH_A_So_MI_Active (Table 11-5)

– Sm/ETH_A_Sk_MI_Active (Table 11-6)

– Sm-X-L/ETH_A_So_MI_Active (Table 11-7)

– Sm-X-L/ETH_A_Sk_MI_Active (Table 11-8)

– Sn-X/ETC3_A_So_MI_Active (Table 11-9)

– Sn-X/ETC3_A_Sk_MI_Active (Table 11-10)

– Pq/ETH_A_So_MI_Active (Table 11-11)

– Pq/ETH_A_Sk_MI_Active (Table 11-12)

– Pq-X-L/ETH_A_So_MI_Active (Table 11-13)

– Pq-X-L/ETH_A_Sk_MI_Active (Table 11-14)

100 Rec. ITU-T G.8021/Y.1341 (2010)/Amd.1 (07/2011)

46) Addition of the MI_MAC_Length signal to various tables

Add the following MI_MAC_Length input signals described in clause 8.6 of this Recommendation
to the respective table, as indicated.

– Sn-X-L/ETH_A_Sk_MI_MAC_Length (Table 11-4)

– Sm/ETH_A_Sk_MI_MAC_Length (Table 11-6)

– Sm-X-L/ETH_A_Sk_MI_MAC_Length (Table 11-8)

– Pq/ETH_A_Sk_MI_MAC_Length (Table 11-12)

– Pq-X-L/ETH_A_Sk_MI_MAC_Length (Table 11-14)

– ODUkP-X-L/ETH_A_Sk_MI_MAC_Length (Table 11-18)

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-
GENERATION NETWORKS

GLOBAL INFORMATION INFRASTRUCTURE

General Y.100–Y.199
Services, applications and middleware Y.200–Y.299
Network aspects Y.300–Y.399
Interfaces and protocols Y.400–Y.499
Numbering, addressing and naming Y.500–Y.599
Operation, administration and maintenance Y.600–Y.699
Security Y.700–Y.799
Performances Y.800–Y.899

INTERNET PROTOCOL ASPECTS
General Y.1000–Y.1099
Services and applications Y.1100–Y.1199
Architecture, access, network capabilities and resource management Y.1200–Y.1299
Transport Y.1300–Y.1399
Interworking Y.1400–Y.1499
Quality of service and network performance Y.1500–Y.1599
Signalling Y.1600–Y.1699
Operation, administration and maintenance Y.1700–Y.1799
Charging Y.1800–Y.1899
IPTV over NGN Y.1900–Y.1999

NEXT GENERATION NETWORKS
Frameworks and functional architecture models Y.2000–Y.2099
Quality of Service and performance Y.2100–Y.2199
Service aspects: Service capabilities and service architecture Y.2200–Y.2249
Service aspects: Interoperability of services and networks in NGN Y.2250–Y.2299
Numbering, naming and addressing Y.2300–Y.2399
Network management Y.2400–Y.2499
Network control architectures and protocols Y.2500–Y.2599
Smart ubiquitous networks Y.2600–Y.2699
Security Y.2700–Y.2799
Generalized mobility Y.2800–Y.2899
Carrier grade open environment Y.2900–Y.2999
Future networks Y.3000–Y.3099

For further details, please refer to the list of ITU-T Recommendations.

Printed in Switzerland
Geneva, 2012

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation
networks

Series Z Languages and general software aspects for telecommunication systems

	ITU-T Rec. G.8021/Y.1341 Amendment 1 (07/2011) – Characteristics of Ethernet transport network equipment functional blocks Amendment 1
	Summary
	History
	FOREWORD
	Amendment 1
	8.1.10 Delay Measurement (DM) processes
	8.1.11 One-way delay measurement (1DM) processes
	8.1.14 Synthetic loss measurement (SL) processes
	8.1.15 CSF Insert process
	8.1.16 CSF Extract process
	9.1.2 Subnetwork Connection Protection process
	9.1.3 Ring protection control process
	9.4.1 ETH Diagnostic Flow Termination functions for MEPs (ETHDe_FT)
	10.5 ETY4 to Ethernet PP-OS adaptation functions (ETY4/ETHPP-OS_A)
	10.5.1 ETY4 to Ethernet PP-OS adaptation source function (ETY4/ETHPP-OS_A_So)
	10.5.2 ETY4 to Ethernet PP-OS adaptation sink function (ETY4/ETHPP-OS_A_Sk)
	11.2.1 VC-n-X to ETC3 Adaptation Source function (Sn-X/ETC3_A_So)
	11.5.1 ODUk to ETH adaptation functions (ODUkP/ETH_A; k = 1, 2, 3)
	11.5.2 LCAS-capable ODUk-Xv to ETH adaptation functions (ODUkP-X-L/ETH_A; k = 1, 2, 3)
	11.5.4 ODU0P to 1 GbE client adaptation functions (ODU0P/CBRx_A)
	11.5.6 ETY3 to 1 GbE client adaptation functions (ETY3/CBRx _A)

	Appendix VIII – Configurations for ingress VID filtering

