G. 728 - Annex G (11/94)

## GENERAL ASPECTS OF DIGITAL TRANSMISSION SYSTEMS

# CODING OF SPEECH AT 16 kbit/s USING LOW-DELAY CODE EXCITED LINEAR PREDICTION 

ANNEX G: 16 kbit/s FIXED POINT SPECIFICATION

ITU-T Recommendation G. 728 - Annex G
(Previously "CCITT Recommendation")

## FOREWORD

The ITU-T (Telecommunication Standardization Sector) is a permanent organ of the International Telecommunication Union (ITU). The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC Resolution No. 1 (Helsinki, March 1-12, 1993).

ITU-T Recommendation G. 728 - Annex G was prepared by ITU-T Study Group 15 (1993-1996) and was approved under the WTSC Resolution No. 1 procedure on the 1st of November 1994.
$\qquad$

## NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from the ITU.

## CONTENTS

Page
Annex G - 16 kbit/s fixed point specification ..... 1
G. 1 Introduction ..... 1
G.1.1 General philosophy1
G.1.2 Numerical representation ..... 2
G.1.3 Arithmetic operations3
G. 2 Algorithmic changes ..... 8
G.2.1 Changes in the backward vector gain adapter (block 20) ..... 8
G.2.2 Changes in the Levinson-Durbin recursion modules ..... 12
G. 3 Pseudo-code for other modules of Recommendation G. 728 ..... 18
G.3.1 Block 4 - Pseudo-code for weighting filter ..... 20
G.3.2 Blockzir - Pseudo-code for synthesis and perceptual weighting filters during zero-input response computation ..... 21
G.3.3 Blocks 9 and 10 - Pseudo-code for synthesis and perceptual weighting filter memory updates ..... 23
G.3.4 Block 11 - VQ target vector computation ..... 26
G.3.5 Block 12 - Impulse response vector calculation ..... 26
G.3.6 Block 13 - Time-reversed convolution ..... 27
G.3.7 Block 14 - Shape codevector convolution and energy calculation. ..... 27
G.3.8 Block 16 - VQ target vector normalization ..... 28
G.3.9 Block 17 - VQ search error calculator and best codebook index selector ..... 29
G.3.10 Block 19 - Excitation VQ codebook and block 21 - Gain scaling unit ..... 30
G.3.11 Block 32 - Decoder synthesis filter ..... 31
G.3.12 Block 36 - Pseudo-code for hybrid windowing module ..... 33
G.3.13 Block 38 - Weighting filter coefficient calculator ..... 35
G.3.14 Block 43 - Hybrid windowing module ..... 36
G.3.15 Block 45 - Bandwidth expansion module ..... 38
G.3.16 Block 46 - Log-gain linear prediction ..... 39
G.3.17 Block 49 - Hybrid window module for synthesis filter ..... 41
G.3.18 HWMCORE - Core of hybrid window module ..... 43
G.3.19 Block 51 - Bandwidth expansion module ..... 47
G.3.20 Blocks 71 and 72 - Long-term and short-term postfilters ..... 48
G.3.21 Blocks 73 and 74 - Sum of absolute value calculators ..... 49
G.3.22 Block 75 - Scaling factor calculator ..... 50
G.3.23 Block 76 - First-order lowpass filter and block 77 - Output gain scaling unit ..... 50
G.3.24 Block 81 - 10th order LPC inverse filter ..... 51
G.3.25 Block 82 - Pitch period extraction module ..... 51
G.3.26 Block 83 - Pitch predictor tap calculator ..... 54
G.3.27 Block 84 - Long-term postfilter coefficient calculator ..... 55
G.3.28 Block 85 - Short-term postfilter coefficient calculator ..... 56
G. 4 LD-CELP internal variable representations ..... 57
G. 5 Log-gain tables for gain and shape codebook vectors ..... 60
G. 6 Integer values of gain codebook related arrays ..... 62
G. 7 Encoder and decoder main program pseudo-codes ..... 62

# CODING OF SPEECH AT 16 kbit/s USING LOW-DELAY CODE EXCITED LINEAR PREDICTION 

(Geneva, 1992)

Annex G<br>16 kbit/s fixed point specification

(Geneva, 1994)
(This annex forms an integral part of this Recommendation)

## G. 1 Introduction

The purpose of this annex is to describe in sufficient detail how ITU-T Recommendation G. 728 for $16 \mathrm{kbit} / \mathrm{s}$ LD-CELP can be implemented on a fixed point arithmetic device. A fixed point implementation based on this description should be capable of fully interworking with a floating point version of Recommendation G. 728 and producing an output signal of equivalent quality, whether that signal is speech or an in-band data signal. By fixed point arithmetic we mean a 16 -bit word size. Most 16 -bit devices have other word sizes as well. For example, the product of two 16 -bit words is a 32 -bit word. So, the product register of such a device is typically 32 bits wide. The accumulator stores the sum of products, so it must also be at least 32 bits wide. Thus, although we are describing a "16-bit implementation," some internal state variables have other than 16-bit precision.

It is the intent of this annex to provide a complete bit exact description of all operations necessary for the implementation of Recommendation G. 728 on a 16-bit fixed point digital signal processor having a 32-bit product register and at least two 32-bit (or greater) accumulators. In numerous instances throughout the annex there are possible alternative methods to perform operations such that the exact same result is obtained. In such instances the alternate method may be substituted. However, if the exact same result is not obtained for all possible inputs, then the substitution should not be made. Since the number of possible alternatives is very large, no attempt has been made to point out the great majority of them.

This annex is divided into seven subclauses. The first subclause is an introduction and contains further information about fixed point signal processing and the conventions used throughout this annex. The second subclause contains information about algorithmic changes which were made especially for fixed point implementation of Recommendation G.728. The third subclause gives fixed point pseudo-code for the remaining modules of the coder. The fourth subclause provides an overall summary of state variable representations for the fixed point coder. The last subclauses contain tables pertaining to the backward vector gain adapter.

## G.1.1 General philosophy

This annex is an annex to ITU-T Recommendation G.728. It is therefore unnecessary to repeat all of the details and discussions in that Recommendation. Where it is helpful, some of the details will be reviewed. In that Recommendation, complete computational details were given for a floating point implementation. Where the computational details are unchanged except for the substitution of fixed point arithmetic operations for floating point, no computational details will be given in this annex.

The greatest changes from the floating point version of the coder to this one are:

1) the introduction of different types of arithmetic operations and precisions for the state variables;
2) a changed, but mathematically equivalent method for the backward vector gain adaptation; and
3) the introduction of variable precision in the calculation of the predictor coefficients in the LevinsonDurbin recursion.

The remainder of this first subclause of the annex gives details on the different numerical representations and fixed point arithmetic. The second subclause of the annex gives details on the two major algorithmic changes mentioned above, the backward vector gain adaptation and the Levinson-Durbin recursion. The third subclause of the annex gives pseudocode for the hybrid windowing module, block 49 in Recommendation G.728. The algorithm for this module is unchanged, but the implementation is complicated by the use of fixed point arithmetic. The pseudo-code for this module is a good example of the types of changes which must be made throughout the other modules in the coder. The fourth subclause of the annex contains a table corresponding to Table $2 / \mathrm{G} .728$ giving the numerical representation of all state variables used in the encoder and decoder.

For consistency in this annex, all representations assume that 2's complement arithmetic is used throughout. Alternative representations which can produce mathematically equivalent results can be used to implement the coder.

## G.1.2 Numerical representation

The basic unit of a 16-bit fixed point implementation is the 16 -bit word. When representing pure integers, it has a range of -32768 to +32767 . The representation for 1 is given by 0000000000000001 and the representation for -32768 is given by 1000000000000000 . Here the right-most bit represents the least significant bit (LSB) and the left-most bit represents the most significant bit (MSB). For 2's complement arithmetic, if the MSB is 0 , the number is positive, while if the MSB is 1 , the number is negative. We can number the bits from 0 to 15 , with bit 0 being the LSB and bit 15 the MSB.

To represent numbers with fractional parts, a decimal point must be assigned between two of the bits. For example, to represent numbers between -1.0 and +1.0 , we would assign the decimal point between bits 14 and 15 . This particular format is called Q15 because there are 15 bits to the right of the decimal point. Qn format is defined to have n bits to the right of the decimal point. Purely integer data would be represented by Q0 format.

Some data requires a greater precision than representation by a 16-bit word. To accommodate such data, double precision format is defined. This means that there are 32 bits of information. Whereas 16 -bit words are capable of representing data with a precision of 1 in 215 , 32 -bit registers such as the product register or the accumulator on most commercially available DSP chips can represent data with a precision of 1 in $2^{31}$. Such words are referred to as double precision. Once again, there must be a decimal point to indicate the dynamic range of the word as well.

Some data has a greater range than can be represented by any fixed 16-bit format. Perhaps 16 bits of precision is adequate, but the scaling of the value must be dynamic. Such data can be represented by single precision floating point. This means that the data is represented by two words. The first 16 -bit word contains a number whose magnitude falls between 16384 and 32767 . This is the mantissa of the value and we say that its value is represented in normalized format because of the range of its magnitude. If the value is positive, then bit 14 of the mantissa is a 1 . The second word contains the number of left shifts (NLS) used to put the value in normalized format. Thus, the second word specifies the Q format of the mantissa. If this format is used for a single value, it is called scalar floating point.

It is also possible to represent an array of $n$ values with $n+1$ words using block floating point. Using this format, the largest magnitude value in the array would be represented the same way as just described for scalar floating point. All other values in the array would share the same NLS. Their mantissas would not necessarily be in normalized format. An extension of this representation is segmented block floating point. In this case an array of mn values is represented by $\mathrm{m}(\mathrm{n}+1)$ words. The array is subdivided into m sub-arrays of size n and each sub-array is represented in block floating point with $n$ words representing the magnitudes and 1 word representing the NLS.

The other type of representation used is double precision floating point. In this instance double precision integers are used for the mantissas and one single precision word is used to represent the NLS. In summary, the different types of representations used are single precision fixed point, double precision fixed point for the accumulators and product register, scalar single precision floating point, and single and double precision block floating point formats.

## G.1.3 Arithmetic operations

In multiplying two 16 -bit words, the result is a 32 -bit number. This is the reason that product registers are customarily double precision. Since product registers can be added the accumulators, the accumulators must also be at least 32 bits wide. For a sum of products type of computation, as in convolution or FIR filtering, the accumulator could overflow. This problem of overflow is addressed differently in commercially available DSP chips.

In IIR filtering, the sum of products, or the result of the multiply-accumulate operations, becomes part of the memory for the filter and is used again the next time the filtering operation is performed. Specifically, the 16 bits in the high word of the output will be used as an input to the multiplier. An overflow which converts a large positive value to a large negative value or vice versa is known as wrap around and will cause a big difference in the output of the filter. To guard against this, we use saturation mode arithmetic for all IIR filters and anywhere else that a sum of products will later be used as an input for a multiplier. Saturation mode means that if the high word becomes greater than 32767 or less than 32768 , it will be clipped to these values in order to prevent wrap around.

## G.1.3.1 Shifting and rounding

In discussing arithmetic operations, we begin with shifting and rounding. If we multiply a Qn format value by a Qm format value number, the result in the product register will have double precision format $\mathrm{Q}(\mathrm{n}+\mathrm{m})$. If the result needs to be stored or added at a different precision, then the result must be shifted and/or rounded to the correct precision.

Two types of shifts are possible, left shifts and right shifts. On commercially available DSP chips, shifts can usually be done in the accumulator. Also, it is usually possible to shift the result in a product register before adding it to or storing it in the accumulator. As their names imply, in a left shift, the bits are moved to the left and in a right shift they are moved to the right. If we shift a value k bits to the right, then the least significant k bits of the old value are lost. If we shift a value to the left, we need to check for possible overflows. The expression to indicate a right shift of k bits for a variable TMP is

$$
\mathrm{TMP}=\mathrm{TMP} \gg \mathrm{k}
$$

and the expression for a left shift of k bits is given by

$$
\mathrm{TMP}=\mathrm{TMP} \ll \mathrm{k}
$$

In some cases k is a variable and can even be negative. In those instances when k is negative, a left shift by k bits is defined to be a right shift by -k bits. Similarly, a right shift by k bits when k is negative is equivalent to a left shift by k bits. Where the possibility of k being negative exists, the pseudo-code includes a test for this possibility followed by the reverse shift by -k bits if k is negative. While negative shifts have been defined above mathematically, they cannot be implemented on most devices or in some computer languages.

It is worth noting one particular anomaly of right shifts for 2's complement arithmetic. Suppose that the value to be right shifted is 3 and the shift is 1 bit. The 16 -bit representation of 3 is given by 0000000000000011 . If we right shift this by one bit, we get $0000000000000001=1$. If the value to be right shifted is -3 , then the representation is 1111111111111101 . After a right shift, the result is $11111111111111110=-2$. The first item to note is that for right shifting, the sign bit is extended. The anomaly is that the magnitude of the answers for these two examples do not agree. If a sign-magnitude representation were used, they would agree. Implementers should be aware of this difference.

In simulating the coder an additional, more subtle difference was found which is compiler dependent. It is possible that in the algorithm an instruction is generated to right shift a word by greater than the size of that word. For example, it could be to shift a 16 -bit word by 18 bits. If the operation were implemented by doing 18 individual 1 -bit right shifts, the result of such an operation should be 0 or -1 , depending on the sign of the original data. However, it was found that some compilers consider an 18 -bit shift to be an illegal instruction and produce spurious results. Implementers should verify how their target hardware and language compiler would handle such a case.

Rounding is the process of converting from double precision to single precision in the accumulator. Usually rounding is performed immediately preceding the storage of the value to a 16 -bit word in memory. An accumulator consists of a high word and a low word (and possibly the additional bits to the left of the high word). Usually, either the high word or the low word can be stored to memory, or both on two successive instructions. If we consider the accumulator to have a decimal point placed between the high word and the low word, then rounding is the operation of converting the accumulator to the integer value closest to the non-integer value stored in the original two words. The usual convention for 2's complement numbers is to test the MSB in the low word. If it is 1 , add 1 to the value in the high word. Then zero out the low word. For example, if the value in the accumulator is 1.5 , the high word is given by 0000000000000001 and the low word is given by 1000000000000000 . Since the MSB of the low word is 1 , add 1 to the high word and zero out the low word. The result is 0000000000000010 for the high word, or 2 . If the value in the accumulator is -1.5 , then the high word is given by 1111111111111110 and the low word is given by 1000000000000000 . Since the MSB of the low word is 1 , add 1 to the high word and then zero the low word. The result is $1111111111111111=-1$. This is similar to the anomaly for right shifts.

In performing the rounding function it is necessary to be aware of the possibility of overflow. For example, if the high word value is $0111111111111111(=32767)$ and the low word has a 1 in the MSB, then following the usual convention results in an overflow. Depending on the processor, the output word could become 1000000000000000 which represents -32768. In such a case, the usual convention is not followed. Instead the value is saturated to avoid an unrepresentable value.

In the pseudo-code examples, the rounding function described above is represented as RND (.).

## Pseudo-code for VSCALE

One new module of pseudo-code which needs to be introduced at this point performs vector scaling for block floating point representation. The name given to this module is VSCALE. Its purpose is to scale a vector so that the largest magnitude of its elements is left justified as desired, i.e. represented in normalized format. This module can be used for vectors where the first element is known to have the largest element or for vectors where the location of the largest element is unknown. The inputs to VSCALE are IN, the input vector to be scaled, LEN, the length of the input vector, SLEN, the search length for finding the maximum value, and MLS, the maximum number of left shifts permitted. The outputs of VSCALE are OUT, the output vector, and NLS, the number of left shifts used for scaling the input vector. The input and output vectors are assumed to be of the same type and can be either single precision block floating point (16-bit integers) or double precision block floating point (32-bit integers). In the case of single precision vectors, MLS $=14$, while for double precision vectors, MLS $=30$. Sometimes, it is desired to use less than 16 bits or 32 bits to represent a variable. For example, there are several variables which are specified to have either 14 or 15 bits of precision. In these cases, set MLS $=12$ or 13 , respectively. Because of this possibility, there is also a possibility that rather than left shifts to normalize the variable, it will require right shifts. In those instances, the NLS value returned will be negative. For example, if NLS $=-1$ is returned, this indicates that a right shift of 1 bit was necessary. The module assumes that there is an accumulator (AA0) available for shifting and that it has at least 32 bits of precision. If the maximum element is known to be the first, set $\operatorname{SLEN}=1$. Otherwise, set $\operatorname{SLEN}=\mathrm{LEN}$ and the entire vector will be searched for the maximum value.

The following code follows the convention that data is represented in 2's complement form. It treats the cases where largest magnitude values are positive or negative, separately.

SUBROUTINE VSCALE(IN, LEN, SLEN, MLS, OUT, NLS)

| AA $0=\operatorname{IN}(1)$ | $\mid$ Find maximum positive value of input |
| :--- | :--- |
| AA1 $=\operatorname{IN}(1)$ | $\mid$ Find maximum negative value of input |

If SLEN $=1$, skip the next 3 lines
For $I=2,3, \ldots, S L E N$, do the next two lines
If $\mathrm{IN}(\mathrm{I})>\mathrm{AA} 0$, set $\mathrm{AA} 0=\mathrm{IN}(\mathrm{I})$
If $\mathrm{IN}(\mathrm{I})<\mathrm{AA} 1$, set $\mathrm{AA} 1=\mathrm{IN}(\mathrm{I})$
| Case 1: zero input vector
If $\mathrm{AA} 0=0$ and $\mathrm{AA} 1=0$, do the next 3 lines
For $\mathrm{I}=1,2, \ldots$, LEN, set $\mathrm{OUT}(\mathrm{I})=0$
NLS $=$ MLS $+1 \quad \mid$ Let 0 have one more bit of
Exit this subroutine
| left shift than 1
$\mathrm{NLS}=0$
| Initialize NLS
| Determine Case 2 or Case 3
If $\mathrm{AA} 0<0$ or $\mathrm{AA} 1<-\mathrm{AA} 0$, then do the following indented lines
MAXI $=-2^{\text {MLS }}$
| Case 2, negative is larger
| Mantissa lower bound after shift

MINI $=2 *$ MAXI
If AA1 < MINI, then do the following doubly indented lines to find the number of right shifts needed and then scale the elements

LOOP1R: $\quad \mathrm{AA} 1=\mathrm{AA} 1 \gg 1$
NLS $=$ NLS $-1 \quad \mid$ Negative NLS $=\Rightarrow$ right shifts
If AA1 < MINI, go to LOOP1R
For $\mathrm{I}=1,2,3, \ldots$, LEN, do the next line
$\operatorname{OUT}(\mathrm{I})=\mathrm{IN}(\mathrm{I}) \gg-\mathrm{NLS}$
Exit this subroutine
LOOP1L: If AA1 < MAXI, go to SCALE1
| Find number of left shifts
$\mathrm{AA} 1=\mathrm{AA} 1 \ll 1$
NLS $=$ NLS +1
Go to LOOP1L
SCALE1: For $I=1,2,3, \ldots$, LEN, do the next line OUT(I) $=\mathrm{IN}(\mathrm{I}) \ll$ NLS
Exit this subroutine
Else, do the following indented lines

| MINI $=2^{\text {MLS }}$ | $\mid$ Mantissa lower bound after shift |
| :--- | :--- |
| MAXI $=$ MINI -1 | $2 *$ MIN will overflow if MLS $=30$ |
| MAXI $=$ MAXI + MINI | $\mid$ Mantissa upper bound |

If AA0 $>$ MAXI, then do the following doubly indented lines to find the number of right shifts needed and then scale the elements

LOOP2R: $\quad \mathrm{AA} 0=\mathrm{AA} 0 \gg 1$
NLS $=$ NLS -1
If AA0 $>$ MAXI, go to LOOP2R
For $I=1,2,3, \ldots$, LEN, do the next line
$\operatorname{OUT}(\mathrm{I})=\mathrm{IN}(\mathrm{I}) \gg-\mathrm{NLS}$
Exit this subroutine
LOOP2L: If $\mathrm{AA} 0 \geq$ MINI, go to SCALE2
$\mathrm{AA} 0=\mathrm{AA} 0 \ll 1$
$\mathrm{NLS}=\mathrm{NLS}+1$
Go to LOOP2L
SCALE2: For $I=1,2,3, \ldots$, LEN, do the next line OUT(I) $=\mathrm{IN}(\mathrm{I}) \ll$ NLS
Exit this subroutine

In some instances we find that it is not actually desired to re-scale the data, but merely to find the number of left shifts required if one wanted to re-scale the data. The following routine uses the same inputs as VSCALE but provides only NLS as an output. It omits the scaling of the input vector, but is otherwise the same as VSCALE.

SUBROUTINE FINDNLS(IN, SLEN, MLS, NLS)

| AA $0=I N(1)$ | $\mid$ Find maximum positive value of input |
| :--- | :--- |
| AA $1=\mathrm{IN}(1)$ | $\mid$ Find maximum negative value of input |
| If $S L E N=1$, skip the next 3 lines |  |
| For $I=2,3, \ldots$, SLEN, do the next two lines |  |
| $\quad$ If $\mathrm{IN}(\mathrm{I})>$ AA0, set AA $0=\mathrm{IN}(\mathrm{I})$ |  |

| Case 1: zero input vector
If $\mathrm{AA} 0=0$ and $\mathrm{AA} 1=0$, do the next 2 lines

NLS = MLS + 1
Exit this subroutine

NLS $=0$
| Initialize NLS
| Determine Case 2 or Case 3

If $\mathrm{AA} 0<0$ or $\mathrm{AA} 1<-\mathrm{AA} 0$, then do the following indented lines
MAXI $=-2^{\text {MLS }}$
| Case 2, negative is larger
| Mantissa lower bound after shift
MINI $=2 *$ MAXI
If AA1 < MINI, then do the following doubly indented lines to find the number of right shifts needed

LOOP1R:

$$
\begin{aligned}
& \text { AA } 1=\mathrm{AA} 1 \gg 1 \\
& \text { NLS }=\text { NLS }-1 \\
& \text { If AA1 < MINI, go to LOOP1R } \\
& \text { Exit this subroutine }
\end{aligned}
$$

LOOP1L: If AA1 < MAXI, exit this subroutine
| Find NLS
$\mathrm{AA} 1=\mathrm{AA} 1 \ll 1$
NLS $=$ NLS +1
Go to LOOP1L

Else, do the following indented lines

| MINI $=2^{\mathrm{MLS}}$ | $\mid$ Mantissa lower bound after shift |
| :--- | :--- |
| $\mathrm{MAXI}=\mathrm{MINI}-1$ | $2 *$ MIN will overflow if MLS = 30 |
| $\mathrm{MAXI}=\mathrm{MAXI}+\mathrm{MINI}$ | Mantissa upper bound |
| If AA $0>$ MAXI, then do the following doubly indented lines to find the number of right shifts needed |  |

LOOP2R: $\quad \mathrm{AA} 0=\mathrm{AA} 0 \gg 1$
NLS $=$ NLS -1
If AA0 $>$ MAXI, go to LOOP2R
Exit this subroutine

LOOP2L: If AA $0 \geq$ MINI, exit this subroutine
| Find NLS
$\mathrm{AA} 0=\mathrm{AA} 0 \ll 1$
NLS $=$ NLS +1
Go to LOOP2L

## G.1.3.2 Multiplication

Multiplication of two fixed point numbers results in a 32-bit number, usually stored in a product register in a DSP. If the two fixed point numbers were in Qn and Qm formats, the result in the product register is in $\mathrm{Q}(\mathrm{n}+\mathrm{m})$ format. Before adding it to an accumulator, it may be necessary to shift the result as explained in the preceding subclause.

Multiplication of two floating point words is accomplished by fixed point multiplication of the two mantissas and addition of the two NLS. As described above, the product is a 32-bit word with $Q(n+m)$ format. If the product must be converted back to floating point, then the product may need to be renormalized. For example, in the case of multiplying two positive floating point words, the product must have a 1 in either bit 30 or 29 . Renormalization is necessary if bit 30 is 0 . This means one additional left shift is necessary. After the left shift, the product is represented in $\mathrm{Q}(\mathrm{n}+\mathrm{m}+1)$ format. If the product is to be stored in scalar floating point, it must be rounded before storing. If the product needs to be in block floating point, the entire array needs to be renormalized, according to which value is now the largest in magnitude.

Although double precision variables are used in parts of this coder, there are no double precision multiplications. In some instances, double precision variables are multiplied, but in those cases, only the 16 most significant bits are used. These instances are noted in the pseudo-code.

## G.1.3.3 Addition

Addition of fixed point numbers requires that both be stored in the same Q format. Generally, the value which is stored with the greater dynamic range determines which value must be changed to the appropriate Q format. For example, if adding values stored in Q9 and Q11 formats, the value in the Q11 format must be right shifted by 2 bits before adding it to the value stored in Q9 format.

Addition of scalar floating point numbers is similar. The two values must both have the same NLS. Again, the value with the higher NLS needs to be right shifted to match the other value's NLS. If the sum requires 17 bits for representation, the sum in the accumulator can be right shifted by 1 bit and then rounded back to 16 bits and the new NLS will be one less than the previous format. As an example, consider the case of adding two values whose NLS are 5 and 7 . The value whose NLS is 7 must be right shifted by 2 bits before it can be added to the other value. If both values have the same sign, the sum of the two mantissas may have a magnitude greater than 32767 . In this case, the value in the accumulator must be shifted by one bit and then rounded. The NLS of the sum will be 4 . If the two values are of opposite sign, the result in the accumulator may have a mantissa whose magnitude is less than 16384 . In this case, the result should be renormalized by left shifting until the magnitude is greater than or equal to 16384 and the NLS increased by the number of left shifts. For our example with the NLS being 5 and 7 initially, the final NLS can be no greater than 6 and no less than 4.

Addition of block floating point numbers is complicated by the fact that the constraints are based on the largest magnitude value. In this case, if two vectors have NLS of 5 and 7 , the one with NLS of 7 must be right shifted by 2 bits. Each of the pairs is summed. The largest of the resulting sums will determine whether renormalization is necessary.

## G.1.3.4 Division

Division is not used nearly as frequently as addition or multiplication. The only divisions used are scalar floating point divisions. The numerator and denominator are represented in normalized format, as is the quotient. The quotient's NLS is calculated by subtracting the NLS of the denominator from that of the numerator and adding 14 . To explain this 14 , consider the case where the numerator was slightly larger than the denominator and both had NLS equal 0 . The quotient would have NLS equal 14 in this case and would be properly normalized. If the numerator's mantissa is less than the denominator's, then the numerator should be left shifted by 1 bit and its NLS increased by 1 in order to compute the NLS of the quotient. This guarantees that the mantissa of the quotient will be in normalized format.

Division occurs within Durbin's recursion, a routine requiring full 16-bit precision in the result. Therefore, approximate division routines are not sufficient. The mantissa of the result must have full 16-bit precision including rounding of the 17-bit result. Pseudo-code for such a division is given below.

If either the numerator or denominator is not initially stored in scalar floating point, it must first be converted to this format. The function FLOAT(.) is used in the pseudo-code to represent such conversions. The argument could be either single precision or double precision fixed point.

## Pseudo-code for Floating Point Division

This routine is used for computing floating point division on a 16-bit fixed point device. It is assumed that there is at least one 32 -bit accumulator available. All inputs and outputs are 16 -bit words.

|  | Input: NUM, NUMNLS, DEN, DENNLS |  |
| :---: | :---: | :---: |
|  | Output: QUO, QUONLS |  |
|  | Function: Compute the quotient. NUM and NUMNLS are the mantissa and Q format for the DENNLS are the mantissa and Q format for the denominator. QUO and QUONLS are the mantissa quotient. All are assumed to be in normalized format. There is no test for DEN being zero - it is assum |  |
|  | SUBROUTINE DIVIDE(NUM, MUMNLS, DEN, DENNLS, QUO, QUONLS) |  |
|  | SIGN = 1 | \| First determine the |
|  | $\mathrm{P}=$ NUM $*$ DEN | \| sign bit of the |
|  | If $\mathrm{P}<0$, set SIGN $=-1$ | \| quotient |
|  | $\begin{aligned} & \text { QUONLS }=\text { NUMNLS }- \text { DENNLS }+14 \\ & \text { A0 }=\mid \text { NUM } \mid \end{aligned}$ | \| Next compute QUONLS |
|  |  | \| A0 is 32-bit accumulator |
|  |  | \| | NUM | is in lower 16 bits |
|  | $\mathrm{A} 1=\|\mathrm{DEN}\|$ | \| A1 can be 16 or 32-bit register <br> if 32 -bit, \| DEN | is lower |
|  |  | \| 16 bits |
|  | If $\mathrm{A} 0<\mathrm{A} 1$, do the next 2 lines |  |
|  | QUONLS = QUONLS + 1 |  |
|  | $\mathrm{A} 0=\mathrm{A} 0 \ll 1$ |  |
|  | $\mathrm{QUO}=0$ | \| Quotient initialization |
|  | $\mathrm{I}=0$ | \| Loop counter initialization |
| LOOP: | $\mathrm{QUO}=\mathrm{QUO} \ll 1$ | \| Long division loop |
|  | If $\mathrm{A} 0 \geq \mathrm{A} 1$, do the next 2 lines |  |
|  | $\mathrm{QUO}=\mathrm{QUO}+1$ |  |
|  | $\mathrm{A} 0=\mathrm{A} 0-\mathrm{A} 1$ |  |
|  | $\mathrm{A} 0=\mathrm{A} 0 \ll 1$ |  |
|  | $\mathrm{I}=\mathrm{I}+1$ |  |
|  | If $\mathrm{I}<15$, GO TO LOOP |  |
|  | If $\mathrm{A} 0 \geq \mathrm{A} 1$, set $\mathrm{QUO}=\mathrm{QUO}+1$ | \| Take care of rounding |
|  | If SIGN $<0$, set $\mathrm{QUO}=-\mathrm{QUO}$ | \| Take care of the sign |

## G. 2 Algorithmic changes

## G.2. Changes in the backward vector gain adapter (block 20)

NOTE - This subclause refers to 3.8/G.728. Readers should familiarize themselves with 3.8/G. 728 before attempting to understand this subclause. The changes outlined in this subclause pertain to the once-per-vector computations for the backward vector gain adpater. Wherever possible, the same notation used in Recommendation G. 728 has been used here.

In this subclause we briefly describe the once-per-vector backward vector gain adapter operations in Recommendation G. 728 as implemented in floating point. We then describe a mathematically equivalent method which can be more easily and accurately implemented on fixed point processors. Tables for values required by this alternate method are given in the addendum to this annex.

The floating point operations can be described briefly as follows. The internal state variable array GSTATE, represented by the symbol $\delta$, contains the previous 10 offset-removed logarithmic gains. The symbol $\delta(n)$ denotes the offset-removed logarithmic gain for vector $n$. The log-gain predictor output [the predicted version of $\delta(n)$ ] for vector $n$ is given by:

$$
\begin{equation*}
\hat{\delta}(n)=-\sum_{i=1}^{10} \alpha_{i} \delta(n-i) \tag{G-1}
\end{equation*}
$$

As shown in Figure 6/G.728, before converting $\hat{\delta}(n)$ to the linear domain, a gain offset of 32 dB must be added and the result checked to make sure that:

$$
\begin{equation*}
0 \leq \hat{\delta}(n)+32 \leq 60 \tag{G-2}
\end{equation*}
$$

Equivalently, we can say the allowed range for $\hat{\delta}(n)$ is:

$$
\begin{equation*}
-32 \leq \hat{\delta}(n) \leq 28 \tag{G-3}
\end{equation*}
$$

The estimated gain in the linear domain is given by:

$$
\begin{equation*}
\sigma(n)=10^{(\hat{\delta}(n)+32) / 20} \tag{G-4}
\end{equation*}
$$

The value of $\sigma(n)$ is first used to normalize the excitation VQ target vector. After the codebook search is completed, $\sigma(n)$ is then used to scale the best codevector selected. If we assume that gain codebook index $i$ and shape codebook index $j$ were chosen for vector $n$, then the excitation vector $e(n)$ is given by:

$$
\begin{equation*}
e(n)=\sigma(n) g_{i} y_{j} \tag{G-5}
\end{equation*}
$$

where $y_{j}$ is the $j$-th shape codevector and $g_{i}$ is the $i$-th gain level in the gain level in the gain codebook. The excitation vector $e(n)$ is then used to compute $\delta(n)$. First, we compute the squared RMS value of $e(n)$ [or the "power" of $e(n)$ ], which is given by:

$$
\begin{equation*}
P[e(n)]=\frac{1}{5} \sum_{k=1}^{5} e_{k}^{2}(n) \tag{G-6}
\end{equation*}
$$

For any given vector $x$, we use the symbol $P[x]$ to represent the power of $x$, which is defined as the energy of $x$ divided by the vector dimension of $x$. Before converting $P[e(n)]$ to the dB value in the logarithmic domain, we clip $P[e(n)]$ to 1 if it is less than 1 . Thus, the allowed range for $P[e(n)]$ is:

$$
\begin{equation*}
P[e(n)] \geq 1 \tag{G-7}
\end{equation*}
$$

This is to avoid overflow in the logarithm conversion or exceedingly small dB value. Note that although this rangelimiting action is not explicitly shown in Figure 6/G.728, it is implemented in the "pseudo-code" in 5.7/G.728. The offset-removed logarithmic gain (in dB ) for vector $n$ is then obtained as:

$$
\begin{equation*}
\delta(n)=10 \log _{10} P[e(n)]-32 \tag{G-8}
\end{equation*}
$$

Note that equation (G-7) implies that:

$$
\begin{equation*}
\delta(n) \geq-32 \tag{G-9}
\end{equation*}
$$

Next, the $\delta(n)$ calculated in equation (G-8) is used to predict the following excitation gains and to update the log-gain predictor coefficients. This completes our brief review of the floating point operation for the backward vector gain adapter.

We now describe the mathematically equivalent method for fixed point implementation. Let $y_{j k}$ be the $k$-th element of the $j$-th codevector in the shape codebook. Then, combining equations (G-5) and (G-6), we have:

$$
\begin{gather*}
P\left[e(n)=\sum_{k=1}^{5}\left(\sigma(n) g_{i} y_{j k}\right)^{2}\right.  \tag{G-10}\\
=\sigma^{2}(n) g_{i}^{2}\left(\frac{1}{5} \sum_{k=1}^{5} y_{j k}^{2}\right)  \tag{G-11}\\
\quad=\sigma^{2}(n) g_{i}^{2} P\left[y_{j}\right] \tag{G-12}
\end{gather*}
$$

Substituting equation (G-12) for equation (G-8) yields:

$$
\begin{equation*}
\delta(n)=20 \log _{10} \sigma(n)-32+20 \log _{10}\left|g_{i}\right|+10 \log _{10} P\left[y_{j}\right] \tag{G-13}
\end{equation*}
$$

Now, using equation (G-4), we can express $\delta(n)$ as:

$$
\begin{equation*}
\delta(n)=\hat{\delta}(n)+20 \log _{10}\left|g_{i}\right|+\log _{10} P\left[y_{j}\right] \tag{G-14}
\end{equation*}
$$

In other words, $\delta(n)$ is simply the predicted log-gain $\hat{\delta}(n)$ plus two "correction terms":

1) $20 \log _{10}\left|g_{i}\right|$, the dB value of the best gain level selected from the gain codebook; and
2) $10 \log _{10} P\left[y_{j}\right]$, the dB value of the power of the best shape codevector selected from the shape codebook. (In a sense, this is like a conventional predictive coder for the gain, but operated in the logarithmic domain.)

Figure G. 1 shows the block schematic of this mathematically equivalent method. Since there are only 4 possible $\left|g_{i}\right|$ and 128 possible $P\left[y_{j}\right]$ values, we can precompute their dB values and store them in two log-gain tables (blocks 93 and 94 in Figure G.1).

The delay units 91 and 92 make available the best gain and shape codebook indices chosen in the excitation codebook search of the previous vector. These two indices are used to look up the values of $20 \log _{10}\left|g_{i}\right|$ and $10 \log _{10} P\left[y_{j}\right]$ from the log-gain tables in blocks 93 and 94 . The 1 -sample delay unit 95 holds the previous predicted (and possibly range limited) log-gain $\hat{\delta}(n-1)$. The adder 96 adds the outputs of blocks 93,94 , and 95 to produce an unclipped $\hat{\delta}(n-1)$ according to equation (G-14). Then, the limiter 97 enforces the inequality in equation (G-9) by clipping the output of the adder 96 at -32 dB if it is less than -32 dB .

The ouput of the limiter 97 is mathematically equivalent to the output of the adder 42 in Figure $6 / \mathrm{G} .728$. Therefore, blocks 43 through 46 in Figure G. 1 are identical to their counterparts in Figure 6/G.728. The operation of the log-gain limiter 98 is similar to the limiter 47 in Figure 6/G.728, except that the allowed range has been shifted down by 32 dB . The adder 99 adds the log-gain offset value of 32 dB , stored in block 41 , to the output of the log-gain limiter 98 . The resulting log-gain value is then converted to the linear domain by the inverse logarithm calculator 48 , which is identical to its counterparts in Figure 6/G.728. This completes the descriptions of the mathematically equivalent method for fixed point implementation.

The equivalent method shown in Figure G. 1 has two important advantages over the original method in Figure 6/G.728.
a) It eliminates the need to calculate the logarithm function (block 40 in Figure 6/G.728). In DSP implementations, the logarithm function is usually calculated using a power series expansion and typically takes a large number of instruction cycles to calculate. Thus, replacing the logarithm calculation by a table lookup could mean a considerable saving in DSP cycles. Also, the table entries can be pre-computed to the maximum desired.

b) It is likely to give more accurate numerical results than the original method when a fixed point processor is used. Due to backward adaptation, there is a feedback loop in the gain adaptation process. In Figure 6/G.728, this feedback loop is very long. It goes from the inverse logarithm calculator 48 to the gain scaling unit 21 (in Figure 2/G.728), and then back to blocks 67, 39, 40 and 42 through 48 . The more computations done in this loop, the more likely that numerical errors due to finite precision may accumulate in the feedback loop. This is especially true if the fixed point processor does not always achieve the maximum possible accuracy for the logarithm function. In contrast, the feedback loop in Figure G. 1 is as tight as it can be. Note that the gain scaling unit, the energy and power calculation for $e(n)$, the logarithm calculator, and even the adder for restoring the log-gain offset are now all out of the feedback loop. Except for blocks 43 through 46 that are common in both methods, the feedback loop only involves two limiters and two additions, which can be implemented with very high precision by fixed point processors.

As a result of this change, interoperability between fixed and floating point implementations of Recommendation G. 728 is enhanced. The main disadvantage of this new method is that it requires additional words of ROM memory. There are 128 shape vectors and 4 possible gain vectors. The additional memory required is $128+4=132$ words. This is only a very small fraction of the ROM space already needed in Recommendation G.728.

This new method has changed the input to the backward vector gain adapter (blocks 20 and 30 ) from $e(n)$ to the gain and shape codebook indices $i$ and $j$. To reflect this fact, Figures 1/G. 728 through 3/G. 728 should have been re-drawn here so that the backward vector gain adapter gets its input from the excitation VQ codebook block. However, such modified figures are omitted here, since the necessary change is trivial and it should be very clear from the description above.

## G.2.2 Changes in the Levinson-Durbin recursion modules

This subclause is about changes in the Levinson-Durbin recursion modules used in Recommendation G.728. There are three such modules, designated as blocks 37, 44 and 50, and used for the perceptual weighting filter, the log-gain linear predictor, and the synthesis filter, respectively. Readers should refer to 5.5/G.728 and 5.6/G. 728 for more details. In this section we will use the pseudo-code for block 50 from $5.6 / \mathrm{G} .728$ as an example and show how it must be modified for fixed point implementation. Similar changes need to be made for blocks 37 (perceptual weighting filter) and 44 (log-gain predictor). We begin with a listing of the floating point pseudo-code.

$$
\begin{aligned}
& \text { If RTMP }(\mathrm{LPC}+1)=0 \text {, go to LABEL } \\
& \text { If } \operatorname{RTMP}(1) \leq 0 \text {, go to LABEL }
\end{aligned}
$$

$$
\mathrm{RC} 1=-\mathrm{RTMP}(2) / \mathrm{RTMP}(1)
$$

$$
\operatorname{ATMP}(1)=1
$$

$$
\operatorname{ATMP}(2)=\mathrm{RC} 1
$$

$$
\operatorname{ALPHATMP}=\mathrm{RTMP}(1)+\mathrm{RTMP}(2) * \mathrm{RC} 1
$$

$$
\text { If ALPHATMP } \leq 0 \text {, go to LABEL }
$$

$$
\begin{aligned}
& \text { For MINC }=2,3,4, \ldots, \text { LPC, do the following } \\
& \qquad \begin{array}{l}
\text { SUM }=0 \\
\text { For } \mathrm{IP}=1,2,3, \ldots, \mathrm{MINC} \text {, do the next } 2 \text { lines } \\
\mathrm{N} 1=\mathrm{MINC}-\mathrm{IP}+2 \\
\mathrm{SUM}=\mathrm{SUM}+\mathrm{RTMP}(\mathrm{~N} 1) * \text { ATMP(IP) }
\end{array}
\end{aligned}
$$

RC $=-$ SUM $/$ ALPHATMP
For $\mathrm{IP}=2,3,4, \ldots, \mathrm{MH}$, do the next 4 lines
$\mathrm{IB}=\mathrm{MINC}-\mathrm{IP}+2$
AT $=\mathrm{ATMP}(\mathrm{IP})+\mathrm{RC} *$ ATMP(IB)
ATMP $(\mathrm{IB})=\mathrm{ATMP}(\mathrm{IB})+\mathrm{RC} *$ ATMP $(\mathrm{IP})$
$\operatorname{ATMP}(\mathrm{IP})=\mathrm{AT}$
RC $=-$ SUM/ALPHATMP
$\mathrm{MH}=\mathrm{MINC} / 2+1$
For $\mathrm{IP}=2,3,4, \ldots, \mathrm{MH}$, do the next 4 lines $\mathrm{IB}=\mathrm{MINC}-\mathrm{IP}+2$
AT $=\mathrm{ATMP}(\mathrm{IP})+\mathrm{RC} * \mathrm{ATMP}(\mathrm{IB})$ $\mathrm{ATMP}(\mathrm{IP})=\mathrm{AT}$

```
|
| Reflection coefficient
|
```

|

```
|
| Update predictor coefficient
```

| Update predictor coefficient

```
| First-order predictor
I
| Abort if ill-conditioned

\section*{| Skip if zero}

| Skip if zero signal
|

| First-order predictor

\author{
\(\operatorname{ATMP}(\mathrm{MINC}+1)=\mathrm{RC}\) | \\ ALPHATMP \(=\) ALPHATMP + RC \(*\) SUM | Prediction residual energy \\ If ALPHATMP \(\leq 0\), go to LABEL | Abort if ill-conditioned \\ Repeat the above for the next MINC \\ \begin{tabular}{ll} 
Exit this program & \begin{tabular}{l} 
Recursion completed normally \\
| if execution proceeds to here
\end{tabular}
\end{tabular}
}

LABEL: If program proceeds to here, ill-conditioning had happened, then, skip block 51, do not update the synthesis filter coefficients. (That is, use the synthesis filter coefficients of the previous adaptation cycle.)

The best way to begin is to consider the floating point variables referred to in this pseudo-code. These are RC, RC1, RTMP, SUM, ALPHATMP and ATMP. (The other variables in the code, MINC, IP, IB and N1 are all indices which are integers.)

RC refers to the reflection coefficients, which are computed as an intermediate variable in this module. Reflection coefficients have the property that they have a magnitude which is always less than unity for a stable LPC filter. As such, RC can be represented with a Q15 format, meaning that one bit is used for the sign bit and the other 15 bits are used to represent the fractional part of the value.

We note that at each iteration we compute RC, use it for that iteration, and then never use it again. The only exception is that for the synthesis filter LPC analysis in the decoder. RC1 is saved for later use in the postfilter. In order to save memory, only the value of \(\mathrm{RC1}\) is saved above. All other values of RC are written to a single location which is overwritten at the next iteration. This represents a change from the original floating point pseudo-code, but has no effect on the output results and can be used for floating point implementations as well.

RTMP refers to the autocorrelation function values. These values have a tremendous dynamic range. By necessity RTMP must be kept in block floating point. This means that all values are normalized by the same power of 2. Theoretically, RTMP(1) should have the largest value. We also know that it must be positive. The representation used will be such that the largest magnitude of RTMP is between 0.5 and 1 . This being the case, all of RTMP can be represented in Q15 format. All of RTMP is represented in block floating point in hybrid window, but only the mantissas are needed in Durbin's recursion.

One other note concerns RTMP(LPC +1). As indicated on the first line, if this variable has a value of zero, this module should be terminated. If RTMP \((\operatorname{LPC}+1)\) is represented by a 16-bit integer, this condition is much more likely to happen than for the case when the same RTMP (LPC +1 ) is represented by a 32 -bit floating point number in a floating point implementation. This causes interoperability problems. In computing RTMP \((\mathrm{LPC}+1)\) in the previous module (hybrid window, block 49), the value is accumulated in the accumulator, which is at least 32 bits in all fixed point DSPs. It is proposed that this 32 -bit value of the accumulator when the computation is completed be tested to check for zero. By making this change, premature termination (and thus interoperability problems) can be avoided. In the new code a logical variable named ILLCOND is tested to see whether it is true or false. Its value depends on the results of the test of RTMP (LPC +1) in the hybrid window module. We later use ILLCOND as an output variable for this block to indicate whether the output values should be used or ignored.

For the postfilter, there is the possibility that the ill-conditioning occurred after the 10th iteration. In that case, a new set of short-term adaptive postfilter prediction coefficients have been determined and are valid, but the 50th order synthesis filter coefficients are not valid. A second logical variable, ILLCONDP indicates the status of the postfilter coefficients.

SUM and ALPHATMP are the next two variables. Both are values which are accumulated, but are never multiplied. The value held in an accumulator is 32 bits. However, these two variables are divided to compute RC. Both SUM and ALPHATMP are converted to 16-bit fixed point for the division. The result of the division is represented in Q15 fixed point format and assigned to RC. The variable SUM does not appear explicitly in the fixed point pseudo-code. In 32-bit format, it is the accumulator AA0 and in 16-bit format it is the variable SIGN.

Note that ALPHATMP is naturally a 32 -bit number which is accumulated in an accumulator. However, in actual DSP implementations, it is necessary to save ALPHATMP in memory for the next higher order of recursion, because the accumulator will be needed for other computations before ALPHATMP is updated again. Therefore, some DSP cycles can be saved if we save and load only the rounded 16-bit high word of ALPHATMP rather than the entire 32-bit word. In practice, it is found that saving only the high word of ALPHATMP after each update did not degrade the coder's performance. Therefore, only the high word of ALPHATMP is saved after each update of ALPHATMP. In order to make clear when ALPHATMP is represented by 16 bits and when by 32, the name ALPHATMP is used in the pseudocode only when it is a 16 -bit number. An accumulator is referenced when it is a 32 -bit number.

The remaining vector of variables is ATMP which represents the predictor coefficients. In all simulations, the maximum value observed for ATMP has been less than 4. This would suggest using Q13 format throughout. However, the same simulations also showed that using Q13 format within Durbin did not provide sufficient interoperability with floating point implementations. To achieve greater interoperability between fixed and floating point implementations, it was found to be better to use Q15 format except when this caused overflows.

On a DSP chip, the results of the computation of ATMP(IB) or ATMP(IP) are initially in the accumulator. The accumulators of most 16 -bit fixed point DSP chips are at least 32 bits wide. The values of ATMP(IB) and ATMP(IP) must be rounded to 16 -bit precision. In the fixed point code, it is important that the accumulator contains guard bits or provides an overflow flag, so that when computing ATMP(IB) or ATMP(IP) if overflow occurs, it will be detected.

The following strategy for choosing the format of ATMP has been adopted. The iterations can be numbered according to the value of MINC. We begin with MINC \(=2\) and Q15 format for ATMP. If overflow never occurs, i.e. for all IP, \(|\operatorname{ATMP}(\mathrm{IP})|<1\), then the final representation for ATMP is Q15. The other possible case in that an overflow occurs during one of the iterations. Suppose that it is iteration K. In this case, all of the values of ATMP computed during iterations K and \(\mathrm{K}-1\) must be converted to Q14 format by right shifting. Iteration K is then restarted using Q14 format. Subsequent iterations from \(\mathrm{K}+1\) on are also computed using Q14 format. Overflows may also occur while using Q14 format. In that case, the same procedure is followed and the computation continues in Q13 format. Empirically it was observed that such overflows never occurred in Q13 format. The reason for using the other formats is that if the overflows are avoided, the result is more accurate. The final representation of ATMP before exiting this block is either Q13, Q14 or Q15.

It was also observed that after the bandwidth expansion operations, the filter coefficients at the output of the bandwidth expansion modules (blocks 38, 45, 51 and 85) are always representable in Q14 format. It was further observed that representation in Q15 format whenever possible did not improve cross-decoding SNR above that observed for using Q14 format. Therefore, those three bandwidth expansion modules always convert their output coefficient arrays to Q14, regardless of whether their input coefficient arrays (i.e. the Levinson-Durbin recursion modules output) are in Q13, Q14 or Q15. This means that when a Levinson-Durbin recursion module produces a Q13 or Q15 output coefficient array, it must signal the corresponding bandwidth expansion module so that an additional shift can be performed to convert the array to Q14. For this reason, in the fixed point Levinson-Durbin recursion module given below, we have added an additional flag NLSATMP as one of the outputs of this module.

In the decoder the Levinson-Durbin recursion is interrupted after the 10 th order prediction coefficients are derived. These values are saved for the adaptive postfilter. Consequently, there are two possible starting conditions. In the ordinary case, the recursion is begun with \(\operatorname{MINC} 0=1\). In the decoder, \(\mathrm{MINC} 0=10\) is another possibility. In the event of this latter case, the values of NRS and ALPHATMP must be saved. Also we note that the value of NLSATMP must be saved until ICOUNT \(=3\) when the bandwidth expansion module is executed.

Finally, we note that this routine uses three accumulators. The third accumulator, AA2, is used to hold the 17 -bit precision value of RC for updating the newest prediction coefficient.

The following pseudo-code describes the fixed point version of the Levinson-Durbin recursion modules.
```

If MINC0 $>1$, go to RECURSION
$\operatorname{MINC} 0=1 \quad$ | Initializations for
ILLCONDP $=$.FALSE. | decoder only
If ILLCOND = .TRUE., go to FAILED | Skip if RTMP(LPC + 1) is zero
If $\operatorname{RTMP}(1) \leq 0$, go to FAILED
NRS $=0$
DEN $=$ RTMP(1) $\quad \mid$ Calculate first order predictor
NUM $=$ RTMP (2)
If NUM $<0$, set NUM $=-$ NUM
Call SIMPDIV(NUM, DEN, AA0)
$\mathrm{AA} 0=\mathrm{AA} 0 \ll 15$
$\mathrm{RC} 1=\mathrm{RND}(\mathrm{AA} 0)$
If RTMP(2) $>0$, set $\mathrm{RC} 1=-\mathrm{RC} 1 \quad \mid$ Add sign information
$\mathrm{RC}=\mathrm{RC} 1$
$\operatorname{ATMP}(2)=\mathrm{RC} 1$
$\mathrm{P}=\mathrm{RTMP}(2) * \mathrm{RC}$
$\mathrm{AA} 0=\mathrm{AA} 0+(\mathrm{P} \ll 1)$
ALPHATMP $=$ RND (AA0)

```
| Initializations for
| decoder only
| Skip if RTMP(LPC +1 ) is zero
| Skip if zero signal
| Q15 format initially
| Calculate first order predictor
| |RTMP(2)|/RTMP(1)
| Add sign information
| First order predictor coefficient
```

AA0 $=\operatorname{RTMP}(1) \ll 16$

```
```

AA0 $=\operatorname{RTMP}(1) \ll 16$

```
```

I
| Save DSP accumulator high
| word to memory

```

\section*{RECURSION:}

For MINC \(=\operatorname{MINC} 0+1, \operatorname{MINC} 0+2, \ldots\), LPC, do the following indented lines
\(\mathrm{AA} 0=0\)
For IP \(=2,3, \ldots\), MINC, do the next 3 lines
\(\mathrm{N} 1=\mathrm{MINC}-\mathrm{IP}+2\)
\(\mathrm{P}=\operatorname{RTMP}(\mathrm{N} 1) * \operatorname{ATMP}(\mathrm{IP})\)
\(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P} \quad \mid 32\) bits for SUM
\(\mathrm{AA} 0=\mathrm{AA} 0 \ll 1\)

AA0 \(=\) AA \(0 \ll\) NRS
AA1 \(=\) RTMP \((\) MINC +1\() \ll 16\)
\(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1 \quad\) |
SIGN \(=\) RND(AA0) | Save high word sign
NUM \(=\) SIGN
If NUM \(<0\), set NUM \(=-\) NUM
If NUM \(\geq\) ALPHATMP, go to FAILED
Call SIMPDIV(NUM, ALPHATMP, AA0)
| Divide to get RC
\(\mathrm{AA} 2=\mathrm{AA} 0 \ll 15\)
| AA2 stores 17-bit RC
RC \(=\) RND (AA2)
If SIGN \(>0\), set \(\mathrm{RC}=-\mathrm{RC}\)
| Now update ALPHATMP

> AA1 \(=\) ALPHATMP \(\ll 16\)
> \(\mathrm{P}=\mathrm{RC} * \mathrm{SIGN}\)
> AA1 \(=\) AA \(1+(\mathrm{P} \ll 1)\)
> If AA \(1 \leq 0\), go to FAILED
> ALPHATMP \(=\) RND(AA1 \()\)
\(\mathrm{MH}=\mathrm{MINC} / 2+1\)

\footnotetext{
| Fractional part of MINC/2 truncated;
| MH = integer
| Begin to update predictor
| coefficients
}

For \(\mathrm{IP}=2,3,4, \ldots, \mathrm{MH}\), do the following doubly indented lines
```

$\mathrm{IB}=\mathrm{MINC}-\mathrm{IP}+2$
AA0 $=$ ATMP(IP) $\ll 16 \quad \mid$ Load AA0 high word
$\mathrm{P}=\mathrm{RC} * \operatorname{ATMP}(\mathrm{IB}) \quad \mid \mathrm{Q} 15 \mathrm{RC}$, so $\ll 1$
$\mathrm{AA} 0=\mathrm{AA} 0+(\mathrm{P} \ll 1)$
If AA0 overflowed, then do the following triply indented lines
NRS $=$ NRS +1
For $\mathrm{LP}=2,3, \ldots, \operatorname{MINC}$, set $\operatorname{ATMP}(\mathrm{LP})=\operatorname{ATMP}(\mathrm{LP}) \gg 1$
AA $0=$ ATMP(IP) $\ll 16 \quad \mid$ First re-scale ATMP
$\mathrm{P}=\mathrm{RC} * \mathrm{ATMP}(\mathrm{IB}) \quad \mid$ Next re-calculate
$\mathrm{AA} 0=\mathrm{AA} 0+(\mathrm{P} \ll 1) \quad \mid$ overflowed AA0
AA1 $=$ ATMP(IB) $\ll 16$
$\mathrm{P}=\mathrm{RC}$ * ATMP(IP)
$\mathrm{AA} 1=\mathrm{AA} 1+(\mathrm{P} \ll 1)$
If AA1 overflowed, then do the following triply indented lines

| NRS $=$ NRS +1 |  |
| :---: | :---: |
| For LP $=2,3, \ldots, \mathrm{MINC}$, set ATMP(LP) $=$ ATMP(LP) $\gg 1$ |  |
| AA0 $=$ ATMP(IP) $\ll 16$ | \| First re-scale ATMP(IP) |
| $\mathrm{P}=\mathrm{RC}$ * ATMP(IB) | \| Next re-calculate AA0 |
| $\mathrm{AA} 0=\mathrm{AA} 0+(\mathrm{P} \ll 1)$ | $\mid$ |
| AA1 $=$ ATMP(IB) $\ll 16$ | \| Next re-scale ATMP(IB) |
| $\mathrm{P}=\mathrm{RC} * \mathrm{ATMP}(\mathrm{IP})$ | \| Next re-calculate |
| $\mathrm{AA} 1=\mathrm{AA} 1+(\mathrm{P} \ll 1)$ | \| overflowed AA1 |
| $\operatorname{ATMP}(\mathrm{IP})=\mathrm{RND}(\mathrm{AA} 0)$ |  |
| $\operatorname{ATMP}(\mathrm{IB})=\mathrm{RND}(\mathrm{AA} 1)$ |  |

```
\[
\mathrm{AA} 0=\mathrm{AA} 2 \gg \mathrm{NRS} \quad \mid \mathrm{AA} 2 \text { contains 17-bit RC }
\]

Update ATMP(MINC + 1)
\(\mathrm{AA} 0=\mathrm{RND}(\mathrm{AA} 0)\)
| Output in low word of AA0
If SIGN \(>0\), set \(\mathrm{AA} 0=-\mathrm{AA} 0\)
\(\operatorname{ATMP}(\mathrm{MINC}+1)=\mathrm{AA} 0\)
| Low word stored in ATMP

Repeat the above indented lines for the next MINC

NLSATMP \(=15-\) NRS
If NLSATMP \(<13\), go to FAILED
Exit this program
| Recursion completed normally
| if execution proceeds to here

FAILED: Set ILLCOND = .TRUE
If MINC \(\leq 10\), set ILLCONDP \(=\). TRUE.

If program proceeds to here, ill-conditioning has happened. Then, skip block 51, do not update the synthesis filter coefficients. (That is, use the synthesis filter coefficients of the previous adaptation cycle.)

The following table lists all variables in the above pseudo-code with their representation format for easy reference.
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Variable } & Format & Size & Temp/perm & Old/new \\
\hline AA0, AA1, AA2 & DP-integer & 1 & temp & new \\
\hline ALPHATMP & SFL & 1 & temp & old \\
\hline ATMP & Q13/Q14/Q15 & 51 & perm & old \\
\hline IB & integer & 1 & temp & old \\
\hline ILLCOND & logical & 1 & perm & new \\
\hline ILLCONDP & logical & 1 & perm & new \\
\hline IP & integer & 1 & temp & old \\
\hline LP & integer & 1 & temp & new \\
\hline MH & integer & 1 & temp & old \\
\hline MINC & integer & 1 & temp & old \\
\hline NLSATMP & integer & 1 & temp & new \\
\hline NRS & integer & 1 & temp & new \\
\hline NUM & integer & 1 & temp & new \\
\hline RC & Q15 & 1 & temp & new \\
\hline RC1 & Q15 & 1 & temp & new \\
\hline RTMP & Q15 & 51 & perm & old \\
\hline SIGN & integer & 1 & temp & new \\
\hline \begin{tabular}{l} 
SFL \\
DP-integer \\
Integer \\
Q13/Q14/Q15
\end{tabular} & 16-bit scalar floating point & 16-bit integer & & \\
\hline
\end{tabular}

The above code was written for block 50 and used variable names associated with block 50 . However, it can be used for blocks 37 and 44. The following table translates the variable names which are specific for block 50 to those which are specific for one of the other blocks.
\begin{tabular}{|c|c|c|}
\hline Block 50 & Block 37 & Block 44 \\
\hline ATMP & AWZTMP & GPTMP \\
ILLCOND & ILLCONDW & ILLCONDG \\
NLSATMP & NLSAWZTMP & NLSGPTMP \\
RTMP & R & R \\
\hline
\end{tabular}

The above code uses a different and simpler division algorithm than that used throughout the rest of the algorithm. It is referred to above as SIMPDIV. The pseudo-code for SIMPDIV is given below. The inputs are NUM and DEN, both 16-bit integers. The output is AA0 with results in lower 17 bits.
```

