

INTERNATIONAL TELECOMMUNICATION UNION

 G.728

TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Appendix I
Verification tools

(07/95)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA,
DIGITAL SYSTEMS AND NETWORKS

Digital transmission systems – Terminal equipments –
Coding of analogue signals by methods other than PCM

Programs and test sequences for
implementation verification of the algorithm of
the G.728 16 kbit/s LD-CELP speech coder

ITU-T Recommendation G.728 – Appendix I
(Previously CCITT Recommendation)

FOREWORD

ITU (International Telecommunication Union) is the United Nations Specialized Agency in the field of
telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of
the ITU. The ITU-T is responsible for studying technical, operating and tariff questions and issuing
Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years,
establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations
on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in
WTSC Resolution No. 1.

In some areas of information technology which fall within ITU-T’s purview, the necessary standards are
prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a
telecommunication administration and a recognized operating agency.

INTELLECTUAL PROPERTY RIGHTS

The ITU draws attention to the possibility that the practice or implementation of this Recommendation may
involve the use of a claimed Intellectual Property Right. The ITU takes no position concerning the evidence,
validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others
outside of the Recommendation development process.

As of the date of approval of this Recommendation, the ITU had received notice of intellectual property,
protected by patents, which may be required to implement this Recommendation. However, implementors are
cautioned that this may not represent the latest information and are therefore strongly urged to consult the
TSB patent database.

 ITU 1998

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means,
electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

 Recommendation G.728 – Test vectors description 1

PROGRAMS AND TEST SEQUENCES FOR IMPLEMENTATION VERIFICATION
OF THE ALGORITHM OF THE G.728 16 kbit/S LD-CELP SPEECH CODER

1 General

This document describes the digital test sequences and the measurement software to be used for
implementation verification of Recommendation G.728. Provision is included for both floating point
implementations, based on the main body of Recommendation G.728, and bit exact fixed point
implementations, based on Annex G/G.728.

1.1 Verification principles for floating point implementations

The main body of the LD-CELP algorithm specification is formulated in a non-bit exact manner to
allow for simple implementation on different kinds of hardware. This implies that the verification
procedure cannot assume the implementation under test to be exactly equal to any reference
implementation. Hence, objective measurements are needed to establish the degree of deviation
between test and reference. If this measured deviation is found to be sufficiently small, the test
implementation is assumed to be interoperable with any other implementation passing the test. Since
no finite length test is capable of testing every aspect of an implementation, 100% certainty that an
implementation is correct can never be guaranteed. However, the test procedure described exercises
all main parts of the LD-CELP algorithm and should be a valuable tool for the implementor.

The floating point verification procedures described in this document have been designed with 32-bit
floating point implementations in mind. Although they could be applied to any LD-CELP
implementation, 32-bit floating point format will probably be needed to fulfil the test requirements.

1.2 Verification principles for fixed point implementations

Annex G/G.728 describes the fixed point LD-CELP algorithm in a bit exact manner. This implies
that when two encoder or decoder implementations are started from their initial states with identical
input signals, all state variables should be exactly identical at equivalent instants throughout the
processing of the inputs. Consequently, the floating point input test sequences may be used and bit
exact output sequences should result.

A short segment of input speech has been provided as an additional test input signal. All of the
associated internal state variables during the course of processing this input are also provided. This is
a means for the implementor to verify that all processing in the implementation exactly matches the
processing described in the specification. To be considered fully compliant with Annex G/G.728, an
implementation should exactly match both the prescribed outputs for the floating point test input
signals and all of the internal state variables for the short speech segment.

As in the case of the floating point implementation verification procedure, since no finite length test
is capable of testing every aspect of an implementation, 100% certainty that an implementation is
correct can never be guaranteed. However, the test procedure described exercises all main parts of
the LD-CELP algorithm and should be a valuable tool for the implementor.

