

INTERNATIONAL TELECOMMUNICATION UNION



G.8021/Y.1341

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU (08/2004)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital networks - General aspects

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT GENERATION NETWORKS

Internet protocol aspects – Transport

# Characteristics of Ethernet transport network equipment functional blocks

ITU-T Recommendation G.8021/Y.1341

## TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

| INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS                                                                                                   | G.100-G.199   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-<br>TRANSMISSION SYSTEMS                                                                    | G.200–G.299   |
| INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE<br>SYSTEMS ON METALLIC LINES                                                         | G.300–G.399   |
| GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE<br>SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH<br>METALLIC LINES | G.400–G.449   |
| COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY                                                                                                  | G.450-G.499   |
| TESTING EQUIPMENTS                                                                                                                                 | G.500-G.599   |
| TRANSMISSION MEDIA CHARACTERISTICS                                                                                                                 | G.600–G.699   |
| DIGITAL TERMINAL EQUIPMENTS                                                                                                                        | G.700–G.799   |
| DIGITAL NETWORKS                                                                                                                                   | G.800–G.899   |
| DIGITAL SECTIONS AND DIGITAL LINE SYSTEM                                                                                                           | G.900–G.999   |
| QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS                                                                              | G.1000–G.1999 |
| TRANSMISSION MEDIA CHARACTERISTICS                                                                                                                 | G.6000–G.6999 |
| DIGITAL TERMINAL EQUIPMENTS                                                                                                                        | G.7000-G.7999 |
| DIGITAL NETWORKS                                                                                                                                   | G.8000–G.8999 |
| General aspects                                                                                                                                    | G.8000-G.8099 |
| Design objectives for digital networks                                                                                                             | G.8100-G.8199 |
| Quality and availability targets                                                                                                                   | G.8200–G.8299 |
| Network capabilities and functions                                                                                                                 | G.8300-G.8399 |
| SDH network characteristics                                                                                                                        | G.8400-G.8499 |
| Management of transport network                                                                                                                    | G.8500-G.8599 |
| SDH radio and satellite systems integration                                                                                                        | G.8600-G.8699 |
| Optical transport networks                                                                                                                         | G.8700–G.8799 |
|                                                                                                                                                    |               |

For further details, please refer to the list of ITU-T Recommendations.

# ITU-T Recommendation G.8021/Y.1341

# Characteristics of Ethernet transport network equipment functional blocks

#### **Summary**

This Recommendation specifies both the functional components and the methodology that should be used in order to specify Ethernet transport network functionality of network elements; it does not specify individual Ethernet transport network equipment as such.

#### Source

ITU-T Recommendation G.8021/Y.1341 was approved on 22 August 2004 by ITU-T Study Group 15 (2001-2004) under the ITU-T Recommendation A.8 procedure.

#### Keywords

Atomic functions, equipment functional blocks, Ethernet transport network.

i

#### FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

#### NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

#### INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database.

#### © ITU 2005

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

# CONTENTS

## Page

| 1  | Scope                      |                                                                            |  |
|----|----------------------------|----------------------------------------------------------------------------|--|
| 2  | References                 |                                                                            |  |
| 3  | Terms and definitions      |                                                                            |  |
| 4  | Acronyms and abbreviations |                                                                            |  |
| 5  | Method                     | ology                                                                      |  |
| 6  |                            | sion                                                                       |  |
|    | 6.1                        | Defects                                                                    |  |
|    | 6.2                        | Consequent actions                                                         |  |
|    | 6.3                        | Defect correlations                                                        |  |
|    | 6.4                        | Performance filters                                                        |  |
| 7  | Informa                    | tion flow across reference points                                          |  |
| 8  | Generic                    | processes                                                                  |  |
|    | 8.1                        | Mux/Demux process                                                          |  |
|    | 8.2                        | Queuing process                                                            |  |
|    | 8.3                        | Filter process                                                             |  |
|    | 8.4                        | Replicate process                                                          |  |
|    | 8.5                        | 802.3 protocols processes                                                  |  |
|    | 8.6                        | MAC FCS generation                                                         |  |
|    | 8.7                        | MAC frame check 15                                                         |  |
|    | 8.8                        | Link quality supervision                                                   |  |
|    | 8.9                        | FDI/BDI generation and detection                                           |  |
| 9  | Etherne                    | t MAC layer (ETH) functions 15                                             |  |
|    | 9.1                        | ETH flow forwarding functions                                              |  |
|    | 9.2                        | ETH flow termination functions (ETH_FT) 16                                 |  |
|    | 9.3                        | Ethernet/client adaptation functions                                       |  |
|    | 9.4                        | Traffic conditioning function (ETH_TC)                                     |  |
|    | 9.5                        | ETH segment sub-layer functions                                            |  |
| 10 | Etherne                    | t PHY layer (ETYn) functions                                               |  |
|    | 10.1                       | ETYn connection functions                                                  |  |
|    | 10.2                       | Ethernet PHY trail termination functions (ETYn_TT) 16                      |  |
|    | 10.3                       | ETYn/ETH adaptation functions (ETYn/ETH_A)                                 |  |
|    | 10.4                       | 1000BASE-(S/L/C)X ETY/Coding sub-layer adaptation functions(ETY3/ETC3_A)27 |  |
| 11 | Non-Et                     | hernet server to ETH adaptation functions                                  |  |
|    | 11.1                       | SDH/ETH adaptation functions (S/ETH_A)                                     |  |
|    | 11.2                       | SDH/ETC adaptation functions (S4-X/ETC3_A)                                 |  |
|    | 11.3                       | S4-64c/ETH-w adaptation functions                                          |  |
|    | 11.4                       | PDH/ETH adaptation functions (P/ETH_A)                                     |  |
|    |                            |                                                                            |  |

|                                                   | Page |
|---------------------------------------------------|------|
| 11.5 OTH/ETH adaptation functions (O/ETH_A)       | 47   |
| 11.6 MPLS/ETH adaptation functions (MPLS/ETH_A)   | 47   |
| 11.7 ATM VC/ETH adaptation functions (VC/ETH_A)   | 48   |
| 11.8 RPR/ETH adaptation functions (RPR/ETH_A)     | 48   |
| Appendix I – Applications and functional diagrams | 48   |

#### Introduction

This Recommendation forms part of a suite of Recommendations covering the full functionality of Ethernet transport network architecture and equipment (e.g., ITU-T Recs G.8010/Y.1306 and G.8012/Y.1308) and follows the principals defined in ITU-T Rec. G.805.

This Recommendation specifies a library of basic building blocks and a set of rules by which they may be combined in order to describe equipment used in an Ethernet transport network. The building blocks are based on atomic modelling functions defined in ITU-T Recs G.806 and G.809. The library comprises the functional building blocks needed to specify completely the generic functional structure of the Ethernet transport network. In order to be compliant with this Recommendation, the Ethernet functionality of any equipment which processes at least one of the Ethernet transport layers needs to be describable as an interconnection of a subset of these functional blocks contained within this Recommendation. The interconnections of these blocks should obey the combination rules given.

The specification method is based on functional decomposition of the equipment into atomic and compound functions. The equipment is then described by its Equipment Functional Specification (EFS) which lists the constituent atomic and compound functions, their interconnection, and any overall performance objectives (e.g., transfer delay, availability, etc.).

This is the first release of a planned series of releases of this Recommendation. This first release is intended to provide the necessary building blocks to support basic point-to-point connections of Ethernet ports over SDH transport networks (i.e., Ethernet Private Line (ITU-T Rec. G.8011.1/Y.1307.1)).

# ITU-T Recommendation G.8021/Y.1341

## **Characteristics of Ethernet transport network equipment functional blocks**

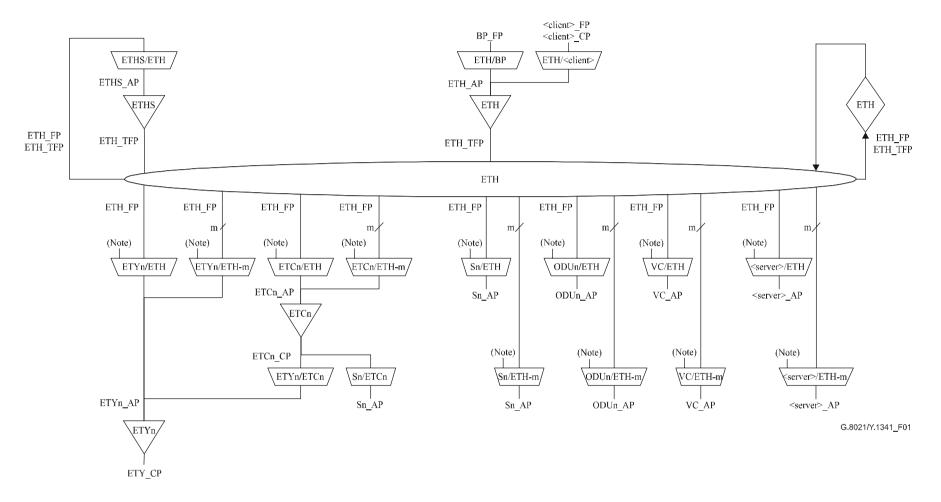
#### 1 Scope

This Recommendation covers the functional requirements of Ethernet functionality within Ethernet transport equipment.

This Recommendation uses the specification methodology defined in ITU-T Rec. G.806 in general for transport network equipment and is based on the architecture of Ethernet layer networks defined in ITU-T Rec. G.8010/Y.1306, the interfaces for Ethernet transport networks defined in ITU-T Rec. G.8012/Y.1308, and in support of services defined in the G.8011.x/Y.1307 series of Recommendations. The description is generic and no particular physical partitioning of functions is implied. The input/output information flows associated with the functional blocks serve for defining the functions of the blocks and are considered to be conceptual, not physical.

The functionality defined in this Recommendation can be applied at User-to-Network Interfaces (UNI) and Network-to-Network Interfaces (NNI) of the Ethernet transport network.

Not every functional block defined in this Recommendation is required for every application. Different subsets of functional blocks from this Recommendation and others (e.g., ITU-T Recs G.783, G.798, G.806 and I.732) may be assembled in different ways according to the combination rules given in these Recommendations (e.g., ITU-T Rec. G.806) to provide a variety of different capabilities. Network operators and equipment suppliers may choose which functions must be implemented for each application.


The internal structure of the implementation of this functionality (equipment design) need not be identical to the structure of the functional model, as long as all the details of the externally observable behaviour comply with the Equipment Functional Specification (EFS).

Equipment developed prior to the production of this Recommendation may not comply in all details with this Recommendation.

The equipment requirements described in this Recommendation are generic and no particular physical partitioning of functions is implied. The input/output information flows associated with the functional blocks define the functions of the blocks and are considered to be conceptual, not physical.

Figure 1 presents a summary illustration of the set of atomic functions associated with the Ethernet signal transport. These atomic functions may be combined in various ways to support a variety of Ethernet services, some of which are illustrated in Appendix I. The functions for the processing of management communication channels (e.g., SDH DCC or OTH COMMS) are not shown in these Figures in order to reduce the complexity of the Figures. For DCC or COMMS functions, refer to the specific layer network descriptions.

1



NOTE – ETH TFP interface of adaptation functions towards the ETH FT functions for logical link control. See ITU-T Rec. G.8010/Y.1306 and function definition for details.

