ITU-T

G.707/Y.1322

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU **Amendment 2** (11/2009)

SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

Digital terminal equipments – General

SERIES Y: GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

Internet protocol aspects - Transport

Network node interface for the synchronous digital hierarchy (SDH)

Amendment 2

Recommendation ITU-T G.707/Y.1322 (2007) – Amendment 2

ITU-T G-SERIES RECOMMENDATIONS

TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS	G.100-G.199
GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER- TRANSMISSION SYSTEMS	G.200–G.299
INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON METALLIC LINES	G.300-G.399
GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC LINES	G.400–G.449
COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY	G.450-G.499
TRANSMISSION MEDIA AND OPTICAL SYSTEMS CHARACTERISTICS	G.600-G.699
DIGITAL TERMINAL EQUIPMENTS	G.700-G.799
General	G.700-G.709
Coding of voice and audio signals	G.710-G.729
Principal characteristics of primary multiplex equipment	G.730-G.739
Principal characteristics of second order multiplex equipment	G.740-G.749
Principal characteristics of higher order multiplex equipment	G.750-G.759
Principal characteristics of transcoder and digital multiplication equipment	G.760-G.769
Operations, administration and maintenance features of transmission equipment	G.770-G.779
Principal characteristics of multiplexing equipment for the synchronous digital hierarchy	G.780-G.789
Other terminal equipment	G.790-G.799
DIGITAL NETWORKS	G.800-G.899
DIGITAL SECTIONS AND DIGITAL LINE SYSTEM	G.900-G.999
MULTIMEDIA QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS	G.1000–G.1999
TRANSMISSION MEDIA CHARACTERISTICS	G.6000-G.6999
DATA OVER TRANSPORT – GENERIC ASPECTS	G.7000-G.7999
PACKET OVER TRANSPORT ASPECTS	G.8000-G.8999
ACCESS NETWORKS	G.9000-G.9999

 $For {\it further details, please refer to the list of ITU-T Recommendations}.$

Recommendation ITU-T G.707/Y.1322

Network node interface for the synchronous digital hierarchy (SDH)

Amendment 2

Summary

Amendment 2 to Recommendation ITU-T G.707/Y.1322 contains additional material to be incorporated in the Recommendation and adds the necessary functionality for adaptation of STM-256 over multichannel parallel interfaces.

Source

Amendment 2 to Recommendation ITU-T G.707/Y.1322 (2007) was approved on 13 November 2009 by ITU-T Study Group 15 (2009-2012) under Recommendation ITU-T A.8 procedures.

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications, information and communication technologies (ICTs). The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at http://www.itu.int/ITU-T/ipr/.

© ITU 2010

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

Recommendation ITU-T G.707/Y.1322

Network node interface for the synchronous digital hierarchy (SDH)

Amendment 2

1 Modify clause 4

Add the following abbreviation to clause 4:

STL Synchronous Transport Lane

2 Modify Table 6-2

Enhance Table 6-2 with the bit-rate of an STL-256.4:

Table 6-2 – SDH hierarchical bit rates

Synchronous digital hierarchy level	Hierarchical bit rate (kbit/s)	
0	51 840	
1	155 520	
4	622 080	
16	2 488 320	
64	9 953 280	
256	39 813 120	
STL-256.4	9 953 280	
NOTE – The specification of levels higher than 256 requires further study.		

3 Add new clause 6.7

Add the following clause:

6.7 Parallel interfaces

STM-256 may be inversely multiplexed over four STL-256.4s. See Annex I for the inverse multiplexing of STM-256 over STL-256.4s. The four STL-256.4s are optically multiplexed onto a single multilane section (see Rec. ITU-T G.783).

NOTE – Interconnection of equipment that supports the newer synchronous transport lane (STL) structures with older equipment only supporting the non-STL interface defined in older versions of this Recommendation cannot be achieved automatically. For interconnection of equipment supporting the newer STL structures with older equipment only supporting the non-STL interface defined in older versions of this Recommendation, it will be necessary for the former to support the non-STL interface.

4 Insert new Annex I

Add the following annex:

Annex I

Adaptation of STM-256 over multichannel parallel interfaces

(This annex forms an integral part of this Recommendation)

NOTE – This mechanism is designed to allow the use of the optical modules being developed for IEEE 40GBASE-R signals for short-reach client-side STM-256 interfaces.

So that STM-256 signals may be carried over parallel interfaces consisting of four lanes, the STM-256 frame is inversely multiplexed over physical/logical lanes on a 16-byte boundary aligned with the frame as illustrated in Figure I.1.

	1					69120
1	1:16	17:32	33:48	49:64		69105:69120
2	69121:69136	69137:69152	69153:69168	69169:69184		138225:138240
3	138241:138256	138257:138272	138273:138288	138289:138304		207345:207360
4	207361:207376	207377:207392	207393:207408	207409:207424		276465:276480
5	276481:276496	276497:276512	276513:276528	276529:276544	• • •	345585:345600
6	345601:345616	345617:345632	345633:345648	345649:345664		414705:414720
7	414721:414736	414737:414752	414753:414768	414769:414784		483825:483840
8	483841:483856	483857:483872	483873:483888	483889:483904		552945:552960
9	552961:552976	552977:552992	552993:553008	553009:553024		622065:622080

Figure I.1 – STM-256 frame divided on 16-byte boundary

Each 16-byte increment of the STM-256 frame is distributed, round robin, to each of the four physical lanes as illustrated in Figure I.2.

Figure I.2 – Distribution of bytes from STM-256 to parallel lanes

Since the STM-256 frame has 64 unscrambled A1 bytes followed by 64 unscrambled A2 bytes, each lane receives 16 A1 bytes followed by 16 A2 bytes. The last A2 byte position in each lane is borrowed as a logical lane marker. For maximum skew detection range, the lane marker value increments by four on successive frames (from 0 to 252 for lane 0, from 1 to 253 for lane 1, from 2 to 254 for lane 2 and from 3 to 255 for lane 3). The logical lane number can be recovered from this value by a modulo 4 operation.

Since a possible future application may re-form a single bit stream via a simple bit multiplex of the four lanes, it is necessary to delay the lanes with respect to each other to avoid the frame alignment bytes overlapping and producing a portion of the frame with very low clock content. Consequently, the lanes must be arranged to have at least 32 bytes of time offset between the A1 to A2 transition of any two of the lanes.

The parallel lanes can be reassembled at the sink by first recovering framing on each of the parallel lanes using the 16 A1 bytes followed by 15 A2 bytes. As lane positions may not be preserved by the optical modules to be used for this application, the lanes are identified using the lane marker in the byte following the fifteenth A2 byte, deskewed, and reassembled into the original STM-256 frame according to the lane marker. Since each lane marker cycles through 64 distinct values, the lanes can be deskewed and reassembled by the receiver as long as the total skew does not exceed 32 STM-256 frame periods (approximately 4 ms). In mapping from lanes back to the STM-256 frame, the byte following the fifteenth A2 byte which was borrowed for lane marking is restored to the value A2.

This mechanism handles any normally framed STM-256 sequence. The additional sequence to be handled is generic AIS, which is an unframed PN-11 sequence at the STM-256 rate. The source function for this adaptation will detect generic AIS by recognizing the PN-11 sequence.

While receiving generic AIS, the source function for distributing the STM-256 to parallel lanes will generate a framing pattern of $16 \times A1 + 15 \times A2 + 0$ xFF once per 155520 bytes at the STL bit rate as specified in Table 6-2 on each of the logical lanes. The remainder of the frame is the PN-11 pattern distributed in 16-byte increments across the lanes. When the sink function sees the lane marker fixed at 0xFF on any lane, it will generate a PN-11 sequence at the STM-256 rate in the egress direction.

ITU-T Y-SERIES RECOMMENDATIONS

GLOBAL INFORMATION INFRASTRUCTURE, INTERNET PROTOCOL ASPECTS AND NEXT-GENERATION NETWORKS

ıl	
GLOBAL INFORMATION INFRASTRUCTURE	
General	Y.100-Y.199
Services, applications and middleware	Y.200-Y.299
Network aspects	Y.300-Y.399
Interfaces and protocols	Y.400-Y.499
Numbering, addressing and naming	Y.500-Y.599
Operation, administration and maintenance	Y.600-Y.699
Security	Y.700-Y.799
Performances	Y.800-Y.899
INTERNET PROTOCOL ASPECTS	
General	Y.1000-Y.1099
Services and applications	Y.1100-Y.1199
Architecture, access, network capabilities and resource management	Y.1200-Y.1299
Transport	Y.1300-Y.1399
Interworking	Y.1400-Y.1499
Quality of service and network performance	Y.1500-Y.1599
Signalling	Y.1600-Y.1699
Operation, administration and maintenance	Y.1700-Y.1799
Charging	Y.1800-Y.1899
IPTV over NGN	Y.1900-Y.1999
NEXT GENERATION NETWORKS	
Frameworks and functional architecture models	Y.2000-Y.2099
Quality of Service and performance	Y.2100-Y.2199
Service aspects: Service capabilities and service architecture	Y.2200-Y.2249
Service aspects: Interoperability of services and networks in NGN	Y.2250-Y.2299
Numbering, naming and addressing	Y.2300-Y.2399
Network management	Y.2400-Y.2499
Network control architectures and protocols	Y.2500-Y.2599
Future networks	Y.2600-Y.2699
Security	Y.2700-Y.2799
Generalized mobility	Y.2800-Y.2899
	Y.2900-Y.2999

 $For {\it further details, please refer to the list of ITU-T Recommendations}.$

SERIES OF ITU-T RECOMMENDATIONS

Series A	Organization of the work of ITU-T
Series D	General tariff principles
Series E	Overall network operation, telephone service, service operation and human factors
Series F	Non-telephone telecommunication services
Series G	Transmission systems and media, digital systems and networks
Series H	Audiovisual and multimedia systems
Series I	Integrated services digital network
Series J	Cable networks and transmission of television, sound programme and other multimedia signals
Series K	Protection against interference
Series L	Construction, installation and protection of cables and other elements of outside plant
Series M	Telecommunication management, including TMN and network maintenance
Series N	Maintenance: international sound programme and television transmission circuits
Series O	Specifications of measuring equipment
Series P	Terminals and subjective and objective assessment methods
Series Q	Switching and signalling
Series R	Telegraph transmission
Series S	Telegraph services terminal equipment
Series T	Terminals for telematic services
Series U	Telegraph switching
Series V	Data communication over the telephone network
Series X	Data networks, open system communications and security
Series Y	Global information infrastructure, Internet protocol aspects and next-generation networks
Series Z	Languages and general software aspects for telecommunication systems