2 Test configurations

This clause describes how the different test sequences and measurement programs should be used
together to perform the verification tests. The procedure is based on black-box testing at the
interfaces SU and ICHAN of the test encoder and ICHAN and SPF of the test decoder. The signals
SU and SPF are represented in 16-bit fixed point precision as described in subclause 4.2. A

2 Recommendation G.728 – Test vectors description

possibility to turn off the adaptive postfilter should be provided in the tested decoder
implementation. All test sequences processing should be started with the test implementation in the
initial reset state, as defined by Recommendation G.728. Three measurement programs, CWCOMP,
SNR and WSNR, are needed to perform the test output sequence evaluations. These programs are
further described in clause 3. Descriptions of the different test configurations to be used are found in
the following subclauses (2.1-2.6).

2.1 Encoder test

The basic operation of the encoder is tested with the configuration shown in Figure 1. An input test
sequence, IN, is applied to the encoder under test. The output codewords are compared directly to the
reference codewords, INCW or INCW*G, using the CWCOMP program.

T1506830-92

Encoder
under test

CWCOMP
program

DecisionIN

INCW or INCW*G Requirements

Figure 1 – Test configuration No. 1 – Encoder test

2.2 Decoder test

The basic operation of the decoder is tested with the configuration shown in Figure 2. A codeword
test sequence, CW, is applied to the decoder under test with the adaptive postfilter turned off. The
output signal is then compared to the reference output signal, OUTA, with the SNR program.

T1506840-92

Decoder
under test

Postfilter OFF

SNR
program Decision

OUTA Requirements

CW

Figure 2 – Test configuration No. 2 – Decoder test

2.3 Perceptual weighting filter test

The encoder perceptual weighting filter is tested with the configuration in Figure 3. An input signal
test sequence, IN5, is passed through the encoder under test, and the quality of the output codewords
are measured with the WSNR program. The WSNR program also needs the input sequence to
compute the correct distance measure.

 Recommendation G.728 – Test vectors description 3

T1506850-92

IN5 Encoder
under test

WSNR
program

Decision

IN Requirements

Figure 3 – Test configuration No. 3 – Encoder test

2.4 Postfilter test

The decoder adaptive postfilter is tested with the configuration in Figure 4. A codeword test
sequence, CW, is applied to the decoder under test with the adaptive postfilter turned on. The output
signal is then compared to the reference output signal, OUTB, with the SNR program.

T1506860-92

CW4
Decoder

under test
Postfilter ON

SNR
program Decision

OUTB Requirements

Figure 4 – Test configuration No. 4 – Decoder test

2.5 Fixed point decoder test

The basic operation of the Annex G decoder is tested with the configuration shown in Figure 5. A
codeword sequence, CW, is applied to the decoder under test with the adaptive postfilter turned off.
The output signal is then compared to the reference output signal, OUTA*G, with a diff program in
Unix ® or a FC program in MS-DOS ®. No differences should be encountered.

T1528640-98

Decoder
under test

Postfilter OFF
Decision

Requirements

CW
diff or FC
program

OUTA*G

Figure 5 – Test configuration No. 5 – Fixed point decoder test

4 Recommendation G.728 – Test vectors description

2.6 Fixed point postfilter test

The fixed point decoder adaptive postfilter is tested with the configuration in Figure 6. A codeword
test sequence, CW, is applied to the decoder under test with the adaptive postfilter turned on. The
output signal is then compared to the reference output signal, OUTB*G, with a diff program in
Unix ®1 or a FC program in MS-DOS ®1. No differences should be encountered.

T1528650-98

CW4
Decoder

under test
Postfilter ON

Decision

Requirements

diff or FC
program

OUTB*G

Figure 6 – Test configuration No. 6 – Fixed point postfilter test

2.7 Fixed point internal state variables

For fixed point implementations, a short segment of input speech has been provided as an additional
test input signal. All associated internal state variables required for processing this input (both in the
encoder and decoder) are also provided. This signal is to be used by the implementor to verify that all
processing in the implementation exactly matches the processing described in the specification.
To be considered fully compliant with Annex G, an implementation should exactly match both the
prescribed outputs for the floating point test input signals, as described in subclauses 2.1, 2.5 and 2.6
above, and all internal state variables for the short speech segment.

3 Verification programs

This clause describes the programs CWCOMP, SNR and WSNR, referred to in the test configuration
section, as well as the program LDCDEC provided as an implementors debugging tool.

The verification software is written in Fortran and is kept as close to the ANSI Fortran 77 standard as
possible. Double precision floating point resolution is used extensively to minimize numerical error
in the reference LD-CELP modules. The programs have been compiled with a commercially
available Fortran compiler to produce executable versions for 386/87-based PCs. The READ.ME file
in the distribution describes how to create executable programs on other computers.

3.1 CWCOMP

The CWCOMP program is a simple tool to compare the content of two codeword files. The user is
prompted for two codeword file names, the reference encoder output (filename in last column of
Table 1) and the test encoder output. The program compares each codeword in these files and writes
the comparison result to terminal. The requirement for test configuration 1 is that no different
codewords should exist.

1 ® Unix is a trademark of Unix Systems Laboratories and MS-DOS is a trademark of Microsoft

Corporation.

 Recommendation G.728 – Test vectors description 5

3.2 SNR

The SNR program implements a signal-to-noise ratio measurement between two signal files. The
first is a reference file provided by the reference decoder program and the second is the test decoder
output file. A global SNR, GLOB, is computed as the total file signal-to-noise ratio. A segmental
SNR, SEG256, is computed as the average signal-to-noise ratio of all 256-sample segments with
reference power above a certain threshold. Minimum segment SNRs are found for segments of
lengths 256, 128, 64, 32, 16, 8 and 4 with power above the same threshold.

To run the SNR program, the user needs to enter names of two input files. The first is the reference
decoder output file as described in the last column of Table 4. The second is the decoded output file
produced by the decoder under test. After processing the files, the program outputs the different
SNRs to terminal. Requirement values for the test configurations 2 and 4 are given in terms of these
SNR numbers.

3.3 WSNR

The WSNR algorithm is based on a reference decoder and distance measure implementation to
compute the mean perceptually weighted distortion of a codeword sequence. A logarithmic
signal-to-distortion ratio is computed for every 5-sample signal vector and the ratios are averaged
over all signal vectors with energy above a certain threshold.

To run the WSNR program, the user needs to enter names of two input files. The first is the encoder
input signal file (first column of Table 1) and the second is the encoder output codeword file. After
processing the sequence, WSNR writes the output WSNR value to terminal. The requirement value
for test configuration 3 is given in terms of this WSNR number.

3.4 LDCDEC

In addition to the three measurement programs, the distribution also includes a reference decoder
demonstration program, LDCDEC. This program is based on the same decoder subroutine as WSNR
and could be modified to monitor variables in the decoder for debugging purposes. The user is
prompted for the input codeword file, the output signal file and whether to include the adaptive
postfilter or not.

3.5 diff or FC

In addition to the software distributed with the diskettes, it is assumed that the implementor has
available a Unix ® or MS-DOS ® operating system. The commands diff and FC compare two files
and tell the user whether they are the same or different. For comparing binary files in DOS, the
proper command is FC /B FILE1 FILE2. For comparing two files under Unix, the command is
diff file1 file2.

4 Test sequences

The following is a description of the test sequences to be applied. The description includes the
specific requirements for each sequence.

4.1 Naming conventions

The test sequences are numbered sequentially, with a prefix that identifies the type of signal:

IN Encoder input signal

INCW Floating point encoder output codewords

6 Recommendation G.728 – Test vectors description

INCW*G Fixed point encoder output codewords

CW Decoder input codewords

OUTA Decoder output signal without postfilter

OUTA*G Fixed point decoder output signal without postfilter

OUTB Decoder output signal with postfilter

OUTB*G Fixed point decoder output signal with postfilter

All test sequence files have the extension *.BIN.

4.2 File formats

The signal files, according to the LD-CELP interfaces SU and SPF (file prefix IN, OUTA and
OUTB) are all 2’s complement 16-bit binary format and should be interpreted to have a fixed binary
point between bits #2 and #3, as shown in Figure 5. Note that all the 16 available bits must be used to
achieve maximum precision in the test measurements.

The codeword files (LD-CELP signal ICHAN, file prefix CW or INCW) are stored in the same
16-bit binary format as the signal files. The least significant 10 bits of each 16-bit codeword
represent the 10-bit codeword, as shown in Figure 7. The other bits (#12-#15) are set to zero.

Both signal and codeword files are stored in the low-byte first word storage format that is usual on
IBM/DOS and VAX/VMS computers. For use on other platforms, such as most UNIX machines, the
ordering may have to be changed by a byteswap operation.

± 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- 9 8 7 6 5 4 3 2 1 0-----

0 (LSB)
T1528660-98

fixed binary point

Signal:

Codeword:
Bit#:

15 (MSB/sign bit)

Figure 7 – Signal and codeword binary file format

4.3 Test sequences and requirements

The tables in this subclause describe the complete set of tests to be performed to verify that a floating
point implementation of LD-CELP follows the specification and is interoperable with other correct
implementations. Table 1 is a summary of the encoder test sequences. The corresponding
requirements are expressed in Tables 2 and 3. Tables 4, 5 and 6 contain the decoder test sequence
summary and requirements.

 Recommendation G.728 – Test vectors description 7

Table 1 – Encoder tests

Input
signal

Length,
vectors

Description of test Test
config.

Output
signal

IN1 1 536 Test that all 1024 possible codewords are properly
implemented

1 INCW1,
INCW1G

IN2 1 536 Exercise dynamic range of log-gain autocorrelation
function

1 INCW2,
INCW2G

IN3 1 024 Exercise dynamic range of decoded signals
autocorrelation function

1 INCW3,
INCW3G

IN4 10 240 Frequency sweep through typical speech pitch range 1 INCW4,
INCW4G

IN5 84 480 Real speech signal with different input levels and
microphones

3 –
INCW5G

IN6 256 Test encoder limiters 1 INCW6,
INCW6G

Table 2 – Floating point encoder test requirements

Input signal Output signal Requirement

IN1 INCW1 0 different codewords detected by CWCOMP

IN2 INCW2 0 different codewords detected by CWCOMP

IN3 INCW3 0 different codewords detected by CWCOMP

IN4 INCW4 0 different codewords detected by CWCOMP

IN5 – WSNR > 20.55 dB

IN6 INCW6 0 different codewords detected by CWCOMP

Table 3 – Fixed point encoder test requirements

Input signal Output signal Requirement

IN1 INCW1G 0 different codewords detected by CWCOMP

IN2 INCW2G 0 different codewords detected by CWCOMP

IN3 INCW3G 0 different codewords detected by CWCOMP

IN4 INCW4G 0 different codewords detected by CWCOMP

IN5 INCW5G 0 different codewords detected by CWCOMP

IN6 INCW6G 0 different codewords detected by CWCOMP

8 Recommendation G.728 – Test vectors description

Table 4 – Decoder tests

Input
signal

Length,
vectors

Description of test Test config. Output signal

CW1 1 536 Test that all 1024 possible codewords are
properly implemented

2, 5 OUTA1,
OUTA1G

CW2 1 792 Exercise dynamic range of log-gain
autocorrelation function

2, 5 OUTA2,
OUTA2G

CW3 1 280 Exercise dynamic range of decoded signals
autocorrelation function

2, 5 OUTA3,
OUTA3G

CW4 10 240 Test decoder with frequency sweep through
typical speech pitch range

2, 5 OUTA4,
OUTA4G

CW4 10 240 Test postfilter with frequency sweep through
typical speech pitch range

4, 6 OUTB4,
OUTB4G

CW5 84 480 Real speech signal with different input levels
and microphones

2, 5 OUTA5,
OUTA5G

CW6 .256 Test decoder limiters 2, 5 OUTA6,
OUTA6G

Table 5 – Floating point decoder test requirements

Output Requirements (minimum values for SNR, in dB)

