ITU-T

1-01

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.709/Y.1331

Amendment 2 (04/2011)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital terminal equipments – General

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

Internet protocol aspects – Transport

Interfaces for the Optical Transport Network (OTN) Amendment 2

Recommendation ITU-T G.709/Y.1331 (2009) – Amendment 2

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300–G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600-G.699
DIGITAL TERMINAL EQUIPMENTS	G.700–G.799
General	G.700-G.709
Coding of voice and audio signals	G.710–G.729
Principal characteristics of primary multiplex equipment	G.730–G.739
Principal characteristics of second order multiplex equipment	G.740–G.749
Principal characteristics of higher order multiplex equipment	G.750–G.759
Principal characteristics of transcoder and digital multiplication equipment	G.760–G.769
Operations, administration and maintenance features of transmission equipment	G.770–G.779
Principal characteristics of multiplexing equipment for the synchronous digital hierarchy	G.780–G.789
Other terminal equipment	G.790–G.799
DIGITAL NETWORKS	G.800–G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900–G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER- RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000–G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000–G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000-G.8999
ACCESS NETWORKS	G.9000–G.9999

For further details, please refer to the list of ITU-T Recommendations.

Recommendation ITU-T G.709/Y.1331

Interfaces for the Optical Transport Network (OTN)

Amendment 2

Summary

Amendment 2 to Recommendation ITU-T G.709/Y.1331 (2009) contains extensions related to the addition of Infiniband single, double and quad data rate (IB SDR, IB DDR and IB QDR) client mappings, enhancement of the recommended ODUflex(GFP) bit rate values, modification of the BIP-8 processing in 40GBASE-R and 100GBASE-R, clarification of the ODU maintenance signal (AIS, LCK, OCI) bit rate range, clarification of the number of tributary slots occupied by ODUflex signals transported in OPU2, OPU3 and OPU4, and extension of Table IX.1 with additional clients into LO OPU mapping types and replacement of "n" in C_{nD} by their standardized values.

History

Edition	Recommendation	Approval	Study Group
1.0	ITU-T G.709/Y.1331	2001-02-09	15
1.1	ITU-T G.709/Y.1331 (2001) Amd. 1	2001-11-29	15
2.0	ITU-T G.709/Y.1331	2003-03-16	15
2.1	ITU-T G.709/Y.1331 (2003) Amd. 1	2003-12-14	15
2.2	ITU-T G.709/Y.1331 (2003) Cor. 1	2006-12-14	15
2.3	ITU-T G.709/Y.1331 (2003) Amd. 2	2007-11-22	15
2.4	ITU-T G.709/Y.1331 (2003) Cor.2	2009-01-13	15
2.5	ITU-T G.709/Y.1331 (2003) Amd. 3	2009-04-22	15
3.0	ITU-T G.709/Y.1331	2009-12-22	15
3.1	ITU-T G.709/Y.1331 (2009) Cor. 1	2010-07-29	15
3.2	ITU-T G.709/Y.1331 (2009) Amd. 1	2010-07-29	15
3.3	ITU-T G.709/Y.1331 (2009) Amd. 2	2011-04-13	15

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

© ITU 2012

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Table of Contents

-	
	ons
2.1)	Clause 3.2
2.2)	Clause 4
2.3)	Clause 7.3
2.4)	Clause 7.3
2.5)	Clause 7.3
2.6)	Clause 12.2.5
2.7)	Figure 12-3
2.8)	Clause 15.9.2.1.1
2.9)	Clause 17.7.4.1
2.10)	Clause 17.7.5.1
2.11)	Clause 17.9
2.12)	Clause 19.6.1
2.13)	Clause 19.6.2
2.14)	Clause 19.6.3
2.15)	Clause B.3.1
2.16)	Clause E.3
2.17)	Clause E.3.2
2.18)	Clause E.4.1
2.19)	Clause E.4.2
2.20)	Appendix VIII
2.21)	Appendix IX
2.22)	Appendix X
2.23)	Appendix XI
2.24)	Bibliography

Recommendation ITU-T G.709/Y.1331

Interfaces for the Optical Transport Network (OTN)

Amendment 2

1) Scope

This amendment contains extensions to ITU-T Recommendation G.709/Y.1331 (2009), related to the addition of:

- Addition of Infiniband single data rate (IB SDR), Infiniband double data rate (IB DDR) and Infiniband quad data rate (IB QDR) client mappings (clauses 2, 4, 15.9.2.1.1, 17.9, Appendix IX, Bibliography).
- Enhancement of the recommended ODUflex(GFP) bit rate values (clauses 3.2, 4, 7.3, 12.2.5, Appendix XI).
- Modification of the BIP-8 processing in 40GBASE-R and 100GBASE-R (clauses 17.7.4.1, 17.7.5.1, B.3.1, E.3, E.3.2, E.4.1, E.4.2).
- Clarification of the ODU maintenance signal (AIS, LCK, OCI) bit rate range (clause 7.3).
- Clarification of the number of tributary slots occupied by ODUflex signals transported in OPU2, OPU3 and OPU4 (clauses 7.3, 19.6.1, 19.6.2, 19.6.3, Appendix VIII, Appendix X).
- Extension of Table IX.1 with 40GBASE-R, 100GBASE-R, IB SDR, IB DDR and IB QDR client into LO OPU mapping types and replacement of "n" in C_{nD} by their standardized values (Appendix IX).

2) Additions

2.1) Clause 3.2

Add to clause 3 the following definition:

3.2.1 ODUk.ts: The ODUk.ts is an increment of bandwidth, which, when multiplied by a number of tributary slots, gives the recommended size of an ODUflex(GFP) optimized to occupy a given number of tributary slots of a higher order OPUk.

2.2) Clause 4

Add to clause 4 the following abbreviations:

DDRDouble Data RateIBInfiniBandODUk.tsOptical channel Data Unit k fitting in ts tributary slotsQDRQuad Data RateSDRSingle Data Rate

1

2.3) Clause 7.3

Modify Tables 7-2 and 7-3 as follows:

ODU type	ODU nominal bit rate	ODU bit-rate tolerance			
ODU0	1 244 160 kbit/s				
ODU1	239/238 × 2 488 320 kbit/s				
ODU2	239/237 × 9 953 280 kbit/s	±20 ppm			
ODU3	239/236 × 39 813 120 kbit/s				
ODU4	239/227 × 99 532 800 kbit/s				
ODU2e	239/237 × 10 312 500 kbit/s	±100 ppm			
ODUflex for CBR client signals	239/238 × client signal bit rate	client signal bit rate tolerance, with a maximum of ±100 ppm (Notes 2, 3)			
ODUflex for GFP-F mapped client signals	configured bit rate (see Table 7-8)	± <u>210</u> 0 ppm			
signalsNOTE 1 – The nominal ODUk rates are approximately: 2 498 775.126 kbit/s (ODU1),10 037 273.924 kbit/s (ODU2), 40 319 218.983 kbit/s (ODU3), 104 794 445.815 kbit/s (ODU4) and10 399 525.316 kbit/s (ODU2e).NOTE 2 – The bit rate tolerance for ODUflex(CBR) signals is specified as ±100 ppm. This value may belarger than the tolerance for the client signal itself (e.g., ±20 ppm). In such cases, the tolerance isdetermined by the ODUflex(CBR) maintenance signals, which have a tolerance of ±100 ppm.NOTE 3 – For ODUflex(CBR) signals with nominal bit rates close to the maximum ODTUk.ts payload bitrate and client rate tolerances less than ±100 ppm (e.g., ±10 ppm), the ODUflex(CBR) maintenance signalbit rate may exceed the ODTUk.ts payload bit rate. For such cases either an additional tributary slot maybe used (i.e., ODTUk.(ts+1)), or the nominal bit rate of the ODUflex(CBR) signal may be artificially					
	00 ppm below the maximum ODUflex(CB				

OPU type	OPU payload nominal bit rate	OPU payload bit rate tolerance	
OPU0	238/239 × 1 244 160 kbit/s		
OPU1	2 488 320 kbit/s		
OPU2	238/237 × 9 953 280 kbit/s	±20 ppm	
OPU3	238/236 × 39 813 120 kbit/s		
OPU4	238/227 × 99 532 800 kbit/s		
OPU2e	238/237 × 10 312 500 kbit/s	±100 ppm	
OPUflex for CBR client signals	client signal bit rate	client signal bit rate tolerance, with a maximum of ±100 ppm	
OPUflex for GFP-F mapped client signals	238/239 × ODUflex signal rate	±2 <u>10</u> 0 ppm	

Table 7-3 – OPU types and bit rates

OPU type OPU payload nominal bit rate		OPU payload bit rate tolerance	
OPU1-Xv	X × 2 488 320 kbit/s		
OPU2-Xv	X × 238/237 × 9 953 280 kbit/s ±20 ppm		
OPU3-Xv	X × 238/236 × 39 813 120 kbit/s		
NOTE – The nominal OPUk payload rates are approximately: 1 238 954.310 kbit/s (OPU0 Payload), 2 488 320.000 kbit/s (OPU1 Payload), 9 995 276.962 kbit/s (OPU2 Payload), 40 150 519.322 kbit/s (OPU3 Payload), 104 355 975.330 (OPU4 Payload) and 10 356 012.658 kbit/s (OPU2e Payload). The nominal OPUk-Xv Payload rates are approximately: $X \times 2$ 488 320.000 kbit/s (OPU1-Xv Payload), $X \times 9$ 995 276.962 kbit/s (OPU2-Xv Payload) and $X \times 40$ 150 519.322 kbit/s (OPU3-Xv Payload).			

2.4) Clause 7.3

Replace Table 7-8 with the following:

Table 7-8 – Recommended ODUflex(GFP) bit rates and tolerance

ODU type	Nominal bit-rate	Tolerance		
ODU2.ts (Note)	<u>1'249'177.230 kbit/s</u>			
ODU3.ts (Note)	<u>1'254'470.354 kbit/s</u>			
ODU4.ts (Note)	<u>1'301'467.133 kbit/s</u>			
ODUflex(GFP) of n tributary slots, $1 \le n \le 8$	<u>$n \times ODU2.ts$</u>	<u>±100 ppm</u>		
<u>ODUflex(GFP) of n tributary slots, $9 \le n \le 32$</u>	<u>$n \times ODU3.ts$</u>	<u>±100 ppm</u>		
<u>ODUflex(GFP) of n tributary slots, $33 \le n \le 80$</u>	<u>$n \times ODU4.ts$</u>	<u>±100 ppm</u>		
<u>NOTE – The values of ODUk.ts are chosen to permit a variety of methods to be used to generate an</u> <u>ODUflex(GFP) clock. See Appendix XI for the derivation of these values and example ODUflex(GFP)</u> <u>clock generation methods.</u>				

Modify Table 7-9 as follows:

	# 2.5G tributary slots		# 1.25G tributary slots			
LO ODU	OPU2	OPU3	OPU1	OPU2	OPU3	OPU4
ODU0	_	_	1	1	1	1
ODU1	1	1	_	2	2	2
ODU2	_	4	_	_	8	8
ODU2e	_	_	_	-	9	8
ODU3	_	_	_	-	-	31
ODUflex(CBR)	-	—	_	Note 1	Note 2	Note 3
 ODUflex(IB SDR) 	=	Ξ	=	<u>3</u>	<u>3</u>	<u>2</u>
 ODUflex(IB DDR) 	=	=	=	<u>5</u>	<u>5</u>	<u>4</u>
 ODUflex(IB QDR) 	=	=	=	=	<u>9</u>	<u>8</u>
- ODUflex(FC-400)	=	=	Ξ	<u>4</u>	<u>4</u>	<u>4</u>
- ODUflex(FC-800)	=	=	=	<u>7</u>	<u>7</u>	<u>7</u>
ODUflex(GFP)	_	—	_	n	n	n

Table 7-9 – Number of tributary slots required for ODUj into HO OPUk

NOTE 1 – Number of tributary slots = Ceiling(ODUflex(CBR) nominal bit rate/(T×ODTU2.ts nominal bit rate) \times (1+ODUflex(CBR) bit rate tolerance)/(1-HO OPU2 bit rate tolerance)).

NOTE 2 – Number of tributary slots = Ceiling(ODUflex(CBR) nominal bit rate/(T×ODTU3.ts nominal bit rate) × (1+ODUflex(CBR) bit rate tolerance)/(1-HO OPU3 bit rate tolerance)).

NOTE 3 – Number of tributary slots = Ceiling(ODUflex(CBR) nominal bit rate/(T×ODTU4.ts nominal bit rate) \times (1+ODUflex(CBR) bit rate tolerance)/(1-HO OPU4 bit rate tolerance)).

NOTE 4 – T represents the transcoding factor. Refer to clauses 17.7.3, 17.7.4 and 17.7.5.

2.6) Clause 12.2.5

Modify the text in clause 12.2.5 as follows:

ODUflex(GFP) signals are generated using a local clock. This clock may be the local HO ODUk (or OTUk) clock, or an equipment internal clock of the signal over which the ODUflex is carried through the equipment.

Any bit rate is possible for an ODUflex(GFP) signal, however it is suggested for maximum efficiency that the ODUflex(GFP) will occupy a fixed number of ODTUk.ts payload bytes (in the initial ODTUk.ts)fill an integral number of tributary slots of the smallest HO ODUk path over which the ODUflex(GFP) may be carried. The recommended bit-rates to meet this criteria are specified in Table 7-8. The derivation of the specific values is provided in Appendix XI.

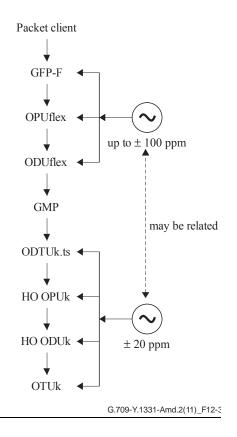
NOTE – Such ODUflex(GFP) may be transported through more than one HO ODUk path. The C_m value will be fixed in the first HO ODUk path; it will not be fixed in the other HO ODUk paths.

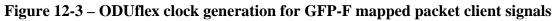
This fixed number of bytes per ODTUk.ts is controlled by configuration of the value C_m (refer to Annex D). The value of C_m should be selected such that the ODUflex signal can be transported over "n" OPUk tributary slots under worst-case conditions (i.e., maximum ODUflex bit rate and minimum HO OPUk bit rates). The ODUflex signal may be transported over a series of HO ODUk paths; the following are some example sequences: HO ODU2; HO ODU2 — ODU3; HO ODU2 — ODU4; HO ODU2 — ODU4; HO ODU3 — ODU4; HO ODU3 — ODU4; HO ODU4.

The ODUflex(GFP) has a bit rate tolerance of ± 20 ppm. This tolerance requires that the maximum value of C_m is 15230 for ODTU2.ts and ODTU3.ts, and 15198 for ODTU4.ts.

These C_m values are to be reduced when the ODUflex(GFP) signal is generated by, e.g., a HO ODUk clock while the signal has to be transported also over a HO ODUj (j<k). The reduction factors are presented in Table 12-2. Note that these reduction factors are to be applied to the higher set of C_m values as indicated in Table 12-2.

	OPU2-TS	OPU3-TS	OPU4-TS
OPU2-TS	_	237/236 ≈ 1.0042	237/227 × 475/476 ≈ 1.0419
OPU3-TS	236/237 ~ 0.9958	-	236/227 × 475/476 ≈ 1.0375
OPU4-TS	227/237 × 476/475 ~ 0.9598	227/236 × 476/475 ≈ 0.9639	_


Table 12-1 - OPUk tributary slot (TS) payload bandwidth ratios


Table 12-2 Cm reduction factors

	Passing over HO ODU2, 3 and 4	Passing over HO ODU3 and 4	Passing over HO ODU4
ODUflex with ODU2 base clock	-	N/A	N/A
ODUflex with ODU3 base clock	$\frac{236/237 \approx 0.99578}{\text{Applied to}}$ $\frac{15165 \le C_{\text{m}} \le 15230}{15230}$	_	N/A
ODUflex with ODU4 base elock	$\frac{227/237 \approx 0.95781}{\text{Applied to}}$ $\frac{14587 \leq C_m \leq 15198}{14587 \leq C_m \leq 15198}$	227/236 ~ 0.96186 Applied to 14649 ≤ C _m ≤ 15198	-

2.7) Figure 12-3

Replace Figure 12-3 with the following:

2.8) Clause 15.9.2.1.1

Modify Table 15-8 as follows:

MSB 1 2 3 4	LSB 5678	Hex code (Note 1)	Interpretation			
0 0 0 0	0001	01	Experimental mapping (Note 3)			
0000	0010	02	Asynchronous CBR mapping, see clause 17.2			
0000	0011	03	Bit synchronous CBR mapping, see clause 17.2			
0000	0100	04	ATM mapping, see clause 17.3			
0000	0101	05	GFP mapping, see clause 17.4			
0000	0110	06	Virtual Concatenated signal, see clause 18 (Note 5)			
0000	0111	07	 PCS codeword transparent Ethernet mapping: 1000BASE-X into OPU0 mapping, see clauses 17.7.1 and 17.7.1.1 40GBASE-R into OPU3, see 17.7.4 and 17.7.4.1 100GBASE-R into OPU4, see 17.7.5 and 17.7.5.1 			
0000	$1 \ 0 \ 0 \ 0$	08	FC-1200 into OPU2e mapping, see clause 17.8.2			
0 0 0 0	1001	09	GFP mapping into Extended OPU2 payload, see clause 17.4.1 (Note 6)			

Table 15-8 – Payload type code points

MSB 1 2 3 4	LSB 5678	Hex code (Note 1)	Interpretation				
0000	1010	0A	STM-1 mapping into ODU0, see clause 17.7.1				
0000	1011	0B	STM-4 mapping into ODU0, see clause 17.7.1				
0000	1 1 0 0	0C	FC-100 mapping into ODU0, see clause 17.7.1				
0000	1 1 0 1	0D	FC-200 mapping into ODU1, see clause 17.7.2				
0000	1 1 1 0	0E	FC-400 mapping into ODUflex, see clause 17.9				
0000	1111	0F	FC-800 mapping into ODUflex, see clause 17.9				
0001	0 0 0 0	10	Bit stream with octet timing mapping, see clause 17.6.1				
0001	0 0 0 1	11	Bit stream without octet timing mapping, see clause 17.6.2				
<u>0001</u>	<u>0010</u>	<u>12</u>	IB SDR mapping into ODUflex, see clause 17.9				
<u>0001</u>	<u>0011</u>	<u>13</u>	IB DDR mapping into ODUflex, see clause 17.9				
0001	<u>0100</u>	<u>14</u>	IB QDR mapping into ODUflex, see clause 17.9				
0010	0 0 0 0	20	ODU multiplex structure supporting ODTUjk only, see clause 19 (AMP only)				
0010	0001	21	ODU multiplex structure supporting ODTUk.ts or ODTUk.ts and ODTUjk, see clause 19 (GMP capable) (Note 7)				
0101	0101	55	Not available (Note 2)				
0110	0110	66	Not available (Note 2)				
1000	x x x x	80-8F	Reserved codes for proprietary use (Note 4)				
1111	1 1 0 1	FD	NULL test signal mapping, see clause 17.5.1				
1111	1110	FE	PRBS test signal mapping, see clause 17.5.2				
1111	1111	FF	Not available (Note 2)				
		•	for future international standardization. Refer to Annex A of e of these codes for a new payload type.				
in ODUk main NOTE 3 – Val defined in this NOTE 4 – The	tenance signals. ue "01" is only to table. Refer to A ese 16 code value	o be used for ex annex A of [ITU es will not be su	e set of available code points. These bit patterns are present experimental activities in cases where a mapping code is not J-T G.806] for more information on the use of this code. Ibject to further standardization. Refer to Annex A of the of these codes.				
-	=		concatenated signal a dedicated payload type overhead				

Table 15-8 – Payload type code points

NOTE 5 – For the payload type of the virtual concatenated signal a dedicated payload type overhead (vcPT) is used, see clause 18.

NOTE 6 – Supplement 43 (02/2008) to the ITU-T G-series of Recommendations indicated that this mapping recommended using Payload Type 87.

NOTE 7 – Equipment supporting ODTUk.ts for OPU2 or OPU3 must be backward compatible with equipment which supports only the ODTUjk. ODTUk.ts capable equipment transmitting PT=21 which receives PT=20 from the far end shall revert to PT=20 and operate in ODTUjk only mode. Refer to [ITU-T G.798] for the specification.

2.9) Clause 17.7.4.1

Modify the text in the final four paragraphs of clause 17.7.4.1 as follows:

In the mapper, the received Ethernet PCS lane BIP may be compared with the expected Ethernet PCS lane BIP as a non-intrusive monitor-or section monitor.

The demapper will either-insert a compensated Ethernet PCS lane BIP (for path monitoring) or a newly computed PCS lane BIP (for section monitoring) as described in Annex E. In addition, as described in Annex E, the combined error mask resulting from the PCS BIP-8 error mask and the OTN BIP-8 error mask may be used as a non-intrusive monitor.

For 40GBASE-R client mapping, 1-bit timing information (C₁) is not needed.

The demapper will recover from the output of the GMP processor 1027B block lock, and then transdecode each 1027B block to sixteen 66B blocks as described in Annex E. Trans-decoded lane alignment markers are constructed with either a compensated BIP-8 or newly calculated BIP-8 depending on whether the interface is provisioned for path or section monitoring. The 66B blocks are then re-distributed round-robin to PCS lanes. If the number of PCS lanes is greater than the number of physical lanes of the egress interface, the appropriate numbers of PCS lanes are bitmultiplexed onto the physical lanes of the egress interface.

2.10) Clause 17.7.5.1

Modify the text in the final four paragraphs of clause 17.7.5.1 as follows:

In the mapper, the received Ethernet PCS lane BIP may be compared with the expected Ethernet PCS lane BIP as a non-intrusive monitor-or section monitor.

The demapper will either pass through the PCS lane BIP from the ingress (for path monitoring), or insert a newly computed PCS lane BIP (for section monitoring) as described in Annex E. In addition, the received Ethernet PCS lane BIP may be compared with the expected Ethernet PCS lane BIP as a non-intrusive monitor.

For 100GBASE-R client mapping, 1-bit timing information (C_1) is not needed.

The demapper will recover from the output of the GMP processor 64B/66B block lock per the state diagram in Figure 49-12 of [IEEE 802.3] or Figure 82-10 of [IEEE 802.3ba]. If the interface is provisioned to use BIP-8 for section monitoring, BIP-8 is recalculated in each lane alignment marker. The 66B blocks are re-distributed round-robin to PCS lanes. If the number of PCS lanes is greater than the number of physical lanes of the egress interface, the appropriate numbers of PCS lanes are bit-multiplexed onto the physical lanes of the egress interface.

2.11) Clause 17.9

8

Modify Tables 17-14 and 17-15 in clause 17.9 as follows:

Client signal	Nominal bit rate (kbit/s)	Bit rate tolerance (ppm)		
FC-400	4 250 000	±100		
FC-800	8 500 000	±100		
IB SDR	2 500 000	<u>±100</u>		
IB DDR	<u>5 000 000</u>	<u>±100</u>		
IB QDR	<u>10 000 000</u>	<u>±100</u>		

Client signal	Replacement Signal	Bit rate tolerance (ppm)		
FC-400	For further study	±100		
FC-800	For further study	±100		
<u>IB SDR</u>	For further study	<u>±100</u>		
IB DDR	For further study	<u>±100</u>		
IB QDR	For further study	<u>±100</u>		

Table 17-15 – Replacement signal for supra-2.488 Gbit/s clients

2.12) Clause 19.6.1

Modify Table 19-8 in clause 19.6.1 as follows:

ODUj signal	М	m=8×M	Floor C _{m,min} (Note)	Minimum c _m	Nominal c _m	Maximum c _m	Ceiling C _{m,max} (Note)
ODU0	1	8	15167	15167.393	15168.000	15168.607	15169
ODUflex(GFP), n=18	n	$8 \times n$		ODUfl	ex(GFP) rate dep	pendent	
ODUflex(CBR)				ODUflex(CBI	R) dependent		
 ODUflex(IB SDR) 	<u>3</u>	<u>24</u>	<u>10200</u>	<u>10200.928</u>	<u>10202.152</u>	<u>10203.376</u>	<u>10204</u>
– ODUflex(IB DDR)	<u>5</u>	<u>40</u>	<u>12241</u>	<u>12241.113</u>	<u>12242.582</u>	<u>12244.051</u>	<u>12245</u>
- ODUflex(FC-400)	<u>4</u>	<u>32</u>	<u>13006</u>	<u>13006.183</u>	<u>13007.744</u>	<u>13009.305</u>	<u>13010</u>
<u>– ODUflex(FC-800)</u>	<u>7</u>	<u>56</u>	<u>14864</u>	<u>14864.209</u>	<u>14865.993</u>	<u>14867.777</u>	<u>14868</u>
			Floor C _{8,min} (Note)	Minimum c ₈	Nominal c ₈	Maximum c ₈	Ceiling C _{8,max} (Note)
ODU0	1	8	15167	15167.393	15168.000	15168.607	15169
ODUflex(GFP), n=18	n	$8 \times n$		ODUfl	ex(GFP) rate dep	pendent	
ODUflex(CBR)				ODUflex(CBI	R) dependent		
 ODUflex(IB SDR) 	<u>3</u>	<u>24</u>	<u>30602</u>	<u>30602.783</u>	<u>30606.456</u>	<u>30610.128</u>	<u>30611</u>
– ODUflex(IB DDR)	<u>5</u>	<u>40</u>	<u>61205</u>	<u>61205.566</u>	<u>61212.911</u>	<u>61220.257</u>	<u>61221</u>
- ODUflex(FC-400)	<u>4</u>	<u>32</u>	<u>52024</u>	<u>52024.731</u>	<u>52030.974</u>	<u>52037.218</u>	<u>52038</u>
- ODUflex(FC-800)	<u>7</u>	<u>56</u>	<u>104049</u>	<u>104049.462</u>	<u>104061.949</u>	<u>104074.437</u>	<u>104075</u>
$\frac{104047.402}{10407.402} \frac{10407.402}{10407.402} \frac{10407.407}{10407.407} \frac{10407.407}{10407.407}$ NOTE – Floor C _{m,min} , Floor C _{n,min} (n=8), Ceiling C _{m,max} and Ceiling C _{n,max} (n=8) values represent the boundaries of ODUj/ODTU2.M ppm offset combinations (i.e., min. ODUj/max. ODTU and max. ODUj/min. ODTU). In steady state, given instances of ODUj/ODTU offset combinations should not result in generated C _n and C _m values							

Table 19-8 – C_m and C_n (n=8) for ODUj into ODTU2.M

NOTE – Floor $C_{m,min}$, Floor $C_{n,min}$ (n=8), Ceiling $C_{m,max}$ and Ceiling $C_{n,max}$ (n=8) values represent the boundaries of ODUj/ODTU2.M ppm offset combinations (i.e., min. ODUj/max. ODTU and max. ODUj/min. ODTU). In steady state, given instances of ODUj/ODTU offset combinations should not result in generated C_n and C_m values throughout this range but rather should be within as small a range as possible. Under transient ppm offset conditions (e.g., AIS to normal signal), it is possible that C_n and C_m values outside the range $C_{n,min}$ to $C_{n,max}$ and $C_{m,min}$ to $C_{m,max}$ may be generated and a GMP demapper should be tolerant of such occurrences. Refer to Annex D for a general description of the GMP principles.

2.13) Clause 19.6.2

Modify Table 19-9 in clause 19.6.2 as follows:

ODUj signal	M	m=8×M	Floor C _{m,min} (Note)	Minimum c _m	Nominal c _m	Maximum c _m	Ceiling C _{m,max} (Note)
ODU0	1	8	15103	15103.396	15104.000	15104.604	15105
ODU2e	9	72	14026	14026.026	14027.709	14029.392	14030
ODUflex(GFP), n=132	n	$8 \times n$		ODUfle	ex(GFP) rate dep	vendent	
ODUflex(CBR)				ODUflex(CBF	R) dependent		
 ODUflex(IB SDR) 	<u>3</u>	<u>24</u>	<u>10157</u>	<u>10157.886</u>	<u>10159.105</u>	<u>10160.324</u>	<u>10161</u>
 ODUflex(IB DDR) 	<u>5</u>	<u>40</u>	<u>12189</u>	<u>12189.463</u>	<u>12190.926</u>	<u>12192.389</u>	<u>12193</u>
 ODUflex(IB QDR) 	<u>9</u>	<u>72</u>	<u>13543</u>	<u>13543.848</u>	<u>13545.473</u>	<u>13547.099</u>	<u>13548</u>
- ODUflex(FC-400)	<u>4</u>	<u>32</u>	<u>12951</u>	<u>12951.304</u>	<u>12952.859</u>	<u>12954.413</u>	<u>12955</u>
- ODUflex(FC-800)	<u>7</u>	<u>56</u>	<u>14801</u>	<u>14801.491</u>	<u>14803.267</u>	<u>14805.043</u>	<u>14806</u>
			Floor C _{8,min} (Note)	Minimum c ₈	Nominal c ₈	Maximum c ₈	Ceiling C _{8,max} (Note)
ODU0	1	8	15103	15103.396	15104.000	15104.604	15105
ODU2e	9	72	126234	126234.232	126249.381	126264.532	126265
ODUflex(GFP), n=132	n	$8 \times n$		ODUfle	ex(GFP) rate dep	bendent	
ODUflex(CBR)				ODUflex(CBF	R) dependent		
 ODUflex(IB SDR) 	<u>3</u>	<u>24</u>	<u>30473</u>	<u>30473.657</u>	<u>30477.314</u>	<u>30480.972</u>	<u>30481</u>
 ODUflex(IB DDR) 	<u>5</u>	<u>40</u>	<u>60947</u>	<u>60947.314</u>	60954.629	<u>60961.943</u>	<u>60962</u>
 ODUflex(IB QDR) 	<u>9</u>	<u>72</u>	<u>121894</u>	<u>121894.629</u>	<u>121909.258</u>	<u>121923.887</u>	<u>121924</u>
- ODUflex(FC-400)	<u>4</u>	<u>32</u>	<u>51805</u>	<u>51805.217</u>	<u>51811.434</u>	<u>51817.652</u>	<u>51818</u>
- ODUflex(FC-800)	<u>7</u>	<u>56</u>	<u>103610</u>	<u>103610.434</u>	<u>103622.869</u>	<u>103635.304</u>	<u>103636</u>
<u>– ODUflex(FC-800)</u> <u>7</u> <u>56</u> <u>103610</u> <u>103610.434</u> <u>10362.869</u> <u>103635.304</u> <u>103636</u> NOTE – Floor $C_{m,min}$, Floor $C_{n,min}$ (n=8), Ceiling $C_{m,max}$ and Ceiling $C_{n,max}$ (n=8) values represent the boundaries of ODUj/ODTU3.M ppm offset combinations (i.e., min. ODUj/max. ODTU and max. ODUj/min. ODTU). In steady state, given instances of ODUj/ODTU offset combinations should not result in generated C_n and C_m values throughout this range but rather should be within as small a range as possible. Under transient ppm offset conditions (e.g., AIS to normal signal), it is possible that C_n and C_m values outside the range $C_{n,min}$ to $C_{n,max}$ and $C_{m,min}$ to $C_{m,max}$ may be generated and a GMP demapper should be tolerant of such occurrences. Refer to Annex D for a general							

Table 19-9 – C_m and $C_n \ (n{=}8)$ for ODUj into ODTU3.M

may be generated and a GMP demapper should be tolerant of such occurrences. Refer to Annex D for a general description of the GMP principles.

2.14) Clause 19.6.3

Modify Table 19-10 in clause 19.6.3 as follows:

ODUj signal	М	m=8×M	Floor C _{m,min} (Note)	Minimum c _m	Nominal c _m	Maximum c _m	Ceiling C _{m,max} (Note)
ODU0	1	8	14527	14527.419	14528.000	14528.581	14529
ODU1	2	16	14588	14588.458	14589.042	14589.626	14590
ODU2	8	64	14650	14650.013	14650.599	14651.185	14652
ODU2e	8	64	15177	15177.527	15179.348	15181.170	15182
ODU3	31	248	15186	15186.673	15187.280	15187.888	15188
ODUflex(GFP), n=180	n	$8 \times n$		ODUflex	(GFP) rate depe	endent	
ODUflex(CBR)		4		ODUflex(CBR)	dependent		
- ODUflex(IB SDR)	2	<u>16</u>	14655	<u>14655.763</u>	<u>14657.522</u>	<u>14659.281</u>	<u>14660</u>
 ODUflex(IB DDR) 	<u>4</u>	<u>32</u>	<u>14655</u>	<u>14655.763</u>	<u>14657.522</u>	<u>14659.281</u>	<u>14660</u>
– ODUflex(IB QDR)	<u>8</u>	<u>64</u>	<u>14655</u>	<u>14655.763</u>	<u>14657.522</u>	<u>14659.281</u>	<u>14660</u>
<u>– ODUflex(FC-400)</u>	<u>4</u>	<u>32</u>	<u>12457</u>	<u>12457.399</u>	<u>12458.894</u>	<u>12460.389</u>	<u>12461</u>
- ODUflex(FC-800)	<u>7</u>	<u>56</u>	14237	<u>14237.027</u>	14238.736	14240.444	<u>14241</u>
			Floor C _{8,min} (Note)	Minimum c ₈	Nominal c ₈	Maximum c ₈	Ceiling C _{8,max} (Note)
ODU0	1	8	14527	14527.419	14528.000	14528.581	14529
ODU1	2	16	29176	29176.917	29178.084	29179.251	29180
ODU2	8	64	117200	117200.105	117204.793	117209.482	117210
ODU2e	8	64	121420	121420.214	121434.786	121449.359	121450
ODU3	31	248	470786	470786.863	470805.695	470824.528	470825
ODUflex(GFP), n=180	n	$8 \times n$		ODUflex	(GFP) rate depe	endent	
ODUflex(CBR)				ODUflex(CBR)	dependent		
– ODUflex(IB SDR)	<u>2</u>	<u>16</u>	<u>29311</u>	29311.526	<u>29315.044</u>	<u>29318.562</u>	<u>29319</u>
– ODUflex(IB DDR)	<u>4</u>	<u>32</u>	<u>58623</u>	<u>58623.052</u>	<u>58630.088</u>	<u>58637.124</u>	<u>58638</u>
– ODUflex(IB QDR)	<u>8</u>	<u>64</u>	<u>117246</u>	<u>117246.105</u>	<u>117260.176</u>	<u>117274.247</u>	<u>117275</u>
- ODUflex(FC-400)	<u>4</u>	<u>32</u>	<u>49829</u>	<u>49829.595</u>	<u>49835.575</u>	<u>49841.555</u>	<u>49842</u>
	7				99671.149	99683.110	99684

Table 19-10 – C_m and C_n (n=8) for ODUj into ODTU4.M

NOTE – Floor $C_{m,min}$, Floor $C_{n,min}$ (n=8), Ceiling $C_{m,max}$ and Ceiling $C_{n,max}$ (n=8) values represent the boundaries of ODUj/ODTU4.M ppm offset combinations (i.e., min. ODUj/max. ODTU and max. ODUj/min. ODTU). In steady state, given instances of ODUj/ODTU offset combinations should not result in generated C_n and C_m values throughout this range but rather should be within as small a range as possible. Under transient ppm offset conditions (e.g., AIS to normal signal), it is possible that C_n and C_m values outside the range $C_{n,min}$ to $C_{n,max}$ and $C_{m,max}$ may be generated and a GMP demapper should be tolerant of such occurrences. Refer to Annex D for a general description of the GMP principles.

2.15) Clause B.3.1

Modify the text in the third paragraph of clause B.3.1 as follows:

An invalid 66B block will be converted to an error control block before transcoding and the OTN <u>BIP-8 calculation as described in clause E.4.1</u>. An invalid 66B block is one which does not have a sync header of "01" or "10", or one which has a sync header of "10" and a control block type field which does not appear in Figure B.2. An error control block has sync bits of "10", a block type code of $0x_{1E}$, and 8 seven-bit/E/error control characters. This will prevent the Ethernet receiver from interpreting a sequence of bits containing this error as a valid packet.

2.16) Clause E.3

Modify the third dash item of the paragraph that starts with "Each 66B codeword is one of the following: " in clause E.3 as follows:

a PCS lane alignment marker, also encoded with a sync header of "10". Of the 8 octets following the sync header, 6 octets have fixed values allowing the lane alignment markers to be recognized (see Tables E.1 and E.2). The fourth octet following the sync header is a BIP-8 calculated over the data from one alignment marker to the next. The eighth octet is the complement of this BIP-8 value to maintain DC balance. Note that these BIP-8 values are not manipulated by the mapping or demapping procedure, but simply skipped in the process of recognizing lane alignment markers and copied intact as they are used for monitoring the error ratio of the Ethernet link between Ethernet PCS sublayers. Note that the intended operation is to pass these BIP-8 values transparently, as they are used for monitoring the error ratio of the Ethernet link between Ethernet PCS sublayers. For the case of 100GBASE-R, the BIP-8 values are not manipulated by the mapping or demapping procedure. For the case of 40GBASE-R, a BIP-8 compensation is done as described in Annex E.4.1.

2.17) Clause E.3.2

Modify the text in the second paragraph of clause E.3.2 as follows:

In case of end-to-end path monitoring t<u>T</u>he lane alignment markers transported over the OPU4 are distributed unchanged to the PCS lanes. In the case of section monitoring the lane alignment markers are located as defined in state diagram in Figure 82-11 of [IEEE 802.3ba] and the BIP-8 is newly calculated for each PCS lane as defined in clause 82.2.8 of [IEEE 802.3ba]. This value overwrites BIP₃ and the complement overwrites BIP₇.

2.18) Clause E.4.1

Modify the text in the eighth paragraph of clause E.4.1 as follows:

The OTN BIP-8 is calculated similar to the PCS BIP-8 as described in clause 82.2.8 of [IEEE 802.3ba] with the exception that the calculation will be done over unscrambled PCS lane data, the original received lane alignment marker, after error control block insertion and before transcoding. Figure E.2 shows the byte location of the OTN BIP-8 in the transcoded lane marker.

Modify the text in the tenth and 11th paragraphs of clause E.4.1 as follows:

The egress BIP₃ for each PCS lane is calculated over the trans_decoded and scrambled data blocks including the trans_decoded alignment marker (refer to clause E.4) following the process depicted in clause 82.2.8 of [IEEE 802.3ba]. This is the value that is transmitted in case of section monitoring.

When provisioned for end-to-end path monitoring, t<u>T</u>he egress BIP₃ is then adjusted for the errors that occurred up to the OTN egress by first XORing with the PCS BIP-8 error mask and then XORing with the OTN BIP-8 error mask. <u>This combined error mask will be used to compute the number of BIP errors when used for non-intrusive monitoring.</u>

2.19) Clause E.4.2

Modify the text in the second paragraph of clause E.4.2 as follows:

An invalid 66B block will be converted to an error control block before transcoding-or-direct adaptation. An invalid 66B block is one which does not have a sync header of "01" or "10", or one which has a sync header of "10", is not a valid PCS lane alignment marker and has a control block type field which does not appear in Figure B.2 or has one of the values 0x2d, 0x33, 0x66, or 0x55 which are not used for 40GBASE-R or 100GBASE-R. An error control block has sync bits of "10", a block type code of 0x1e, and 8 seven-bit/E/error control characters. This will prevent the Ethernet receiver from interpreting a sequence of bits containing this error as a valid packet.

2.20) Appendix VIII

Add the following tables at the end of the appendix:

	# 2.5G tri	butary slots		# 1.25G tributary slots			
LO ODU	OPU2	OPU3	OPU1	OPU2	OPU3	OPU4	
ODUflex(CBR)							
– ODUflex(CPRI Opt 4)	_	_	_	3	3	3	
– ODUflex(CPRI Opt 5)	_	_	_	4	4	4	
- ODUflex(CPRI Opt 6)	—	—	—	5	5	5	

ODUj signal	М	m=8×M	Floor C _{m,min}	Minimum c _m	Nominal c _m	Maximum c _m	Ceiling C _{m,max}
ODUflex(CBR)				ODUflex(CE	R) dependent		
– ODUflex(CPRI 4)	3	24	12534	12534.900	12536.404	12537.909	12538
– ODUflex(CPRI 5)	4	32	15041	15041.880	15043.685	15045.490	15046
– ODUflex(CPRI 6)	5	40	15041	15041.880	15043.685	15045.490	15046
			Floor	Minimum	Nominal	Maximum	Ceiling
			C _{8,min}	c ₈	c ₈	c ₈	C _{8,max}
ODUflex(CBR)				ODUflex(CE	R) dependent		
– ODUflex(CPRI 4)	3	24	37525	37525.698	37530.202	37534.705	37535
– ODUflex(CPRI 5)	4	32	60041	60041.117	60048.323	60055.529	60056
– ODUflex(CPRI 6)	5	40	75051	75051.396	75060.403	75069.411	75070

ODUj signal	М	m=8×M	Floor C _{m,min}	Minimum c _m	Nominal c _m	Maximum c _m	Ceiling C _{m,max}
ODUflex(CBR)				ODUflex(CBI	R) dependent		
- ODUflex(CPRI 4)	3	24	12482	12482.010	12483.508	12485.006	12486
- ODUflex(CPRI 5)	4	32	14978	14978.412	14980.210	14982.007	14983
- ODUflex(CPRI 6)	5	40	14978	14978.412	14980.210	14982.007	14983
			Floor	Minimum	Nominal	Maximum	Ceiling
			C _{8,min}	c ₈	c ₈	c ₈	C _{8,max}
ODUflex(CBR)				ODUflex(CBI	R) dependent		
- ODUflex(CPRI 4)	3	24	37446	37446.030	37450.524	37455.018	37456
- ODUflex(CPRI 5)	4	32	59913	59913.648	59920.838	59928.029	59929
- ODUflex(CPRI 6)	5	40	74892	74892.060	74901.048	74910.036	74911

Table VIII-7 – C_m and C_n (n=8) for ODUj into ODTU3.M

Table VIII-8 – C_m and C_n (n=8) for ODUj into ODTU4.M

ODUj signal	Μ	m=8×M	Floor C _{m,min}	Minimum c _m	Nominal c _m	Maximum c _m	Ceiling C _{m,max}
ODUflex(CBR)			C	DDUflex(CBR)	dependent		
- ODUflex(CPRI 4)	3	24	12006	12006.001	12007.442	12008.883	12009
- ODUflex(CPRI 5)	4	32	14407	14407.201	14408.930	14410.659	14411
- ODUflex(CPRI 6)	5	40	14407	14407.201	14408.930	14410.659	14411
			Floor	Minimum	Nominal	Maximum	Ceiling
			C _{8,min}	c ₈	c ₈	c ₈	C _{8,max}
ODUflex(CBR)			C	DDUflex(CBR)	dependent		
- ODUflex(CPRI 4)	3	24	36018	36018.003	36022.326	36026.649	36027
- ODUflex(CPRI 5)	4	32	57628	57628.805	57635.722	57642.638	57643
- ODUflex(CPRI 6)	5	40	72036	72036.007	72044.652	72053.297	72054

2.21) Appendix IX

Modify Table IX.1 in Appendix IX as follows:

 Table IX.1 – Overview of CBR client into LO OPU mapping types

	OPU0	OPU1	OPU2	OPU2e	OPU3	OPU4	OPUflex
		OFUI	OF U2	OF 02e	0103	0104	OFUllex
STM-1	GMP with C_{1D}	_	_	—	—	_	_
STM-4	GMP with C_{1D}	-	-	_	-	-	-
STM-16	_	AMP, BMP	_	-	_	_	_
STM-64	_	_	AMP, BMP	_	_	_	-
STM-256	_	-	_	-	AMP, BMP	_	_
1000BASE-X	TTT+GMP no C _{nD}	-	_	-	_	_	_
10GBASE-R	_	_	_	16FS+BMP	_	_	_
40GBASE-R	=	=	=	=	$\frac{\text{TTT+GMP}}{\text{with } C_{8D}}$	=	=
100GBASE-R	=	Ξ	Ξ	=	Ξ	$\frac{GMP}{with C_{8D}}$	Ξ
FC-100	GMP no C _{nD}	_	_	-	-	_	_
FC-200	-	GMP with C _{8D}	_	_	_	—	_
FC-400	_	_	_	-	_	_	BMP
FC-800	-	-	_	_	-	-	BMP
FC-1200	_	-	_	TTT+16FS+BMP (Note)	-	—	_
CPRI Option 1	GMP TBD C _{n1D}	-	_	-	-	—	_
CPRI Option 2	GMP T D B <u>D</u> C _{#lD}	-	_	-	-	—	_
CPRI Option 3	-	GMP TBD C _{#lD}	_	_	_	—	_
CPRI Option 4	-	-	_	_	-	_	BMP
CPRI Option 5	_	-	_	-	_	—	BMP
CPRI Option 6	_	-	_	-	_	_	BMP
CM_GPON	_	AMP	_	-	_	_	_
IB SDR	=	=	=	=	=	=	BMP
IB DDR	=	=	=	=	=	=	BMP
IB QDR					=		BMP
NOTE – For th				byte synchronous.			

Add a new Appendix X with the following text:

Appendix X

Overview of LO ODU into HO OPU mapping types

(This appendix does not form an integral part of this Recommendation.)

As there are many different LO ODU bit rate signals and multiple mapping procedures, Table X.1 provides an overview of the mapping procedure that is specified for each LO ODU.

Table X.1 – Overview of LO ODU client into HO OPU mapping type	es
Table A:1 = Overview of EO ODO cheft into HO OT C mapping type	60

	<u>2.5G trib</u>	utary slots		<u>1.25G tributary slots</u>						
	<u>OPU2</u>	<u>OPU3</u>	<u>OPU1</u>	<u>OPU2</u>	<u>OPU3</u>	<u>OPU4</u>				
ODU0	Ξ		ODTU01	<u>ODTU2.1</u>	<u>ODTU3.1</u>	<u>ODTU4.1</u>				
			<u>AMP</u> (PT=20)	<u>GMP</u> (PT=21)	<u>GMP</u> (PT=21)	<u>GMP</u> (PT=21)				
ODU1	<u>ODTU12</u>	<u>ODTU13</u>	=	<u>ODTU12</u>	<u>ODTU13</u>	<u>ODTU4.2</u>				
	<u>AMP</u> (PT=20)	<u>AMP</u> (PT=20)		<u>AMP</u> (PT=21)	<u>AMP</u> (PT=21)	<u>GMP</u> (PT=21)				
<u>ODU2</u>	=	<u>ODTU23</u>	=	=	<u>ODTU23</u>	<u>ODTU4.8</u>				
		<u>AMP</u> (PT=20)			<u>AMP</u> (PT=21)	<u>GMP</u> (PT=21)				
ODU2e	=	=	=	=	<u>ODTU3.9</u>	<u>ODTU4.8</u>				
					<u>GMP</u> (PT=21)	$\frac{\underline{GMP}}{(\underline{PT=21})}$				
ODU3	11	11	Ξ	Ξ	Ξ	<u>ODTU4.31</u>				
						<u>GMP</u> (PT=21)				
<u>ODUflex</u>	=	=	=	ODTU2.ts	ODTU3.ts	ODTU4.ts				
				<u>GMP</u> (PT=21)	<u>GMP</u> (PT=21)	<u>GMP</u> (PT=21)				
ODUflex(IB SDR)	Ξ	Ξ	=	<u>ODTU2.3</u>	<u>ODTU3.3</u>	<u>ODTU4.2</u>				
				GMP	GMP	GMP				
				<u>(PT=21)</u>	<u>(PT=21)</u>	<u>(PT=21)</u>				
ODUflex(IB DDR)	=	Ξ	=	ODTU2.5	ODTU3.5	ODTU4.4				
				<u>GMP</u> (PT=21)	<u>GMP</u> (PT=21)	<u>GMP</u> (PT=21)				
ODUflex(IB QDR)	=	=	=		ODTU3.9	<u>(11 21)</u> ODTU4.8				
	_	_	_	_	GMP	GMP				
					<u>(PT=21)</u>	<u>(PT=21)</u>				
ODUflex(FC-400)	Π		=	<u>ODTU2.4</u>	<u>ODTU3.4</u>	<u>ODTU4.4</u>				
				GMP	GMP	GMP				
				<u>(PT=21)</u>	<u>(PT=21)</u>	<u>(PT=21)</u>				

	<u>2.5G trib</u>	utary slots		<u>1.25G tributary slots</u>					
	<u>OPU2</u>	<u>OPU3</u>	<u>OPU1</u>	<u>OPU2</u>	<u>OPU3</u>	<u>OPU4</u>			
ODUflex(FC-800)	=	=	=	<u>ODTU2.7</u>	<u>ODTU3.7</u>	<u>ODTU4.7</u>			
				<u>GMP</u>	<u>GMP</u>	<u>GMP</u>			
				<u>(PT=21)</u>	<u>(PT=21)</u>	<u>(PT=21)</u>			
ODUflex(CPRI	=	=	=	<u>ODTU2.3</u>	<u>ODTU3.3</u>	<u>ODTU4.3</u>			
Option 4)				<u>GMP</u>	<u>GMP</u>	<u>GMP</u>			
				<u>(PT=21)</u>	<u>(PT=21)</u>	<u>(PT=21)</u>			
ODUflex(CPRI	Ξ	=	=	<u>ODTU2.4</u>	<u>ODTU3.4</u>	<u>ODTU4.4</u>			
Option 5)				<u>GMP</u>	<u>GMP</u>	<u>GMP</u>			
				<u>(PT=21)</u>	<u>(PT=21)</u>	<u>(PT=21)</u>			
ODUflex(CPRI	Ξ	Ξ	=	<u>ODTU2.5</u>	<u>ODTU3.5</u>	<u>ODTU4.5</u>			
Option 6)				GMP	GMP	GMP			
				<u>(PT=21)</u>	<u>(PT=21)</u>	<u>(PT=21)</u>			
ODUflex(GFP),	=	=	=	ODTU2.ts	ODTU3.ts	ODTU4.ts			
<u>n=1,,8 (ts=n)</u>				<u>(GMP)</u>	<u>(GMP)</u>	<u>(GMP)</u>			
				<u>(PT=21)</u>	<u>(PT=21)</u>	<u>(PT=21)</u>			
ODUflex(GFP),	_	=	=	=	ODTU3.ts	ODTU4.ts			
<u>n=9,,32 (ts=n)</u>					<u>(GMP)</u>	<u>(GMP)</u>			
					<u>(PT=21)</u>	<u>(PT=21)</u>			
ODUflex(GFP),	_	=	_	=	=	ODTU4.ts			
<u>n=33,,80 (ts=n)</u>						<u>(GMP)</u>			
						<u>(PT=21)</u>			

<u>Table X.1 – Overview of LO ODU client into HO OPU mapping types</u>

Add a new Appendix XI with the following text:

Appendix XI

<u>Derivation of recommended ODUflex(GFP) bit-rates and examples of</u> <u>ODUflex(GFP) clock generation</u>

(This appendix does not form an integral part of this Recommendation.)

XI.1 Introduction

The recommended bit-rates for ODUflex(GFP) are provided in Table 7-8. While in principle an ODUflex(GFP) may be of any bit-rate, there are a variety of reasons for recommending particular rates:

- to encourage a common set of bit-rates which can be expected to be supported by multiple manufacturers;
- to provide the largest amount of bandwidth possible within a given amount of resource (number of tributary slots) independent of the HO ODUk over which the ODUflex(GFP) may be routed;
- to maintain the number of tributary slots required if the ODUflex(GFP) must be rerouted, e.g., during a restoration;
- to satisfy a protocol requirement for ODUflex hitless resizing that a resizable ODUflex must occupy the same number of tributary slots on every HO ODUk path over which it is carried, and that a resize operation must always add or remove at least one tributary slot.

XI.2 Tributary slot sizes

ODUflex(GFP) is mapped via GMP into a certain number of 1.25G tributary slots of a HO OPU2, OPU3, or OPU4. Each of these have different tributary slot sizes:

$OPU2_TS = \frac{238}{237} \times 4 \times STM16 \times \frac{476 columns}{3808 columns} = 1249409.620 \text{kbit/s} \pm \frac{1249409.620 \text{kbit/s}}{1000 \text{kbit/s}} = \frac{1249400 \text{kbit/s}}{1000 \text{kbit/s}} = \frac{1249400 \text{kbit/s}}{1000 \text{kbit/s}} = \frac{1249400 \text{kbit/s}}{1000 \text{kbit/s}} = \frac{1249400 \text{kbit/s}}$	20ppm
$OPU3_TS = \frac{238}{236} \times 16 \times STM 16 \times \frac{119 columns}{3808 columns} = 1254703.729 \text{kbit/s} \pm \frac{119 columns}{3808 columns} = 1254703.729 kbi$	<u>-</u> 20ppm

$$OPU4_TS = \frac{238}{227} \times 40 \times STM16 \times \frac{47.5 \, columns}{3808 \, columns} = 1301709.251 \, \text{kbit/s} \pm 20 \text{ppm}$$

An ODUflex(GFP) that occupies 8 or fewer tributary slots may be routed over HO OPU2, OPU3, or OPU4. The smallest tributary slot that may be encountered along the route of the ODUflex(GFP) is that of HO OPU2. Even if the initially selected route does not choose a link of HO OPU2, the ODUflex(GFP) should be sized to a multiple of the OPU2 tributary slot size to preserve the possibility to restore the ODUflex(GFP) over a route that includes HO OPU2 without changing the size of the ODUflex or the number of tributary slots it occupies.

An ODUflex(GFP) that occupies at least 9, but no more than 32, tributary slots may be routed over HO OPU3 or OPU4. It does not fit over HO OPU2. Therefore such an ODUflex may be sized to a multiple of the OPU3 tributary slot size. Even if the initially selected route does not choose a link of HO OPU3, the ODUflex(GFP) should be sized to a multiple of the OPU3 tributary slot size to preserve the possibility to restore the ODUflex(GFP) over a route that includes HO OPU3 without changing the size of the ODUflex or the number of tributary slots it occupies.

An ODUflex(GFP) that occupies at least 33, but no more than 80 tributary slots may only be carried via HO OPU4, and may therefore take advantage of the full size of the OPU4 tributary slot size.

A small margin must be left between the ODUflex(GFP) size and the integral multiple of the tributary slot size to accommodate possible clock variation along a sequence of HO OPUk links without overflowing the range of C_m in the GMP mapper.

Physical layers for data interfaces such as Ethernet and Fibre Channel have historically used a clock tolerance of ± 100 ppm. This range is sufficiently wide that specifying this as the clock tolerance for ODUflex(GFP) can accommodate a variety of mechanisms for generating an ODUflex(GFP) clock and remain within the clock tolerance range.

ODUk.ts as shown in Table 7-8 is an increment of bandwidth, which, when multiplied by a number of tributary slots, gives the recommended size of an ODUflex(GFP) optimized to occupy a given number of tributary slots of a higher order OPUk. These values are chosen to allow sufficient margin that allows the HO OPUk and the ODUflex(GFP) to independently vary over their full clock tolerance range without exceeding the capacity of the allocated tributary slots.

The nominal values for ODUk.ts are chosen to be 186 ppm below the bandwidth of a single 1.25G tributary slot of a higher order OPUk. This allows the ODUflex(GFP) clock to be as much as 100 ppm above its nominal rate and the higher order OPUk to be as much as 20 ppm below its nominal clock rate, allowing approximately 66 ppm of margin to accommodate jitter and to ensure that the largest average C_m value even in the worst-case situation of the HO OPUk at -20 ppm from its nominal value and the ODUflex(GFP) at +100 ppm from its nominal value will be one less than the maximum value (i.e., the maximum average C_m is no more than 15231 out of 15232 for ODUflex carried over OPU2 or OPU3, and no more than 15199 out of 15200 for ODUflex carried over OPU4).

XI.3 Example methods for ODUflex(GFP) clock generation

XI.3.1 Generating ODUflex(GFP) clock from higher order OPUk clock

The clock for an ODUflex(GFP) may be generated from the initial higher order OPUk over which the ODUflex is carried by setting the value of C_m to a fixed value on the initial segment. Normal GMP processing on subsequent segments avoids the need to couple the higher order OPUk clocks along the path.

Higher order	Nominal	Nominal	<u> </u>	ODU2.ts]			
Higher order OPUk	<u>Nominal</u> <u>bit rate</u>	<u>1.25G TS</u> <u>bit rate</u>	<u>5</u>	$\frac{\underline{C}_{m}}{\underline{out of}} \underline{\text{Bit-rate per TS}}$					
<u>OPU2</u>	<u>9'995'276.962</u>	<u>1'249'409.620</u>		<u>15230</u> <u>15232</u>	<u>1'249'245.570</u>		ODU3.ts]	
			+2	<u>0 ppm</u>	<u>1'249'270.555</u>	<u>C</u> m	Bit rate per TS		
		=		<u>0 ppm</u>	<u>1'249'220.585</u>	out of	Bit-rate per TS		
<u>OPU3</u>	<u>40'150'519.322</u>	1'254'703.7	20	<u>15165</u>	<u>1'249'184.746</u>	<u>15230</u>	<u>1'254'538.983</u>		
0105	<u>+0130317.322</u>	<u>1234</u> 703.7	<u> </u>	<u>15232</u>	1247104.740	<u>15232</u>	1231330.705		ODU4.ts
			+2	<u>0 ppm</u>	<u>1'249'209.729</u>		<u>1'254'564.074</u>	<u>C</u> m	Bit-rate per TS
			<u>-2</u>	<u>0 ppm</u>	<u>1'249'159.762</u>		<u>1'254'513.892</u>	<u>out of</u>	<u>Bit-fate per 15</u>
<u>OPU4</u>	<u>104'355'975.330</u>	<u>1'301'709.2</u>	2 <u>51</u>	<u>14587</u> <u>15200</u>	<u>1'249'212.687</u>	<u>14649</u> <u>15200</u>	<u>1'254'522.291</u>	<u>15198</u> <u>15200</u>	<u>1'301'537.974</u>
			<u>+2</u>	<u>0 ppm</u>	<u>1'249'237.671</u>		<u>1'254'547.381</u>		<u>1'301'564.004</u>
			2	<u>0 ppm</u>	<u>1'249'187.703</u>		<u>1'254'497.200</u>		<u>1'301'511.943</u>
			no	<u>minal</u>	<u>1'249'177.230</u>		<u>1'254'470.354</u>		<u>1'301'467.133</u>
		ODUk.ts	<u>+1(</u>	<u>)0 ppm</u>	<u>1'249'302.148</u>		<u>1'254'595.801</u>		<u>1'301'597.280</u>
			1(<u>)0 ppm</u>	<u>1'249'052.312</u>		<u>1'254'344.907</u>		<u>1'301'336.986</u>

<u>Table XI.1 – Generation of ODUflex(GFP) clock from higher order OPUk clock using fixed C_m </u>

Table XI.1 illustrates how a clock for an ODUflex(GFP) occupying $n \times ODUk.ts$ can be derived from the higher order OPUk clock using a fixed value of C_m in the initial segment of the path.

For example, an ODUflex(GFP) occupying up to 8 tributary slots should be based on ODU2.ts, and therefore have a clock frequency of $n \times 1'249'177.230$ kbit/s ±100 ppm. This allows the ODUflex(GFP) to have a frequency of between $n \times 1'249'052.312$ kbit/s and $n \times 1'249'302.148$ kbit/s.

- If the initial segment over which the ODUflex(GFP) is carried is an OPU2, a clock in this range can be generated by fixing the value of C_m on the initial segment to 15230, which will result in the ODUflex having a clock of n × 1'249'245.570 kbit/s ±20 ppm. While the center frequency of this range differs from the nominal value of ODU2.ts, the clock tolerance is narrower, being locked to the higher order OPU2, so the possible clock range is fully within the ±100 ppm range allowed.
- If the initial segment is a higher order OPU3, the ODUflex(GFP) of a multiple of ODU2.ts can be generated using a fixed value of C_m =15165 on the initial ODU3 segment, which will result in the ODUflex having a clock of n × 1'249'184.746 kbit/s ±20 ppm,
- If the initial segment is a higher order OPU4, the ODUflex(GFP) of a multiple of ODU2.tscan be generated using a fixed value of C_m=14587 on the initial OPU4 segment, which willresult in the ODUflex having a clock of n × 1'249'212.687 kbit/s ±20 ppm.

The center frequencies of all of these ODUflex(GFP) are slightly different, but the resulting ranges for the clocks all fall within the ± 100 ppm window (see Figure XI.1). Fixed C_m for generating ODU3.ts and ODU4.ts from the initial higher order OPUk can similarly be found from this table.

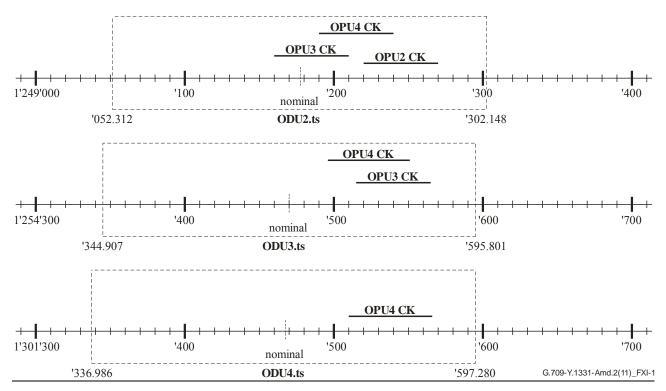


Figure XI.1 – Graphical representation of frequency ranges in Table X.1

To ensure that this method is future proof, likely rates for future OPU5, OPU6, and OPU7 have been checked to ensure that it is possible to select a fixed C_m to generate ODUflex(GFP) clocks based on any ODUk.ts value. As future tiers of the hierarchy are yet to be agreed, it would be premature to list them here, but the following reasoning ensures that this mechanism can be extended to future tiers: Based on the M-byte mechanism for GMP mapping into tributary slots, each increment of fixed C_m represents a 65-66 ppm difference in the resulting ODUflex frequency. There will generally be three (exceptionally four) values of C_m for which, if the higher order OPUk is running at nominal frequency, would generate an ODUflex clock that falls within a ±100 ppm window. At least one of these possible values of C_m is 67 ppm or more from each end of the ±100 ppm range. Since the actual variation of the clock for an ODUflex whose clock is generated in this manner is only ±20 ppm, and the higher order OPUk for downstream segments can also vary by ±20 ppm, at least 40 ppm difference is needed between the center frequency of an ODUflex(GFP) generated from a future OPUk (k>4) and each end of the ±100 ppm range. Since only 40 ppm is required and at least 67 ppm are available, it will be possible to select fixed C_m values to generate ODUflex(GFP) clocks from future higher order OPUk.

XI.3.2 Generating ODUflex(GFP) clock from system clock

The clock for an ODUflex(GFP) may be generated using a multiplier from the internal system clock. Normally the internal system clock will have an accuracy of at least ± 20 ppm, perhaps even ± 4.6 ppm, for a network element that supports both SDH and OTN interfaces. The exact multiplier to be used is implementation specific, and should be chosen so that the range of the generated clock falls within the specified ± 100 ppm window around the nominal value of n \times ODUk.ts.

2.24) Bibliography

Add a new reference to the Bibliography:

[b-IB ARCH] InfiniBand Trade Association, InfiniBand Architecture Specification Volume 2, <u>Release 1.2.1 (2006).</u>

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300-Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600-Y.699
Security	Y.700-Y.799
Performances	Y.800-Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Numbering, naming and addressing	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Network control architectures and protocols	Y.2500-Y.2599
Smart ubiquitous networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
Carrier grade open environment	Y.2900-Y.2999
Future networks	Y.3000-Y.3099

For further details, please refer to the list of ITU-T Recommendations.

SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Terminals and subjective and objective assessment methods
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems