
INTERNATIONAL TELECOMMUNICATION UNION

)454 '������ ��!NNEX�'
TELECOMMUNICATION (11/94)
STANDARDIZATION SECTOR
OF ITU

'%.%2!,��!30%#43��/&��$)')4!,
42!.3-)33)/.��3934%-3

#/$).'��/&��30%%#(��!4������KBIT�S
53).'��,/7$%,!9��#/$%��%8#)4%$
,).%!2��02%$)#4)/.

!..%8��'�������KBIT�S��&)8%$
0/).4��30%#)&)#!4)/.

)454��2ECOMMENDATION��'������ ��!NNEX�'

(Previously “CCITT Recommendation”)

FOREWORD

The ITU-T (Telecommunication Standardization Sector) is a permanent organ of the International Telecommunication
Union (ITU). The ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommen-
dations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Conference (WTSC), which meets every four years, establishes the
topics for study by the ITU-T Study Groups which, in their turn, produce Recommendations on these topics.

The approval of Recommendations by the Members of the ITU-T is covered by the procedure laid down in WTSC
Resolution No. 1 (Helsinki, March 1-12, 1993).

ITU-T Recommendation G.728 – Annex G was prepared by ITU-T Study Group 15 (1993-1996) and was approved
under the WTSC Resolution No. 1 procedure on the 1st of November 1994.

NOTE

In this Recommendation, the expression “Administration” is used for conciseness to indicate both a telecommunication
administration and a recognized operating agency.

 ITU 1995

All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying and microfilm, without permission in writing from the ITU.

Recommendation G.728 – Annex G (11/94) i

CONTENTS
Recommendation G.728 – Annex G (11/94)

Page

Annex G – 16 kbit/s fixed point specification... 1
G.1 Introduction .. 1

G.1.1 General philosophy ... 1
G.1.2 Numerical representation ..2
G.1.3 Arithmetic operations.. 3

G.2 Algorithmic changes... 8
G.2.1 Changes in the backward vector gain adapter (block 20) ... 8
G.2.2 Changes in the Levinson-Durbin recursion modules .. 12

G.3 Pseudo-code for other modules of Recommendation G.728 .. 18
G.3.1 Block 4 – Pseudo-code for weighting filter .. 20
G.3.2 Blockzir – Pseudo-code for synthesis and perceptual weighting filters during zero-input

response computation.. 21
G.3.3 Blocks 9 and 10 – Pseudo-code for synthesis and perceptual weighting filter memory

updates .. 23
G.3.4 Block 11 – VQ target vector computation .. 26
G.3.5 Block 12 – Impulse response vector calculation... 26
G.3.6 Block 13 – Time-reversed convolution... 27
G.3.7 Block 14 – Shape codevector convolution and energy calculation................................... 27
G.3.8 Block 16 – VQ target vector normalization .. 28
G.3.9 Block 17 – VQ search error calculator and best codebook index selector........................ 29
G.3.10 Block 19 – Excitation VQ codebook and block 21 – Gain scaling unit 30
G.3.11 Block 32 – Decoder synthesis filter .. 31
G.3.12 Block 36 – Pseudo-code for hybrid windowing module... 33
G.3.13 Block 38 – Weighting filter coefficient calculator.. 35
G.3.14 Block 43 – Hybrid windowing module... 36
G.3.15 Block 45 – Bandwidth expansion module .. 38
G.3.16 Block 46 – Log-gain linear prediction .. 39
G.3.17 Block 49 – Hybrid window module for synthesis filter .. 41
G.3.18 HWMCORE – Core of hybrid window module ... 43
G.3.19 Block 51 – Bandwidth expansion module .. 47
G.3.20 Blocks 71 and 72 – Long-term and short-term postfilters .. 48
G.3.21 Blocks 73 and 74 – Sum of absolute value calculators ... 49
G.3.22 Block 75 – Scaling factor calculator ... 50
G.3.23 Block 76 – First-order lowpass filter and block 77 – Output gain scaling unit 50
G.3.24 Block 81 – 10th order LPC inverse filter .. 51
G.3.25 Block 82 – Pitch period extraction module... 51
G.3.26 Block 83 – Pitch predictor tap calculator .. 54
G.3.27 Block 84 – Long-term postfilter coefficient calculator... 55
G.3.28 Block 85 – Short-term postfilter coefficient calculator... 56

G.4 LD-CELP internal variable representations.. 57
G.5 Log-gain tables for gain and shape codebook vectors .. 60
G.6 Integer values of gain codebook related arrays .. 62
G.7 Encoder and decoder main program pseudo-codes .. 62

Recommendation G.728 – Annex G (11/94) 1

Recommendation G.728

Recommendation G.728 – Annex G (11/94)

CODING OF SPEECH AT 16 kbit/s USING LOW-DELAY
CODE EXCITED LINEAR PREDICTION

(Geneva, 1992)

Annex G

16 kbit/s fixed point specification

(Geneva, 1994)

(This annex forms an integral part of this Recommendation)

G.1 Introduction

The purpose of this annex is to describe in sufficient detail how ITU-T Recommendation G.728 for 16 kbit/s LD-CELP
can be implemented on a fixed point arithmetic device. A fixed point implementation based on this description should be
capable of fully interworking with a floating point version of Recommendation G.728 and producing an output signal of
equivalent quality, whether that signal is speech or an in-band data signal. By fixed point arithmetic we mean a 16-bit
word size. Most 16-bit devices have other word sizes as well. For example, the product of two 16-bit words is a 32-bit
word. So, the product register of such a device is typically 32 bits wide. The accumulator stores the sum of products, so
it must also be at least 32 bits wide. Thus, although we are describing a “16-bit implementation,” some internal state
variables have other than 16-bit precision.

It is the intent of this annex to provide a complete bit exact description of all operations necessary for the implementation
of Recommendation G.728 on a 16-bit fixed point digital signal processor having a 32-bit product register and at least
two 32-bit (or greater) accumulators. In numerous instances throughout the annex there are possible alternative methods
to perform operations such that the exact same result is obtained. In such instances the alternate method may be
substituted. However, if the exact same result is not obtained for all possible inputs, then the substitution should not be
made. Since the number of possible alternatives is very large, no attempt has been made to point out the great majority of
them.

This annex is divided into seven subclauses. The first subclause is an introduction and contains further information about
fixed point signal processing and the conventions used throughout this annex. The second subclause contains
information about algorithmic changes which were made especially for fixed point implementation of Recommen-
dation G.728. The third subclause gives fixed point pseudo-code for the remaining modules of the coder. The fourth
subclause provides an overall summary of state variable representations for the fixed point coder. The last subclauses
contain tables pertaining to the backward vector gain adapter.

G.1.1 General philosophy

This annex is an annex to ITU-T Recommendation G.728. It is therefore unnecessary to repeat all of the details and
discussions in that Recommendation. Where it is helpful, some of the details will be reviewed. In that Recommendation,
complete computational details were given for a floating point implementation. Where the computational details are
unchanged except for the substitution of fixed point arithmetic operations for floating point, no computational details
will be given in this annex.

2 Recommendation G.728 – Annex G (11/94)

The greatest changes from the floating point version of the coder to this one are:

1) the introduction of different types of arithmetic operations and precisions for the state variables;

2) a changed, but mathematically equivalent method for the backward vector gain adaptation; and

3) the introduction of variable precision in the calculation of the predictor coefficients in the Levinson-
Durbin recursion.

The remainder of this first subclause of the annex gives details on the different numerical representations and fixed point
arithmetic. The second subclause of the annex gives details on the two major algorithmic changes mentioned above, the
backward vector gain adaptation and the Levinson-Durbin recursion. The third subclause of the annex gives pseudo-
code for the hybrid windowing module, block 49 in Recommendation G.728. The algorithm for this module is
unchanged, but the implementation is complicated by the use of fixed point arithmetic. The pseudo-code for this module
is a good example of the types of changes which must be made throughout the other modules in the coder. The fourth
subclause of the annex contains a table corresponding to Table 2/G.728 giving the numerical representation of all state
variables used in the encoder and decoder.

For consistency in this annex, all representations assume that 2’s complement arithmetic is used throughout. Alternative
representations which can produce mathematically equivalent results can be used to implement the coder.

G.1.2 Numerical representation

The basic unit of a 16-bit fixed point implementation is the 16-bit word. When representing pure integers, it has a range
of –32768 to +32767. The representation for 1 is given by 0000000000000001 and the representation for –32768 is
given by 1000000000000000. Here the right-most bit represents the least significant bit (LSB) and the left-most bit
represents the most significant bit (MSB). For 2’s complement arithmetic, if the MSB is 0, the number is positive,
while if the MSB is 1, the number is negative. We can number the bits from 0 to 15, with bit 0 being the LSB and bit 15
the MSB.

To represent numbers with fractional parts, a decimal point must be assigned between two of the bits. For example, to
represent numbers between –1.0 and +1.0, we would assign the decimal point between bits 14 and 15. This particular
format is called Q15 because there are 15 bits to the right of the decimal point. Qn format is defined to have n bits to the
right of the decimal point. Purely integer data would be represented by Q0 format.

Some data requires a greater precision than representation by a 16-bit word. To accommodate such data, double
precision format is defined. This means that there are 32 bits of information. Whereas 16-bit words are capable of
representing data with a precision of 1 in 215, 32-bit registers such as the product register or the accumulator on most
commercially available DSP chips can represent data with a precision of 1 in 231. Such words are referred to as double
precision. Once again, there must be a decimal point to indicate the dynamic range of the word as well.

Some data has a greater range than can be represented by any fixed 16-bit format. Perhaps 16 bits of precision is
adequate, but the scaling of the value must be dynamic. Such data can be represented by single precision floating point.
This means that the data is represented by two words. The first 16-bit word contains a number whose magnitude falls
between 16384 and 32767. This is the mantissa of the value and we say that its value is represented in normalized format
because of the range of its magnitude. If the value is positive, then bit 14 of the mantissa is a 1. The second word
contains the number of left shifts (NLS) used to put the value in normalized format. Thus, the second word specifies the
Q format of the mantissa. If this format is used for a single value, it is called scalar floating point.

It is also possible to represent an array of n values with n + 1 words using block floating point. Using this format, the
largest magnitude value in the array would be represented the same way as just described for scalar floating point. All
other values in the array would share the same NLS. Their mantissas would not necessarily be in normalized format. An
extension of this representation is segmented block floating point. In this case an array of mn values is represented by
m(n + 1) words. The array is subdivided into m sub-arrays of size n and each sub-array is represented in block floating
point with n words representing the magnitudes and 1 word representing the NLS.

Recommendation G.728 – Annex G (11/94) 3

The other type of representation used is double precision floating point. In this instance double precision integers are
used for the mantissas and one single precision word is used to represent the NLS. In summary, the different types of
representations used are single precision fixed point, double precision fixed point for the accumulators and product
register, scalar single precision floating point, and single and double precision block floating point formats.

G.1.3 Arithmetic operations

In multiplying two 16-bit words, the result is a 32-bit number. This is the reason that product registers are customarily
double precision. Since product registers can be added the accumulators, the accumulators must also be at least 32 bits
wide. For a sum of products type of computation, as in convolution or FIR filtering, the accumulator could overflow.
This problem of overflow is addressed differently in commercially available DSP chips.

In IIR filtering, the sum of products, or the result of the multiply-accumulate operations, becomes part of the memory for
the filter and is used again the next time the filtering operation is performed. Specifically, the 16 bits in the high word of
the output will be used as an input to the multiplier. An overflow which converts a large positive value to a large
negative value or vice versa is known as wrap around and will cause a big difference in the output of the filter. To guard
against this, we use saturation mode arithmetic for all IIR filters and anywhere else that a sum of products will later be
used as an input for a multiplier. Saturation mode means that if the high word becomes greater than 32767 or less than –
32768, it will be clipped to these values in order to prevent wrap around.

G.1.3.1 Shifting and rounding

In discussing arithmetic operations, we begin with shifting and rounding. If we multiply a Qn format value by a Qm
format value number, the result in the product register will have double precision format Q(n + m). If the result needs to
be stored or added at a different precision, then the result must be shifted and/or rounded to the correct precision.

Two types of shifts are possible, left shifts and right shifts. On commercially available DSP chips, shifts can usually be
done in the accumulator. Also, it is usually possible to shift the result in a product register before adding it to or storing it
in the accumulator. As their names imply, in a left shift, the bits are moved to the left and in a right shift they are moved
to the right. If we shift a value k bits to the right, then the least significant k bits of the old value are lost. If we shift a
value to the left, we need to check for possible overflows. The expression to indicate a right shift of k bits for a variable
TMP is

TMP = TMP >> k

and the expression for a left shift of k bits is given by

TMP = TMP << k

In some cases k is a variable and can even be negative. In those instances when k is negative, a left shift by k bits is
defined to be a right shift by –k bits. Similarly, a right shift by k bits when k is negative is equivalent to a left shift by –
k bits. Where the possibility of k being negative exists, the pseudo-code includes a test for this possibility followed by
the reverse shift by –k bits if k is negative. While negative shifts have been defined above mathematically, they cannot
be implemented on most devices or in some computer languages.

It is worth noting one particular anomaly of right shifts for 2’s complement arithmetic. Suppose that the value to be right
shifted is 3 and the shift is 1 bit. The 16-bit representation of 3 is given by 0000000000000011. If we right shift this by
one bit, we get 0000000000000001 = 1. If the value to be right shifted is –3, then the representation is
1111111111111101. After a right shift, the result is 1111111111111110 = –2. The first item to note is that for right
shifting, the sign bit is extended. The anomaly is that the magnitude of the answers for these two examples do not agree.
If a sign-magnitude representation were used, they would agree. Implementers should be aware of this difference.

4 Recommendation G.728 – Annex G (11/94)

In simulating the coder an additional, more subtle difference was found which is compiler dependent. It is possible that
in the algorithm an instruction is generated to right shift a word by greater than the size of that word. For example, it
could be to shift a 16-bit word by 18 bits. If the operation were implemented by doing 18 individual 1-bit right shifts, the
result of such an operation should be 0 or –1, depending on the sign of the original data. However, it was found that
some compilers consider an 18-bit shift to be an illegal instruction and produce spurious results. Implementers should
verify how their target hardware and language compiler would handle such a case.

Rounding is the process of converting from double precision to single precision in the accumulator. Usually rounding is
performed immediately preceding the storage of the value to a 16-bit word in memory. An accumulator consists of a
high word and a low word (and possibly the additional bits to the left of the high word). Usually, either the high word or
the low word can be stored to memory, or both on two successive instructions. If we consider the accumulator to have a
decimal point placed between the high word and the low word, then rounding is the operation of converting the
accumulator to the integer value closest to the non-integer value stored in the original two words. The usual convention
for 2’s complement numbers is to test the MSB in the low word. If it is 1, add 1 to the value in the high word. Then zero
out the low word. For example, if the value in the accumulator is 1.5, the high word is given by 0000000000000001 and
the low word is given by 1000000000000000. Since the MSB of the low word is 1, add 1 to the high word and zero out
the low word. The result is 0000000000000010 for the high word, or 2. If the value in the accumulator is –1.5, then the
high word is given by 1111111111111110 and the low word is given by 1000000000000000. Since the MSB of the low
word is 1, add 1 to the high word and then zero the low word. The result is 1111111111111111 = –1. This is similar to
the anomaly for right shifts.

In performing the rounding function it is necessary to be aware of the possibility of overflow. For example, if the high
word value is 0111111111111111 (= 32767) and the low word has a 1 in the MSB, then following the usual convention
results in an overflow. Depending on the processor, the output word could become 1000000000000000 which represents
–32768. In such a case, the usual convention is not followed. Instead the value is saturated to avoid an unrepresentable
value.

In the pseudo-code examples, the rounding function described above is represented as RND (.).

Pseudo-code for VSCALE

One new module of pseudo-code which needs to be introduced at this point performs vector scaling for block floating
point representation. The name given to this module is VSCALE. Its purpose is to scale a vector so that the largest
magnitude of its elements is left justified as desired, i.e. represented in normalized format. This module can be used for
vectors where the first element is known to have the largest element or for vectors where the location of the largest
element is unknown. The inputs to VSCALE are IN, the input vector to be scaled, LEN, the length of the input vector,
SLEN, the search length for finding the maximum value, and MLS, the maximum number of left shifts permitted. The
outputs of VSCALE are OUT, the output vector, and NLS, the number of left shifts used for scaling the input vector.
The input and output vectors are assumed to be of the same type and can be either single precision block floating point
(16-bit integers) or double precision block floating point (32-bit integers). In the case of single precision vectors,
MLS = 14, while for double precision vectors, MLS = 30. Sometimes, it is desired to use less than 16 bits or 32 bits to
represent a variable. For example, there are several variables which are specified to have either 14 or 15 bits of precision.
In these cases, set MLS = 12 or 13, respectively. Because of this possibility, there is also a possibility that rather than left
shifts to normalize the variable, it will require right shifts. In those instances, the NLS value returned will be negative.
For example, if NLS = –1 is returned, this indicates that a right shift of 1 bit was necessary. The module assumes that
there is an accumulator (AA0) available for shifting and that it has at least 32 bits of precision. If the maximum element
is known to be the first, set SLEN = 1. Otherwise, set SLEN = LEN and the entire vector will be searched for the
maximum value.

Recommendation G.728 – Annex G (11/94) 5

The following code follows the convention that data is represented in 2’s complement form. It treats the cases where
largest magnitude values are positive or negative, separately.

SUBROUTINE VSCALE(IN, LEN, SLEN, MLS, OUT, NLS)
AA0 = IN(1) | Find maximum positive value of input
AA1 = IN(1) | Find maximum negative value of input
If SLEN = 1, skip the next 3 lines

For I = 2, 3, ..., SLEN, do the next two lines
If IN(I) > AA0, set AA0 = IN(I)
If IN(I) < AA1, set AA1 = IN(I)

| Case 1: zero input vector
If AA0 = 0 and AA1 = 0, do the next 3 lines

For I = 1, 2, ..., LEN, set OUT(I) = 0
NLS = MLS + 1 | Let 0 have one more bit of
Exit this subroutine | left shift than 1

NLS = 0 | Initialize NLS

| Determine Case 2 or Case 3
If AA0 < 0 or AA1 < –AA0, then do the following indented lines

| Case 2, negative is larger
MAXI = –2MLS | Mantissa lower bound after shift
MINI = 2 * MAXI
If AA1 < MINI, then do the following doubly indented lines to find the number of right shifts needed and then scale the
elements

LOOP1R: AA1 = AA1 >> 1
NLS = NLS – 1 | Negative NLS = => right shifts
If AA1 < MINI, go to LOOP1R
For I = 1, 2, 3, ..., LEN, do the next line

OUT(I) = IN(I) >> –NLS
Exit this subroutine

LOOP1L: If AA1 < MAXI, go to SCALE1 | Find number of left shifts
AA1 = AA1 << 1
NLS = NLS + 1
Go to LOOP1L

SCALE1: For I = 1, 2, 3, ..., LEN, do the next line
OUT(I) = IN(I) << NLS

Exit this subroutine

Else, do the following indented lines
| Case 3, positive number is larger

MINI = 2MLS | Mantissa lower bound after shift
MAXI = MINI – 1 | 2 * MIN will overflow if MLS = 30
MAXI = MAXI + MINI | Mantissa upper bound
If AA0 > MAXI, then do the following doubly indented lines to find the number of right shifts needed and then scale the
elements

LOOP2R: AA0 = AA0 >> 1
NLS = NLS – 1
If AA0 > MAXI, go to LOOP2R
For I = 1, 2, 3, ..., LEN, do the next line

OUT(I) = IN(I) >> –NLS
Exit this subroutine

LOOP2L: If AA0 ≥ MINI, go to SCALE2
AA0 = AA0 << 1
NLS = NLS + 1
Go to LOOP2L

SCALE2: For I = 1, 2, 3, ..., LEN, do the next line
OUT(I) = IN(I) << NLS

Exit this subroutine

6 Recommendation G.728 – Annex G (11/94)

In some instances we find that it is not actually desired to re-scale the data, but merely to find the number of left shifts
required if one wanted to re-scale the data. The following routine uses the same inputs as VSCALE but provides only
NLS as an output. It omits the scaling of the input vector, but is otherwise the same as VSCALE.

SUBROUTINE FINDNLS(IN, SLEN, MLS, NLS)
AA0 = IN(1) | Find maximum positive value of input
AA1 = IN(1) | Find maximum negative value of input
If SLEN = 1, skip the next 3 lines

For I = 2, 3, ..., SLEN, do the next two lines
If IN(I) > AA0, set AA0 = IN(I)
If IN(I) < AA1, set AA1 = IN(I)

| Case 1: zero input vector
If AA0 = 0 and AA1 = 0, do the next 2 lines

NLS = MLS + 1 | Let 0 have one more bit of
Exit this subroutine | left shift than 1

NLS = 0 | Initialize NLS

| Determine Case 2 or Case 3

If AA0 < 0 or AA1 < –AA0, then do the following indented lines
| Case 2, negative is larger

MAXI = –2MLS | Mantissa lower bound after shift
MINI = 2 * MAXI
If AA1 < MINI, then do the following doubly indented lines to find the number of right shifts needed

LOOP1R: AA1 = AA1 >> 1
NLS = NLS – 1 | Negative NLS = => right shifts
If AA1 < MINI, go to LOOP1R
Exit this subroutine

LOOP1L: If AA1 < MAXI, exit this subroutine | Find NLS
AA1 = AA1 << 1
NLS = NLS + 1
Go to LOOP1L

Else, do the following indented lines
| Case 3, positive number is larger

MINI = 2MLS | Mantissa lower bound after shift
MAXI = MINI – 1 | 2 * MIN will overflow if MLS = 30
MAXI = MAXI + MINI | Mantissa upper bound
If AA0 > MAXI, then do the following doubly indented lines to find the number of right shifts needed

LOOP2R: AA0 = AA0 >> 1
NLS = NLS – 1
If AA0 > MAXI, go to LOOP2R
Exit this subroutine

LOOP2L: If AA0 ≥ MINI, exit this subroutine | Find NLS
AA0 = AA0 << 1
NLS = NLS + 1
Go to LOOP2L

G.1.3.2 Multiplication

Multiplication of two fixed point numbers results in a 32-bit number, usually stored in a product register in a DSP. If the
two fixed point numbers were in Qn and Qm formats, the result in the product register is in Q(n + m) format. Before
adding it to an accumulator, it may be necessary to shift the result as explained in the preceding subclause.

Recommendation G.728 – Annex G (11/94) 7

Multiplication of two floating point words is accomplished by fixed point multiplication of the two mantissas and
addition of the two NLS. As described above, the product is a 32-bit word with Q(n + m) format. If the product must be
converted back to floating point, then the product may need to be renormalized. For example, in the case of multiplying
two positive floating point words, the product must have a 1 in either bit 30 or 29. Renormalization is necessary if bit 30
is 0. This means one additional left shift is necessary. After the left shift, the product is represented in Q(n + m + 1)
format. If the product is to be stored in scalar floating point, it must be rounded before storing. If the product needs to be
in block floating point, the entire array needs to be renormalized, according to which value is now the largest in
magnitude.

Although double precision variables are used in parts of this coder, there are no double precision multiplications. In
some instances, double precision variables are multiplied, but in those cases, only the 16 most significant bits are used.
These instances are noted in the pseudo-code.

G.1.3.3 Addition

Addition of fixed point numbers requires that both be stored in the same Q format. Generally, the value which is stored
with the greater dynamic range determines which value must be changed to the appropriate Q format. For example, if
adding values stored in Q9 and Q11 formats, the value in the Q11 format must be right shifted by 2 bits before adding it
to the value stored in Q9 format.

Addition of scalar floating point numbers is similar. The two values must both have the same NLS. Again, the value with
the higher NLS needs to be right shifted to match the other value’s NLS. If the sum requires 17 bits for representation,
the sum in the accumulator can be right shifted by 1 bit and then rounded back to 16 bits and the new NLS will be one
less than the previous format. As an example, consider the case of adding two values whose NLS are 5 and 7. The value
whose NLS is 7 must be right shifted by 2 bits before it can be added to the other value. If both values have the same
sign, the sum of the two mantissas may have a magnitude greater than 32767. In this case, the value in the accumulator
must be shifted by one bit and then rounded. The NLS of the sum will be 4. If the two values are of opposite sign, the
result in the accumulator may have a mantissa whose magnitude is less than 16384. In this case, the result should be
renormalized by left shifting until the magnitude is greater than or equal to 16384 and the NLS increased by the number
of left shifts. For our example with the NLS being 5 and 7 initially, the final NLS can be no greater than 6 and no less
than 4.

Addition of block floating point numbers is complicated by the fact that the constraints are based on the largest
magnitude value. In this case, if two vectors have NLS of 5 and 7, the one with NLS of 7 must be right shifted by 2 bits.
Each of the pairs is summed. The largest of the resulting sums will determine whether renormalization is necessary.

G.1.3.4 Division

Division is not used nearly as frequently as addition or multiplication. The only divisions used are scalar floating point
divisions. The numerator and denominator are represented in normalized format, as is the quotient. The quotient’s NLS
is calculated by subtracting the NLS of the denominator from that of the numerator and adding 14. To explain this 14,
consider the case where the numerator was slightly larger than the denominator and both had NLS equal 0. The quotient
would have NLS equal 14 in this case and would be properly normalized. If the numerator’s mantissa is less than the
denominator’s, then the numerator should be left shifted by 1 bit and its NLS increased by 1 in order to compute the
NLS of the quotient. This guarantees that the mantissa of the quotient will be in normalized format.

Division occurs within Durbin’s recursion, a routine requiring full 16-bit precision in the result. Therefore, approximate
division routines are not sufficient. The mantissa of the result must have full 16-bit precision including rounding of the
17-bit result. Pseudo-code for such a division is given below.

If either the numerator or denominator is not initially stored in scalar floating point, it must first be converted to this
format. The function FLOAT(.) is used in the pseudo-code to represent such conversions. The argument could be either
single precision or double precision fixed point.

8 Recommendation G.728 – Annex G (11/94)

Pseudo-code for Floating Point Division

This routine is used for computing floating point division on a 16-bit fixed point device. It is assumed that there is at
least one 32-bit accumulator available. All inputs and outputs are 16-bit words.

Input: NUM, NUMNLS, DEN, DENNLS

Output: QUO, QUONLS

Function: Compute the quotient. NUM and NUMNLS are the mantissa and Q format for the numerator. DEN and
DENNLS are the mantissa and Q format for the denominator. QUO and QUONLS are the mantissa and Q format for the
quotient. All are assumed to be in normalized format. There is no test for DEN being zero – it is assumed that it is not zero.

SUBROUTINE DIVIDE(NUM, MUMNLS, DEN, DENNLS, QUO, QUONLS)
SIGN = 1 | First determine the
P = NUM * DEN | sign bit of the
If P < 0, set SIGN = –1 | quotient

QUONLS = NUMNLS – DENNLS + 14 | Next compute QUONLS
A0 = | NUM | | A0 is 32-bit accumulator

| | NUM | is in lower 16 bits
A1 = | DEN | | A1 can be 16 or 32-bit register

| if 32-bit, | DEN | is lower
| 16 bits

If A0 < A1, do the next 2 lines
QUONLS = QUONLS + 1
A0 = A0 << 1

QUO = 0 | Quotient initialization
I = 0 | Loop counter initialization

LOOP: QUO = QUO << 1 | Long division loop
If A0 ≥ A1, do the next 2 lines

QUO = QUO + 1
A0 = A0 – A1

A0 = A0 << 1
I = I + 1
If I < 15, GO TO LOOP

If A0 ≥ A1, set QUO = QUO + 1 | Take care of rounding

If SIGN < 0, set QUO = –QUO | Take care of the sign

G.2 Algorithmic changes

G.2.1 Changes in the backward vector gain adapter (block 20)

NOTE – This subclause refers to 3.8/G.728. Readers should familiarize themselves with 3.8/G.728 before attempting to
understand this subclause. The changes outlined in this subclause pertain to the once-per-vector computations for the backward vector
gain adpater. Wherever possible, the same notation used in Recommendation G.728 has been used here.

In this subclause we briefly describe the once-per-vector backward vector gain adapter operations in Recommen-
dation G.728 as implemented in floating point. We then describe a mathematically equivalent method which can be more
easily and accurately implemented on fixed point processors. Tables for values required by this alternate method are
given in the addendum to this annex.

The floating point operations can be described briefly as follows. The internal state variable array GSTATE, represented
by the symbol δ, contains the previous 10 offset-removed logarithmic gains. The symbol δ(n) denotes the offset-removed
logarithmic gain for vector n. The log-gain predictor output [the predicted version of δ(n)] for vector n is given by:

$() ()δ α δn n ii
i

= − −∑
=1

10
 (G-1)

Recommendation G.728 – Annex G (11/94) 9

As shown in Figure 6/G.728, before converting δ^(n) to the linear domain, a gain offset of 32 dB must be added and the
result checked to make sure that:

0 32 60≤ + ≤$()δ n (G-2)

Equivalently, we can say the allowed range for δ^(n) is:

− ≤ ≤32 28$()δ n (G-3)

The estimated gain in the linear domain is given by:

σ δ() ($())/n n= +10 32 20 (G-4)

The value of σ(n) is first used to normalize the excitation VQ target vector. After the codebook search is completed, σ(n)
is then used to scale the best codevector selected. If we assume that gain codebook index i and shape codebook index j
were chosen for vector n, then the excitation vector e(n) is given by:

e(n) = σ(n) gi yj (G-5)

where yj is the j-th shape codevector and gi is the i-th gain level in the gain level in the gain codebook. The excitation
vector e(n) is then used to compute δ(n). First, we compute the squared RMS value of e(n) [or the “power” of e(n)],
which is given by:

P e n e nk
k

[()] ()= ∑
=

1

5
2

1

5
(G-6)

For any given vector x, we use the symbol P[x] to represent the power of x, which is defined as the energy of x divided
by the vector dimension of x. Before converting P[e(n)] to the dB value in the logarithmic domain, we clip P[e(n)] to 1 if
it is less than 1. Thus, the allowed range for P[e(n)] is:

P e n[()] ≥ 1 (G-7)

This is to avoid overflow in the logarithm conversion or exceedingly small dB value. Note that although this range-
limiting action is not explicitly shown in Figure 6/G.728, it is implemented in the “pseudo-code” in 5.7/G.728. The
offset-removed logarithmic gain (in dB) for vector n is then obtained as:

δ() log [()]n P e n= −10 3210 (G-8)

Note that equation (G-7) implies that:

δ()n ≥ − 32 (G-9)

Next, the δ(n) calculated in equation (G-8) is used to predict the following excitation gains and to update the log-gain
predictor coefficients. This completes our brief review of the floating point operation for the backward vector gain
adapter.

10 Recommendation G.728 – Annex G (11/94)

We now describe the mathematically equivalent method for fixed point implementation. Let yjk be the k-th element of the
j-th codevector in the shape codebook. Then, combining equations (G-5) and (G-6), we have:

P[e(n) = ∑
k=1

5

σ(n) gi yjk

2
(G-10)

= ∑
F
HG

I
KJ=

σ2 2 2

1

51
5

()n g yi jk
k

(G-11)

= σ2 2() []n g P yi j (G-12)

Substituting equation (G-12) for equation (G-8) yields:

δ(n) = 20 log10 σ(n) – 32 + 20 log10 | gi | + 10 log10 P[yj] (G-13)

Now, using equation (G-4), we can express δ(n) as:

δ(n) = δ^(n) + 20 log10 | gi | + log10 P[yj] (G-14)

In other words, δ(n) is simply the predicted log-gain δ^(n) plus two “correction terms”:

1) 20 log10 | | gi , the dB value of the best gain level selected from the gain codebook; and

2) 10 log10 P[yj], the dB value of the power of the best shape codevector selected from the shape codebook.
(In a sense, this is like a conventional predictive coder for the gain, but operated in the logarithmic
domain.)

Figure G.1 shows the block schematic of this mathematically equivalent method. Since there are only 4 possible | | gi and
128 possible P[yj] values, we can precompute their dB values and store them in two log-gain tables (blocks 93 and 94 in
Figure G.1).

The delay units 91 and 92 make available the best gain and shape codebook indices chosen in the excitation codebook
search of the previous vector. These two indices are used to look up the values of 20 log10 | | gi and 10 log10 P[yj] from
the log-gain tables in blocks 93 and 94. The 1-sample delay unit 95 holds the previous predicted (and possibly range
limited) log-gain δ^(n – 1). The adder 96 adds the outputs of blocks 93, 94, and 95 to produce an unclipped δ^(n – 1)
according to equation (G-14). Then, the limiter 97 enforces the inequality in equation (G-9) by clipping the output of the
adder 96 at –32 dB if it is less than –32 dB.

The ouput of the limiter 97 is mathematically equivalent to the output of the adder 42 in Figure 6/G.728. Therefore,
blocks 43 through 46 in Figure G.1 are identical to their counterparts in Figure 6/G.728. The operation of the log-gain
limiter 98 is similar to the limiter 47 in Figure 6/G.728, except that the allowed range has been shifted down by 32 dB.
The adder 99 adds the log-gain offset value of 32 dB, stored in block 41, to the output of the log-gain limiter 98. The
resulting log-gain value is then converted to the linear domain by the inverse logarithm calculator 48, which is identical
to its counterparts in Figure 6/G.728. This completes the descriptions of the mathematically equivalent method for fixed
point implementation.

The equivalent method shown in Figure G.1 has two important advantages over the original method in Figure 6/G.728.

a) It eliminates the need to calculate the logarithm function (block 40 in Figure 6/G.728). In DSP implemen-
tations, the logarithm function is usually calculated using a power series expansion and typically takes a
large number of instruction cycles to calculate. Thus, replacing the logarithm calculation by a table look-
up could mean a considerable saving in DSP cycles. Also, the table entries can be pre-computed to the
maximum desired.

R
ecom

m
endation G

.728 – A
nnex G

 (11/94)
11

9294

9193

48984645

44

43 97

95

41

99

96

90

δ(n−1)

δ(n)

σ(n)

T1514700-93/d01

Bandwidth
expansion

module

Levinson-Durbin
recursion
module

Hybrid
windowing

module

Log-gain
linear predictor

Log-gain limiter
(–32 to 28 dB)

Inverse
logarithm
calculator

Limiter at
– 32 dB

1–Sample
delay

Log-gain
offset value

holder

Gain codebook
log-gain table

Shape codebook
log-gain table

1-Index
delay

1-Index
delay

Shape
codebook
index

FIGURE G.1/G.728

Backward vector gain adapter for fixed-point implementation

Excitation
gain

Gain
codebook
index

12 Recommendation G.728 – Annex G (11/94)

b) It is likely to give more accurate numerical results than the original method when a fixed point processor
is used. Due to backward adaptation, there is a feedback loop in the gain adaptation process. In
Figure 6/G.728, this feedback loop is very long. It goes from the inverse logarithm calculator 48 to the
gain scaling unit 21 (in Figure 2/G.728), and then back to blocks 67, 39, 40 and 42 through 48. The more
computations done in this loop, the more likely that numerical errors due to finite precision may
accumulate in the feedback loop. This is especially true if the fixed point processor does not always
achieve the maximum possible accuracy for the logarithm function. In contrast, the feedback loop in
Figure G.1 is as tight as it can be. Note that the gain scaling unit, the energy and power calculation
for e(n), the logarithm calculator, and even the adder for restoring the log-gain offset are now all out of
the feedback loop. Except for blocks 43 through 46 that are common in both methods, the feedback loop
only involves two limiters and two additions, which can be implemented with very high precision by
fixed point processors.

As a result of this change, interoperability between fixed and floating point implementations of Recommendation G.728
is enhanced. The main disadvantage of this new method is that it requires additional words of ROM memory. There are
128 shape vectors and 4 possible gain vectors. The additional memory required is 128 + 4 = 132 words. This is only a
very small fraction of the ROM space already needed in Recommendation G.728.

This new method has changed the input to the backward vector gain adapter (blocks 20 and 30) from e(n) to the gain and
shape codebook indices i and j. To reflect this fact, Figures 1/G.728 through 3/G.728 should have been re-drawn here so
that the backward vector gain adapter gets its input from the excitation VQ codebook block. However, such modified
figures are omitted here, since the necessary change is trivial and it should be very clear from the description above.

G.2.2 Changes in the Levinson-Durbin recursion modules

This subclause is about changes in the Levinson-Durbin recursion modules used in Recommendation G.728. There are
three such modules, designated as blocks 37, 44 and 50, and used for the perceptual weighting filter, the log-gain linear
predictor, and the synthesis filter, respectively. Readers should refer to 5.5/G.728 and 5.6/G.728 for more details. In this
section we will use the pseudo-code for block 50 from 5.6/G.728 as an example and show how it must be modified for
fixed point implementation. Similar changes need to be made for blocks 37 (perceptual weighting filter) and 44 (log-gain
predictor). We begin with a listing of the floating point pseudo-code.

If RTMP (LPC + 1) = 0, go to LABEL | Skip if zero
|

If RTMP(1) ≤ 0, go to LABEL | Skip if zero signal
|

RC1 = –RTMP(2)/RTMP(1)
ATMP(1) = 1 |
ATMP(2) = RC1 | First-order predictor
ALPHATMP = RTMP(1) + RTMP(2) * RC1 |
If ALPHATMP ≤ 0, go to LABEL | Abort if ill-conditioned

For MINC = 2, 3, 4, ..., LPC, do the following
SUM = 0.
For IP = 1, 2, 3, ..., MINC, do the next 2 lines

N1 = MINC – IP + 2
SUM = SUM + RTMP(N1) * ATMP(IP)

|
RC = –SUM/ALPHATMP | Reflection coefficient
MH = MINC/2 + 1 |
For IP = 2, 3, 4, ..., MH, do the next 4 lines

IB = MINC – IP + 2
AT = ATMP(IP) + RC * ATMP(IB) |
ATMP(IB) = ATMP(IB) + RC * ATMP(IP) | Update predictor coefficient
ATMP(IP) = AT |

Recommendation G.728 – Annex G (11/94) 13

ATMP(MINC + 1) = RC |
ALPHATMP = ALPHATMP + RC * SUM | Prediction residual energy
If ALPHATMP ≤ 0, go to LABEL | Abort if ill-conditioned

Repeat the above for the next MINC

| Recursion completed normally
Exit this program | if execution proceeds to here

LABEL: If program proceeds to here, ill-conditioning had happened, then, skip block 51, do not update the synthesis filter
coefficients. (That is, use the synthesis filter coefficients of the previous adaptation cycle.)

The best way to begin is to consider the floating point variables referred to in this pseudo-code. These are RC, RC1,
RTMP, SUM, ALPHATMP and ATMP. (The other variables in the code, MINC, IP, IB and N1 are all indices which are
integers.)

RC refers to the reflection coefficients, which are computed as an intermediate variable in this module. Reflection
coefficients have the property that they have a magnitude which is always less than unity for a stable LPC filter. As such,
RC can be represented with a Q15 format, meaning that one bit is used for the sign bit and the other 15 bits are used to
represent the fractional part of the value.

We note that at each iteration we compute RC, use it for that iteration, and then never use it again. The only exception is
that for the synthesis filter LPC analysis in the decoder. RC1 is saved for later use in the postfilter. In order to save
memory, only the value of RC1 is saved above. All other values of RC are written to a single location which is
overwritten at the next iteration. This represents a change from the original floating point pseudo-code, but has no effect
on the output results and can be used for floating point implementations as well.

RTMP refers to the autocorrelation function values. These values have a tremendous dynamic range. By necessity
RTMP must be kept in block floating point. This means that all values are normalized by the same power of 2.
Theoretically, RTMP(1) should have the largest value. We also know that it must be positive. The representation used
will be such that the largest magnitude of RTMP is between 0.5 and 1. This being the case, all of RTMP can be
represented in Q15 format. All of RTMP is represented in block floating point in hybrid window, but only the mantissas
are needed in Durbin’s recursion.

One other note concerns RTMP(LPC + 1). As indicated on the first line, if this variable has a value of zero, this module
should be terminated. If RTMP(LPC + 1) is represented by a 16-bit integer, this condition is much more likely to happen
than for the case when the same RTMP (LPC + 1) is represented by a 32-bit floating point number in a floating point
implementation. This causes interoperability problems. In computing RTMP(LPC + 1) in the previous module (hybrid
window, block 49), the value is accumulated in the accumulator, which is at least 32 bits in all fixed point DSPs. It is
proposed that this 32-bit value of the accumulator when the computation is completed be tested to check for zero. By
making this change, premature termination (and thus interoperability problems) can be avoided. In the new code a
logical variable named ILLCOND is tested to see whether it is true or false. Its value depends on the results of the test of
RTMP (LPC + 1) in the hybrid window module. We later use ILLCOND as an output variable for this block to indicate
whether the output values should be used or ignored.

For the postfilter, there is the possibility that the ill-conditioning occurred after the 10th iteration. In that case, a new set
of short-term adaptive postfilter prediction coefficients have been determined and are valid, but the 50th order synthesis
filter coefficients are not valid. A second logical variable, ILLCONDP indicates the status of the postfilter coefficients.

SUM and ALPHATMP are the next two variables. Both are values which are accumulated, but are never multiplied. The
value held in an accumulator is 32 bits. However, these two variables are divided to compute RC. Both SUM and
ALPHATMP are converted to 16-bit fixed point for the division. The result of the division is represented in Q15 fixed
point format and assigned to RC. The variable SUM does not appear explicitly in the fixed point pseudo-code. In 32-bit
format, it is the accumulator AA0 and in 16-bit format it is the variable SIGN.

14 Recommendation G.728 – Annex G (11/94)

Note that ALPHATMP is naturally a 32-bit number which is accumulated in an accumulator. However, in actual DSP
implementations, it is necessary to save ALPHATMP in memory for the next higher order of recursion, because the
accumulator will be needed for other computations before ALPHATMP is updated again. Therefore, some DSP cycles
can be saved if we save and load only the rounded 16-bit high word of ALPHATMP rather than the entire 32-bit word.
In practice, it is found that saving only the high word of ALPHATMP after each update did not degrade the coder’s
performance. Therefore, only the high word of ALPHATMP is saved after each update of ALPHATMP. In order to
make clear when ALPHATMP is represented by 16 bits and when by 32, the name ALPHATMP is used in the pseudo-
code only when it is a 16-bit number. An accumulator is referenced when it is a 32-bit number.

The remaining vector of variables is ATMP which represents the predictor coefficients. In all simulations, the maximum
value observed for ATMP has been less than 4. This would suggest using Q13 format throughout. However, the same
simulations also showed that using Q13 format within Durbin did not provide sufficient interoperability with floating
point implementations. To achieve greater interoperability between fixed and floating point implementations, it was
found to be better to use Q15 format except when this caused overflows.

On a DSP chip, the results of the computation of ATMP(IB) or ATMP(IP) are initially in the accumulator. The
accumulators of most 16-bit fixed point DSP chips are at least 32 bits wide. The values of ATMP(IB) and ATMP(IP)
must be rounded to 16-bit precision. In the fixed point code, it is important that the accumulator contains guard bits or
provides an overflow flag, so that when computing ATMP(IB) or ATMP(IP) if overflow occurs, it will be detected.

The following strategy for choosing the format of ATMP has been adopted. The iterations can be numbered according to
the value of MINC. We begin with MINC = 2 and Q15 format for ATMP. If overflow never occurs, i.e. for all IP,
| ATMP(IP) | < 1, then the final representation for ATMP is Q15. The other possible case in that an overflow occurs
during one of the iterations. Suppose that it is iteration K. In this case, all of the values of ATMP computed during
iterations K and K – 1 must be converted to Q14 format by right shifting. Iteration K is then restarted using Q14 format.
Subsequent iterations from K + 1 on are also computed using Q14 format. Overflows may also occur while using Q14
format. In that case, the same procedure is followed and the computation continues in Q13 format. Empirically it was
observed that such overflows never occurred in Q13 format. The reason for using the other formats is that if the
overflows are avoided, the result is more accurate. The final representation of ATMP before exiting this block is
either Q13, Q14 or Q15.

It was also observed that after the bandwidth expansion operations, the filter coefficients at the output of the bandwidth
expansion modules (blocks 38, 45, 51 and 85) are always representable in Q14 format. It was further observed that
representation in Q15 format whenever possible did not improve cross-decoding SNR above that observed for using
Q14 format. Therefore, those three bandwidth expansion modules always convert their output coefficient arrays to Q14,
regardless of whether their input coefficient arrays (i.e. the Levinson-Durbin recursion modules output) are in Q13, Q14
or Q15. This means that when a Levinson-Durbin recursion module produces a Q13 or Q15 output coefficient array, it
must signal the corresponding bandwidth expansion module so that an additional shift can be performed to convert the
array to Q14. For this reason, in the fixed point Levinson-Durbin recursion module given below, we have added an
additional flag NLSATMP as one of the outputs of this module.

In the decoder the Levinson-Durbin recursion is interrupted after the 10th order prediction coefficients are derived.
These values are saved for the adaptive postfilter. Consequently, there are two possible starting conditions. In the
ordinary case, the recursion is begun with MINC0 = 1. In the decoder, MINC0 = 10 is another possibility. In the event of
this latter case, the values of NRS and ALPHATMP must be saved. Also we note that the value of NLSATMP must be
saved until ICOUNT = 3 when the bandwidth expansion module is executed.

Finally, we note that this routine uses three accumulators. The third accumulator, AA2, is used to hold the 17-bit
precision value of RC for updating the newest prediction coefficient.

Recommendation G.728 – Annex G (11/94) 15

The following pseudo-code describes the fixed point version of the Levinson-Durbin recursion modules.

If MINC0 > 1, go to RECURSION
MINC0 = 1 | Initializations for
ILLCONDP = .FALSE. | decoder only

If ILLCOND = .TRUE., go to FAILED | Skip if RTMP(LPC + 1) is zero
If RTMP(1) ≤ 0, go to FAILED | Skip if zero signal
NRS = 0 | Q15 format initially

DEN = RTMP(1) | Calculate first order predictor
NUM = RTMP(2)
If NUM < 0, set NUM = –NUM
Call SIMPDIV(NUM, DEN, AA0) | | RTMP(2) | /RTMP(1)

AA0 = AA0 << 15
RC1 = RND(AA0)
If RTMP(2) > 0, set RC1 = –RC1 | Add sign information
RC = RC1 | First order predictor coefficient
ATMP(2) = RC1

AA0 = RTMP(1) << 16 |
P = RTMP(2) * RC |
AA0 = AA0 + (P << 1) |
ALPHATMP = RND(AA0) | Save DSP accumulator high

| word to memory

RECURSION:

For MINC = MINC0 + 1, MINC0 + 2, ..., LPC, do the following indented lines
AA0 = 0
For IP = 2, 3, ..., MINC, do the next 3 lines

N1 = MINC – IP + 2
P = RTMP(N1) * ATMP(IP)
AA0 = AA0 + P | 32 bits for SUM

AA0 = AA0 << 1

AA0 = AA0 << NRS
AA1 = RTMP(MINC + 1) << 16
AA0 = AA0 + AA1 |
SIGN = RND(AA0) | Save high word sign
NUM = SIGN
If NUM < 0, set NUM = –NUM
If NUM ≥ ALPHATMP, go to FAILED |
Call SIMPDIV(NUM, ALPHATMP, AA0) | Divide to get RC
AA2 = AA0 << 15 | AA2 stores 17-bit RC
RC = RND(AA2)
If SIGN > 0, set RC = –RC

| Now update ALPHATMP

AA1 = ALPHATMP << 16
P = RC * SIGN
AA1 = AA1 + (P << 1)
If AA1 ≤ 0, go to FAILED
ALPHATMP = RND(AA1)

MH = MINC/2 + 1 | Fractional part of MINC/2 truncated;
| MH = integer
| Begin to update predictor
| coefficients

16 Recommendation G.728 – Annex G (11/94)

For IP = 2, 3, 4, ..., MH, do the following doubly indented lines
IB = MINC – IP + 2
AA0 = ATMP(IP) << 16 | Load AA0 high word
P = RC * ATMP(IB) | Q15 RC, so << 1
AA0 = AA0 + (P << 1)
If AA0 overflowed, then do the following triply indented lines

NRS = NRS + 1
For LP = 2, 3, ..., MINC, set ATMP(LP) = ATMP(LP) >> 1
AA0 = ATMP(IP) << 16 | First re-scale ATMP
P = RC * ATMP(IB) | Next re-calculate
AA0 = AA0 + (P << 1) | overflowed AA0

AA1 = ATMP(IB) << 16

P = RC * ATMP(IP)
AA1 = AA1 + (P << 1)
If AA1 overflowed, then do the following triply indented lines

NRS = NRS + 1
For LP = 2, 3, ..., MINC, set ATMP(LP) = ATMP(LP) >> 1
AA0 = ATMP(IP) << 16 | First re-scale ATMP(IP)
P = RC * ATMP(IB) | Next re-calculate AA0
AA0 = AA0 + (P << 1) |
AA1 = ATMP(IB) << 16 | Next re-scale ATMP(IB)
P = RC * ATMP(IP) | Next re-calculate
AA1 = AA1 + (P << 1) | overflowed AA1

ATMP(IP) = RND(AA0)
ATMP(IB) = RND(AA1)

| Update ATMP(MINC + 1)
AA0 = AA2 >> NRS | AA2 contains 17-bit RC

AA0 = RND(AA0) | Output in low word of AA0
If SIGN > 0, set AA0 = –AA0
ATMP(MINC + 1) = AA0 | Low word stored in ATMP

Repeat the above indented lines for the next MINC

NLSATMP = 15 – NRS
If NLSATMP < 13, go to FAILED
Exit this program | Recursion completed normally

| if execution proceeds to here

FAILED: Set ILLCOND = .TRUE.
If MINC ≤ 10, set ILLCONDP = .TRUE.

If program proceeds to here, ill-conditioning has happened. Then, skip block 51, do not update the synthesis filter
coefficients. (That is, use the synthesis filter coefficients of the previous adaptation cycle.)

The following table lists all variables in the above pseudo-code with their representation format for easy reference.

Recommendation G.728 – Annex G (11/94) 17

The above code was written for block 50 and used variable names associated with block 50. However, it can be used for
blocks 37 and 44. The following table translates the variable names which are specific for block 50 to those which are
specific for one of the other blocks.

The above code uses a different and simpler division algorithm than that used throughout the rest of the algorithm. It is
referred to above as SIMPDIV. The pseudo-code for SIMPDIV is given below. The inputs are NUM and DEN, both
16-bit integers. The output is AA0 with results in lower 17 bits.

Subroutine SIMPDIV(NUM, DEN, AA0)
AA0 = 0
AA1 = NUM
K = 0

LOOP: AA0 = AA0 << 1
AA1 = AA1 << 1
If AA1 ≥ DEN, then set AA1 = AA1 – DEN and AA0 = AA0 + 1
K = K + 1
If K < 16, go to LOOP

Variable Format Size Temp/perm Old/new

AA0, AA1, AA2 DP-integer 51 temp new

ALPHATMP SFL 51 temp old

ATMP Q13/Q14/Q15 51 perm old

IB integer 51 temp old

ILLCOND logical 51 perm new

ILLCONDP logical 51 perm new

IP integer 51 temp old

LP integer 51 temp new

MH integer 51 temp old

MINC integer 51 temp old

NLSATMP integer 51 temp new

NRS integer 51 temp new

NUM integer 51 temp new

RC Q15 51 temp new

RC1 Q15 51 temp new

RTMP Q15 51 perm old

SIGN integer 51 temp new

SFL 16-bit scalar floating point
DP-integer 32-bit register such as accumulator or product registers (AA1, AA2 & P)
Integer 16-bit integer
Q13/Q14/Q15 16-bit integer with one of these representations

Block 50 Block 37 Block 44

ATMP AWZTMP GPTMP

ILLCOND ILLCONDW ILLCONDG

NLSATMP NLSAWZTMP NLSGPTMP

RTMP R R

18 Recommendation G.728 – Annex G (11/94)

G.3 Pseudo-code for other modules of Recommendation G.728

In this subclause pseudo-code for other modules of Recommendation G.728 is presented. The pseudo-code for the
Levinson-Durbin recursion was contained in the previous section, together with the algorithmic changes for the
backward vector gain adapter. For each module the floating point pseudo-code is presented first and is then followed by
commentary and the fixed point pseudo-code. The following table can be used as a reference for finding the pseudo-code
for a particular module of the coder.

The pseudo-codes for all blocks provide a bit-exact specification and are the ultimate definition of the fixed point G.728
coder. Any deviation from these pseudo-codes may result in an incorrect simulation or implementation.

Fixed-point G.728 block number, description and pseudo-code name

Block Description Pseudo-Code

11 Input PCM format conversion Not needed

12 Vector buffer Not needed

13 Adapter for weighting filter Use block 45

14 Weighting filter Block 4

5-7 Switch for ZIR/memory update Not needed

18 Simulated decoder See detailed blocks below

19 Synthesis filter for ZIR Blockzir

10 Weighting filter for ZIR Blockzir

9, 10 Blocks 9 & 10 for memory update Block 9

11 VQ target vector computation Block 11

12 Impulse response vector calc. Block 12

13 Time-reversed convolution Block 13

14 Shape codevector convolution Block 14

15 Codebook energy table calc. Block 14

16 VQ target vector normalization Block 16

17 VQ search error calculator Block 17

18 Best codebook index selector Block 17

19 Excitation VQ codebook Block 19

20 Backward vector gain adapter See detailed blocks below

21 Gain scaling unit Block 19

22 Synthesis filter Use block 9

23 Synthesis filter adapter See blocks 49-51

Recommendation G.728 – Annex G (11/94) 19

Fixed-point G.728 block number, description and pseudo-code name (end)

Block Description Pseudo-Code

24 Codebook search module See blocks 12-18

28 Output PCM format conversion Not needed

29 Decoder excitation codebook Use block 19

30 Decoder backward gain adapter Same as block 20

31 Decoder gain scaling unit Use block 19

32 Decoder synthesis filter Block 32

33 Decoder syn. filter adapter Same as block 23

34 Postfilter See blocks 71-77

35 Postfilter adapter See blocks 81-85

36 Hybrid window for W(z) Block 36

37 Durbin’s recursion for W(z) See G.2

38 W(z) coefficient calculator Block 38

43 Hybrid window for GP(z) Block 43

44 Durbin’s recursion for GP(z) See G.2

45 GP(z) bandwidth expansion Block 45

46 Log-gain linear predictor Block 46

48 Inverse logarithm calculator Block 46

49 Hybrid window for A(z) Block 49

50 Durbin’s recursion for A(z) See G.2

51 A(z) coefficient calculator Block 51

71-77 Blocks inside postfilter Corresponding blocks

81-85 Blocks in postfilter adapter Corresponding blocks

91 Gain codebook index delay unit Not needed

92 Shape codebook index delay unit Not needed

93 Gain codebook log-gain table Table in G.5

94 Shape codebook log-gain table Table in G.5

95 1-sample delay for log-gain Not needed

96 adder to update log-gain Block 46

97 Log-gain limiter at –32 dB Block 46

98 Log-gain limiter: –32 to 28 dB Block 46

99 Adder to restore gain offset Block 46

20 Recommendation G.728 – Annex G (11/94)

G.3.1 Block 4 – Pseudo-code for weighting filter

This is the floating point pseudo-code for block 4, the filtering of the input speech by the perceptual weighting filter.

For K = 1, 2, ..., IDIM, do the following
SW(K) = S(K)
For J = LPCW, LPCW – 1, ..., 3, 2, do the next 2 lines

SW(K) = SW(K) + WFIR(J) * AWZ(J + 1) | All-zero part
WFIR(J) = WFIR(J – 1) | of the filter

SW(K) = SW(K) + WFIR(1) * AWZ(2) | Handle last one
WFIR(1) = S(K) | differently

For J = LPCW, LPCW – 1, ..., 3, 2, do the next 2 lines
SW(K) = SW(K) – WIIR(J) * AWP(J + 1) | All-pole part
WIIR(J) = WIIR(J – 1) | of the filter

SW(K) = SW(K) – WIIR(1) * AWP(2) | Handle the last
WIIR(1) = SW(K) | one differently

Repeat the above for the next K

For the fixed point version of this pseudo-code there are the NLS values associated with WFIR and WIIR. The
computation must be so that the input speech has the same NLS as WFIR and the result from this calculation has the
same NLS as WIIR. In this instance, the NLS values for WIIR and WFIR are fixed at the same value as the input speech.
AWZ and AWP are Q14. The value for the input speech, NLSS, is 2. Different input formats (16-bit linear, µ-law,
A-law, etc.) are supposed to convert to the range of [–4096, +4095.75] represented in a Q2 format.

For K bit linear input, it is assumed that the data occupies the K least significant bits of a 16-bit word, K_BIT_SAMPLE.
The proper representation is given by:

NLS = 15 – K

S = K_BIT_SAMPLE << NLS

For 16-bit linear input signals (16_BIT_SAMPLE), a right shift of 1 bit is required:

S = 16_BIT_SAMPLE >> 1

For µ-law PCM (MULAW_SAMPLE), the largest magnitude sample value is 4015.5 and it is assumed that this would
be represented in Q1 format as 8031. To convert to Q2 format, a left shift of 1 bit is needed:

S = MULAW_SAMPLE << 1

For A-law PCM (ALAW_SAMPLE), the largest magnitude sample is 2016, but some sample values have a fractional
part of 0.5. Consequently, 2016 would be represented as 4032 in a 16-bit word. To put this value in the proper range,
a left shift of 2 bits is needed:

S = ALAW_SAMPLE << 2

This is the fixed point pseudo-code for block 4, the filtering of the input speech by the perceptual weighting filter.

For K = 1, 2, ..., IDIM, do the following
AA0 = S(K)
AA0 = AA0 << 14
For J = LPCW, LPCW – 1, ..., 3, 2, do the next 2 lines

AA0 = AA0 + WFIR(J) * AWZ(J + 1) | All-zero part
WFIR(J) = WFIR(J – 1) | of the filter

AA0 = AA0 + WFIR(1) * AWZ(2) | Handle the last
WFIR(1) = S(K) | one differently

Recommendation G.728 – Annex G (11/94) 21

For J = LPCW, LPCW – 1, ..., 3, 2, do the next 2 lines
AA0 = AA0 – WIIR(J) * AWP(J + 1) | All-pole part
WIIR(J) = WIIR(J – 1) | of the filter

AA0 = AA0 – WIIR(1) * AWP(2) | Handle the last
AA0 = AA0 >> 14 | one differently

If AA0 > 32767, set AA0 = 32767 | Saturation mode for
If AA0 < –32768, set AA0 = –32768 | multiplier input later

WIIR(1) = AA0 | 16-bit lower word saved
SW(K) = AA0 | SW is Q2

Repeat the above for the next K

G.3.2 Blockzir – Pseudo-code for synthesis and perceptual weighting filters during zero-input response
computation

This is the floating point pseudo-code for block 9 (the synthesis filter) during zero-input response computation.

For K = 1, 2, ..., IDIM, do the following
TEMP(K) = 0.
For J = LPC, LPC – 1, ..., 3, 2, do the next 2 lines

TEMP(K) = TEMP(K) – STATELPC(J) * A(J + 1) | Multiply – add
STATELPC(J) = STATELPC(J – 1) | Memory shift

TEMP(K) = TEMP(K) – STATELPC(1) * A(2) | Handle last one
STATELPC(1) = TEMP(K) | differently

Repeat the above for the next K

This is the floating point pseudo-code for block 10 (the perceptual weighting filter) during zero-input response
computation.

For K = 1, 2, ..., IDIM, do the following
TMP = TEMP(K)
For J = LPCW, LPCW – 1, ..., 3, 2, do the next 2 lines

TEMP(K) = TEMP(K) + ZIRWFIR(J) * AWZ(J + 1) | All-zero part
ZIRWFIR(J) = ZIRWFIR(J – 1) | of the filter

TEMP(K) = TEMP(K) + ZIRWFIR(1) * AWZ(2) | Handle last one
ZIRWFIR(1) = TMP

For J = LPCW, LPCW – 1, ..., 3, 2, do the next 2 lines
TEMP(K) = TEMP(K) – ZIRWIIR(J) * AWP(J + 1) | All-pole part
ZIRWIIR(J) = ZIRWIIR(J – 1) | of the filter

ZIR(K) = TEMP(K) – ZIRWIIR(1) * AWP(2) | Handle last one
ZIRWIIR(1) = ZIR(K) | differently

Repeat the above for the next K

In the fixed point code, we note that STATELPC is segmented block floating point and has associated with it
NLSSTATE. Since there is zero-input, we do not need to match NLSSTATE with the NLS of the input. The A(),
AWZ(), and AWP() values are always represented in Q14 format.

This is the fixed point pseudo-code for block 9 (the synthesis filter) during zero-input response computation.

NLSSTATE(11) = NLSSTATE(1)
For K = 2, 3, 4, ..., 10, do the next line | Find minimum NLSSTATE

If NLSSTATE(K) < NLSSTATE(11), set NLSSTATE(11) = NLSSTATE(K)

For K = 1, 2, ..., IDIM, do the following
I = 1

22 Recommendation G.728 – Annex G (11/94)

L = 6 – K
J = LPC
AA0 = 0
For LL = 1, ..., L, do the next 3 lines

AA0 = AA0 – STATELPC(J) * A(J + 1) | Multiply – add
STATELPC(J) = STATELPC(J – 1) | Memory shift
J = J – 1

NLS = NLSSTATE(I) – NLSSTATE(11)
AA1 = AA0 >> NLS

For I = 2, ..., 10, do the next 8 lines
AA0 = 0
For LL = 1, 2, ..., IDIM, do the next 3 lines

AA0 = 0 – STATELPC(J) * A(J + 1)
STATELPC(J) = STATELPC(J – 1) | STATELPC(0) = garbage if J = 1; it is OK
J = J – 1

NLS = NLSSTATE(I) – NLSSTATE(11)
AA0 = AA0 >> NLS | Shift to align
AA1 = AA1 + AA0

If K = 1, go to SHIFT2
L = K – 1
AA0 = 0
For LL = 1, 2, ..., L, do the next 3 lines

AA0 = AA0 – STATELPC(J) * A(J + 1)
STATELPC(J) = STATELPC(J – 1) | STATELPC(0) = garbage if J = 1; it is OK
J = J – 1

AA1 = AA1 + AA0 | No shift necessary for this time

SHIFT2: AA1 = AA1 >> 14 | A() was Q14, NLS of AA1
| is now NLSSTATE(11)

If AA1 > 32767, set AA1 = 32767 | Clip to 16 bits if necessary since
If AA1 < –32768, set AA1 = –32768 | STATELPC(1) will be multiplier input

STATELPC(1) = AA1 | Save lower 16-bit word for
| STATELPC

IR = NLSSTATE(11) – 2 | Make TEMP Q2 format
If IR > 0, set AA1 = AA1 >> IR |
If IR < 0, set AA1 = AA1 << –IR |
TEMP(K) = AA1

Repeat the above for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 13, STATELPC, NLS)
NLSSTATE(11) = NLSSTATE(11) + NLS | Re-normalize new STATELPC to 15 bits

For L = 1, 2, ..., 10, do the next line | Update NLSSTATE
NLSSTATE(L) = NLSSTATE(L + 1)

In the fixed point pseudo-code for block 10, TEMP, ZIRWFIR and ZIRWIIR are Q2. In the previous block TEMP was
explicitly created with this value. Thus, we do not need to normalize to add them together. This is the fixed point
pseudo-code for block 10 (the perceptual weighting filter) during zero-input response computation.

For K = 1, 2, ..., IDIM, do the following
AA0 = TEMP(K) << 14 | Because AWZ is Q14
For J = LPCW, LPCW – 1, ..., 3, 2, do the next 2 lines

AA0 = AA0 + ZIRWFIR(J) * AWZ(J + 1) | All-zero part
ZIRWFIR(J) = ZIRWFIR(J – 1) | of the filter

AA0 = AA0 + ZIRWFIR(1) * AWZ(2) | Handle last one
ZIRWFIR(1) = TEMP(K) | differently

Recommendation G.728 – Annex G (11/94) 23

For J = LPCW, LPCW – 1, ..., 3, 2, do the next 2 lines
AA0 = AA0 – ZIRWIIR(J) * AWP(J + 1) | All-pole part
ZIRWIIR(J) = ZIRWIIR(J – 1) | of the filter

AA0 = AA0 – ZIRWIIR(1) * AWP(2) | Handle last one
AA0 = AA0 >> 14 | differently

If AA0 > 32767, set AA0 = 32767 | Clip since ZIR & ZIRWIIR
If AA0 < –32768, set AA0 = –32768 | will be multiplier input

ZIR(K) = AA0 | Save lower 16-bit word
ZIRWIIR(1) = AA0 | for ZIR and ZIRWIIR

Repeat the above for the next K

G.3.3 Blocks 9 and 10 – Pseudo-code for synthesis and perceptual weighting filter memory updates

This is the floating point pseudo-code for blocks 9 and 10, the filter memory update.

ZIRWFIR(1) = ET(1) | ZIRWFIR now a scratch array
TEMP(1) = ET(1)
For K = 2, 3, ..., IDIM, do the following

A0 = ET(K)
A1 = 0
A2 = 0
For I = K, K – 1, ..., 2, do the next 5 lines

ZIRWFIR(I) = ZIRWFIR(I – 1)
TEMP(I) = TEMP(I – 1)
A0 = A0 – A(I) * ZIRWFIR(I) | Compute zero-state responses
A1 = A1 + AWZ(I) * ZIRWFIR(I) | at various stages of
A2 = A2 – AWP(I) * TEMP(I) | the cascaded filter

ZIRWFIR(1) = A0
TEMP(1) = A0 + A1 + A2

Repeat the above indented section for the next K

| Now update filter memory by adding
| zero-state responses to zero-input
| responses

For K = 1, 2, ..., IDIM, do the next 4 lines
STATELPC(K) = STATELPC(K) + ZIRWFIR(K)
If STATELPC(K) > MAX, set STATELPC(K) = MAX | Limit the range
If STATELPC(K) < MIN, set STATELPC(K) = MIN
ZIRWIIR(K) = ZIRWIIR(K) + TEMP(K)

For I = 1, 2, ..., LPCW, do the next line | Now set ZIRWFIR to
ZIRWFIR(I) = STATELPC(I) | the right value

I = IDIM + 1
For K = 1, 2, ..., IDIM, do the next line | Obtain quantized speech by

ST(K) = STATELPC(I – K) | reversing order of synthesis
| filter memory

The following is the fixed point pseudo-code for the same blocks. STATELPC has 10 exponents stored in
NLSSTATE(1), ..., NLSSTATE(10). Associated with the array ET is NLSET. ZIRWIIR and ZIRWFIR are Q2 after the
update. ZIRWFIR is initially used as a scratch array. Upon entry into this code, both ET and the top 5 elements of
STATELPC [STATELPC(1) through STATELPC(5)] are 15-bit block floating point arrays. When ET is filtered by the
LPC synthesis filter without memory, the output (i.e. zero-state response of the LPC filter) may exceed the 15-bit range.
When this happens, we right shift ET by 1 bit and repeat the calculation until the output fits into 15 bits. Empirically the

24 Recommendation G.728 – Annex G (11/94)

process repeats at most 3 times (or 4 times if the first time through is counted). Note that there are only 10 multiply-adds
for each repetition of the calculation, because the calculation of the zero-state response of the weighting filter has been
moved to a separate loop. The zero-state response of the LPC filter calculated this way is always representable in 15 bits
or less. When this response is then added to the 15-bit STATELPC to update STATELPC, the result of the addition is
guaranteed to be representable by 16 bits. Before exiting this code, STATELPC is scaled to 14 bits to avoid overflows in
the zero-input response calculation later.

| First calculate zero-state response
LABEL1: ZIRWFIR(1) = ET(1) | of the LPC synthesis filter
For K = 2, 3, ..., IDIM, do the following indented lines

AA0 = ET(K) << 14 | Because A(1) = 1 in Q14 = 16384
For I = K, K – 1, ..., 2, do the next 3 lines

ZIRWFIR(I) = ZIRWFIR(I – 1)
P = A(I) * ZIRWFIR(I) | Q14 multiplication
AA0 = AA0 – P | Compute zero-state responses

AA1 = AA0 << 3
If AA1 overflowed above, do the next 4 lines | Make sure after AA0 >> 14 later,

For I = 1, 2, ..., IDIM, do the next line | the result does not exceed 15 bits.
ET(I) = ET(I) >> 1 | If it does, then ET >> 1
NLSET = NLSET – 1 | and repeat the
GO TO LABEL1 | calculation until it fits

AA0 = AA0 >> 14 | Compensate for A() being Q14
ZIRWFIR(1) = AA0 | Keep lowest 16 bits

Repeat the above indented section for the next K

N = IDIM + 1 | Now calculate the zero-state response
TEMP(1) = ZIRWFIR(IDIM) | of the weighting filter
For K = 2, 3, ..., IDIM, do the following indented lines

AA1 = ZIRWFIR(N – K) << 14 | Because AWZ(1) = 1 (in Q14 = 16384)
M = IDIM – K
For I = K, K – 1, ..., 2, do the next 5 lines

TEMP(I) = TEMP(I – 1) | Shift all-pole part of filter memory
P = AWZ(I) * ZIRWFIR(I + M) | all-zero part of the weighting filter
AA1 = AA1 + P
P = AWP(I) * TEMP(I) | All-pole part of the weighting filter

AA1 = AA1 – P

AA1 = AA1 >> 14
If AA1 > 32767, set AA1 = 32767 | Clip if necessary, since TEMP(1)
If AA1 < –32768, set AA1 = –32768 | will be 16-bit input to multiplier
TEMP(1) = AA1 | Keep lowest 16 bits

Repeat the above indented section for the next K

IR = NLSET – 2
For K = 1, ..., IDIM, do the next 2 lines | Now shift TEMP to Q2 like

If IR > 0, set TEMP(K) = TEMP(K) >> IR | ZIRWIIR
If IR < 0, set TEMP(K) = TEMP(K) << –IR

| Now update filter memory by adding
| zero-state responses to zero-input
| responses. First we must match the
| NLS of ZIRWFIR and STATELPC

If NLSET = NLSSTATE(10), go to LABEL2 | No changes necessary

Recommendation G.728 – Annex G (11/94) 25

If NLSET < NLSSTATE(10), do the next 5 lines | Lose precision in STATELPC
NLSD = NLSSTATE(10) – NLSET | by NLSD bits
For K = 1, 2, ..., IDIM, do the next line

STATELPC(K) = STATELPC(K) >> NLSD
NLSSTATE(10) = NLSET
go to LABEL2 | Only case left is:

| NLSET > NLSSTATE
NLSD = NLSET – NLSSTATE(10) | Lose precision in ZIRWFIR
For K = 1, 2, ..., IDIM, do the next line | by NLSD bits

ZIRWFIR(K) = ZIRWFIR(K) >> NLSD

LABEL2: | Now we are ready
AA1 = 4095 | 4095 = STATELPC clipping level
If NLSSTATE(10) ≥ 0, set AA1 = AA1 << NLSSTATE(10) | Shift clipping level to
If NLSSTATE(10) < 0, set AA1 = AA1 >> –NLSSTATE(10) | align with STATELPC

For K = 1, 2, ..., IDIM, do the following indented lines
AA0 = STATELPC(K) + ZIRWFIR(K) | Update LPC filter memory.
If AA0 > AA1, set AA0 = AA1 | If necessary, perform the clipping as specified
If AA0 < –AA1, set AA0 = –AA1 | in floating point in Recommendation G.728.

| Note that these values were scaled.
| So, if 32767 < | AA0 | < AA1, we need to clip

If AA0 > 32767, set AA0 = 32767 | AA0 to 16 bits since STATELPC(K)
If AA0 < –32768, set AA0 = –32768 | will later be a 16-bit
STATELPC(K) = AA0 | input to the multiplier

AA0 = ZIRWIIR(K) + TEMP(K) | Update all-pole part of W(z) memory
If AA0 > 32767, set AA0 = 32767 | Again, clip to 16 bits if necessary
If AA0 < –32768, set AA0 = –32768 | since ZIRWIIR(K) will later be
ZIRWIIR(K) = AA0 | a 16-bit input to the multiplier

Repeat the above indented section for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 12, STATELPC, NLS) | Scale STATELPC to 14 bits
NLSSTATE(10) = NLSSTATE(10) + NLS | to avoid overflow in

| zero-input response calculation later

IR = NLSSTATE(10) – 2

For I = 1, 2, ..., 5, do the next 4 lines | Now set ZIRWFIR, the all zero
AA0 = STATELPC(I) | part of W(z) memory, to the
If IR > 0, set AA0 = AA0 >> IR | right values in Q2 format
If IR < 0, set AA0 = AA0 << –IR |
ZIRWFIR(I) = AA0 |

IR = NLSSTATE(9) – 2 |
For I = 6, 7, ..., 10, do the next 4 lines |

AA0 = STATELPC(I) |
If IR > 0, set AA0 = AA0 >> IR |
If IR < 0, set AA0 = AA0 << –IR |
ZIRWFIR(I) = AA0 |

I = IDIM + 1
For K = 1, 2, ..., IDIM, do the next line | Obtain quantized speech by

ST(K) = STATELPC(I – K) | reversing the order of the top 5
NLSST = NLSSTATE(10) | synthesis filter memory locations

| NLSST is only used in decoder

26 Recommendation G.728 – Annex G (11/94)

G.3.4 Block 11 – VQ target vector computation

This is the floating point pseudo-code for block 11, the VQ target vector computation.

For K = 1, 2, ..., IDIM, do the next line
TARGET(K) = SW(K) – ZIR(K)

For the fixed point code, SW and ZIR are both in Q2 format, the same as the input speech. Thus, NLSTARGET = 2.
Here is the fixed point pseudo-code.

set NLSTARGET = 2

For K = 1, 2, ..., IDIM, do the next 6 lines
AA0 = SW(K)
AA1 = ZIR(K)
AA0 = AA0 – AA1
If AA0 > 32767, set AA0 = 32767 | Clip if necessary
If AA0 < –32768, set AA0 = –32768
TARGET(K) = AA0

G.3.5 Block 12 – Impulse response vector calculation

The following is the floating pseudo-code for block 12.

TEMP(1) = 1 | TEMP = synthesis filter memory
WS(1) = 1 | WS = W(z) all-pole part memory
For K = 2, 3, ..., IDIM, do the following

A0 = 0
A1 = 0
A2 = 0
For I = K, K – 1, ..., 3, 2, do the next 5 lines

TEMP(I) = TEMP(I – 1)
WS(I) = WS(I – 1) |
A0 = A0 – A(I) * TEMP(I) | Filtering
A1 = A1 + AWZ(I) * TEMP(I) |
A2 = A2 – AWP(I) * WS(I)

TEMP(1) = A0
WS(1) = A0 + A1 + A2

Repeat the above indented section for the next K

ITMP = IDIM + 1 | Obtain h(n) by reversing the order of the memory
For K = 1, 2, ..., IDIM, do the next line | of all-pole section W(z)

H(K) = WS(ITMP – K) |

The values for the predictor coefficients, A(), AWZ() and AWP() are all stored in Q14 format. In the fixed point
pseudo-code to follow, only two 32-bit accumulators are indicated, AA0 and AA1. Accumulators A1 and A2 in the
floating point pseudo-code have been combined. Guard bits are not required. The output array, H() is stored in
Q13 format. The following is the fixed point pseudo-code.

TEMP(1) = 8192 | TEMP = synthesis filter memory
WS(1) = 8192 | WS = W(z) all-pole part memory

| WS & TEMP are Q13 16-bit words

For K = 2, 3, ..., IDIM, do the following
AA0 = 0
AA1 = 0
For I = K, K – 1, ..., 3, 2, do the next 5 lines

TEMP(I) = TEMP(I – 1)
WS(I) = WS(I – 1) |
AA0 = AA0 – A(I) * TEMP(I) | Filtering
AA1 = AA1 + AWZ(I) * TEMP(I) |
AA1 = AA1 – AWP(I) * WS(I)

Recommendation G.728 – Annex G (11/94) 27

AA1 = AA0 + AA1
AA0 = AA0 >> 14 | >> 14 because A(), AWZ() and
AA1 = AA1 >> 14 | AWP() were inQ14 format
TEMP(1) = AA0
WS(1) = AA1

Repeat the above indented section for the next K

ITMP = IDIM + 1 | Obtain h(n) by reversing the order of the memory
For K = 1, 2, ..., IDIM, do the next line | of all-pole section of W(z)

H(K) = WS(ITMP – K) |

G.3.6 Block 13 – Time-reversed convolution

This module performs time-reversed convolution in preparation for the codebook search. The original floating point
pseudo-code was

For K = 1, 2, ..., IDIM, do the following
K1 = K – 1
PN(K) = 0
For J = K, K + 1, ..., IDIM, do the next line

PN(K) = PN(K) + TARGET(J) * H(J – K1)

Repeat the above for the next K

In the fixed point version, H() is represented in Q13 format and TARGET is represented in block floating point.
NLSTARGET is determined in block 16. NLSPN is fixed at 7.

For K = 1, 2, ..., IDIM, do the following
K1 = K – 1
AA0 = 0 | Accumulator zeroed
For J = K, K + 1, ..., IDIM, do the next 2 lines

P = TARGET(J) * H(J – K1)
AA0 = AA0 + P

AA0 = AA0 >> 13 + (NLSTARGET – 7) | Right shift to make Q7
If AA0 > 32767, set AA0 = 32767 | Clip AA0 to 16 bits since
If AA0 < –32768, set AA0 = –32768 | PN will be multiplier input
PN(K) = AA0 | AA0 in saturation mode

Repeat the above for the next K

G.3.7 Block 14 – Shape codevector convolution and energy calculation

This is the pseudo-code for the codevector energy calculation, blocks 14 and 15.

For J = 1, 2, ..., NCWD, do the following | One codevector per loop
J1 = (J – 1) * IDIM
For K = 1, 2, ..., IDIM, do the next 4 lines

K1 = J1 + K + 1
TEMP(K) = 0
For I = 1, 2, ..., K, do the next line

TEMP(K) = TEMP(K) + H(I) * Y(K1 – I) | Convolution

Repeat the above 4 lines for the next K

Y2(J) = 0
For K = 1, 2, ..., IDIM, do the next line

Y2(J) = Y2(J) + TEMP(K) * TEMP(K) | Compute energy

Repeat the above for the next J

28 Recommendation G.728 – Annex G (11/94)

In the fixed point pseudo-code, H() is represented in Q13 format and Y() in Q11 format. It was found empirically that
after convolution of H() and Y(), overflows in the accumulator, i.e. a result with magnitude larger than 2 ** 31, did not
occur. Thus, the following pseudo-code does not test for overflow in the accumulator. This makes the corresponding
DSP code run faster. The subsequent shift by 14 bits is necessary to allow representation of TEMP() in Q10 format.
The representations used were found to work for a variety of files. NLSY2 = (NLSH + NLSY – 14) * 2 – 15. Since
NLSY = 11 and NLSH = 13 then NLSY2 = 5.

For J = 1, 2, ..., NCWD, do the following | One codevector per loop
J1 = (J – 1) * IDIM
For K = 1, 2, ..., IDIM, do the next 7 lines

K1 = J1 + K + 1
AA0 = 0
For I = 1, 2, ..., K, do the next 2 lines |

P = H(I) * Y(K1 – I) | Convolution
AA0 = AA0 + P |

AA0 = AA0 >> 14
TEMP(K) = AA0 | Lowest 16 bits only

Repeat the above 7 lines for the next K

AA0 = 0
For K = 1, 2, ..., IDIM, do the next 2 lines

P = TEMP(K) * TEMP(K) | Compute energy
AA0 = AA0 + P

AA0 = AA0 >> 15
Y2(J) = AA0 | Lowest 16 bits only

Repeat the above for the next J

G.3.8 Block 16 – VQ target vector normalization

The floating point pseudo-code for this module is given first.

TMP = 1./GAIN
For K = 1, 2, ..., IDIM, do the next line

TARGET(K) = TARGET(K) * TMP

For the fixed point pseudo-code, we need to consider the NLS of the gain and the NLS of TARGET. At entry
NLSTARGET = 2. In the process, we will create the NLS for TMP.

| Numerator for division = 16384
| NLS = 14 for numerator
| NLS for denominator is NLSGAIN
| NLSGAIN determined in block 46

Call DIVIDE(16384, 14, GAIN, NLSGAIN, TMP, NLSTMP)

For K = 1, 2, ..., IDIM, do the next 2 lines
AA0 = TMP * TARGET(K) | AA0 is 32 bits
TARGET(K) = AA0 >> 15 | Keep only the lower 16 bits

| TARGET is Q2 at this point

NLSTARGET = 2 + NLSTMP – 15 | Make TARGET block
| floating point

Call VSCALE(TARGET, IDIM, IDIM, 14, TARGET, NLS)
NLSTARGET = NLSTARGET + NLS | NLS was change in VSCALE

Recommendation G.728 – Annex G (11/94) 29

G.3.9 Block 17 – VQ search error calculator and best codebook index selector

The following is the floating point pseudo-code for the error calculator and best codebook index selector (blocks 17
and 18).

Initialize DISTM to the largest number representable in the hardware
N1 = NG/2
For J = 1, 2, ..., NCWD, do the following

J1 = (J – 1) * IDIM
COR = 0
For K = 1, 2, ..., IDIM, do the next line

COR = COR + PN(K) * Y(J1 + K) | Compute inner product Pj

If COR > 0, then do the next 5 lines
IDXG = N1
For K = 1, 2, ..., N1 – 1, do the next “if” statement

If COR < GB(K) * Y2(J), do the next 2 lines
IDXG = K | Best positive gain found
GO TO LABEL

If COR ≤ 0, then do the next 5 lines
IDXG = NG
For K = N1 + 1, N1 + 2, ..., NG – 1, do the next “if” statement

If COR > GB(K) * Y2(J), do the next 2 lines
IDXG = K | Best negative gain found
GO TO LABEL

LABEL: D = –G2(IDXG) * COR + GSQ(IDXG) * Y2(J) | Compute distortion D̂
If D < DISTM, do the next 3 lines

DISTM = D | Save the lowest distortion
IG = IDXG | and the best codebook
IS = J | indices so far

Repeat the above inserted section for the next J

ICHAN = (IS – 1) * NG + (IG – 1)

The following is the fixed point pseudo-code for the error calculator and best codebook index selector (blocks 17
and 18). The code has been written such that the absolute value of the correlation with the target value, AA0 below, is
used for the gain search and then later the sign of the correlation is re-determined. While this may seem like more work,
it avoids having a branch in the middle of the search loop. For most DSP implementations avoiding a branch saves
instructions. Alternatively, the sign can be saved and the recomputation avoided. However, this usually costs an extra
instruction in the search loop as well.

DISTM = 2147483647
For J = 1, 2, ..., NCWD, do the following

J1 = (J – 1) * IDIM
AA0 = 0
For K = 1, 2, ..., IDIM, do the next 2 lines

P = PN(K) * Y(J1 + K) | Compute inner product Pj
AA0 = AA0 + P | NLS for AA0 is 7 + 11 = 18

If AA0 < 0, set AA0 = – AA0 | Take absolute value

IDXG = 1
P = GB(1) * Y2(J) | NLS for P is 13 + 5 = 18
If AA0 ≥ P, set IDXG = IDXG + 1
P = GB(2) * Y2(J)
If AA0 ≥ P, set IDXG = IDXG + 1
P = GB(3) * Y2(J)
If AA0 ≥ P, set IDXG = IDXG + 1

30 Recommendation G.728 – Annex G (11/94)

AA0 = AA0 >> 14 | NLS for AA0 = 4
If AA0 > 32767, set AA0 = 32767 | Clip AA0; AA0 in saturation mode
AA1 = GSQ(IDXG) * Y2(J) | NLSGSQ = 11, NLSY2 = 5, so NLSAA1 = 16
P = G2(IDXG) * AA0 | NLSG2 = 12, NLSAA0 = 4, so NLSP = 16

AA1 = AA1 – P
If AA1 < DISTM, do the next 3 lines

DISTM = AA1 | Double precision DISTM
IG = IDXG
IS = J

Repeat the above inserted section for the next J

AA0 = 0 | Now find the sign bit
J1 = (IS – 1) * IDIM
For K = 1, 2, ..., IDIM, do the next 2 lines

P = PN(K) * Y(J1 + K) | Compute inner product
AA0 = AA0 + P

If AA0 ≤ 0, set IG = IG + 4

ICHAN = (IS – 1) * NG + (IG – 1)

In the above code, we used the following four lines

AA0 = AA0 >> 14 | NLS for AA0 = 4
If AA0 > 32 767, set AA0 = 32 767 | Clip AA0
AA1 = GSQ(IDXG) * Y2(J) | NLSGSQ = 11, NLSY2 = 5, so NLSAA1 = 16
P = G2(IDXG) * AA0 | NLSG2 = 12, NLSAA0 = 4, so NLSP = 16

In DSP chips which have a “clipping“ function, these lines can be replaced by the following code to give the exact same
results.

AA0 = AA0 << 2 | NLS for AA0 = 20
AA0 = CLIP(AA0) | AA0 is in saturation mode
AA0 = AA0 >> 16 | Take high word; NLS for AA0 = 4
AA1 = GSQ(IDXG) * Y2(J) | NLSGSQ = 11, NLSY2 = 5, so NLSAA1 = 16
P = G2(IDXG) * AA0 | NLSG2 = 12, NLSAA0 = 4, so NLSP = 16

The CLIP function and saturation mode refer to the concept of not allowing AA0 to overflow when the << 2 operation is
performed. Instead of overflow, AA0 is set to the maximum positive or negative number, depending on its original sign.
In this case, AA0 is always positive. This alternative is DSP dependent and may require more than a 32 bit accumulator.
The alternative in the main pseudo-code can always be implemented.

G.3.10 Block 19 – Excitation VQ codebook and block 21 – Gain scaling unit

This is the floating point version of the pseudo-code for block 19, the excitation VQ codebook.

NN = (IS – 1) * IDIM
For K = 1, 2, ..., IDIM, do the next line

YN(K) = GQ(IG) * Y(NN + K)

The floating point version of the pseudo-code for block 21, the gain scaling unit is given below.

For K = 1, 2, ..., IDIM, do the next line
ET(K) = GAIN * YN(K)

Recommendation G.728 – Annex G (11/94) 31

For the fixed point pseudo-code, we combine both blocks 19 and 21 into a single module. Both Y and GQ have fixed
Q formats, Q11 and Q13, respectively. The value of GAIN has associated with it NLSGAIN. To get the maximum
accuracy, the product GQ(IG) * GAIN is normalized to 32 bits before rounding to the upper 16 bits is performed. Let
NNGQ(I) be [1 + the number of left shifts needed to normalize the Q13 GQ(I)]. So, NNGQ(I) = 3 for I = 1, 2, 5, 6,
NNGQ(I) = 2 for I = 3, 7, and NNGQ(I) = 1 for I = 4, 8. Then the pseudo-code can be written as follows.

AA0 = GQ(IG) * GAIN | AA0 has NNGQ(IG) leading zeros
AA0 = AA0 << NNGQ(IG) | Left shift NNGQ(IG) bits to

| normalize AA0
TMP = RND(AA0) | Round to upper 16 bits and assign to TMP

NLSAA0 = 13 + NLSGAIN | Q format of the product GQ(IG) * GAIN
NLSTMP = NLSAA0 + NNGQ(IG) – 16 | Q format of TMP, because

| AA0 left shift by NNGQ(IG) bits
| then round and take upper 16 bits

NN = (IS – 1) * IDIM | Normalize selected shape
Call VSCALE(Y(NN + 1), IDIM, IDIM, 14, TEMP, NLS) | codevector to 16 bits; put in TEMP

For K = 1, 2, ..., IDIM, do the next 2 lines | TMP and TEMP both normalized to 16 bits,
AA0 = TMP * TEMP(K) | so the product has 1 leading zero.
ET(K) = RND(AA0) | Directly rounding to high work

| gives us a 15-bit ET array

NLSET = NLSTMP + 11 + NLS – 16 | Calculate the NLS for ET

G.3.11 Block 32 – Decoder synthesis filter

This is the floating point pseudo-code for block 32, the decoder synthesis filter.

For K = 1, 2, ..., IDIM, do the next 6 lines
TEMP(K) = 0
For J = LPC, LPC – 1, ..., 3, 2, do the next 2 lines

TEMP(K) = TEMP(K) – STATELPC(J) * A(J + 1) | Zero-input response
STATELPC(J) = STATELPC(J – 1)

TEMP(K) = TEMP(K) – STATELPC(1) * A(2) | Handle last one differently
STATELPC(1) = TEMP(K) |

Repeat the above for the next K

TEMP(1) = ET(1)
For K = 2, 3, ..., IDIM, do the next 5 lines

A0 = ET(K)
For I = K, K – 1, ..., 2, do the next 2 lines

TEMP(I) = TEMP(I – 1)
A0 = A0 – A(I) * TEMP(I) | Compute zero-state response

TEMP(1) = A0

Repeat the above 5 lines for the next K

| Now update filter memory by adding
| zero-state responses to zero-input
| responses

For K = 1, 2, ..., IDIM, do the next 3 lines
STATELPC(K) = STATELPC(K) + TEMP(K) | ZIR + ZSR
If STATELPC(K) > MAX, set STATELPC(K) = MAX | Limit the range
If STATELPC(K) < MIN, set STATELPC(K) = MIN |

I = IDIM + 1
For K = 1, 2, ..., IDIM, do the next line | Obtain quantized speech by

ST(K) = STATELPC(I – K) | reversing order of synthesis
| filter memory

32 Recommendation G.728 – Annex G (11/94)

The fixed point pseudo-code for block 32 follows the same methodology used in block 9 except that there is no memory
update for the perceptual weighting filter.

NLSSTATE(11) = NLSSTATE(1)
For K = 2, 3, 4, ..., 10, do the next line | Find minimum NLSSTATE

If NLSSTATE(K) < NLSSTATE(11), set NLSSTATE(11) = NLSSTATE(K)

For K = 1, 2, ..., IDIM, do the following
I = 1
L = 6 – K
J = LPC
AA0 = 0
For LL = 1, ..., L, do the next 3 lines

AA0 = AA0 – STATELPC(J) * A(J + 1) | Multiply – add
STATELPC(J) = STATELPC(J – 1) | Memory shift
J = J – 1

NLS = NLSSTATE(I) – NLSSTATE(11)
AA1 = AA0 >> NLS

For I = 2, ..., 10, do the next 8 lines
AA0 = 0
For LL = 1, 2, ..., IDIM, do the next 3 lines

AA0 = AA0 – STATELPC(J) * A(J + 1)
STATELPC(J) = STATELPC(J – 1) | STATELPC(0) = garbage if J = 1; it is OK
J = J – 1

NLS = NLSSTATE(I) – NLSSTATE(11)
AA0 = AA0 >> NLS | Shift to align
AA1 = AA1 + AA0

If K = 1, go to SHIFT2
L = K – 1
AA0 = 0
For LL = 1, 2, ..., L, do the next 3 lines

AA0 = AA0 – STATELPC(J) * A(J + 1)
STATELPC(J) = STATELPC(J – 1) | STATELPC(0) = garbage if J = 1; it is OK
J = J – 1

AA1 = AA1 + AA0 | No shift necessary for this time

SHIFT2: AA1 = AA1 >> 14 | A() was Q14, NLS of AA1
| is now NLSSTATE(11)

If AA1 > 32767, set AA1 = 32767 | Clip to 16 bits if necessary since
If AA1 < –32768, set AA1 = –32768 | STATELPC(1) will be multiplier input

STATELPC(1) = AA1 | Save lower 16-bit word
IR = NLSSTATE(11) – 2 | for STATELPC
If IR > 0, set AA1 = AA1 >> IR | Make TEMP Q2 format
If IR < 0, set AA1 = AA1 << – IR |
TEMP(K) = AA1

Repeat the above for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 13, STATELPC, NLS)
NLSSTATE(11) = NLSSTATE(11) + NLS | Re-normalize new STATELPC to 15 bits

For L = 1, 2, ..., 10, do the next line | Update NLSSTATE
NLSSTATE(L) = NLSSTATE(L + 1)

| Frst calculate zero-state response
LABEL1: TEMP(1) = ET(1) | of the LPC synthesis filter
For K = 2, 3, ..., IDIM, do the following indented lines

AA0 = ET(K) << 14 | Because A(1) = 1 in Q14 = 16384
For I = K, K – 1, ..., 2, do the next 3 lines

TEMP(I) = TEMP(I – 1)
P = A(I) * TEMP(I) | Q14 multiplication
AA0 = AA0 – P | Compute zero-state responses

Recommendation G.728 – Annex G (11/94) 33

AA1 = AA0 << 3
If AA1 overflowed above, do the next 4 lines | Make sure after AA0 >> 14 later,

For I = 1, 2, ..., IDIM, do the next line | the result does not exceed 15 bits.
ET(I) = ET(I) >> 1 | If it does, then ET >> 1

NLSET = NLSET – 1 | and repeat
GO TO LABEL1 | the calculation until it fits

AA0 = AA0 >> 14 | Compensate for A() being Q14
TEMP(1) = AA0 | Keep lowest 16 bits

Repeat the above indented section for the next K

If NLSET = NLSSTATE(10), go to LABEL2 | No changes necessary

If NLSET < NLSSTATE(10), do the next 5 lines | Lose precision in STATELPC
NLSD = NLSSTATE(10) – NLSET | by NLSD bits
For K = 1, 2, ..., IDIM, do the next line

STATELPC(K) = STATELPC(K) >> NLSD
NLSSTATE(10) = NLSET
go to LABEL2 | Only case left is NLSET > NLSSTATE

| Lose precision in TEMP
NLSD = NLSET – NLSSTATE(10) | by NLSD bits
For K = 1, 2, ..., IDIM, do the next line |

TEMP(K) = TEMP(K) >> NLSD

LABEL2: | Now we are ready
AA1 = 4095 | 4095 = STATELPC clipping level
If NLSSTATE(10) ≥ 0, set AA1 = AA1 << NLSSTATE(10) | Shift clipping level to
If NLSSTATE(10) < 0, set AA1 = AA1 >> –NLSSTATE(10) | align with STATELPC

For K = 1, 2, ..., IDIM, do the following indented lines
AA0 = STATELPC(K) + TEMP(K) | Update LPC filter memory
If AA0 > AA1, set AA0 = AA1 | If necessary, perform the clipping as specified in
If AA0 < –AA1, set AA0 = –AA1 | floating point in Recommendation G.728

| Note that these values were scaled
| So, if 32767 > | AA0 | < AA1, we need

If AA0 > 32767, set AA0 = 32767 | to clip AA0 to 16 bits since STATELPC(K)
If AA0 < –32768, set AA0 = –32768 | will later be a 16-bit input to
STATELPC(K) = AA0 | the multiplier

Repeat the above indented section for the next K

Call VSCALE(STATELPC, IDIM, IDIM, 12, STATELPC, NLS) | Scale STATELPC to 14 bits
NLSSTATE(10) = NLSSTATE(10) + NLS | to avoid overflow in

| zero-input response calculation later

I = IDIM + 1
For K = 1, 2, ..., IDIM, do the next line | Obtain quantized speech by

ST(K) = STATELPC(I – K) | reversing the order of the top 5
NLSST = NLSSTATE(10) | synthesis filter memory locations

| NLSST is used later in decoder

G.3.12 Block 36 – Pseudo-code for hybrid windowing module

In this subclause both the floating point and fixed point pseudo-code for block 36 are given. First, the floating point
pseudo-code is presented.

N1 = LPCW + NFRSZ | Compute some constants (can be
N2 = LPCW + NONRW | precomputed and stored in memory)
N3 = LPCW + NFRSZ + NONRW

For N = 1, 2, ..., N2, do the next line
SBW(N) = SBW(N + NFRSZ) | Shift the old signal buffer

For N = 1, 2, ..., NFRSZ, do the next line
SBW(N2 + N) = STMP(N) | Shift in the new signal

| SBW(N3) is the newest sample

34 Recommendation G.728 – Annex G (11/94)

K = 1
For N = N3, N3 – 1, ..., 3, 2, 1, do the next 2 lines

WS(N) = SBW(N) * WNRW(K) | Multiply the window function
K = K + 1

For I = 1, 2, ..., LPCW + 1, do the next 4 lines
TMP = 0
For N = LPCW + 1, LPCW + 2, ..., N1, do the next line

TMP = TMP + WS(N) * WS(N + 1 – I)
REXPW(I) = (1/2) * REXPW(I) + TMP | Update the recursive component

For I = 1, 2, ..., LPCW + 1, do the next 3 lines
R(I) = REXPW(I)
For N = N1 + 1, N1 + 2, ..., N3, do the next line

R(I) = R(I) + WS(N) * WS(N + 1 – I) | Add the non-recursive component

R(1) = R(1) * WNCF | White noise correction

Now we give the fixed point version of the same module. In this code we have added several new variables.
NLSREXPW is a global variable holding the number of left shifts for normalizing REXPW. This variable is initialized
with a value of 31.

N1 = LPCW + NFRSZ (= 10 + 20) | Compute some constants (can be
N2 = LPCW + NONRW (= 10 + 30) | precomputed and stored in memory)
N3 = LPCW + NFRSZ + NONRW (= 10 + 20 + 30)

For N = 1, 2, ..., N2, do the next line
SBW(N) = SBW(N + NFRSZ) | Shift the old signal buffer

For N = 1, 2, ..., NFRSZ, do the next line
SBW(N2 + N) = STMP(N) | SBW(N3) is the newest sample

| All SBW are Q2 and represented
| in 15 bits precision

Call FINDNLS(SBW, N3, N3, 14, NLS) | Find the amount of left shifts
| needed in the next loop to get
| 2 bits of headroom. We do not
| really need to do the scaling
| We just use NLS

NLSTMP = NLS – 1
K = 1
For N = 60, 59, ..., 1, do the next 4 lines

P = SBW(N) * WNRW(K) | WNRW is Q15, left shift by
AA0 = P << NLSWS | NLSWS bits will make
WS(N) = RND(AA0) | the largest WS(N) element
K = K + 1 | a 14-bit number (2 bits of headroom for

| later acumulation)

NLSATTW = 15
Call
HWMCORE(LPCW, N1, N3, NLSATTW, WS, NLSTMP, REXPW, NLSREXPW, R, ILLCONDW)

If NLSREXPW > 41, set NLSREXPW = 41 | To avoid reduced accuracy in
| REXPW() and R() during long periods
| of zero input signal

The subroutine HWMCORE can be found in G.3.18.

In the above code a call to FINDNLS searches the entire SBW buffer of 60 samples. However, a bit-exact substitute
which uses 2 more words of memory can be used to reduce that computation. SBW will always contain 40 old samples
and 20 new ones. We can divide this into three vectors of 20 samples each. We keep track of the NLS for each of the
three vectors and then choose the minimum value one for use in applying the hybrid window. Since two of the vectors
are composed of old samples, we will already know their respective NLS. We need only check the newest vector to find
its NLS. We then need to store the NLS for the newest vector and the newer of the two old vectors for the next
computation. This method will result in the selection of exactly the same NLS as the procedure shown in the above
pseudo-code.

Recommendation G.728 – Annex G (11/94) 35

The following table lists all variables in this pseudo-code with their representation format and size for easy reference.
The table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is
completed, or permanent (perm), meaning that the value will be needed after the current calculation as well. The table
also notes which variables were not included in the previous floating point pseudo-code (old/new).

G.3.13 Block 38 – Weighting filter coefficient calculator

We begin with the floating point pseudo-code for this block.

If ICOUNT ≠ 3, skip the execution of this block
Otherwise, do the following

For I = 2, 3, ..., 11, do the next line
AWP(I) = WPCFV(I) * AWZTMP(I) | Scale denominator coefficients

For I = 2, 3, ..., 11, do the next line
AWZ(I) = WZCFV(I) * AWZTMP(I) | Scale numerator coefficients

In the fixed point pseudo-code, we must consider the possibility that there was ill-conditioning in Durbin’s recursion or
that AWZTMP could not even be expressed in Q13. (It has never been observed that Q13 was not sufficient, but this
possibility must still be considered.) The variable ILLCONDW is a flag from block 37 which indicates whether the
results of block 37 are valid or not. In Recommendation G.728, there is an implicit assumption that the results of Durbin
will not be used if ILLCONDW is true. That is, AWZ and AWP will not be updated from AWZTMP. The same
assumption is repeated here. If ILLCONDW is true, then we do not update AWP or AWZ. It is unnecessary to do so
because we will continue to use the previous values.

Next, we must consider the possibility that the coefficients AWZTMP() from Durbin’s recursion may be in Q13, Q14
or Q15. NLSAWZTMP is the number of left shifts of AWZTMP. We want the numerator and denominator coefficients,
AWZ and AWP to be in Q14 for the output. It may be the case that AWZ cannot be represented in Q14. When this is the
case, do not update AWZ and AWP. The fixed point pseudo-code is given by the following.

If ICOUNT ≠ 3, skip the execution of this block
Otherwise, do the following

| First check to see if ILLCONDW is true

Variable Format Size Temp/perm Old/new

NLS integer 21 temp new

NLSREXPW integer 21 perm new

NLSTMP integer 21 temp new

REXPW BFL 11 perm old

R BFL 21 perm old

SBW Q2 60 perm old

STMP Q2 20 perm old

WS BFL 60 temp old

BFL Block floating point
Integer 16-bit integer

36 Recommendation G.728 – Annex G (11/94)

If ILLCONDW = .TRUE., skip the execution of this block
Otherwise, do the following

| Next do the numerator coefficients
| If they overflow for Q14,
| do not update AWZ or AWP
| Temporary array WS is used in case
| of overflow, so that AWZ is preserved

For I = 2, 3, ..., 7, do the next 6 lines
AA0 = WZCFV(I) * AWZTMP(I) | WZCFV is Q14,
If NLSAWZTMP = 13, AA0 = AA0 << 3 | AA0 is 14 + NLSAWZTMP
If NLSAWZTMP = 14, AA0 = AA0 << 2 | Make AA0 Q30 for all 3 cases by
If NLSAWZTMP = 15, AA0 = AA0 << 1 | appropriate number of shifts
If AA0 overflowed above, go to LABEL | If true, Q14 will overflow
WS(I) = RND(AA0) | Round to high word for WS

| Overflow cannot occur in remaining cases
| If you reach here then
| continue without the checks
| then copy WS to AWZ

For I = 8, 9, 10, 11, do the next 5 lines
AA0 = WZCFV(I) * AWZTMP(I)
If NLSAWZTMP = 13, AA0 = AA0 << 3
If NLSAWZTMP = 14, AA0 = AA0 << 2
If NLSAWZTMP = 15, AA0 = AA0 << 1
WS(I) = RND(AA0)

For I = 2, 3, ..., 11, do the next line | No overflows, so copy
AWZ(I) = WS(I) | WS to AWZ

| Now do the denominator
| coefficients
| If the numerator did not overflow,
| then the denominator cannot, either

For I = 2, 3, ..., 11, do the next 5 lines
AA0 = WPCFV(I) * AWZTMP(I) | WPCFV is Q14; AA0 is 14 + NLSAWZTMP
If NLSAWZTMP = 13, AA0 = AA0 << 3 | Make AA0 Q30 for all 3 cases
If NLSAWZTMP = 14, AA0 = AA0 << 2 | appropriate number of shifts
If NLSAWZTMP = 15, AA0 = AA0 << 1 |
AWP(I) = RND(AA0) | Round to high word for AWP

Exit this subroutine

LABEL: | If program proceeds to here, we will have an overflow
| if we try to represent AWZ in Q14. In this case,
| do not update the weighting filter coefficients
| (i.e. keep using the filter coefficients from the
| previous adaptation cycle).

G.3.14 Block 43 – Hybrid windowing module

In this subclause both the floating point and fixed point pseudo-code for block 43 are given. First, the floating point
pseudo-code is presented.

N1 = LPCLG + NUPDATE | Compute some constants (can be
N2 = LPCLG + NONRLG | precomputed and stored in memory)
N3 = LPCLG + NUPDATE + NONRLG

For N = 1, 2, ..., N2, do the next line
SBLG(N) = SBLG(N + NUPDATE) | Shift the old signal buffer

For N = 1, 2, ..., NUPDATE, do the next line
SBLG(N2 + N) = GTMP(N) | Shift in the new signal

| SBW(N3) is the newest sample

Recommendation G.728 – Annex G (11/94) 37

K = 1
For N = N3, N3 – 1, ..., 3, 2, 1, do the next 2 lines

WS(N) = SBLG(N) * WNRLG(K) | Multiply the window function
K = K + 1

For I = 1, 2, ..., LPCLG + 1, do the next 4 lines
TMP = 0
For N = LPCLG + 1, LPCLG + 2, ..., N1, do the next line

TMP = TMP + WS(N) * WS(N + 1 – I)
REXPLG(I) = (3/4) * REXPLG(I) + TMP | Update the recursive component

For I = 1, 2, ..., LPCLG + 1, do the next 3 lines
R(I) = REXPLG(I)
For N = N1 + 1, N1 + 2, ..., N3, do the next line

R(I) = R(I) + WS(N) * WS(N + 1 – I) | Add the non-recursive component

R(1) = R(1) * WNCF | White noise correction

Note that before this routine is called, GTMP() is assigned as

GTMP(1) = GSTATE(4)
GTMP(2) = GSTATE(3)
GTMP(3) = GSTATE(2)
GTMP(4) = GSTATE(1)

and the initial values of GSTATE() are –32 in floating point, which is –16384 in Q9 fixed point. Now we give the fixed
point version of the same module. In this code we have added several new variables. NLSREXPLG is a global variable
holding the number of left shifts for normalizing REXPLG. This variable is initialized with a value of 31.

N1 = LPCLG + NUPDATE (= 10 + 4) | Compute some constants (can be
N2 = LPCLG + NONRLG (= 10 + 20) | precomputed and stored in memory)
N3 = LPCLG + NUPDATE + NONRLG (= 10 + 4 + 20)

For N = 1, 2, ..., N2, do the next line
SBLG(N) = SBLG(N + NUPDATE) | Shift the old signal buffer

For N = 1, 2, ..., NUPDATE, do the next line
SBLG(N2 + N) = GTMP(N) | SBLG(N3) is the newest sample

| All SBLG are Q9 and represented
| in 16-bits precision

Call FINDNLS(SBLG, N3, N3, 14, NLS) | Find the amount of left shifts
NLSTMP = NLS – 1 | needed in the next loop for 2 bits

| of headroom later

K = 1
For N = 34, 33, ..., 1, do the next 5 lines

P = SBLG(N) * WNRLG(K) | WNRLG is Q15
If NLSTMP = –1, set AA0 = P >> 1
If NLSTMP > –1, set AA0 = P << NLSTMP
WS(N) = RND(AA0) | WS(N) is 14 bits or less
K = K + 1

NLSATTLG = 14
Call HWMCORE(LPCLG, N1, N3, NLSATTLG, WS, NLSTMP, REXPLG, NLSREXPLG, R, ILLCONDG)

The subroutine HWMCORE can be found in G.3.18.

The following table lists all variables in this pseudo-code with their representation format and size for easy reference.
The table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is
completed, or permanent (perm), meaning that the value will be needed after the current calculation as well. The table
also notes which variables were not included in the previous floating point pseudo-code (old/new).

38 Recommendation G.728 – Annex G (11/94)

G.3.15 Block 45 – Bandwidth expansion module

This is the floating point pseudo-code for block 45, the bandwidth expansion module.

If ICOUNT ≠ 2, skip the execution of this block
For I = 2, 3, ..., LPCLG + 1, do the next line

GP(I) = FACGPV(I) * GPTMP(I) | Scale coefficients

The tables for FACGPV are given in Q14 format, as are the tables for the other bandwidth expansion coefficients. The
values for the input GPTMP array are in Q13, Q14 or Q15 format. As discussed in the earlier description of the fixed
point Levinson-Durbin recursion module, NLSGPTMP is given by the Levinson-Durbin recursion module to indicate
which format is used for GPTMP. After the multiplication FACGPV(I)*GPTMP(I) the corresponding amount of left
shifts is required.

The final values for GP are always represented in Q14 format. Empirically, the output coefficient arrays of block 45
have never been too large to be represented in Q14 (i.e. requiring Q13 format or lower). However, to be safe, we have to
be prepared to handle the unlikely event of Q14 overflow at the output of the bandwidth expansion blocks. In the
pseudo-code below, we check for the possibility of Q14 overflow. If such a case is detected, we do something similar to
the Levinson-Durbin recursion modules - we do not update the predictor coefficients and keep using the old coefficients
of the previous adaptation cycle. Potentially, we could use a switchable Q14/Q13 format, with a flag to signal the
filtering modules which of the two possible Q formats are used. However, this will unnecessarily increase the
complexity of the DSP code and the execution time. Since Q14 overflow was never observed at the output of bandwidth
expansion modules, a simple safety check as implemented below suffices.

This is the fixed point pseudo-code for block 45.

If ICOUNT ≠ 2, skip the execution of this block
Otherwise, do the following

| First check to see if ILLCONDG is true
If ILCONDG = .TRUE., skip the execution of this block
Otherwise, do the following

GPTMP(1) = 16 384
For I = 2, 3, 4, ..., LPCLG + 1, do the next 6 lines

AA0 = FACGPV(I) * GPTMP(I) | AA0 is Q27, Q28 or Q29
If NLSGPTMP = 13, AA0 = AA0 << 3 | Make AA0 Q30 for all 3 cases by
If NLSGPTMP = 14, AA0 = AA0 << 2 | appropriate number of shifts
If NLSGPTMP = 15, AA0 = AA0 << 1 |
If AA0 overflowed above, go to LABEL | If not true,
GPTMP(I) = RND(AA0) | round to high word for GP

Variable Format Size Temp/perm Old/new

GTMP Q9 24 perm old

NLS integer 21 temp new

NLSREXPLG integer 21 perm new

NLSTMP integer 21 temp new

REXPLG BFL 11 perm old

R BFL 11 perm old

SBLG Q9 34 perm old

WS BFL 34 temp old

BFL Block floating point
Integer 16-bit integer

Recommendation G.728 – Annex G (11/94) 39

For I = 2, 3, 4, ..., LPCLG + 1, do the next line | Everything is normal, copy GPTMP
GP(I) = GPTMP(I) | to GP and then exit

Exit this program

LABEL: | If program proceeds to here, we will have an
| overflow if we try
| to represent GP in Q14. In this case, do not update
| the log-gain predictor coefficients (i.e. keep using
| the log-gain predictor coefficients of the previous
| adaptation cycle).

G.3.16 Block 46 – Log-gain linear prediction

This is the floating point pseudo-code for the log-gain linear predictor, block 46.

LOGGAIN = 0
For I = LPCLG, LPCLG – 1, ..., 3, 2, do the next 2 lines

LOGGAIN = LOGGAIN – GP(I + 1) * GSTATE(I)
GSTATE(I) = GSTATE(I – 1)

LOGGAIN = LOGGAIN – GP(2) * GSTATE(1)

LOGGAIN and GSTATE are represented in Q9 format throughout the coder. GP is represented in Q14 format. Here is
the fixed point pseudo-code.

AA0 = 0
For I = LPCLG, LPCLG – 1, ..., 3, 2, do the next 3 lines

P = GP(I + 1) * GSTATE(I)
AA0 = AA0 – P
GSTATE(I) = GSTATE(I – 1)

P = GP(2) * GSTATE(1)
AA0 = AA0 – P
AA0 = AA0 >> 14
LOGGAIN = AA0

This is the floating point pseudo-code for block 98, the log-gain limiter. Since this code is based on modifications made
for fixed point, it does not appear in Recommendation G.728. We include it here in order to have it for comparison
purposes with the fixed point pseudo-code to follow.

If LOGGAIN > 28., set LOGGAIN = 28
If LOGGAIN < –32., set LOGGAIN = –32

Since LOGGAIN is represented in Q9 format, the maximum and minimum thresholds are multiplied by 512. These
values are used in the fixed point pseudo-code given below.

If LOGGAIN > 14336, set LOGGAIN = 14336
If LOGGAIN < –16384, set LOGGAIN = –16384

This is the floating point pseudo-code for the Log-Gain Offset Adder which is block 99.

Z = LOGGAIN + GOFF

The floating point value of GOFF is 32 and its fixed point value is 16384, which corresponds to 512 * 32. Since
LOGGAIN has a range between –32 and +28, Z has a range of 0 to 60. The fixed point code is identical to the floating
point code.

This is the floating point code for block 48, the Inverse Logarithm Calculator.

GAIN = 10(Z/20)

The complete value we wish can be expressed in terms of the antilog of 2. It is

100 05 20 05 10 20 16609642. . log () .Z Z Z= =

40 Recommendation G.728 – Annex G (11/94)

We let X = 0.1660964 Z, which will have a range from 0 to 9.97. Finally, we let X = [X] + x, where [X] is the greatest
integer less than or equal to X and x is the fractional part. The value of 2[X] is exact and only needs to be represented by
its exponent. What remains is the problem of computing the value for the fractional part.

In computing X, we let 0.1660964 be represented in Q21 format. This corresponds to a number that can be represented
as 10 in the upper 16 bits and 20649 in the lower 15 bits. We multiply Z by both parts separately in order to get good
precision for X. We then separate [X] and x. In computing the exponential for the fractional part we know 0 < x < 1, so
1 < 2x < 2. Therefore, we can use the following fixed representations: x is Q15 and 2x is Q14. We use a Taylor series
expansion to compute 2x:

2x =

((c4 x + c3) x + c2) x + c1 x + c0

= c4 x4 + c3 x3 + c2 x2 + c1 x + c0

The c values are stored in Q14 and Q15 and are given by

c4 = 22 323 = 0.0098571 in Q15
c3 = 2 1874 = 0.0571899 in Q15
c2 = 2 7866 = 0.2400512 in Q15
c1 = 22702 = 0.6928100 in Q15
c0 = 16384 = 1.0 in Q14 098571

Here is the pseudo-code for computing 100.05 GAIN on a 16-bit DSP with two 32-bit accumulators. It is assumed that
GAIN is in Q9 format and the offset of 32 dB has already been added to it.

AA0 = 10 * Z | Z is Q9, 10 is Q6, so AA0 is Q15
AA1 = 20649 * Z | 20649 is Q21, so AA1 is Q30
AA1 = AA1 << 1 | Make AA1 Q31
AA1 = RND(AA1) | Round AA1 to make it Q15 in

| low word
AA0 = AA0 + AA1 | AA0 = [X] + x in Q15
AA1 = AA0 >> 15 | Want [X] in Q0 and x in Q15
NLS = AA1 | NLS = [X]
AA1 = AA1 << 15
x = AA0 – AA1 | x is the fractional part in Q15

| Compute 2 ** x
AA0 = c4 * x | Q15 * Q15 = => AA0 is Q30
AA0 = AA0 << 1 | AA0 now Q31
AA1 = c << 16 | AA1 is Q31
AA0 = AA0 + AA1
TMP = RND(AA0) | TMP is Q15, use routing
AA0 = TMP * x | Q15 * Q15 = => AA0 is Q30
AA0 = AA0 << 1 | AA0 now Q31
AA1 = c2 << 16 | AA1 is Q31
AA0 = AA0 + AA1
TMP = RND(AA0) | TMP is Q15, use routing
AA0 = TMP * x | Q15 * Q15 = => AA0 is Q30
AA0 = AA0 << 1 | AA0 now Q31
AA1 = c1 << 16 | AA1 is Q31
AA0 = AA0 + AA1
TMP = RND(AA0) | TMP is Q15, use routing
AA0 = TMP * x | Q15 * Q15 = => AA0 is Q30

| No left shift this time!!
AA1 = c0 = << 16 | AA1 is Q30
AA0 = AA0 + AA1
GAIN = RND(AA0) | GAIN is Q14 and contains 2 ** x

| NLSGAIN is 14 – NLS for 2 ** X
NLSGAIN = 14 – NLS | Q factor for result

Recommendation G.728 – Annex G (11/94) 41

The following is the floating point pseudo-code for blocks 96 and 97, the calculation of the new value for GSTATE(1).
This block does not appear in Recommendation G.728 and is given here for comparison with the fixed point pseudo-
code to be given immediately following. The input variables are the GAIN value output from block 98, GCBLG, the dB
value of the gain codebook entry selected for the previous excitation vector, and SHAPELG, the dB value of the shape
codevector selected for the previous excitation vector. These values are given in Tables G.3 and G.4, respectively. Those
tables give both the floating point and fixed point representations for the values. The fixed point representations are in
Q11 format. The floating point pseudo-code is:

GSTATE(1) = LOGGAIN + GCBLG(IG) + SHAPELG(IS)
If GSTATE(1) < –32., set GSTATE(1) = –32.

The fixed point pseudo-code follows.

AA0 = LOGGAIN << 7 | Align decimal points at
AA0 = AA0 + (GCBLG(IG) << 5) | boundary between the high and
AA0 = AA0 + (SHAPELG(IS) << 5) | low words of the accumulator

AA0 = AA0 >> 7 | Right shift back to Q9 format

IF AA0 < –16384, set AA0 = –16384 | Check lower limit

GSTATE(1) = AA0 | Lower 16-bit word saved

G.3.17 Block 49 – Hybrid window module for synthesis filter

We begin with the floating point pseudo-code for the hybrid windowing module.

N1 = LPC + NFRSZ | Compute some constants (can be
N2 = LPC + NONR | precomputed and stored in memory)
N3 = LPC + NFRSZ + NONR

For N = 1, 2, ..., N2, do the next line
SB(N) = SB(N + NFRSZ) | Shift the old signal buffer

For N = 1, 2, ..., NFRSZ, do the next line
SB(N2 + N) = STTMP(N) | Shift in the new signal

| SB(N3) is the newest sample
K = 1
For N = N3, N3 – 1, ..., 3, 2, 1, do the next 2 lines

WS(N) = SB(N) * WNR(K) | Multiply the window function
K = K + 1

For I = 1, 2, ..., LPC + 1, do the next 4 lines
TMP = 0
For N = LPC + 1, LPC + 2, ..., N1, do the next line

TMP = TMP + WS(N) * WS(N + 1 – I)
REXP(I) = (3/4) * REXP(I) + TMP | Update the recursive component

For I = 1, 2, ..., LPC + 1, do the next 3 lines
RTMP(I) = REXP(I)
For N = N1 + 1, N1 + 2, ..., N3, do the next line

RTMP(I) = RTMP(I) + WS(N) * WS(N + 1 – I)
| Add the non-recursive component

RTMP(1) = RTMP(1) * WNCF | White noise correction

The fixed point pseudo-code for the hybrid windowing module (block 49) is much more complicated than the floating
point version. This is due to the special handling of Segmental Block Floating Point (SBFL) format which is needed to
retain sufficient numerical precision.

42 Recommendation G.728 – Annex G (11/94)

The STTMP array contains 4 quantized speech vectors of the previous adaptation cycle. When each of these 4 quantized
speech vector (the ST array) was computed, it was represented in 14-bit precision BFL format. The number of left shifts
(NLS) for the 4 quantized vectors will, in general, be different. For this reason, the STTMP array is said to be stored in
SBFL format since it is the concatenation of 4 BFL ST vectors. The SB array is the concatenation of 21 BFL ST vectors.
For this reason the SB array is stored in the same 14-bit precision SBFL format. For each of the 4 vectors composing
STTMP, there is an associated NLS value. These are stored in the array NLSSTTMP(). For the 21 vectors composing
SB, the NLS values are stored in the array NLSSB().

Next, we give the fixed point pseudo-code for the hybrid windowing module.

N1 = LPC + NFRSZ (= 70) | Compute some constants (can be
N2 = LPC + NONR (= 85) | precomputed and stored in memory)
N3 = LPC + NFRSZ + NONR (= 105)
N4 = N3/IDIM (= 21)
N5 = NFRSZ/IDIM (= 4)
N6 = N4 – N5 (= 17)

For N = 1, 2, ..., N2, do the next line
SB(N) = SB(N + NFRSZ) | Shift old part of buffer SB

For N = 1, 2, ..., N6, do the next line
NLSSB(N) = NLSSB(N + N5) | Shift old NLSSB

For N = 1, 2, ..., NFRSZ, do the next line
SB(N2 + N) = STTMP(N) | Shift in new part of SB

For N = 1, 2, ..., N5, do the next line
NLSSB(N6 + N) = NLSSTTMP(N) | Shift in new NLSSB

| Now find the minimum NLSSB,
| this determines NLSWS

NLSTMP = Min{NLSSB(1), NLSSB(2), ..., NLSSB(N4)}

K = 1 | Now multiply SB by
N = N3 | the hybrid window function
For J = 1, 2, ..., N4, do the next 8 lines

NRSH = NLSSB(J) – NLSTMP – 1 | –1 to compensate for Q15 multiplication
For M = 1, 2, ..., IDIM, do the next 6 lines

P = SB(K) * WNR(N) | WNR is Q15 multiplication
If NRSH = –1, set AA0 = P << 1
If NRSH > –1, set AA0 = P >> NRSH
WS(K) = RND(AA0) | Round upper word and store in WS
N = N – 1
K = K + 1

NLSATT50 = 14
Call HWMCORE(LPC, N1, N3, NLSATT50, WS, NLSTMP, REXP, NLSREXP, RTMP, ILLCOND)

NOTE – The following table lists all variables in this pseudo-code with their representation format and size for easy
reference. The table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is
completed, or permanent (perm), meaning that the value will be needed after the current calculation as well. The table also notes
which variables were not included in the previous floating point pseudo-code (old/new).

Recommendation G.728 – Annex G (11/94) 43

G.3.18 HWMCORE – Core of hybrid window module

This module is used to complete the hybrid window calculation for blocks 36, 43 and 49. Each of those blocks has its
own initial portion. Variables are passed along from those blocks to this module. In order to avoid confusion, we have
renamed certain variables so that this pseudo-code does not use names associated with any one of those three blocks.
The following table matches the names used in this module with the names used in blocks 36, 43 and 49.

In addition to these variables, the scratch array WS and the corresponding number of shifts, NLSTMP, are also passed
from those blocks to this module.

Variable Format Size Temp/perm Old/new

NLSSB integer 221 perm new

NLSREXP integer 221 perm new

NLSSTTMP integer 224 perm new

NLSTMP integer 221 temp new

NRSH integer 221 temp new

REXP BFL 251 perm old

RTMP BFL 251 perm old

SB SBFL 105 perm old

STTMP SBFL 120 perm old

WS BFL 105 temp old

BFL Block floating point
Integer 16-bit integer
SBFL 14-bit precision segmented block floating point
WS 14-bit precision BFL
REXP and RTMP 16-bit precision

Variable Block 36 Block 43 Block 49

LPO LPCW (=10) LPCLG (=10) LPC (=50)

NLSATT NLSATTW NLSATTLG NLSATT50

NLSRREC NLSREXPW NLSREXPLG NLSREXP

N1 30 14 70

N3 60 34 105

R R R RTMP

RREC REXPW REXPLG REXP

44 Recommendation G.728 – Annex G (11/94)

The following is the fixed point pseudo-code for this module.

SUBROUTINE HWMCORE(LPO, N1, N3, NLSATT, WS, NLSTMP, RREC, NLSRREC, R, ILLCOND)

NLSAA0 = 2 * NLSTMP
AA0 = 0 | Compute recursive part of RREC(1)
For N = LPO + 1, ..., N1, do the next 2 lines

P = WS(N) * WS(N) | WS has 2 bits of headroom
AA0 = AA0 + P | AA0 will have 5 bits of headroom

| for energy calculation

| Case 1: NLSRREC > NLSAA0
If NLSRREC > NLSAA0, do the next 22 lines

AA0 = AA0 >> 1
IR = NLSRREC – NLSAA0 + 1
AA1 = RREC(1) << NLSATT | This can be done by multiplication
AA1 = –AA1 + (RREC(1) << 16) | Scale RREC by attenuation factor
AA1 = AA1 >> IR | Align AA0 and AA1
AA0 = AA0 + AA1
Call VSCALE(AA0, 1, 1, 30, AA0, NLSRE) | Find NLS for RREC
RREC(1) = RND(AA0) | Upper 16 bits of AA1 saved
NLSRREC = NLSAA0 – 1 + NLSRE
For I = 1, 2, ..., LPO, do the next 11 lines

AA0 = 0 | Compute recursive part of RREC(I + 1)
For N = LPO + 1, ..., N1, do the next 2 lines

P = WS(N) * WS(N – I)
AA0 = AA0 + P

AA0 = AA0 >> 1
AA1 = RREC(I + 1) << NLSATT | Scale RREC by 3/4 or 1/2
AA1 = AA1 + (RREC(I + 1) << 16) |
AA1 = AA1 >> IR
AA0 = AA0 + AA1
AA0 = AA0 << NLSRE
RREC(I + 1) = RND(AA0) | Upper 16 bits of AA0 saved

Go to FIN_RECUR

| Case 2: NLSRREC = NLSAA0
If NLSRREC = NLSAA0, do the next 21 lines

AA1 = RREC(1) << NLSATT | Scale RREC by 3/4 or 1/2
AA1 = –AA1 + (RREC(1) << 16) |
AA0 = AA0 >> 1
AA1 = AA1 >> 1
AA0 = AA0 + AA1
Call VSCALE(AA0, 1, 1, 30, AA0, NLSRE) | Find NLS for RREC
RREC(1) = RND(AA0) | Upper 16 bits of AA1 saved
NLSRREC = NLSRREC – 1 + NLSRE
For I = 1, 2, ..., LPO, do the next 11 lines

AA0 = 0 | Compute recursive part of RREC(I + 1)
For N = LPO + 1, ..., N1, do the next 2 lines

P = WS(N) * WS(N – I)
AA0 = AA0 + P

AA0 = AA0 >> 1
AA1 = RREC(I + 1) << NLSATT | Scale RREC by 3/4 or 1/2
AA1 = –AA1 + (RREC(I + 1) << 16) |
AA1 = AA1 >> 1
AA0 = AA0 + AA1
AA0 = AA0 << NLSRE
RREC(I + 1) = RND(AA0) | Upper 16 bits of AA0 saved

Go to FIN_RECUR

Recommendation G.728 – Annex G (11/94) 45

| Case 3: NLSRREC < NLSAA0
If NLSRREC < NLSAA0, do the next 21 lines

IR = NLSAA0 – NLSRREC + 1
AA0 = AA0 >> IR
AA1 = RREC(1) << NLSATT | Scale RREC by 3 /4 or 1/2
AA1 = –AA1 + (RREC(1) << 16) |
AA1 = AA1 >> 1
AA0 = AA0 + AA1
Call VSCALE(AA0, 1, 1, 30, AA0, NLSRE)
RREC(1) = RND(AA0) | Upper 16 bits of AA1 saved
NLSRREC = NLSRREC – 1 + NLSRE
For I = 1, 2, ..., LPO, do the next 11 lines

AA0 = 0 | Compute recursive part of RREC(I + 1)
For N = LPO + 1, ..., N1, do the next 2 lines

P = WS(N) * WS(N – I)
AA0 = AA0 + P

AA0 = AA0 >> IR
AA1 = RREC(I + 1) << NLSATT | Scale RREC by 3/4 or 1/2
AA1 = –AA1 + (RREC(I + 1) << 16) |
AA1 = AA1 >> 1
AA0 = AA0 + AA1
AA0 = AA0 << NLSRE
RREC(I + 1) = RND(AA0) | Upper 16 bits of AA0 saved

FIN_RECUR: | When you reach this point the
| recursive component has been computed

AA0 = 0 | Compute non-recursive part of R(1)
For N = N1 + 1, ..., N3, do the next 2 lines

P = WS(N) * WS(N)
AA0 = AA0 + P

| Case 1: NLSRREC > NLSAA0
If NLSRREC > NLSAA0, do the next 21 lines

IR = NLSRREC – NLSAA0 + 1
AA1 = RREC(1) << 16
AA1 = AA1 >> IR
AA0 = AA0 >> 1
AA1 = AA0 + AA1
AA0 = AA1 >> 8 | Apply white noise correction factor
AA1 = AA1 + AA0
Call VSCALE(AA1, 1, 1, 30, AA1, NLSRR)
R(1) = RND(AA1) | Upper 16 bits of AA1 saved

For I = 1, 2, ..., LPO, do the next 10 lines
AA0 = 0 | Compute non-recursive part of R(I + 1)
For N = N1 + 1, ..., N3, do the next 2 lines

P = WS(N) * WS(N – I)
AA0 = AA0 + P

AA0 = AA0 >> 1
AA1 = RREC(I + 1) << 16
AA1 = AA1 >> IR
AA1 = AA0 + AA1
AA1 = AA1 << NLSRR
R(I + 1) = RND(AA1) | Save upper 16 bits

Go to END

46 Recommendation G.728 – Annex G (11/94)

| Case 2: NLSRREC = NLSAA0
If NLSRREC = NLSAA0, do the next 18 lines

AA0 = AA0 >> 1
AA1 = RREC(1) << 15 | This can be done by multiplication
AA1 = AA0 + AA1
AA0 = AA1 >> 8 | Apply white noise correction factor
AA1 = AA1 + AA0
Call VSCALE(AA1, 1, 1, 30, AA1, NLSRR)
R(1) = RND(AA1) | Upper 16 bits of AA1 saved

For I = 1, 2, ..., LPO, do the next 9 lines
AA0 = 0 | Compute non-recursive part of R(I + 1)
For N = N1 + 1, ..., N3, do the next 2 lines

P = WS(N) * WS(N – I)
AA0 = AA0 + P

AA0 = AA0 >> 1
AA1 = RREC(I + 1) << 15
AA1 = AA0 + AA1
AA1 = AA1 << NLSRR
R(I + 1) = RND(AA1) | Save upper 16 bits

Go to END

| Case 3: NLSRREC < NLSAA0
If NLSRREC < NLSAA0, do the next 18 lines

IR = NLSAA0 – NLSRREC + 1
AA0 = AA0 >> IR
AA1 = RREC(1) << 15 | This can be done by multiplication
AA1 = AA0 + AA1
AA0 = AA1 >> 8 | Apply white noise correction factor
AA1 = AA1 + AA0
Call VSCALE(AA1, 1, 1, 30, AA1, NLSRR)
R(1) = RND(AA1) | Upper 16 bits of AA1 saved
For I = 1, 2, ..., LPO, do the next 9 lines
AA0 = 0 | Compute non-recursive part of R(I + 1)
For N = N1 + 1, ..., N3, do the next 2 lines

P = WS(N) * WS(N – I)
AA0 = AA0 + P

AA0 = AA0 >> IR
AA1 = RREC(I + 1) << 15
AA1 = AA0 + AA1
AA1 = AA1 << NLSRR
R(I + 1) = RND(AA1) | Save upper 16 bits

END: | One last job, check for ill-conditioning
ILLCOND = .FALSE.
If AA1 = 0, set ILLCOND = .TRUE | AA1 still contains 32 bit R(LPO + 1)

NOTE – The following table lists all variables in this pseudo-code with their representation format and size for easy
reference. The table notes whether each variable is temporary (temp), meaning that it need not be stored after the module is
completed, or permanent (perm), meaning that the value will be needed after the current calculation as well. The table also notes
which variables were not included in the previous floating point pseudo-code (old/new).

Recommendation G.728 – Annex G (11/94) 47

G.3.19 Block 51 – Bandwidth expansion module

This is the floating point pseudo-code for block 51, the bandwidth expansion module. A similar code also exists for
block 45 for the log gain linear predictor bandwidth expansion module. In that instance a different table is used and the
number of filter coefficients is greater.

For I = 2, 3, ..., LPC + 1, do the next line
ATMP(I) = FACV(I) * ATMP(I) | Scale coefficients

Wait until ICOUNT = 3, then
for I = 2, 3, ..., LPC + 1, do the next line

A(I) = ATMP(I)

The tables for FACV are given in Q14 format for the other bandwidth expansion coefficients. The values for the input
ATMP array are in Q13, Q14 or Q15 format. As discussed in the earlier description of the fixed point Levinson-Durbin
recursion module, NLSATMP is given by the Levinson-Durbin recursion module to indicate which format is used
for ATMP. After the multiplication FACV(I) * ATMP(I) the corresponding amount of left shifts are required.

The final values for ATMP are always represented in Q14 format. Empirically, the values of ATMP have never been too
large to be represented in Q14 (i.e. requiring Q13 format or lower). However, to be safe, we have to be prepared to
handle the unlikely event of Q14 overflow at the output of the bandwidth expansion module. In the pseudo-code below,
we check for the possibility of Q14 overflow. If such a case is detected, we do something similar to the Levinson-Durbin
recursion modules - we do not update the predictor coefficients and keep using the old coefficients of the previous
adaptation cycle. Potentially, we could use a switchable Q14/Q13 format, with a flag to signal the filtering modules
which of the two possible Q formats are used. However, this will unnecessarily increase the complexity of the DSP code
and the execution time. Since Q14 overflow was never observed at the output of bandwidth expansion modules, a simple
safety check as implemented below suffices.

Variable Format Size Temp/perm Old/new

NLSRE integer 221 temp new

NLSRR integer 221 temp new

NLSRREC integer 221 perm new

NLSTMP integer 221 temp new

RREC BFL 251 perm old

R BFL 251 perm old

WS BFL 105 temp old

BFL Block floating point
Integer 16-bit integer
SBFL 14-bit precision segmented block floating point
WS 14-bit precision BFL
RREC and R 16-bit precision
RREC Represents either REXP, REXPW or REXPLG, depending on whether this module is called from block 49, 36 or 43

48 Recommendation G.728 – Annex G (11/94)

This is the fixed point pseudo-code for block 51.

If ICOUNT ≠ 3, skip the following
Otherwise, do the following.

| First check to see if ILLCOND is true
If ILLCOND = .TRUE., skip the execution of this block
Otherwise, do the following

ATMP(1) = 16384
For I = 2, 3, 4, ..., LPC + 1, do the next 6 lines

AA0 = FACV(I) * ATMP(I) | AA0 is Q27, Q28 or Q29
If NLSATMP = 13, AA0 = AA0 << 3 | Make AA0 Q30 for all 3 cases by
If NLSATMP = 14, AA0 = AA0 << 2 | appropriate number of shifts
If NLSATMP = 15, AA0 = AA0 << 1
If AA0 overflowed above, go to LABEL | If not true,
ATMP(I) = RND(AA0) | round to high word for ATMP

For I = 2, 3, ..., LPC + 1, do the next line
A(I) = ATMP(I)

Exit this module

LABEL: | If program proceeds to here, we will have an
| overflow if we try to represent A in Q14.
| In this case, do not update the synthesis filter
| coefficients (i.e. keep using
| the synthesis filter coefficients from the previous
| adaptation cycle).

G.3.20 Blocks 71 and 72 – Long-term and short-term postfilters

Blocks 71 and 72 are combined in order to preserve the precision of the intermediate variable TEMP which was passed
between them in the floating point pseudo-code. The floating point pseudo-code for both of these blocks is given first.

For K = 1, 2, ..., IDIM, do the next line
TEMP(K) = GL * (ST(K) + B * ST(K – KP)) | Long-term postfiltering

For K = –NPWSZ –KPMAX + 1, ..., –2, –1, 0, do the next line
ST(K) = ST(K + IDIM) | Shift decoded speech buffer

For K = 1, 2, ..., IDIM, do the following
TEMP = TEMP(K)
For J = 10, 9, ..., 3, 2, do the next 2 lines

TEMP(K) = TEMP(K) + STPFFIR(J) * AZ(J + 1) | All-zero part
STPFFIR(J) = STPFFIR(J – 1) | of the filter

TEMP(K) = TEMP(K) + STPFFIR(1) * AZ(2) | Last multiplier
STPFFIR(1) = TMP

For J = 10, 9, ..., 3, 2, do the next 2 lines
TEMP(K) = TEMP(K) – STPFIIR(J) * AP(J + 1) | All-pole part
STPFIIR(J) = STPFIIR(J – 1) | of the filter

TEMP(K) = TEMP(K) – STPFIIR(1) * AP(2) | Last multiplier
STPFIIR(1) = TEMP(K)
TEMP(K) = TEMP(K) + STPFIIR(2) * TILTZ | Spectral tilt

| compensation filter

The fixed point pseudo-code is given by the following. The variables STPFFIR and STPFIIR are in Q2 throughout.

For K = 1, 2, ..., IDIM, do the following indented lines
| First do long-term postfilter

AA0 = GL * SST(K) | GL is Q14, SST(1:5) is Q2
AA0 = AA0 + GLB * SST(K – KP) | GLB is Q16, SST(–239:0) is Q0

Recommendation G.728 – Annex G (11/94) 49

AA1 = AA0 | Next do short-term postfilter
| Perform FIR part of filter

For J = 10, 9, ..., 3, 2, do the next 2 lines
AA1 = AA1 + STPFFIR(J) * AZ(J + 1) | AZ is Q14, STPFFIR(J) is Q2
STPFFIR(J) = STPFFIR(J – 1)

AA1 = AA1 + STPFFIR(1) * AZ(2)
AA0 = AA0 << 2
STPFFIR(1) = RND(AA0) | Q2 for STPFFIR

| Now perform IIR part of filter
For J = 10, 9, ..., 3, 2, do the next 2 lines

AA1 = AA1 – STPFIIR(J) * AP(J + 1) | AP is Q14, STPFIIR(J) is Q2
STPFIIR(J) = STPFIIR(J – 1)

AA1 = AA1 – STPFIIR(1) * AP(2)

AA0 = AA0 >> 14
| Now check for saturation

If AA0 > 32767, set AA0 = 32767
If AA0 < –32768, set AA0 = –32768
STPFIIR(1) = AA0

| Now do spectral compensation
| tilt filter

AA1 = AA1 + STPFIIR(2) * TILTZ | TILTZ is Q14
AA1 = AA1 >> 14
If AA1 > 32767, set AA1 = 32767
If AA1 < –32768, set AA1 = –32768
TEMP(K) = AA1

| Now shift the long-term postfilter
| memory buffer

For K = –NPWSZ – KPMAX + 1, ..., –7, –6, –5, do the next line
For K = –SST(K) = SST(K + IDIM) | Shift decoded

| speech buffer
For K = –4, –3, ..., 0, do the next line
For K = –SST(K) = SST(K + IDIM) >> 2 | Shift decoded speech buffer

| and change from Q2 to Q0

G.3.21 Blocks 73 and 74 – Sum of absolute value calculators

Blocks 73 and 74 are quite similar. Their results are kept in double precision. As indicated here, these results need not be
stored before block 75. The floating point pseudo-code for block 73 is given by the following. Note that we have
substituted the name SST for the variable ST in floating point code here. This is to keep consistency between this code
and the fixed point code presented below.

Recall that SST(1:5) is represented in Q2.

SUMUNFIL = 0
For K = 1, 2, ..., IDIM, do the next line

SUMUNFIL = SUMUNFIL + | SST(K) |

The pseudo-code for block 74 is given by the following.

SUMFIL = 0
For K = 1, 2, ..., IDIM, do the next line

SUMFIL = SUMFIL + absolute value of TEMP(K)

50 Recommendation G.728 – Annex G (11/94)

The fixed point pseudo-code for these two blocks is given by the following.

AA1 = 0
AA0 = 0
For K = 1, 2, ..., IDIM, do the next 2 lines

AA0 = AA0 + | SST(K) | | Add absolute value of SST(K)
AA1 = AA1 + | TEMP(K) | | Add absolute value of TEMP(K)

| AA0 = SUMUNFIL
| AA1 = SUMFIL
| SST and TEMP are Q2, so
| AA0 and AA1 are also Q2
| AA0 and AA1 will be used in block 75

G.3.22 Block 75 – Scaling factor calculator

Block 75 calculates the ratio of SUMUNFIL/SUMFIL and the result is stored in SCALE in NLSSCALE precision.
SUMUNFIL(AA0) and SUMFIL(AA1) come from blocks 73 and 74, respectively. The floating point-pseudo-code is
given by the following.

If SUMFIL > 1, set SCALE = SUMUNFIL / SUMFIL
Otherwise, set SCALE = 1

The fixed point pseudo-code is given by the following.

If AA1 > 4, do the following indented lines
Call VSCALE(AA1, 1, 1, 30, AA1, NLSDEN)
DEN = RND(AA1)
Call VSCALE(AA0, 1, 1, 30, AA0, NLSNUM)
NUM = RND(AA0) | NLSNUM and NLSDEN are both off by

| 16 which cancels out
Call DIVIDE(NUM, NLSNUM, DEN, NLSDEN, SCALE, NLSSCALE)
Otherwise, set SCALE = 16384 and NLSSCALE = 14

G.3.23 Block 76 – First-order lowpass filter and block 77 – Output gain scaling unit

The floating point pseudo-code for these two blocks is given by the following.

For K = 1, 2, ..., IDIM, do the following
SCALEFIL = AGCFAC * SCALEFIL + (1 – AGCFAC) * SCALE | Lowpass filtering
SPF(K) = SCALEFIL * TEMP(K) | Scale output

In the fixed point pseudo-code, the second term is computed once and then added in each iteration in order to save both
the subtraction and the multiplication inside the loop. The fixed point pseudo-code is given by the following.

AA1 = AGCFAC1 * SCALE | AGCFAC1 = 20972 in Q21 = 0.010000228
NRS = NLSSCALE – 14 + (21 – 14) | Compute right shift
If NRS ≥ 0, AA1 = AA1 >> NRS | Want AA1 to be Q28
If NRS < 0, AA1 = AA1 << –NRS | Left shift if NRS is negative

For K = 1, 2, ..., IDIM, do the following
| Lowpass filtering

AA0 = AA1 + AGCFAC * SCALEFIL | AGCFAC = 16220 in Q14 and SCALEFIL
| is Q14

AA0 = AA0 << 2 | Make SCALEFIL Q14
SCALEFIL = RND(AA0)

| Scale output
AA0 = SCALEFIL * TEMP(K) | TEMP(K) is Q2
AA0 = AA0 << 2
SPF(K) = RND(AA0) | SPF(K) is Q2

Recommendation G.728 – Annex G (11/94) 51

G.3.24 Block 81 – 10th order LPC inverse filter

This is the floating point version of the pseudo-code for block 81, the 10th order LPC inverse filter.

If IP = NPWSZ, then set IP = NPWSZ – NFRSZ | Check and update IP

For K = 1, 2, ..., IDIM, do the next 7 lines
ITMP = IP + K
D(ITMP) = ST(K)
For J = 10, 9, ..., 3, 2, do the next 2 lines

D(ITMP) = D(ITMP) + STLPCI(J) * APF(J + 1) | FIR filtering
STLPCI(J) = STLPCI(J – 1) | Shift in input

D(ITMP) = D(ITMP) + STLPCI(1) * APF(2) | Handle last one
STLPCI(1) = ST(K) | Shift in input

IP = IP + IDIM | Update IP

In the fixed code, we first need to convert ST from block floating point to fixed Q2 format, then write the Q2 version of
ST to the long-term postfilter memory buffer, SST, for use later by the long-term postfilter. Note that this buffer was
previously labelled ST in the floating point pseudo-code. ST is block floating point and the memory buffer is Q2. In
order to avoid confusion, it was necessary to rename the memory buffer SST. We then compute the LPC inverse filter.
Note that the coefficients for the LPC filter, APF, are represented in Q13.

NLS = 16 – NLSST + 2 | Compute left shift amount for Q2
For K = 1, 2, ..., IDIM, do the next 2 lines

AA0 = ST(K) << NLS
SST(K) = RND(AA0) | SST is new long-term

| postfilter buffer
If IP = NPWSZ, then set IP = NFRSZ | Check and update IP

| Start LPC inverse filtering
For K = 1, 2, ..., IDIM, do the next 10 lines

AA0 = SST(K)
AA0 = AA0 << 13
For J = 10, 9, ..., 3, 2, do the next 2 lines

AA0 = AA0 + STLPCI(J) * APF(J + 1)
STLPCI(J) = STLPCI(J – 1)

AA0 = AA0 + STLPCI(1) * APF(2)
STLPCI(1) = SST(K)
ITMP = IP + K
AA0 = AA0 << 2
D(ITMP) = RND(AA0) | D(ITMP) is in Q1

IP = IP + IDIM

G.3.25 Block 82 – Pitch period extraction module

We begin with the floating point version of the pseudo-code for block 82, the pitch period extraction module.

IF ICOUNT ≠ 3, skip the execution of this block
Otherwise, do the following

| Lowpass filtering and 4:1 downsampling

For K = NPWSZ – NFRSZ + 1, ..., NPWSZ, do the next 7 lines
TMP = D(K) – STLPF(1) * AL(1) – STLPF(2) * AL(2) – STLPF(3) * AL(3) | IIR filter
If K is divisible by 4, do the next 2 lines

N = K/4 | Do FIR filtering only if needed
DEC(N) = TEMP * BL(1) + STLPF(1) * BL(2) + STLPF(2) * BL(3) + STLPF(3) * BL(4)

STLPF(3) = STLPF(2)
STLPF(2) = STLPF(1) | Shift lowpass filter memory
STLPF(1) = TMP

52 Recommendation G.728 – Annex G (11/94)

M1 = KPMIN/4 | Start correlation peak-picking
M2 = KPMAX/4 | in the decimated LPC residual domain
CORMAX = most negative number of the machine
For J = M1, M1 + 1, ..., M2, do the next 6 lines

TMP = 0
For N = 1, 2, ..., NPWSZ/4, do the next line

TMP = TMP + DEC(N) * DEC(N – J) | TMP = correlation in decimated domain
If TMP > CORMAX, do the next 2 lines

CORMAX = TMP | Find maximun correlation
KMAX = J | and the corresponding lag

For N = –M2 + 1, –M2 + 2, ..., (NPWSZ – NFRSZ)/4, do the next line
DEC(N) = DEC(N + IDIM) | Shift decimated LPC residual buffer

M1 = 4 * KMAX – 3 | Start correlation peak-picking
| in undecimated domain

M2 = 4 * KMAX + 3
If M1 < KPMIN, set M1 = KPMIN | Check whether M1 out of range
If M2 > KPMAX, set M2 = KPMAX | Check whether M2 out of range
CORMAX = most negative number of the machine

For J = M1, M1 + 1, ..., M2, do the next 6 lines
TMP = 0
For K = 1, 2, ..., NPWSZ, do the next line

TMP = TMP + D(K) * D(K – J) | Correlation in undecimated domain
If TMP > CORMAX, do the next 2 lines

CORMAX = TMP | Find maximum correlation
KP = J | and the corresponding lag

M1 = KP1 – KPDELTA | Determine the range of search around
M2 = KP1 + KPDELTA | the pitch period of previous frame
If KP < M2 + 1, go to LABEL | KP cannot be a multiple pitch if true
If M1 < KPMIN, set M1 = KPMIN | Check whether M1 out of range
CMAX = most negative number of the machine
For J = M1, M1 + 1, ..., M2, do the next 6 lines

TMP = 0
For K = 1, 2, ..., NPWSZ, do the next line

TMP = TMP + D(K) * D(K – J) | Correlation in undecimated domain
If TMP > CMAX, do the next 2 lines

CMAX = TMP | Find maximum correlation
KPTMP = J | and the corresponding lag

SUM = 0
TMP = 0 | Start computing the tap weights
For K = 1, 2, ..., NPWSZ, do the next 2 lines

SUM = SUM + D(K – KP) * D(K – KP)
TMP = TMP + D(K – KPTMP) * D(K – KPTMP)

If SUM = 0, set TAP = 0; otherwise, set TAP = CORMAX/SUM
If TMP = 0., set TAP1 = 0.; otherwise, set TAP1 = CMAX/TMP
If TAP > 1, set TAP = 1 | Clamp TAP between 0 and 1
If TAP < 0, set TAP = 0
If TAP1 > 1, set TAP1 = 1 | Clamp TAP1 between 0 and 1
If TAP1 < 0, set TAP1 = 0

| Replace KP with fundamental pitch
| if si TAP1 TAP1 is large enough

If TAP1 > TAPTH * TAP, then set KP = KPTMP

LABEL: KP1 = KP | Update pitch period of previous frame
For K = –KPMAX + 1, –KPMAX + 2, ..., NPWSZ – NFRSZ, do the next line

D(K) = D(K + NFRSZ) | Shift the LPC residual buffer

Recommendation G.728 – Annex G (11/94) 53

In the fixed point version of this block, the D array and the state variables of the lowpass filter are represented in Q1.
This is to avoid overflow in correlation and energy computations. The fixed point pseudo-code is given by the following.

If ICOUNT ≠ 3, skip the execution of this block
Otherwise, do the following

For K = NPWSZ – NFRSZ + 1, ..., NPWSZ, do the next 17 lines
AA0 = D(K) * BL(0) | First do the FIR part
AA0 = AA0 + LPFFIR(1) * BL(1) | D(K) is Q1, BL() is Q19
AA0 = AA0 + LPFFIR(2) * BL(2) | BL(0) = 18721, BL(1) = –3668
AA0 = AA0 + LPFFIR(3) * BL(3) | BL(2) = –3668, BL(3) = 18721
LPFFIR(3) = LPFFIR(2)
LPFFIR(2) = LPFFIR(1)
LPFFIR(1) = D(K) | LPFFIR is Q1
AA0 = AA0 >> 6 | Now do the IIR part
AA0 = AA0 – LPFIIR(1) * AL(1) | AL() are Q13, LPFIIR() are Q1
AA0 = AA0 – LPFIIR(2) * AL(2) | AL(1) = –19172, AL(2) = 16481
AA0 = AA0 – LPFIIR(3) * AL(3) | AL(3) = –5031
LPFIIR(3) = LPFIIR(2)
LPFIIR(2) = LPFIIR(1)
AA0 = AA0 << 3
LPFIIR(1) = RND(AA0) | LPFIIR is Q1
N = (K >> 2)
If K = (N << 2), set DEC(N) = LPFIIR(1) | DEC(N) is Q1

M1 = KPMIN/4 | Start correlation peak-picking
M2 = KPMAX/4 | in the decimated LPC residual domain
AA1 = –2147483648 | = –231

For J = M1, M1 + 1, ..., M2, do the next 6 lines
AA0 = 0
For N = 1, 2, ..., NPWSZ/4, do the next line

AA0 = AA0 + DEC(N) * DEC(N – J)
If AA0 > AA1, do the next 2 lines

AA1 = AA0 | Find maximum correlation and
KMAX = J | the corresponding lag

For N = –M2 + 1, –M2 + 2, ..., (NPWSZ – NFRSZ)/4, do the next line
DEC(N) = DEC(N + IDIM)

M1 = 4 * KMAX – 3 | Start correlation peak-picking
| in undecimated domain

M2 = 4 * KMAX + 3
If M1 < KPMIN, set M1 = KPMIN | Check whether M1 out of range
If M2 > KPMAX, set M2 = KPMAX | Check whether M2 out of range
AA1 = –2147483648 | = –231

For J = M1, M1 + 1, ..., M2, do the next 6 lines
AA0 = 0
For K = 1, 2, ..., NPWSZ, do the next line

AA0 = AA0 + D(K) * DEC(K – J) | Correlation in undecimated domain
If AA0 > AA1, do the next 2 lines

AA1 = AA0
KP = J

CORMAX = AA1 | Double precision save to CORMAX

M1 = KP1 – KPDELTA | Determine the range of search around
M2 = KP1 + KPDELTA | the pitch period of the previous frame
If KP < M2 + 1, go to LABEL | KP cannot be a multiple pitch if true
If M1 < KPMIN, set M1 = KPMIN | Check whether M1 out of range
If M2 > KPMAX, set M2 = KPMAX | Check whether M2 out of range

| This last statement is not
| in floating point

AA1 = –2147483648 | = –231

54 Recommendation G.728 – Annex G (11/94)

For J = M1, M1 + 1, ..., M2, do the next 6 lines
AA0 = 0
For K = 1, 2, ..., NPWSZ, do the next line

AA0 = AA0 + D(K) * D(K – J) | Correlation in undecimated domain
If AA0 > AA1, do the next 2 lines

AA1 = AA0 | Find maximum correlation and
KPTMP = J | the corresponding lag

CMAX = AA1 | Double precision save to CMAX

AA0 = 0
AA1 = 0
For K = 1, 2, ..., NPWSZ, do the next 2 lines

AA0 = AA0 + D(K – KP) * D(K – KP)
AA1 = AA1 + D(K – KPTMP) * D(K – KPTMP)

| Find TAP
| Clip TAP weights if necessary

If AA0 = 0, set CORMAX = 0
If AA1 = 0, set CMAX = 0
If CORMAX > AA0, set CORMAX = AA0
If CORMAX < 0, set CORMAX = 0
If CMAX > AA1, set CMAX = AA1
If CMAX < 0, set CMAX = 0

If AA0 > AA1, do the next 2 lines
call VSCALE(AA0, 1, 1, 30, AA0, NLS)
AA1 = AA1 << NLS

otherwise do the next 2 lines
call VSCALE(AA1, 1, 1, 30, AA1, NLS)
AA0 = AA0 << NLS

SUM = AA0 >> 16
TMP = AA1 >> 16
AA0 = CORMAX << NLS
CORMAX = AA0 >> 16
AA0 = CMAX << NLS
CMAX = AA0 >> 16
AA1 = CORMAX * TMP
AA1 = AA1 >> 16
AA1 = AA1 * ITAPTH | ITAPTH = 26214 in Q16
AA0 = CMAX * SUM
If AA0 > AA1, set KP – KPTMP

LABEL: KP1 = KP | Update KP1 and shift LPC residual
For K = –KPMAX + 1, –KPMAX + 2, ..., NPWSZ – NFRSZ, do the next line

D(K) = D(K + NFRSZ) | Shift the LPC residual buffer

G.3.26 Block 83 – Pitch predictor tap calculator

We begin with the floating point version of the pseudo-code. Here we have used SST rather than ST for the name of the
long-term postfilter memory buffer.

If ICOUNT ≠ 3, skip the execution of this block
Otherwise, do the following
SUM = 0
TMP = 0
For K = –NPWSZ + 1, –NPWSZ + 2, ..., 0, do the next 2 lines

SUM = SUM + SST(K – KP) * SST(K – KP)
TMP = TMP + SST(K) * SST(K – KP)

If SUM = 0, set PTAP = 0; otherwise, set PTAP = TMP/SUM

Recommendation G.728 – Annex G (11/94) 55

The fixed point pseudo-code is given by the following. Note that SST() is 13 bit Q0. In performing the correlations, the
mulplication of SST by either itself or a delayed sample gives a result which is 25 bit Q0.

If ICOUNT ≠ 3, skip the execution of this block
Otherwise, do the following

AA0 = 0
AA1 = 0
For K = –NPWSZ + 1, –NPWSZ + 2, ..., 0, do the next 4 lines

P = SST(K – KP) * SST(K – KP)
AA0 = AA0 + P
P = SST(K) * SST(K – KP)
AA1 = AA1 + P

If AA0 = 0, set PTAP = 0 and return to calling program
If AA1 ≤ 0, set PTAP = 0 and return to calling program
If AA1 ≥ AA0, set PTAP = 16384 | NLSPTAP = 14
Otherwise, do the following

Call VSCALE(AA0, 1, 1, 30, AA0, NLSDEN)
Call VSCALE(AA1, 1, 1, 30, AA1, NLSNUM)
NUM = RND(AA1)
DEN = RND(AA0)
Call DIVIDE(NUM, NLSNUM, DEN, NLSDEN, PTAP, NLSPTAP)
NRS = NLSPTAP – 14
PTAP = PTAP >> NRS | NLSPTAP = 14

G.3.27 Block 84 – Long-term postfilter coefficient calculator

We begin with the floating point pseudo-code for block 84.

If ICOUNT ≠ 3, skip the execution of this block
Otherwise, do the following
If PTAP > 1, set PTAP = 1 | Clamp PTAP at 1
If PTAP < PPFTH, set PTAP = 0 | Turn off pitch postfilter

| if PTAP smaller than threshold

B = PPFZCF * PTAP
GL = 1/(1 + B)

This fixed point pseudo-code is given by the following. We define an additional variable GLB which is the product
of GL and B. This saves us later multiplications. B and GLB are output in Q16 and GL is output in Q14.

| Note that PTAP is < 16385 from block 83
If ICOUNT ≠ 3, skip the execution of this block
Otherwise, do the following

If PTAP < PPFTH, set PTAP = 0 | PPFTH = 9830 in Q14
AA0 = PPFZCF * PTAP | PPFZCF = 9830 in Q16, PTAP is in Q14
B = AA0 >> 14 | Save B in Q16
AA0 = AA0 >> 16 | AA0 = B in Q14
AA0 = AA0 + 16384
DEN = AA0 | DEN is in Q14
Call DIVIDE(16384, 14, DEN, 14, GL, NLS)
AA0 = GL * B | NLS = 14 or 15, NLS of B = 16
GLB = AA0 >> NLS | GLB is GL * B and is precomputed here

| in Q16 for block 71
NRS = NLS – 14
If NRS > 0, SET GL = GL >> NRS | Make GL Q14

56 Recommendation G.728 – Annex G (11/94)

G.3.28 Block 85 – Short-term postfilter coefficient calculator

We begin with the floating point pseudo-code for this block.

If ICOUNT ≠ 1, skip the execution of this block
Otherwise, do the following
For I = 2, 3, ..., 11, do the next 2 lines

AP(I) = SPFPCFV(I) * APF(I) | Scale denominator coefficients
AZ(I) = SPFZCFV(I) * APF(I) | Scale numerator coefficients

TILTZ = TILTF * RC1 | Tilt compensation filter coefficients

In the fixed point pseudo-code, we must consider the possibility that there was ill-conditioning in Durbin’s recursion or
that the prediction coefficients could not even be expressed in Q13. (It has never been observed that Q13 was not
sufficient, but this possibility must still be considered.) The variable ILLCONDP is a flag from block 50 which indicates
whether the results of block 50 are valid or not. In Recommendation G.728, there is an implicit assumption that the
results of Durbin will not be used if ILLCONDP is true. That is, ATMP will not be copied to APF after the 10th order
recursion is completed. The same assumption is repeated here. If ILLCONDP is true, then we do not update AP, AZ
or TILTZ.

Next, we must deal with the fact that the coefficients APF() from Durbin’s recursion may be in Q13, Q14 or Q15.
NLSAPF is the number of left shifts of APF. At the output, we also wish to save APF() in Q13 for later use in the LPC
inverse filtering operation. We want the numerator and denominator coefficients, AP() and AZ() to be in Q14 for the
output. TILTZ is output in Q14. It may be the case that AP cannot be represented in Q14. When this is the case, do not
update AP, AZ or TILTZ, but the new values for APF can be used. They should already be in Q13 format. The fixed
point pseudo-code is given by the following.

If ICOUNT ≠ 1, skip the execution of this block
Otherwise, do the following

| First check to see if ILLCONDP is true
If ILLCONDP = .TRUE., skip the execution of this block
otherwise, do the following

| Next do the denominator coefficients
| If they overflow for Q14, do not
| update AP, AZ or TILTZ
| Temporary array WS is used in case
| of overflow, so that AP is preserved

For I = 2 and 3, do the next 6 lines
AA0 = SPFPCFV(I) * APF(I) | SPFPCFV is Q14, AA0 is 14 + NLSAPF
If NLSAPF = 13, AA0 = AA0 << 3 | Make AA0 Q30 for all 3 cases by
If NLSAPF = 14, AA0 = AA0 << 2 | appropriate number of shifts
If NLSAPF = 15, AA0 = AA0 << 1
If AA0 overflowed above, go to LABEL
WS(I) = RND(AA0) | Round to high word for WS

| Overflow can only occur for 2 and 3,
| so copy these to AP and continue

For I = 2 and 3, do the next line
AP(I) = WS(I)

| Now do the rest
For I = 4, 5, ..., 11, do the next 5 lines

AA0 = SPFPCFV(I) * APF(I) | SPFPCFV is Q14, AA0 is 14 + NLSAPF
If NLSAPF = 13, AA0 = AA0 << 3 | Make AA0 Q30 for all 3 cases by
If NLSAPF = 14, AA0 = AA0 << 2 | appropriate number of shifts
If NLSAPF = 15, AA0 = AA0 << 1
AP(I) = RND(AA0) | Round to high word for AP

| Now do the numerator coefficients
| If the denominator did not overflow,
| then the numerator cannot, either

Recommendation G.728 – Annex G (11/94) 57

For I = 2, 3, ..., 11, do the next 5 lines
AA0 = SPFZCFV(I) * APF(I) | SPFZCFV is Q14, AA0 is 14 + NLSAPF
If NLSAPF = 13, AA0 = AA0 << 3 | Make AA0 Q30 for all 3 cases by
If NLSAPF = 14, AA0 = AA0 << 2 | appropriate number of shifts
If NLSAPF = 15, AA0 = AA0 << 1
AZ(I) = RND(AA0) | Round to high word for AZ

| Now update TILTZ
AA0 = TILTF * RC1 | TILTZ = 4915 in Q15
TILTZ = RND(AA0) | RC1 is Q15

| TILTZ is Q14

LABEL: | Save APF() in Q13 for LPC inverse
| filtering later
| Case 1: NLSAPF = 13, do nothing

If NLSAPF = 14, do the next 3 lines | Case 2: NLSAPF = 14, shift 15, round
For I = 2, 3, 4, ..., 11, do the next 2 lines

AA0 = APF(I) << 15
APF(I) = RND(AA0)

If NLSAPF = 15, do the next 3 lines | Case 3: NLSAPF = 15, shift 14, round
For I = 2, 3, 4, ..., 11, do the next 2 lines

AA0 = APF(I) << 14
APF(I) = RND(AA0)

Note that in the above code, the “For” loops containing three “If NLSAPF = ...” statements can be eliminated if the
entire code is re-written for each of the three possible values of NLSAPF. This longer code will produce exactly the
same results, but will execute more quickly on most programmable devices.

G.4 LD-CELP internal variable representations

In this subclause updated versions of Tables 1/G.728 and 2/G.728 are presented. Table G.1 is a shortened version of
Table 1/G.728. It lists only constants which are not inherently integers and are not given elsewhere in the Recommen-
dation. The Equivalent Symbol and Initial Value entries in Table 1/G.728 have been deleted in order to leave space for
the Fixed Point Format and representation required for each variable. Table G.2 is the integer version of Table 2/G.728.
The same column has also been deleted from Table 2/G.728 in order to present the fixed point format. Several new
variables are listed which relate only to the fixed point specification.

TABLE G.1/G.728

Basic coder parameters that are not inherently integers and not given elsewhere

Name
Floating-

Point Value
Fixed-

Point Value Q format Description

AGCFAC 30.99 16220 Q14 AGC adaptation speed controlling factor

AGCFAC1 30.01 20972 Q21 The value of (1 – AGCFAC)

GOFF 32,00 16384 Q91 Log-gain offset value

PPFTH 30.69 29830 Q14 Tap threshold for turning off pitch postfilter

PPFZCF 30.15 29830 Q16 Pitch postfilter zero controlling factor

TAPTH 30.43 26214 Q16 Tap threshold for fundamental pitch replacement

TILTF 30.15 24915 Q15 Spectral tilt compensation controlling factor

58 Recommendation G.728 – Annex G (11/94)

TABLE G.2/G.728

LD-CELP internal processing variables

Name
Array Index

Range
Fixed Point

Format Description

A 1 to LPC + 1 Q14 Synthesis filter coefficients

AL 1 to 3 Q13 1 kHz lowpass filter denominator coefficients

AP 1 to 11 Q14 Short-term postfilter denominator coefficients

APF 1 to 11 Q13 10th-order LPC filter coefficients

ATMP 1 to LPC + 1 Q13/Q14/Q15 Temporary buffer for synthesis filter coefficients

AWP 1 to LPCW + 1 Q14 Perceptual weighting filter denominator coefficients

AWZ 1 to LPCW + 1 Q14 Perceptual weighting filter numerator coefficients

AWZTMP 1 to LPCW + 1 Q13/Q14/Q15 Temporary buffer for weighting filter coefficients

AZ 1 to 11 Q14 Short-term postfilter numerator coefficients

B 1 Q16 Long-term postfilter coefficients

BL 1 to 4 Q19 1 kHz lowpass filter numerator coefficients

D –139 to 100 Q1 LPC prediction residual

DEC –34 to 25 Q1 4:1 decimated LPC prediction residual

ET 1 to IDIM 15b BFL Gain-scaled excitation vector

FACV 1 to LPC + 1 Q14 Synthesis filter BW broadening vector

FACGPV 1 to LPCLG + 1 Q14 Gain predictor BW broadening vector

G2 1 to NG Q12 2 times gain levels in gain codebook

GAIN 1 SFL Linear excitation gain

GB 1 to NG – 1 Q13 Mid-point between adjacent gain levels

GL 1 Q14 Long-term postfilter scaling factor

GLB 1 Q16 Long-term postfilter product term

GP 1 to LPCLG + 1 Q14 Log-gain predictor coefficients,
initial value = 16384, –16384, 0, ..., 0

GPTMP 1 to LPCLG + 1 Q13/Q14/Q15 Temporary array for log-gain linear predictor coefficients

GQ 1 to NG Q13 Gain levels in the gain codebook

GSQ 1 to NG Q11 Squares of gain levels in gain codebook

GSTATE 1 to LPCLG Q9 Log-gain predictor memory, initial value = –16384

GTMP 1 to 4 Q9 Temporary log-gain buffer, initial value = –16384

H 1 to IDIM Q13 Impulse response vector of F(z) W(z)

ICHAN 1 Q0 Best codebook index to be transmitted

ICOUNT 1 Q0 Speech vector counter (indexed from 1 to 4)

IG 1 Q0 Best 3-bit gain codebook index

ILLCOND 1 Q0 III-conditioning flag for synthesis filter

ILLCONDG 1 Q0 III-conditioning flag for log-gain predictor

ILLCONDP 1 Q0 Ill-conditioning flag for postfilter

ILLCONDW 1 Q0 III-conditioning flag for weighting filter

IP 1 Q0 Address pointer to LPC prediction residual

IS 1 Q0 Best 7-bit shape codebook index

KP 1 Q0 Pitch period of the current frame

KP1 1 Q0 Pitch period of the previous frame

Recommendation G.728 – Annex G (11/94) 59

TABLE G.2/G.728 (continuation)

LD-CELP internal processing variables

Name
Array Index

Range
Fixed Point

Format Description

LOGGAIN 1 Q9 Log of excitation gain

LPFFIR 3 Q1 Lowpass filter FIR memory

LPFIIR 3 Q1 Lowpass filter IIR memory

NLSATMP 1 Q0 Durbin’s recursion precision flag for ATMP

NLSAWZTMP 1 Q0 Durbin’s recursion precision flag for AWZTMP

NLSGPTMP 1 Q0 Durbin’s recursion precision flag for GPTMP

NLSET 1 Q0 NLS for ET

NLSGAIN 1 Q0 NLS for linear GAIN

NLSREXP 1 Q0 NLS for REXP, initial value = 31

NLSREXPLG 1 Q0 NLS for REXPLG, initial value = 31

NLSREXPW 1 Q0 NLS for REXPW, initial value = 31

NLSSB 21 Q0 NLS for SB, initial value = 16

NLSST 1 Q0 NLS for ST in decoder

NLSSTATE 11 Q0 NLS for STATELPC, initial value = 16

NLSSTTMP 4 Q0 NLS for STTMP, initial value = 16

PN 1 to IDIM Q7 Correlation vector for codebook search

PTAP 1 Q14 Pitch predictor tap computed by block 83

R 1 to 11 BFL Autocorrelation coefficients

RC 1 Q15 Reflection coefficients

RC1 1 Q15 Temporary buffer for first reflection coefficients

REXP 1 to LPC + 1 BFL Recursive part of autocorrelation, synthesis filter

REXPLG 1 to LPCLG + 1 BFL Recursive part of autocorrelation, log-gain predictor

REXPW 1 to LPCW + 1 BFL Recursive part of autocorrelation, weighting filter

RTMP 1 to LPC + 1 BFL Temporary buffer for autocorrelation coefficients

S 1 to IDIM 15b Q2 Uniform PCM input speech vector

SB 1 to 105 14b BFL Buffer for previously quantized speech

SBLG 1 to 34 Q9 Buffer for previous log-gain

SBW 1 to 60 Q2 Buffer for previous input speech

SCALE 1 SFL Unfiltered postfilter scaling factor

SCALEFIL 1 Q14 Lowpass filtered postfilter scaling factor, initial value = 16384

SD 1 to IDIM Q0 Decoded speech buffer

SPF 1 to IDIM Q2 Postfiltered speech vector

SPFPCFV 1 to 11 Q14 Short-term postfilter pole controlling vector

SPFZCFV 1 to 11 Q14 Short-term postfilter zero controlling vector

SO 1 byte A-law or µ-law PCM input speech sample

SST (past) –239 to 0 13b Q0 Quantized speech buffer

SST (current) 1 to IDIM 15b Q2 Quantized speech buffer

ST 1 to IDIM 14b BFL Quantized speech vector

STATELPC 1 to LPC 14b SBFL Synthesis filter memory

STLPCI 1 to 10 Q2 LPC inverse filter memory

60 Recommendation G.728 – Annex G (11/94)

TABLE G.2/G.728 (end)

LD-CELP internal processing variables

G.5 Log-gain tables for gain and shape codebook vectors

See Tables G.3 and G.4.

TABLE G.3/G.728

Floating point gain in dB and Q11 fixed point representation
for gain codebook vectors

Name
Array Index

Range
Fixed Point

Format Description

STMP 1 to 4 ∗ IDIM 15b Q2 Buffer for perceptual weighting filter hybrid window

STTMP 1 to 4 ∗ IDIM 14b SBFL Buffer for synthesis filter hybrid window

STPFFIR 1 to 10 Q2 Short-term postfilter memory, all-zero section

STPFIIR 1 to 10 Q2 Short-term postfilter memory, all-pole section

SU 1 Q2 Uniform PCM input speech sample

SUMFIL 1 Q2 Sum of absolute value of postfiltered speech

SUMUNFIL 1 Q2 Sum of absolute value of decoded speech

SW 1 to IDIM Q2 Perceptually weighted speech vector

TARGET 1 to IDIM BFL (Gain-normalized) VQ target vector

TEMP 1 to IDIM ∗ Scratch array for temporary working space

TILTZ 1 Q14 Short-term postfilter tilt-compensation coefficient

WFIR 1 to LPCW Q2 Memory of weighting filter 4, all-zero portion

WIIR 1 to LPCW Q2 Memory of weighting filter 4, all-pole portion

WNR 1 to 105 Q15 Window function for synthesis filter

WNRLG 1 to 34 Q15 Window function for log-gain predictor

WNRW 1 to 60 Q15 Window function for weighting filter

WPCFV 1 to LPCW + 1 Q14 Perceptual weighting filter pole controlling vector

WS 1 to 105 # Work Space array for intermediate variables

WZCFV 1 to LPCW + 1 Q14 Perceptual weighting filter zero controlling vector

Y 1 to IDIM ∗ NCWD Q11 Shape codebook array

Y2 1 to NCWD Q5 Energy of convolved shape codevector

ZIR 1 to IDIM 15b Q2 Zero input response

ZIRWFIR 1 to LPCW 15b Q2 Memory of weighting filter 10, all-zero portion

ZIRWIIR 1 to LPCW 15b Q2 Memory of weighting filter 10, all-pole portion

SFL Scalar floating point
BFL Block floating point
SBFL Segmented block floating point
Qx Qx format
14b or15b Indicates 14- or 15-bit precision, all others are assumed full 16-bit precision
Defined by use, can be BFL or fixed Q, since it is scratch memory

* TEMP is a temporary working array and is used in several blocks; its Q format may change from block to block.

Index dB Fixed point

0 4 –5.7534180 –11783

1 5 –0.8925781 1–1828

2 6 –3.9682620 –18127

3 7 –8.8291020 –18082

NOTE – To obtain the fixed point value, multiply the floating point value by 2048 = 211.

Recommendation G.728 – Annex G (11/94) 61

TABLE G.4/G.728

Floating point gain in dB and Q11 fixed point representation
for shape codebook vectors

Index dB Fixed point Index dB Fixed point Index dB Fixed point

0 –0.1108398 –227 43 1.1064450 2266 85 1.7133790 3509

1 5.0332030 10308 44 7.0932620 14527 86 0.4252930 871

2 3.1977540 6549 45 9.1738280 18788 87 1.0693360 2190

3 3.7856450 7753 46 6.3623050 13030 88 2.7080080 5546

4 3.7094730 7597 47 3.0458980 6238 89 7.4887700 15337

5 8.0874020 16563 48 0.8911133 1825 90 1.8105470 3708

6 3.1279300 6406 49 4.4384770 9090 91 1.1748050 2406

7 5.8266600 11933 50 0.1030273 211 92 2.8076170 5750

8 6.6254880 13569 51 0.9218750 1888 93 3.6806640 7538

9 5.1606450 10569 52 8.8320310 18088 94 1.9101560 3912

10 7.9726560 16328 53 11.0141600 22557 95 1.7299800 3543

11 3.1914060 6536 54 5.3188480 10893 96 –4.9335940 –10104

12 7.7163090 15803 55 8.8652340 18156 97 0.1479492 303

13 5.6997070 11673 56 1.6728520 3426 98 –3.0083010 –6161

14 10.4091800 21318 57 6.5429690 13400 99 –0.5576172 –1142

15 4.4433590 9100 58 –2.1362300 –4375 100 1.8881840 3867

16 5.9790040 12245 59 3.8916020 7970 101 2.8979490 5935

17 5.8681640 12018 60 3.7861330 7754 102 –3.5161130 –7201

18 1.2221680 2503 61 12.3388700 25270 103 –0.3706055 –759

19 7.1728520 14690 62 2.5942380 5313 104 –1.0219730 –2093

20 8.8818360 18190 63 7.6245120 15615 105 –1.3979490 –2863

21 14.0629900 28801 64 –3.0742190 –6296 106 1.0825200 2217

22 8.2045900 16803 65 2.2021480 4510 107 –1.5834960 –3243

23 9.9272460 20331 66 1.0751950 2202 108 3.0083010 6161

24 8.7983400 18019 67 –3.5297850 –7229 109 2.8579100 5853

25 12.1679700 24920 68 1.5361330 3146 110 3.7104490 7599

26 7.8901370 16159 69 –1.3759770 –2818 111 3.2944340 6747

27 8.6025390 17618 70 –1.3056640 –2674 112 –0.9770508 –2001

28 11.2656300 23072 71 –0.7651367 –1567 113 4.9892580 10218

29 13.7085000 28075 72 0.8989258 1841 114 –0.0263672 –54

30 9.3598630 19169 73 2.8334960 5803 115 0.9335938 1912

31 12.5600600 25723 74 3.8203130 7824 116 5.6127930 11495

32 4.2333980 8670 75 0.1557617 319 117 5.1635740 10575

33 4.9165040 10069 76 0.8862305 1815 118 2.2055660 4517

34 0.2456055 503 77 0.8618164 1765 119 2.0893550 4279

35 4.2221680 8647 78 3.3930660 6949 120 0.8852539 1813

36 5.4516600 11165 79 1.2128910 2484 121 0.2763672 566

37 9.0073240 18447 80 1.3710940 2808 122 2.2309570 4569

38 2.0820310 4264 81 4.7431640 9714 123 2.0278320 4153

39 8.4868160 17381 82 –2.0581050 –4215 124 1.6445310 3368

40 1.7241210 3531 83 3.2607420 6678 125 5.4584960 11179

41 5.1479490 10543 84 1.2861330 2634 126 0.8271484 1694

42 –1.1679690 –2392 127 0.3715820 761

NOTE – To obtain the fixed point value, multiply the floating point value by 2048 = 211.

62 Recommendation G.728 – Annex G (11/94)

G.6 Integer values of gain codebook related arrays

This subclause includes the equivalent integer values for the floating point table given in Annex B/G.728 (see
Table G.5).

TABLE G.5/G.728

Integer values of gain codebook related arrays

G.7 Encoder and decoder main program pseudo-codes

This subclause gives the pseudo-codes for the encoder main program and the decoder main program. The main purpose
is to show the order in which various blocks are executed. Therefore, only the block execution sequence is shown and no
low-level detail of parameter passing is described. Note that the allowable sequence of execution is not unique. There are
many different orders of execution which all achieve bit-exact result. The pseudo-codes shown below are just
two examples. However, if a different order of block execution is used, the implementer should make sure it gets bit-
exact results.

The pseudo-code for the encoder main program is now given below.

Initialize all encoder variables to their initial values.

Initialize y2() by executing blocks 14 and 15 with h = [8192, 0, 0, 0, 0]

ILLCOND = .FALSE.
ILLCONDW = .FALSE.
ILLCONDG = .FALSE.
ICOUNT = 0

VEC_LOOP:
If ICOUNT = 4, set ICOUNT = 0 | Reset vector counter
ICOUNT = ICOUNT + 1 | Update vector counter
Get one vector of input speech from the input buffer
Convert input speech vector to the range [–16384, +16383],

then assign to S() | Q2 representation of [–4096, +4095.75]

| Check whether to update
| filter coefficients

If ICOUNT = 3, do the next 4 lines
If ILLCOND = .FALSE., do block 51
If ILLCONDW = .FALSE., do block 38
do block 12
do blocks 14 and 15

If ICOUNT = 2 and ILLCONDG = .FALSE., then do block 45

| Start once-per-vector processing
do blocks 46, 98, 99, and 48 | Get backward-adapted gain

| GSTATE(1:9) shifted down 1 position
do “blockzir” (blocks 9 and 10 during zero-input response calculation)
do block 4 | Perceptual weighting filter
do block 11 | VQ target vector computation

Array index 1 2 3 4 5 6 7 8

GQ (Q13) 4224 17392 12936 22638 –4224 1–7392 –12936 –22638

GB (Q13) 5808 10164 17787 ∗ –5808 –10164 –17787 ∗

G2 (Q12) 4224 17392 12936 22638 –4224 1–7392 –12936 –22638

GSQ (Q11) 4545 11668 15107 15640 –4545 –11668 –15107 –15640

* Can be any arbitrary value (not used).

Recommendation G.728 – Annex G (11/94) 63

do block 16 | VQ target vector normalization
do block 13 | Time-reversed convolution
do blocks 17 and 18 | Excitation codebook search
put out ICHAN to the communication channel
do blocks 19 and 21 | Scale selected excitation codevector
do blocks 9 and 10 during filter memory update | Get ()
do blocks 93, 94, 96, and 97 | Update log-gain; note that the

| 3 delay units in the gain adapter just
| happen naturally in the looping
| process and need not be
| implemented explicitly

GSTATE(1) = output of block 97 | Update gain predictor memory
I = (ICOUNT – 1) ∗ IDIM | I = starting address of STTMP()
copy ST(1:5) to STTMP(I + 1:I + 5) | Update STTMP()
NLSSTTMP(ICOUNT) = NLSST
I = (ICOUNT – 3) ∗ IDIM
If ICOUNT < 3, set I = I + 20 | I = starting address of STMP()
copy S(1:5) to STMP(I + 1:I + 5) | Update STMP()

| End of once-per-vector processing

| Start once-per-frame processing
If ICOUNT = 4, do the next 2 lines

do block 49 | Output ill-condition flag = ILLCOND
do block 50 | Output predictor coefficients = ATMP()

| Output ill-condition flag = ILLCOND
If ICOUNT = 2, do the next 2 lines

do block 36 | Output ill-condition flag = ILLCONDW
do block 37 | Output predictor coefficients = ATMP()

| Output ill-condition flag = ILLCONDW
If ICOUNT = 1, do the next 6 lines

GTMP(1) = GSTATE(4) | Update GTMP()in the one shot
GTMP(2) = GSTATE(3)
GTMP(3) = GSTATE(2)
GTMP(4) = GSTATE(1)
do block 43 | Output ill-condition flag = ILLCONDG
do block 44 | Output predictor coefficients = GPTMP()

| Output ill-condition flag = ILLCONDG
| End of once-per-frame processing

Go to VEC_LOOP

Next, the pseudo-code for the decoder main program is given below. Again, only the block execution sequence is shown
and no low-level detail of parameter passing is described.

Initialize all decoder variables to their initial values.

ILLCOND = .FALSE.
ILLCONDG = .FALSE.
ILLCONDP = .FALSE.
ICOUNT = 0

VEC_LOOP:
If ICOUNT = 4, set ICOUNT = 0 | Reset vector counter
ICOUNT = ICOUNT + 1 | Udate vector counter
Get ICHAN of the current vector from the input buffer
Obtain the shape index IS and gain index IG from ICHAN

| Check whether to update
| filter coefficients

64 Recommendation G.728 – Annex G (11/94)

If ICOUNT = 3, do the next line
If ILLCOND = .FALSE., do block 51

If ICOUNT = 2 and ILLCONDG = .FALSE., then do block 45

| Start once-per-vector processing
do blocks 46, 98, 99, and 48 | Get backward-adapted gain

| GSTATE(1:9) shifted down 1 position
do blocks 19 and 21 | Scale selected excitation codevector
do block 32
If ICOUNT = 1, do block 85 | Update short-term postfilter coefficients
do block 81
If ICOUNT = 3, do the next 3 lines

do block 82 | Pitch period extraction
do block 83 | Compute pitch predictor tap
do block 84 | Update long-term postfilter coefficients

do block 71 | Long-term postfilter
do block 72 | Short-term postfilter
do blocks 73 and 74 | Calculate sums of absolute values
do block 75 | Ratio of sums of absolute values
do block 76 | Low-pass filter of scaling factor
do block 77 | Gain control of postfilter output

do blocks 93, 94, 96, and 97 | Update log-gain; note that the
| 3 delay units in the gain adapter just
| happen naturally in the looping
| process and need not be
| implemented explicitly

GSTATE(1) = output of block 97 | Update gain predictor memory
I = (ICOUNT – 1) ∗ IDIM | I = starting address of STTMP()
copy ST(1:5) to STTMP(I + 1:I + 5) | Update STTMP()
NLSSTTMP(ICOUNT) = NLSST | End of once-per-vector processing

| Start once-per-frame processing
If ICOUNT = 4, do the next 5 lines

do block 49 | Output ill-condition flag = ILLCOND

do block 50, order 1 to 10 | Output predictor coefficients = ATMP()
| with NLSATMP
| Output ill-condition flag = ILLCONDP

NLSAPF = NLSATMP | Save the 10th-order predictor
copy ATMP(2:11) to APF(2:11) | for postfilter use later
continue block 50, order 11 to 50 | Continue to finish block 50

| Output predictor coefficients = ATMP()
| with NLSATMP
| Output ill-condition flag = ILLCOND

If ICOUNT = 1, do the next 6 lines
GTMP(1) = GSTATE(4) | Update GTMP() in one shot
GTMP(2) = GSTATE(3)
GTMP(3) = GSTATE(2)
GTMP(4) = GSTATE(1)
do block 43 | Output ill-condition flag = ILLCONDG
do block 44 | Output predictor coefficients = GPTMP()

| Output ill-condition flag = ILLCONDG
| End of once-per-frame processing

Go to VEC_LOOP

	ITU-T Rec. G.728 Annex G (11/94) CODING OF SPEECH AT 16 kbit/s USING LOW-DELAY CODE EXCITED LINEAR PREDICTION
	FOREWORD
	CONTENTS
	CODING OF SPEECH AT 16 kbit/s USING LOW-DELAY CODE EXCITED LINEAR PREDICTION
	Annex G
	16 kbit/s fixed point specification
	G.1 Introduction
	Pseudo-code for VSCALE
	Pseudo-code for Floating Point Division
	G.2 Algorithmic changes
	G.3 Pseudo-code for other modules of Recommendation G.728
	G.4 LD-CELP internal variable representations
	G.5 Log-gain tables for gain and shape codebook vectors
	G6 Integer values of gain codebook related arrays
	G.7 Encoder and decoder main program pseudo-codes