#### Figure 1/G.8021/Y.1341 – Overview of G.8021/Y.1341 atomic model functions

## 2 References

The following ITU-T Recommendations and other references contain provisions which, through reference in this text, constitute provisions of this Recommendation. At the time of publication, the editions indicated were valid. All Recommendations and other references are subject to revision; users of this Recommendation are therefore encouraged to investigate the possibility of applying the most recent edition of the Recommendations and other references listed below. A list of the currently valid ITU-T Recommendations is regularly published. The reference to a document within this Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

- ITU-T Recommendation G.707/Y.1322 (2003), Network node interface for the synchronous digital hierarchy (SDH).
- ITU-T Recommendation G.709/Y.1331 (2003), *Interfaces for the optical transport network* (*OTN*).
- ITU-T Recommendation G.783 (2004), *Characteristics of synchronous digital hierarchy (SDH) equipment functional blocks.*
- ITU-T Recommendation G.805 (2000), *Generic functional architecture of transport networks*.
- ITU-T Recommendation G.806 (2004), *Characteristics of transport equipment Description methodology and generic functionality*.
- ITU-T Recommendation G.809 (2003), *Functional architecture of connectionless layer networks*.
- ITU-T Recommendation G.831 (2000), Management capabilities of transport networks based on the synchronous digital hierarchy (SDH).
- ITU-T Recommendation G.841 (1998), *Types and characteristics of SDH network protection architectures*.
- ITU-T Recommendation G.874 (2001), Management aspects of the optical transport network element.
- ITU-T Recommendation G.957 (1999), Optical interfaces for equipments and systems relating to the synchronous digital hierarchy.
- ITU-T Recommendation G.959.1 (2003), *Optical transport network physical layer interfaces*.
- ITU-T Recommendation G.7041/Y.1303 (2003), *Generic Framing Procedure (GFP)*.
- ITU-T Recommendation G.7042/Y.1305 (2004), *Link capacity adjustment scheme (LCAS) for virtual concatenated signals.*
- ITU-T Recommendation G.8010/Y.1306 (2004), Architecture of Ethernet layer networks.
- ITU-T Recommendation G.8011/Y.1307 (2004), *Ethernet over Transport Ethernet services framework*.
- ITU-T Recommendation G.8011.1/Y.1307.1 (2004), *Ethernet private line service*.
- ITU-T Recommendation G.8012/Y.1308 (2004), *Ethernet UNI and Ethernet NNI*.
- ITU-T Recommendation G.8251 (2001), *The control of jitter and wander within the optical transport network (OTN)*.
- IEEE 802-2001, Local and Metropolitan Area Networks: IEEE Standard: Overview and Architecture.

3

- IEEE Std. 802.1D-2004, Information Technology Telecommunications and Information Exchange Between Systems – Local and metropolitan Area Networks – Media Access Control (MAC) Bridges.
- IEEE Std. 802.1Q-2003, Local and Metropolitan Area Networks Virtual Bridged Local Area Networks.
- IEEE Std. 802.3-2002, Information Technology Local and Metropolitan Area Networks Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications.
- IEEE Std. 802.3ae-2002, IEEE Standard for Information technology LAN/MAN-Requirements: Part 3: Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications – Amendment: Media Access Control (MAC) Parameters, Physical Layers, and Management. Parameters for 10 Gb/s Operation.

## **3** Terms and definitions

This Recommendation uses the following terms defined in ITU-T Rec. G.8012/Y.1308:

3.1 User-to-Network Interface (UNI)

## 3.2 Network-to-Network Interface (NNI)

This Recommendation uses the following terms defined in ITU-T Rec. G.805:

- 3.3 access point
- 3.4 bidirectional reference point
- 3.5 connection point
- 3.6 link
- 3.7 link connection
- 3.8 network connection
- 3.9 trail
- 3.10 termination connection point
- 3.11 trail termination
- 3.12 service provider
- 3.13 network operator

This Recommendation uses the following terms defined in ITU-T Rec. G.806:

- 3.14 defects
- 3.15 consequent actions
- **3.16** defect correlations
- **3.17** performance filters
- 3.18 reference points

This Recommendation uses the following terms defined in ITU-T Rec. G.809:

- 3.19 access point
- 3.20 adaptation
- 3.21 adapted information
- 4 ITU-T Rec. G.8021/Y.1341 (08/2004)

- 3.22 characteristic information
- 3.23 client/server relationship
- 3.24 connectionless trail
- 3.25 flow
- 3.26 flow domain
- 3.27 flow domain flow
- 3.28 flow point
- 3.29 flow point pool
- 3.30 flow termination
- 3.31 flow termination sink
- 3.32 flow termination source
- 3.33 layer network
- 3.34 link flow
- 3.35 network
- 3.36 network flow
- 3.37 port
- 3.38 reference point
- 3.39 traffic unit
- 3.40 transport
- 3.41 transport entity
- 3.42 transport processing function
- 3.43 termination flow point
- 3.44 termination flow point pool

This Recommendation uses the following term defined in ITU-T Rec. G.8010/Y.1306:

#### 3.45 traffic conditioning function

This Recommendation uses the following term defined in ITU-T Rec. G.7041/Y.1303:

#### 3.46 Generic Framing Procedure (GFP)

This Recommendation uses the following terms defined in IEEE 802.3 clause 1.4:

- **3.47 10BASE-F**: IEEE 802.3 definition 1.4.3
- **3.48 10BASE-T**: IEEE 802.3 definition 1.4.9
- **3.49 100BASE-FX**: IEEE 802.3 definition 1.4.10
- **3.50 100BASE-T**: IEEE 802.3 definition 1.4.11
- **3.51 100BASE-TX**: IEEE 802.3 definition 1.4.14
- **3.52 100BASE-X**: IEEE 802.3 definition 1.4.15
- **3.53 1000BASE-CX**: IEEE 802.3 definition 1.4.16
- **3.54 1000BASE-LX**: IEEE 802.3 definition 1.4.17
- **3.55 1000BASE-SX**: IEEE 802.3 definition 1.4.18

- **3.56 1000BASE-T**: IEEE 802.3 definition 1.4.19
- **3.57 1000BASE-X**: IEEE 802.3 definition 1.4.20
- 3.58 8B/10B transmission code: IEEE 802.3 definition 1.4.24
- **3.59** Auto-negotiation: IEEE 802.3 definition 1.4.39
- **3.60** Code-group: IEEE 802.3 definition 1.4.77
- **3.61 Comma**: IEEE 802.3 definition 1.4.84
- **3.62** Full duplex: IEEE 802.3 definition 1.4.135
- **3.63** Jabber: IEEE 802.3 definition 1.4.150
- **3.64** Media Access Control (MAC): IEEE 802.3 definition 1.4.167
- 3.65 Medium Attachment Unit (MAU): IEEE 802.3 definition 1.4.169
- 3.66 Non-return-to-zero, Invert on ones (NRZI): IEEE 802.3 definition 1.4.183
- **3.67** ordered set: IEEE 802.3 definition 1.4.195
- 3.68 Physical Coding Sublayer (PCS): IEEE 802.3 definition 1.4.210
- 3.69 Physical Layer Entity (PHY): IEEE 802.3 definition 1.4.211
- 3.70 Physical Medium Attachment (PMA) sublayer: IEEE 802.3 definition 1.4.212
- 3.71 Physical Medium Dependent (PMD) sublayer: IEEE 802.3 definition 1.4.213
- 3.72 Physical Signalling Sublayer (PLS): IEEE 802.3 definition 1.4.214
- **3.73 Qtag prefix**: IEEE 802.3 definition 1.4.222
- 3.74 Reconciliation Sublayer (RS): IEEE 802.3 definition 1.4.228
- 3.75 Tagged MAC frame: IEEE 802.3 definition 1.4.269
- **3.76 Twisted pair**: IEEE 802.3 definition 1.4.276

This Recommendation defines the following terms:

**3.77 Ethernet Termination Flow Replication Point (ETHTF\_PP)**: Connection point between <Srv>/ETH adaptation source and sink. ETH\_CI from source Ethernet Termination Flow Point (ETH\_TFP) is replicated and delivered across ETHTF\_PP to sink filter process.

**3.78** Ethernet Flow Replication Point (ETHF\_PP): Connection point between <Srv>/ETH adaptation source and sink. ETH\_CI from source Ethernet Flow Point (ETH\_FP) is replicated and delivered across ETHF\_PP to sink Ethernet Termination Flow Point (ETH\_TFP).

**3.79 Ethernet Replicated Information (ETH\_PI)**: Replicated ETH\_CI delivered across ETHTF\_PP or ETHF\_PP.

## 4 Acronyms and abbreviations

This Recommendation uses the following abbreviations:

- AI Adapted Information
- AP Access Point
- ATM Asynchronous Transfer Mode
- CI Characteristic Information
- CP Connection Point

| DA     | Destination Address                              |
|--------|--------------------------------------------------|
| EC     | Ethernet Connection                              |
| EoA    | Ethernet over ATM                                |
| EoM    | Ethernet over MPLS                               |
| EoO    | Ethernet over OTH                                |
| EoP    | Ethernet over PDH                                |
| EoR    | Ethernet over RPR                                |
| EoS    | Ethernet over SDH                                |
| ЕоТ    | Ethernet over Transport                          |
| EPL    | Ethernet Private Line                            |
| EPLAN  | Ethernet Private LAN                             |
| ETC    | Ethernet Coding                                  |
| ETH    | Ethernet MAC layer network                       |
| ETH_CI | Ethernet MAC Characteristic Information          |
| ETY    | Ethernet PHY layer                               |
| ETYn   | Ethernet PHY layer network of type <i>n</i>      |
| EVC    | Ethernet Virtual Connection                      |
| EVPL   | Ethernet Virtual Private Line                    |
| EVPLAN | Ethernet Virtual Private LAN                     |
| EXM    | Extension header Mismatch                        |
| FCS    | Frame Check Sequence                             |
| FD     | Flow Domain                                      |
| FDF    | Flow Domain Flow                                 |
| FP     | Flow Point                                       |
| FT     | Flow Termination                                 |
| GFP    | Generic Framing Procedure                        |
| GFP-F  | Generic Framing Procedure – Frame Mapped         |
| GFP-T  | Generic Framing Procedure – Transparent Mapped   |
| IEEE   | Institute of Electronic and Electrical Engineers |
| IETF   | Internet Engineering Task Force                  |
| LAN    | Local Area Network                               |
| LAPS   | Link access procedure – SDH                      |
| LCAS   | Link Capacity Adjustment Scheme                  |
| LFD    | Loss of Frame Delineation                        |
| LLC    | Logical Link Control                             |
| LOS    | Loss Of Signal                                   |
| MAC    | Media Access Control                             |
|        |                                                  |

| MAU     | Management Attachment Unit                                                                               |
|---------|----------------------------------------------------------------------------------------------------------|
| MEF     | Metro Ethernet Forum                                                                                     |
| MPLS    | Multi-Protocol Label Switching                                                                           |
| NNI     | Network-to-Network Interface                                                                             |
| NT      | Network Termination                                                                                      |
| OAM     | Operations, Administration, Maintenance                                                                  |
| ODU     | Optical Channel Data Unit                                                                                |
| ODUj    | Optical Channel Data Unit – order j                                                                      |
| ODUj-Xv | Virtual concatenated Optical Channel Data Unit – order j                                                 |
| ODUk    | Optical Channel Data Unit – order k                                                                      |
| ODUk-Xv | Virtual concatenated Optical Channel Data Unit – order k                                                 |
| OTH     | Optical Transport Hierarchy                                                                              |
| P11s    | 1544 kbit/s PDH path layer with synchronous 125 $\mu s$ frame structure according to ITU-T Rec. G.704    |
| P12s    | 2048 kbit/s PDH path layer with synchronous 125 $\mu s$ frame structure according to ITU-T Rec. G.704    |
| P31s    | 34 368 kbit/s PDH path layer with synchronous 125 $\mu s$ frame structure according to ITU-T Rec. G.832  |
| P4s     | 139 264 kbit/s PDH path layer with synchronous 125 $\mu s$ frame structure according to ITU-T Rec. G.832 |
| PA      | (Ethernet) Preamble                                                                                      |
| PCS     | Physical Convergence Sublayer                                                                            |
| PDH     | Plesiochronous Digital Hierarchy                                                                         |
| PHY     | Physical Layer Entity                                                                                    |
| PLM     | Path Label Mismatch                                                                                      |
| PLS     | Physical Layer Signalling                                                                                |
| PMA     | Physical Medium Attachment sublayer                                                                      |
| PMD     | Physical Medium Dependent sublayer                                                                       |
| РОН     | Path OverHead                                                                                            |
| QTag    | IEEE 802.1Q tag                                                                                          |
| RFC     | Request for Comments                                                                                     |
| RPR     | Resilient Packet Ring                                                                                    |
| SA      | Source Address                                                                                           |
| SDH     | Synchronous Digital Hierarchy                                                                            |
| SFD     | Start of Frame Delimiter                                                                                 |
| SSF     | Server Signal Fail                                                                                       |
| STM-N   | Synchronous Transport Module – level N                                                                   |
| TFP     | Termination Flow Point                                                                                   |

| TSF     | Trail Signal Fail                                |
|---------|--------------------------------------------------|
| UNI     | User Network Interface                           |
| UPI     | GFP User Payload Identifier                      |
| UPM     | User Payload Mismatch                            |
| VC      | Virtual Channel (ATM) or Virtual Container (SDH) |
| VCAT    | Virtual ConCATenation                            |
| VC-m    | Lower Order VC – order m                         |
| VC-n    | Higher Order VC – order n                        |
| VC-n-Xc | Contiguous concatenated VC - order n             |
| VC-n-Xv | Virtual concatenated VC – order n                |
| VLAN    | Virtual LAN                                      |

## 5 Methodology

For the basic methodology to describe transport network functionality of network elements, refer to clause 5/G.806. For Ethernet-specific extensions to the methodology, see clause 5/G.8010/Y.1306.

#### 6 Supervision

The generic supervision functions are defined in clause 6/G.806. Specific supervision functions for the Ethernet transport network are defined in this clause.

#### 6.1 Defects

For defects, see ITU-T Rec. G.806 and the specific atomic functions.

#### 6.2 Consequent actions

For consequent actions, see ITU-T Rec. G.806 and the specific atomic functions.

#### 6.3 Defect correlations

For the defect correlations, see the specific atomic functions.

#### 6.4 **Performance filters**

#### 6.4.1 One-second performance monitoring filters associated with counts

For further study.

#### 6.4.2 Performance monitoring filters associated with gauges

For further study.

#### 7 Information flow across reference points

See clause 7/G.806 for the generic description of information flow. For Ethernet-specific information flow, see the description of the functions in clause 9.

## 8 Generic processes

Generic processes are defined in clause 8/G.806. This clause defines generic processes specific to equipment supporting the Ethernet transport network.

Figure 2 presents a high level view of the processes that are present in a generic Server to ETH adaptation function ( $\langle Srv \rangle / ETH$ ). The information crossing the  $\langle Srv \rangle / ETH$  termination flow point (ETH\_TFP) is referred to as the ETH characteristic information (ETH\_CI). The information crossing the Server layer access point ( $\langle Srv \rangle _AP$ ) is referred to as the Server-specific adapted information ( $\langle Srv \rangle _AI$ ). Note that, for some server signals, not all processes need to be present, as defined in the server-specific adaptation functions.

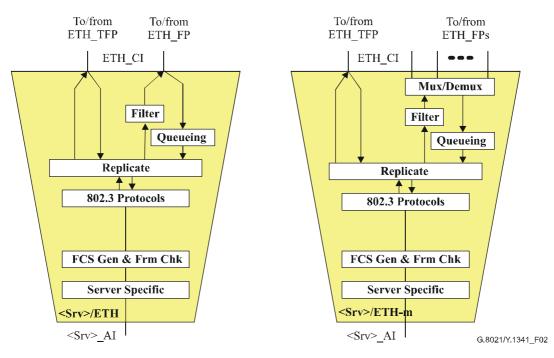



Figure 2/G.8021/Y.1341 – Server to ETH adaptation functions

The "Filter", "Queuing", "Mux/Demux", "Replicate", "802.3 Protocols", "MAC FCS Generate" and "MAC Frame Check" processes are defined in subsequent subclauses. Server-specific processes are specified in server-specific clauses.

Valid filter and layer 2 protocol actions for specific services are indicated in the G.8011.x/Y.1307 series of Recommendations for services supported by those Recommendations.

NOTE 1 – Filtering in <Srv>/ETH\_A sink adaptation function is not applied to frames forwarded to the ETH\_TFP. Rather, the ETH Flow Termination sink function (currently *for further study*) will include any necessary filtering of frames received across ETH\_TFP from <Srv>/ETH\_A.

NOTE 2 – Queuing of frames in the sink direction is also not applied. If queuing of frames in the sink direction is required when traffic conditioning is applied, this will be included in the Traffic Conditioning function (currently *for further study*).

NOTE 3 – For the G.8011.1/Y.1307.1 EPL service, ETH\_TFP is unconnected. For services supporting ETH\_TFP in the source direction, prioritization of frames received across the ETH\_FP and ETH\_TFP interfaces will be required. Such prioritization is *for further study*.

NOTE 4 – The IEEE 802.3ae-2002 Service Interface is supported within the atomic models. Its specific location is for further study.

## 8.1 Mux/Demux process

For further study.

## 8.2 Queuing process

The queuing process buffers received ETH frames for output (see Figure 3). The queuing process is also responsible for dropping frames if their rate at the ETH\_CI is higher than the <Srv>\_AI\_D can accommodate, as well as maintaining PM counters for dropped frames. Additional performance monitor counters per IEEE 802.3-2002 clause 30 are *for further study*.

In response to RI\_PauseRequest asserted, the queuing process halts the flow of frames to the Replicate process. Note that RI\_PauseRequest is not connected in transport network equipment.

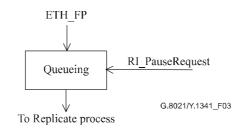
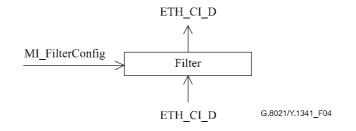



Figure 3/G.8021/Y.1341 – Queuing process


#### 8.2.1 IEEE 802.1D queuing process

The IEEE 802.1D queuing process is applicable to <Srv>/ETH\_A\_Sk functions. This process is defined in IEEE 802.1D (clauses 7.7.3 and 7.7.4).

## 8.2.2 IEEE 802.1Q queuing process

The IEEE 802.1Q queuing process is applicable to <Srv>/ETH-m\_A\_Sk functions. This process is defined in IEEE 802.1Q (clauses 8.6.5 and 8.6.6).

#### 8.3 Filter process



#### Figure 4/G.8021/Y.1341 – Filter process

The filter process maintains the filter action for each of the thirty-three group MAC addresses indicating control frames as defined in 6.3/G.8012/Y.1308. Valid filter actions are "pass" and "block". The filter action for these thirty-three MAC addresses can be configured separately. If the destination address of the incoming ETH\_CI\_D matches one of the above addresses, the filter process shall perform the corresponding configured filter action:

- Block: The frame is discarded by the filter process;
- Pass: The frame is passed unchanged through the filter process.

If none of the above addresses match, the ETH\_CI\_D is passed.

Valid filter actions for specific services are indicated in the G.8011.x/Y.1307 series of Recommendations for services supported by those Recommendations. The default filter action value shall be "pass" for all frames with the exception of MAC control frames for which the default value shall be "block".

#### 8.4 **Replicate process**

See Figure 5.

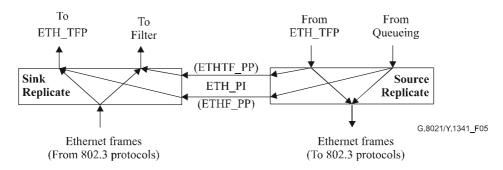



Figure 5/G.8021/Y.1341 – Replicate processes

The <Srv>/ETH\_A\_So replicate process shall:

- replicate ETH\_CI traffic units received on the input from the queuing process and deliver them as ETH\_PI to the ETHF\_PP interface and the 802.3 protocols process;
- replicate ETH\_CI traffic units received on the input from the ETH\_TFP and deliver them as ETH\_PI to the ETHTF\_PP interface and 802.3 protocols process.

The <Srv>/ETH\_A\_Sk replicate process shall:

- replicate ETH\_CI traffic units received on the input from the 802.3 protocols process and deliver them to the ETH\_TFP and to the filter process;
- deliver ETH\_PI traffic units received on the input from the ETHF\_PP interface to the ETH\_TFP;
- deliver ETH PI traffic units received on the input from the ETHTF PP to the filter process.

#### 8.5 802.3 protocols processes

802.3 protocols processes include source and sink handling of MAC Control and optionally IEEE 802.3 slow protocols, as shown in Figure 6. The following subclauses specify processes for each of the illustrated process blocks.

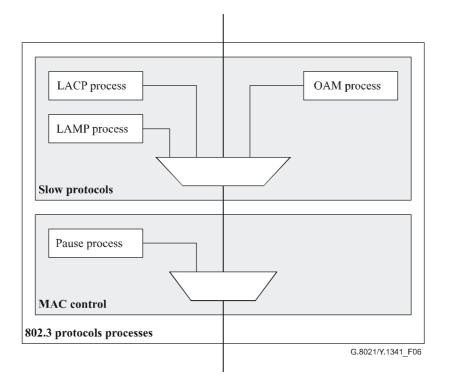



Figure 6/G.8021/Y.1341 – 802.3 protocols processes

## 8.5.1 MAC control process

The Ethernet MAC control function specified in IEEE 802.3-2002 clause 31 shall be implemented in all interfaces conforming to this Recommendation.

The process intercepts all MAC control frames, other frames are passed through unchanged. MAC control frames are characterized by the length/type value that is used (88-08). Every MAC control frame contains an opcode. MAC control frames are handled based on the value of the opcode. If the opcode is not supported, the frame is discarded. If the opcode is supported, the frame is processed by the corresponding MAC control function. In IEEE 802.3-2002, Annex 31A the opcode assignment is defined.

#### 8.5.1.1 802.3 pause processes

The pause process handles MAC control frames with the opcode value 00-01, as described in IEEE 802.3, Annex 31B. There are two kinds of pause processes: Pause Transmit Process and Pause Receive Process.

#### 8.5.1.1.1 Pause transmit process

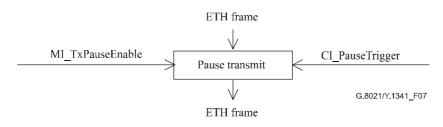



Figure 7/G.8021/Y.1341 – Transmit pause process

If enabled (MI\_TxPauseEnable = true), this optional process generates pause frames according to IEEE 802.3 clause 31 and Annexes 31A and 31B.

The generation of the pause frame is triggered as soon as a CI\_PauseTrigger is received. The CI\_PauseTrigger primitive that has triggered the Pause frame generation conveys the pause\_time parameter used in the generated pause frame.

The CI\_PauseTrigger is generated as a result of the 802.3-2002 service interface signal MA\_CONTROL.request described in 802.3-2002 clause 2.3.3. The generation of the MA\_CONTROL.request is outside of the scope of this Recommendation.

#### **8.5.1.1.2** Pause receive process

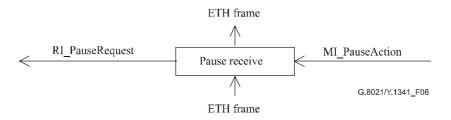



Figure 8/G.8021/Y.1341 – Receive pause process

On receipt of a pause frame, the corresponding action shall be performed according to the MI\_PauseAction configuration. Valid actions are "block" and "process".

- Process: A received pause frame results in a RI\_PauseRequest, conveying the received pause\_time value, to the paired <Srv>/ETH\_A\_So.
- Block: Discard the received pause frame.

#### 8.5.2 802.3 slow protocols processes

This optional process inspects all slow protocol frames, other frames are passed through unchanged. Slow protocol frames are characterized by the length/type value that is used (88-09). Every slow protocol frame contains a subtype field that distinguishes between different slow protocols. Table 43B-3 of IEEE 802.3-2002 defines the assignment of subtypes to protocols. The processing of the slow protocol frames depends on the value of the subtype field. There are three options:

- Illegal: The subtype field contains an illegal value (>10) and is discarded;
- Unsupported: The subtype field indicates a protocol that is not supported and the frame is passed through.
- Supported: The subtype field indicates a protocol that is supported, the frame is processed by the corresponding protocol function.

#### 8.5.2.1 LACP process

For further study.

## 8.5.2.2 LAMP process

For further study.

#### 8.5.2.3 OAM process

For further study.

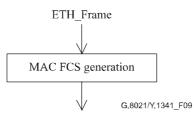



Figure 9/G.8021/Y.1341 – MAC FCS generation process

The MAC FCS is calculated over the ETH\_CI traffic unit and inserted into the MAC FCS fields of the frame as defined in IEEE 802.3 subclause 4.2.3.1.2.

NOTE – For some server signals, MAC FCS generation is not supported. This will be defined in the server-specific adaptation functions.

#### 8.7 MAC frame check

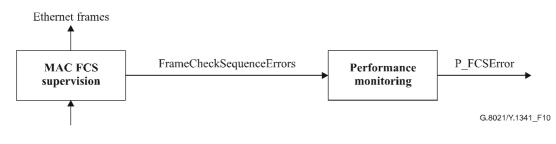



Figure 10/G.8021/Y.1341 – MAC frame check process

The MAC FCS is calculated over the ETH\_CI traffic unit and checked as specified in IEEE 802.3 subclause 4.2.4.1.2. If errors are detected, the frame is discarded. Errored frames are indicated by FrameCheckSequenceErrors.

NOTE – For some server signals, MAC FCS supervision is not supported. This will be defined in the server-specific adaptation functions.

#### 8.8 Link quality supervision

Counts of transmitted and received octets and frames are maintained in <Srv>/ETH\_A functions per the requirements of IEEE 802.3 clause 30. Discarded jabber frames are counted in ETYn/ETH\_A\_So functions.

Additional link quality performance monitors per IEEE 802.3-2002 clause 30 are for further study.

#### 8.9 FDI/BDI generation and detection

For further study.

## 9 Ethernet MAC layer (ETH) functions

#### 9.1 ETH flow forwarding functions

For further study.

## 9.2 ETH flow termination functions (ETH\_FT)

For further study.

# 9.3 Ethernet/client adaptation functions

For further study.

# 9.4 Traffic conditioning function (ETH\_TC)

For further study.

# 9.5 ETH segment sub-layer functions

For further study.

# 10 Ethernet PHY layer (ETYn) functions

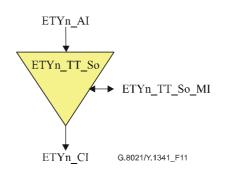
This Recommendation supports the following full-duplex Ethernet PHYs:

- ETY1: 10BASE-T (twisted pair electrical; full-duplex only);
- ETY2.1: 100BASE-TX (twisted pair electrical; full-duplex only; *for further study*);
- ETY2.2: 100BASE-FX (optical; full-duplex only; *for further study*);
- ETY3.1: 1000BASE-T (copper; *for further study*);
- ETY3.2: 1000BASE-LX/SX (long- and short-haul optical; full duplex only);
- ETY3.3: 1000BASE-CX (short-haul copper; full duplex only; *for further study*);
- ETY4: 10GBASE-S/L/E (optical; *for further study*).

# **10.1** ETYn connection functions

Not applicable; there are no connection functions defined for this layer.

# **10.2** Ethernet PHY trail termination functions (ETYn\_TT)


In the sink direction, Ethernet PHY trail termination functions (ETYn\_TT) terminate received optical or electrical Ethernet signals, delivering a conditioned signal to the ETYn/ETH\_Sk\_A sink adaptation function. In the source direction, ETYn\_TT trail termination accepts an electrical signal from the ETYn/ETH\_So\_A source adaptation function, and outputs an appropriate electrical or optical signal to the Ethernet electrical or optical delivery medium.

For each of the ETYn\_TT functions, a similar set of source and sink processes is required. Tables in the following subclauses specify ETYn\_TT functions by incorporating references to appropriate clauses in IEEE 802.3 for the various PHY types.

Allocation of Link Test Fail and Auto-Negotiation related functionality to ETYn trail termination or ETYn/ETH adaptation is *for further study*.

#### 10.2.1 ETYn Trail Termination Source function (ETYn\_TT\_So)

Symbol



#### Figure 11/G.8021/Y.1341 – ETYn\_TT\_So symbol

#### Interfaces

#### Table 1/G.8021/Y.1341 – ETYn\_TT\_So interfaces

| Inputs                                                                              | Outputs                       |
|-------------------------------------------------------------------------------------|-------------------------------|
| ETYn_AI_Data<br>ETYn_AI_Clock<br>ETYn_TT_So_MI_PHYType<br>ETYn_TT_So_MI_PHYTypeList | ETYn_CI_Data<br>ETYn_CI_Clock |

#### Processes

| ETYn_TT_So process | ETYn type | IEEE 802.3 specifying clauses              |
|--------------------|-----------|--------------------------------------------|
| Transmit process   | ETY1      | 14.2.1.1 Transmit function requirements    |
|                    |           | 14.2.2.2 PMA to twisted-pair messages      |
|                    |           | 14.3.1.1 Isolation requirements            |
|                    |           | 14.3.1.2 Transmitter specifications        |
|                    | ETY2.1    | 100BASE-TX (for further study)             |
|                    | ETY2.2    | 100BASE-FX (clause 26; for further study)  |
|                    | ETY3.1    | 1000BASE-T (for further study)             |
|                    | ETY3.2    | 1000BASE-LX/SX: clause 38 source processes |
|                    | ETY3.3    | 1000BASE-CX (clause 39; for further study) |
|                    | ETY4      | 10GBASE-S/L/E (for further study)          |

#### ETY1\_TT\_So (10BASE-T) Transmit process:

Transfers ETY1\_AI\_Data containing Manchester-encoded data from the ETY1/ETH\_So\_A to the twisted pair electrical medium.

# ETY2.1\_TT\_So (100BASE-TX) Transmit process:

For further study.

#### ETY2.2\_TT\_So (100BASE-FX) Transmit process:

For further study.

## ETY3.1\_TT\_So (1000BASE-T) Transmit process:

For further study.

## ETY3.2\_TT\_So (1000BASE-SX/LX) Transmit process:

Converts received ETY1\_AI\_Data containing 8B/10B-encoded data and control into optical signals delivered to the optical medium. Requirements of IEEE 802.3 clauses 38.2.2, 38.3, 38.3.1, 38.3.3 and 38.5 apply to SX transmitters; clauses 38.2.2, 38.4, 38.4.1, 38.4.3 and 38.5 apply to LX transmitter.

## ETY3.3\_TT\_So (1000BASE-CX) Transmit process:

For further study.

#### ETY4\_TT\_So (10GBASE-S/L/E) Transmit process:

*For further study.* 

Defects

None.

**Consequent actions** 

None.

**Defect correlations** 

None.

#### **Performance monitoring**

None.

## 10.2.2 ETYn Trail Termination Sink function (ETYn\_TT\_Sk)

#### Symbol

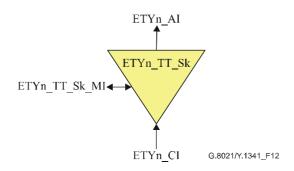



Figure 12/G.8021/Y.1341 – ETYn\_TT\_Sk symbol

#### Interfaces

| Inputs       | Outputs                                                            |
|--------------|--------------------------------------------------------------------|
| ETYn_CI_Data | ETYn_AI_Data<br>ETYn_AI_Clock<br>ETYn_AI_TSF<br>ETYn_TT_Sk_MI_cLOS |

## Table 2/G.8021/Y.1341 – ETYn\_TT\_Sk interfaces

#### Processes

| ETYn_TT_Sk process | ETYn type | IEEE 802.3 specifying clauses                           |  |
|--------------------|-----------|---------------------------------------------------------|--|
| Receive process    | ETY1      | 10BASE-T:                                               |  |
|                    |           | 14.2.1.2 Receive function requirements                  |  |
|                    |           | 14.2.2.3 Twisted-pair to PMA messages                   |  |
|                    |           | 14.3.1.1 Isolation requirements                         |  |
|                    |           | 14.3.1.3 Receiver specifications                        |  |
|                    | ETY2.1    | 100BASE-TX (clause 25 sink processes for further study) |  |
|                    | ETY2.2    | 100BASE-FX (clause 26 sink processes for further study) |  |
|                    | ETY3.1    | 1000BASE-T (for further study)                          |  |
|                    | ETY3.2    | 1000BASE-LX/SX: clause 38 sink processes                |  |
|                    | ETY3.3    | 1000BASE-CX (clause 39; for further study)              |  |
|                    | ETY4      | 10GBASE-S/L/E (for further study)                       |  |

#### ETY1 (10BASE-T) Receive process:

Transfers Manchester-encoded ETYn\_CI\_Data from the twisted pair electrical medium to the ETY1/ETH\_Sk\_A function. Detects and reports dLOS.

#### ETY2.1\_TT\_Sk (100BASE-TX) Receive process:

For further study.

#### ETY2.2\_TT\_Sk (100BASE-FX) Receive process:

*For further study.* 

#### ETY3.1\_TT\_Sk (1000BASE-T) Receive process:

For further study.

#### ETY3.2\_TT\_Sk (1000BASE-SX/LX) Receive process:

Converts optical signal (ETY3.2\_CI\_Data) received from the optical medium into an 8B/10B-coded signal stream. Detects and reports dLOS. Conditions signal for clock and data recovery process such that receive jitter requirements are met. O/E conversion and signal detection per IEEE 802.3 38.2.3 and 38.2.4. Clauses 38.3.2, 38.3.3, and 38.5 apply to SX receiver; 38.4.2, 38.4.3 and 38.5 apply to LX receiver.

#### ETY3.3\_TT\_Sk (1000BASE-CX) Receive process:

*For further study.* 

#### ETY4\_TT\_Sk (10GBASE-S/L/E) Receive process:

*For further study.* 

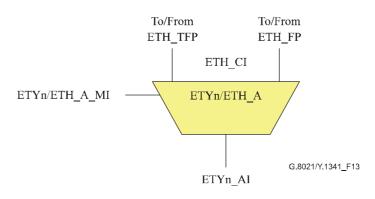
## Defects

dLOS: (Detection criteria are ETYn PHY specific and are for further study.)

#### **Consequent actions**

 $aTSF \leftarrow dLOS.$ 

## **Defect correlations**


 $cLOS \leftarrow dLOS.$ 

#### **Performance monitoring**

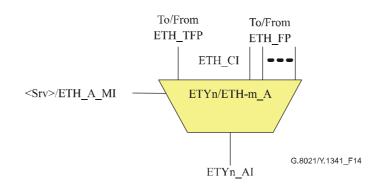
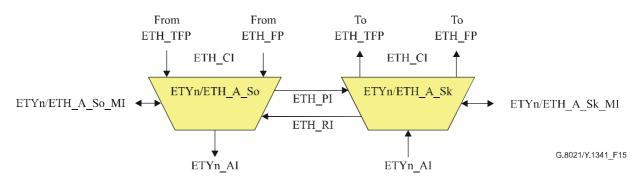
None.

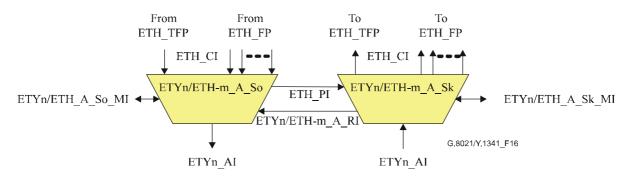
## **10.3** ETYn/ETH adaptation functions (ETYn/ETH\_A)

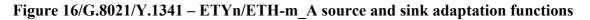
Figures 13 and 14 illustrate Ethernet trail termination to ETH adaptation functions (ETYn/ETH\_A and ETYn/ETH-m\_A). Information crossing the ETH flow point (ETH\_FP) and ETH termination flow point (ETH\_TFP) is referred to as ETH characteristic information (ETH\_CI). Information crossing the ETYn access point (ETY\_AP) is referred to as ETYn adapted information (ETYn\_AI).



#### Figure 13/G.8021/Y.1341 – ETYn server to ETH adaptation function



Figure 14/G.8021/Y.1341 – ETYn/ETH adaptation function (Multiple Flow Point)


The ETYn/ETH\_A adaptation function shown in Figure 13 can be further decomposed into separate source and sink adaptation functions shown in Figure 15:



#### Figure 15/G.8021/Y.1341 - ETYn/ETH\_A source and sink adaptation functions

Likewise, ETYn/ETH-m\_A multiplexed flow adaptation function shown in Figure 14 can be decomposed into separate source and sink adaptation functions shown in Figure 16:





#### 10.3.1 ETYn/ETH\_A adaptation source function (ETYn/ETH\_A\_So)

Symbol

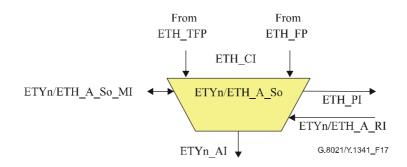



Figure 17/G.8021/Y.1341 – ETYn/ETH\_A\_So symbol

| Inputs                         | Outputs                                                                      |
|--------------------------------|------------------------------------------------------------------------------|
| ETH_CI_Data<br>ETH_CI_Clock    | ETYn_AI_Data<br>ETYn_AI_Clock                                                |
| ETYn/ETH_A_CI_PauseTrigger     | ETH_PI_Data                                                                  |
| ETYn/ETH_A_RI_PauseRequest     | ETYn/ETH_A_So_MI_Jabber                                                      |
| ETYn/ETH_A_So_MI_TxPauseEnable | ETYn/ETH_A_So_MI_FramesTransmittedOK<br>ETYn/ETH_A_So_MI_OctetsTransmittedOK |

Table 3/G.8021/Y.1341 - ETYn/ETH\_A\_So interfaces

#### Processes

A process diagram of this function is shown in Figure 18.

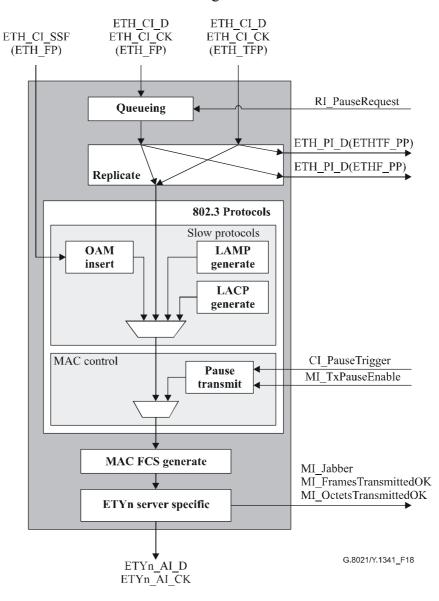



Figure 18/G.8021/Y.1341 – ETYn/ETH\_A\_So process diagram

The "Queuing", "Replicate", "OAM Insert", "LAMP Generate", "LACP Generate", "Pause Transmit", and "MAC FCS Generate" processes are defined in clause 8 (Generic processes).

The "ETYn Server-specific" source processes are described below:

| ETYn/ETH_A_So process           | ETYn type     | IEEE 802.3 specifying clauses            |
|---------------------------------|---------------|------------------------------------------|
| PLS source processes            | ETY1          | 7.2 PLS Functional specification         |
|                                 |               | 7.3.1.1 Data encoding (TX)               |
| Jabber source process           |               | 14.2.1.6 Jabber function                 |
| Transmit source process         |               | 14.3.1.2 Transmitter specifications      |
|                                 |               | 14.2.3 MAU State Diagrams                |
|                                 | ETY2.1        | 100BASE-T (clause 25; for further study) |
|                                 | ETY2.2        | 100BASE-X (for further study)            |
|                                 | ETY3.1        | 1000BASE-T (for further study)           |
| Frame delivery process          | ETY3.2 and .3 | 1000BASE-X RS source process Clause 35;  |
| 8B/10B Encoding and rate        |               | 1000BASE-X clause 36                     |
| adaptation                      |               | 1000BASE-X clause 37                     |
| Auto-negotiation source process |               |                                          |
|                                 | ETY4          | 10GBASE-R (for further study)            |

## ETY1/ETH source adaptation processes:

For 10BASE-T, Ethernet frames are delivered to the Physical Layer Signalling (PLS) source process one bit at a time. The PLS applies Manchester-encoding to received bits, delivering the encoded data (ETY1\_AI) to the ETY1 trail termination source (ETY1\_TT\_So).

The Jabber process prevents the PLS from sending frames that are too large.

## ETY2/ETH source adaptation processes:

For further study.

## ETY3.1/ETH source adaptation processes:

For further study.

## ETY3.2/ETH and ETY3.3/ETH source adaptation processes:

The Reconciliation Sublayer (RS) source process delivers MAC frame data from the ETYn serverindependent MAC FCS generate process to the 8B/10B encoding process.

The 8B/10B encoding process converts received data and control words from the RS source process into 8B/10B codewords per IEEE 802.3 clause 36. This process performs rate adaptation by Idle insertion per clause 36.

## ETY4/ETH source adaptation processes:

For further study.

Defects

None.

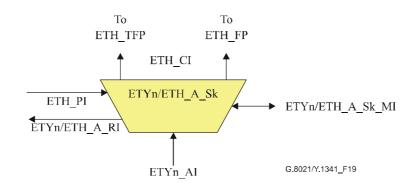
#### **Consequent actions**

None.

#### **Defect correlations**

None.

## **Performance monitoring**


MI\_Jabber count per IEEE 802.3 clause 30.

MI OctetsTransmittedOK per IEEE 802.3 clause 30.

MI\_FramesTransmittedOK per IEEE 802.3 clause 30.

# 10.3.2 ETYn/ETH\_A adaptation sink function (ETYn/ETH\_A\_Sk)

## Symbol



## Figure 19/G.8021/Y.1341 – ETYn/ETH\_A\_Sk symbol

## Interfaces

| Inputs                        | Outputs                                                                |
|-------------------------------|------------------------------------------------------------------------|
| ETYn_AI_Data                  | ETH_CI_Data                                                            |
| ETYn_AI_Clock                 | ETH_CI_Clock                                                           |
| ETH_PI_Data                   | ETH_CI_SSF                                                             |
| ETYn/ETH_A_Sk_MI_FilterConfig | ETYn/ETH_A_RI_PauseRequest                                             |
| ETYn/ETH A Sk MI PauseAction  | ETYn/ETH A Sk MI FCSErrors                                             |
|                               | ETYn/ETH_A_Sk_MI_FramesReceivedOK<br>ETYn/ETH_A_Sk_MI_OctetsReceivedOK |

#### Table 4/G.8021/Y.1341 – ETYn/ETH\_A\_Sk interfaces

#### Processes

A process diagram of this function is shown in Figure 20.

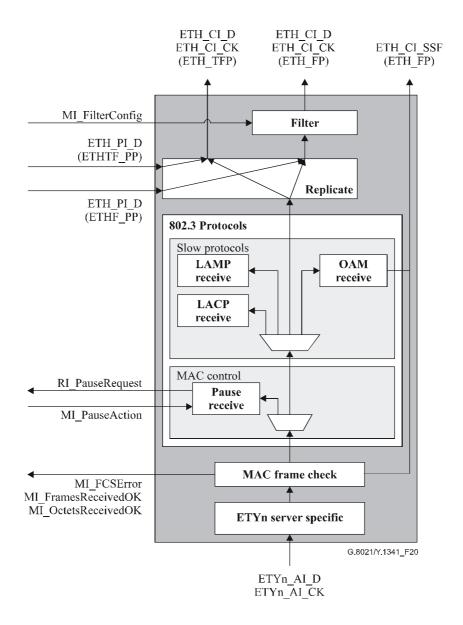



Figure 20/G.8021/Y.1341 – ETYn/ETH\_A\_Sk process diagram

The "Filter", "Replicate", "MAC frame check", "Pause receive", "OAM receive", "LAMP receive", and "LACP receive" processes are defined in clause 8 (Generic processes).

The "ETYn server-specific" sink processes are described below:

| ETYn/ETH_A_Sk process           | ETYn type     | IEEE 802.3 specifying clauses                  |
|---------------------------------|---------------|------------------------------------------------|
| Clock and Data recovery         | ETY1          | 14.3.1.3 Receiver specifications               |
| PLS sink processes              |               | 14.2.3 MAU State Diagrams                      |
|                                 |               | 7.2 PLS functional specification               |
|                                 |               | 7.3.1.1 Data encoding                          |
|                                 | ETY2.1        | 100BASE-T (clause 25; for further study)       |
|                                 | ETY2.2        | 100BASE-X (for further study)                  |
|                                 | ETY3.1        | 1000BASE-T (for further study)                 |
| Clock and Data recovery         | ETY3.2        | 1000BASE-LX/SX per clause 38                   |
|                                 | ETY3.3        | 1000BASE-CX per clause 39 (for further study)  |
| 8B/10B codeword synchronization | ETY3.2 and .3 | 1000BASE-X per clause 36                       |
| Frame delineation               | ETY3.2 and .3 | 1000BASE-X per clauses 35 and 36               |
| Auto-negotiation sink processes | ETY3.2 and .3 | 1000BASE-X Auto-Negotiation per clauses 36, 37 |
|                                 | ETY4          | 10GBASE-R (for further study)                  |

## ETY1/ETH sink adaptation processes:

The Management Attachment Unit (MAU) sink process recovers clock and data from link test pulses and Manchester-encoded data received from the ETY1\_TT\_Sk function on ETYn\_CI\_Data.

The Physical Layer Signalling (PLS) sink process decodes received Manchester-encoded data and delivers the decoded bitstream to the server-independent MAC frame checking process.

#### ETY2/ETH sink adaptation processes:

For further study.

## ETY3.1/ETH sink adaptation processes:

For further study.

## ETY3.2/ETH and ETY3.3/ETH sink adaptation processes:

Clock and data recovery is performed per IEEE 802.3 clauses 38 (LX/SX) and 39 (CX). If clock cannot be recovered from the received signal, a local reference clock is substituted as the 125 MHz clock delivered to the MAC frame check process.

The 8B/10B decoding process performs codeword alignment and loss-of-codeword synchronization detection per IEEE 802.3 clause 36.

Frame delineation is performed in the Physical Convergence Sublayer (PCS) per IEEE 802.3 clause 36. Delineated frames are forwarded to ETYn server-independent MAC frame check process per the Reconciliation Sublayer (RS) process per IEEE 802.3 clause 36. The RS process forwards an error indication to the MAC frame check process if 8B/10B decoding detects an error. Idle is forwarded in the absence of received frame data.

#### ETY4/ETH sink adaptation processes:

For further study.

## Defects

None.

#### **Consequent actions**

 $aSSF \leftarrow AI\_TSF$ 

## **Defect correlations**

None.

## **Performance monitoring**

MI\_FramesReceivedOK per IEEE 802.3 clause 30.

MI\_OctetsReceivedOK per IEEE 802.3 clause 30.

MI\_FCSErrors per IEEE 802.3 clause 30.

## 10.4 1000BASE-(S/L/C)X ETY/Coding sub-layer adaptation functions (ETY3/ETC3\_A)

This adaptation function adapts 1000BASE-SX, -LX, or -CX physical layer signals from/to 8B/10B-encoded codewords. Codewords may be extracted from or mapped into GFP-T frames, per 11.2 SDH/ETC Adaptation functions (S4-X/ETC3\_A).

For further study.

## 11 Non-Ethernet server to ETH adaptation functions

## 11.1 SDH/ETH adaptation functions (S/ETH\_A)

## 11.1.1 VC-n/ETH adaptation functions (Sn/ETH\_A; n = 3, 3-X, 4, 4-X)

This covers non-concatenated, contiguously concatenated, and non-LCAS VCAT. See 11.1.2 for LCAS-capable VC-n-Xv/ETH adaptation functions.

## 11.1.1.1 VC-n/ETH adaptation source function (Sn/ETH\_A\_So)

This function maps ETH\_CI information onto an Sn\_AI signal (n = 3, 3-X, 4, 4-X).

Data at the Sn\_AP is a VC-n (n = 3, 3-X, 4, 4-X), having a payload as described in ITU-T Rec. G.707/Y.1322, but with indeterminate POH bytes: J1, B3, G1.

#### Symbol

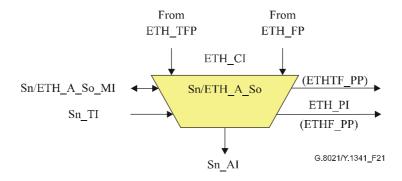



Figure 21/G.8021/Y.1341 - Sn/ETH\_A\_So symbol

# Interfaces

| Inputs                                              | Outputs                                       |
|-----------------------------------------------------|-----------------------------------------------|
| ETH_TFP:                                            | Sn_AP:                                        |
| ETH_CI_Data<br>ETH_FP:                              | Sn_AI_Data<br>Sn_AI_Clock<br>Sn_AI_FrameStart |
| ETH_CI_Data<br>ETH_CI_SSF                           | <b>ETHF_PP</b> :<br>ETH_PI_Data               |
| Sn_TI:<br>Sn_TI_Clock<br>Sn_TI_FrameStart           | <b>ETHTF_PP</b> :<br>ETH_PI_Data              |
| <b>Sn/ETH_A_So_MI</b> :<br>Sn/ETH_A_So_MI_CSFEnable |                                               |

Table 5/G.8021/Y.1341 - Sn/ETH\_A\_So interfaces

## Processes

A process diagram of this function is shown in Figure 22.

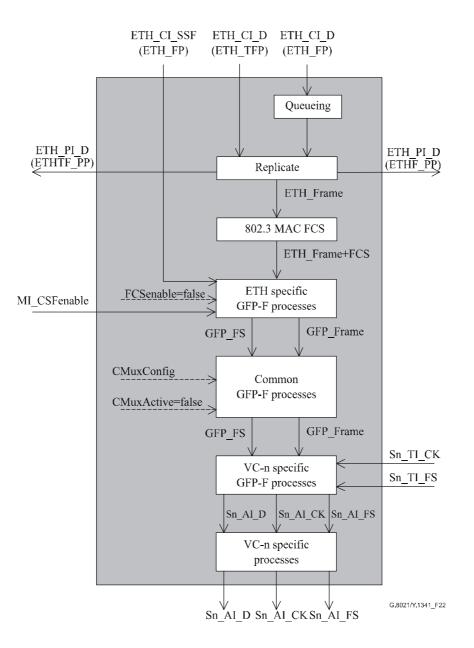



Figure 22/G.8021/Y.1341 – Sn/ETH\_A\_So process diagram

#### "Queuing" process:

See 8.2.

"Replicate" process:

See 8.4.

### 802.3 MAC FCS generation:

See 8.6.

#### Ethernet specific GFP-F source process:

See 8.5.4.1.1/G.806. GFP pFCS generation is disabled (FCSenable=false). The UPI value for frame-mapped Ethernet shall be inserted (Table 6-3/G.7041/Y.1303). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to 7.1/G.7041/Y.1303.

Response to ETH\_CI\_SSF asserted is *for further study*.

# **Common GFP source process:**

See 8.5.3.1/G.806. GFP channel multiplexing is not supported (CMuxActive=false).

## VC-n specific GFP source process:

See 8.5.2.1/G.806. The GFP frames are mapped into the VC-n payload area according to 10.6/G.707/Y.1322.

### VC-n specific source process:

**C2**: Signal label information is derived directly from the Adaptation function type. The value for "GFP mapping" in Table 9-11/G.707/Y.1322 is placed in the C2 byte position.

H4: For  $Sn/ETH_A$  so with n = 3, 4, the H4 byte is sourced as all-zeros.

NOTE 1 – For Sn/ETH\_A\_So with n = 3-X, 4-X, the H4 byte is undefined at the Sn-X\_AP output of this function (as per clause 12/G.783).

NOTE 2 – For Sn/ETH\_A\_So with n = 3, 4, 3-X, 4-X, the K3, F2, F3 bytes are undefined at the Sn-X\_AP output of this function (as per clause 12/G.783).

# Defects

None.

### **Consequent actions**

None.

# **Defect correlations**

None.

# **Performance monitoring**

For further study.

# 11.1.1.2 VC-n/ETH adaptation sink function (Sn/ETH\_A\_Sk)

This function extracts ETH\_CI information from the Sn\_AI signal (n = 3, 3-X, 4, 4-X), delivering ETH\_CI to ETH\_TFP and ETH\_FP.

Data at the Sn\_AP is as described in ITU-T Rec. G.707/Y.1322.

# Symbol

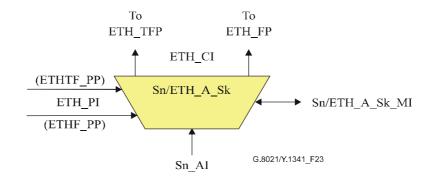



Figure 23/G.8021/Y.1341 – Sn/ETH\_A\_Sk symbol

# Interfaces

| Inputs                      | Outputs                   |
|-----------------------------|---------------------------|
| Sn_AP:                      | ETH_TFP:                  |
| Sn_AI_Data                  | ETH_CI_Data               |
| Sn_AI_ClocK                 | ETH_CI_SSF                |
| Sn_AI_FrameStart            |                           |
| Sn_AI_TSF                   | ETH_FP:                   |
|                             | ETH CI Data               |
| ETHF_PP:                    | ETH_CI_SSF                |
| ETH_PI_Data                 |                           |
|                             | Sn/ETH_A_Sk_MI:           |
| ETHTF_PP:                   | Sn/ETH A Sk MI AcSL       |
| ETH_PI_Data                 | Sn/ETH_A_Sk_MI_AcEXI      |
|                             | Sn/ETH_A_Sk_MI_AcUPI      |
| Sn/ETH A Sk MI:             | Sn/ETH_A_Sk_MI_cPLM       |
|                             | Sn/ETH_A_Sk_MI_cLFD       |
| Sn/ETH_A_Sk_MI_FilterConfig | Sn/ETH_A_Sk_MI_cUPM       |
| Sn/ETH_A_Sk_MI_CSF_Reported | Sn/ETH_A_Sk_MI_cEXM       |
|                             | Sn/ETH_A_Sk_MI_cCSF       |
|                             | Sn/ETH_A_Sk_MI_pFCSErrors |

Table 6/G.8021/Y.1341 - Sn/ETH\_A\_Sk interfaces

#### Processes

A process diagram of this function is shown in Figure 24.

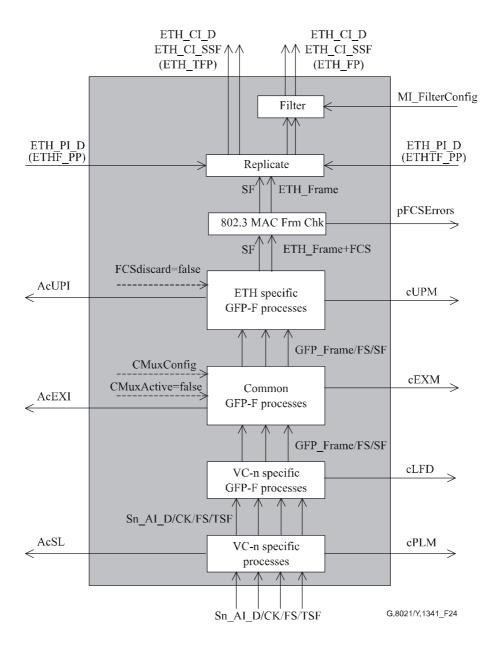



Figure 24/G.8021/Y.1341 – Sn/ETH\_A\_Sk process diagram

"Filter" process:

See 8.3.

"Replicate" process:

See 8.4.

# "802.3 MAC Frame Check" process:

See 8.7.

# Ethernet specific GFP-F sink process:

See 8.5.4.1.2/G.806. GFP pFCS checking, GFP p\_FCSError, p\_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3/G.7041/Y.1303). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to 7.1/G.7041/Y.1303.

# **Common GFP sink process:**

See 8.5.3.1/G.806. GFP channel multiplexing is not supported (MI\_CMuxActive=false).

# VC-n specific GFP sink process:

See 8.5.2.1/G.806. The GFP frames are demapped from the VC-n payload area according to 10.6/G.707/Y.1322.

### VC-n specific sink process:

C2: The signal label is recovered from the C2 byte as per 6.2.4.2/G.806. The signal label for "GFP mapping" in Table 9-11/G.707/Y.1322 shall be expected. The accepted value of the signal label is also available at the Sn/ETH\_A\_Sk\_MP.

### Defects

dPLM – See 6.2.4.2/G.806. dLFD – See 6.2.5.2/G.806. dUPM – See 6.2.4.3/G.806.

dEXM – See 6.2.4.4/G.806.

# **Consequent actions**

The function shall perform the following consequent actions:

 $aSSF \leftarrow AI_TSF$  or dPLM or dLFD or dUPM or dEXM or dCSF

### **Defect correlations**

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4/G.806). This fault cause shall be reported to the EMF.

 $cPLM \leftarrow dPLM and (not AI_TSF);$ 

 $cLFD \leftarrow dLFD$  and (not dPLM) and (not  $AI_TSF$ );

 $cUPM \leftarrow dUPM and (not dPLM) and (not dLFD) and (not AI_TSF);$ 

 $cEXM \leftarrow dEXM$  and (not dUPM) and (not dPLM) and (not dLFD) and (not AI\_TSF);

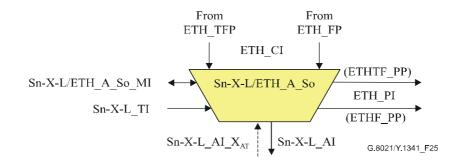
cCSF per 8.5.4.1.2/G.806.

### **Performance monitoring**

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSErrors: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC Frame Check process.


### **11.1.2** LCAS-capable VC-n-Xv/ETH adaptation functions (Sn-X-L/ETH\_A; n = 3, 4)

# 11.1.2.1 LCAS-capable VC-n-Xv/ETH adaptation source function (Sn-X-L/ETH\_A\_So)

This function maps ETH\_CI information onto an Sn-X-L\_AI signal (n = 3 or 4).

Data at the Sn-X-L\_AP is a VC-n-X (n = 3 or 4), having a payload as described in ITU-T Rec. G.707/Y.1322, but with indeterminate POH bytes: J1, B3, G1.

Symbol



# Figure 25/G.8021/Y.1341 - Sn-X-L/ETH\_A\_So symbol

#### Interfaces

| Inputs                       | Outputs              |
|------------------------------|----------------------|
| ETH_TFP:                     | Sn-X-L_AP:           |
| ETH_CI_Data                  | Sn-X-L_AI_Data       |
|                              | Sn-X-L_AI_ClocK      |
| ETH_FP:                      | Sn-X-L_AI_FrameStart |
| ETH_CI_Data                  | ETHF PP:             |
| ETH_CI_SSF                   | ETH PI Data          |
|                              | EIII_II_Data         |
| Sn-X-L_AP:                   | ETHTF PP:            |
| Sn-X-L_AI_X <sub>AT</sub>    | ETH PI Data          |
|                              |                      |
| Sn-X-L_TI:                   |                      |
| Sn-X-L_TI_ClocK              |                      |
| Sn-X-L_TI_FrameStart         |                      |
| Sn-X-L/ETH_A_So_MI:          |                      |
| Sn-X-L/ETH_A_So_MI_CSFEnable |                      |

Table 7/G.8021/Y.1341 - Sn-X-L/ETH\_A\_So interfaces

#### Processes

A process diagram of this function is shown in Figure 26.

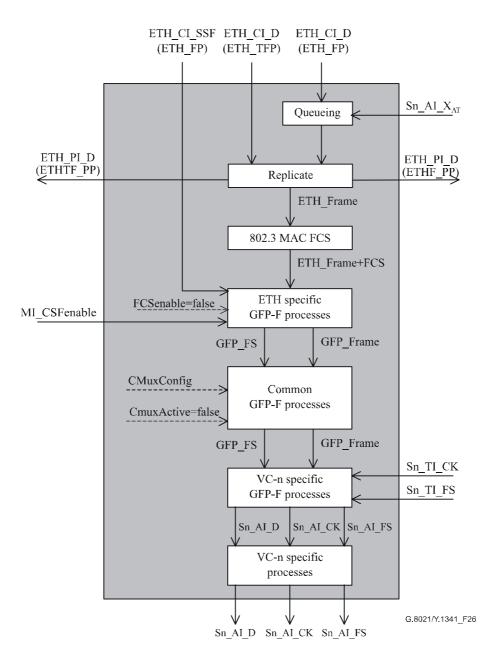



Figure 26/G.8021/Y.1341 - Sn-X-L/ETH\_A\_So process diagram

See 11.1.1.1 for a description of Sn-X-L/ETH\_A processes.

#### Defects

None.

#### **Consequent actions**

None.

# **Defect correlations**

None.

### **Performance monitoring**

For further study.

#### 11.1.2.2 LCAS-capable VC-n-Xv/ETH adaptation sink function (Sn-X-L/ETH\_A\_Sk)

This function extracts  $ETH_CI$  information from a VC-n-Xv server signal (n = 3 or 4), delivering  $ETH_CI$  to  $ETH_TFP$  and  $ETH_FP$ .

Data at the Sn-X-L\_AP is a VC-n-Xv (n = 3 or 4), having a payload as described in ITU-T Rec. G.707/Y.1322.

#### Symbol

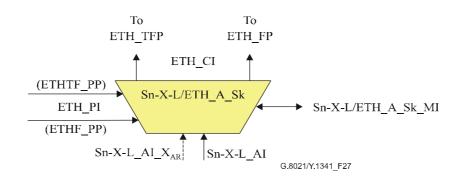



Figure 27/G.8021/Y.1341 - Sn-X-L/ETH\_A\_Sk symbol

#### Interfaces

| Inputs                          | Outputs                      |
|---------------------------------|------------------------------|
| Sn-X-L_AP:                      | ETH_TFP:                     |
| Sn-X-L_AI_Data                  | ETH_CI_Data                  |
| Sn-X-L_AI_ClocK                 | ETH_CI_SSF                   |
| Sn-X-L_AI_FrameStart            |                              |
| Sn-X-L_AI_TSF                   | ETH FP:                      |
| $Sn-X-L_AI_X_{AR}$              | -                            |
|                                 | ETH_CI_Data                  |
| ETHF_PP:                        | ETH_CI_SSF                   |
| ETH_PI_Data                     |                              |
|                                 | Sn-X-L/ETH_A_Sk_MI:          |
| ETHTF PP:                       | Sn-X-L/ETH_A_Sk_MI_AcSL      |
| =                               | Sn-X-L/ETH_A_Sk_MI_AcEXI     |
| ETH_PI_Data                     | Sn-X-L/ETH_A_Sk_MI_AcUPI     |
|                                 | Sn-X-L/ETH_A_Sk_MI_cPLM      |
| Sn-X-L/ETH A Sk MI:             | Sn-X-L/ETH_A_Sk_MI_cLFD      |
|                                 | Sn-X-L/ETH_A_Sk_MI_cUPM      |
| Sn-X-L/ETH_A_Sk_MI_FilterConfig | Sn-X-L/ETH_A_Sk_MI_cEXM      |
| Sn-X-L/ETH_A_Sk_MI_CSF_Reported | Sn-X-L/ETH_A_Sk_MI_cCSF      |
|                                 | Sn-X-L/ETH A Sk MI pFCSError |

#### Table 8/G.8021/Y.1341 - Sn-X-L/ETH\_A\_Sk interfaces

#### Processes

See process diagram and process description in 11.1.1.2. The additional Sn-X-L\_AI\_X<sub>AR</sub> interface is not connected to any of the internal processes.

# Defects

dPLM – See 6.2.4.2/G.806. dLFD – See 6.2.5.2/G.806. dUPM – See 6.2.4.3/G.806. dEXM – See 6.2.4.4/G.806.

## **Consequent actions**

The function shall perform the following consequent actions:

 $aSSF \leftarrow AI_TSF$  or dPLM or dLFD or dUPM or dEXM or dCSF

NOTE 1 - XAR = 0 results in AI\_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

### **Defect correlations**

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4/G.806). This fault cause shall be reported to the EMF.

 $cPLM \leftarrow dPLM and (not AI_TSF);$ 

 $cLFD \leftarrow dLFD$  and (not dPLM) and (not  $AI_TSF$ );

 $cUPM \leftarrow dUPM$  and (not dPLM) and (not dLFD) and (not AI\_TSF);

 $cEXM \leftarrow dEXM$  and (not dUPM) and (not dPLM) and (not dLFD) and (not AI\_TSF);

cCSF per 8.5.4.1.2/G.806.

## Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 2 – This primitive is calculated by the MAC frame check process.

# 11.1.3 VC-m/ETH adaptation functions (Sm/ETH\_A; m = 11, 11-Xv, 12, 12-Xv, 2)

### 11.1.3.1 VC-m/ETH adaptation source function (Sm/ETH\_A\_So)

This function maps ETH\_CI information onto a VC-m server signal (m = 11, 11-X, 12, 12-X, 2) and sources the Sm\_AP signal.

Data at the Sm\_AP is a VC-m (m = 11, 11-X, 12, 12-X, 2), having a payload as described in ITU-T Rec. G.707/Y.1322, but with indeterminate POH bytes: J2, V5[1-4], V5[8].

### Symbol

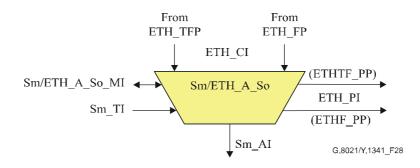



Figure 28/G.8021/Y.1341 – Sm/ETH A So symbol

# Interfaces

| Inputs                    | Outputs                         |
|---------------------------|---------------------------------|
| ETH_TFP:                  | Sm_AP:                          |
| ETH_CI_Data               | Sm_AI_Data                      |
|                           | Sm_AI_ClocK<br>Sm_AI_FrameStart |
| ETH_FP:                   | SII_AI_FIAMEStart               |
| ETH_CI_Data<br>ETH_CI_SSF | ETHF_PP:                        |
|                           | ETH_PI_Data                     |
| Sm AP:                    |                                 |
| Sm AI X <sub>AT</sub>     | ETHTF_PP:                       |
|                           | ETH_PI_Data                     |
| Sm_TI:                    |                                 |
| Sm_TI_ClocK               |                                 |
| Sm_TI_FrameStart          |                                 |
|                           |                                 |
| Sm/ETH_A_So_MI:           |                                 |
| Sm/ETH_A_So_MI_CSFEnable  |                                 |

Table 9/G.8021/Y.1341 - Sm/ETH\_A\_So interfaces

# Processes

A process diagram of this function is shown in Figure 29.

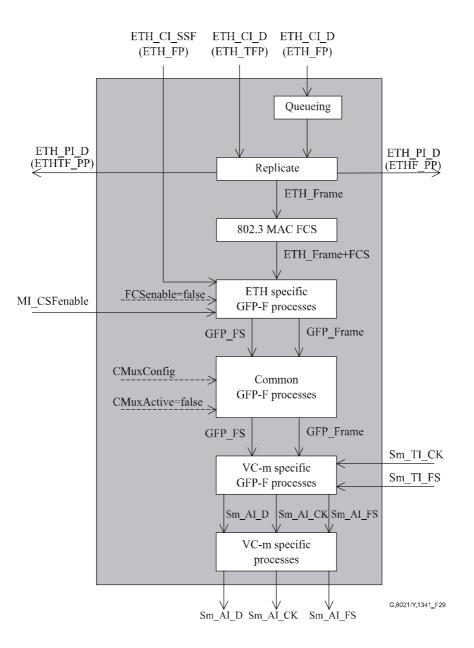



Figure 29/G.8021/Y.1341 – Sm/ETH\_A\_So process diagram

### "Queuing" process:

See 8.2.

#### "Replicate" process:

See 8.4.

### 802.3 MAC FCS generation:

See 8.7.

#### Ethernet specific GFP-F source process:

See 8.5.4.1.1/G.806. GFP pFCS generation is disabled (FCSenable=false). The UPI value for Frame-Mapped Ethernet shall be inserted (Table 6-3/G.7041/Y.1303). The Ethernet frames are inserted into the client payload information field of the GFP-F frames according to 7.1/G.7041/Y.1303.

Response to ETH\_CI\_SSF asserted is *for further study*.

# **Common GFP source process:**

See 8.5.3.1/G.806. GFP channel multiplexing is not supported (CMuxActive=false).

## VC-m specific GFP source process:

See 8.5.2.1/G.806. The GFP frames are mapped into the VC-m payload area according to 10.6/G.707/Y.1322.

## VC-m specific source process:

**V5[5-7] and K4[1]**: Signal label information is derived directly from the adaptation function type. The value for "GFP mapping" in Table 9-13/G.707/Y.1322 is placed in the K4[1] Extended Signal Label field as described in 8.2.3.2/G.783.

K4[2]: For Sm/ETH\_A\_So with m = 11, 12, 2, the K4[2] bit is sourced as all-zeros.

NOTE 1 – For Sm/ETH\_A\_So with m = 11-X, 12-X, the K4[2] bit is undefined at the Sm-X\_AP output of this function (as per clause 13/G.783).

NOTE 2 – For Sm/ETH\_A\_So with m = 11, 11-X, 12, 12-X, 2, the K4[3-8], V5[1-4] and V5[8] bits are undefined at the Sm-X\_AP output of this function (as per clause 13/G.783).

# Defects

None.

# **Consequent actions**

None.

### **Defect correlations**

None.

# **Performance monitoring**

For further study.

# 11.1.3.2 VC-m/ETH adaptation sink function (Sm/ETH\_A\_Sk)

This function extracts ETH\_CI information from the Sm\_AI signal (m = 11, 11-X, 12, 12-X, 2), delivering ETH\_CI to ETH\_TFP and ETH\_FP.

Data at the Sm\_AP is as described in ITU-T Rec. G.707/Y.1322.

# Symbol

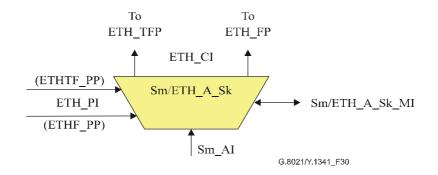



Figure 30/G.8021/Y.1341 – Sm/ETH\_A\_Sk symbol

# Interfaces

| Inputs                                                                                                    | Outputs                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sm_AP:                                                                                                    | ETH_TFP:                                                                                                                                                                                                       |
| Sm_AI_Data<br>Sm_AI_ClocK<br>Sm_AI_FrameStart                                                             | ETH_CI_Data<br>ETH_CI_SSF                                                                                                                                                                                      |
| Sm_AI_TSF                                                                                                 | ETH_FP:                                                                                                                                                                                                        |
| ETHF_PP:<br>ETH_PI_Data                                                                                   | ETH_CI_Data<br>ETH_CI_SSF                                                                                                                                                                                      |
| ETHTF_PP:<br>ETH_PI_Data<br>Sm/ETH_A_Sk_MI:<br>Sm/ETH_A_Sk_MI_FilterConfig<br>Sm/ETH_A_Sk_MI_CSF_Reported | Sm/ETH_A_Sk_MI:<br>Sm/ETH_A_Sk_MI_AcSL<br>Sm/ETH_A_Sk_MI_AcEXI<br>Sm/ETH_A_Sk_MI_AcUPI<br>Sm/ETH_A_Sk_MI_cPLM<br>Sm/ETH_A_Sk_MI_cLFD<br>Sm/ETH_A_Sk_MI_cUPM<br>Sm/ETH_A_Sk_MI_cCSF<br>Sm/ETH_A_Sk_MI_pFCSError |

# Table 10/G.8021/Y.1341 - Sm/ETH\_A\_Sk interfaces

#### Processes

A process diagram of this function is shown in Figure 31.

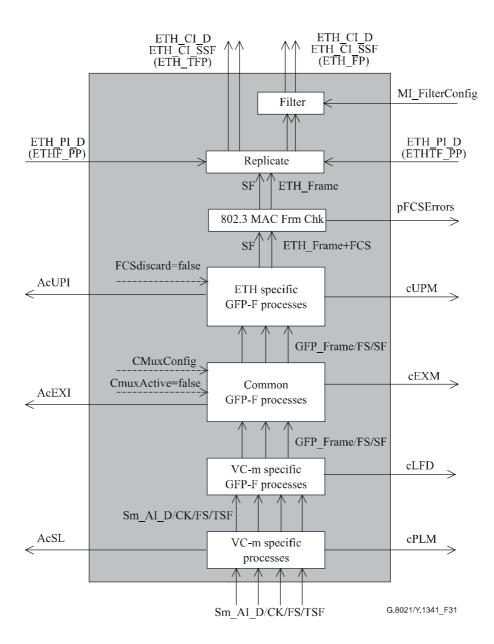



Figure 31/G.8021/Y.1341 – Sm/ETH\_A\_Sk process diagram

"Filter" process:

See 8.3.

### "Replicate" process:

See 8.4.

### "802.3 MAC Frame Check" process:

See 8.7.

## Ethernet specific GFP-F sink process:

See 8.5.4.1.2/G.806. GFP pFCS checking, GFP p\_FCSError, p\_FDis are not supported (FCSdiscard=false). The UPI value for Frame-Mapped Ethernet shall be expected (Table 6-3/G.7041/Y.1303). The Ethernet frames are extracted from the client payload information field of the GFP-F frames according to 7.1/G.7041/Y.1303.

# **Common GFP sink process:**

See 8.5.3.1/G.806. GFP channel multiplexing is not supported (CMuxActive=false).

## VC-m specific GFP sink process:

See 8.5.2.1/G.806. The GFP frames are demapped from the VC-m payload area according to 10.6/G.707/Y.1322.

### VC-m specific sink process:

**V5[5-7] and K4[1]**: The signal label is recovered from the extended signal label position as described in 8.2.3.2/G.783 and 6.2.4.2/G.806. The signal label for "GFP mapping" in Table 9-13/G.707/Y.1322 shall be expected. The accepted value of the signal label is also available at the Sm/ETH\_A\_Sk\_MP.

# Defects

dPLM - See 6.2.4.2/G.806.

dLFD - See 6.2.5.2/G.806.

dUPM – See 6.2.4.3/G.806.

dEXM - See 6.2.4.4/G.806.

### **Consequent actions**

The function shall perform the following consequent actions:

 $aSSF \leftarrow AI_TSF$  or dPLM or dLFD or dUPM or dEXM or dCSF

# **Defect correlations**

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4/G.806). This fault cause shall be reported to the EMF.

 $cPLM \leftarrow dPLM and (not AI_TSF);$ 

 $cLFD \leftarrow dLFD$  and (not dPLM) and (not  $AI_TSF$ );

 $cUPM \leftarrow dUPM$  and (not dPLM) and (not dLFD) and (not AI\_TSF);

 $cEXM \leftarrow dEXM$  and (not dUPM) and (not dPLM) and (not dLFD) and (not AI\_TSF);

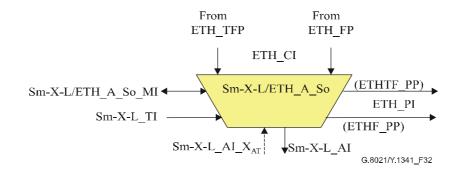
cCSF per 8.5.4.1.2/G.806.

# **Performance monitoring**

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE – This primitive is calculated by the MAC frame check process.


# 11.1.4 LCAS-capable VC-m-Xv/ETH adaptation functions (Sm-X-L/ETH\_A; m = 11 or 12)

# 11.1.4.1 LCAS-capable VC-m-Xv/ETH adaptation source function (Sm-X-L/ETH\_A\_So)

This function maps ETH\_CI information onto an Sm-X-L\_AI signal (m = 11 or 12).

Data at the Sm-X-L\_AP is a VC-m-X (m = 11 or 12), having a payload as described in ITU-T Rec. G.707/Y.1322, but with indeterminate POH bytes: J2, V5[1-4], V5[8].

#### Symbol



# Figure 32/G.8021/Y.1341 - Sm-X-L/ETH\_A\_So symbol

### Interfaces

| Inputs                       | Outputs              |
|------------------------------|----------------------|
| ETH_TFP:                     | Sm-X-L_AP:           |
| ETH_CI_Data                  | Sm-X-L_AI_Data       |
|                              | Sm-X-L_AI_ClocK      |
| ETH_FP:                      | Sm-X-L_AI_FrameStart |
| ETH_CI_Data                  | ETHF PP:             |
| ETH_CI_SSF                   | -                    |
|                              | ETH_PI_Data          |
| Sm-X-L_AP:                   |                      |
| Sm-X-L AI X <sub>AT</sub>    | ETHTF_PP:            |
|                              | ETH_PI_Data          |
| Sm_TI:                       |                      |
| Sm TI ClocK                  |                      |
| Sm_TI_FrameStart             |                      |
|                              |                      |
| Sm-X-L/ETH_A_So_MI:          |                      |
| Sm-X-L/ETH_A_So_MI_CSFEnable |                      |

# Table 11/G.8021/Y.1341 - Sm-X-L/ETH\_A\_So interfaces

#### Processes

A process diagram of this function is shown in Figure 33.

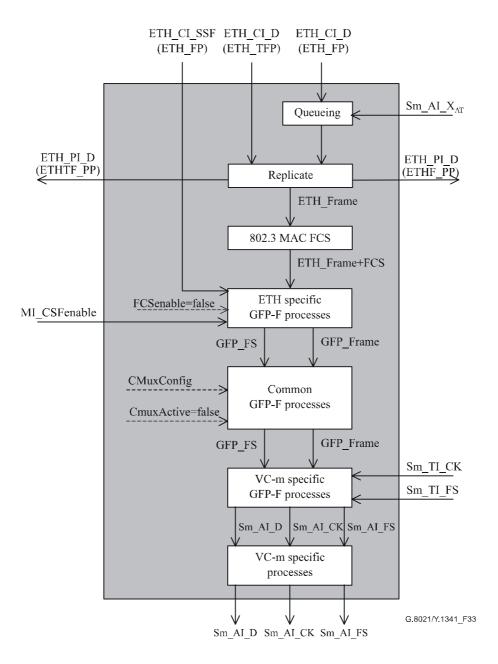



Figure 33/G.8021/Y.1341 – Sm-X-L/ETH\_A\_So process diagram

See 11.1.3.1 for a description of Sm-X-L/ETH\_A processes.

### Defects

None.

#### **Consequent actions**

None.

# **Defect correlations**

None.

### **Performance monitoring**

For further study.

#### 11.1.4.2 LCAS-capable VC-m-Xv/ETH adaptation sink function (Sm-X-L/ETH\_A\_Sk)

This function extracts  $ETH_CI$  information from the Sm-X-L\_AI signal (m = 11 or 12), delivering  $ETH_CI$  to  $ETH_TFP$  and  $ETH_FP$ .

Data at the Sm\_AP is as described in ITU-T Rec. G.707/Y.1322.

#### Symbol

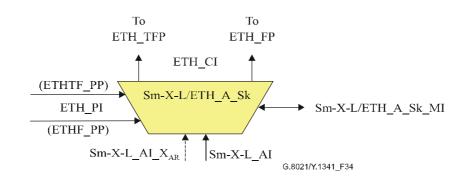



Figure 34/G.8021/Y.1341 - Sm-X-L/ETH\_A\_Sk symbol

#### Interfaces

| Inputs                                     | Outputs                      |
|--------------------------------------------|------------------------------|
| Sm-X-L_AP:                                 | ETH_TFP:                     |
| Sm-X-L AI Data                             | ETH CI Data                  |
| Sm-X-L_AI_ClocK                            | ETH_CI_SSF                   |
| Sm-X-L_AI_FrameStart                       |                              |
| Sm-X-L_AI_TSF<br>Sm-X-L_AI_X <sub>AR</sub> | ETH_FP:                      |
|                                            | ETH CI Data                  |
| ETHF_PP:                                   | ETH_CI_SSF                   |
| ETH_PI_Data                                | Sm-X-L/ETH_A_Sk_MI:          |
|                                            | Sm-X-L/ETH_A_Sk_MI_AcSL      |
| ETHTF_PP:                                  | Sm-X-L/ETH_A_Sk_MI_AcEXI     |
| ETH_PI_Data                                | Sm-X-L/ETH_A_Sk_MI_AcUPI     |
|                                            | Sm-X-L/ETH_A_Sk_MI_cPLM      |
| Sm-X-L/ETH_A_Sk_MI:                        | Sm-X-L/ETH_A_Sk_MI_cLFD      |
|                                            | Sm-X-L/ETH_A_Sk_MI_cUPM      |
| Sm-X-L/ETH_A_Sk_MI_FilterConfig            | Sm-X-L/ETH_A_Sk_MI_cEXM      |
| Sm-X-L/ETH_A_Sk_MI_CSF_Reported            | Sm-X-L/ETH_A_Sk_MI_cCSF      |
|                                            | Sm-X-L/ETH_A_Sk_MI_pFCSError |

#### Table 12/G.8021/Y.1341 - Sm-X-L/ETH\_A\_Sk interfaces

#### Processes

See process diagram and process description in 11.1.1.2. The additional Sm-X-L\_AI\_X<sub>AR</sub> interface is not connected to any of the internal processes.

# Defects

dPLM – See 6.2.4.2/G.806. dLFD – See 6.2.5.2/G.806. dUPM – See 6.2.4.3/G.806. dEXM – See 6.2.4.4/G.806.

# **Consequent actions**

The function shall perform the following consequent actions:

 $aSSF \leftarrow AI_TSF$  or dPLM or dLFD or dUPM or dEXM or dCSF

NOTE 1 - XAR = 0 results in AI\_TSF being asserted, so there is no need to include it as additional contributor to aSSF.

# **Defect correlations**

The function shall perform the following defect correlations to determine the most probable fault cause (see 6.4/G.806). This fault cause shall be reported to the EMF.

 $cPLM \leftarrow dPLM and (not AI_TSF);$ 

 $cLFD \leftarrow dLFD and (not dPLM) and (not AI_TSF);$ 

 $cUPM \leftarrow dUPM$  and (not dPLM) and (not dLFD) and (not  $AI_TSF$ );

 $cEXM \leftarrow dEXM$  and (not dUPM) and (not dPLM) and (not dLFD) and (not AI\_TSF);

cCSF per 8.5.4.1.2/G.806.

# Performance monitoring

The function shall perform the following performance monitoring primitives processing. The performance monitoring primitives shall be reported to the EMF.

pFCSError: count of FrameCheckSequenceErrors per second.

NOTE 2 – This primitive is calculated by the MAC FCS process.

# **11.2** SDH/ETC adaptation functions (S4-X/ETC3\_A)

This covers GFP-T-based mapping of Gigabit Ethernet codewords into VC-4-Xv.

For further study.

# 11.3 S4-64c/ETH-w adaptation functions

This covers 64B/66B-encoded mapping of Ethernet frames into VC-4-64c.

For further study.

# 11.4 PDH/ETH adaptation functions (P/ETH\_A)

For further study.

# 11.5 OTH/ETH adaptation functions (O/ETH\_A)

For further study.

# 11.6 MPLS/ETH adaptation functions (MPLS/ETH\_A)

For further study.

# 11.7 ATM VC/ETH adaptation functions (VC/ETH\_A)

For further study.

# 11.8 **RPR/ETH adaptation functions (RPR/ETH\_A)**

For further study.

# **Appendix I**

# **Applications and functional diagrams**

Figure I.1 presents the set of atomic functions associated with the Ethernet signal transport, shown in several example applications.

- Ethernet UNI/NNI interface port on EoT equipment.
- Ethernet over SDH NNI interface port on EoT equipment.
- Ethernet UNI interface port supporting multiplexed access on EoT equipment.

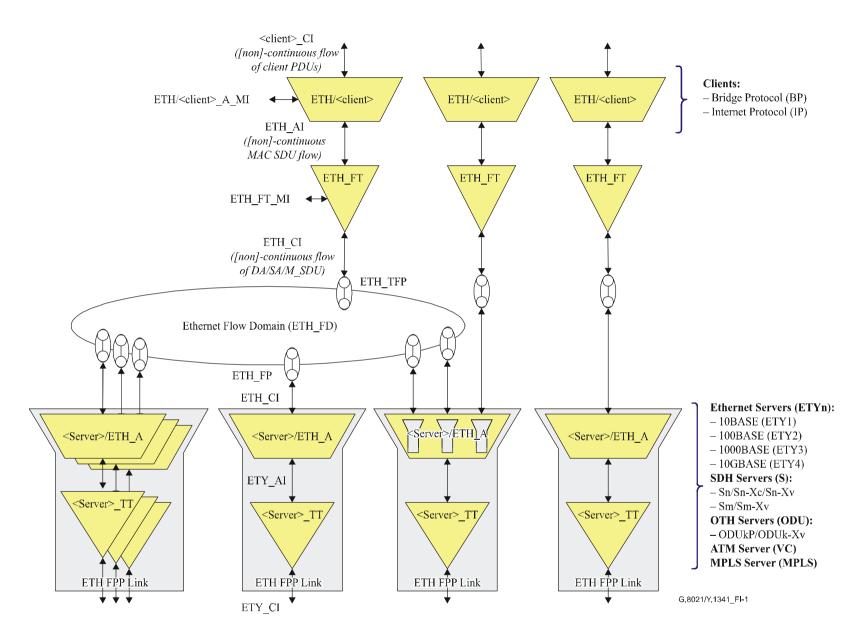



Figure I.1/G.8021/Y.1341 – Ethernet atomic functions in some possible application

#### **ITU-T Y-SERIES RECOMMENDATIONS**

#### GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT GENERATION NETWORKS

| GLOBAL INFORMATION INFRASTRUCTURE                                  |               |
|--------------------------------------------------------------------|---------------|
| General                                                            | Y.100-Y.199   |
| Services, applications and middleware                              | Y.200-Y.299   |
| Network aspects                                                    | Y.300-Y.399   |
| Interfaces and protocols                                           | Y.400-Y.499   |
| Numbering, addressing and naming                                   | Y.500-Y.599   |
| Operation, administration and maintenance                          | Y.600-Y.699   |
| Security                                                           | Y.700-Y.799   |
| Performances                                                       | Y.800-Y.899   |
| INTERNET PROTOCOL ASPECTS                                          |               |
| General                                                            | Y.1000-Y.1099 |
| Services and applications                                          | Y.1100-Y.1199 |
| Architecture, access, network capabilities and resource management | Y.1200-Y.1299 |
| Transport                                                          | Y.1300-Y.1399 |
| Interworking                                                       | Y.1400-Y.1499 |
| Quality of service and network performance                         | Y.1500-Y.1599 |
| Signalling                                                         | Y.1600-Y.1699 |
| Operation, administration and maintenance                          | Y.1700-Y.1799 |
| Charging                                                           | Y.1800-Y.1899 |
| NEXT GENERATION NETWORKS                                           |               |
| Frameworks and functional architecture models                      | Y.2000-Y.2099 |
| Quality of Service and performance                                 | Y.2100-Y.2199 |
| Service aspects: Service capabilities and service architecture     | Y.2200-Y.2249 |
| Service aspects: Interoperability of services and networks in NGN  | Y.2250-Y.2299 |
| Numbering, naming and addressing                                   | Y.2300-Y.2399 |
| Network management                                                 | Y.2400-Y.2499 |
| Network control architectures and protocols                        | Y.2500-Y.2599 |
| Security                                                           | Y.2700-Y.2799 |
| Generalized mobility                                               | Y.2800-Y.2899 |
|                                                                    |               |

For further details, please refer to the list of ITU-T Recommendations.

# SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M TMN and network maintenance: international transmission systems, telephone circuits, telegraphy, facsimile and leased circuits
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks and open system communications
- Series Y Global information infrastructure, Internet protocol aspects and Next Generation Networks
- Series Z Languages and general software aspects for telecommunication systems