    Subroutine SIMPDIV(NUM, DEN, AA0)
    AA \(0=0\)
    \(\mathrm{AA} 1=\mathrm{NUM}\)
    \(\mathrm{K}=0\)
    LOOP: $\quad$ AA $0=$ AA $0 \ll 1$
$\mathrm{AA} 1=\mathrm{AA} 1 \ll 1$
If AA1 $\geq \mathrm{DEN}$, then set $\mathrm{AA} 1=\mathrm{AA} 1-\mathrm{DEN}$ and $\mathrm{AA} 0=\mathrm{AA} 0+1$
$\mathrm{K}=\mathrm{K}+1$
If $\mathrm{K}<16$, go to LOOP

```

\section*{G. 3 Pseudo-code for other modules of Recommendation G. 728}

In this subclause pseudo-code for other modules of Recommendation G. 728 is presented. The pseudo-code for the Levinson-Durbin recursion was contained in the previous section, together with the algorithmic changes for the backward vector gain adapter. For each module the floating point pseudo-code is presented first and is then followed by commentary and the fixed point pseudo-code. The following table can be used as a reference for finding the pseudo-code for a particular module of the coder.

The pseudo-codes for all blocks provide a bit-exact specification and are the ultimate definition of the fixed point G. 728 coder. Any deviation from these pseudo-codes may result in an incorrect simulation or implementation.

Fixed-point G. 728 block number, description and pseudo-code name
\begin{tabular}{|c|c|c|}
\hline Block & Description & Pseudo-Code \\
\hline 1 & Input PCM format conversion & Not needed \\
\hline 2 & Vector buffer & Not needed \\
\hline 3 & Adapter for weighting filter & Use block 45 \\
\hline 4 & Weighting filter & Block 4 \\
\hline 5-7 & Switch for ZIR/memory update & Not needed \\
\hline 8 & Simulated decoder & See detailed blocks below \\
\hline 9 & Synthesis filter for ZIR & Blockzir \\
\hline 10 & Weighting filter for ZIR & Blockzir \\
\hline 9, 10 & Blocks 9 \& 10 for memory update & Block 9 \\
\hline 11 & VQ target vector computation & Block 11 \\
\hline 12 & Impulse response vector calc. & Block 12 \\
\hline 13 & Time-reversed convolution & Block 13 \\
\hline 14 & Shape codevector convolution & Block 14 \\
\hline 15 & Codebook energy table calc. & Block 14 \\
\hline 16 & VQ target vector normalization & Block 16 \\
\hline 17 & VQ search error calculator & Block 17 \\
\hline 18 & Best codebook index selector & Block 17 \\
\hline 19 & Excitation VQ codebook & Block 19 \\
\hline 20 & Backward vector gain adapter & See detailed blocks below \\
\hline 21 & Gain scaling unit & Block 19 \\
\hline 22 & Synthesis filter & Use block 9 \\
\hline 23 & Synthesis filter adapter & See blocks 49-51 \\
\hline
\end{tabular}

Fixed-point G. 728 block number, description and pseudo-code name (end)
\begin{tabular}{|c|c|c|}
\hline Block & Description & Pseudo-Code \\
\hline 24 & Codebook search module & See blocks 12-18 \\
\hline 28 & Output PCM format conversion & Not needed \\
\hline 29 & Decoder excitation codebook & Use block 19 \\
\hline 30 & Decoder backward gain adapter & Same as block 20 \\
\hline 31 & Decoder gain scaling unit & Use block 19 \\
\hline 32 & Decoder synthesis filter & Block 32 \\
\hline 33 & Decoder syn. filter adapter & Same as block 23 \\
\hline 34 & Postfilter & See blocks 71-77 \\
\hline 35 & Postfilter adapter & See blocks 81-85 \\
\hline 36 & Hybrid window for W(z) & Block 36 \\
\hline 37 & Durbin's recursion for W (z) & See G. 2 \\
\hline 38 & W (z) coefficient calculator & Block 38 \\
\hline 43 & Hybrid window for GP(z) & Block 43 \\
\hline 44 & Durbin's recursion for GP(z) & See G. 2 \\
\hline 45 & \(\mathrm{GP}(\mathrm{z})\) bandwidth expansion & Block 45 \\
\hline 46 & Log-gain linear predictor & Block 46 \\
\hline 48 & Inverse logarithm calculator & Block 46 \\
\hline 49 & Hybrid window for \(\mathrm{A}(\mathrm{z})\) & Block 49 \\
\hline 50 & Durbin's recursion for \(\mathrm{A}(\mathrm{z})\) & See G. 2 \\
\hline 51 & A(z) coefficient calculator & Block 51 \\
\hline 71-77 & Blocks inside postfilter & Corresponding blocks \\
\hline 81-85 & Blocks in postfilter adapter & Corresponding blocks \\
\hline 91 & Gain codebook index delay unit & Not needed \\
\hline 92 & Shape codebook index delay unit & Not needed \\
\hline 93 & Gain codebook log-gain table & Table in G. 5 \\
\hline 94 & Shape codebook log-gain table & Table in G. 5 \\
\hline 95 & 1-sample delay for log-gain & Not needed \\
\hline 96 & adder to update log-gain & Block 46 \\
\hline 97 & Log-gain limiter at -32 dB & Block 46 \\
\hline 98 & Log-gain limiter: -32 to 28 dB & Block 46 \\
\hline 99 & Adder to restore gain offset & Block 46 \\
\hline
\end{tabular}

\section*{G.3.1 Block 4 - Pseudo-code for weighting filter}

This is the floating point pseudo-code for block 4, the filtering of the input speech by the perceptual weighting filter.
```

For K=1, 2, ···, IDIM, do the following
SW}(\textrm{K})=S(K
For J = LPCW, LPCW - 1, ..., 3, 2, do the next 2 lines
SW(K)=SW(K) + WFIR(J)*AWZ(J + 1) | All-zero part
WFIR(J) = WFIR(J - 1)
SW(K)=SW(K) + WFIR(1)* AWZ(2) | Handle last one
WFIR}(1)=S(K)\quad| differently
For }\textrm{J}=\textrm{LPCW},\textrm{LPCW}-1,···,3, 2, do the next 2 lines
SW(K) = SW(K) - WIIR(J) * AWP(J + 1) | All-pole part
WIIR(J)=WIIR(J - 1) | of the filter
SW(K)=SW(K)-WIIR(1) * AWP(2) | Handle the last
WIIR(1)=SW(K) | one differently

```

Repeat the above for the next \(K\)

For the fixed point version of this pseudo-code there are the NLS values associated with WFIR and WIIR. The computation must be so that the input speech has the same NLS as WFIR and the result from this calculation has the same NLS as WIIR. In this instance, the NLS values for WIIR and WFIR are fixed at the same value as the input speech. AWZ and AWP are Q14. The value for the input speech, NLSS, is 2 . Different input formats (16-bit linear, \(\mu\)-law, A-law, etc.) are supposed to convert to the range of \([-4096,+4095.75]\) represented in a Q2 format.

For K bit linear input, it is assumed that the data occupies the K least significant bits of a 16-bit word, K_BIT_SAMPLE. The proper representation is given by:
\[
\begin{gathered}
\text { NLS }=15-\mathrm{K} \\
\mathrm{~S}=\text { K_BIT_SAMPLE } \ll \text { NLS }
\end{gathered}
\]

For 16-bit linear input signals (16_BIT_SAMPLE), a right shift of 1 bit is required:
\[
\text { S = 16_BIT_SAMPLE >> } 1
\]

For \(\mu\)-law PCM (MULAW_SAMPLE), the largest magnitude sample value is 4015.5 and it is assumed that this would be represented in Q1 format as 8031 . To convert to Q2 format, a left shift of 1 bit is needed:
\[
\text { S = MULAW_SAMPLE << } 1
\]

For A-law PCM (ALAW_SAMPLE), the largest magnitude sample is 2016, but some sample values have a fractional part of 0.5 . Consequently, 2016 would be represented as 4032 in a 16 -bit word. To put this value in the proper range, a left shift of 2 bits is needed:
S = ALAW_SAMPLE <<2

This is the fixed point pseudo-code for block 4, the filtering of the input speech by the perceptual weighting filter.
```

For K=1,2,···, IDIM, do the following
AA0 = S(K)
AA0 = AA0 << 14
For J = LPCW, LPCW - 1, ..., 3, 2, do the next 2 lines
AA0 = AA0 + WFIR(J) * AWZ(J + 1) | All-zero part
WFIR}(J)=\operatorname{WFIR}(J-1) | of the filter
AA0 = AA0 + WFIR(1)* AWZ(2) | Handle the last
WFIR(1) = S(K)
| one differently

```
```

For J = LPCW, LPCW - 1, .., 3, 2, do the next 2 lines
AA0 = AA0 - WIIR(J) * AWP(J + 1) | All-pole part
WIIR(J)=WIIR(J - 1) | of the filter
AA0 = AA0 - WIIR(1) * AWP(2) | Handle the last
AA0 = AA0 >> 14 | one differently
If AA0>32767, set AA0 = 32767 | Saturation mode for
If AA0<-32768, set AA0 =-32768 | multiplier input later
WIIR(1) = AA0

```

Repeat the above for the next K

\section*{G.3.2 Blockzir - Pseudo-code for synthesis and perceptual weighting filters during zero-input response computation}

This is the floating point pseudo-code for block 9 (the synthesis filter) during zero-input response computation.
```

For }\textrm{K}=1,2,···,\mathrm{ IDIM, do the following
TEMP(K)=0.
For J = LPC, LPC - 1, ..., 3, 2, do the next 2 lines
TEMP(K) = TEMP(K) - STATELPC(J) * A(J + 1) | Multiply - add
STATELPC}(\textrm{J})=\operatorname{STATELPC}(\textrm{J}-1)\quad| Memory shift
TEMP(K) = TEMP(K) - STATELPC(1) * A(2) | Handle last one
STATELPC}(1)=\operatorname{TEMP}(\textrm{K})\quad| differently

```

Repeat the above for the next K
This is the floating point pseudo-code for block 10 (the perceptual weighting filter) during zero-input response computation.
```

For $\quad K=1,2, \ldots$, IDIM, do the following
TMP $=$ TEMP $(\mathrm{K})$
For $\mathrm{J}=\mathrm{LPCW}, \mathrm{LPCW}-1, \ldots, 3,2$, do the next 2 lines
$\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})+\mathrm{ZIRWFIR}(\mathrm{J}) * \operatorname{AWZ}(\mathrm{~J}+1) \quad$ | All-zero part
ZIRWFIR $(\mathrm{J})=\operatorname{ZIRWFIR}(\mathrm{J}-1) \quad \mid$ of the filter
$\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})+\operatorname{ZIRWFIR}(1) * \operatorname{AWZ}(2) \quad$ | Handle last one
ZIRWFIR(1) = TMP
For $\mathrm{J}=\mathrm{LPCW}, \mathrm{LPCW}-1, \ldots, 3,2$, do the next 2 lines
$\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})-\operatorname{ZIRWIIR}(\mathrm{J}) * \operatorname{AWP}(\mathrm{~J}+1) \quad$ | All-pole part
ZIRWIIR $(\mathrm{J})=\operatorname{ZIRWIIR}(\mathrm{J}-1) \quad \mid$ of the filter
$\operatorname{ZIR}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})-\operatorname{ZIRWIIR}(1) * \operatorname{AWP}(2) \quad$ | Handle last one
$\operatorname{ZIRWIIR}(1)=\operatorname{ZIR}(\mathrm{K}) \quad \mid$ differently

```

Repeat the above for the next K
In the fixed point code, we note that STATELPC is segmented block floating point and has associated with it NLSSTATE. Since there is zero-input, we do not need to match NLSSTATE with the NLS of the input. The A(), AWZ( ), and AWP( ) values are always represented in Q14 format.

This is the fixed point pseudo-code for block 9 (the synthesis filter) during zero-input response computation.
```

NLSSTATE(11) = NLSSTATE(1)
For K = 2, 3, 4, .., 10, do the next line | Find minimum NLSSTATE
If NLSSTATE(K) < NLSSTATE(11), set NLSSTATE(11) = NLSSTATE(K)
For K=1,2,···, IDIM, do the following
I=1

```
```

    L}=6-
    J=LPC
    AA0 =0
    For LL = 1, .., L, do the next 3 lines
        AA0 = AA0 - STATELPC(J) * A(J + 1) | Multiply - add
        STATELPC}(\mathbf{J})=\operatorname{STATELPC}(\textrm{J}-1
        J= J - 1
    NLS = NLSSTATE(I) - NLSSTATE(11)
    AA1 = AA0 >> NLS
    For I =2,\ldots,10, do the next 8 lines
    AA0 = 0
    For LL = 1,2,\ldots, IDIM, do the next 3 lines
        AA0 = 0 - STATELPC(J)*A(J + 1)
        STATELPC}(\textrm{J})=\operatorname{STATELPC}(\textrm{J}-1)\quad| STATELPC (0)= garbage if J=1; it is OK
        J = J - 1
    NLS = NLSSTATE(I) - NLSSTATE(11)
    AA0 = AA0 >> NLS
    AA1 = AA1 + AA0
    If K=1, go to SHIFT2
    L}=\textrm{K}-
    AA0 = 0
    For LL = 1, 2, .., L, do the next 3 lines
        AA0 = AA0 - STATELPC(J) * A(J + 1)
        STATELPC}(\textrm{J})=\operatorname{STATELPC}(\textrm{J}-1)\quad|\operatorname{STATELPC}(0)=\mathrm{ garbage if }\textrm{J}=1\mathrm{ ; it is OK
        J= J - 1
    AA1 = AA1 }1+\textrm{AA}
    SHIFT2: AA1 = AA1 >> 14
If AA1 > 32767, set AA1 = 32767
If AA1 <-32768, set AA1 =-32768
STATELPC(1) = AA1
IR = NLSSTATE(11) - 2
If IR >0, set AA1 = AA1 >> IR
If IR <0, set AA1 = AA1 <<-IR
TEMP(K) = AA1

```
| Multiply - add
| Memory shift
| STATELPC \((0)=\) garbage if \(\mathrm{J}=1\); it is OK
| Shift to align
| STATELPC \((0)=\) garbage if \(\mathrm{J}=1\); it is OK
| No shift necessary for this time
| A() was Q14, NLS of AA1
| is now NLSSTATE(11)
| Clip to 16 bits if necessary since
| STATELPC(1) will be multiplier input
| Save lower 16-bit word for
| STATELPC
| Make TEMP Q2 format
|
|
```

$\operatorname{TEMP}(\mathrm{K})=\mathrm{AA} 1$

```

Repeat the above for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 13, STATELPC, NLS)
NLSSTATE(11) \(=\) NLSSTATE \((11)+\) NLS

For \(\quad L=1,2, \ldots, 10\), do the next line
\(\operatorname{NLSSTATE}(\mathrm{L})=\operatorname{NLSSTATE}(\mathrm{L}+1)\)

In the fixed point pseudo-code for block 10, TEMP, ZIRWFIR and ZIRWIIR are Q2. In the previous block TEMP was explicitly created with this value. Thus, we do not need to normalize to add them together. This is the fixed point pseudo-code for block 10 (the perceptual weighting filter) during zero-input response computation.

For \(\mathrm{K}=1,2, \ldots\), IDIM, do the following
\(\mathrm{AA} 0=\mathrm{TEMP}(\mathrm{K}) \ll 14\)
| Because AWZ is Q14
For \(\mathrm{J}=\mathrm{LPCW}, \mathrm{LPCW}-1, \ldots, 3,2\), do the next 2 lines
\(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{ZIRWFIR}(\mathrm{J}) * \operatorname{AWZ}(\mathrm{~J}+1)\)
\(\operatorname{ZIRWFIR}(\mathrm{J})=\mathrm{ZIRWFIR}(\mathrm{J}-1)\)
\(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{ZIRWFIR}(1) * \mathrm{AWZ}(2)\)
| All-zero part
| of the filter
| Handle last one
| differently
```

For J = LPCW, LPCW - 1, ..., 3, 2, do the next 2 lines
AA0 = AA0 - ZIRWIIR(J) * AWP(J + 1) | All-pole part
ZIRWIIR(J)= ZIRWIIR}(\textrm{J}-1)\quad|\mathrm{ of the filter
AA0 = AA0 - ZIRWIIR(1) * AWP(2) | Handle last one
AA0 = AA0 >> 14 | differently
If AA0 > 32767, set AA0 = 32767 | Clip since ZIR \& ZIRWIIR
If AA0<-32768, set AA0 =-32768 | will be multiplier input
ZIR(K) = AA0 | Save lower 16-bit word
ZIRWIIR(1) = AA0 | for ZIR and ZIRWIIR

```

Repeat the above for the next K

\section*{G.3.3 Blocks 9 and 10 - Pseudo-code for synthesis and perceptual weighting filter memory updates}

This is the floating point pseudo-code for blocks 9 and 10 , the filter memory update.

ZIRWFIR(1) \(=\mathrm{ET}(1)\)
\(\operatorname{TEMP}(1)=\mathrm{ET}(1)\)
For \(\mathrm{K}=2,3, \ldots\), IDIM, do the following
\(\mathrm{A} 0=\mathrm{ET}(\mathrm{K})\)
\(\mathrm{A} 1=0\)
\(\mathrm{A} 2=0\)
For \(I=K, K-1, \ldots, 2\), do the next 5 lines
ZIRWFIR \((\mathrm{I})=\) ZIRWFIR \((\mathrm{I}-1)\)
\(\operatorname{TEMP}(\mathrm{I})=\operatorname{TEMP}(\mathrm{I}-1)\)
\(\mathrm{A} 0=\mathrm{A} 0-\mathrm{A}(\mathrm{I}) * \mathrm{ZIRWFIR}(\mathrm{I})\)
\(\mathrm{A} 1=\mathrm{A} 1+\mathrm{AWZ}(\mathrm{I}) * \mathrm{ZIRWFIR}(\mathrm{I})\)
\(\mathrm{A} 2=\mathrm{A} 2-\mathrm{AWP}(\mathrm{I}) * \operatorname{TEMP}(\mathrm{I})\)

ZIRWFIR(1) = A0
\(\operatorname{TEMP}(1)=\mathrm{A} 0+\mathrm{A} 1+\mathrm{A} 2\)

Repeat the above indented section for the next K
| Now update filter memory by adding | zero-state responses to zero-input | responses

For \(\quad K=1,2, \ldots\), IDIM, do the next 4 lines
STATELPC \((\mathrm{K})=\) STATELPC \((\mathrm{K})+\operatorname{ZIRWFIR}(\mathrm{K})\)
If STATELPC \((K)>\) MAX, set STATELPC \((K)=\) MAX
If STATELPC \((\mathrm{K})<\) MIN, set STATELPC(K) \(=\) MIN
ZIRWIIR \((\mathrm{K})=\mathrm{ZIRWIIR}(\mathrm{K})+\operatorname{TEMP}(\mathrm{K})\)

For \(I=1,2, \ldots, L P C W\), do the next line
ZIRWFIR \((\mathrm{I})=\) STATELPC \((\mathrm{I})\)
\(\mathrm{I}=\mathrm{IDIM}+1\)
For \(\quad K=1,2, \ldots\), IDIM, do the next line
\(\mathrm{ST}(\mathrm{K})=\operatorname{STATELPC}(\mathrm{I}-\mathrm{K})\)
\begin{tabular}{|c|c|}
\hline & | Now update filter memory by adding | zero-state responses to zero-input | responses \\
\hline \begin{tabular}{l}
For \(K=1,2, \ldots\), IDIM, do the next 4 lines \\
STATELPC(K) = STATELPC(K) + ZIRWFIR(K) \\
If STATELPC \((\mathrm{K})>\) MAX, set STATELPC(K) \(=\) MAX \\
If STATELPC(K) < MIN, set STATELPC(K) = MIN \\
\(\operatorname{ZIRWIIR}(\mathrm{K})=\operatorname{ZIRWIIR}(\mathrm{K})+\operatorname{TEMP}(\mathrm{K})\)
\end{tabular} & Limit the range \\
\hline For \(I=1,2, \ldots, L P C W\), do the next line ZIRWFIR \((\mathrm{I})=\) STATELPC \((\mathrm{I})\) & | Now set ZIRWFIR to | the right value \\
\hline \(\mathrm{I}=\mathrm{IDIM}+1\) & \\
\hline For \(K=1,2, \ldots\), IDIM, do the next line \(\operatorname{ST}(\mathrm{K})=\operatorname{STATELPC}(\mathrm{I}-\mathrm{K})\) & | Obtain quantized speech by | reversing order of synthesis | filter memory \\
\hline
\end{tabular}
| ZIRWFIR now a scratch array
-
| Save lower 16-bit word
| for ZIR and ZIRWIIR

The following is the fixed point pseudo-code for the same blocks. STATELPC has 10 exponents stored in NLSSTATE(1), ..., NLSSTATE(10). Associated with the array ET is NLSET. ZIRWIIR and ZIRWFIR are Q2 after the update. ZIRWFIR is initially used as a scratch array. Upon entry into this code, both ET and the top 5 elements of STATELPC [STATELPC(1) through STATELPC(5)] are 15-bit block floating point arrays. When ET is filtered by the LPC synthesis filter without memory, the output (i.e. zero-state response of the LPC filter) may exceed the 15 -bit range. When this happens, we right shift ET by 1 bit and repeat the calculation until the output fits into 15 bits. Empirically the
process repeats at most 3 times (or 4 times if the first time through is counted). Note that there are only 10 multiply-adds for each repetition of the calculation, because the calculation of the zero-state response of the weighting filter has been moved to a separate loop. The zero-state response of the LPC filter calculated this way is always representable in 15 bits or less. When this response is then added to the 15-bit STATELPC to update STATELPC, the result of the addition is guaranteed to be representable by 16 bits. Before exiting this code, STATELPC is scaled to 14 bits to avoid overflows in the zero-input response calculation later.

LABEL1: \(\operatorname{ZIRWFIR}(1)=\mathrm{ET}(1)\)
For \(K=2,3, \ldots\), IDIM, do the following indented lines
\(\mathrm{AA} 0=\mathrm{ET}(\mathrm{K}) \ll 14\)
For \(\mathrm{I}=\mathrm{K}, \mathrm{K}-1, \ldots, 2\), do the next 3 lines
\(\operatorname{ZIRWFIR}(\mathrm{I})=\operatorname{ZIRWFIR}(\mathrm{I}-1)\)
\(\mathrm{P}=\mathrm{A}(\mathrm{I}) * \operatorname{ZIRWFIR}(\mathrm{I})\)
\(\mathrm{AA} 0=\mathrm{AA} 0-\mathrm{P}\)
\(\mathrm{AA} 1=\mathrm{AA} 0 \ll 3\)
If AA1 overflowed above, do the next 4 lines
For \(\mathrm{I}=1,2, \ldots\), IDIM, do the next line \(\mathrm{ET}(\mathrm{I})=\mathrm{ET}(\mathrm{I}) \gg 1\)
NLSET = NLSET - 1
GO TO LABEL1
\(\mathrm{AA} 0=\mathrm{AA} 0 \gg 14\)
\(\operatorname{ZIRWFIR}(1)=\mathrm{AA} 0\)

Repeat the above indented section for the next K
\(\mathrm{N}=\) IDIM +1
\(\operatorname{TEMP}(1)=\) ZIRWFIR (IDIM)
For \(\mathrm{K}=2,3, \ldots\), IDIM, do the following indented lines
AA1 \(=\operatorname{ZIRWFIR}(\mathrm{N}-\mathrm{K}) \ll 14\)
M \(=\) IDIM \(-K\)
For \(\mathrm{I}=\mathrm{K}, \mathrm{K}-1, \ldots, 2\), do the next 5 lines
\(\operatorname{TEMP}(\mathrm{I})=\operatorname{TEMP}(\mathrm{I}-1)\)
\(\mathrm{P}=\mathrm{AWZ}(\mathrm{I}) * \operatorname{ZIRWFIR}(\mathrm{I}+\mathrm{M})\)
\(\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{P}\)
\(\mathrm{P}=\mathrm{AWP}(\mathrm{I}) * \operatorname{TEMP}(\mathrm{I})\)
\[
\mathrm{AA} 1=\mathrm{AA} 1-\mathrm{P}
\]
\(\mathrm{AA} 1=\mathrm{AA} 1 \gg 14\)
If AA1 \(>32767\), set AA1 \(=32767\)
If AA1 \(<-32768\), set AA1 \(=-32768\)
\(\operatorname{TEMP}(1)=\mathrm{AA} 1\)

Repeat the above indented section for the next \(K\)
```

IR = NLSET -2
For $K=1, \ldots$, IDIM, do the next 2 lines
If IR $>0$, set $\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K}) \gg \operatorname{IR}$
If IR $<0$, set $\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K}) \ll-\operatorname{IR}$

```
| First calculate zero-state response | of the LPC synthesis filter
| Because \(\mathrm{A}(1)=1\) in \(\mathrm{Q} 14=16384\)
| Q14 multiplication
| Compute zero-state responses
| Make sure after \(\mathrm{AA} 0 \gg 14\) later, | the result does not exceed 15 bits. | If it does, then ET >> 1 | and repeat the | calculation until it fits
| Compensate for A( ) being Q14
| Keep lowest 16 bits
| Now calculate the zero-state response | of the weighting filter
| Because AWZ(1) = 1 (in Q14 = 16384)
| Shift all-pole part of filter memory
| all-zero part of the weighting filter
| All-pole part of the weighting filter
| Clip if necessary, since TEMP(1)
| will be 16-bit input to multiplier
| Keep lowest 16 bits
| Now shift TEMP to Q2 like | ZIRWIIR
| Now update filter memory by adding | zero-state responses to zero-input | responses. First we must match the | NLS of ZIRWFIR and STATELPC

If NLSET < NLSSTATE(10), do the next 5 lines
NLSD \(=\) NLSSTATE (10) - NLSET
For \(K=1,2, \ldots\), IDIM, do the next line STATELPC \((\mathrm{K})=\operatorname{STATELPC}(\mathrm{K}) \gg\) NLSD
NLSSTATE \((10)=\) NLSET
go to LABEL2

NLSD \(=\) NLSET - NLSSTATE(10)
For \(K=1,2, \ldots\), IDIM, do the next line
ZIRWFIR \((\mathrm{K})=\) ZIRWFIR \((\mathrm{K}) \gg\) NLSD

\section*{LABEL2:}

AA1 \(=4095\)
If NLSSTATE \((10) \geq 0\), set AA1 \(=\) AA1 \(\ll \operatorname{NLSSTATE}(10)\)
If NLSSTATE \((10)<0\), set AA1 \(=\) AA1 \(\gg-\) NLSSTATE(10)

For \(\mathrm{K}=1,2, \ldots\), IDIM, do the following indented lines
AA \(0=\operatorname{STATELPC}(\mathrm{K})+\operatorname{ZIRWFIR}(\mathrm{K})\)
If \(\mathrm{AA} 0>\mathrm{AA} 1\), set \(\mathrm{AA} 0=\mathrm{AA} 1\)
If \(\mathrm{AA} 0<-\mathrm{AA} 1\), set \(\mathrm{AA} 0=-\mathrm{AA} 1\)

If \(\mathrm{AA} 0>32767\), set \(\mathrm{AA} 0=32767\)
If \(\mathrm{AA} 0<-32768\), set \(\mathrm{AA} 0=-32768\)
\(\operatorname{STATELPC}(K)=A A 0\)

AA0 \(=\) ZIRWIIR(K) + TEMP(K)
If \(\mathrm{AA} 0>32767\), set \(\mathrm{AA} 0=32767\)
If \(\mathrm{AA} 0<-32768\), set \(\mathrm{AA} 0=-32768\)
\(\operatorname{ZIRWIIR}(\mathrm{K})=\mathrm{AA} 0\)

Repeat the above indented section for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 12, STATELPC, NLS)
NLSSTATE \((10)=\) NLSSTATE \((10)+\) NLS
| Lose precision in STATELPC
| by NLSD bits
| Only case left is:
| NLSET > NLSSTATE
| Lose precision in ZIRWFIR
| by NLSD bits
| Now we are ready
| 4095 = STATELPC clipping level
| Shift clipping level to
| align with STATELPC
| Update LPC filter memory.
| If necessary, perform the clipping as specified
| in floating point in Recommendation G.728.
| Note that these values were scaled.
| So, if \(32767<\mid\) AA0 \(\mid<\) AA1, we need to clip
| AA0 to 16 bits since STATELPC(K)
| will later be a 16 -bit
| input to the multiplier
| Update all-pole part of \(\mathrm{W}(\mathrm{z})\) memory
| Again, clip to 16 bits if necessary
| since ZIRWIIR(K) will later be
| a 16-bit input to the multiplier
| Scale STATELPC to 14 bits
| to avoid overflow in
| zero-input response calculation later
\(\mathrm{IR}=\operatorname{NLSSTATE}(10)-2\)

For \(\quad I=1,2, \ldots, 5\), do the next 4 lines AA \(0=\) STATELPC(I)
If IR \(>0\), set \(\mathrm{AA} 0=\mathrm{AA} 0 \gg \mathrm{IR}\)
If \(\mathrm{IR}<0\), set \(\mathrm{AA} 0=\mathrm{AA} 0 \ll-\mathrm{IR}\)
\(\mathrm{ZIRWFIR}(\mathrm{I})=\mathrm{AA} 0\)
\(\mathrm{IR}=\operatorname{NLSSTATE}(9)-2\)
For \(\quad I=6,7, \ldots, 10\), do the next 4 lines
AA \(0=\) STATELPC \((I)\)
If IR \(>0\), set \(\mathrm{AA} 0=\mathrm{AA} 0 \gg \mathrm{IR}\)
If \(\mathrm{IR}<0\), set \(\mathrm{AA} 0=\mathrm{AA} 0 \ll-\mathrm{IR}\)
\(\operatorname{ZIRWFIR}(\mathrm{I})=\mathrm{AA} 0\)
\(\mathrm{I}=\mathrm{IDIM}+1\)
For \(K=1,2, \ldots\), IDIM, do the next line
\(\mathrm{ST}(\mathrm{K})=\operatorname{STATELPC}(\mathrm{I}-\mathrm{K})\)
NLSST = NLSSTATE(10)
| Now set ZIRWFIR, the all zero
| part of W(z) memory, to the
| right values in Q2 format
I

I
1
I
I

1

I
1

\section*{G.3.4 Block 11 - VQ target vector computation}

This is the floating point pseudo-code for block 11, the VQ target vector computation.
```

For K=1,2,···, IDIM, do the next line
TARGET(K) = SW(K) - ZIR(K)

```

For the fixed point code, SW and ZIR are both in Q 2 format, the same as the input speech. Thus, NLSTARGET \(=2\). Here is the fixed point pseudo-code.
```

set NLSTARGET = 2
For K=1,2,···, IDIM, do the next 6 lines
AA0 = SW(K)
AA1 = ZIR(K)
AA0 = AA0 - AA1
If AA0 > 32767, set AA0 = 32767 | Clip if necessary
If AA0}<-32768, set AA0 = -32768
TARGET(K) = AA0

```

\section*{G.3.5 Block 12 - Impulse response vector calculation}

The following is the floating pseudo-code for block 12.
```