file name SEG256 GLOB MIN256 MIN128 MIN64 MIN32 MIN16 MIN8 MIN4

OUTA1 75.00 74.00 68.00 68.00 67.00 64.00 55.00 50.00 41.00

OUTA2 94.00 85.00 67.00 58.00 55.00 50.00 48.00 44.00 41.00

OUTA3 79.00 76.00 70.00 28.00 29.00 31.00 37.00 29.00 26.00

OUTA4 60.00 58.00 51.00 51.00 49.00 46.00 40.00 35.00 28.00

OUTB4 59.00 57.00 50.00 50.00 49.00 46.00 40.00 34.00 26.00

OUTA5 59.00 61.00 41.00 39.00 39.00 34.00 35.00 30.00 26.00

OUTA6 69.00 67.00 66.00 64.00 63.00 63.00 62.00 61.00 60.00

Fixed point decoder test requirements

No differences between output test vector, OUTA*G or OUTB4G, and actual output for any input
test vector, CW*, as measured by diff or FC or an equivalent file comparison program. In addition, to
be considered fully compliant with Annex G/G.728, an implementation should follow exactly all of
the internal state variables for the short speech segment.

5 Verification tools distribution

A READ.ME file is included in diskette #1 to describe the contents of each file and the procedures
necessary to compile and link the programs. Extensions are used to separate different file types.
*.FOR files are source code for the Fortran programs, *.EXE files are 386/87 executables and *.BIN
are binary test sequence files. The content of each diskette is listed in Tables 6, 7, 8 and 9.

 Recommendation G.728 – Test vectors description 9

Table 6 – Distribution directory disk #1

Diskette Filename Number of bytes

Diskette #1 READ.ME 10 430
 CWCOMP.FOR 2 642

Total size: CWCOMP.EXE 25 153

1 289 859 bytes SNR.FOR 5 536

 SNR.EXE 36 524

 WSNR.FOR 3 554

 WSNR.EXE 103 892

 LDCDEC.FOR 3 016

 LDCDEC.EXE 101 080

 LDCSUB.FOR 37 932

 FILSUB.FOR 1 740

 DSTRUCT.FOR 2 968

 IN1.BIN 15 360

 IN2.BIN 15 360

 IN3.BIN 10 240

 IN5.BIN 844 800

 IN6.BIN 2 560

 INCW1.BIN 3 072

 INCW2.BIN 3 072

 INCW3.BIN 2 048

 INCW6.BIN .512

 CW1.BIN 3 072

 CW2.BIN 3 584

 CW3.BIN 2 560

 CW6.BIN .512

 OUTA1.BIN 15 360

 OUTA2.BIN 17 920

 OUTA3.BIN 12 800

 OUTA6.BIN 2 560

Table 7 – Distribution directory disk #2

Diskette Filename Number of bytes

Diskette #2 IN4.BIN 102 400

 INCW4.BIN 20 480

Total size: CW4.BIN 20 480

1 361 920 bytes CW5.BIN 168 960

 OUTA4.BIN 102 400

 OUTB4.BIN 102 400

 OUTA5.BIN 844 800

10 Recommendation G.728 – Test vectors description

Table 8 – Distribution directory disk #3

Diskette Filename Number of bytes

Diskette #3 INCW1G.BIN 3 072

 INCW2G.BIN 3 072

Total size: INCW3G.BIN 2 048

1 297 280 bytes INCW4G.BIN 20 480

 INCW5G.BIN 168 960

 INCW6G.BIN .512

 OUTA1G.BIN 15 360

 OUTA2G.BIN 17 920

 OUTA3G.BIN 12 800

 OUTA4G.BIN 102 400

 OUTB4G.BIN 102 400

 OUTA5G.BIN 844 800

 OUTA6G.BIN 2 560

 READ.ME 896

Diskette #4 – Internal state variables

The specification of fixed point G.728 coder in Annex G/G.728 is bit exact. A short segment of
speech is used as a test input to compare the internal representations of all state variables between
two different implementations. All of the output vectors should match. To avoid any confusion, all of
these outputs are stored in ASCII on disk #4.

Table 9 – Distribution directory disk #4

Size Filename Remarks

36 100 a.q14 a(2) to a(51) in Q14. A "-" means no update for that vector.

7 700 ap.q14 ap() in Q14

8 400 apf.bf apf() as the intermediate output of block 50, then Q format

7 700 apf.q13 the final apf() in Q13 (converted from apf.bf)

36 900 atmp.bf atmp(2) to atmp(51), then IAQ Q format. (block 50 output)

7 700 awp.q14 awp(2) to awp(11) in Q14. A "-" means no update for that vector.

7 700 awz.q14 awz(2) to awz(11) in Q14. A "-" means no update for that vector.

8 400 awztmp.bf awztmp(2) to awztmp(11) in Q13, Q14, or Q15, followed by the Q format in
the last column. (block 37 output)

7 700 az.q14 az() in Q14

1 200 b.q16 b in Q16 (long-term postfilter coeff. computed in block 84)

14 400 d.q1 the newest vector of d() array in Q1

4 200 dec.q1 dec(21:25) in Q1 (new decimated LPC residual for current frame)

15 600 et.bf et() in block floating-pt; 5 mantissas and nlset in each line.

 Recommendation G.728 – Test vectors description 11

Table 9 – Distribution directory disk #4 (continued)

Size Filename Remarks

3 600 gain.sf linear gain used to scale codevector (mantissa, then nlsgain)

4 000 gaininv.sf 1/GAIN used to normalize target vector (mantissa, then NLS)

1 400 gl.q14 gl in Q14

1 400 glb.q14 glb in Q14

7 700 gp.q14 gp(2) to gp(11) in Q14. A "-" means no update for that vector.

8 400 gptmp.bf gptmp(2) to gptmp(11), then gptmp Q format. (block 44 output)

2 800 gstate.q9 gstate(1) in Q9. (The other 9 gstate() are in previous lines.)

3 500 gtmp.q9 gtmp() in Q9. Note the first gtmp() vector has three -16384.

4 200 h.q13 h() vector in Q13. A "-" means no update for that vector.

2 000 ichan.q0 encoder output channel index "ichan" (one per line)

14 400 input.q3 16-bit linear PCM input vector (fixed Q3, one vector a line)

2 400 isig.q0 shape index "is" followed by gain index "ig" in each line

1 400 kp.q0 the pitch period kp in Q0

2 800 loggain.q9 log-gain before converting to linear gain (block 48 input)

14 800 lpfiir.q1 the 20 elements of lpfiir() corresponding to the current frame

14 400 output.q3 decoder (with postfilter) output vector in 16-bit linear PCM

14 400 pn.q7 pn() in Q7 (block 13 output)

1 200 ptap.q14 ptap in Q14 (output of block 83)

8 400 r_b36.bf r(1) to r(11) at block 36 output

8 400 r_b43.bf r(1) to r(11) at block 43 output

1 400 rc1.q15 rc1 of block 50 in Q15 (the one used to derive tiltz)

5 821 readme describes contents of disk #4

37 600 rexp.bf rexp(1) to rexp(51), then nlsrexp. (block 49 output)

9 200 rexplg.bf rexplg(1) to rexplg(11), then nlsrexplg. (block 43 output)

9 200 rexpw.bf rexpw(1) to rexpw(11), then nlsrexpw. (block 36 output)

36 900 rtmp.bf rtmp(1) to rtmp(51) at block 49 output

14 400 s.q2 input s() vector after converting input.q3 to Q2 with rounding

3 600 scale.sf scale in scalar floating-point (output of block 75)

14 400 scalefil.q14 scalefil in Q14 (output of block 76)

14 400 sst.q0 Q0 sst(-4:0) after SST() buffer shift (i.e. sst(1:5) >> 2)

14 400 sst.q2 sst(1:5) in Q2

14 400 st.bf st() in block floating-point format

15 600 statelpc.sbf The newest 5 elements of statelpc() and nlsstate(10) for the current vector

15 600 stmp.q2 stmp() in Q2. Its content is up to vector 2 of current frame.

14 800 stpffir.q2 stpffir(1:5) after postfiltering the current vector

12 Recommendation G.728 – Test vectors description

Table 9 – Distribution directory disk #4 (concluded)

Size Filename Remarks

14 400 stpfiir.q2 stpfiir(1:5) after postfiltering the current vector

14 400 sttmp.sbf sttmp(), 20 mantissas followed by 4 exponents (nlssttmp()).

17 700 sw.q2 sw() in Q2 (block 4 output)

3 200 sumfil.q2 sumfil in Q2 at the output of block 74 (AA1 in pseudo-code)

3 200 sumunfil.q2 sumunfil in Q2 at the output of block 73 (AA0 in pseudo-code)

14 400 target.q2 unnormalized target vector in Q2 (block 11 output)

14 400 targetn.bf gain-normalized target vector in block floating-point

15 600 temp_b72.q2 temp() at the output of block 72, in Q2

14 400 tiltz.q14 tiltz in Q14

1 400 wiir.q2 newest 5 elements of wiir() in Q2 after weighting filtering

14 400 y2.q5 y2() array in Q5. A "-" means no update for that vector.

78 700 zir.q2 zir() vector in Q2

14 400 zirwfir.q2 newest 5 elements of zirwfir() after memory update of block 10

14 400 zirwiir.q2 newest 5 elements of zirwiir() after memory update of block 10

I T U - T S O F T W A R E

G.191 (11.96) Software Tools Library 96 (STL-96) and STL-96 Manual

G.722 Appendix II (03.87) Digital test sequences for the verification of the G.722 64 kbit/s
SB-ADPCM 7 kHz codec

G.723.1 Annex A (11.96) C reference code, test signals and test sequences for the fixed
point 5.3 and 6.3 kbit/s dual rate speech coder and for the
silence compression scheme, version 5.1

G.723.1 Annex B (11.96) C reference code and test signals for the floating point 5.3 and
6.3 kbit/s dual rate speech coder, version 5.1F

G.723.1 Annex C (11.96) C reference code and test signals for the scalable channel
codec, version 3.1

G.726 Appendix II (03.91) Digital test sequences for the verification of the G.726 40, 32,
24 and 16 kbit/s ADPCM algorithm

G.727 Appendix I (03.91) Digital test sequences for the verification of the G.727 5-, 4-, 3-
and 2-bit/sample embedded ADPCM algorithm

G.728 Appendix I (07.95) Programs and test sequences for implementation verification of
the algorithm of the G.728 16 kbit/s LD-CELP speech coder

G.729 (03.96) C Source code and test vectors for implementation verification
of the G.729 8 kbit/s CS-ACELP speech coder

G.729 Annex A (11.96) C source code and test vectors for implementation verification
of the G.729 reduced complexity 8 kbit/s CS-ACELP speech
coder

G.729 Annex B (10.96) C source code and test vectors for implementation verification
of the algorithm of the G.729 silence compression scheme

P.501 (08.96) Test signals for use in telephonometry

P.861 (08.96) C reference code of Perceptual Speech Quality Measure
(PSQM)

Q.921 bis (03.93) Abstract test suite for LAPD conformance testing – Part I: basic
rate user side

Q.931 bis (02.95) PICS and abstract test suite for ISDN DSS 1 layer 3 – Circuit
mode, basic call control conformance testing

Q.933 bis (10.95) PICS and abstract test suite for frame mode basic call control
conformance testing of PVCs – Section I: user and network
sides of user-network interface

T.24 (11.94) Standardized digitized image set

T.83 (11.94) Compliance test data for the generic encoder and decoder for
the digital compression and coding of continuous-tone still
images

�

	ITU-T Rec. G.728 Appendix I Verification tools (07/95) PROGRAMS AND TEST SEQUENCES FOR IMPLEMENTATION VERIFICATION OF THE ALG
	PROGRAMS AND TEST SEQUENCES FOR IMPLEMENTATION VERIFICATION OF THE ALGORITHM OF THE G.728 16 kbit/S LD-CELP SPEECH CODER
	1 General
	1.1 Verification principles for floating point implementations
	1.2 Verification principles for fixed point implementations

	2 Test configurations
	2.1 Encoder test
	2.2 Decoder test
	2.3 Perceptual weighting filter test
	2.4 Postfilter test
	2.5 Fixed point decoder test
	2.6 Fixed point postfilter test
	2.7 Fixed point internal state variables

	3 Verification programs
	3.1 CWCOMP
	3.2 SNR
	3.3 WSNR
	3.4 LDCDEC
	3.5 diff or FC

	4 Test sequences
	4.1 Naming conventions
	4.2 File formats
	4.3 Test sequences and requirements

	5 Verification tools distribution

