ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital terminal equipments – Coding of analogue signals by methods other than PCM

Coding of speech at 16 kbit/s using low-delay code excited linear prediction

Amendment 1: Revised Annex J – Variable bit-rate operation of LD-CELP mainly for voiceband-data applications in DCME

ITU-T Recommendation G.728 (1992) - Amendment 1

ITU-T G-SERIES RECOMMENDATIONS TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450–G.499
TRANSMISSION MEDIA CHARACTERISTICS	G.600–G.699
DIGITAL TERMINAL EQUIPMENTS	G.700–G.799
General	G.700–G.709
Coding of analogue signals by pulse code modulation	G.710-G.719
Coding of analogue signals by methods other than PCM	G.720–G.729
Principal characteristics of primary multiplex equipment	G.730–G.739
Principal characteristics of second order multiplex equipment	G.740-G.749
Principal characteristics of higher order multiplex equipment	G.750–G.759
Principal characteristics of transcoder and digital multiplication equipment	G.760–G.769
Operations, administration and maintenance features of transmission equipment	G.770–G.779
Principal characteristics of multiplexing equipment for the synchronous digital hierarchy	G.780–G.789
Other terminal equipment	G.790–G.799
DIGITAL NETWORKS	G.800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900–G.999
QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000–G.7999
ETHERNET OVER TRANSPORT ASPECTS	G.8000–G.8999
ACCESS NETWORKS	G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

ITU-T Recommendation G.728

Coding of speech at 16 kbit/s using low-delay code excited linear prediction

Amendment 1

Revised Annex J – Variable bit-rate operation of LD-CELP mainly for voiceband-data applications in DCME

Summary

Annex J to ITU-T Rec. G.728 defines a 40 kbit/s extension optimized for voiceband data signals of the existing Annex G/G.728 - 16 kbit/s fixed point specification. The main difference between the codec described hereby and the codec described in Annex G/G.728 is the application of a Trellis-Coded Quantization (TCQ) approach to codebook search. The TCQ approach replaces the analysis-by-synthesis approach to codebook search of ITU-T Rec. G.728 only in voiceband data (VBD) mode.

The backward adaptation of the predictor achieved in VBD mode is almost identical to the backward adaptation achieved in speech mode (ITU-T Rec. G.728). Additionally, the same adaptation cycle is used for both speech mode (ITU-T Rec. G.728) and VBD mode. In speech mode, the 40 kbit/s reverts to the LD-CELP of ITU-T Rec. G.728.

This annex includes an electronic attachment containing test vectors for implementation verification of Annex J/G.728.

Amendment 1 provides corrections to inconsistencies identified in the description of the gain compensation module of Annex J/G.728. These changes do not affect the existing test vectors.

Source

Amendment 1 to ITU-T Recommendation G.728 (1992) was approved on 29 May 2006 by ITU-T Study Group 16 (2005-2008) under the ITU-T Recommendation A.8 procedure.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementors are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2006

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

ITU-T Recommendation G.728

Coding of speech at 16 kbit/s using low-delay code excited linear prediction

Amendment 1

Revised Annex J – Variable bit-rate operation of LD-CELP mainly for voiceband-data applications in DCME

Modifications introduced by this amendment are shown in revision marks. Unchanged text is replaced by ellipsis (...). Some parts of unchanged texts (clause numbers, etc.) have been kept to indicate the correct insertion points.

• • •

J.4.1.3 Block #J.30 – Backward Gain Adapter

•••

Figure J.4/G.728 – Gain compensation

3) Prediction error impulses might cause quantizer saturation. To avoid this, an additional group of five three blocks (see Figure J.4) produces temporal change in quantization gain. These blocks are:

Block #J.25 – Gain Average Calculator Compensation Decision

1

A smoothing filter calculates the average of the gain estimation, G_{ave} , using the most recent vector gain value, GSTATE[0] (J.4.3.12, block #J.25 and Equation J.4-3). The difference between GSTATE[0] and G_{ave} is calculated (G_{diff}). and passed to the Impulse Detection block.

Block #J.27 Impulse Detection block

This block detects sudden changes in the gain after a predetermined period of steady gain (see J.4.3.14, block #J.27). G_{diff} is compared against a fixed threshold. If G_{diff} is smaller than the threshold for a period greater than a predefined period of time, then the signal is considered "steady". An error impulse is detected if G_{diff} is greater than the threshold and the preceding signal has been "steady". in that case the Gain Compensation block (see J.4.3.14, block #J.29) is activated.

Block #J.26 – Signal Classifier

During certain VBD transmissions, error impulses are more likely to occur. Thus, upon their detection, gain compensation is maximized. The Signal Classifier block detects these transmissions using the LP coefficient (see J.4.3.13, block #J.26).

Block #J.28 Decision

The Decision block accepts both the signal classifier block output and the Impulse Detection block output, and activates the Gain Compensation block (see J.4.3.15, block #J.28).

Block #J.29 - Gain Compensation

This block increases the gain factor for a fixed period of time (unless a certain gain factor peak is reached, in which case the period is extended).

$$G_{ave} = G_{const} \times G_{ave} + (1 - G_{const}) \times GSTATE[0]$$
(J.4-3)

(See J.4.3.14, block #J.29).

J.4.1.4 Block #J.40 – The Predictor Block

•••

J.4.3.10 Block #J.12 – TCQ Backward Gain Adapter

```
•••

DLQ_GAIN = GAIN

DLQ_NLSGAIN = NLSGAIN

CALL BLOCK #J.25 | GAIN COMPENSATION DECISION

CALL BLOCK #J.29 | GAIN COMPENSATION

CALL BLOCK #J.15 | GAIN inverse
```

J.4.3.11 Block #J.13 - vbd_log_calc_and_lim97

• • •

J.4.3.12 Block #J.25 – Gain Compensation DecisionGain Average Calculator

Input: GSTATE[0], UNSTEADY, GC_ATMP_SUM, GC_ATMP1

Output: <u>GC_FLAG</u>G_DIFF, G_CNT, <u>GC_CNT, G_AVE</u>

Operation: Calculation of a quasi-average value of the gain. <u>Detection of narrow bandwidth signal</u>. <u>Search for a sharp gain increase after a predefined period of steady gain</u>.

Internal Variables (C-definition)

• long int G<u>AVEDIFF.</u>

GDIFF=GSTATE[0]-G_AVE;			
If GDIFF < G_TRS	Do the next 2 lines		
G AVE=((G AVE< <g ave+gstate[0])="" const)-g="">>G CONST</g>			
G_CNT++			
ELSE	Do the next 6 lines		
IF G_CNT>G_LEN	Do the next 3 lines		
IF ((GC_ATMP_SUM*ATMP_CONST	T)>>3) <abs(gc_atmp1) 2="" do="" lines<="" next="" td="" the="" =""></abs(gc_atmp1)>		
GC_FLAG=1	GAIN COMPENSATION FLAG		
GC_CNT=GC_LEN			
G_AVE=GSTATE[0]			
G_CNT=0			

IF UNSTEADY=1	- Do	the	next	3	lines
C_AVE=CSTATE [0]					
UNSTEADY=0					
ELSE	- Do	the	next	3	lines
IF GDIFF <g td="" trs<=""><td>- Do-</td><td>the</td><td>next</td><td>2</td><td>lines</td></g>	- Do-	the	next	2	lines
<u> </u>	G CC)NST-	-C AVI	3+6	CSTATE[0]) >>C CONST
	_		_		_

J.4.3.13 Block #J.26 – Signal Classifier

Inputs: ATMP

Outputs: GC_ATMP_SUM, GC_SC_FLAG_GC_ATMP1

Operation: Detection of narrow bandwidth signal.

Internal Variables (C-definition)

int GC_ATMP_SUM
 int GC_ATMP1
 GC_ATMP_SUM=0
 GC_ATMP1=ATMP[1]
 HOD_L 2.2
 HOD_L 1.2

FOR I=2,3,...LPC+1, |Do the next line GC_ATMP_SUM=GC_ATMP_SUM+ABS(ATMP[I])

IF ((GC_ATMP_SUM*ATMP_CONST)>>3) <ABS(GC_ATMP1) ______GC_SC_FLAG=1 ELSE _____GC_SC_FLAG=0

J.4.3.14 Block #J.27 – Impulse Detection

Inputs: GDIFF, GC LEN, GC SC FLAG

Outputs: GC_ID_FLAG

Operation: Search for a sharp gain increase after a predefined period of steady gain.

 IF CDIFF > C_TRS
 | Do the next 4 lines

 IF C_CNT>CC_LEN

 GC_ID_FLAG=1

 ELSE

 GC_ID_FLAG=0

J.4.3.15 Block #J.28 – Gain Compensation Decision Inputs: GC ID FLAG, GC SC FLAG

Outputs: GC FLAG, GC CNT, UNSTEADY, GC NLS LIMIT, GC COMPENSATION

Operation: Decision logic for the Gain Compensation block.

GC_LEN=0	
CC NLS LIMIT=16383	
CC COMPENSATION=0	
IF CC SC FLAC=1 Do the next 3]	ines
<u> </u>	
GC NLS LIMIT=GC NLS LIMIT INIT	
	IT
IF CC ID FLAC=1 Do the next 3 1	ines
UNSTEADY=1	
GC FLAG=1 GAIN COM	ENSATION FLAG

J.4.3.164 Block #J.29 – Gain Compensation

Inputs: GC_FLAG, DLQ_NLSGAIN, GC_CNT, GC_COMPENSATION, GC_NLS_LIMIT Outputs: GC_FLAG

Operation: Decrease DLQ_NLSGAIN by a fixed value for a predefined period of time.

$IF GC_{FLAG} = 1$	Do the next 8 lines			
IF DLQ NLSGAIN>GC NLS LIMIT-1	Do the next 7 lines			
If DLQ_NLSGAIN>GC_NLS_LIMI	T Do the next line			
GC_CNT=GC_CNT-1				
DLQ_NLSGAIN=DLQ_NLSGAIN-GC	COMPENSATION			
IF DLQ_NLSGAIN < GC_NLS_LI	MIT Do the next line			
DLQ_NLSGAIN=GC_NLS_LIMI	T			
IF GC_CNT=0 Do the next	line			
GC_FLAG=0				
IF GC_FLAG=1 Do the nex IF DLQ_NLSCAIN>CC_NLS_LIMIT CC_CNT=GC_CNT-1	t 7 lines Do the next 6 lines			
IF GC_CNT=0				

J.4.3.17<u>5</u> Block #J.16 – logarithmic calculator

•••

J.4.10 Internal Processing Variables and Constants

• • •

Table J.4/G.728 – Internal Processing Constan	ts
---	----

Name	Value	Symbol	Description
ATMP_CONST	3		A threshold for detection of narrow bandwidth signal in the Signal Classifier
G_TRS	<u>+-1</u> 800		Gain Compensation G _{diff} threshold
GC_NLS_LIMIT_INIT	7		Gain Compensation limiter
GC_COMPENSATION_ INIT	3		The value subtracted from the gain NLS when a Gain Compensation occurs

Name	Value	Symbol	Description
<u>G_LEN</u>	<u>80</u>		<u>The period of time in which the Gain was</u> <u>steady prior to activation of Gain</u> <u>Compensation</u>
GC_ CNT_INIT LEN	11		The period of time in which the Gain Compensation is active

• • •

J.4.11 Initial Values

• • •

Name	Initial Value
GAVE	0
UNSTEADY	1
G_CNT	0
GC_SC_FLAG	θ
GC_ID_FLAG	0
GC_CNT	0
GC_FLAG	0

•••

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems