
Union internationale des télécommunications

Place des Nations 1211 GENEVE 20

Suisse – Switzerland – Suiza – Швейцария – 瑞士 – سويسرا

COVERING NOTE

GENERAL SECRETARIAT OF THE INTERNATIONAL TELECOMMUNICATION UNION

 Geneva, 26 May 2014

ITU – TELECOMMUNICATION STANDARDIZATION SECTOR

Subject: Erratum 1 (05/2014) to Recommendation ITU-T G.728 (2012),

Coding of speech at 16 kbit/s using low-delay code excited linear prediction

1) The codevector components associated to channel index 36 and channel index 42 contain wrong

signs. Correct the signs of the codevector components indicated with underlining as shown below:

Channel

index

Codevector components

....

36

....

82

....

....

-3837

....

-45

....

....

-1831

....

1198

....

....

6397

....

2160

....

....

2545

....

-1449

....

....

-2848

....

2203

....

2) Table G.5 contains extraneous characters. Correct Table G.5, Integer values of gain codebook

related arrays, to read as follows (underlining indicates values that are being rectified):

Table G.5 – Integer values of gain codebook related array

Array index 1 2 3 4 5 6 7 8

GQ (Q13) 4224 7392 12936 22638 -4224 -7392 -12936 -22638

GB (Q13) 5808 10164 17787 * -5808 -10164 -17787 *

G2 (Q12) 4224 7392 12936 22638 -4224 -7392 -12936 -22638

GSQ (Q11) 545 1668 5107 15640 545 1668 5107 15640

* Can be any arbitrary value (not used).

– 2 –

3) In clause G.2.2, some of the indentation in the main loop has been lost. Correct the indentation

of the Recursion module as shown below, where additional clarification has been added to identify

loop boundaries, and scratch variable IP has been replaced with scratch variable IA to avoid

confusion with pointer IP in the main code.

RECURSION:

 For MINC = MINC0 + 1, MINC0 + 2, ..., LPC, do the following indented lines

 AA0 = 0

 For IA = 2, 3, ..., MINC, do the next 3 lines

 N1 = MINC – IA + 2

 P = RTMP(N1) * ATMP(IA)

 AA0 = AA0 + P | 32 bits for SUM

 AA0 = AA0 << 1

 AA0 = AA0 << NRS

 AA1 = RTMP(MINC + 1) << 16

 AA0 = AA0 + AA1 |

 SIGN = RND(AA0) | Save high word sign

 NUM = SIGN

 If NUM < 0, set NUM = –NUM

 If NUM ≥ ALPHATMP, go to FAILED |

 Call SIMPDIV(NUM, ALPHATMP, AA0) | Divide to get RC

 AA2 = AA0 << 15 | AA2 stores 17-bit RC

 RC = RND(AA2)

 If SIGN > 0, set RC = –RC

 | Now update ALPHATMP

 AA1 = ALPHATMP << 16

 P = RC * SIGN

 AA1 = AA1 + (P << 1)

 If AA1 ≤ 0, go to FAILED

 ALPHATMP = RND(AA1)

 MH = MINC/2 + 1 | Fractional part of MINC/2 truncated;

| MH = integer

| Begin to update predictor

| coefficients

 For IA = 2, 3, 4, ..., MH, do the following 24 lines

 IB = MINC – IA + 2

 AA0 = ATMP(IA) <<16 | Load AA0 high word

 P = RC * ATMP(IB) | Q15/16 RC, so << 1

 AA0 = AA0 + (P << 1)

 If AA0 overflowed, then do the following 5 lines

 NRS = NRS + 1

 For LP = 2, 3, ..., MINC, set ATMP(LP) = ATMP(LP) >> 1

 AA0 = ATMP(IA) <<16 | First re-scale ATMP

 P = RC * ATMP(IB) | Next re-calculate

 AA0 = AA0 + (P << 1) | overflowed AA0

 AA1 = ATMP(IB) <<16

 P = RC * ATMP(IA)

 AA1 = AA1 + (P << 1)

 If AA1 overflowed, then do the following 8 lines

 NRS = NRS + 1

 For LP = 2, 3, ..., MINC, set ATMP(LP) = ATMP(LP) >> 1

 AA0 = ATMP(IA) <<16 | First re-scale ATMP(IA)

 P = RC * ATMP(IB) | Next re-calculate AA0

 AA0 = AA0 + (P << 1) |

 AA1 = ATMP(IB) << 16 | Next re-scale ATMP(IB)

 P = RC * ATMP(IA) | Next re-calculate

 AA1 = AA1 + (P << 1) | overflowed AA1

 ATMP(IA) = RND(AA0)

– 3 –

 ATMP(IB) = RND(AA1)

 | Update ATMP(MINC + 1)

 AA0 = AA2 >> NRS | AA2 contains 17-bit RC

 AA0 = RND(AA0) | Output in low word of AA0

 If SIGN > 0, set AA0 = –AA0

 ATMP(MINC + 1) = AA0 | Low word stored in ATMP

Repeat the above indented lines for the next MINC

