UIT-T

G.695

SECTOR DE NORMALIZACIÓN DE LAS TELECOMUNICACIONES DE LA UIT (12/2006)

SERIE G: SISTEMAS Y MEDIOS DE TRANSMISIÓN, SISTEMAS Y REDES DIGITALES

Características de los medios de transmisión y de los sistemas ópticos – Características de los sistemas ópticos

Interfaces ópticas para aplicaciones de multiplexación por división aproximada en longitud de onda

Recomendación UIT-T G.695

RECOMENDACIONES UIT-T DE LA SERIE G

SISTEMAS Y MEDIOS DE TRANSMISIÓN, SISTEMAS Y REDES DIGITALES

CONEXIONES Y CIRCUITOS TELEFÓNICOS INTERNACIONALES	G.100-G.199
CARACTERÍSTICAS GENERALES COMUNES A TODOS LOS SISTEMAS ANALÓGICOS	G.200–G.299
DE PORTADORAS	G.200–G.299
CARACTERÍSTICAS INDIVIDUALES DE LOS SISTEMAS TELEFÓNICOS INTERNACIONALES DE PORTADORAS EN LÍNEAS METÁLICAS	G.300–G.399
CARACTERÍSTICAS GENERALES DE LOS SISTEMAS TELEFÓNICOS INTERNACIONALES EN RADIOENLACES O POR SATÉLITE E INTERCONEXIÓN CON LOS SISTEMAS EN LÍNEAS METÁLICAS	G.400–G.449
COORDINACIÓN DE LA RADIOTELEFONÍA Y LA TELEFONÍA EN LÍNEA	G.450-G.499
CARACTERÍSTICAS DE LOS MEDIOS DE TRANSMISIÓN Y DE LOS SISTEMAS ÓPTICOS	G.600-G.699
Generalidades	G.600-G.609
Cables de pares simétricos	G.610-G.619
Cables terrestres de pares coaxiales	G.620-G.629
Cables submarinos	G.630-G.639
Sistemas ópticos en el espacio libre	G.640-G.649
Cables de fibra óptica	G.650-G.659
Características de los componentes y los subsistemas ópticos	G.660-G.679
Características de los sistemas ópticos	G.680-G.699
EQUIPOS TERMINALES DIGITALES	G.700-G.799
REDES DIGITALES	G.800-G.899
SECCIONES DIGITALES Y SISTEMAS DIGITALES DE LÍNEA	G.900-G.999
CALIDAD DE SERVICIO Y DE TRANSMISIÓN – ASPECTOS GENÉRICOS Y ASPECTOS RELACIONADOS AL USUARIO	G.1000–G.1999
CARACTERÍSTICAS DE LOS MEDIOS DE TRANSMISIÓN	G.6000-G.6999
DATOS SOBRE CAPA DE TRANSPORTE – ASPECTOS GENÉRICOS	G.7000-G.7999
ASPECTOS RELATIVOS A LOS PROTOCOLOS EN MODO PAQUETE SOBRE LA CAPA DE TRANSPORTE	G.8000-G.8999
REDES DE ACCESO	G.9000-G.9999

Para más información, véase la Lista de Recomendaciones del UIT-T.

Recomendación UIT-T G.695

Interfaces ópticas para aplicaciones de multiplexación por división aproximada en longitud de onda

Resumen

Esta Recomendación proporciona valores de parámetros ópticos para interfaces de capa física de aplicaciones de multiplexación por división aproximada en longitud de onda (CWDM) con hasta 16 canales y hasta 2,5 Gbit/s. Las aplicaciones se definen empleando dos métodos diferentes, en uno de los cuales se utilizan parámetros de interfaz multicanal y en el otro, parámetros de interfaz monocanal. Se especifican aplicaciones tanto unidireccionales como bidireccionales.

Orígenes

La Recomendación UIT-T G.695 fue aprobada el 14 de diciembre de 2006 por la Comisión de Estudio 15 (2005-2008) del UIT-T por el procedimiento de la Recomendación UIT-T A.8.

PREFACIO

La UIT (Unión Internacional de Telecomunicaciones) es el organismo especializado de las Naciones Unidas en el campo de las telecomunicaciones. El UIT-T (Sector de Normalización de las Telecomunicaciones de la UIT) es un órgano permanente de la UIT. Este órgano estudia los aspectos técnicos, de explotación y tarifarios y publica Recomendaciones sobre los mismos, con miras a la normalización de las telecomunicaciones en el plano mundial.

La Asamblea Mundial de Normalización de las Telecomunicaciones (AMNT), que se celebra cada cuatro años, establece los temas que han de estudiar las Comisiones de Estudio del UIT-T, que a su vez producen Recomendaciones sobre dichos temas.

La aprobación de Recomendaciones por los Miembros del UIT-T es el objeto del procedimiento establecido en la Resolución 1 de la AMNT.

En ciertos sectores de la tecnología de la información que corresponden a la esfera de competencia del UIT-T, se preparan las normas necesarias en colaboración con la ISO y la CEI.

NOTA

En esta Recomendación, la expresión "Administración" se utiliza para designar, en forma abreviada, tanto una administración de telecomunicaciones como una empresa de explotación reconocida de telecomunicaciones.

La observancia de esta Recomendación es voluntaria. Ahora bien, la Recomendación puede contener ciertas disposiciones obligatorias (para asegurar, por ejemplo, la aplicabilidad o la interoperabilidad), por lo que la observancia se consigue con el cumplimiento exacto y puntual de todas las disposiciones obligatorias. La obligatoriedad de un elemento preceptivo o requisito se expresa mediante las frases "tener que, haber de, hay que + infinitivo" o el verbo principal en tiempo futuro simple de mandato, en modo afirmativo o negativo. El hecho de que se utilice esta formulación no entraña que la observancia se imponga a ninguna de las partes.

PROPIEDAD INTELECTUAL

La UIT señala a la atención la posibilidad de que la utilización o aplicación de la presente Recomendación suponga el empleo de un derecho de propiedad intelectual reivindicado. La UIT no adopta ninguna posición en cuanto a la demostración, validez o aplicabilidad de los derechos de propiedad intelectual reivindicados, ya sea por los miembros de la UIT o por terceros ajenos al proceso de elaboración de Recomendaciones.

En la fecha de aprobación de la presente Recomendación, la UIT no ha recibido notificación de propiedad intelectual, protegida por patente, que puede ser necesaria para aplicar esta Recomendación. Sin embargo, debe señalarse a los usuarios que puede que esta información no se encuentre totalmente actualizada al respecto, por lo que se les insta encarecidamente a consultar la base de datos sobre patentes de la TSB en la dirección http://www.itu.int/ITU-T/ipr/.

© UIT 2007

Reservados todos los derechos. Ninguna parte de esta publicación puede reproducirse por ningún procedimiento sin previa autorización escrita por parte de la UIT.

ÍNDICE

1	Alcand	ce
2	Refere	encias
3	Defini	ciones
	3.1	Términos definidos en otras Recomendaciones
4	Abrev	iaturas, siglas o acrónimos
5	Clasifi	cación de interfaces ópticas
	5.1	Aplicaciones
	5.2	Puntos de referencia
	5.3	Nomenclatura
	5.4	Interfaces multicanal en los puntos de referencia MPI-S _M y MPI-R _M
	5.5	Interfaces monocanal en los puntos de referencia S _S y R _S
6	Compa	atibilidad transversal
7	Defini	ciones de los parámetros
	7.1	Información general
	7.2	Interfaz en el punto MPI - S_M o en el punto S_S
	7.3	Parámetros de trayecto óptico comunes (sección única) del punto MPI- S_M al MPI- R_M o del punto S_S al R_S
	7.4	Interfaz en el punto MPI-R _M o en el punto R _S
	7.5	Parámetros adicionales para el trayecto óptico de S _S a R _S
8	Valore	es de los parámetros
9	Consid	deraciones relativas a la seguridad óptica
Apér		Dependencia con respecto a la longitud de ondade la atenuación y la sión cromática
	I.1	Atenuación
	I.2	Dispersión cromática
Apér	ndice II –	Trayecto óptico del punto RP _S al punto RP _R
Apér	ndice III -	- Enlaces negros que contienen OADM
	III.1	Cantidad de OADM en un enlace negro
	III.2	Códigos de aplicación mixtos
	III.3	Protección
Apér	ndice IV	Valores de parámetros de aplicaciones de 16 canales
Ribli	ografía	

Recomendación UIT-T G.695

Interfaces ópticas para aplicaciones de multiplexación por división aproximada en longitud de onda

1 Alcance

La presente Recomendación se aplica a interfaces ópticas de sistemas de línea óptica con multiplexación por división aproximada en longitud de onda (CWDM, coarse wavelength division multiplexing) para aplicaciones de red en las que se utilizan fibras ópticas monomodo. Esta Recomendación define y proporciona valores de parámetros de interfaz óptica de aplicaciones físicas de sistemas punto a punto y en anillo CWDM. Su objetivo principal es facilitar la existencia de interfaces compatibles transversalmente (de múltiples fabricantes).

Las aplicaciones se definen empleando dos métodos diferentes, en uno de los cuales se utilizan parámetros de interfaz multicanal y en el otro, parámetros de interfaz monocanal. Se especifican aplicaciones tanto unidireccionales como bidireccionales.

En la presente Recomendación se describen sistemas de línea óptica que tienen las características siguientes:

- Número máximo de canales: hasta 16.
- Velocidad binaria del canal de la señal: hasta 2,5 Gbit/s NRZ (sin retorno a cero).

El plan de longitudes de onda CWDM se da en [UIT-T G.694.2].

Las especificaciones están organizadas de acuerdo con los códigos de las aplicaciones.

En el futuro, se podrán incluir aplicaciones que permitan la compatibilidad transversal plena en puntos de interfaz tanto multicanal como monocanal.

2 Referencias

Las siguientes Recomendaciones del UIT-T y otras referencias contienen disposiciones que, mediante su referencia en este texto, constituyen disposiciones de la presente Recomendación. Al efectuar esta publicación, estaban en vigor las ediciones indicadas. Todas las Recomendaciones y otras referencias son objeto de revisiones por lo que se preconiza que los usuarios de esta Recomendación investiguen la posibilidad de aplicar las ediciones más recientes de las Recomendaciones y otras referencias citadas a continuación. Se publica periódicamente una lista de las Recomendaciones UIT-T actualmente vigentes. En esta Recomendación, la referencia a un documento, en tanto que autónomo, no le otorga el rango de una Recomendación.