$\operatorname{TEMP}(1)=1$
| TEMP = synthesis filter memory
$\mathrm{WS}(1)=1 \quad \mid \mathrm{WS}=\mathrm{W}(\mathrm{z})$ all-pole part memory
For $\mathrm{K}=2,3, \ldots$, IDIM, do the following
$\mathrm{A} 0=0$
$\mathrm{A} 1=0$
$\mathrm{A} 2=0$
For $I=K, K-1, \ldots, 3,2$, do the next 5 lines
$\operatorname{TEMP}(\mathrm{I})=\operatorname{TEMP}(\mathrm{I}-1)$
$\mathrm{WS}(\mathrm{I})=\mathrm{WS}(\mathrm{I}-1) \quad \mid$
$\mathrm{A} 0=\mathrm{A} 0-\mathrm{A}(\mathrm{I}) * \operatorname{TEMP}(\mathrm{I})$
$\mathrm{A} 1=\mathrm{A} 1+\mathrm{AWZ}(\mathrm{I}) * \operatorname{TEMP}(\mathrm{I})$
$\mathrm{A} 2=\mathrm{A} 2-\mathrm{AWP}(\mathrm{I}) * \mathrm{WS}(\mathrm{I})$
$\operatorname{TEMP}(1)=\mathrm{A} 0$
$\mathrm{WS}(1)=\mathrm{A} 0+\mathrm{A} 1+\mathrm{A} 2$

```

Repeat the above indented section for the next K
\begin{tabular}{ll} 
ITMP \(=\) IDIM +1 & \(\mid\) Obtain \(h(n)\) by reversing the order of the memory \\
For \(\quad K=1,2, \ldots\), IDIM, do the next line & \(\mid\) of all-pole section \(W(z)\) \\
& \(H(K)=W S(I T M P-K)\)
\end{tabular}

The values for the predictor coefficients, A()\(, \mathrm{AWZ}()\) and AWP() are all stored in Q14 format. In the fixed point pseudo-code to follow, only two 32-bit accumulators are indicated, AA0 and AA1. Accumulators A1 and A2 in the floating point pseudo-code have been combined. Guard bits are not required. The output array, H() is stored in Q13 format. The following is the fixed point pseudo-code.
\begin{tabular}{ll} 
TEMP \((1)=8192\) & \(|\)\begin{tabular}{l} 
TEMP \(=\) synthesis filter memory \\
\(\mathrm{WS}(1)=8192\)
\end{tabular} \\
& \(\mid \mathrm{WS}=\mathrm{W}(\mathrm{z})\) all-pole part memory \\
& WS TEMP are Q13 16-bit words
\end{tabular}
```

For $\mathrm{K}=2,3, \ldots$, IDIM, do the following
$\mathrm{AA} 0=0$
$\mathrm{AA} 1=0$
For $I=K, K-1, \ldots, 3,2$, do the next 5 lines
$\operatorname{TEMP}(\mathrm{I})=\operatorname{TEMP}(\mathrm{I}-1)$
$\mathrm{WS}(\mathrm{I})=\mathrm{WS}(\mathrm{I}-1)$
$\mathrm{AA} 0=\mathrm{AA} 0-\mathrm{A}(\mathrm{I}) * \mathrm{TEMP}(\mathrm{I})$
$\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{AWZ}(\mathrm{I}) * \mathrm{TEMP}(\mathrm{I})$
$\mathrm{AA} 1=\mathrm{AA} 1-\mathrm{AWP}(\mathrm{I}) * \mathrm{WS}(\mathrm{I})$

```
|
        | Filtering
\(\mathrm{AA} 1=\mathrm{AA} 0+\mathrm{AA} 1\)
AA \(0=\mathrm{AA} 0 \gg 14 \quad \mid \gg 14\) because A() , AWZ() and
\(\mathrm{AA} 1=\mathrm{AA} 1 \gg 14 \quad \mid \mathrm{AWP}()\) were inQ14 format
\(\operatorname{TEMP}(1)=\mathrm{AA} 0\)
\(\mathrm{WS}(1)=\mathrm{AA} 1\)

Repeat the above indented section for the next \(K\)
```

ITMP = IDIM + 1
| Obtain $h(n)$ by reversing the order of the memory
For $\mathrm{K}=1,2, \ldots$, IDIM, do the next line | of all-pole section of $\mathrm{W}(\mathrm{z})$ $\mathrm{H}(\mathrm{K})=\mathrm{WS}($ ITMP -K$)$

```

\section*{G.3.6 Block 13 - Time-reversed convolution}

This module performs time-reversed convolution in preparation for the codebook search. The original floating point pseudo-code was
```

For }\textrm{K}=1,2,···,\mathrm{ IDIM, do the following
K1 = K - 1
PN(K)=0
For J = K, K + 1, ..., IDIM, do the next line
PN}(\textrm{K})=\textrm{PN}(\textrm{K})+\mathrm{ TARGET}(\textrm{J})*H(J - K1)

```

Repeat the above for the next K

In the fixed point version, H() is represented in Q13 format and TARGET is represented in block floating point. NLSTARGET is determined in block 16. NLSPN is fixed at 7.
```

For $\quad \mathrm{K}=1,2, \ldots$, IDIM, do the following
$\mathrm{K} 1=\mathrm{K}-1$
$\mathrm{AA} 0=0 \quad \mid$ Accumulator zeroed
For $\mathrm{J}=\mathrm{K}, \mathrm{K}+1, \ldots$, IDIM, do the next 2 lines
$\mathrm{P}=\operatorname{TARGET}(\mathrm{J}) * \mathrm{H}(\mathrm{J}-\mathrm{K} 1)$
$\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}$
$\mathrm{AA} 0=\mathrm{AA} 0 \gg 13+($ NLSTARGET -7$) \quad \mid$ Right shift to make Q7
If $\mathrm{AA} 0>32767$, set $\mathrm{AA} 0=32767 \quad \mid$ Clip AA0 to 16 bits since
If AA $0<-32768$, set $\mathrm{AA} 0=-32768 \quad \mid \mathrm{PN}$ will be multiplier input
$\mathrm{PN}(\mathrm{K})=\mathrm{AA} 0$
| AA0 in saturation mode

```

Repeat the above for the next \(K\)

\section*{G.3.7 Block 14 - Shape codevector convolution and energy calculation}

This is the pseudo-code for the codevector energy calculation, blocks 14 and 15.
```

For }\textrm{J}=1,2,···,NCWD, do the following
| One codevector per loop
J1 = (J - 1) * IDIM
For K = 1, 2, .., IDIM, do the next 4 lines
K1 = J1 + K + 1
TEMP(K) = 0
For I = 1, 2, ..., K, do the next line
TEMP}(\textrm{K})=\operatorname{TEMP}(\textrm{K})+\textrm{H}(\textrm{I})*\textrm{Y}(\textrm{K}1-\textrm{I})\quad| Convolution
Repeat the above 4 lines for the next K
Y2(J) = 0
For K}=1,2,···,\mathrm{ IDIM, do the next line
Y2(J) = Y2(J) + TEMP(K) * TEMP(K) | Compute energy
Repeat the above for the next $J$

```

In the fixed point pseudo-code, H() is represented in Q13 format and Y() in Q11 format. It was found empirically that after convolution of H() and Y() , overflows in the accumulator, i.e. a result with magnitude larger than \(2 * * 31\), did not occur. Thus, the following pseudo-code does not test for overflow in the accumulator. This makes the corresponding DSP code run faster. The subsequent shift by 14 bits is necessary to allow representation of TEMP( ) in Q10 format. The representations used were found to work for a variety of files. NLSY2 \(=(\mathrm{NLSH}+\mathrm{NLSY}-14) * 2-15\). Since NLSY \(=11\) and NLSH \(=13\) then NLSY2 \(=5\).
```

For J=1,2,···,NCWD, do the following | One codevector per loop
J1 = (J - 1) * IDIM
For K}=1,2,···,\mathrm{ IDIM, do the next }7\mathrm{ lines
K1 = J1 + K + 1
AA0 = 0
For I = 1, 2, .., K, do the next 2 lines |
P}=\textrm{H}(\textrm{I})*Y(\textrm{K}1-\textrm{I}
AA0 = AA0 + P
AA0 = AA0 >> 14
TEMP(K) = AA0 | Lowest 16 bits only

```
    Repeat the above 7 lines for the next K
    \(\mathrm{AA} 0=0\)
    For \(\mathrm{K}=1,2, \ldots\), IDIM, do the next 2 lines
        \(\mathrm{P}=\mathrm{TEMP}(\mathrm{K}) * \operatorname{TEMP}(\mathrm{~K}) \quad\) | Compute energy
        \(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}\)
    \(\mathrm{AA} 0=\mathrm{AA} 0 \gg 15\)
    \(\mathrm{Y} 2(\mathrm{~J})=\mathrm{AA} 0 \quad\) Lowest 16 bits only

Repeat the above for the next \(\mathbf{J}\)

\section*{G.3.8 Block 16 - VQ target vector normalization}

The floating point pseudo-code for this module is given first.

TMP \(=1 . /\) GAIN
For \(\quad K=1,2, \ldots\), IDIM, do the next line
\(\operatorname{TARGET}(\mathrm{K})=\operatorname{TARGET}(\mathrm{K}) * \operatorname{TMP}\)

For the fixed point pseudo-code, we need to consider the NLS of the gain and the NLS of TARGET. At entry NLSTARGET \(=2\). In the process, we will create the NLS for TMP.
| Numerator for division \(=16384\)
| NLS = 14 for numerator
| NLS for denominator is NLSGAIN
| NLSGAIN determined in block 46

Call DIVIDE(16384, 14, GAIN, NLSGAIN, TMP, NLSTMP)

For \(\mathrm{K}=1,2, \ldots\), IDIM, do the next 2 lines
AA \(0=\) TMP \(*\) TARGET(K)
\(\operatorname{TARGET}(\mathrm{K})=\) AA \(0 \gg 15\)
| AA0 is 32 bits
| Keep only the lower 16 bits
| TARGET is Q2 at this point

NLSTARGET \(=2+\) NLSTMP -15
| Make TARGET block
| floating point
Call VSCALE(TARGET, IDIM, IDIM, 14, TARGET, NLS)
NLSTARGET = NLSTARGET + NLS
| NLS was change in VSCALE

\section*{G.3.9 Block 17 - VQ search error calculator and best codebook index selector}

The following is the floating point pseudo-code for the error calculator and best codebook index selector (blocks 17 and 18).

Initialize DISTM to the largest number representable in the hardware
\(\mathrm{N} 1=\mathrm{NG} / 2\)
For \(\mathrm{J}=1,2, \ldots, \mathrm{NCWD}\), do the following
\(\mathrm{J} 1=(\mathrm{J}-1) *\) IDIM
COR \(=0\)
For \(\mathrm{K}=1,2, \ldots\), IDIM, do the next line \(\mathrm{COR}=\mathrm{COR}+\mathrm{PN}(\mathrm{K}) * \mathrm{Y}(\mathrm{J} 1+\mathrm{K}) \quad \mid\) Compute inner product Pj

If COR \(>0\), then do the next 5 lines IDXG \(=\) N1 For \(\mathrm{K}=1,2, \ldots, \mathrm{~N} 1-1\), do the next " if " statement

If \(\mathrm{COR}<\mathrm{GB}(\mathrm{K}) * \mathrm{Y} 2(\mathrm{~J})\), do the next 2 lines IDXG \(=\) K | Best positive gain found GO TO LABEL

If COR \(\leq 0\), then do the next 5 lines IDXG \(=\) NG For \(\mathrm{K}=\mathrm{N} 1+1, \mathrm{~N} 1+2, \ldots, \mathrm{NG}-1\), do the next "if" statement If \(\mathrm{COR}>\mathrm{GB}(\mathrm{K}) * \mathrm{Y} 2(\mathrm{~J})\), do the next 2 lines IDXG \(=\mathrm{K} \quad \mid\) Best negative gain found GO TO LABEL
```

LABEL: D = -G2(IDXG) * COR + GSQ(IDXG) * Y2(J)
If D < DISTM, do the next 3 lines

```
        DISTM \(=\) D | Save the lowest distortion
        IG \(=\) IDXG | and the best codebook
        IS = J | indices so far

Repeat the above inserted section for the next J
\(\operatorname{ICHAN}=(\mathrm{IS}-1) * \mathrm{NG}+(\mathrm{IG}-1)\)

The following is the fixed point pseudo-code for the error calculator and best codebook index selector (blocks 17 and 18). The code has been written such that the absolute value of the correlation with the target value, AA0 below, is used for the gain search and then later the sign of the correlation is re-determined. While this may seem like more work, it avoids having a branch in the middle of the search loop. For most DSP implementations avoiding a branch saves instructions. Alternatively, the sign can be saved and the recomputation avoided. However, this usually costs an extra instruction in the search loop as well.
```

DISTM = 2147483647
For J=1,2,···, NCWD, do the following
J1 = (J - 1) * IDIM
AA0 =0
For K=1,2,···,IDIM, do the next 2 lines
P}=\textrm{PN}(\textrm{K})*Y(\textrm{J}1+\textrm{K})\quad| Compute inner product Pj
AA0 = AA0 + P | NLS for AA0 is 7 + 11=18
If AA0<0, set AA0 = AA0 | Take absolute value
IDXG = 1
P=GB(1) * Y2(J) | NLS for P is 13 +5 = 18
If AA0 }\geq\mathrm{ P, set IDXG = IDXG + 1
P}=\textrm{GB}(2)*Y2(J
If AA0 }\geqP\mathrm{ , set IDXG = IDXG + 1
P}=\textrm{GB}(3)*Y2(J
If AA0}\geqP\mathrm{ , set IDXG = IDXG + 1

```
\begin{tabular}{ll}
\(\mathrm{AA} 0=\mathrm{AA} 0 \gg 14\) & \(\mid \mathrm{NLS}\) for \(\mathrm{AA} 0=4\) \\
If \(\mathrm{AA} 0>32767\), set AA0 \(=32767\) & Clip AA0; AA0 in saturation mode \\
\(\mathrm{AA} 1=\mathrm{GSQ}(\mathrm{IDXG}) * \mathrm{Y} 2(\mathrm{~J})\) & NLSGSQ\(=11\), NLSY2 \(=5\), so NLSAA1 \(=16\) \\
\(\mathrm{P}=\mathrm{G} 2(\mathrm{IDXG}) * \mathrm{AA} 0\) & \\
& NLSG2 \(=12\), NLSAA \(0=4\), so NLSP \(=16\)
\end{tabular}
\(\mathrm{AA} 1=\mathrm{AA} 1-\mathrm{P}\)
If AA1 < DISTM, do the next 3 lines
DISTM \(=\) AA1 \(\quad \mid\) Double precision DISTM

IG = IDXG
\(\mathrm{IS}=\mathrm{J}\)

Repeat the above inserted section for the next \(\mathbf{J}\)

AA \(0=0\)
| Now find the sign bit
\(\mathrm{J} 1=(\mathrm{IS}-1) * \mathrm{IDIM}\)
For \(K=1,2, \ldots\), IDIM, do the next 2 lines
\(\mathrm{P}=\mathrm{PN}(\mathrm{K}) * \mathrm{Y}(\mathrm{J} 1+\mathrm{K})\)
\(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}\)
If \(\mathrm{AA} 0 \leq 0\), set \(\mathrm{IG}=\mathrm{IG}+4\)
\(\mathrm{ICHAN}=(\mathrm{IS}-1) * \mathrm{NG}+(\mathrm{IG}-1)\)

In the above code, we used the following four lines
\[
\begin{aligned}
& \mathrm{AA} 0=\mathrm{AA} 0 \gg 14 \\
& \text { If } \mathrm{AA} 0>32767, \text { set } \mathrm{AA} 0=32767 \\
& \mathrm{AA} 1=\mathrm{GSQ}(\mathrm{IDXG}) * \mathrm{Y} 2(\mathrm{~J}) \\
& \mathrm{P}=\mathrm{G} 2(\mathrm{IDXG}) * \mathrm{AA} 0
\end{aligned}
\]
| NLS for \(\mathrm{AA} 0=4\)
| Clip AA0
| NLSGSQ = 11, NLSY2 = 5, so NLSAA1 = 16
| \(\mathrm{NLSG} 2=12\), \(\mathrm{NLSAA} 0=4\), so NLSP \(=16\)

In DSP chips which have a "clipping" function, these lines can be replaced by the following code to give the exact same results.
\[
\begin{aligned}
& \mathrm{AA} 0=\mathrm{AA} 0 \ll 2 \\
& \mathrm{AA} 0=\mathrm{CLIP}(\mathrm{AA} 0) \\
& \mathrm{AA} 0=\mathrm{AA} 0 \gg 16 \\
& \mathrm{AA} 1=\mathrm{GSQ}(\mathrm{IDXG}) * \mathrm{Y} 2(\mathrm{~J}) \\
& \mathrm{P}=\mathrm{G} 2(\mathrm{IDXG}) * \mathrm{AA} 0
\end{aligned}
\]
```

| NLS for AA0 = 20
| AA0 is in saturation mode
| Take high word; NLS for AA0 = 4
| NLSGSQ = 11, NLSY2 = 5, so NLSAA1 = 16
| NLSG2 = 12, NLSAA0 = 4, so NLSP = 16

```

The CLIP function and saturation mode refer to the concept of not allowing AA0 to overflow when the \(\ll 2\) operation is performed. Instead of overflow, AA0 is set to the maximum positive or negative number, depending on its original sign. In this case, AA0 is always positive. This alternative is DSP dependent and may require more than a 32 bit accumulator. The alternative in the main pseudo-code can always be implemented.

\section*{G.3.10 Block 19 - Excitation VQ codebook and block 21 - Gain scaling unit}

This is the floating point version of the pseudo-code for block 19, the excitation VQ codebook.
\(\mathrm{NN}=(\mathrm{IS}-1) * \mathrm{IDIM}\)
For \(\quad K=1,2, \ldots\), IDIM, do the next line
\(\mathrm{YN}(\mathrm{K})=\mathrm{GQ}(\mathrm{IG}) * \mathrm{Y}(\mathrm{NN}+\mathrm{K})\)

The floating point version of the pseudo-code for block 21, the gain scaling unit is given below.

For \(\mathrm{K}=1,2, \ldots\), IDIM, do the next line
\(\mathrm{ET}(\mathrm{K})=\mathrm{GAIN} * \mathrm{YN}(\mathrm{K})\)

For the fixed point pseudo-code, we combine both blocks 19 and 21 into a single module. Both Y and GQ have fixed Q formats, Q11 and Q13, respectively. The value of GAIN has associated with it NLSGAIN. To get the maximum accuracy, the product \(\mathrm{GQ}(\mathrm{IG})\) * GAIN is normalized to 32 bits before rounding to the upper 16 bits is performed. Let NNGQ(I) be \([1+\) the number of left shifts needed to normalize the \(\mathrm{Q} 13 \mathrm{GQ}(\mathrm{I})]\). So, \(\mathrm{NNGQ}(\mathrm{I})=3\) for \(\mathrm{I}=1,2,5,6\), \(\operatorname{NNGQ}(\mathrm{I})=2\) for \(\mathrm{I}=3,7\), and \(\mathrm{NNGQ}(\mathrm{I})=1\) for \(\mathrm{I}=4,8\). Then the pseudo-code can be written as follows.
\begin{tabular}{|c|c|}
\hline \(\mathrm{AA} 0=\mathrm{GQ}(\mathrm{IG}) * \mathrm{GAIN}\) & | AA0 has NNGQ(IG) leading zeros \\
\hline \(\mathrm{AA} 0=\mathrm{AA} 0 \ll \mathrm{NNGQ}(\mathrm{IG})\) & | Left shift NNGQ(IG) bits to normalize AA0 \\
\hline \(\mathrm{TMP}=\mathrm{RND}(\mathrm{AA} 0)\) & | Round to upper 16 bits and assign to TMP \\
\hline NLSAA \(0=13+\) NLSGAIN & \| Q format of the product GQ(IG) * GAIN \\
\hline \multirow[t]{3}{*}{NLSTMP = NLSAA0 + NNGQ(IG) - 16} & | Q format of TMP, because \\
\hline & | AA0 left shift by NNGQ(IG) bits \\
\hline & I then round and take upper 16 bits \\
\hline NN \(=(\mathrm{IS}-1) *\) IDIM & | Normalize selected shape \\
\hline Call VSCALE(Y(NN + 1), IDIM, IDIM, 14, TEMP, NLS) & | codevector to 16 bits; put in TEMP \\
\hline For \(\mathrm{K}=1,2, \ldots\), IDIM, do the next 2 lines & | TMP and TEMP both normalized to 16 bits, \\
\hline AA0 \(=\) TMP * TEMP(K) & | so the product has 1 leading zero. \\
\hline \(\mathrm{ET}(\mathrm{K})=\mathrm{RND}(\mathrm{AA} 0)\) & | Directly rounding to high work \\
\hline & \| gives us a 15-bit ET array \\
\hline NLSET \(=\) NLSTMP + \(11+\) NLS -16 & | Calculate the NLS for ET \\
\hline
\end{tabular}

\section*{G.3.11 Block 32 - Decoder synthesis filter}

This is the floating point pseudo-code for block 32, the decoder synthesis filter.
```

For $K=1,2, \ldots$, IDIM, do the next 6 lines
$\operatorname{TEMP}(\mathrm{K})=0$
For $\mathrm{J}=\mathrm{LPC}, \mathrm{LPC}-1, \ldots, 3,2$, do the next 2 lines
$\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})-\operatorname{STATELPC}(\mathrm{J}) * \mathrm{~A}(\mathrm{~J}+1) \quad \mid$ Zero-input response
$\operatorname{STATELPC}(\mathrm{J})=\operatorname{STATELPC}(\mathrm{J}-1)$
$\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})-\operatorname{STATELPC}(1) * \mathrm{~A}(2)$
$\operatorname{STATELPC}(1)=\operatorname{TEMP}(K)$
Repeat the above for the next K
$\operatorname{TEMP}(1)=\mathrm{ET}(1)$
For $K=2,3, \ldots$, IDIM, do the next 5 lines
$\mathrm{A} 0=\mathrm{ET}(\mathrm{K})$
For $I=K, K-1, \ldots, 2$, do the next 2 lines $\operatorname{TEMP}(\mathrm{I})=\operatorname{TEMP}(\mathrm{I}-1)$
$\mathrm{A} 0=\mathrm{A} 0-\mathrm{A}(\mathrm{I}) * \mathrm{TEMP}(\mathrm{I})$
| Compute zero-state response
| Handle last one differently
I

```
\[
\operatorname{TEMP}(1)=\mathrm{A} 0
\]

Repeat the above 5 lines for the next \(K\)

For \(K=1,2, \ldots\), IDIM, do the next 3 lines \(\operatorname{STATELPC}(\mathrm{K})=\operatorname{STATELPC}(\mathrm{K})+\operatorname{TEMP}(\mathrm{K})\)
If STATELPC(K) \(>\) MAX, set STATELPC(K) \(=\) MAX
If STATELPC(K) < MIN, set STATELPC(K) \(=\) MIN
| Limit the range
\(\mathrm{I}=\mathrm{IDIM}+1\)
For \(K=1,2, \ldots\), IDIM, do the next line \(\quad \mid\) Obtain quantized speech by
\(\mathrm{ST}(\mathrm{K})=\operatorname{STATELPC}(\mathrm{I}-\mathrm{K})\)
| reversing order of synthesis
| filter memory

The fixed point pseudo-code for block 32 follows the same methodology used in block 9 except that there is no memory update for the perceptual weighting filter.
```

NLSSTATE(11) = NLSSTATE(1)
For $K=2,3,4, \ldots, 10$, do the next line $\quad \mid$ Find minimum NLSSTATE
If NLSSTATE(K) $<\operatorname{NLSSTATE}(11)$, set NLSSTATE(11) $=\operatorname{NLSSTATE}(K)$
For $\mathrm{K}=1,2, \ldots$, IDIM, do the following
$\mathrm{I}=1$
$\mathrm{L}=6-\mathrm{K}$
$\mathrm{J}=\mathrm{LPC}$
$\mathrm{AA} 0=0$
For $L L=1, \ldots, L$, do the next 3 lines
$\mathrm{AA} 0=\mathrm{AA} 0-\operatorname{STATELPC}(\mathrm{J}) * \mathrm{~A}(\mathrm{~J}+1) \quad \mid$ Multiply - add
$\operatorname{STATELPC}(\mathrm{J})=\operatorname{STATELPC}(\mathrm{J}-1) \quad \mid$ Memory shift
$\mathrm{J}=\mathrm{J}-1$
NLS $=$ NLSSTATE(I) - NLSSTATE(11)
$\mathrm{AA} 1=\mathrm{AA} 0 \gg \mathrm{NLS}$
For $I=2, \ldots, 10$, do the next 8 lines
$\mathrm{AA} 0=0$
For $\mathrm{LL}=1,2, \ldots$, IDIM, do the next 3 lines
$\mathrm{AA} 0=\mathrm{AA} 0-\operatorname{STATELPC}(\mathrm{J}) * \mathrm{~A}(\mathrm{~J}+1)$
$\operatorname{STATELPC}(\mathrm{J})=\operatorname{STATELPC}(\mathrm{J}-1) \quad \mid \operatorname{STATELPC}(0)=$ garbage if $\mathrm{J}=1$; it is OK
$\mathrm{J}=\mathrm{J}-1$
NLS $=$ NLSSTATE(I) - NLSSTATE(11)
AA0 $=\mathrm{AA} 0 \gg$ NLS $\quad \mid$ Shift to align
$\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{AA} 0$
If $\mathrm{K}=1$, go to SHIFT2
$\mathrm{L}=\mathrm{K}-1$
$\mathrm{AA} 0=0$
For $\mathrm{LL}=1,2, \ldots, \mathrm{~L}$, do the next 3 lines
$\mathrm{AA} 0=\mathrm{AA} 0-\operatorname{STATELPC}(\mathrm{J}) * \mathrm{~A}(\mathrm{~J}+1)$
$\operatorname{STATELPC}(\mathrm{J})=\operatorname{STATELPC}(\mathrm{J}-1) \quad \mid \operatorname{STATELPC}(0)=$ garbage if $\mathrm{J}=1$; it is OK
$\mathrm{J}=\mathrm{J}-1$
$\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{AA} 0$
SHIFT2: AA1 $=$ AA1 $\gg 14$
If $\mathrm{AA} 1>32767$, set $\mathrm{AA} 1=32767$
If $\mathrm{AA} 1<-32768$, set $\mathrm{AA} 1=-32768$
STATELPC(1) = AA1
IR $=\operatorname{NLSSTATE}(11)-2$
If IR $>0$, set $\mathrm{AA} 1=\mathrm{AA} 1 \gg$ IR
If $\mathrm{IR}<0$, set $\mathrm{AA} 1=\mathrm{AA} 1 \ll-\mathrm{IR}$
$\operatorname{TEMP}(\mathrm{K})=\mathrm{AA} 1$

```
| \(\operatorname{STATELPC}(0)=\) garbage if \(\mathrm{J}=1\); it is OK
| No shift necessary for this time
| A() was Q14, NLS of AA1
| is now NLSSTATE(11)
| Clip to 16 bits if necessary since
| STATELPC(1) will be multiplier input
| Save lower 16-bit word
| for STATELPC
| Make TEMP Q2 format
|

Repeat the above for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 13, STATELPC, NLS)
NLSSTATE(11) = NLSSTATE(11) + NLS

For \(\quad L=1,2, \ldots, 10\), do the next line
\(\operatorname{NLSSTATE}(L)=\operatorname{NLSSTATE}(L+1)\)

LABEL1: \(\operatorname{TEMP}(1)=\mathrm{ET}(1)\)
For \(\mathrm{K}=2,3, \ldots\), IDIM, do the following indented lines
\(\mathrm{AA} 0=\mathrm{ET}(\mathrm{K}) \ll 14\)
For \(I=K, K-1, \ldots, 2\), do the next 3 lines
\(\operatorname{TEMP}(\mathrm{I})=\operatorname{TEMP}(\mathrm{I}-1)\)
\(\mathrm{P}=\mathrm{A}(\mathrm{I}) * \operatorname{TEMP}(\mathrm{I}) \quad \mid \mathrm{Q} 14\) multiplication
\(\mathrm{AA} 0=\mathrm{AA} 0-\mathrm{P}\)
| Re-normalize new STATELPC to 15 bits
| Update NLSSTATE
| Frst calculate zero-state response | of the LPC synthesis filter
| Because \(\mathrm{A}(1)=1\) in \(\mathrm{Q} 14=16384\)
| Compute zero-state responses
```

AA1 = AA0 << 3

```
If AA1 overflowed above, do the next 4 lines
    For \(\mathrm{I}=1,2, \ldots\), IDIM, do the next line
        \(\mathrm{ET}(\mathrm{I})=\mathrm{ET}(\mathrm{I}) \gg 1\)
    NLSET = NLSET - 1
    GO TO LABEL1
\[
\mathrm{AA} 0=\mathrm{AA} 0 \gg 14
\]
\[
\operatorname{TEMP}(1)=\text { AA0 }
\]

Repeat the above indented section for the next K
```

If NLSET = NLSSTATE(10), go to LABEL2
If NLSET < NLSSTATE(10), do the next 5 lines
NLSD = NLSSTATE(10) - NLSET
For K=1, 2, ..., IDIM, do the next line
STATELPC(K) = STATELPC(K) >> NLSD
NLSSTATE(10) = NLSET
go to LABEL2
NLSD = NLSET - NLSSTATE(10)
NLSD = NLSET - NLSSTATE(10)
TEMP(K) = TEMP(K) >> NLSD

```
| No changes necessary
| Lose precision in STATELPC
| by NLSD bits
AA1 \(=4095\)
If NLSSTATE \((10) \geq 0\), set AA1 \(=\) AA1 \(\ll\) NLSSTATE(10)
If NLSSTATE \((10)<0\), set AA1 \(=\) AA1 \(\gg-\) NLSSTATE(10)
For \(\mathrm{K}=1,2, \ldots\), IDIM, do the following indented lines
    \(\mathrm{AA} 0=\operatorname{STATELPC}(\mathrm{K})+\operatorname{TEMP}(\mathrm{K})\)
    If \(\mathrm{AA} 0>\mathrm{AA} 1\), set \(\mathrm{AA} 0=\mathrm{AA} 1\)
    If \(\mathrm{AA} 0<-\mathrm{AA} 1\), set \(\mathrm{AA} 0=-\mathrm{AA} 1\)
    If \(\mathrm{AA} 0>32767\), set \(\mathrm{AA} 0=32767\)
    If AA0 \(<-32768\), set \(\mathrm{AA} 0=-32768\)
    \(\operatorname{STATELPC}(\mathrm{K})=\mathrm{AA} 0\)

\section*{LABEL2: \\ LABEL2:}

AA1 \(=4095\)
If NLSSTATE \((10) \geq 0\), set AA1 \(=\) AA1 \(\ll\) NLSSTATE(10)
If NLSSTATE \((10)<0\), set AA1 \(=\) AA1 \(\gg-\) NLSSTATE(10)
For \(K=1,2, \ldots\), IDIM, do the following indented lines
\(\mathrm{AA} 0=\operatorname{STATELPC}(\mathrm{K})+\operatorname{TEMP}(\mathrm{K})\)
If \(\mathrm{AA} 0>\mathrm{AA} 1\), set \(\mathrm{AA} 0=\mathrm{AA} 1\)
If \(\mathrm{AA} 0<-\mathrm{AA} 1\), set \(\mathrm{AA} 0=-\mathrm{AA} 1\)

If \(\mathrm{AA} 0>32767\), set \(\mathrm{AA} 0=32767\)
If \(\mathrm{AA} 0<-32768\), set \(\mathrm{AA} 0=-32768\)
STATELPC \((K)=\) AA0
```

| Make sure after AA0 >> 14 later,
| the result does not exceed 15 bits.
| If it does, then ET >> 1
| and repeat
| the calculation until it fits
| Compensate for A() being Q14
| Keep lowest 16 bits
| Make sure after AA0 >> 14 later,
| the result does not exceed 15 bits.
| If it does, then ET >> 1
| and repeat
| the calculation until it fits
| Compensate for A() being Q14
| Keep lowest 16 bits

```
| No changes necessary
| Lose precision in STATELPC
| by NLSD bits
```

| Only case left is NLSET > NLSSTATE
| Lose precision in TEMP
| by NLSD bits
|

```
| Now we are ready
| 4095 = STATELPC clipping level
| Shift clipping level to
| align with STATELPC
| Update LPC filter memory
| If necessary, perform the clipping as specified in
| floating point in Recommendation G. 728
| Note that these values were scaled
| So, if \(32767>|\mathrm{AA} 0|<\mathrm{AA} 1\), we need
| to clip AA0 to 16 bits since \(\operatorname{STATELPC}(\mathrm{K})\)
| will later be a 16-bit input to
| the multiplier
Repeat the above indented section for the next K
```

Call VSCALE(STATELPC, IDIM, IDIM, 12, STATELPC, NLS)

```

NLSSTATE \((10)=\) NLSSTATE \((10)+\) NLS
| Scale STATELPC to 14 bits
| to avoid overflow in
| zero-input response calculation later
```

I = IDIM + 1
For }K=1,2,···,\mathrm{ IDIM, do the next line
ST(K) = STATELPC(I - K)
NLSST = NLSSTATE(10)

```
| Obtain quantized speech by
| reversing the order of the top 5
| synthesis filter memory locations
| NLSST is used later in decoder

\section*{G.3.12 Block 36 - Pseudo-code for hybrid windowing module}

In this subclause both the floating point and fixed point pseudo-code for block 36 are given. First, the floating point pseudo-code is presented.

N1 \(=\mathrm{LPCW}+\) NFRSZ
\(\mathrm{N} 2=\mathrm{LPCW}+\mathrm{NONRW}\)
\(\mathrm{N} 3=\mathrm{LPCW}+\mathrm{NFRSZ}+\) NONRW
For \(N=1,2, \ldots, N 2\), do the next line \(\operatorname{SBW}(\mathrm{N})=\mathrm{SBW}(\mathrm{N}+\mathrm{NFRSZ})\)
For \(\mathrm{N}=1,2, \ldots, \mathrm{NFRSZ}\), do the next line \(\operatorname{SBW}(\mathrm{N} 2+\mathrm{N})=\operatorname{STMP}(\mathrm{N})\)
| Compute some constants (can be | precomputed and stored in memory)
| Shift the old signal buffer
| Shift in the new signal
| \(\mathrm{SBW}(\mathrm{N} 3)\) is the newest sample
```

$\mathrm{K}=1$
For $\mathrm{N}=\mathrm{N} 3, \mathrm{~N} 3-1, \ldots, 3,2,1$, do the next 2 lines
$\mathrm{WS}(\mathrm{N})=\operatorname{SBW}(\mathrm{N}) * \operatorname{WNRW}(\mathrm{~K}) \quad \mid$ Multiply the window function
$\mathrm{K}=\mathrm{K}+1$
For $\mathrm{I}=1,2, \ldots, \mathrm{LPCW}+1$, do the next 4 lines
TMP $=0$
For $\mathrm{N}=\mathrm{LPCW}+1, \mathrm{LPCW}+2, \ldots, \mathrm{~N} 1$, do the next line
$\mathrm{TMP}=\mathrm{TMP}+\mathrm{WS}(\mathrm{N}) * \mathrm{WS}(\mathrm{N}+1-\mathrm{I})$
$\operatorname{REXPW}(\mathrm{I})=(1 / 2) * \operatorname{REXPW}(\mathrm{I})+$ TMP | Update the recursive component
For $\mathrm{I}=1,2, \ldots, \mathrm{LPCW}+1$, do the next 3 lines
$\mathrm{R}(\mathrm{I})=\operatorname{REXPW}(\mathrm{I})$
For $\mathrm{N}=\mathrm{N} 1+1, \mathrm{~N} 1+2, \ldots, \mathrm{~N} 3$, do the next line
$\mathrm{R}(\mathrm{I})=\mathrm{R}(\mathrm{I})+\mathrm{WS}(\mathrm{N}) * \mathrm{WS}(\mathrm{N}+1-\mathrm{I}) \quad \mid$ Add the non-recursive component
$\mathrm{R}(1)=\mathrm{R}(1) *$ WNCF | White noise correction

```

Now we give the fixed point version of the same module. In this code we have added several new variables. NLSREXPW is a global variable holding the number of left shifts for normalizing REXPW. This variable is initialized with a value of 31 .
```

$\mathrm{N} 1=$ LPCW $+\mathrm{NFRSZ}(=10+20)$
$\mathrm{N} 2=\mathrm{LPCW}+\mathrm{NONRW}(=10+30)$
N3 $=$ LPCW + NFRSZ + NONRW $(=10+20+30)$

```
For \(\mathrm{N}=1,2, \ldots, \mathrm{~N} 2\), do the next line
    SBW \((\mathrm{N})=\mathrm{SBW}(\mathrm{N}+\mathrm{NFRSZ})\)
For \(\mathrm{N}=1,2, \ldots\), NFRSZ, do the next line
    \(\operatorname{SBW}(\mathrm{N} 2+\mathrm{N})=\operatorname{STMP}(\mathrm{N})\)

Call FINDNLS(SBW, N3, N3, 14, NLS)
For \(\mathrm{N}=1,2, \ldots, \mathrm{NFRSZ}\), do the next line \(\operatorname{SBW}(\mathrm{N} 2+\mathrm{N})=\operatorname{STMP}(\mathrm{N})\)
| Compute some constants (can be | precomputed and stored in memory)
| Shift the old signal buffer
(N3) is the newest sample | All SBW are Q2 and represented I in 15 bits precision
| Find the amount of left shifts | needed in the next loop to get | 2 bits of headroom. We do not | really need to do the scaling | We just use NLS
```

NLSTMP = NLS - 1
K=1
For N=60,59,···,1, do the next 4 lines
WS(N) = RND(AA0)
K=K + 1

```
    \(\mathrm{P}=\mathrm{SBW}(\mathrm{N}) * \mathrm{WNRW}(\mathrm{K}) \quad \mid \mathrm{WNRW}\) is Q15, left shift by
    AA \(0=\mathrm{P} \ll\) NLSWS \(\quad \mid\) NLSWS bits will make
| the largest WS(N) element
| a 14-bit number (2 bits of headroom for
| later acumulation)
NLSATTW \(=15\)
Call
HWMCORE(LPCW, N1, N3, NLSATTW, WS, NLSTMP, REXPW, NLSREXPW, R, ILLCONDW)
If NLSREXPW \(>41\), set NLSREXPW \(=41 \quad \mid\) To avoid reduced accuracy in
| REXPW() and R() during long periods
| of zero input signal

The subroutine HWMCORE can be found in G.3.18.
In the above code a call to FINDNLS searches the entire SBW buffer of 60 samples. However, a bit-exact substitute which uses 2 more words of memory can be used to reduce that computation. SBW will always contain 40 old samples and 20 new ones. We can divide this into three vectors of 20 samples each. We keep track of the NLS for each of the three vectors and then choose the minimum value one for use in applying the hybrid window. Since two of the vectors are composed of old samples, we will already know their respective NLS. We need only check the newest vector to find its NLS. We then need to store the NLS for the newest vector and the newer of the two old vectors for the next computation. This method will result in the selection of exactly the same NLS as the procedure shown in the above pseudo-code.

The following table lists all variables in this pseudo-code with their representation format and size for easy reference. The table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is completed, or permanent (perm), meaning that the value will be needed after the current calculation as well. The table also notes which variables were not included in the previous floating point pseudo-code (old/new).
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Variable } & Format & Size & Temp/perm & Old/new \\
\hline NLS & integer & 1 & temp & new \\
\hline NLSREXPW & integer & 1 & perm & new \\
\hline NLSTMP & integer & 1 & temp & new \\
\hline REXPW & BFL & 11 & perm & old \\
\hline R & BFL & 1 & perm & old \\
\hline SBW & Q2 & 60 & perm & old \\
\hline STMP & Q2 & 20 & perm & old \\
\hline WS & BFL & 60 & temp & old \\
\hline \begin{tabular}{l} 
BFL \\
Integer
\end{tabular}\(\quad\)\begin{tabular}{l} 
Block floating point \\
16-bit integer
\end{tabular}
\end{tabular}

\section*{G.3.13 Block 38 - Weighting filter coefficient calculator}

We begin with the floating point pseudo-code for this block.

If ICOUNT \(\neq 3\), skip the execution of this block
Otherwise, do the following

For \(\mathrm{I}=2,3, \ldots, 11\), do the next line \(\operatorname{AWP}(\mathrm{I})=\mathrm{WPCFV}(\mathrm{I}) * \operatorname{AWZTMP}(\mathrm{I}) \quad \mid\) Scale denominator coefficients

For \(\mathrm{I}=2,3, \ldots, 11\), do the next line
\[
\operatorname{AWZ}(\mathrm{I})=\mathrm{WZCFV}(\mathrm{I}) * \operatorname{AWZTMP}(\mathrm{I})
\]
| Scale numerator coefficients

In the fixed point pseudo-code, we must consider the possibility that there was ill-conditioning in Durbin's recursion or that AWZTMP could not even be expressed in Q13. (It has never been observed that Q13 was not sufficient, but this possibility must still be considered.) The variable ILLCONDW is a flag from block 37 which indicates whether the results of block 37 are valid or not. In Recommendation G.728, there is an implicit assumption that the results of Durbin will not be used if ILLCONDW is true. That is, AWZ and AWP will not be updated from AWZTMP. The same assumption is repeated here. If ILLCONDW is true, then we do not update AWP or AWZ. It is unnecessary to do so because we will continue to use the previous values.

Next, we must consider the possibility that the coefficients AWZTMP() from Durbin's recursion may be in Q13, Q14 or Q15. NLSAWZTMP is the number of left shifts of AWZTMP. We want the numerator and denominator coefficients, AWZ and AWP to be in Q14 for the output. It may be the case that AWZ cannot be represented in Q14. When this is the case, do not update AWZ and AWP. The fixed point pseudo-code is given by the following.

If ICOUNT \(\neq 3\), skip the execution of this block
Otherwise, do the following

If ILLCONDW = .TRUE., skip the execution of this block
Otherwise, do the following
| Next do the numerator coefficients
| If they overflow for Q14,
| do not update AWZ or AWP
| Temporary array WS is used in case
| of overflow, so that AWZ is preserved

For \(I=2,3, \ldots, 7\), do the next 6 lines
\(\mathrm{AA} 0=\mathrm{WZCFV}(\mathrm{I}) * \operatorname{AWZTMP}(\mathrm{I})\)
If NLSAWZTMP \(=13, \mathrm{AA} 0=\mathrm{AA} 0 \ll 3\)
If NLSAWZTMP \(=14, \mathrm{AA} 0=\mathrm{AA} 0 \ll 2\)
If NLSAWZTMP \(=15, \mathrm{AA} 0=\mathrm{AA} 0 \ll 1\)
If AA0 overflowed above, go to LABEL
\(\mathrm{WS}(\mathrm{I})=\mathrm{RND}(\mathrm{AA} 0)\)
| WZCFV is Q14,
| AA0 is 14 + NLSAWZTMP
| Make AA0 Q30 for all 3 cases by
| appropriate number of shifts
| If true, Q14 will overflow
| Round to high word for WS
| Overflow cannot occur in remaining cases
| If you reach here then
| continue without the checks
| then copy WS to AWZ
For \(\mathrm{I}=8,9,10,11\), do the next 5 lines
\(\mathrm{AA} 0=\mathrm{WZCFV}(\mathrm{I}) * \operatorname{AWZTMP}(\mathrm{I})\)
If NLSAWZTMP \(=13, \mathrm{AA} 0=\mathrm{AA} 0 \ll 3\)
If NLSAWZTMP \(=14\), AA \(0=\mathrm{AA} 0 \ll 2\)
If NLSAWZTMP \(=15, \mathrm{AA} 0=\mathrm{AA} 0 \ll 1\)
\(\mathrm{WS}(\mathrm{I})=\mathrm{RND}(\mathrm{AA} 0)\)
For \(I=2,3, \ldots, 11\), do the next line
| No overflows, so copy
\(\mathrm{AWZ}(\mathrm{I})=\mathrm{WS}(\mathrm{I})\)
| WS to AWZ
| Now do the denominator
| coefficients
| If the numerator did not overflow,
| then the denominator cannot, either

For \(\mathrm{I}=2,3, \ldots, 11\), do the next 5 lines
\(\mathrm{AA} 0=\mathrm{WPCFV}(\mathrm{I}) * \operatorname{AWZTMP}(\mathrm{I})\)
If NLSAWZTMP \(=13, \mathrm{AA} 0=\mathrm{AA} 0 \ll 3\)
If NLSAWZTMP \(=14, \mathrm{AA} 0=\mathrm{AA} 0 \ll 2\)
| WPCFV is Q14; AA0 is \(14+\) NLSAWZTMP

If NLSAWZTMP \(=15, \mathrm{AA} 0=\mathrm{AA} 0 \ll 1\)
\(\operatorname{AWP}(\mathrm{I})=\operatorname{RND}(\mathrm{AA} 0)\)
| Make AA0 Q30 for all 3 cases
| appropriate number of shifts
| Round to high word for AWP
Exit this subroutine

\section*{LABEL:}
| If program proceeds to here, we will have an overflow | if we try to represent AWZ in Q14. In this case, | do not update the weighting filter coefficients | (i.e. keep using the filter coefficients from the | previous adaptation cycle).

\section*{G.3.14 Block 43 - Hybrid windowing module}

In this subclause both the floating point and fixed point pseudo-code for block 43 are given. First, the floating point pseudo-code is presented.
\(\mathrm{N} 1=\mathrm{LPCLG}+\mathrm{NUPDATE}\)
\(\mathrm{N} 2=\mathrm{LPCLG}+\mathrm{NONRLG}\)
\(\mathrm{N} 3=\mathrm{LPCLG}+\mathrm{NUPDATE}+\) NONRLG

For \(N=1,2, \ldots, N 2\), do the next line \(\operatorname{SBLG}(\mathrm{N})=\operatorname{SBLG}(\mathrm{N}+\) NUPDATE \()\)
For \(\mathrm{N}=1,2, \ldots, \mathrm{NUPDATE}\), do the next line \(\operatorname{SBLG}(\mathrm{N} 2+\mathrm{N})=\operatorname{GTMP}(\mathrm{N}) \quad \mid\) Shift in the new signal
| \(\mathrm{SBW}(\mathrm{N} 3)\) is the newest sample
```

$\mathrm{K}=1$
For $\mathrm{N}=\mathrm{N} 3, \mathrm{~N} 3-1, \ldots, 3,2,1$, do the next 2 lines
$\mathrm{WS}(\mathrm{N})=\operatorname{SBLG}(\mathrm{N}) * \mathrm{WNRLG}(\mathrm{K}) \quad \mid$ Multiply the window function
$\mathrm{K}=\mathrm{K}+1$
For $\mathrm{I}=1,2, \ldots$, LPCLG +1 , do the next 4 lines
TMP $=0$
For $\mathrm{N}=\mathrm{LPCLG}+1$, LPCLG $+2, \ldots, \mathrm{~N} 1$, do the next line
$\mathrm{TMP}=\mathrm{TMP}+\mathrm{WS}(\mathrm{N}) * \mathrm{WS}(\mathrm{N}+1-\mathrm{I})$
$\operatorname{REXPLG}(\mathrm{I})=(3 / 4) * \operatorname{REXPLG}(\mathrm{I})+$ TMP | Update the recursive component
For $\mathrm{I}=1,2, \ldots$, LPCLG +1 , do the next 3 lines
$\mathrm{R}(\mathrm{I})=\operatorname{REXPLG}(\mathrm{I})$
For $\mathrm{N}=\mathrm{N} 1+1, \mathrm{~N} 1+2, \ldots, \mathrm{~N} 3$, do the next line
$\mathrm{R}(\mathrm{I})=\mathrm{R}(\mathrm{I})+\mathrm{WS}(\mathrm{N}) * \mathrm{WS}(\mathrm{N}+1-\mathrm{I})$
$\mathrm{R}(1)=\mathrm{R}(1) * \mathrm{WNCF}$
| White noise correction

```

Note that before this routine is called, GTMP( ) is assigned as
```

GTMP(1) = GSTATE(4)
GTMP(2) = GSTATE (3)
GTMP(3) = GSTATE (2)
GTMP(4) = GSTATE (1)

```
and the initial values of \(\operatorname{GSTATE}()\) are -32 in floating point, which is -16384 in Q9 fixed point. Now we give the fixed point version of the same module. In this code we have added several new variables. NLSREXPLG is a global variable holding the number of left shifts for normalizing REXPLG. This variable is initialized with a value of 31 .
```

N1 = LPCLG + NUPDATE ( $=10+4$ )
| Compute some constants (can be
$\mathrm{N} 2=\operatorname{LPCLG}+$ NONRLG $(=10+20) \quad \mid$ precomputed and stored in memory $)$
$\mathrm{N} 3=$ LPCLG + NUPDATE + NONRLG $(=10+4+20)$
For $\mathrm{N}=1,2, \ldots, \mathrm{~N} 2$, do the next line
SBLG( N ) $=$ SBLG( $\mathrm{N}+$ NUPDATE $)$
For $\mathrm{N}=1,2, \ldots$, NUPDATE, do the next line
$\operatorname{SBLG}(\mathrm{N} 2+\mathrm{N})=\operatorname{GTMP}(\mathrm{N})$
Call FINDNLS(SBLG, N3, N3, 14, NLS)
NLSTMP = NLS -1
$\mathrm{K}=1$
For $\mathrm{N}=34,33, \ldots, 1$, do the next 5 lines
$\mathrm{P}=\operatorname{SBLG}(\mathrm{N}) * \operatorname{WNRLG}(\mathrm{~K})$
| WNRLG is Q15
If NLSTMP $=-1$, set AA0 $=\mathrm{P} \gg 1$
If NLSTMP $>-1$, set AA $0=\mathrm{P} \ll$ NLSTMP
$\mathrm{WS}(\mathrm{N})=\mathrm{RND}(\mathrm{AA} 0)$
| $\mathrm{WS}(\mathrm{N})$ is 14 bits or less
$K=K+1$
NLSATTLG $=14$
Call HWMCORE(LPCLG, N1, N3, NLSATTLG, WS, NLSTMP, REXPLG, NLSREXPLG, R, ILLCONDG)

```

The subroutine HWMCORE can be found in G.3.18.

The following table lists all variables in this pseudo-code with their representation format and size for easy reference. The table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is completed, or permanent (perm), meaning that the value will be needed after the current calculation as well. The table also notes which variables were not included in the previous floating point pseudo-code (old/new).
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Variable } & Format & Size & Temp/perm & Old/new \\
\hline GTMP & Q9 & 4 & perm & old \\
\hline NLS & integer & 1 & temp & new \\
\hline NLSREXPLG & integer & 1 & perm & new \\
\hline NLSTMP & integer & 1 & temp & new \\
\hline REXPLG & BFL & 11 & perm & old \\
\hline R & BFL & 11 & perm & old \\
\hline SBLG & Q9 & 34 & perm & old \\
\hline WS & BFL & 34 & temp & old \\
\hline \begin{tabular}{lll|} 
BFL \\
Integer & Block floating point \\
16-bit integer
\end{tabular}
\end{tabular}

\section*{G.3.15 Block 45 - Bandwidth expansion module}

This is the floating point pseudo-code for block 45, the bandwidth expansion module.
If ICOUNT \(\neq 2\), skip the execution of this block
For \(I=2,3, \ldots\), LPCLG +1 , do the next line
\[
\operatorname{GP}(\mathrm{I})=\operatorname{FACGPV}(\mathrm{I}) * \operatorname{GPTMP}(\mathrm{I}) \quad \mid \text { Scale coefficients }
\]

The tables for FACGPV are given in Q14 format, as are the tables for the other bandwidth expansion coefficients. The values for the input GPTMP array are in Q13, Q14 or Q15 format. As discussed in the earlier description of the fixed point Levinson-Durbin recursion module, NLSGPTMP is given by the Levinson-Durbin recursion module to indicate which format is used for GPTMP. After the multiplication FACGPV(I)*GPTMP(I) the corresponding amount of left shifts is required.

The final values for GP are always represented in Q14 format. Empirically, the output coefficient arrays of block 45 have never been too large to be represented in Q14 (i.e. requiring Q13 format or lower). However, to be safe, we have to be prepared to handle the unlikely event of Q14 overflow at the output of the bandwidth expansion blocks. In the pseudo-code below, we check for the possibility of Q14 overflow. If such a case is detected, we do something similar to the Levinson-Durbin recursion modules - we do not update the predictor coefficients and keep using the old coefficients of the previous adaptation cycle. Potentially, we could use a switchable Q14/Q13 format, with a flag to signal the filtering modules which of the two possible Q formats are used. However, this will unnecessarily increase the complexity of the DSP code and the execution time. Since Q14 overflow was never observed at the output of bandwidth expansion modules, a simple safety check as implemented below suffices.

This is the fixed point pseudo-code for block 45.
If ICOUNT \(\neq 2\), skip the execution of this block
Otherwise, do the following
| First check to see if ILLCONDG is true
If ILCONDG = .TRUE., skip the execution of this block
Otherwise, do the following
\(\operatorname{GPTMP}(1)=16384\)
For \(\mathrm{I}=2,3,4, \ldots, \mathrm{LPCLG}+1\), do the next 6 lines
AA0 \(=\) FACGPV \((\mathrm{I}) * \operatorname{GPTMP}(\mathrm{I})\)
If NLSGPTMP \(=13, \mathrm{AA} 0=\mathrm{AA} 0 \ll 3\)
If NLSGPTMP \(=14\), AA \(0=\) AA \(0 \ll 2\)
If NLSGPTMP \(=15\), AA \(0=\mathrm{AA} 0 \ll 1\)
If AA0 overflowed above, go to LABEL
\(\operatorname{GPTMP}(\mathrm{I})=\operatorname{RND}(\mathrm{AA} 0)\)
| AA0 is Q27, Q28 or Q29
| Make AA0 Q30 for all 3 cases by
| appropriate number of shifts
|
| If not true,
| round to high word for GP

For \(\mathrm{I}=2,3,4, \ldots, \mathrm{LPCLG}+1\), do the next line \(\quad \mid\) Everything is normal, copy GPTMP \(\mathrm{GP}(\mathrm{I})=\mathrm{GPTMP}(\mathrm{I})\)
| to GP and then exit
Exit this program
LABEL:
| If program proceeds to here, we will have an | overflow if we try | to represent GP in Q14. In this case, do not update | the log-gain predictor coefficients (i.e. keep using | the log-gain predictor coefficients of the previous | adaptation cycle).

\section*{G.3.16 Block 46 - Log-gain linear prediction}

This is the floating point pseudo-code for the log-gain linear predictor, block 46.
```

LOGGAIN = 0
For I = LPCLG, LPCLG - 1, .., 3, 2, do the next 2 lines
LOGGAIN = LOGGAIN - GP(I + 1) * GSTATE(I)
GSTATE}(I)=\operatorname{GSTATE}(I-1

```

LOGGAIN \(=\) LOGGAIN \(-\operatorname{GP}(2) *\) GSTATE (1)
LOGGAIN and GSTATE are represented in Q9 format throughout the coder. GP is represented in Q14 format. Here is the fixed point pseudo-code.
```

AA0 =0
For I = LPCLG, LPCLG - 1, .., 3,2, do the next 3 lines
P}=\textrm{GP}(\textrm{I}+1)*\operatorname{GSTATE}(\textrm{I}
AA0 = AA0 - P
GSTATE(I) = GSTATE (I - 1)
P}=\textrm{GP}(2)*\operatorname{GSTATE}(1
AA0 = AA0 - P
AA0 = AA0 >> 14
LOGGAIN = AA0

```

This is the floating point pseudo-code for block 98, the log-gain limiter. Since this code is based on modifications made for fixed point, it does not appear in Recommendation G.728. We include it here in order to have it for comparison purposes with the fixed point pseudo-code to follow.

If LOGGAIN \(>28\)., set LOGGAIN \(=28\)
If LOGGAIN \(<-32\)., set LOGGAIN \(=-32\)
Since LOGGAIN is represented in Q9 format, the maximum and minimum thresholds are multiplied by 512. These values are used in the fixed point pseudo-code given below.

If LOGGAIN \(>14336\), set LOGGAIN \(=14336\)
If LOGGAIN \(<-16384\), set \(\operatorname{LOGGAIN}=-16384\)
This is the floating point pseudo-code for the Log-Gain Offset Adder which is block 99.
\(\mathrm{Z}=\) LOGGAIN + GOFF
The floating point value of GOFF is 32 and its fixed point value is 16384 , which corresponds to \(512 * 32\). Since LOGGAIN has a range between -32 and \(+28, \mathrm{Z}\) has a range of 0 to 60 . The fixed point code is identical to the floating point code.

This is the floating point code for block 48, the Inverse Logarithm Calculator.
GAIN \(=10^{(\mathrm{Z} / 20)}\)
The complete value we wish can be expressed in terms of the antilog of 2. It is
\[
10^{0.05 \mathrm{Z}}=2^{0.05 \log _{2}(10) \mathrm{Z}}=2^{0.1660964 \mathrm{Z}}
\]

We let \(\mathrm{X}=0.1660964 \mathrm{Z}\), which will have a range from 0 to 9.97 . Finally, we let \(\mathrm{X}=[\mathrm{X}]+\mathrm{x}\), where \([\mathrm{X}]\) is the greatest integer less than or equal to \(X\) and \(x\) is the fractional part. The value of \(2[X]\) is exact and only needs to be represented by its exponent. What remains is the problem of computing the value for the fractional part.

In computing X, we let 0.1660964 be represented in Q21 format. This corresponds to a number that can be represented as 10 in the upper 16 bits and 20649 in the lower 15 bits. We multiply Z by both parts separately in order to get good precision for X . We then separate \([\mathrm{X}]\) and x . In computing the exponential for the fractional part we know \(0<\mathrm{x}<1\), so \(1<2^{\mathrm{x}}<2\). Therefore, we can use the following fixed representations: x is Q15 and \(2^{\mathrm{x}}\) is Q14. We use a Taylor series expansion to compute \(2^{\mathrm{x}}\) :
\[
\begin{aligned}
2^{x} & =(((c 4 x+c 3) x+c 2) x+c 1) x+c 0 \\
& =c 4 x^{4}+c 3 x^{3}+c 2 x^{2}+c 1 x+c 0
\end{aligned}
\]

The c values are stored in Q14 and Q15 and are given by
\[
\begin{aligned}
\mathrm{c} 4 & =323
\end{aligned}=0.0098571 \text { in Q15 }-1874=0.0571899 \text { in Q15 }
\]

Here is the pseudo-code for computing 100.05 GAIN on a 16 -bit DSP with two 32 -bit accumulators. It is assumed that GAIN is in Q9 format and the offset of 32 dB has already been added to it.
\[
\begin{aligned}
& \text { AA } 0=10 * Z \\
& \text { AA1 }=20649 * Z \\
& \mathrm{AA} 1=\mathrm{AA} 1 \ll 1 \\
& \mathrm{AA} 1=\mathrm{RND}(\mathrm{AA} 1) \\
& \mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1 \\
& \mathrm{AA} 1=\mathrm{AA} 0 \gg 15 \\
& \text { NLS = AA1 } \\
& \mathrm{AA} 1=\mathrm{AA} 1 \ll 15 \\
& \mathrm{x}=\mathrm{AA} 0-\mathrm{AA} 1 \\
& \text { AA0 }=c 4 \text { * } x \\
& \text { AA } 0=\mathrm{AA} 0 \ll 1 \\
& \text { AA1 }=\mathrm{c} \ll 16 \\
& \mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1 \\
& \mathrm{TMP}=\mathrm{RND}(\mathrm{AA} 0) \\
& \text { AA } 0=\text { TMP } * x \\
& \text { AA } 0=\mathrm{AA} 0 \ll 1 \\
& \text { AA1 }=\mathrm{c} 2 \ll 16 \\
& \mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1 \\
& \mathrm{TMP}=\mathrm{RND}(\mathrm{AA} 0) \\
& \text { AA0 }=\text { TMP } * x \\
& \text { AA } 0=\mathrm{AA} 0 \ll 1 \\
& \mathrm{AA} 1=\mathrm{c} 1 \ll 16 \\
& \mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1 \\
& \mathrm{TMP}=\mathrm{RND}(\mathrm{AA} 0) \\
& \mathrm{AA} 0=\mathrm{TMP} * \mathrm{x} \\
& \mathrm{AA} 1=\mathrm{c} 0=\ll 16 \\
& \mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1 \\
& \text { GAIN }=\text { RND }(A A 0)
\end{aligned}
\]

NLSGAIN \(=14-\) NLS

The following is the floating point pseudo-code for blocks 96 and 97, the calculation of the new value for GSTATE(1). This block does not appear in Recommendation G. 728 and is given here for comparison with the fixed point pseudocode to be given immediately following. The input variables are the GAIN value output from block 98, GCBLG, the dB value of the gain codebook entry selected for the previous excitation vector, and SHAPELG, the dB value of the shape codevector selected for the previous excitation vector. These values are given in Tables G. 3 and G.4, respectively. Those tables give both the floating point and fixed point representations for the values. The fixed point representations are in Q11 format. The floating point pseudo-code is:

GSTATE(1) = LOGGAIN + GCBLG(IG) + SHAPELG(IS)
If GSTATE(1) <-32., set GSTATE(1) \(=-32\).

The fixed point pseudo-code follows.
```

AA0 = LOGGAIN <<7 | Align decimal points at
AA0 = AA0 + (GCBLG(IG) << 5) | boundary between the high and
AA0 = AA0 + (SHAPELG(IS) << 5) | low words of the accumulator
AA0 = AA0 >> 7 | Right shift back to Q9 format
IF AA0 <-16384, set AA0 =-16384
GSTATE(1) = AA0
| Check lower limit
| Lower 16-bit word saved

```

\section*{G.3.17 Block 49 - Hybrid window module for synthesis filter}

We begin with the floating point pseudo-code for the hybrid windowing module.
\begin{tabular}{|c|c|}
\hline \(\mathrm{N} 1=\mathrm{LPC}+\mathrm{NFRSZ}\) & | Compute some constants (can be \\
\hline \(\mathrm{N} 2=\mathrm{LPC}+\mathrm{NONR}\) & precomputed and stored in memory) \\
\hline \multicolumn{2}{|l|}{\(\mathrm{N} 3=\mathrm{LPC}+\mathrm{NFRSZ}+\mathrm{NONR}\)} \\
\hline \multicolumn{2}{|l|}{For \(\mathrm{N}=1,2, \ldots, \mathrm{~N} 2\), do the next line} \\
\hline \(\mathrm{SB}(\mathrm{N})=\mathrm{SB}(\mathrm{N}+\mathrm{NFRSZ})\) & Shift the old signal buffer \\
\hline \multicolumn{2}{|l|}{For \(\mathrm{N}=1,2, \ldots, \mathrm{NFRSZ}\), do the next line} \\
\hline \multirow[t]{2}{*}{\(\mathrm{SB}(\mathrm{N} 2+\mathrm{N})=\operatorname{STTMP}(\mathrm{N})\)} & | Shift in the new signal \\
\hline & \(\mathrm{SB}(\mathrm{N} 3)\) is the newest sample \\
\hline \multicolumn{2}{|l|}{\(\mathrm{K}=1\)} \\
\hline \multicolumn{2}{|l|}{For \(\mathrm{N}=\mathrm{N} 3, \mathrm{~N} 3-1, \ldots, 3,2,1\), do the next 2 lines} \\
\hline \(\mathrm{WS}(\mathrm{N})=\mathrm{SB}(\mathrm{N}) * \mathrm{WNR}(\mathrm{K})\) & Multiply the window function \\
\hline \(\mathrm{K}=\mathrm{K}+1\) & \\
\hline \multicolumn{2}{|l|}{For \(\mathrm{I}=1,2, \ldots, \mathrm{LPC}+1\), do the next 4 lines} \\
\hline \multicolumn{2}{|l|}{\[
\mathrm{TMP}=0
\]} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{For \(\mathrm{N}=\mathrm{LPC}+1, \mathrm{LPC}+2, \ldots, \mathrm{~N} 1\), do the next line \(\mathrm{TMP}=\mathrm{TMP}+\mathrm{WS}(\mathrm{N}) * \mathrm{WS}(\mathrm{N}+1-\mathrm{I})\)}} \\
\hline & \\
\hline \(\operatorname{REXP}(\mathrm{I})=(3 / 4) * \operatorname{REXP}(\mathrm{I})+\mathrm{TMP}\) & Update the recursive component \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{For \(\mathrm{I}=1,2, \ldots, \mathrm{LPC}+1\), do the next 3 lines
\[
\operatorname{RTMP}(\mathrm{I})=\operatorname{REXP}(\mathrm{I})
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{For \(\mathrm{N}=\mathrm{N} 1+1, \mathrm{~N} 1+2, \ldots, \mathrm{~N} 3\), do the next line
\[
\operatorname{RTMP}(\mathrm{I})=\operatorname{RTMP}(\mathrm{I})+\mathrm{WS}(\mathrm{~N}) * \mathrm{WS}(\mathrm{~N}+1-\mathrm{I})
\]}} \\
\hline & \\
\hline & | Add the non-recursive component \\
\hline \(\operatorname{RTMP}(1)=\operatorname{RTMP}(1) * \mathrm{WNCF}\) & White noise correction \\
\hline
\end{tabular}

The fixed point pseudo-code for the hybrid windowing module (block 49) is much more complicated than the floating point version. This is due to the special handling of Segmental Block Floating Point (SBFL) format which is needed to retain sufficient numerical precision.

The STTMP array contains 4 quantized speech vectors of the previous adaptation cycle. When each of these 4 quantized speech vector (the ST array) was computed, it was represented in 14-bit precision BFL format. The number of left shifts (NLS) for the 4 quantized vectors will, in general, be different. For this reason, the STTMP array is said to be stored in SBFL format since it is the concatenation of 4 BFL ST vectors. The SB array is the concatenation of 21 BFL ST vectors. For this reason the SB array is stored in the same 14-bit precision SBFL format. For each of the 4 vectors composing STTMP, there is an associated NLS value. These are stored in the array NLSSTTMP( ). For the 21 vectors composing SB, the NLS values are stored in the array NLSSB().

Next, we give the fixed point pseudo-code for the hybrid windowing module.
```

N1 = LPC + NFRSZ (= 70)
N2 = LPC + NONR (= 85)
N3 = LPC + NFRSZ + NONR (= 105
N4 = N3/IDIM (= 21)
N5 = NFRSZ/IDIM (= 4 )
N6 = N4 - N5 (= 17)

```
For \(\mathrm{N}=1,2, \ldots, \mathrm{~N} 2\), do the next line
    \(\mathrm{SB}(\mathrm{N})=\mathrm{SB}(\mathrm{N}+\mathrm{NFRSZ}) \quad \mid\) Shift old part of buffer SB
For \(\mathrm{N}=1,2, \ldots, \mathrm{~N} 6\), do the next line
    NLSSB \((\mathrm{N})=\operatorname{NLSSB}(\mathrm{N}+\mathrm{N} 5) \quad \mid\) Shift old NLSSB
For \(\mathrm{N}=1,2, \ldots, \mathrm{NFRSZ}\), do the next line
    \(\mathrm{SB}(\mathrm{N} 2+\mathrm{N})=\operatorname{STTMP}(\mathrm{N})\)
| Shift in new part of SB
For \(\mathrm{N}=1,2, \ldots, \mathrm{~N} 5\), do the next line
    NLSSB(N6 + N) = NLSSTTMP(N)
| this determines NLSWS
NLSTMP \(=\operatorname{Min}\{\operatorname{NLSSB}(1), \operatorname{NLSSB}(2), \ldots, \operatorname{NLSSB}(N 4)\}\)
\(\mathrm{K}=1\)
| Now multiply SB by
\(\mathrm{N}=\mathrm{N} 3\)
| the hybrid window function
For \(\mathrm{J}=1,2, \ldots, \mathrm{~N} 4\), do the next 8 lines
    NRSH \(=\) NLSSB(J) - NLSTMP \(-1 \quad \mid-1\) to compensate for Q 15 multiplication
    For \(\mathrm{M}=1,2, \ldots\), IDIM, do the next 6 lines
        \(\mathrm{P}=\mathrm{SB}(\mathrm{K}) * \operatorname{WNR}(\mathrm{~N}) \quad \mid \mathrm{WNR}\) is Q15 multiplication
        If NRSH \(=-1\), set AA0 \(=\mathrm{P} \ll 1\)
        If NRSH \(>-1\), set AA0 \(=\mathrm{P} \gg\) NRSH
        \(\mathrm{WS}(\mathrm{K})=\operatorname{RND}(\mathrm{AA} 0) \quad \mid\) Round upper word and store in WS
        \(\mathrm{N}=\mathrm{N}-1\)
        \(\mathrm{K}=\mathrm{K}+1\)
NLSATT50 \(=14\)
Call HWMCORE(LPC, N1, N3, NLSATT50, WS, NLSTMP, REXP, NLSREXP, RTMP, ILLCOND)

NOTE - The following table lists all variables in this pseudo-code with their representation format and size for easy reference. The table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is completed, or permanent (perm), meaning that the value will be needed after the current calculation as well. The table also notes which variables were not included in the previous floating point pseudo-code (old/new).
\begin{tabular}{|c|c|c|c|c|}
\hline Variable & Format & Size & Temp/perm & Old/new \\
\hline NLSSB & integer & 21 & perm & new \\
\hline NLSREXP & integer & 1 & perm & new \\
\hline NLSSTTMP & integer & 4 & perm & new \\
\hline NLSTMP & integer & 1 & temp & new \\
\hline NRSH & integer & 1 & temp & new \\
\hline REXP & BFL & 51 & perm & old \\
\hline RTMP & BFL & 51 & perm & old \\
\hline SB & SBFL & 105 & perm & old \\
\hline STTMP & SBFL & 20 & perm & old \\
\hline WS & BFL & 105 & temp & old \\
\hline \begin{tabular}{l}
BFL \\
Integer \\
SBFL \\
WS \\
REXP and RTMP
\end{tabular} & \multicolumn{4}{|l|}{\begin{tabular}{l}
Block floating point \\
16-bit integer \\
14-bit precision segmented block floating point \\
14-bit precision BFL \\
16-bit precision
\end{tabular}} \\
\hline
\end{tabular}

\section*{G.3.18 HWMCORE - Core of hybrid window module}

This module is used to complete the hybrid window calculation for blocks 36, 43 and 49 . Each of those blocks has its own initial portion. Variables are passed along from those blocks to this module. In order to avoid confusion, we have renamed certain variables so that this pseudo-code does not use names associated with any one of those three blocks. The following table matches the names used in this module with the names used in blocks 36,43 and 49.
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Variable } & \multicolumn{1}{c|}{ Block 36 } & \multicolumn{1}{c|}{ Block 43 } & \multicolumn{1}{c|}{ Block 49 } \\
\hline LPO & LPCW (=10) & LPCLG (=10) & LPC (=50) \\
\hline NLSATT & NLSATTW & NLSATTLG & NLSATT50 \\
\hline NLSRREC & NLSREXPW & NLSREXPLG & NLSREXP \\
\hline N1 & 30 & 14 & 70 \\
\hline N3 & 60 & 34 & 105 \\
\hline R & R & R & RTMP \\
\hline RREC & REXPW & REXPLG & REXP \\
\hline
\end{tabular}

In addition to these variables, the scratch array WS and the corresponding number of shifts, NLSTMP, are also passed from those blocks to this module.

The following is the fixed point pseudo-code for this module.

SUBROUTINE HWMCORE(LPO, N1, N3, NLSATT, WS, NLSTMP, RREC, NLSRREC, R, ILLCOND)
```

NLSAA0 $=2$ * NLSTMP
For $\mathrm{N}=\mathrm{LPO}+1, \ldots, \mathrm{~N} 1$, do the next 2 lines
$\mathrm{P}=\mathrm{WS}(\mathrm{N}) * \mathrm{WS}(\mathrm{N})$
$\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}$

```
AA \(0=0 \quad \mid\) Compute recursive part of RREC(1)
f NLSRREC > NLSAA0, do the next 22 lines
    \(\mathrm{AA} 0=\mathrm{AA} 0 \gg 1\)
    IR \(=\) NLSRREC - NLSAA \(0+1\)
    AA1 \(=\) RREC \((1) \ll\) NLSATT
    AA1 \(=-\mathrm{AA} 1+(\operatorname{RREC}(1) \ll 16)\)
    \(\mathrm{AA} 1=\mathrm{AA} 1 \gg \mathrm{IR}\)
    \(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1\)
    Call VSCALE(AA0, 1, 1, 30, AA0, NLSRE)
    \(\operatorname{RREC}(1)=\operatorname{RND}(\mathrm{AA} 0)\)
    NLSRREC \(=\) NLSAA0 \(-1+\) NLSRE
    For \(\mathrm{I}=1,2, \ldots, \mathrm{LPO}\), do the next 11 lines
        AA \(0=0\)
        For \(\mathrm{N}=\mathrm{LPO}+1, \ldots, \mathrm{~N} 1\), do the next 2 lines
            \(\mathrm{P}=\mathrm{WS}(\mathrm{N}) * \mathrm{WS}(\mathrm{N}-\mathrm{I})\)
            \(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}\)
        \(\mathrm{AA} 0=\mathrm{AA} 0 \gg 1\)
        AA \(1=\operatorname{RREC}(\mathrm{I}+1) \ll\) NLSATT
        \(\mathrm{AA} 1=\mathrm{AA} 1+(\operatorname{RREC}(\mathrm{I}+1) \ll 16)\)
        \(\mathrm{AA} 1=\mathrm{AA} 1 \gg \mathrm{IR}\)
        \(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1\)
        AA \(0=\) AA \(0 \ll\) NLSRE
        \(\operatorname{RREC}(\mathrm{I}+1)=\operatorname{RND}(\mathrm{AA} 0) \quad\) | Upper 16 bits of AA0 saved
    Go to FIN_RECUR
```

If NLSRREC = NLSAA0, do the next 21 lines
AA1 $=\operatorname{RREC}(1) \ll$ NLSATT
AA $1=-\mathrm{AA} 1+(\operatorname{RREC}(1) \ll 16)$
$\mathrm{AA} 0=\mathrm{AA} 0 \gg 1$
$\mathrm{AA} 1=\mathrm{AA} 1 \gg 1$
$\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1$
Call VSCALE(AA0, 1, 1, 30, AA0, NLSRE)
$\operatorname{RREC}(1)=\operatorname{RND}(\mathrm{AA} 0)$
NLSRREC = NLSRREC - $1+$ NLSRE
For $\mathrm{I}=1,2, \ldots$, LPO, do the next 11 lines
AA $0=0 \quad \mid$ Compute recursive part of RREC $(\mathrm{I}+1)$
For $\mathrm{N}=\mathrm{LPO}+1, \ldots, \mathrm{~N} 1$, do the next 2 lines
$\mathrm{P}=\mathrm{WS}(\mathrm{N}) * \mathrm{WS}(\mathrm{N}-\mathrm{I})$
$\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}$
$\mathrm{AA} 0=\mathrm{AA} 0 \gg 1$
AA $1=\operatorname{RREC}(\mathrm{I}+1) \ll$ NLSATT $\quad \mid$ Scale RREC by $3 / 4$ or $1 / 2$
AA $1=-\operatorname{AA} 1+(\operatorname{RREC}(\mathrm{I}+1) \ll 16)$
$\mathrm{AA} 1=\mathrm{AA} 1 \gg 1$
$\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1$
AA $0=$ AA $0 \ll$ NLSRE
$\operatorname{RREC}(\mathrm{I}+1)=\operatorname{RND}(\mathrm{AA} 0) \quad$ | Upper 16 bits of AA0 saved
Go to FIN_RECUR

```
| Case 2: NLSRREC = NLSAA0
| Scale RREC by \(3 / 4\) or \(1 / 2\)
|
| Find NLS for RREC
| Upper 16 bits of AA1 saved
| Compute recursive part of RREC(I + 1)
| Scale RREC by \(3 / 4\) or \(1 / 2\)
|
| Upper 16 bits of AA0 saved
| Case 3: NLSRREC < NLSAA0
```

If NLSRREC < NLSAA0, do the next 21 lines
IR $=$ NLSAA $0-$ NLSRREC +1
AA0 $=A A 0 \gg$ IR
$\mathrm{AA} 1=-\mathrm{AA} 1+(\operatorname{RREC}(1) \ll 16)$
$\mathrm{AA} 1=\mathrm{AA} 1 \gg 1$
$\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1$
Call VSCALE(AA0, 1, 1, 30, AA0, NLSRE)
$\operatorname{RREC}(1)=\operatorname{RND}(\mathrm{AA} 0)$
NLSRREC $=$ NLSRREC $-1+$ NLSRE
For $\mathrm{I}=1,2, \ldots$, LPO, do the next 11 lines
AA0 $=0$
For $\mathrm{N}=\mathrm{LPO}+1, \ldots, \mathrm{~N} 1$, do the next 2 lines
$\mathrm{P}=\mathrm{WS}(\mathrm{N}) * \mathrm{WS}(\mathrm{N}-\mathrm{I})$
$\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}$
$\mathrm{AA} 0=\mathrm{AA} 0 \gg \mathrm{IR}$
AA1 $=\operatorname{RREC}(\mathrm{I}+1) \ll$ NLSATT
$\mathrm{AA} 1=-\mathrm{AA} 1+(\operatorname{RREC}(\mathrm{I}+1) \ll 16)$
$\mathrm{AA} 1=\mathrm{AA} 1 \gg 1$
$\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{AA} 1$
AA $0=$ AA $0 \ll$ NLSRE
$\operatorname{RREC}(\mathrm{I}+1)=\operatorname{RND}(\mathrm{AA} 0)$

```
AA \(1=\operatorname{RREC}(1) \ll\) NLSATT \(\quad \mid\) Scale RREC by \(3 / 4\) or \(1 / 2\)
FIN_RECUR:
\(\mathrm{AA} 0=0\)
For \(\mathrm{N}=\mathrm{N} 1+1, \ldots, \mathrm{~N} 3\), do the next 2 lines
    \(\mathrm{P}=\mathrm{WS}(\mathrm{N}) * \mathrm{WS}(\mathrm{N})\)
    \(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}\)

If NLSRREC \(>\) NLSAA0, do the next 21 lines
IR \(=\) NLSRREC - NLSAA \(0+1\)
AA1 \(=\operatorname{RREC}(1) \ll 16\)
\(\mathrm{AA} 1=\mathrm{AA} 1 \gg \mathrm{IR}\)
\(\mathrm{AA} 0=\mathrm{AA} 0 \gg 1\)
\(\mathrm{AA} 1=\mathrm{AA} 0+\mathrm{AA} 1\)
\(\mathrm{AA} 0=\mathrm{AA} 1 \gg 8\)
\(\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{AA} 0\)
Call VSCALE(AA1, 1, 1, 30, AA1, NLSRR)
\(\mathrm{R}(1)=\mathrm{RND}(\mathrm{AA} 1)\)

For \(\mathrm{I}=1,2, \ldots, \mathrm{LPO}\), do the next 10 lines
AA \(0=0\)
For \(\mathrm{N}=\mathrm{N} 1+1, \ldots, \mathrm{~N} 3\), do the next 2 lines
\[
\mathrm{P}=\mathrm{WS}(\mathrm{~N}) * \mathrm{WS}(\mathrm{~N}-\mathrm{I})
\]
| Case 1: NLSRREC > NLSAA0
| When you reach this point the | recursive component has been computed
| Compute non-recursive part of \(\mathrm{R}(1)\)
| Apply white noise correction factor
| Upper 16 bits of AA1 saved
\[
\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}
\]
\(\mathrm{AA} 0=\mathrm{AA} 0 \gg 1\)
\(\operatorname{AA} 1=\operatorname{RREC}(\mathrm{I}+1) \ll 16\)
\(\mathrm{AA} 1=\mathrm{AA} 1>\mathrm{IR}\)
\(\mathrm{AA} 1=\mathrm{AA} 0+\mathrm{AA} 1\)
AA \(1=\) AA \(1 \ll\) NLSRR
\(\mathrm{R}(\mathrm{I}+1)=\mathrm{RND}(\mathrm{AA} 1) \quad \mid\) Save upper 16 bits
| Case 2: NLSRREC = NLSAA0
If NLSRREC \(=\) NLSAA0, do the next 18 lines
AA \(0=\mathrm{AA} 0 \gg 1\)
AA1 \(=\operatorname{RREC}(1) \ll 15 \quad \mid\) This can be done by multiplication
\(\mathrm{AA} 1=\mathrm{AA} 0+\mathrm{AA} 1\)
\(\mathrm{AA} 0=\mathrm{AA} 1 \gg 8 \quad\) | Apply white noise correction factor
\(\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{AA} 0\)
Call VSCALE(AA1, 1, 1, 30, AA1, NLSRR)
\(\mathrm{R}(1)=\mathrm{RND}(\mathrm{AA} 1)\)
For \(\mathrm{I}=1,2, \ldots, \mathrm{LPO}\), do the next 9 lines
AA0 \(=0\)
| Upper 16 bits of AA1 saved

For \(\mathrm{N}=\mathrm{N} 1+1, \ldots, \mathrm{~N} 3\), do the next 2 lines
\[
\mathrm{P}=\mathrm{WS}(\mathrm{~N}) * \mathrm{WS}(\mathrm{~N}-\mathrm{I})
\]
\[
\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}
\]
\(\mathrm{AA} 0=\mathrm{AA} 0 \gg 1\)
\(\operatorname{AA} 1=\operatorname{RREC}(\mathrm{I}+1) \ll 15\)
\(\mathrm{AA} 1=\mathrm{AA} 0+\mathrm{AA} 1\)
AA \(1=\mathrm{AA} 1 \ll\) NLSRR
\(\mathrm{R}(\mathrm{I}+1)=\mathrm{RND}(\mathrm{AA} 1) \quad\) | Save upper 16 bits
Go to END
| Case 3: NLSRREC < NLSAA0
If NLSRREC < NLSAA0, do the next 18 lines
IR \(=\) NLSAA \(0-\) NLSRREC +1
AA0 \(=A A 0 \gg\) IR
AA1 \(=\operatorname{RREC}(1) \ll 15 \quad\) | This can be done by multiplication
\(\mathrm{AA} 1=\mathrm{AA} 0+\mathrm{AA} 1\)
\(\mathrm{AA} 0=\mathrm{AA} 1 \gg 8\)
\(\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{AA} 0\)
Call VSCALE(AA1, 1, 1, 30, AA1, NLSRR)
\(\mathrm{R}(1)=\mathrm{RND}(\mathrm{AA} 1)\)
For \(\mathrm{I}=1,2, \ldots\), LPO, do the next 9 lines
AA0 \(=0\)
For \(\mathrm{N}=\mathrm{N} 1+1, \ldots, \mathrm{~N} 3\), do the next 2 lines
\[
\mathrm{P}=\mathrm{WS}(\mathrm{~N}) * \mathrm{WS}(\mathrm{~N}-\mathrm{I})
\]
\(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}\)
\(\mathrm{AA} 0=\mathrm{AA} 0 \gg \mathrm{IR}\)
AA \(1=\operatorname{RREC}(\mathrm{I}+1) \ll 15\)
\(\mathrm{AA} 1=\mathrm{AA} 0+\mathrm{AA} 1\)
\(\mathrm{AA} 1=\mathrm{AA} 1 \ll\) NLSRR
\(\mathrm{R}(\mathrm{I}+1)=\mathrm{RND}(\mathrm{AA} 1)\)
| Save upper 16 bits

END:
ILLCOND = .FALSE.
If AA1 \(=0\), set ILLCOND \(=\).TRUE
| One last job, check for ill-conditioning
| AA1 still contains 32 bit R(LPO + 1)

NOTE - The following table lists all variables in this pseudo-code with their representation format and size for easy reference. The table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is completed, or permanent (perm), meaning that the value will be needed after the current calculation as well. The table also notes which variables were not included in the previous floating point pseudo-code (old/new).
\begin{tabular}{|c|c|c|c|c|}
\hline Variable & Format & Size & Temp/perm & Old/new \\
\hline NLSRE & integer & 1 & temp & new \\
\hline NLSRR & integer & 1 & temp & new \\
\hline NLSRREC & integer & 1 & perm & new \\
\hline NLSTMP & integer & 1 & temp & new \\
\hline RREC & BFL & 51 & perm & old \\
\hline R & BFL & 51 & perm & old \\
\hline WS & BFL & 105 & temp & old \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{ll} 
BFL & Block floating point \\
Integer & 16-bit integer \\
SBFL & 14-bit precision segmented block floating point \\
WS & 14-bit precision BFL \\
RREC and R & 16-bit precision \\
RREC & Represents either REXP, REXPW or REXPLG, depending on whether this module is called from block 49,36 or 43
\end{tabular}} \\
\hline
\end{tabular}

\section*{G.3.19 Block 51 - Bandwidth expansion module}

This is the floating point pseudo-code for block 51, the bandwidth expansion module. A similar code also exists for block 45 for the log gain linear predictor bandwidth expansion module. In that instance a different table is used and the number of filter coefficients is greater.
\[
\text { For } I=2,3, \ldots, L P C+1 \text {, do the next line }
\]
\(\operatorname{ATMP}(\mathrm{I})=\mathrm{FACV}(\mathrm{I}) * \operatorname{ATMP}(\mathrm{I}) \quad \mid\) Scale coefficients
```

Wait until ICOUNT = 3, then
for I = 2, 3,···,LPC + 1, do the next line
A(I) = ATMP(I)

```

The tables for FACV are given in Q14 format for the other bandwidth expansion coefficients. The values for the input ATMP array are in Q13, Q14 or Q15 format. As discussed in the earlier description of the fixed point Levinson-Durbin recursion module, NLSATMP is given by the Levinson-Durbin recursion module to indicate which format is used for ATMP. After the multiplication FACV(I) * ATMP(I) the corresponding amount of left shifts are required.

The final values for ATMP are always represented in Q14 format. Empirically, the values of ATMP have never been too large to be represented in Q14 (i.e. requiring Q13 format or lower). However, to be safe, we have to be prepared to handle the unlikely event of Q14 overflow at the output of the bandwidth expansion module. In the pseudo-code below, we check for the possibility of Q14 overflow. If such a case is detected, we do something similar to the Levinson-Durbin recursion modules - we do not update the predictor coefficients and keep using the old coefficients of the previous adaptation cycle. Potentially, we could use a switchable Q14/Q13 format, with a flag to signal the filtering modules which of the two possible Q formats are used. However, this will unnecessarily increase the complexity of the DSP code and the execution time. Since Q14 overflow was never observed at the output of bandwidth expansion modules, a simple safety check as implemented below suffices.

This is the fixed point pseudo-code for block 51.
If ICOUNT \(\neq 3\), skip the following
Otherwise, do the following.
| First check to see if ILLCOND is true
If ILLCOND = .TRUE., skip the execution of this block
Otherwise, do the following
\(\operatorname{ATMP}(1)=16384\)
For \(\mathrm{I}=2,3,4, \ldots, \mathrm{LPC}+1\), do the next 6 lines
\(\mathrm{AA} 0=\mathrm{FACV}(\mathrm{I}) * \operatorname{ATMP}(\mathrm{I}) \quad \mid \mathrm{AA} 0\) is \(\mathrm{Q} 27, \mathrm{Q} 28\) or Q29
If NLSATMP \(=13\), AA \(0=\) AA \(0 \ll 3\)
I Make AA0 Q30 for all 3 cases by
If NLSATMP \(=14\), AA \(0=\) AA \(0 \ll 2\)
| appropriate number of shifts
If NLSATMP \(=15\), AA \(0=\) AA \(0 \ll 1\)
If AA0 overflowed above, go to LABEL
If not true,
\(\operatorname{ATMP}(\mathrm{I})=\operatorname{RND}(\mathrm{AA} 0)\)
| round to high word for ATMP

For \(\mathrm{I}=2,3, \ldots, \mathrm{LPC}+1\), do the next line
\[
\mathrm{A}(\mathrm{I})=\mathrm{ATMP}(\mathrm{I})
\]

Exit this module
LABEL:
| If program proceeds to here, we will have an | overflow if we try to represent A in Q14.
| In this case, do not update the synthesis filter | coefficients (i.e. keep using
| the synthesis filter coefficients from the previous | adaptation cycle).

\section*{G.3.20 Blocks 71 and 72 - Long-term and short-term postfilters}

Blocks 71 and 72 are combined in order to preserve the precision of the intermediate variable TEMP which was passed between them in the floating point pseudo-code. The floating point pseudo-code for both of these blocks is given first.

For \(\mathrm{K}=1,2, \ldots\), IDIM, do the next line
\[
\operatorname{TEMP}(\mathrm{K})=\mathrm{GL} *(\mathrm{ST}(\mathrm{~K})+\mathrm{B} * \mathrm{ST}(\mathrm{~K}-\mathrm{KP})) \quad \mid \text { Long-term postfiltering }
\]

For \(\mathrm{K}=-\) NPWSZ - KPMAX \(+1, \ldots,-2,-1,0\), do the next line
\[
\mathrm{ST}(\mathrm{~K})=\mathrm{ST}(\mathrm{~K}+\mathrm{IDIM})
\]
| Shift decoded speech buffer
For \(\mathrm{K}=1,2, \ldots\), IDIM, do the following
\[
\operatorname{TEMP}=\operatorname{TEMP}(\mathrm{K})
\]

For \(\mathrm{J}=10,9, \ldots, 3,2\), do the next 2 lines
\[
\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})+\operatorname{STPFFIR}(\mathrm{J}) * \operatorname{AZ}(\mathrm{~J}+1) \quad \mid \text { All-zero part }
\]
\[
\operatorname{STPFFIR}(\mathrm{J})=\operatorname{STPFFIR}(\mathrm{J}-1)
\]
\(\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})+\operatorname{STPFFIR}(1) * \operatorname{AZ}(2)\) | of the filter
\(\operatorname{STPFFIR}(1)=\operatorname{TMP}\) | Last multiplier

For \(\mathrm{J}=10,9, \ldots, 3,2\), do the next 2 lines
\[
\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})-\operatorname{STPFIIR}(\mathrm{J}) * \operatorname{AP}(\mathrm{~J}+1) \quad \mid \text { All-pole part }
\]
\[
\operatorname{STPFIIR}(\mathrm{J})=\operatorname{STPFIIR}(\mathrm{J}-1)
\]
| of the filter
\(\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})-\operatorname{STPFIIR}(1) * \operatorname{AP}(2) \quad \mid\) Last multiplier
\(\operatorname{STPFIIR}(1)=\operatorname{TEMP}(\mathrm{K})\)
\(\operatorname{TEMP}(\mathrm{K})=\operatorname{TEMP}(\mathrm{K})+\operatorname{STPFIIR}(2) * \operatorname{TILTZ}\)
| Spectral tilt
| compensation filter
The fixed point pseudo-code is given by the following. The variables STPFFIR and STPFIIR are in Q2 throughout.
For \(\mathrm{K}=1,2, \ldots\), IDIM, do the following indented lines
\[
\begin{aligned}
& \mathrm{AA} 0=\mathrm{GL} * \mathrm{SST}(\mathrm{~K}) \\
& \mathrm{AA} 0=\mathrm{AA} 0+\mathrm{GLB} * \mathrm{SST}(\mathrm{~K}-\mathrm{KP})
\end{aligned}
\]
| First do long-term postfilter
| GL is Q14, SST(1:5) is Q2
| GLB is \(\mathrm{Q} 16, \operatorname{SST}(-239: 0)\) is Q 0
```

AA1 = AA0
| Next do short-term postfilter

```
| Perform FIR part of filter
\| AZ is Q 14 , \(\operatorname{STPFFIR}(\mathrm{J})\) is Q 2
| Q2 for STPFFIR
| Now perform IIR part of filter
| AP is Q14, STPFIIR(J) is Q2
| Now check for saturation
If \(\mathrm{AA} 0>32767\), set \(\mathrm{AA} 0=32767\)
If \(\mathrm{AA} 0<-32768\), set \(\mathrm{AA} 0=-32768\)
\(\operatorname{STPFIIR}(1)=\mathrm{AA} 0\)
\(\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{STPFIIR}(2) * \mathrm{TILTZ}\)
| Now do spectral compensation | tilt filter
\(\mathrm{AA} 1=\mathrm{AA} 1 \gg 14\)
If \(\mathrm{AA} 1>32767\), set \(\mathrm{AA} 1=32767\)
If \(\mathrm{AA} 1<-32768\), set \(\mathrm{AA} 1=-32768\)
\(\operatorname{TEMP}(\mathrm{K})=\mathrm{AA} 1\)

For \(\mathrm{K}=-\) NPWSZ \(-\mathrm{KPMAX}+1, \ldots,-7,-6,-5\), do the next line
\(\operatorname{SST}(\mathrm{K})=\operatorname{SST}(\mathrm{K}+\mathrm{IDIM})\)

For \(K=-4,-3, \ldots, 0\), do the next line
\(\operatorname{SST}(\mathrm{K})=\mathrm{SST}(\mathrm{K}+\mathrm{IDIM}) \gg 2 \quad \mid\) Shift decoded speech buffer
| and change from Q2 to Q0

\section*{G.3.21 Blocks 73 and 74 - Sum of absolute value calculators}

Blocks 73 and 74 are quite similar. Their results are kept in double precision. As indicated here, these results need not be stored before block 75. The floating point pseudo-code for block 73 is given by the following. Note that we have substituted the name SST for the variable ST in floating point code here. This is to keep consistency between this code and the fixed point code presented below.

Recall that \(\operatorname{SST}(1: 5)\) is represented in Q 2 .

SUMUNFIL = 0
For \(\mathrm{K}=1,2, \ldots\), IDIM, do the next line SUMUNFIL = SUMUNFIL + |SST(K)|

The pseudo-code for block 74 is given by the following.

SUMFIL \(=0\)
For \(\mathrm{K}=1,2, \ldots\), IDIM, do the next line
SUMFIL \(=\) SUMFIL + absolute value of TEMP(K)

The fixed point pseudo-code for these two blocks is given by the following.
\(\mathrm{AA} 1=0\)
AA0 \(=0\)
For \(\mathrm{K}=1,2, \ldots\), IDIM, do the next 2 lines
\begin{tabular}{ll}
\(\mathrm{AA} 0=\mathrm{AA} 0+|\operatorname{SST}(\mathrm{K})|\) & \\
\(\mathrm{AA} 1=\mathrm{AA} 1+|\operatorname{TEMP}(\mathrm{K})|\) & Add absolute value of \(\operatorname{SST}(\mathrm{K})\) \\
& | Add absolute value of TEMP(K) \\
& | AA \(0=\) SUMUNFIL \\
& | AA \(1=\) SUMFIL \\
& | SST and TEMP are Q2, so \\
& | AA0 and AA1 are also Q2 \\
& | AA0 and AA1 will be used in block 75
\end{tabular}

\section*{G.3.22 Block 75 - Scaling factor calculator}

Block 75 calculates the ratio of SUMUNFIL/SUMFIL and the result is stored in SCALE in NLSSCALE precision. SUMUNFIL(AA0) and SUMFIL(AA1) come from blocks 73 and 74, respectively. The floating point-pseudo-code is given by the following.
```

If SUMFIL > 1, set SCALE = SUMUNFIL / SUMFIL
Otherwise, set SCALE = 1

```

The fixed point pseudo-code is given by the following.
```

If AA1>4, do the following indented lines
Call VSCALE(AA1, 1, 1, 30, AA1, NLSDEN)
DEN = RND(AA1)
Call VSCALE(AA0, 1, 1, 30, AA0, NLSNUM)

```
    NUM \(=\) RND (AA0) \(\quad \mid\) NLSNUM and NLSDEN are both off by
    | 16 which cancels out
    Call DIVIDE(NUM, NLSNUM, DEN, NLSDEN, SCALE, NLSSCALE)
    Otherwise, set SCALE \(=16384\) and \(\operatorname{NLSSCALE}=14\)

\section*{G.3.23 Block 76 - First-order lowpass filter and block 77 - Output gain scaling unit}

The floating point pseudo-code for these two blocks is given by the following.
```

For K=1,2,···, IDIM, do the following
SCALEFIL = AGCFAC * SCALEFIL + (1 - AGCFAC) * SCALE | Lowpass filtering
SPF}(\textrm{K})=\operatorname{SCALEFIL * TEMP}(\textrm{K})\quad| Scale output

```

In the fixed point pseudo-code, the second term is computed once and then added in each iteration in order to save both the subtraction and the multiplication inside the loop. The fixed point pseudo-code is given by the following.

AA1 \(=\) AGCFAC1 * SCALE
NRS \(=\) NLSSCALE \(-14+(21-14)\)
If \(\mathrm{NRS} \geq 0, \mathrm{AA} 1=\mathrm{AA} 1 \gg \mathrm{NRS}\)
If NRS \(<0, \mathrm{AA} 1=\mathrm{AA} 1 \ll-\) NRS

For \(\mathrm{K}=1,2, \ldots\), IDIM, do the following
\[
\begin{aligned}
& \mathrm{AA} 0=\mathrm{AA} 1+\mathrm{AGCFAC} * \mathrm{SCALEFIL} \\
& \mathrm{AA} 0=\mathrm{AA} 0 \ll 2 \\
& \mathrm{SCALEFIL}=\mathrm{RND}(\mathrm{AA} 0)
\end{aligned}
\]
\[
\mathrm{AA} 0=\mathrm{SCALEFIL} * \mathrm{TEMP}(\mathrm{~K})
\]
\[
\mathrm{AA} 0=\mathrm{AA} 0 \ll 2
\]
\[
\operatorname{SPF}(\mathrm{K})=\mathrm{RND}(\mathrm{AA} 0)
\]
\[
\text { | AGCFAC1 }=20972 \text { in Q21 }=0.010000228
\]
| Compute right shift
| Want AA1 to be Q28
| Left shift if NRS is negative

\section*{| Lowpass filtering}
| AGCFAC \(=16220\) in Q14 and SCALEFIL
| is Q14
| Make SCALEFIL Q14
| Scale output
| TEMP(K) is Q2
| \(\operatorname{SPF}(\mathrm{K})\) is Q 2

\section*{G.3.24 Block 81-10th order LPC inverse filter}

This is the floating point version of the pseudo-code for block 81, the 10th order LPC inverse filter.
```

If IP = NPWSZ, then set IP = NPWSZ - NFRSZ | Check and update IP
For K=1,2,···, IDIM, do the next 7 lines
ITMP = IP + K
D(ITMP) = ST(K)
For J=10, 9,···,3, 2, do the next 2 lines
D}(ITMP)=D(ITMP)+STLPCI(J)*APF(J + 1) | FIR filtering
STLPCI(J) = STLPCI(J - 1) | Shift in input
D(ITMP) = D(ITMP) + STLPCI(1) * APF(2) | Handle last one
STLPCI(1)= ST(K) | Shift in input
IP = IP + IDIM
| Update IP

```

In the fixed code, we first need to convert ST from block floating point to fixed Q2 format, then write the Q2 version of ST to the long-term postfilter memory buffer, SST, for use later by the long-term postfilter. Note that this buffer was previously labelled ST in the floating point pseudo-code. ST is block floating point and the memory buffer is Q2. In order to avoid confusion, it was necessary to rename the memory buffer SST. We then compute the LPC inverse filter. Note that the coefficients for the LPC filter, APF, are represented in Q13.
```

NLS = 16- NLSST + 2
For K = 1, 2, .., IDIM, do the next 2 lines
AA0 = ST(K) << NLS
SST(K)= RND(AA0) | SST is new long-term
| postfilter buffer
If IP = NPWSZ, then set IP = NFRSZ | Check and update IP
| Start LPC inverse filtering
For K=1, 2, .., IDIM, do the next 10 lines
AA0 = SST(K)
AA0 = AA0 << 13
For J = 10, 9, .., 3, 2, do the next 2 lines
AA0 = AA0 0 STLPCI(J) * APF(J + 1)
STLPCI(J) = STLPCI(J - 1)
AA0 = AA0 + STLPCI(1) * APF(2)
STLPCI(1) = SST(K)
ITMP = IP + K
AA0 = AA0 << 2
D}(ITMP)=RND(AA0) | D(ITMP) is in Q1
IP = IP + IDIM

```

\section*{G.3.25 Block 82 - Pitch period extraction module}

We begin with the floating point version of the pseudo-code for block 82 , the pitch period extraction module.
IF ICOUNT \(\neq 3\), skip the execution of this block
Otherwise, do the following
| Lowpass filtering and 4:1 downsampling
For \(K=N P W S Z-N F R S Z+1, \ldots\), NPWSZ, do the next 7 lines
```

    TMP = D(K) - STLPF(1) * AL(1) - STLPF(2) * AL(2) - STLPF(3)* AL(3) | IIR filter
    If K is divisible by 4, do the next 2 lines
        N = K/4
        | Do FIR filtering only if needed
            DEC(N) = TEMP * BL(1) + STLPF(1) * BL(2) + STLPF(2) * BL(3) + STLPF(3) * BL(4)
    STLPF(3)=STLPF(2)
    STLPF(2)=STLPF(1) | Shift lowpass filter memory
    STLPF(1) = TMP
    ```

M1 = KPMIN/4 | Start correlation peak-picking
M2 = KPMAX/4 | in the decimated LPC residual domain
CORMAX \(=\) most negative number of the machine
For \(\mathrm{J}=\mathrm{M} 1, \mathrm{M} 1+1, \ldots, \mathrm{M} 2\), do the next 6 lines
TMP = 0
For \(\mathrm{N}=1,2, \ldots, \mathrm{NPWSZ} / 4\), do the next line
\(\mathrm{TMP}=\mathrm{TMP}+\mathrm{DEC}(\mathrm{N}) * \mathrm{DEC}(\mathrm{N}-\mathrm{J})\)
| TMP = correlation in decimated domain
If TMP > CORMAX, do the next 2 lines
CORMAX \(=\) TMP | Find maximun correlation
KMAX \(=\mathbf{J} \quad \mid\) and the corresponding lag
For \(\mathrm{N}=-\mathrm{M} 2+1,-\mathrm{M} 2+2, \ldots,(\mathrm{NPWSZ}-\mathrm{NFRSZ}) / 4\), do the next line \(\operatorname{DEC}(\mathrm{N})=\mathrm{DEC}(\mathrm{N}+\mathrm{IDIM})\)
| Shift decimated LPC residual buffer
\(\mathrm{M} 1=4 * \mathrm{KMAX}-3\)
| Start correlation peak-picking
| in undecimated domain
M2 \(=4\) * KMAX +3
If M1 < KPMIN, set M1 = KPMIN \(\quad \mid\) Check whether M1 out of range
If M2 > KPMAX, set M2 = KPMAX
| Check whether M2 out of range
CORMAX \(=\) most negative number of the machine

For \(\mathrm{J}=\mathrm{M} 1, \mathrm{M} 1+1, \ldots, \mathrm{M} 2\), do the next 6 lines
TMP \(=0\)
For \(K=1,2, \ldots, N P W S Z\), do the next line
\[
\mathrm{TMP}=\mathrm{TMP}+\mathrm{D}(\mathrm{~K}) * \mathrm{D}(\mathrm{~K}-\mathrm{J})
\]
| Correlation in undecimated domain
If TMP \(>\) CORMAX, do the next 2 lines

CORMAX \(=\) TMP \(\mathrm{KP}=\mathrm{J}\)

M1 = KP1 - KPDELTA
\(\mathrm{M} 2=\mathrm{KP} 1+\mathrm{KPDELTA}\)
If \(\mathrm{KP}<\mathrm{M} 2+1\), go to LABEL
If M1 < KPMIN, set M1 = KPMIN
CMAX \(=\) most negative number of the machine
For \(\mathrm{J}=\mathrm{M} 1, \mathrm{M} 1+1, \ldots, \mathrm{M} 2\), do the next 6 lines
TMP \(=0\)
For \(K=1,2, \ldots, N P W S Z\), do the next line \(\mathrm{TMP}=\mathrm{TMP}+\mathrm{D}(\mathrm{K}) * \mathrm{D}(\mathrm{K}-\mathrm{J})\)
| Correlation in undecimated domain
If TMP \(>\) CMAX, do the next 2 lines
CMAX = TMP | Find maximum correlation
\(\mathrm{KPTMP}=\mathrm{J}\)
| and the corresponding lag
SUM \(=0\)
TMP \(=0\)
| Start computing the tap weights
For \(\mathrm{K}=1,2, \ldots\), NPWSZ, do the next 2 lines
\(S U M=S U M+D(K-K P) * D(K-K P)\)
\(\mathrm{TMP}=\mathrm{TMP}+\mathrm{D}(\mathrm{K}-\mathrm{KPTMP}) * \mathrm{D}(\mathrm{K}-\mathrm{KPTMP})\)
If \(\mathrm{SUM}=0\), set \(\mathrm{TAP}=0\); otherwise, set TAP \(=\mathrm{CORMAX} / \mathrm{SUM}\)
If TMP \(=0\)., set TAP1 \(=0\).; otherwise, set TAP \(1=\) CMAX/TMP
If \(\mathrm{TAP}>1\), set \(\mathrm{TAP}=1\)
| Clamp TAP between 0 and 1
If \(\mathrm{TAP}<0\), set \(\mathrm{TAP}=0\)
If \(\mathrm{TAP} 1>1\), set TAP1 \(=1\)
| Clamp TAP1 between 0 and 1
If TAP1 \(<0\), set TAP1 \(=0\)
| Replace KP with fundamental pitch
| if si TAP1 TAP1 is large enough
If TAP1 \(>\) TAPTH \(*\) TAP, then set KP \(=\) KPTMP

LABEL: \(\quad K P 1=K P\)
| Update pitch period of previous frame
For \(K=-K P M A X+1,-K P M A X+2, \ldots, N P W S Z-N F R S Z\), do the next line
\(\mathrm{D}(\mathrm{K})=\mathrm{D}(\mathrm{K}+\mathrm{NFRSZ})\)
| Shift the LPC residual buffer

In the fixed point version of this block, the D array and the state variables of the lowpass filter are represented in Q1. This is to avoid overflow in correlation and energy computations. The fixed point pseudo-code is given by the following.

If ICOUNT \(\neq 3\), skip the execution of this block
Otherwise, do the following
For \(\mathrm{K}=\mathrm{NPWSZ}-\mathrm{NFRSZ}+1, \ldots\), NPWSZ, do the next 17 lines
\begin{tabular}{ll} 
AA0 \(=\mathrm{D}(\mathrm{K}) * \operatorname{BL}(0)\) & \(|\)\begin{tabular}{l} 
First do the FIR part \\
AA \(0=\operatorname{AA} 0+\operatorname{LPFFIR}(1) * \operatorname{BL}(1)\)
\end{tabular} \\
\(\operatorname{AA} 0=\operatorname{AA} 0+\operatorname{LPFFIR}(2) * \operatorname{BL}(2)\) & \(\mid \operatorname{DL}(0)=18721, \operatorname{BL}(1)=-3668\) \\
\(\operatorname{AA} 0=\operatorname{AA} 0+\operatorname{LPFFIR}(3) * \operatorname{BL}(3)\) & \(\mid \operatorname{BL}(2)=-3668, \operatorname{BL}(3)=18721\)
\end{tabular}
\(\operatorname{LPFFIR}(3)=\operatorname{LPFFIR}(2)\)
\(\operatorname{LPFFIR}(2)=\operatorname{LPFFIR}(1)\)
\(\operatorname{LPFFIR}(1)=\mathrm{D}(\mathrm{K})\)
AA \(0=\) AA \(0 \gg 6\)
\(\mathrm{AA} 0=\mathrm{AA} 0-\operatorname{LPFIIR}(1) * \operatorname{AL}(1)\)
\(\operatorname{AA} 0=\mathrm{AA} 0-\operatorname{LPFIIR}(2) * \operatorname{AL}(2)\)
\(\mathrm{AA} 0=\mathrm{AA} 0-\operatorname{LPFIIR}(3) * \operatorname{AL}(3)\)
\(\operatorname{LPFIIR}\) (3) \(=\operatorname{LPFIIR}(2)\)
\(\operatorname{LPFIIR}(2)=\operatorname{LPFIIR}(1)\)
AA \(0=\) AA \(0 \ll 3\)
\(\operatorname{LPFIIR}(1)=\operatorname{RND}(A A 0)\)
\(\mathrm{N}=(\mathrm{K} \gg 2)\)
If \(\mathrm{K}=(\mathrm{N} \ll 2)\), set \(\operatorname{DEC}(\mathrm{N})=\operatorname{LPFIIR}(1)\)
\(\mathrm{M} 1=\mathrm{KPMIN} / 4\)
M2 \(=\) KPMAX/4
AA1 \(=-2147483648\)
| LPFFIR is Q1
| Now do the IIR part
| AL() are \(\mathrm{Q} 13, \operatorname{LPFIIR}()\) are Q 1
| \(\operatorname{AL}(1)=-19172, \operatorname{AL}(2)=16481\)
| \(\mathrm{AL}(3)=-5031\)

For \(\mathrm{J}=\mathrm{M} 1, \mathrm{M} 1+1, \ldots, \mathrm{M} 2\), do the next 6 lines
AA \(0=0\)
For \(\mathrm{N}=1,2, \ldots\), NPWSZ/4, do the next line
\[
\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{DEC}(\mathrm{~N}) * \mathrm{DEC}(\mathrm{~N}-\mathrm{J})
\]

If AA \(0>A A 1\), do the next 2 lines
\begin{tabular}{ll} 
AA1 = AA0 & \(|\)\begin{tabular}{l} 
Find maximum correlation and \\
KMAX \(=\mathrm{J}\)
\end{tabular} \\
\(\mid\) the corresponding lag
\end{tabular}

For \(\mathrm{N}=-\mathrm{M} 2+1,-\mathrm{M} 2+2, \ldots,(\) NPWSZ -NFRSZ\() / 4\), do the next line \(\mathrm{DEC}(\mathrm{N})=\mathrm{DEC}(\mathrm{N}+\mathrm{IDIM})\)
\(\mathrm{M} 1=4\) * KMAX -3
M2 \(=4\) * KMAX +3
If M1 < KPMIN, set M1 \(=\) KPMIN
If M2 \(>\) KPMAX, set M2 \(=\) KPMAX
AA1 \(=-2147483648\)
For \(\mathrm{J}=\mathrm{M} 1, \mathrm{M} 1+1, \ldots, \mathrm{M} 2\), do the next 6 lines
AA0 \(=0\)
For \(K=1,2, \ldots\), NPWSZ, do the next line
\[
\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{D}(\mathrm{~K}) * \mathrm{DEC}(\mathrm{~K}-\mathrm{J})
\]

If AA \(0>A A 1\), do the next 2 lines
\[
\mathrm{AA} 1=\mathrm{AA} 0
\]
\(\mathrm{KP}=\mathrm{J}\)
CORMAX \(=\) AA 1
```

M1 $=$ KP1 - KPDELTA
$\mathrm{M} 2=$ KP1 + KPDELTA
If $\mathrm{KP}<\mathrm{M} 2+1$, go to LABEL
If M1 < KPMIN, set M1 = KPMIN
If M2 $>$ KPMAX, set M2 $=$ KPMAX

```

AA1 \(=-2147483648\)
| Start correlation peak-picking | in undecimated domain
| Check whether M1 out of range | Check whether M2 out of range \(\mid=-2^{31}\)
| Correlation in undecimated domain
| Double precision save to CORMAX
| Determine the range of search around | the pitch period of the previous frame | KP cannot be a multiple pitch if true
| Check whether M1 out of range
| Check whether M2 out of range
| This last statement is not
| in floating point
\(\mid=-2^{31}\)

For \(\mathrm{J}=\mathrm{M} 1, \mathrm{M} 1+1, \ldots, \mathrm{M} 2\), do the next 6 lines
\(\mathrm{AA} 0=0\)
For \(K=1,2, \ldots, N P W S Z\), do the next line
\[
\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{D}(\mathrm{~K}) * \mathrm{D}(\mathrm{~K}-\mathrm{J}) \quad \mid \text { Correlation in undecimated domain }
\]

If \(\mathrm{AA} 0>\mathrm{AA} 1\), do the next 2 lines
\(\mathrm{AA} 1=\mathrm{AA} 0 \quad \mid\) Find maximum correlation and

KPTMP \(=\mathbf{J} \quad \mid\) the corresponding lag
CMAX \(=\) AA1 \(\quad \mid\) Double precision save to CMAX
\(\mathrm{AA} 0=0\)
\(\mathrm{AA} 1=0\)
For \(K=1,2, \ldots, N P W S Z\), do the next 2 lines
\(\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{D}(\mathrm{K}-\mathrm{KP}) * \mathrm{D}(\mathrm{K}-\mathrm{KP})\)
\(\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{D}(\mathrm{K}-\mathrm{KPTMP}) * \mathrm{D}(\mathrm{K}-\mathrm{KPTMP})\)

If \(\mathrm{AA} 0=0\), set CORMAX \(=0\)
If \(\mathrm{AA} 1=0\), set \(\mathrm{CMAX}=0\)
If CORMAX \(>\mathrm{AA} 0\), set CORMAX \(=\mathrm{AA} 0\)
If CORMAX \(<0\), set CORMAX \(=0\)
If CMAX > AA1, set CMAX = AA1
If \(\mathrm{CMAX}<0\), set \(\mathrm{CMAX}=0\)

If \(\mathrm{AA} 0>\mathrm{AA} 1\), do the next 2 lines
call VSCALE(AA0, 1, 1, 30, AA0, NLS)
\(\mathrm{AA} 1=\mathrm{AA} 1 \ll \mathrm{NLS}\)
otherwise do the next 2 lines
call VSCALE(AA1, 1, 1, 30, AA1, NLS)
\(\mathrm{AA} 0=\mathrm{AA} 0 \ll \mathrm{NLS}\)
\(\mathrm{SUM}=\mathrm{AA} 0 \gg 16\)
\(\mathrm{TMP}=\mathrm{AA} 1 \gg 16\)
AA0 \(=\) CORMAX \(\ll\) NLS
CORMAX \(=\) AA \(0 \gg 16\)
AA0 \(=\) CMAX \(\ll\) NLS
CMAX \(=\) AA \(0 \gg 16\)
AA1 \(=\) CORMAX \(*\) TMP
\(\mathrm{AA} 1=\mathrm{AA} 1 \gg 16\)
\(\mathrm{AA} 1=\mathrm{AA} 1 * \mathrm{ITAPTH} \quad \mid\) ITAPTH \(=26214\) in Q16
\(\mathrm{AA} 0=\mathrm{CMAX} * \mathrm{SUM}\)
If AA0 \(>\mathrm{AA} 1\), set KP - KPTMP
| Find TAP
| Clip TAP weights if necessary
\[
3
\]

LABEL: \(\quad \mathrm{KP} 1=\mathrm{KP}\)
| Update KP1 and shift LPC residual
For \(K=-K P M A X+1,-K P M A X+2, \ldots, N P W S Z-N F R S Z\), do the next line \(\mathrm{D}(\mathrm{K})=\mathrm{D}(\mathrm{K}+\mathrm{NFRSZ})\)
| Shift the LPC residual buffer

\section*{G.3.26 Block 83 - Pitch predictor tap calculator}

We begin with the floating point version of the pseudo-code. Here we have used SST rather than ST for the name of the long-term postfilter memory buffer.

If ICOUNT \(\neq 3\), skip the execution of this block
Otherwise, do the following
SUM = 0
TMP \(=0\)
For \(\mathrm{K}=-\mathrm{NPWSZ}+1,-\mathrm{NPWSZ}+2, \ldots, 0\), do the next 2 lines
\(\mathrm{SUM}=\mathrm{SUM}+\mathrm{SST}(\mathrm{K}-\mathrm{KP}) * \mathrm{SST}(\mathrm{K}-\mathrm{KP})\)
\(\mathrm{TMP}=\mathrm{TMP}+\mathrm{SST}(\mathrm{K}) * \operatorname{SST}(\mathrm{~K}-\mathrm{KP})\)
If \(\mathrm{SUM}=0\), set \(\mathrm{PTAP}=0\); otherwise, set \(\mathrm{PTAP}=\mathrm{TMP} / \mathrm{SUM}\)

The fixed point pseudo-code is given by the following. Note that SST() is 13 bit Q 0 . In performing the correlations, the mulplication of SST by either itself or a delayed sample gives a result which is 25 bit Q0.

If ICOUNT \(\neq 3\), skip the execution of this block
Otherwise, do the following
```

AA0 $=0$
AA1 $=0$
For $\mathrm{K}=-$ NPWSZ $+1,-$ NPWSZ $+2, \ldots, 0$, do the next 4 lines
$\mathrm{P}=\operatorname{SST}(\mathrm{K}-\mathrm{KP}) * \operatorname{SST}(\mathrm{~K}-\mathrm{KP})$
$\mathrm{AA} 0=\mathrm{AA} 0+\mathrm{P}$
$\mathrm{P}=\mathrm{SST}(\mathrm{K}) * \mathrm{SST}(\mathrm{K}-\mathrm{KP})$
$\mathrm{AA} 1=\mathrm{AA} 1+\mathrm{P}$

```
If AA \(0=0\), set PTAP \(=0\) and return to calling program
If AA1 \(\leq 0\), set PTAP \(=0\) and return to calling program
If AA1 \(\geq\) AA 0 , set PTAP \(=16384 \quad \mid\) NLSPTAP \(=14\)
Otherwise, do the following
    Call VSCALE(AA0, 1, 1, 30, AA0, NLSDEN)
    Call VSCALE(AA1, 1, 1, 30, AA1, NLSNUM)
    NUM \(=\) RND (AA1)
    DEN \(=\) RND (AA0)
    Call DIVIDE(NUM, NLSNUM, DEN, NLSDEN, PTAP, NLSPTAP)
    NRS = NLSPTAP - 14
    PTAP \(=\) PTAP \(\gg\) NRS \(\quad \mid\) NLSPTAP \(=14\)

\section*{G.3.27 Block 84 - Long-term postfilter coefficient calculator}

We begin with the floating point pseudo-code for block 84.
```

If ICOUNT }=3\mathrm{ , skip the execution of this block
Otherwise, do the following
If PTAP > 1, set PTAP = 1 | Clamp PTAP at 1
If PTAP < PPFTH, set PTAP =0
| Turn off pitch postfilter
| if PTAP smaller than threshold

```
```

B = PPFZCF * PTAP
GL = 1/(1 + B)

```

This fixed point pseudo-code is given by the following. We define an additional variable GLB which is the product of GL and B. This saves us later multiplications. B and GLB are output in Q16 and GL is output in Q14.
| Note that PTAP is \(<16385\) from block 83
If ICOUNT \(\neq 3\), skip the execution of this block
Otherwise, do the following
```

If PTAP < PPFTH, set PTAP =0 | PPFTH =9830 in Q14
AA0 = PPFZCF * PTAP
B = AA0 >> 14
AA0 = AA0 >> 16
AA0 = AA0 + 16384
DEN = AA0 | DEN is in Q14
Call DIVIDE(16384, 14, DEN, 14, GL, NLS)
AA0 = GL * B
GLB = AA0 >> NLS
NRS = NLS - 14
If NRS > 0, SET GL = GL >> NRS
| PPFZCF = 9830 in Q16, PTAP is in Q14
| Save B in Q16
| AA0 = B in Q14
| NLS = 14 or 15, NLS of B = 16
| GLB is GL * B and is precomputed here
| in Q16 for block }7
| Make GL Q14

```

\section*{G.3.28 Block 85 - Short-term postfilter coefficient calculator}

We begin with the floating point pseudo-code for this block.
```

If ICOUNT = 1, skip the execution of this block
Otherwise, do the following
For I =2,3,···,11, do the next 2 lines
AP(I)=SPFPCFV(I)*APF(I) | Scale denominator coefficients
AZ(I)=SPFZCFV(I)* APF(I) | Scale numerator coefficients
TILTZ = TILTF * RC1

```
| Scale denominator coefficients
| Scale numerator coefficients
| Tilt compensation filter coefficients

In the fixed point pseudo-code, we must consider the possibility that there was ill-conditioning in Durbin's recursion or that the prediction coefficients could not even be expressed in Q13. (It has never been observed that Q13 was not sufficient, but this possibility must still be considered.) The variable ILLCONDP is a flag from block 50 which indicates whether the results of block 50 are valid or not. In Recommendation G.728, there is an implicit assumption that the results of Durbin will not be used if ILLCONDP is true. That is, ATMP will not be copied to APF after the 10th order recursion is completed. The same assumption is repeated here. If ILLCONDP is true, then we do not update AP, AZ or TILTZ.

Next, we must deal with the fact that the coefficients APF() from Durbin's recursion may be in Q13, Q14 or Q15. NLSAPF is the number of left shifts of APF. At the output, we also wish to save APF( ) in Q13 for later use in the LPC inverse filtering operation. We want the numerator and denominator coefficients, AP() and AZ() to be in Q14 for the output. TILTZ is output in Q14. It may be the case that AP cannot be represented in Q14. When this is the case, do not update AP, AZ or TILTZ, but the new values for APF can be used. They should already be in Q13 format. The fixed point pseudo-code is given by the following.

If ICOUNT \(\neq 1\), skip the execution of this block
Otherwise, do the following
| First check to see if ILLCONDP is true
If ILLCONDP = .TRUE., skip the execution of this block otherwise, do the following
| Next do the denominator coefficients
| If they overflow for Q14, do not
| update AP, AZ or TILTZ
| Temporary array WS is used in case
| of overflow, so that AP is preserved
For \(\mathrm{I}=2\) and 3 , do the next 6 lines
\(\mathrm{AA} 0=\mathrm{SPFPCFV}(\mathrm{I}) * \operatorname{APF}(\mathrm{I})\)
If \(\mathrm{NLSAPF}=13, \mathrm{AA} 0=\mathrm{AA} 0 \ll 3\)
If NLSAPF \(=14, \mathrm{AA} 0=\mathrm{AA} 0 \ll 2\)
If \(\mathrm{NLSAPF}=15, \mathrm{AA} 0=\mathrm{AA} 0 \ll 1\)
If AA0 overflowed above, go to LABEL
\(\mathrm{WS}(\mathrm{I})=\mathrm{RND}(\mathrm{AA} 0)\)

For \(I=2\) and 3 , do the next line
\(\mathrm{AP}(\mathrm{I})=\mathrm{WS}(\mathrm{I})\)

For \(\mathrm{I}=4,5, \ldots, 11\), do the next 5 lines
\(\mathrm{AA} 0=\mathrm{SPFPCFV}(\mathrm{I}) * \operatorname{APF}(\mathrm{I})\)
If NLSAPF \(=13, \mathrm{AA} 0=\mathrm{AA} 0 \ll 3\)
If NLSAPF \(=14, \mathrm{AA} 0=\mathrm{AA} 0 \ll 2\)
If NLSAPF \(=15, \mathrm{AA} 0=\mathrm{AA} 0 \ll 1\)
\(\mathrm{AP}(\mathrm{I})=\mathrm{RND}(\mathrm{AA} 0)\)
| SPFPCFV is Q14, AA0 is 14 + NLSAPF
| Make AA0 Q30 for all 3 cases by
| appropriate number of shifts
| Round to high word for WS
| Overflow can only occur for 2 and 3, | so copy these to AP and continue
| Now do the rest
| SPFPCFV is Q14, AA0 is 14 + NLSAPF
| Make AA0 Q30 for all 3 cases by
| appropriate number of shifts
| Round to high word for AP
| Now do the numerator coefficients
| If the denominator did not overflow,
| then the numerator cannot, either

For \(I=2,3, \ldots, 11\), do the next 5 lines
\(\mathrm{AA} 0=\mathrm{SPFZCFV}(\mathrm{I}) * \mathrm{APF}(\mathrm{I})\)
If \(\mathrm{NLSAPF}=13, \mathrm{AA} 0=\mathrm{AA} 0 \ll 3\)
If \(\mathrm{NLSAPF}=14, \mathrm{AA} 0=\mathrm{AA} 0 \ll 2\)
If \(\mathrm{NLSAPF}=15, \mathrm{AA} 0=\mathrm{AA} 0 \ll 1\)
\(\mathrm{AZ}(\mathrm{I})=\mathrm{RND}(\mathrm{AA} 0)\)
\(\mathrm{AA} 0=\mathrm{TILTF} * \mathrm{RC} 1\)
\(\mathrm{TILTZ}=\mathrm{RND}(\mathrm{AA} 0)\)

LABEL:

If NLSAPF \(=14\), do the next 3 lines
For \(I=2,3,4, \ldots, 11\), do the next 2 lines
\(\mathrm{AA} 0=\mathrm{APF}(\mathrm{I}) \ll 15\)
\(\operatorname{APF}(\mathrm{I})=\mathrm{RND}(\mathrm{AA} 0)\)

If NLSAPF \(=15\), do the next 3 lines
For \(I=2,3,4, \ldots, 11\), do the next 2 lines
\(\mathrm{AA} 0=\mathrm{APF}(\mathrm{I}) \ll 14\)
\(\operatorname{APF}(\mathrm{I})=\mathrm{RND}(\mathrm{AA} 0)\)
| SPFZCFV is Q14, AA0 is \(14+\) NLSAPF
| Make AA0 Q30 for all 3 cases by
| appropriate number of shifts
| Round to high word for AZ
| Now update TILTZ
| TILTZ = 4915 in Q15
| RC1 is Q15
| TILTZ is Q14
| Save APF( ) in Q13 for LPC inverse
| filtering later
| Case 1: NLSAPF = 13, do nothing
| Case 2: \(\mathrm{NLSAPF}=14\), shift 15 , round
| Case 3: \(\mathrm{NLSAPF}=15\), shift 14 , round

Note that in the above code, the "For" loops containing three "If NLSAPF \(=\ldots\)... statements can be eliminated if the entire code is re-written for each of the three possible values of NLSAPF. This longer code will produce exactly the same results, but will execute more quickly on most programmable devices.

\section*{G. 4 LD-CELP internal variable representations}

In this subclause updated versions of Tables 1/G. 728 and 2/G. 728 are presented. Table G. 1 is a shortened version of Table \(1 / \mathrm{G} .728\). It lists only constants which are not inherently integers and are not given elsewhere in the Recommendation. The Equivalent Symbol and Initial Value entries in Table 1/G. 728 have been deleted in order to leave space for the Fixed Point Format and representation required for each variable. Table G. 2 is the integer version of Table 2/G.728. The same column has also been deleted from Table \(2 / \mathrm{G} .728\) in order to present the fixed point format. Several new variables are listed which relate only to the fixed point specification.

TABLE G.1/G. 728
Basic coder parameters that are not inherently integers and not given elsewhere
\begin{tabular}{|l|c|c|c|l|}
\hline \multicolumn{1}{|c|}{ Name } & \begin{tabular}{c} 
Floating- \\
Point Value
\end{tabular} & \begin{tabular}{c} 
Fixed- \\
Point Value
\end{tabular} & Q format & \multicolumn{1}{|c|}{ Description } \\
\hline AGCFAC & 0.99 & 16220 & Q14 & AGC adaptation speed controlling factor \\
AGCFAC1 & 0.01 & 20972 & Q21 & The value of (1 - AGCFAC) \\
GOFF & 32 & 16384 & Q9 & Log-gain offset value \\
PPFTH & 0.6 & 9830 & Q14 & Tap threshold for turning off pitch postfilter \\
PPFZCF & 0.15 & 9830 & Q16 & Pitch postfilter zero controlling factor \\
TAPTH & 0.4 & 26214 & Q16 & Tap threshold for fundamental pitch replacement \\
TILTF & 0.15 & 4915 & Q15 & Spectral tilt compensation controlling factor \\
\hline
\end{tabular}

TABLE G.2/G. 728

\section*{LD-CELP internal processing variables}
\begin{tabular}{|c|c|c|c|}
\hline Name & \[
\begin{aligned}
& \text { Array Index } \\
& \text { Range }
\end{aligned}
\] & Fixed Point Format & Description \\
\hline A & 1 to LPC + 1 & Q14 & Synthesis filter coefficients \\
\hline AL & 1 to 3 & Q13 & 1 kHz lowpass filter denominator coefficients \\
\hline AP & 1 to 11 & Q14 & Short-term postfilter denominator coefficients \\
\hline APF & 1 to 11 & Q13 & 10th-order LPC filter coefficients \\
\hline ATMP & 1 to LPC + 1 & Q13/Q14/Q15 & Temporary buffer for synthesis filter coefficients \\
\hline AWP & 1 to LPCW + 1 & Q14 & Perceptual weighting filter denominator coefficients \\
\hline AWZ & 1 to LPCW + 1 & Q14 & Perceptual weighting filter numerator coefficients \\
\hline AWZTMP & 1 to LPCW + 1 & Q13/Q14/Q15 & Temporary buffer for weighting filter coefficients \\
\hline AZ & 1 to 11 & Q14 & Short-term postfilter numerator coefficients \\
\hline B & 1 & Q16 & Long-term postfilter coefficients \\
\hline BL & 1 to 4 & Q19 & 1 kHz lowpass filter numerator coefficients \\
\hline D & -139 to 100 & Q1 & LPC prediction residual \\
\hline DEC & -34 to 25 & Q1 & 4:1 decimated LPC prediction residual \\
\hline ET & 1 to IDIM & 15 b BFL & Gain-scaled excitation vector \\
\hline FACV & 1 to LPC + 1 & Q14 & Synthesis filter BW broadening vector \\
\hline FACGPV & 1 to LPCLG +1 & Q14 & Gain predictor BW broadening vector \\
\hline G2 & 1 to NG & Q12 & 2 times gain levels in gain codebook \\
\hline GAIN & 1 & SFL & Linear excitation gain \\
\hline GB & 1 to NG-1 & Q13 & Mid-point between adjacent gain levels \\
\hline GL & 1 & Q14 & Long-term postfilter scaling factor \\
\hline GLB & 1 & Q16 & Long-term postfilter product term \\
\hline GP & 1 to LPCLG + 1 & Q14 & Log-gain predictor coefficients, initial value \(=16384,-16384,0, \ldots, 0\) \\
\hline GPTMP & 1 to LPCLG +1 & Q13/Q14/Q15 & Temporary array for log-gain linear predictor coefficients \\
\hline GQ & 1 to NG & Q13 & Gain levels in the gain codebook \\
\hline GSQ & 1 to NG & Q11 & Squares of gain levels in gain codebook \\
\hline GSTATE & 1 to LPCLG & Q9 & Log-gain predictor memory, initial value \(=-16384\) \\
\hline GTMP & 1 to 4 & Q9 & Temporary log-gain buffer, initial value \(=-16384\) \\
\hline H & 1 to IDIM & Q13 & Impulse response vector of \(\mathrm{F}(\mathrm{z}) \mathrm{W}(\mathrm{z})\) \\
\hline ICHAN & 1 & Q0 & Best codebook index to be transmitted \\
\hline ICOUNT & 1 & Q0 & Speech vector counter (indexed from 1 to 4) \\
\hline IG & 1 & Q0 & Best 3-bit gain codebook index \\
\hline ILLCOND & 1 & Q0 & III-conditioning flag for synthesis filter \\
\hline ILLCONDG & 1 & Q0 & III-conditioning flag for log-gain predictor \\
\hline ILLCONDP & 1 & Q0 & Ill-conditioning flag for postfilter \\
\hline ILLCONDW & 1 & Q0 & III-conditioning flag for weighting filter \\
\hline IP & 1 & Q0 & Address pointer to LPC prediction residual \\
\hline IS & 1 & Q0 & Best 7-bit shape codebook index \\
\hline KP & 1 & Q0 & Pitch period of the current frame \\
\hline KP1 & 1 & Q0 & Pitch period of the previous frame \\
\hline
\end{tabular}

TABLE G.2/G. 728 (continuation)

\section*{LD-CELP internal processing variables}
\begin{tabular}{|c|c|c|c|}
\hline Name & Array Index Range & Fixed Point Format & Description \\
\hline LOGGAIN & 1 & Q9 & Log of excitation gain \\
\hline LPFFIR & 3 & Q1 & Lowpass filter FIR memory \\
\hline LPFIIR & 3 & Q1 & Lowpass filter IIR memory \\
\hline NLSATMP & 1 & Q0 & Durbin's recursion precision flag for ATMP \\
\hline NLSAWZTMP & 1 & Q0 & Durbin's recursion precision flag for AWZTMP \\
\hline NLSGPTMP & 1 & Q0 & Durbin's recursion precision flag for GPTMP \\
\hline NLSET & 1 & Q0 & NLS for ET \\
\hline NLSGAIN & 1 & Q0 & NLS for linear GAIN \\
\hline NLSREXP & 1 & Q0 & NLS for REXP, initial value \(=31\) \\
\hline NLSREXPLG & 1 & Q0 & NLS for REXPLG, initial value \(=31\) \\
\hline NLSREXPW & 1 & Q0 & NLS for REXPW, initial value \(=31\) \\
\hline NLSSB & 21 & Q0 & NLS for SB, initial value \(=16\) \\
\hline NLSST & 1 & Q0 & NLS for ST in decoder \\
\hline NLSSTATE & 11 & Q0 & NLS for STATELPC, initial value \(=16\) \\
\hline NLSSTTMP & 4 & Q0 & NLS for STTMP, initial value \(=16\) \\
\hline PN & 1 to IDIM & Q7 & Correlation vector for codebook search \\
\hline PTAP & 1 & Q14 & Pitch predictor tap computed by block 83 \\
\hline R & 1 to 11 & BFL & Autocorrelation coefficients \\
\hline RC & 1 & Q15 & Reflection coefficients \\
\hline RC1 & 1 & Q15 & Temporary buffer for first reflection coefficients \\
\hline REXP & 1 to LPC +1 & BFL & Recursive part of autocorrelation, synthesis filter \\
\hline REXPLG & 1 to LPCLG + 1 & BFL & Recursive part of autocorrelation, log-gain predictor \\
\hline REXPW & 1 to LPCW + 1 & BFL & Recursive part of autocorrelation, weighting filter \\
\hline RTMP & 1 to LPC + 1 & BFL & Temporary buffer for autocorrelation coefficients \\
\hline S & 1 to IDIM & 15b Q2 & Uniform PCM input speech vector \\
\hline SB & 1 to 105 & 14b BFL & Buffer for previously quantized speech \\
\hline SBLG & 1 to 34 & Q9 & Buffer for previous log-gain \\
\hline SBW & 1 to 60 & Q2 & Buffer for previous input speech \\
\hline SCALE & 1 & SFL & Unfiltered postfilter scaling factor \\
\hline SCALEFIL & 1 & Q14 & Lowpass filtered postfilter scaling factor, initial value \(=16384\) \\
\hline SD & 1 to IDIM & Q0 & Decoded speech buffer \\
\hline SPF & 1 to IDIM & Q2 & Postfiltered speech vector \\
\hline SPFPCFV & 1 to 11 & Q14 & Short-term postfilter pole controlling vector \\
\hline SPFZCFV & 1 to 11 & Q14 & Short-term postfilter zero controlling vector \\
\hline SO & 1 & byte & A-law or \(\mu\)-law PCM input speech sample \\
\hline SST (past) & -239 to 0 & 13 b Q0 & Quantized speech buffer \\
\hline SST (current) & 1 to IDIM & 15 b Q2 & Quantized speech buffer \\
\hline ST & 1 to IDIM & 14b BFL & Quantized speech vector \\
\hline STATELPC & 1 to LPC & 14b SBFL & Synthesis filter memory \\
\hline STLPCI & 1 to 10 & Q2 & LPC inverse filter memory \\
\hline
\end{tabular}

TABLE G.2/G. 728 (end)

\section*{LD-CELP internal processing variables}
\begin{tabular}{|c|c|c|c|}
\hline Name & Array Index Range & Fixed Point Format & Description \\
\hline STMP
STTMP
STPFFIR
STPFIIR
SU
SUMFIL
SUMUNFIL
SW
TARGET
TEMP
TILTZ
WFIR
WIIR
WNR
WNRLG
WNRW
WPCFV
WS
WZCFV
Y
Y2
ZIR
ZIRWFIR
ZIRWIIR & 1 to \(4 *\) IDIM
1 to 4 * IDIM
1 to 10
1 to 10
1
1
1
1 to IDIM
1 to IDIM
1 to IDIM
1
1 to LPCW
1 to LPCW
1 to 105
1 to 34
1 to 60
1 to \(\mathrm{LPCW}+1\)
1 to 105
1 to \(\mathrm{LPCW}+1\)
1 to IDIM \(*\) NCWD
1 to NCWD
1 to IDIM
1 to LPCW
1 to LPCW & 15b Q2
14b SBFL
Q2
Q2
Q2
Q2
Q2
Q2
BFL
\(*\)
Q14
Q2
Q2
Q15
Q15
Q15
Q14
\(\#\)
Q14
Q11
Q5
15b Q2
\(15 b\) Q2
15b Q2 & \begin{tabular}{l}
Buffer for perceptual weighting filter hybrid window \\
Buffer for synthesis filter hybrid window \\
Short-term postfilter memory, all-zero section \\
Short-term postfilter memory, all-pole section \\
Uniform PCM input speech sample \\
Sum of absolute value of postfiltered speech \\
Sum of absolute value of decoded speech \\
Perceptually weighted speech vector \\
(Gain-normalized) VQ target vector \\
Scratch array for temporary working space \\
Short-term postfilter tilt-compensation coefficient \\
Memory of weighting filter 4, all-zero portion \\
Memory of weighting filter 4, all-pole portion \\
Window function for synthesis filter \\
Window function for log-gain predictor \\
Window function for weighting filter \\
Perceptual weighting filter pole controlling vector \\
Work Space array for intermediate variables \\
Perceptual weighting filter zero controlling vector \\
Shape codebook array \\
Energy of convolved shape codevector \\
Zero input response \\
Memory of weighting filter 10, all-zero portion \\
Memory of weighting filter 10 , all-pole portion
\end{tabular} \\
\hline \[
\begin{array}{ll}
\text { SFL } \\
\text { BFL } & \text { I } \\
\text { SBFL } & \\
\text { Qx } & \\
\text { 14b or15b } \\
\# & \text { I } \\
\text { * } & \text { TEMP }
\end{array}
\] & \multicolumn{3}{|l|}{\begin{tabular}{l}
Scalar floating point \\
Block floating point \\
Segmented block floating point \\
Qx format \\
Indicates 14- or 15-bit precision, all others are assumed full 16-bit precision \\
Defined by use, can be BFL or fixed Q , since it is scratch memory \\
is a temporary working array and is used in several blocks; its Q format may change from block to block.
\end{tabular}} \\
\hline
\end{tabular}

\section*{G. 5 Log-gain tables for gain and shape codebook vectors}

See Tables G. 3 and G.4.

TABLE G.3/G. 728
Floating point gain in dB and Q11 fixed point representation for gain codebook vectors
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Index } & dB & Fixed point \\
\hline 0 & 4 & -5.7534180 & -11783 \\
1 & 5 & -0.8925781 & -1828 \\
2 & 6 & 3.9682620 & 8127 \\
3 & 7 & 8.8291020 & 18082 \\
\hline \multicolumn{1}{|c|}{ NOTE - To obtain the fixed point value, multiply the floating point value by \(2048=211\)} \\
\hline
\end{tabular}

\section*{Floating point gain in dB and Q11 fixed point representation for shape codebook vectors}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Index & dB & Fixed point & Index & dB & Fixed point & Index & dB & Fixed point \\
\hline 0 & -0.1108398 & -227 & 43 & 1.1064450 & 2266 & 85 & 1.7133790 & 3509 \\
\hline 1 & 5.0332030 & 10308 & 44 & 7.0932620 & 14527 & 86 & 0.4252930 & 871 \\
\hline 2 & 3.1977540 & 6549 & 45 & 9.1738280 & 18788 & 87 & 1.0693360 & 2190 \\
\hline 3 & 3.7856450 & 7753 & 46 & 6.3623050 & 13030 & 88 & 2.7080080 & 5546 \\
\hline 4 & 3.7094730 & 7597 & 47 & 3.0458980 & 6238 & 89 & 7.4887700 & 15337 \\
\hline 5 & 8.0874020 & 16563 & 48 & 0.8911133 & 1825 & 90 & 1.8105470 & 3708 \\
\hline 6 & 3.1279300 & 6406 & 49 & 4.4384770 & 9090 & 91 & 1.1748050 & 2406 \\
\hline 7 & 5.8266600 & 11933 & 50 & 0.1030273 & 211 & 92 & 2.8076170 & 5750 \\
\hline 8 & 6.6254880 & 13569 & 51 & 0.9218750 & 1888 & 93 & 3.6806640 & 7538 \\
\hline 9 & 5.1606450 & 10569 & 52 & 8.8320310 & 18088 & 94 & 1.9101560 & 3912 \\
\hline 10 & 7.9726560 & 16328 & 53 & 11.0141600 & 22557 & 95 & 1.7299800 & 3543 \\
\hline 11 & 3.1914060 & 6536 & 54 & 5.3188480 & 10893 & 96 & -4.9335940 & -10104 \\
\hline 12 & 7.7163090 & 15803 & 55 & 8.8652340 & 18156 & 97 & 0.1479492 & 303 \\
\hline 13 & 5.6997070 & 11673 & 56 & 1.6728520 & 3426 & 98 & -3.0083010 & -6161 \\
\hline 14 & 10.4091800 & 21318 & 57 & 6.5429690 & 13400 & 99 & -0.5576172 & -1142 \\
\hline 15 & 4.4433590 & 9100 & 58 & -2.1362300 & -4375 & 100 & 1.8881840 & 3867 \\
\hline 16 & 5.9790040 & 12245 & 59 & 3.8916020 & 7970 & 101 & 2.8979490 & 5935 \\
\hline 17 & 5.8681640 & 12018 & 60 & 3.7861330 & 7754 & 102 & -3.5161130 & -7201 \\
\hline 18 & 1.2221680 & 2503 & 61 & 12.3388700 & 25270 & 103 & -0.3706055 & -759 \\
\hline 19 & 7.1728520 & 14690 & 62 & 2.5942380 & 5313 & 104 & -1.0219730 & -2093 \\
\hline 20 & 8.8818360 & 18190 & 63 & 7.6245120 & 15615 & 105 & -1.3979490 & -2863 \\
\hline 21 & 14.0629900 & 28801 & 64 & -3.0742190 & -6296 & 106 & 1.0825200 & 2217 \\
\hline 22 & 8.2045900 & 16803 & 65 & 2.2021480 & 4510 & 107 & -1.5834960 & -3243 \\
\hline 23 & 9.9272460 & 20331 & 66 & 1.0751950 & 2202 & 108 & 3.0083010 & 6161 \\
\hline 24 & 8.7983400 & 18019 & 67 & -3.5297850 & -7229 & 109 & 2.8579100 & 5853 \\
\hline 25 & 12.1679700 & 24920 & 68 & 1.5361330 & 3146 & 110 & 3.7104490 & 7599 \\
\hline 26 & 7.8901370 & 16159 & 69 & -1.3759770 & -2818 & 111 & 3.2944340 & 6747 \\
\hline 27 & 8.6025390 & 17618 & 70 & \(-1.3056640\) & -2674 & 112 & -0.9770508 & -2001 \\
\hline 28 & 11.2656300 & 23072 & 71 & -0.7651367 & -1567 & 113 & 4.9892580 & 10218 \\
\hline 29 & 13.7085000 & 28075 & 72 & 0.8989258 & 1841 & 114 & -0.0263672 & -54 \\
\hline 30 & 9.3598630 & 19169 & 73 & 2.8334960 & 5803 & 115 & 0.9335938 & 1912 \\
\hline 31 & 12.5600600 & 25723 & 74 & 3.8203130 & 7824 & 116 & 5.6127930 & 11495 \\
\hline 32 & 4.2333980 & 8670 & 75 & 0.1557617 & 319 & 117 & 5.1635740 & 10575 \\
\hline 33 & 4.9165040 & 10069 & 76 & 0.8862305 & 1815 & 118 & 2.2055660 & 4517 \\
\hline 34 & 0.2456055 & 503 & 77 & 0.8618164 & 1765 & 119 & 2.0893550 & 4279 \\
\hline 35 & 4.2221680 & 8647 & 78 & 3.3930660 & 6949 & 120 & 0.8852539 & 1813 \\
\hline 36 & 5.4516600 & 11165 & 79 & 1.2128910 & 2484 & 121 & 0.2763672 & 566 \\
\hline 37 & 9.0073240 & 18447 & 80 & 1.3710940 & 2808 & 122 & 2.2309570 & 4569 \\
\hline 38 & 2.0820310 & 4264 & 81 & 4.7431640 & 9714 & 123 & 2.0278320 & 4153 \\
\hline 39 & 8.4868160 & 17381 & 82 & -2.0581050 & -4215 & 124 & 1.6445310 & 3368 \\
\hline 40 & 1.7241210 & 3531 & 83 & 3.2607420 & 6678 & 125 & 5.4584960 & 11179 \\
\hline 41 & 5.1479490 & 10543 & 84 & 1.2861330 & 2634 & 126 & 0.8271484 & 1694 \\
\hline 42 & -1.1679690 & -2392 & & & & 127 & 0.3715820 & 761 \\
\hline
\end{tabular}

\footnotetext{
NOTE - To obtain the fixed point value, multiply the floating point value by \(2048=2^{11}\).
}

\section*{G. 6 Integer values of gain codebook related arrays}

This subclause includes the equivalent integer values for the floating point table given in Annex B/G. 728 (see Table G.5).

TABLE G.5/G. 728

\section*{Integer values of gain codebook related arrays}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ Array index } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline GQ (Q13) & 4224 & 7392 & 12936 & 22638 & -4224 & -7392 & -12936 & -22638 \\
\hline GB (Q13) & 5808 & 10164 & 17787 & \(*\) & -5808 & -10164 & -17787 & \(*\) \\
\hline G2 (Q12) & 4224 & 7392 & 12936 & 22638 & -4224 & -7392 & -12936 & -22638 \\
\hline GSQ (Q11) & 545 & 1668 & 5107 & 15640 & 545 & 1668 & 5107 & 15640 \\
\hline * Can be any arbitrary value (not used).
\end{tabular}

\section*{G. 7 Encoder and decoder main program pseudo-codes}

This subclause gives the pseudo-codes for the encoder main program and the decoder main program. The main purpose is to show the order in which various blocks are executed. Therefore, only the block execution sequence is shown and no low-level detail of parameter passing is described. Note that the allowable sequence of execution is not unique. There are many different orders of execution which all achieve bit-exact result. The pseudo-codes shown below are just two examples. However, if a different order of block execution is used, the implementer should make sure it gets bitexact results.

The pseudo-code for the encoder main program is now given below.
Initialize all encoder variables to their initial values.
Initialize \(\mathrm{y} 2(\mathrm{)}\) ) by executing blocks 14 and 15 with \(\mathrm{h}=[8192,0,0,0,0]\)
ILLCOND = .FALSE.
ILLCONDW \(=\). FALSE.
ILLCONDG \(=\). FALSE.
ICOUNT \(=0\)
VEC_LOOP:
If ICOUNT \(=4\), set ICOUNT \(=0 \quad \mid\) Reset vector counter
ICOUNT \(=\) ICOUNT \(+1 \quad\) | Update vector counter
Get one vector of input speech from the input buffer
Convert input speech vector to the range [ \(-16384,+16383]\),
then assign to \(S() \quad \mid\) Q2 representation of \([-4096,+4095.75]\)
| Check whether to update
| filter coefficients
If ICOUNT \(=3\), do the next 4 lines
If ILLCOND = .FALSE., do block 51
If ILLCONDW = .FALSE., do block 38
do block 12
do blocks 14 and 15
If ICOUNT \(=2\) and ILLCONDG \(=\).FALSE., then do block 45
do blocks \(46,98,99\), and 48
| Start once-per-vector processing
| Get backward-adapted gain
| GSTATE(1:9) shifted down 1 position
do "blockzir" (blocks 9 and 10 during zero-input response calculation)
\(\begin{array}{ll}\text { do block } 4 & \text { | Perceptual weighting filter } \\ \text { do block } 11 & \text { | VQ target vector computation }\end{array}\)
do block 16
do block 13
do blocks 17 and 18
put out ICHAN to the communication channel
do blocks 19 and 21
do blocks 9 and 10 during filter memory update do blocks 93, 94, 96, and 97
| VQ target vector normalization
| Time-reversed convolution
| Excitation codebook search
| Scale selected excitation codevector
\| Get ()
| Update log-gain; note that the
| 3 delay units in the gain adapter just
| happen naturally in the looping
| process and need not be
| implemented explicitly
| Update gain predictor memory
| I = starting address of STTMP()
| Update STTMP()
copy \(\mathrm{ST}(1: 5)\) to \(\operatorname{STTMP}(\mathrm{I}+1: \mathrm{I}+5)\)
NLSSTTMP(ICOUNT) \(=\) NLSST
\(\mathrm{I}=(\mathrm{ICOUNT}-3) * \mathrm{IDIM}\)
If ICOUNT \(<3\), set \(\mathrm{I}=\mathrm{I}+20\)
copy \(\mathrm{S}(1: 5)\) to \(\operatorname{STMP}(\mathrm{I}+1: \mathrm{I}+5)\)

If \(\operatorname{ICOUNT}=4\), do the next 2 lines
do block 49
do block 50

If \(\mathrm{ICOUNT}=2\), do the next 2 lines
do block 36
do block 37

If \(\operatorname{ICOUNT}=1\), do the next 6 lines
\(\operatorname{GTMP}(1)=\operatorname{GSTATE}(4)\)
\(\operatorname{GTMP}(2)=\operatorname{GSTATE}(3)\)
\(\operatorname{GTMP}(3)=\operatorname{GSTATE}(2)\)
GTMP(4) = GSTATE \((1)\)
do block \(43 \quad \mid\) Output ill-condition flag = ILLCONDG
do block 44
| Output predictor coefficients = GPTMP( )
| Output ill-condition flag = ILLCONDG
| End of once-per-frame processing

Go to VEC_LOOP

Next, the pseudo-code for the decoder main program is given below. Again, only the block execution sequence is shown and no low-level detail of parameter passing is described.

Initialize all decoder variables to their initial values.
```

ILLCOND = .FALSE.
ILLCONDG = .FALSE.
ILLCONDP = .FALSE.
ICOUNT = 0

```
VEC_LOOP:
    If ICOUNT \(=4\), set ICOUNT \(=0 \quad \mid\) Reset vector counter
    ICOUNT \(=\) ICOUNT \(+1 \quad \mid\) Udate vector counter
    Get ICHAN of the current vector from the input buffer
    Obtain the shape index IS and gain index IG from ICHAN

If ICOUNT \(=3\), do the next line
If ILLCOND \(=\). FALSE., do block 51

If ICOUNT \(=2\) and ILLCONDG \(=\). FALSE., then do block 45
do blocks \(46,98,99\), and 48
do blocks 19 and 21
do block 32
If \(\operatorname{ICOUNT}=1\), do block 85
do block 81
If ICOUNT \(=3\), do the next 3 lines
do block 82
do block 83
do block 84
do block 71
do block 72
do blocks 73 and 74
do block 75
do block 76
do block 77
| Start once-per-vector processing
| Get backward-adapted gain
| GSTATE(1:9) shifted down 1 position
| Scale selected excitation codevector
| Update short-term postfilter coefficients
| Pitch period extraction
| Compute pitch predictor tap
| Update long-term postfilter coefficients
| Long-term postfilter
| Short-term postfilter
| Calculate sums of absolute values
| Ratio of sums of absolute values
| Low-pass filter of scaling factor
| Gain control of postfilter output
do blocks 93, 94, 96, and 97

GSTATE(1) \(=\) output of block 97
I = (ICOUNT -1\() *\) IDIM
copy ST(1:5) to STTMP(I + 1:I +5)
NLSSTTMP(ICOUNT) \(=\) NLSST

If \(\mathrm{ICOUNT}=4\), do the next 5 lines
do block 49
do block 50 , order 1 to 10

NLSAPF \(=\) NLSATMP
copy \(\operatorname{ATMP}(2: 11)\) to \(\operatorname{APF}(2: 11)\)
continue block 50 , order 11 to 50

If \(\operatorname{ICOUNT}=1\), do the next 6 lines
\(\operatorname{GTMP}(1)=\operatorname{GSTATE}(4)\)
GTMP(2) = GSTATE (3)
GTMP(3) = GSTATE (2)
GTMP(4) = GSTATE \((1)\)
do block 43
do block 44
| Update GTMP( ) in one shot
| Update log-gain; note that the | 3 delay units in the gain adapter just | happen naturally in the looping | process and need not be | implemented explicitly | Update gain predictor memory
| I = starting address of STTMP( )
| Update STTMP()
| End of once-per-vector processing
| Start once-per-frame processing
| Output ill-condition flag = ILLCOND
| Output predictor coefficients \(=\) ATMP( ) | with NLSATMP
| Output ill-condition flag = ILLCONDP
| Save the 10th-order predictor
| for postfilter use later
| Continue to finish block 50
| Output predictor coefficients \(=\) ATMP ( )
| with NLSATMP
| Output ill-condition flag = ILLCOND

\footnotetext{
| Output ill-condition flag = ILLCONDG
| Output predictor coefficients = GPTMP( )
| Output ill-condition flag = ILLCONDG
| End of once-per-frame processing
}```