[UIT-T G.652]	Recomendación UIT-T G.652 (2005), Características de las fibras y cables ópticos monomodo.
[UIT-T G.653]	Recomendación UIT-T G.653 (2006), Características de los cables y fibras ópticas monomodo con dispersión desplazada.
[UIT-T G.655]	Recomendación UIT-T G.655 (2006), Características de fibras y cables ópticos monomodo con dispersión desplazada no nula.
[UIT-T G.664]	Recomendación UIT-T G.664 (2006), <i>Procedimientos y requisitos de seguridad óptica para sistemas ópticos de transporte</i> .
[UIT-T G.671]	Recomendación UIT-T G.671 (2005), Características de transmisión de los componentes y subsistemas ópticos.

[UIT-T G.691]	Recomendación UIT-T G.691 (2006), Interfaces ópticas para los sistemas monocanal STM-64 y otros sistemas de la jerarquía digital síncrona con amplificadores ópticos.
[UIT-T G.692]	Recomendación UIT-T G.692 (1998), Interfaces ópticas para sistemas multicanales con amplificadores ópticos.
[UIT-T G.694.2]	Recomendación UIT-T G.694.2 (2003), Planes espectrales para aplicaciones de multiplexación por división de longitud de onda: Plan de multiplexación por división aproximada de longitud de onda.
[UIT-T G.709/Y.1331]	Recomendación UIT-T G.709/Y.1331 (2003), <i>Interfaces para la red óptica de transporte</i> .
[UIT-T G.957]	Recomendación UIT-T G.957 (2006), Interfaces ópticas para equipos y sistemas relacionados con la jerarquía digital síncrona.
[UIT-T G.959.1]	Recomendación UIT-T G.959.1 (2006), <i>Interfaces de capa física de red óptica de transporte</i> .
[UIT-T 60825-1]	CEI 60825-1 (2007), Safety of laser products – Part 1: Equipment classification, requirements and user's guide.
[UIT-T 60825-2]	CEI 60825-2 (2007), Safety of laser products – Part 2: Safety of optical fibre communication systems, (OFCS).

3 Definiciones

3.1 Términos definidos en otras Recomendaciones

Esta Recomendación utiliza los siguientes términos definidos en [UIT-T G.671]:

- multiplexación por división aproximada en longitud de onda (CWDM, coarse wavelength division multiplexing);
- multiplexor/demultiplexor de longitud de onda óptico;
- pérdida de inserción de canal;
- separación de canal;
- retardo de grupo diferencial;
- reflectancia.

Esta Recomendación utiliza el siguiente término definido en [UIT-T G.694.2]:

plan de longitudes de onda.

Esta Recomendación utiliza el siguiente término definido en [UIT-T G.709/Y.1331]:

unidad-k de transporte de canal óptico completamente normalizada (OTUk).

Esta Recomendación utiliza los siguientes términos definidos en [UIT-T G.872]:

- interfaz interdominios (IrDI);
- regeneración 3R.

Esta Recomendación utiliza los siguientes términos definidos en [UIT-T G.957]:

- ingeniería conjunta;
- sensibilidad de receptor;
- compatibilidad transversal.

Esta Recomendación utiliza los siguientes términos definidos en [UIT-T G.959.1]:

- sensibilidad equivalente mínima;
- clase de señal afluente óptica NRZ 1,25G;
- clase de señal afluente óptica NRZ 2,5G.

4 Abreviaturas, siglas o acrónimos

En esta Recomendación se utilizan las siguientes abreviaturas, siglas o acrónimos.

3R (Regeneración,) reamplificación, reconformación y retemporización ((regeneration) reamplification, reshaping and retiming)

ASE Emisión espontánea amplificada (amplified spontaneous emission)

BER Tasa de errores en los bits (bit error ratio)

DGD Retardo diferencial de grupo (differential group delay)

EX Tasa de extinción (*extinction ratio*)

ffs Queda en estudio (*for further study*)

IrDI Interfaz interdominios (inter-domain interface)

MPI Interfaz del trayecto principal (main path interface)

MPI-R_M Punto de referencia MPI multicanal en la entrada compuesta del elemento de red CWDM (multichannel MPI reference point at the CWDM network element aggregate input)

MPI-S_M Punto de referencia MPI multicanal en la salida compuesta del elemento de red CWDM (multichannel MPI reference point at the CWDM network element aggregate output)

NA No aplicable (not applicable)

NE Elemento de red (network element)

NRZ Sin retorno a cero (non-return to zero)

OA Amplificador óptico (optical amplifier)

OADM Multiplexor óptico de adición-extracción (optical add-drop multiplexer)

OD Demultiplexor óptico (optical demultiplexer)

OM Multiplexor óptico (optical multiplexer)

ONE Elemento de red óptica (optical network element)

OTUk Unidad k de transporte de canal óptico completamente normalizada (completely standardized optical channel transport unit - k)

PMD Dispersión por modo de polarización (polarization mode dispersion)

RP_R Punto de referencia de enlace en la entrada compuesta del elemento de red CWDM (*link reference point at the CWDM network element aggregate input*)

RP_S Punto de referencia de enlace en la salida compuesta del elemento de red CWDM (*link reference point at the CWDM network element aggregate output*)

R_S Punto de referencia monocanal en la salida afluente del elemento de red CWDM (single-channel reference point at the CWDM network element tributary output)

S_S Punto de referencia monocanal en la entrada afluente del elemento de red CWDM (single-channel reference point at the CWDM network element tributary input)

WDM Multiplexación por división en longitud de onda (wavelength division multiplexing)

5 Clasificación de interfaces ópticas

5.1 Aplicaciones

Esta Recomendación proporciona los parámetros de capa física y valores de interfaces multicanal y monocanal CWDM en aplicaciones físicas punto a punto y en anillo. Los sistemas CWDM pueden realizar aplicaciones rentables mediante una combinación de láseres monomodo no refrigerados, tolerancias atenuadas en la selección de la longitud de onda de láser y filtros de paso de banda ancha. Los sistemas CWDM pueden ser utilizados en redes de transporte para diversos clientes, servicios y protocolos.

El método de especificación utilizado en la presente Recomendación se clasifica según dos tipos.

El primero se denomina enfoque de la "caja negra", lo que significa que su objetivo no es restringir o especificar los elementos internos y/o las conexiones entre los elementos en la caja negra. Existen, no obstante, requisitos funcionales para la caja negra, el más importante de los cuales es la inclusión de la regeneración 3R. Este enfoque hace posible la compatibilidad transversal en los puntos multicanal.

El segundo tipo es el enfoque del "enlace negro", lo que significa que se especifican parámetros de interfaz óptica solamente para señales afluentes ópticas (monocanal). Se dan descripciones informativas adicionales para los parámetros del enlace por fibra de la sección multicanal, tales como la atenuación máxima, la dispersión cromática y la dispersión por modo de polarización. Este enfoque hace posible la compatibilidad transversal en el punto monocanal utilizando una configuración de multiplexación en longitud de onda directa. No permite, en cambio, la compatibilidad transversal en los puntos multicanal. En este enfoque, el OM y el OD se tratan como un solo conjunto de dispositivos ópticos en el que se puede incluir los OADM.

En la presente Recomendación sólo se consideran interfaces multicanal no amplificadas; no obstante, en el futuro, se podrán tener en cuenta interfaces amplificadas.

5.2 Puntos de referencia

5.2.1 Aplicaciones unidireccionales

La figura 5-1 muestra un conjunto de puntos de referencia de conexión multicanal (MPI-S_M y MPI-R_M) solamente, para la utilización del enfoque "caja negra" lineal. El elemento de red CWDM incluye aquí un OM y transmisores, o un OD y receptores.

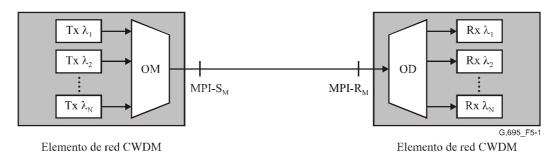


Figura 5-1 – Enfoque "caja negra"

La figura 5-2 muestra un conjunto de puntos de referencia, del enfoque "enlace negro" lineal, para conexión monocanal (S_S y R_S) entre transmisores (Tx, *transmitters*) y receptores (Rx, *receivers*). Los elementos de red CWDM incluyen aquí un OM y un OD, que se utilizan como un par con el elemento oponente, y pueden también incluir uno o más OADM.

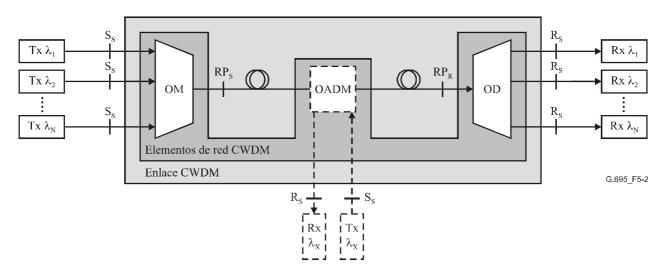


Figura 5-2 – Enfoque "enlace negro" lineal

En la figura 5-3 se muestra un conjunto correspondiente de puntos de referencia para el enfoque "enlace negro" en anillo, para una conexión monocanal (S_S y R_S) entre transmisores (Tx) y receptores (Rx). En este caso los elementos de red CWDM incluyen dos o más OADM conectados en anillo.

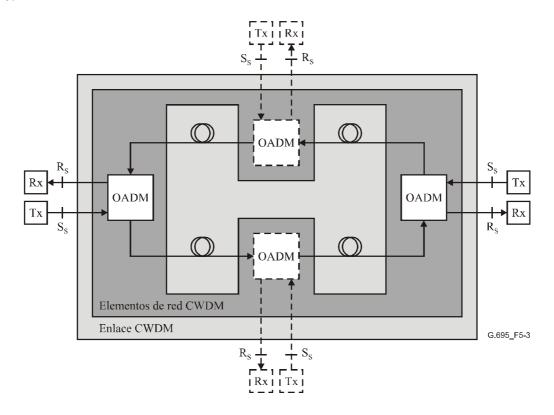


Figura 5-3 – Enfoque "enlace negro" en anillo

Estos modelos de referencia no incluyen ningún amplificador óptico en el sistema CWDM. Sin embargo, en el futuro, se podrán introducir aplicaciones que incluyan amplificadores ópticos.

Los puntos de referencia de las figuras 5-1, 5-2 y 5-3 se definen como sigue:

- S_S es un punto de referencia monocanal en la entrada afluente del elemento de red CWDM;
- R_S es un punto de referencia monocanal en la salida afluente del elemento de red CWDM;
- MPI-S_M es un punto de referencia multicanal en la salida compuesta del elemento de red CWDM;
- MPI-R_M es un punto de referencia multicanal en la entrada compuesta del elemento de red CWDM;
- RP_S es un punto de referencia de enlace en la salida compuesta del elemento de red CWDM;
- RP_R es un punto de referencia de enlace en la entrada compuesta del elemento de red CWDM

Los puntos de referencia monocanal S_S y R_S corresponden aquí a sistemas del enfoque "enlace negro" (lineal o en anillo), donde cada trayecto desde S_S a su correspondiente R_S debe cumplir los valores de parámetro de los códigos de aplicación de los cuadros 8-11 a 8-14. Los puntos de referencia multicanal MPI- S_M y MPI- R_M corresponden a sistemas del enfoque "caja negra". Los puntos de referencia de enlace RP_S y RP_R corresponden solamente a sistemas del enfoque "enlace negro".

Se señala que $MPI-S_M$ y $MPI-R_M$ se definen para proporcionar especificaciones normativas de las interfaces ópticas. Por otro lado, RP_S y RP_R se definen solamente con objeto de proporcionar información del enlace por fibra y no para proporcionar las características de la señal en esos puntos.

5.2.2 Aplicaciones bidireccionales

La figura 5-4 muestra un conjunto de puntos de referencia de conexión multicanal (MPI-S_M y MPI-R_M) solamente, para la utilización del enfoque "caja negra" en aplicaciones bidireccionales monofibra. El elemento de red CWDM incluye aquí un OM/OD, transmisores y receptores.

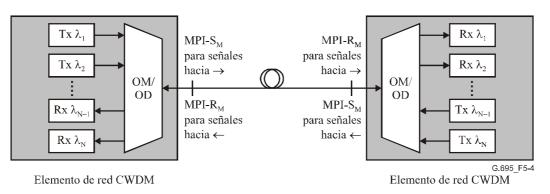


Figura 5-4 – Enfoque "caja negra" para aplicaciones bidireccionales

La figura 5-5 muestra un conjunto de puntos de referencia, del enfoque "enlace negro" lineal bidireccional monofibra, para conexión monocanal (S_S y R_S) entre transmisores (Tx) y receptores (Rx). Los elementos de red CWDM incluyen aquí un OM/OD, que se utiliza como un par con el elemento oponente, y pueden también incluir uno o más OADM.

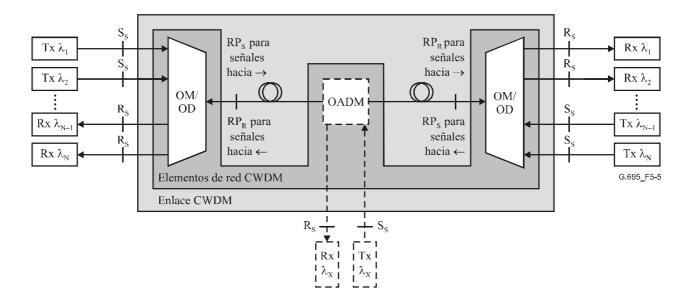


Figura 5-5 – Enfoque "enlace negro" lineal para aplicaciones bidireccionales

En la figura 5-6 se muestra un conjunto correspondiente de puntos de referencia, del enfoque "enlace negro" en anillo bidireccional monofibra, para conexión monocanal (S_S y R_S) entre transmisores (Tx) y receptores (Rx). Los elementos de red CWDM incluyen aquí dos o más OADM conectados en un anillo.

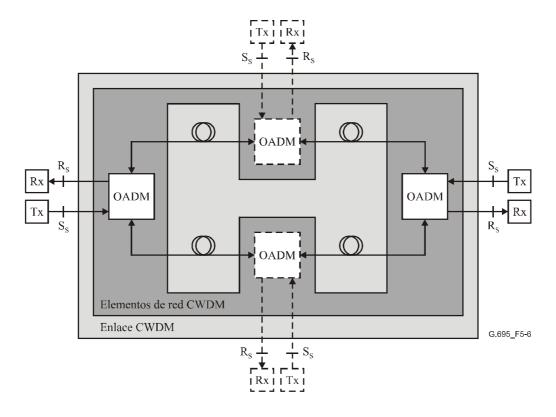


Figura 5-6 – Enfoque "enlace negro" en anillo para aplicaciones bidireccionales

Los puntos de referencia de las figuras 5-4, 5-5 y 5-6 se definen en 5.2.1.

5.3 Nomenclatura

El código de la aplicación identifica la red, la implementación y las características arquitecturales de una aplicación.

La notación del código de la aplicación se construye como sigue:

CnWx-ytz

donde:

- C es el indicador de aplicación CWDM.
- n es el número máximo de canales soportados por el código de la aplicación.
- W es una letra que indica la distancia de la sección, tal como:
 - S para corto alcance;
 - L para largo alcance.
 - x es el número máximo de secciones que se permite dentro del código de la aplicación.

NOTA - En la versión actual de esta Recomendación x = 1 para todas las aplicaciones.

- y indica la clase más alta de señal afluente óptica soportada:
 - 0 significa NRZ 1,25G;
 - 1 significa NRZ 2,5G.
- t es una letra de marca de posición que indica la configuración soportada por el código de la aplicación. En la presente versión de esta Recomendación el único valor empleado es:
 - D que indica que la aplicación no contiene amplificadores ópticos.
- z indica el tipo de fibra, como sigue:
 - 2 indica fibra G.652;
 - 3 indica fibra G.653;
 - 5 indica fibra G.655.

Un sistema bidireccional se indica mediante la adición de la letra **B** delante del código de la aplicación. En el caso de códigos de aplicación CWDM, será como sigue:

Un sistema que utiliza el enfoque "enlace negro" se indica mediante la adición de la letra **S** delante del código de la aplicación. En el caso de códigos de aplicación CWDM, será como sigue:

5.4 Interfaces multicanal en los puntos de referencia MPI-S_M y MPI-R_M

Las interfaces multicanal descritas en 5.4.1 y 5.4.2 tienen por objeto facilitar la compatibilidad transversal. Estas interfaces pueden funcionar en fibra G.652, G.653 o G.655, transportando simultáneamente hasta 16 canales, utilizando señales afluentes ópticas de NRZ 1,25G o NRZ 2,5G, según cual sea el código de la aplicación particular.

En la cláusula 6 figuran otros requisitos relacionados con la compatibilidad transversal.

Los cuadros 5-1 a 5-5 presentan de forma resumida los códigos de aplicación multicanal, estructurados de acuerdo con la nomenclatura de 5.3.

Cuadro 5-1 – Clasificación de interfaces multicanal unidireccionales de 4 canales

Aplicación	Corto alcance (S, short-haul)		Largo a	lcance (L, lor	ng-haul)	
Tipo de fibra	G.652	G.653	G.655	G.652	G.653	G.655
Clase de señal afluente óptica NRZ 1,25G	_	-	_	_	_	-
Distancia objetivo para la clase NRZ 1,25G (km) ^{a)}	_	-	_	_	_	_
Clase de señal afluente óptica: NRZ 2,5G	C4S1-1D2	C4S1-1D3	C4S1-1D5	C4L1-1D2	C4L1-1D3	C4L1-1D5
Distancia objetivo para la clase NRZ 2,5G (km) ^{a)}	37	37	37	69	72	72
a) Estas distancias objetivo son para clasificación y no para especificación.						

Cuadro 5-2 – Clasificación de interfaces multicanal bidireccionales de 4 canales

Aplicación	Corto alcance (S)	Largo alcance (L)	
Tipo de fibra	G.652	G.652	G.653
Clase de señal afluente óptica NRZ 1,25G	_	B-C4L1-0D2	B-C4L1-0D3
Distancia objetivo para clase NRZ 1,25G (km) ^{a)}	_	90	90
Clase de señal afluente óptica NRZ 2,5G	_	B-C4L1-1D2	B-C4L1-1D3
Distancia objetivo para clase NRZ 2,5G (km) ^{a)}	_	80	83
a) Estas distancias objetivo son para clasificación y no para especificación.			

Cuadro 5-3 – Clasificación de interfaces multicanal de 8 canales

Aplicación	Corto alcance (S)	Largo alcance (L)	
Tipo de fibra	G.652	G.652	G.653
Clase de señal afluente óptica NRZ 1,25G	_	B-C8L1-0D2	B-C8L1-0D3
Distancia objetivo para clase NRZ 1,25G (km) ^{a)}	_	64	64
Clase de señal afluente óptica NRZ 2,5G	C8S1-1D2 B-C8S1-1D2	C8L1-1D2 B-C8L1-1D2	B-C8L1-1D3
Distancia objetivo para clase NRZ 2,5G (km) ^{a)}	27	55	58
a) Estas distancias objetivo son para clasificación y no para especificación.			

Cuadro 5-4 - Clasificación de interfaces multicanal de 12 canales

Aplicación	Corto alcance (S)	Largo alcance (L)	
Tipo de fibra	G.652	G.652	G.653
Clase de señal afluente óptica NRZ 1,25G	_	B-C12L1-0D2	_
Distancia objetivo para clase NRZ 1,25G (km) ^{a)}	_	42	_
Clase de señal afluente óptica NRZ 2,5G	_	B-C12L1-1D2	_
Distancia objetivo para clase NRZ 2,5G (km) ^{a)}	_	38	_
a) Estas distancias objetivo son para clasificación y no para especificación.			

Cuadro 5-5 – Clasificación de interfaces multicanal de 16 canales

Aplicación	Corto alcance (S)	Largo alcance (L)	
Tipo de fibra	G.652	G.652	G.653
Clase de señal afluente óptica NRZ 1,25G	_	_	-
Distancia objetivo para clase NRZ 1,25G (km) ^{a)}	_	_	_
Clase de señal afluente óptica NRZ 2,5G	C16S1-1D2 B-C16S1-1D2	C16L1-1D2 B-C16L1-1D2	-
Distancia objetivo para clase NRZ 2,5G (km) ^{a)}	20	42	_
a) Estas distancias objetivo son para clasificación y no para especificación.			

5.4.1 Interfaces multicanal no amplificadas

En esta Recomendación, las interfaces multicanal no amplificadas se especifican en los cuadros 8-1 a 8-10.

5.4.2 Interfaces multicanal amplificadas

En el futuro se podrá incluir en esta Recomendación las interfaces multicanal amplificadas.

5.5 Interfaces monocanal en los puntos de referencia S_S y R_S

Las interfaces monocanal descritas en 5.5.1 tienen por objeto facilitar la compatibilidad transversal en las interfaces monocanal en cualquier extremo del enlace CWDM, como se muestra en las figuras 5-2, 5-3, 5-5 y 5-6.

En la cláusula 6 figuran otros requisitos relacionados con la compatibilidad transversal.

Los cuadros 5-6 y 5-7 resumen los códigos de aplicación monocanal, estructurados de acuerdo con la nomenclatura de 5.3. En el apéndice II se indican las distancias previstas para diversos valores de pérdida de inserción de elementos de red CWDM y en el apéndice III se ofrece información relacionada con los enlaces negros que contienen OADM.

Cuadro 5-6 – Clasificación de sistemas multicanal de 4 canales con interfaces monocanal

Aplicación	Corto alcance (S)	Largo alcance (L)
Tipo de fibra	G.652, G.653, G.655	G.652, G.653, G.655
Clase de señal afluente óptica NRZ 2,5G	S-C4S1-1D2, S-C4S1-1D3, S-C4S1-1D5	S-C4L1-1D2, S-C4L1-1D3, S-C4L1-1D5

Cuadro 5-7 – Clasificación de sistemas multicanal de 8 canales con interfaces monocanal

Aplicación	Corto alcance (S)	Largo alcance (L)
Tipo de fibra	G.652, G.653, G.655	G.652, G.653, G.655
Clase de señal afluente óptica NRZ 2,5G	S-C8S1-1D2, S-C8S1-1D3, S-C8S1-1D5	S-C8L1-1D2, S-C8L1-1D3, S-C8L1-1D5

5.5.1 Sistemas multicanal no amplificados con interfaces monocanal

En esta Recomendación, los sistemas multicanal no amplificados con interfaces monocanal se especifican en los cuadros 8-11 a 8-14.

5.5.2 Sistemas multicanal amplificados con interfaces monocanal

En el futuro se podrá incluir en esta Recomendación sistemas multicanal amplificados con interfaces monocanal.

6 Compatibilidad transversal

Esta Recomendación especifica los parámetros que permiten la compatibilidad transversal (es decir, de múltiples fabricantes) en los puntos de referencia multicanal MPI-S_M y MPI-R_M de los elementos de red (NE, *network elements*) CWDM del enfoque "caja negra", y en los puntos de referencia monocanal S_S y R_S de los NE CWDM del enfoque "enlace negro".

Los puntos de referencia multicanal MPI-S_M y MPI-R_M están previstos para interconectar dos interfaces combinadas de los NE CWDM, que pueden proceder de dos fabricantes diferentes.

Los puntos de referencia monocanal S_S y R_S están previstos para hacer compatibles transversalmente múltiples interfaces afluentes de los NE CWDM. En este caso, múltiples transmisores $(Tx \, \lambda_i)$ y receptores $(Rx \, \lambda_i)$ de señales afluentes pueden proceder de diferentes fabricantes. Se señala que los NE CWDM (OM y OD) del enfoque "enlace negro" son de un solo fabricante, y se consideran como un conjunto único de dispositivos ópticos.

La compatibilidad transversal (de múltiples fabricantes) se establece en:

- Todos los puntos de referencia multicanal MPI-S_M y MPI-R_M de los NE CWDM del enfoque "caja negra" que tengan exactamente el mismo código de aplicación.
 - La interconexión de interfaces combinadas con códigos de aplicación diferentes es una cuestión de ingeniería conjunta. Hay que tener un cuidado especial con respecto a los parámetros críticos con los que debe haber concordancia, por ejemplo, la potencia de salida de MPI- S_M , la potencia de entrada de MPI- R_M , etc.
- Todos los puntos de referencia monocanal S_S y R_S de los NE CWDM del enfoque "enlace negro" que tengan exactamente el mismo código de aplicación.
 - La coexistencia de interfaces afluentes con códigos de aplicación diferentes es una cuestión de ingeniería conjunta. Hay que tener un cuidado especial con respecto a los parámetros críticos que deben ser coherentes, por ejemplo, la potencia de salida de $S_{\rm S}$ y la potencia de entrada de $R_{\rm S}$, la velocidad binaria/codificación de línea de $R_{\rm S}$, la velocidad binaria/codificación de línea de $R_{\rm S}$, etc.

7 Definiciones de los parámetros

Los parámetros de los cuadros 7-1 y 7-2 se definen en los puntos de interfaz, y las definiciones figuran en las cláusulas que siguen.

Cuadro 7-1 – Parámetros de capa física y valores de aplicaciones CWDM que utilizan el enfoque "caja negra"

Parámetro	Unidades	Definido en
Información general		
Número máximo de canales	_	7.1.1
Velocidad binaria/codificación de línea de señales afluentes ópticas	_	7.1.2
Tasa de errores en los bits máxima	_	7.1.3
Tipo de fibra	_	7.1.4
Interfaz en el punto MPI-S _M		
Potencia de salida de canal media máxima	dBm	7.2.1
Potencia de salida de canal media mínima	dBm	7.2.1
Potencia de salida total media máxima	dBm	7.2.2
Longitud de onda central	nm	7.2.3
Separación de canal	nm	7.2.4
Desviación de longitud de onda central máxima	nm	7.2.5
Tasa de extinción de canal mínima	dB	7.2.6
Plantilla de ojo	_	7.2.7
Trayecto óptico del punto MPI- S_M al punto MPI- R_M		
Atenuación máxima	dB	7.3.1
Atenuación mínima	dB	7.3.2
Gama de dispersión cromática	ps/nm	7.3.3
Pérdida de retorno óptica mínima en MPI-S _M	dB	7.3.4
Reflectancia discreta máxima entre MPI-S _M y MPI-R _M	dB	7.3.5
Retardo diferencial de grupo máximo	ps	7.3.6
Interfaz en el punto MPI-R _M		
Potencia de entrada de canal media máxima	dBm	7.4.1
Potencia de entrada de canal media mínima	dBm	7.4.2
Potencia de entrada total media máxima	dBm	7.4.3
Penalización en el trayecto óptico máxima	dB	7.4.4
Sensibilidad equivalente mínima	dBm	7.4.7
Reflectancia máxima de elemento de red óptico	dB	7.4.5

Cuadro 7-2 – Parámetros de capa física y valores de aplicaciones CWDM que utilizan el enfoque "enlace negro"

Parámetro	Unidades	Definido en
Información general		
Número máximo de canales	_	7.1.1
Velocidad binaria/codificación de línea de señales afluentes ópticas	_	7.1.2
Tasa de errores en los bits máxima	_	7.1.3
Tipo de fibra	_	7.1.4
Interfaz en el punto \mathbf{S}_{S}		
Potencia de salida de canal media máxima	dBm	7.2.1
Potencia de salida de canal media mínima	dBm	7.2.1
Longitud de onda central	nm	7.2.3
Separación de canal	nm	7.2.4
Desviación de longitud de onda central máxima	nm	7.2.5
Tasa de extinción de canal mínima	dB	7.2.6
Plantilla de ojo	_	7.2.7
Trayecto óptico del punto S_S al punto R_S		
Pérdida de inserción de canal máxima	dB	7.5.1
Pérdida de inserción de canal mínima	dB	7.5.1
Gama de dispersión cromática	ps/nm	7.3.3
Pérdida de retorno óptica mínima en S _S	dB	7.3.4
Reflectancia discreta máxima entre S _S y R _S	dB	7.3.5
Retardo diferencial de grupo máximo	ps	7.3.6
Diafonía máxima entre canales en R _S	dB	7.5.2
Diafonía interferométrica máxima en R _s	dB	7.5.3
Interfaz en el punto R_S		
Potencia de entrada de canal media máxima	dBm	7.4.1
Sensibilidad de receptor	dBm	7.4.6
Penalización en el trayecto óptico máxima	dB	7.4.4
Reflectancia máxima de receptor	dB	7.4.5

7.1 Información general

7.1.1 Número máximo de canales

Es el número máximo de canales ópticos que pueden estar presentes simultáneamente en una interfaz.

En el caso de aplicaciones bidireccionales, el número máximo de canales se expresa en forma de n/2 + n/2, donde n es el número máximo de canales soportados por el código de la aplicación y n/2 es el número de canales en cada sentido.

Cabe señalar que si se desea poder aumentar la capacidad de un enlace con un cierto máximo número de canales hasta una configuración con un máximo número de canales más elevado, el enlace inicial debe satisfacer el conjunto de valores de los parámetros especificados para el código de aplicación de cómputo de canal más elevado.

Como ejemplo, un sistema diseñado de acuerdo a un código de aplicación de 4 canales no puede aumentarse a un sistema de 8 canales. Esa opción debe realizarse subequipando un sistema de 8 canales y utilizando el conjunto de valores de los parámetros para un código de aplicación de 8 canales.

7.1.2 Velocidad binaria/codificación de línea de señales afluentes ópticas

La clase de señal afluente óptica NRZ 1,25G se aplica a señales digitales continuas con codificación de línea sin retorno a cero, de 622 Mbit/s a 1,25 Gbit/s, en valor nominal ambas velocidades. La clase de señal afluente óptica NRZ 2,5G se aplica a señales digitales continuas con codificación de línea sin retorno a cero, de 622 Mbit/s a 2,67 Gbit/s, en valor nominal asimismo ambas velocidades.

7.1.3 Tasa de errores en los bits máxima

Los parámetros se especifican en relación con un objetivo de diseño de sección óptica de la tasa de errores en los bits (BER, *bit error ratio*) no peor que el valor especificado por el código de la aplicación. Este valor es aplicable a cada canal óptico en el caso extremo de las condiciones de atenuación y dispersión del trayecto óptico en cada aplicación. El efecto imputable a la presencia de la corrección de errores sin canal de retorno (por ejemplo, en una OTUk) en la definición de este parámetro no se ha considerado en la presente versión de esta Recomendación.

7.1.4 Tipo de fibra

Se eligen tipos de fibra monomodo de entre los definidos en [UIT-T G.652], [UIT-T G.653] y [UIT-T G.655].

7.2 Interfaz en el punto MPI- S_M o en el punto S_S

7.2.1 Potencia de salida de canal media máxima y mínima

La potencia inyectada media de cada canal óptico en el punto de referencia MPI- S_M o S_S es la potencia promedio de una secuencia de datos seudoaleatoria acoplada en la fibra o el enlace CWDM. Se establece como una gama de valores (con valor máximo y mínimo) para permitir cierto grado de optimización de costes y abarcar los márgenes admisibles de funcionamiento en condiciones normalizadas de trabajo, las degradaciones del conector, las tolerancias de la medición y los efectos del envejecimiento.

7.2.2 Potencia de salida total media máxima

Es el valor máximo de la potencia óptica invectada media en el punto MPI-S_M.

NOTA – Al determinar los valores dados en la presente Recomendación se han tenido en cuenta aspectos relativos a la seguridad óptica, ya que conviene evitar la necesidad de recurrir a procedimientos de reducción automática de la potencia (APR, *automatic power reduction*), interrupción automática de la potencia (APSD, *automatic power shutdown*) o interrupción automática del láser (ALS, *automatic laser shutdown*), por motivos de costes.

7.2.3 Longitud de onda central

Es la longitud de onda nominal de un solo canal en la que se modula la información codificada digital del canal óptico de que se trata utilizando el código de línea NRZ (que se define en [UIT-T G.957] y [UIT-T G.691]).

Las longitudes de onda centrales de los diferentes canales se basan en el plan de longitudes de onda de [UIT-T G.694.2]. Las longitudes de onda centrales permitidas para el elemento de red CWDM multicanal se especifican en los cuadros 8-1 a 8-11.

Se señala que el valor de "c" (velocidad de la luz en el vacío) que deberá utilizarse para la conversión entre frecuencia y longitud de onda es $2,99792458 \times 10^8$ m/s.

7.2.4 Separación de canal

Es la diferencia nominal en longitud de onda entre dos canales adyacentes. En 7.2.5 se consideran todas las tolerancias posibles de las longitudes de onda reales.

7.2.5 Desviación de longitud de onda central máxima

Es la diferencia entre la longitud de onda central nominal y la longitud de onda central real. La desviación de la longitud de onda central viene determinada principalmente por dos factores. En primer lugar, se le permite al fabricante del láser que la longitud de onda varíe en torno a su valor nominal, con lo que se obtiene un mayor rendimiento y/o tolerancias de fabricación menos restrictivas. En segundo lugar, la utilización de láseres no refrigerados hace que la longitud de onda cambie con la temperatura dentro de la gama especificada de temperaturas del láser.

En la desviación de la longitud de onda central se incluyen además todos los procesos que afectan al valor instantáneo de la longitud de onda central fuente a lo largo de un intervalo de medición apropiado a la velocidad binaria del canal. Entre esos procesos figuran la fluctuación de la fuente, la anchura de banda de información, el ensanchamiento debido a la automodulación de fase y los efectos imputables al envejecimiento.

Los cuadros 8-1 a 8-11 contienen la desviación de la longitud de onda central máxima en sistemas punto a punto CWDM.

7.2.6 Tasa de extinción de canal mínima

La Rec. UIT-T G.693 define la tasa de extinción (EX, *extinction ratio*) para un parámetro de un solo canal, como sigue:

$$EX = 10log_{10}(A/B)$$

En la definición de EX anterior, A es el nivel de potencia óptica promedio en el centro de un "1" lógico y B es el nivel de potencia óptica promedio en el centro de un "0" lógico. El convenio adoptado para niveles lógicos ópticos es:

- emisión de luz para un "1" lógico;
- no emisión para un "0" lógico.

En el caso de interfaces multicanal se pueden utilizar dos procedimientos alternativos de verificación de este parámetro, como en [UIT-T G.959.1]:

- El procedimiento A, empleado cuando se puede acceder a puntos de referencia monocanal en el extremo de transmisión del enlace a efectos de verificación. Para este procedimiento se aplica la metodología descrita en [UIT-T G.957] y [UIT-T G.691]. La configuración necesaria se muestra en el anexo A de [UIT-T G.959.1].
- El procedimiento B, que emplea un filtro de banda de paso óptico de referencia para aislar la señal individual transmitida. Las características del filtro de banda de paso óptico de referencia figuran en el anexo B de [UIT-T G.959.1].

7.2.7 Plantilla de ojo

La definición y los límites de este parámetro figuran en [UIT-T G.691]. La definición puede aplicarse directamente a interfaces monocanal del enfoque "enlace negro". En el caso de interfaces multicanal del enfoque "caja negra", se pueden utilizar dos procedimientos alternativos, como en [UIT-T G.959.1]:

 El procedimiento A, empleado cuando se puede acceder a puntos de referencia monocanal en el extremo de transmisión del enlace a efectos de verificación. Para este procedimiento se aplica la metodología descrita en [UIT-T G.957] y [UIT-T G.691]. La configuración necesaria se muestra en el anexo A de [UIT-T G.959.1]. El procedimiento B, que emplea un filtro de banda de paso óptico de referencia para aislar las señales individuales transmitidas, seguido por un receptor de referencia. Las características del filtro de banda de paso óptico de referencia y el receptor de referencia figuran en el anexo B de [UIT-T G.959.1].

7.3 Parámetros de trayecto óptico comunes (sección única) del punto MPI- S_M al MPI- R_M o del punto S_S al R_S

7.3.1 Atenuación máxima

Es la atenuación de trayecto máxima, para todas las longitudes de onda utilizadas por la aplicación, cuando el sistema en cuestión funciona en condiciones de fin de la vida útil con una BER de 10^{-12} (o según venga dado por el código de la aplicación), con señal y dispersión del caso más desfavorable en el lado transmisión. La definición de los efectos incluidos en la atenuación máxima se indica en 6.3.1 de [UIT-T G.691].

Las distancias objetivo para cada aplicación se basan en el conjunto de coeficientes de atenuación máxima asumidos que figuran en el apéndice I. Los valores indicados representan pérdida en fibra instalada (incluyendo un cierto margen para los empalmes y el cable). Se señala que este método da un valor teórico. Las pérdidas debidas a conectores y empalmes así como las causadas por flexiones o comprobaciones ópticas, que pueden estar presentes en implementaciones prácticas, pueden hacer que se fijen distancias diferentes.

7.3.2 Atenuación mínima

Es la atenuación de trayecto mínima que permite al sistema en cuestión, funcionando en condiciones de transmisión del caso más desfavorable, lograr una BER no peor que 10^{-12} (o según venga dado por el código de la aplicación).

7.3.3 Gama de dispersión cromática

Este parámetro define la gama de valores de la dispersión cromática del trayecto óptico que el sistema será capaz de tolerar. Los límites se consideran valores de dispersión del caso más desfavorable. El método del caso más desfavorable aplicado a este parámetro tiene por objeto dar un cierto grado de margen a lo que es un parámetro sensible y permite la ampliación de las distancias de transmisión de las plantas con fibra de baja pérdida.

El proceso utilizado para obtener los límites de la gama de dispersión cromática, contenidos en los cuadros 8-1 a 8-14 fue el siguiente:

- se estimó como sigue la máxima longitud del enlace soportada por cada código de aplicación:
 - para aplicaciones de caja negra, la máxima atenuación se dividió por el valor más elevado del mínimo coeficiente de atenuación del cuadro I.1 a lo largo de la gama de canales de longitud de onda especificada para ese código de aplicación;
 - para aplicaciones de enlace negro, la máxima atenuación menos un margen para las pérdidas de un par OM/OD, se dividió por el valor más elevado del mínimo coeficiente de atenuación del cuadro I.1 a lo largo de la gama de canales de longitud de onda especificada para ese código de aplicación;
- se estimó la máxima dispersión de esta longitud de fibra para el canal de dispersión más elevado (valor absoluto);
- cuando los valores de dispersión obtenidos mediante este método se consideraron superiores a los adecuados para los actuales transmisores ópticos asequibles, dichos valores de dispersión se redujeron de conformidad con la actual capacidad tecnológica (por consiguiente esas aplicaciones pueden venir limitadas por la dispersión, por ejemplo S-C4L1-1D2, mientras otras vienen limitadas por las pérdidas, por ejemplo C4S1-1D2).

En esta Recomendación se especifica la gama de dispersión cromática por canal correspondiente a una sola máxima distancia limitada por la dispersión a través del bloque de canales especificado para cada código de aplicación multiplicado por el coeficiente de dispersión que aparece en el cuadro I.2. Como resultado de este método, el límite de dispersión en el canal que posea el coeficiente de dispersión más elevado es un valor redondeado mientras que el límite de dispersión de los otros canales se obtiene a partir de este valor redondeado y de los coeficientes de dispersión cromática que figuran en el cuadro I.2.

La penalización permitida en el trayecto óptico tiene en cuenta todos los efectos determinísticos debidos a la dispersión cromática así como la penalización debida al retardo diferencial de grupo máximo

7.3.4 Pérdida de retorno óptica mínima en MPI- S_M o S_S

Las reflexiones se deben a discontinuidades del índice de refracción a lo largo del trayecto óptico. Si no se controlan, pueden degradar la calidad de funcionamiento del sistema debido a su efecto perturbador en el funcionamiento de la fuente óptica, o debido a reflexiones múltiples que provocan ruido interferométrico en el receptor. Las reflexiones procedentes del trayecto óptico se controlan especificando:

- la pérdida de retorno óptica mínima de la planta de cables en los puntos de referencia de origen (es decir, MPI-S_M, S_S), incluyendo cualesquiera conectores; y
- la reflectancia discreta máxima entre los puntos de referencia de origen (es decir, MPI-S_M,
 S_S) y los puntos de referencia de recepción (es decir, MPI-R_M, R_S).

La reflectancia indica la reflexión desde cualquier punto de reflexión discreta único, mientras que la pérdida de retorno óptica es la relación entre la potencia óptica incidente y la potencia óptica devuelta total de toda la fibra, incluyendo las reflexiones discretas y la retrodispersión distribuida, tal como la dispersión de Rayleigh.

Los métodos de medición de las reflexiones se describen en el apéndice I de [UIT-T G.957]. A efectos de medición de la reflectancia y de la pérdida de retorno, se supone que los puntos $S_{\rm S}$ y $R_{\rm S}$ coinciden con la cara terminal de cada clavija de conector. Se admite que esto no incluye el comportamiento real de la reflexión de los respectivos conectores en el sistema operacional. Se supone que estas reflexiones tienen el valor nominal de la reflexión del tipo específico de conectores utilizados.

7.3.5 Reflectancia discreta máxima entre MPI-S_M y MPI-R_M o entre S_S y R_S

La reflectancia óptica se define como la relación entre la potencia óptica reflejada presente en un punto y la potencia óptica incidente en ese punto. En [UIT-T G.957] se analiza en extenso el control de las reflexiones. El número máximo de conectores o de otros puntos de reflexión discreta que puedan estar incluidos en el trayecto óptico (por ejemplo, tramas de distribución o componentes WDM) debe ser tal que permita alcanzar la pérdida de retorno óptica global especificada. Si no es posible conseguir esto utilizando conectores que cumplan las reflexiones discretas máximas indicadas en los cuadros de la cláusula 8, deberán emplearse conectores que muestren un comportamiento mejor en cuanto a reflexión. De manera alternativa, deberá reducirse el número de conectores. También puede ser necesario limitar el número de conectores o utilizar conectores cuya característica de reflectancia sea mejor para evitar que se produzcan degradaciones inaceptables debidas a las múltiples reflexiones.

En los cuadros de la cláusula 8, el valor de la reflectancia discreta máxima entre puntos de referencia de origen y puntos de referencia de recepción tiene por objeto reducir al mínimo los efectos de las múltiples reflexiones (por ejemplo, el ruido interferométrico). El valor de la reflectancia máxima de un receptor se elige de modo que se tenga la seguridad de que resultan aceptables las penalizaciones imputadas a las reflexiones múltiples para todas las configuraciones probables de sistemas que impliquen múltiples conectores, etc. Los sistemas que emplean un

número menor de conectores o conectores de calidad superior provocan menos reflexiones múltiples y, en consecuencia, pueden tolerar receptores que muestren un grado de reflectancia mayor.

7.3.6 Retardo diferencial de grupo máximo

El retardo diferencial de grupo (DGD, *differential group delay*) es la diferencia de tiempo entre las fracciones de un impulso que son transmitidas en los dos estados principales de polarización de una señal óptica. En el caso de distancias superiores a varios kilómetros, y suponiendo acoplamiento de modos de polarización aleatorio (fuerte), el DGD de una fibra puede ser modelado estadísticamente como si tuviera una distribución maxwelliana.

En la presente Recomendación, el retardo diferencial de grupo máximo se define como el valor de DGD que el sistema debe tolerar con una degradación de sensibilidad máxima de 1 dB.

Debido a la naturaleza estadística de la dispersión por modo de polarización (PMD, *polarization mode dispersion*), la relación entre DGD máximo y DGD medio sólo se puede definir probabilísticamente. La probabilidad de que el DGD instantáneo supere cualquier valor dado se puede obtener a partir de sus estadísticas maxwellianas. Por consiguiente, si conocemos el valor máximo del DGD que el sistema puede tolerar, podemos obtener el valor medio del DGD equivalente dividiendo aquél por la relación entre el valor máximo y el valor medio correspondiente a una probabilidad aceptable. En el cuadro 7-3 se dan algunos ejemplos de relaciones.

Relación entre valor máximo y valor medio	Probabilidad de rebasar el valor máximo
3,0	4.2×10^{-5}
3,5	7.7×10^{-7}
4,0	7.4×10^{-9}

Cuadro 7-3 – Valores medios y probabilidades de DGD

7.4 Interfaz en el punto MPI- R_M o en el punto R_S

7.4.1 Potencia de entrada de canal media máxima

Es el valor aceptable máximo de la potencia de canal recibida promedio en el punto MPI- R_M o en el punto R_S para alcanzar la BER máxima especificada del código de la aplicación.

7.4.2 Potencia de entrada de canal media mínima

Es el valor aceptable mínimo de la potencia de canal recibida promedio en el punto $MPI-R_M$ o en el punto R_S . La potencia de entrada de canal media mínima es la potencia de salida de canal media mínima menos la atenuación máxima de la aplicación.

NOTA – La potencia de entrada de canal media mínima en MPI- R_M debe ser mayor que la sensibilidad equivalente mínima por el valor máximo de penalización del trayecto óptico.

7.4.3 Potencia de entrada total media máxima

Es la potencia de entrada total aceptable máxima en el punto MPI-R_M.

7.4.4 Penalización en el trayecto óptico máxima

La penalización en el trayecto es la reducción aparente de la sensibilidad del receptor (o sensibilidad equivalente en el caso del enfoque "caja negra") debida a la distorsión de la forma de onda de la señal durante su transmisión por el trayecto. Se manifiesta como un desplazamiento de las curvas BER del sistema hacia niveles de potencia de entrada más altos. Esto corresponde a una penalización en el trayecto de signo positivo. Penalizaciones en el trayecto de signo negativo

pueden existir en determinadas circunstancias, pero deberían ser pequeñas. (Una penalización del trayecto de signo negativo indica que un ojo del transmisor no perfecto ha sido mejorado parcialmente por distorsiones dependientes del trayecto.) Teóricamente, las curvas BER sólo deben ser trasladadas, pero no es raro que su forma varíe, lo que puede indicar la aparición de pedestales de BER. Puesto que la penalización en el trayecto es un cambio en la sensibilidad del receptor, se mide en un nivel BER de 10^{-12} .

En el enfoque de "caja negra" (en el que se especifica la potencia de entrada de canal mínima) la máxima penalización en el trayecto óptico es igual a la diferencia entre la potencia de entrada de canal media mínima en MPI- $R_{\rm M}$ y la sensibilidad equivalente mínima.

Para las aplicaciones definidas en esta Recomendación, las penalizaciones en el trayecto están limitadas a un máximo de 1,5 dB en el caso de sistemas de corto alcance y 2,5 dB si se trata de sistemas de largo alcance. Estos límites son superiores a los de otras Recomendaciones debido a la penalización adicional causada por la diafonía óptica.

En el futuro, se podrán introducir sistemas que empleen técnicas de acomodación de la dispersión basadas en la distorsión previa de la señal en el transmisor. En este caso, la penalización en el trayecto en el sentido anterior sólo puede ser definida entre puntos con señales no distorsionadas. Esos puntos, sin embargo, no coinciden con las interfaces del trayecto principal, y por ello pueden incluso no ser accesibles. La definición de penalización en el trayecto en este caso queda en estudio.

El valor promedio de las penalizaciones por dispersión aleatoria a causa de la PMD se incluye en la penalización permitida en el trayecto. A este respecto, es preciso que la combinación transmisor/receptor tolere un DGD real de un periodo de 0,3 bits con una degradación de sensibilidad máxima de 1 dB (con el 50% de la potencia óptica en cada estado principal de la polarización). En un receptor bien diseñado, esto corresponde a una penalización de 0,1-0,2 dB para un DGD de un periodo de 0,1 bit. El DGD real que podrá producirse durante el funcionamiento es una propiedad de la fibra/cable que varía aleatoriamente, y no puede ser especificado en la presente Recomendación. Este tema se analiza con más detalle en el apéndice I de [UIT-T G.691].

Se señala que una reducción de la relación señal/ruido debida a la amplificación óptica no se considera que sea una penalización en el trayecto.

En las aplicaciones que utilizan el enfoque "enlace negro", la penalización en el trayecto incluye la penalización por diafonía.

En el caso de las interfaces multicanal, se pueden utilizar dos procedimientos alternativos para la verificación de este parámetro:

- El procedimiento A, empleado cuando se puede acceder a puntos de referencia monocanal en el extremo de recepción del enlace a efectos de verificación. Para este procedimiento se aplica la metodología descrita en [UIT-T G.957] y [UIT-T G.691]. La configuración necesaria se muestra en el anexo A de [UIT-T G.959.1].
- El procedimiento B, que emplea un filtro de banda de paso óptico de referencia para aislar las señales individuales transmitidas, seguido por un receptor de referencia. Las características del filtro de banda de paso óptico de referencia y el receptor de referencia figuran en el anexo B de [G.959.1].

NOTA – La penalización en el trayecto óptico observada en el receptor de referencia puede no ser exactamente la misma que la que se percibe realmente en el equipo de recepción; esto es algo que depende de la implementación del diseño.

7.4.5 Reflectancia máxima de elemento de red CWDM o receptor

Las reflexiones procedentes del equipo que inciden en la planta de cables, o del receptor en el enlace CWDM, están especificadas por la reflectancia permitida máxima del equipo o la del receptor medida en el punto de referencia MPI- $R_{\rm M}$ o en el punto $R_{\rm S}$, respectivamente. La reflectancia óptica se define en [UIT-T G.671].

7.4.6 Sensibilidad de receptor

La sensibilidad del receptor se define como el valor mínimo de la potencia recibida promedio en el punto R_S que permite alcanzar una BER de 10^{-12} . Se logra utilizando un transmisor con valores del caso más desfavorable de la plantilla de ojo, la tasa de extinción, la pérdida de retorno óptica en el punto S_S , las degradaciones del conector del receptor y las tolerancias de medición. La sensibilidad del receptor no ha de cumplirse en presencia de dispersión, de reflexiones procedentes del trayecto óptico o de diafonía óptica; estos efectos se especifican por separado en la atribución de la penalización máxima del trayecto óptico.

NOTA – La sensibilidad del receptor no ha de cumplirse en presencia de una fluctuación del transmisor superior al límite adecuado de generación de fluctuación (por ejemplo, la Rec. UIT-T G.8251 para señales afluentes ópticas de la OTN).

Los efectos debidos al envejecimiento no se especifican por separado porque, normalmente, es algo que incumbe solamente a los operadores de red y a los fabricantes de equipos.

7.4.7 Sensibilidad equivalente mínima

Es la sensibilidad mínima que se requeriría de un receptor situado en un punto MPI-R_M para alcanzar la BER máxima especificada del código de la aplicación si todos los canales, excepto uno, tuvieran que ser eliminados (con un filtro ideal sin pérdidas) en el punto MPI-R_M. Esto tendría que lograrse con un transmisor con valores del caso más desfavorable de plantilla de ojo, tasa de extinción, pérdida de retorno óptica en el punto MPI-S_M, degradaciones del conector, diafonía en el lado transmisor, ruido del amplificador óptico y tolerancias de la medición. Esta sensibilidad no tendría que ser en presencia de dispersión, no linealidad, reflexiones procedentes del trayecto óptico o diafonía; estos efectos se especifican por separado en la atribución de la penalización máxima en el trayecto óptico.

NOTA 1 – Se señala, no obstante, que la potencia de entrada de canal media mínima en MPI- R_M debe ser superior a la sensibilidad equivalente mínima en una cantidad igual al valor de la máxima penalización en el trayecto óptico.

NOTA 2 – La sensibilidad del receptor no ha de cumplirse en presencia de una fluctuación del transmisor superior al límite adecuado de generación de fluctuación (por ejemplo, la Rec. UIT-T G.8251 para señales afluentes ópticas de la OTN).

Los efectos debidos al envejecimiento no se especifican por separado. Se especifican valores del caso más desfavorable y de fin de vida útil.

7.5 Parámetros adicionales para el trayecto óptico de S_S a R_S

7.5.1 Pérdida de inserción de canal mínima y máxima

En [UIT-T G.671] se define la pérdida de inserción de canal.

7.5.2 Diafonía máxima entre canales

Este parámetro impone un requisito al aislamiento de un enlace que se atenga al enfoque "enlace negro" en el sentido de que, en condiciones de funcionamiento del caso más desfavorable, la diafonía entre canales en cualquier punto de referencia $R_{\rm S}$ ha de ser inferior al valor de la máxima diafonía entre canales.

La diafonía entre canales se define como el cociente entre la potencia total de todos los canales interferentes y la del canal deseado, cuando los canales interferentes y deseado se encuentran en longitudes de onda diferentes.

De manera específica, el aislamiento del enlace deberá ser superior al valor requerido para asegurar que, cuando cualquier canal esté funcionando a la potencia de salida media mínima en el punto $S_{\rm S}$ y todos los demás estén a la potencia de salida media máxima, la diafonía entre canales en el punto $R_{\rm S}$ correspondiente sea menor que el valor máximo de diafonía entre canales.

7.5.3 Diafonía interferométrica máxima

Este parámetro impone un requisito al aislamiento de un enlace conforme al enfoque "enlace negro" en el sentido de que, en condiciones de funcionamiento del caso más desfavorable, la diafonía interferométrica en cualquier punto de referencia $R_{\rm S}$ ha de ser inferior al valor de la diafonía interferométrica máxima.

La diafonía interferométrica se define como el coeficiente entre la potencia no deseada y la potencia deseada en un solo canal, cuando la potencia no deseada es la potencia (excluyendo la ASE) dentro del canal óptico que quedaría si se eliminase la señal deseada del enlace dejando intactas todas las demás condiciones del enlace.

Concretamente, el aislamiento del enlace deberá ser superior al valor requerido para asegurar que, cuando cualquier canal esté funcionando a la potencia de salida media mínima en el punto S_S y todos los demás estén a la potencia de salida media máxima, la diafonía interferométrica en el punto R_S correspondiente sea menor que el valor de diafonía interferométrica máxima.

8 Valores de los parámetros

En los cuadros 8-1 a 8-10 se dan los parámetros de capa física y valores para interfaces multicanal de sistemas "caja negra".

En los cuadros 8-11 a 8-14 se dan los parámetros de capa física y valores para interfaces monocanal de sistemas "enlace negro".

Cuadro 8-1 – Parámetros de capa física y valores para interfaces multicanal para aplicaciones de caja negra de corto alcance de 4 canales

Parámetro Unidades C4S1-1D2 C4S1-1D3 C4S1-1D5					
Unidades	C4S1-1D2	C4S1-1D3	C4S1-1D5		
-	4				
_		NRZ 2,5G			
-		10^{-12}			
	G.652	G.653	G.655		
dBm		+4,5			
dBm		-3			
dBm		+10,5			
nm	151	1 + 20 m m = 0) a 3		
nm		20			
nm		±6,5			
dB	8,2				
_	ST	M-16 según G.9	957		
dB		10,5			
dB		4			
ps/nm	0 a +719	-250 a +39	0 a +323		
ps/nm	0 a +775	-169 a +83	0 a +371		
ps/nm	0 a +833	-124 a +128	0 a +420		
ps/nm	0 a +890	–79 a +177	0 a +470		
dB		24	•		
dB		-27			
ps		120			
dBm		+0,5			
dBm	-13,5				
dBm	+6,5				
dB	1,5				
dBm		-15			
dB		-27	_		
	dBm dBm nm nm nm dB - dB dB by/nm ps/nm ps/nm ps/nm dB	- G.652 dBm dBm dBm dBm nm 151 nm nm dB - ST dB dB dB ps/nm 0 a +719 ps/nm 0 a +775 ps/nm 0 a +833 ps/nm 0 a +890 dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB dB d	- 4 - NRZ 2,5G - 10 ⁻¹² - G.652 G.653 dBm +4,5 dBm -3 dBm +10,5 nm 1511 + 20 m m = 0 nm 20 nm ±6,5 dB 8,2 STM-16 según G.9 dB 4 ps/nm 0 a +719 -250 a +39 ps/nm 0 a +833 -124 a +128 ps/nm 0 a +833 -124 a +128 ps/nm 0 a +890 -79 a +177 dB 24 dB 24 dB -27 ps 120 dBm +0,5 dBm dBm +6,5 dBm dBm +6,5 dBm dBm -13,5 dBm dBm -15		

NOTA – Un sistema con desviación de longitud de onda central máxima de ±7 nm que cumpla todos los demás valores de parámetros G.695 del código de aplicación pertinente es compatible transversalmente cualquiera que sea la aplicación abarcada por ese código, con la salvedad de que no proporciona compatibilidad transversal con un sistema de ±6,5 nm sin ingeniería conjunta.

Cuadro 8-2 – Parámetros de capa física y valores de interfaces multicanal para aplicaciones de caja negra de largo alcance de 4 canales

Parámetro	Unidades	C4L1-1D2	C4L1-1D3	C4L1-1D5
Información general			l	
Número máximo de canales	_	4		
Velocidad binaria/codificación de línea de señales afluentes ópticas	_	NRZ 2,5G		
Tasa de errores en los bits máxima	_		10^{-12}	
Tipo de fibra	_	G.652	G.653	G.655
Interfaz en el punto MPI-S _M				
Potencia de salida de canal media máxima	dBm		+4,5	
Potencia de salida de canal media mínima	dBm		-3	
Potencia de salida total media máxima	dBm		+10,5	
Longitud de onda central	nm	151	1 + 20 m m = 0	a 3
Separación de canal	nm		20	
Desviación de longitud de onda central máxima (nota)	nm		±6,5	
Tasa de extinción de canal mínima	dB	8,2		
Plantilla de ojo	_	ST	M-16 según G.9	57
Trayecto óptico (sección única) del punto MPI-S _M al punto MPI-R _M				
Atenuación máxima	dB	19,5	20,5	20,5
Atenuación mínima	dB		13	•
Gama de dispersión cromática				
- canal de 1511 nm	ps/nm	0 a +1332	–490 a +77	0 a +618
- canal de 1531 nm	ps/nm	0 a +1437	-331 a +164	0 a +711
- canal de 1551 nm	ps/nm	0 a +1544	-242 a +251	0 a +805
- canal de 1571 nm	ps/nm	0 a +1650	-155 a +347	0 a +900
Pérdida de retorno óptica mínima en MPI-S _M	dB		24	•
Reflectancia discreta máxima entre MPI- S_M y MPI- R_M	dB		-27	
Retardo diferencial de grupo máximo	ps		120	
Interfaz en el punto MPI-R _M				
Potencia de entrada de canal media máxima	dBm		-8,5	
Potencia de entrada de canal media mínima	dBm	-22,5	-23,5	-23
Potencia de entrada total media máxima	dBm		-2,5	
Penalización en el trayecto óptico máxima	dB	2,5	1,5	2
Sensibilidad equivalente mínima	dBm	-25		
Reflectancia máxima de elemento de red óptico	dB		-27	

NOTA – Un sistema con desviación de longitud de onda central máxima de ±7 nm que cumpla todos los demás valores de parámetros G.695 del código de aplicación pertinente es compatible transversalmente cualquiera que sea la aplicación abarcada por ese código, con la salvedad de que no proporciona compatibilidad transversal con un sistema de ±6,5 nm sin ingeniería conjunta.

Cuadro 8-3 — Parámetros de capa física y valores para interfaces multicanal de aplicaciones bidireccionales de caja negra de largo alcance de 4 canales

Parámetro	Unidades	B-C4L1-0D2	B-C4L1-0D3	B-C4L1-1D2	B-C4L1-1D3
Información general					
Número máximo de canales	_	2 + 2	2 + 2	2 + 2	2 + 2
Velocidad binaria/codificación de línea de señales afluentes ópticas	-	NRZ 1,25G	NRZ 1,25G	NRZ 2,5G	NRZ 2,5G
Tasa de errores en los bits máxima	_	10^{-12}	10^{-12}	10^{-12}	10^{-12}
Tipo de fibra	_	G.652	G.653	G.652	G.653
Interfaz en el punto MPI-S _M					
Potencia de salida de canal media máxima	dBm	+5 ^{b)}	+5 ^{b)}	+5 ^{b)}	+5 ^{b)}
Potencia de salida de canal media mínima	dBm	$0_{\rm p)}$	$0_{\rm p)}$	$0_{\rm p)}$	+0 _{p)}
Potencia de salida total media máxima	dBm	+8	+8	+8	+8
Longitud de onda central	nm	1511 + 20 m m = 0 a 3	1511 + 20 m m = 0 a 3	1511 + 20 m m = 0 a 3	1511 + 20 m m = 0 a 3
Separación de canal	nm	20	20	20	20
Desviación de longitud de onda central máxima ^{a)}	nm	±6,5	±6,5	±6,5	±6,5
Tasa de extinción de canal mínima	dB	8,2	8,2	8,2	8,2
Plantilla de ojo	ı	STM-4 según G.957	STM-4 según G.957	STM-16 según G.957	STM-16 según G.957
$\label{eq:transfer} \begin{array}{c} Trayecto\ \acute{o}ptico\ (secci\acute{o}n \\ \acute{u}nica)\ del\ punto\ MPI-S_M \\ al\ punto\ MPI-R_M \end{array}$					
Atenuación máxima	dB	25,5	25,5	22,5	23,5
Atenuación mínima	dB	12	12	12	12
Gama de dispersión cromática					
- canal de 1511 nm	ps/nm	0 a + 1735	–610 a +95	0 a +1533	-560 a +88
- canal de 1531 nm	ps/nm	0 a + 1872	–412 a +204	0 a +1654	−378 a +187
- canal de 1551 nm	ps/nm	0 a + 2012	-302 a +312	0 a +1778	–277 a +286
- canal de 1571 nm	ps/nm	0 a + 2150	-193 a +432	0 a +1900	-177 a +396
Pérdida de retorno óptica mínima en MPI-S _M	dB	24	24	24	24
Reflectancia discreta máxima entre MPI-S _M y MPI-R _M	dB	-27	-27	-27	-27
Retardo diferencial de grupo máximo	ps	120	120	120	120

Cuadro 8-3 – Parámetros de capa física y valores para interfaces multicanal de aplicaciones bidireccionales de caja negra de largo alcance de 4 canales

Parámetro	Unidades	B-C4L1-0D2	B-C4L1-0D3	B-C4L1-1D2	B-C4L1-1D3
Interfaz en el punto MPI-R _M					
Potencia de entrada de canal media máxima	dBm	-7	-7	- 7	-7
Potencia de entrada de canal media mínima	dBm	-25,5	-25,5	-22,5	-23,5
Potencia de entrada total media máxima	dBm	-4	-4	-4	-4
Penalización en el trayecto óptico máxima	dB	1,5	1,5	2,5	1,5
Sensibilidad equivalente mínima	dBm	-27	-27	-25	-25
Reflectancia máxima de elemento de red óptico	dB	-27	-27	-27	-27

un sistema con desviación de longitud de onda central máxima de ±7 nm que cumpla todos los demás valores de parámetros G.695 del código de aplicación pertinente es compatible transversalmente cualquiera que sea la aplicación abarcada por ese código, con la salvedad de que no proporciona compatibilidad transversal con un sistema de ±6,5 nm sin ingeniería conjunta.

Cuadro 8-4 – Parámetros de capa física y valores para interfaces multicanal de aplicaciones de caja negra de 8 canales

Parámetro	Unidades	C8S1-1D2	B-C8S1-1D2	C8L1-1D2
Información general				
Número de canales máximo	_	8	4 + 4	8
Velocidad binaria/codificación de línea de señales afluentes ópticas	-	NRZ 2,5G	NRZ 2,5G	NRZ 2,5G
Tasa de errores en los bits máxima	_	10^{-12}	10^{-12}	10^{-12}
Tipo de fibra	_	G.652	G.652	G.652
Interfaz en el punto MPI-S _M				
Potencia de salida de canal media máxima	dBm	+4	+4	+4
Potencia de salida de canal media mínima	dBm	-3,5	-3,5	-3,5
Potencia de salida total media máxima	dBm	+13	+10	+13
Longitud de onda central	nm	1471 + 20 m m = 0 a 7	1471 + 20 m m = 0 a 7	1471 + 20 m m = 0 a 7
Separación de canal	nm	20	20	20
Desviación de longitud de onda central máxima (nota)	nm	±6,5	±6,5	±6,5

b) Los niveles de potencia de transmisión de estas aplicaciones bidireccionales de 2 + 2 canales son superiores a las de otras aplicaciones de la presente Recomendación, por lo que una distancia objetivo de 80 km es alcanzable para NRZ 2,5G.

Cuadro 8-4 – Parámetros de capa física y valores para interfaces multicanal de aplicaciones de caja negra de 8 canales

Parámetro	Unidades	C8S1-1D2	B-C8S1-1D2	C8L1-1D2
Tasa de extinción de canal mínima	dB	8,2	8,2	8,2
Plantilla de ojo	_	STM-16 según G.957	STM-16 según G.957	STM-16 según G.957
Atenuación máxima	dB	9	9	18
Atenuación mínima	dB	3	3	12
Gama de dispersión cromática				
– canal de 1471 nm	ps/nm	0 a +481	0 a +481	0 a +962
- canal de 1491 nm	ps/nm	0 a +526	0 a +526	0 a +1051
- canal de 1511 nm	ps/nm	0 a +571	0 a +571	0 a +1143
- canal de 1531 nm	ps/nm	0 a +616	0 a +616	0 a +1233
- canal de 1551 nm	ps/nm	0 a +662	0 a +662	0 a +1325
– canal de 1571 nm	ps/nm	0 a +708	0 a +708	0 a +1416
– canal de 1591 nm	ps/nm	0 a +754	0 a +754	0 a +1507
- canal de 1611 nm	ps/nm	0 a +800	0 a +800	0 a +1600
Pérdida de retorno óptica mínima en MPI-S _M	dB	24	24	24
Reflectancia discreta máxima entre MPI-S _M y MPI-R _M	dB	-27	-27	-27
Retardo diferencial de grupo máximo	ps	120	120	120
Interfaz en el punto MPI-R _M				
Potencia de entrada de canal media máxima	dBm	+1	+1	-8
Potencia de entrada de canal media mínima	dBm	-12,5	-12,5	-21,5
Potencia de entrada total media máxima	dBm	+10	+7	+1
Penalización en el trayecto óptico máxima	dB	1,5	1,5	2,5
Sensibilidad equivalente mínima	dBm	-14	-14	-24
Reflectancia máxima de elemento de red óptico	dB	-27	-27	-27

NOTA – Un sistema con desviación de longitud de onda central máxima de ±7 nm que cumpla todos los demás valores de parámetros G.695 del código de aplicación pertinente es compatible transversalmente cualquiera que sea la aplicación abarcada por ese código, con la salvedad de que no proporciona compatibilidad transversal con un sistema de ±6,5 nm sin ingeniería conjunta.

Cuadro 8-5 — Parámetros de capa física y valores para interfaces multicanal de aplicaciones bidireccionales de caja negra de largo alcance de 8 canales

Parámetro	Unidades	B-C8L1-0D2	B-C8L1-0D3	B-C8L1-1D2	B-C8L1-1D3
Información general					
Número máximo de canales	_	4 + 4	4 + 4	4 + 4	4 + 4
Velocidad binaria/codificación de línea de señales afluentes ópticas	_	NRZ 1,25G	NRZ 1,25G	NRZ 2,5G	NRZ 2,5G
Tasa de errores en los bits máxima	_	10^{-12}	10^{-12}	10^{-12}	10^{-12}
Tipo de fibra	_	G.652	G.653	G.652	G.653
Interfaz en el punto MPI-S _M					
Potencia de salida de canal media máxima	dBm	+4	+4	+4	+4
Potencia de salida de canal media mínima	dBm	-3,5	-3,5	-3,5	-3,5
Potencia de salida total media máxima	dBm	+10	+10	+10	+10
Longitud de onda central	nm	1471 + 20 m m = 0 a 7	1471 + 20 m m = 0 a 7	1471 + 20 m m = 0 a 7	1471 + 20 m m = 0 a 7
Separación de canal	nm	20	20	20	20
Desviación de longitud de onda central máxima (nota)	nm	±6,5	±6,5	±6,5	±6,5
Tasa de extinción de canal mínima	dB	8,2	8,2	8,2	8,2
Plantilla de ojo	_	STM-4 según G.957	STM-4 según G.957	STM-16 según G.957	STM-16 según G.957
Atenuación máxima	dB	21	21	18	19
Atenuación mínima	dB	12	12	12	12
Gama de dispersión cromática					
- canal de 1471 nm	ps/nm	0 a + 1118	–770 a 0	0 a + 962	–690 a 0
- canal de 1491 nm	ps/nm	0 a +1222	-618 a 0	0 a +1051	-554 a 0
- canal de 1511 nm	ps/nm	0 a +1328	–467 a +73	0 a + 1143	–418 a +65
- canal de 1531 nm	ps/nm	0 a +1433	−315 a +156	0 a + 1233	-283 a +140
- canal de 1551 nm	ps/nm	0 a +1540	–231 a +239	0 a + 1325	–207 a +214
- canal de 1571 nm	ps/nm	0 a +1646	-148 a +331	0 a + 1416	-133 a +296
- canal de 1591 nm	ps/nm	0 a +1752	-64 a +482	0 a + 1507	−58 a +432
- canal de 1611 nm	ps/nm	0 a +1860	0 a +634	0 a + 1600	0 a +568

Cuadro 8-5 – Parámetros de capa física y valores para interfaces multicanal de aplicaciones bidireccionales de caja negra de largo alcance de 8 canales

Parámetro	Unidades	B-C8L1-0D2	B-C8L1-0D3	B-C8L1-1D2	B-C8L1-1D3
Pérdida de retorno óptica mínima en MPI-S _M	dB	24	24	24	24
Reflectancia discreta máxima entre MPI-S _M y MPI-R _M	dB	-27	-27	-27	-27
Retardo diferencial de grupo máximo	ps	120	120	120	120
Interfaz en el punto MPI-R _M					
Potencia de entrada de canal media máxima	dBm	-8	-8	-8	-8
Potencia de entrada de canal media mínima	dBm	-24,5	-24,5	-21,5	-22,5
Potencia de entrada total media máxima	dBm	-2	-2	-2	-2
Penalización en el trayecto óptico máxima	dB	1,5	1,5	2,5	1,5
Sensibilidad equivalente mínima	dBm	-26	-26	-24	-24
Reflectancia máxima de elemento de red óptico	dB	-27	-27	-27	-27

NOTA – Un sistema con desviación de longitud de onda central máxima de ± 7 nm que cumpla todos los demás valores de parámetros G.695 del código de aplicación pertinente es compatible transversalmente cualquiera que sea la aplicación abarcada por ese código, con la salvedad de que no proporciona compatibilidad transversal con un sistema de $\pm 6,5$ nm sin ingeniería conjunta.

Cuadro 8-6 – Parámetros de capa física y valores para interfaces multicanal de aplicaciones bidireccionales de caja negra de largo alcance de 12 canales

Parámetro	Unidades	B-C12L1-0D2		des B-C12L1-0D2		B-C12	L1-1D2
Bloque de longitud de onda	nm	1291-1351 1471-1611		1291-1351	1471-1611		
Información general							
Número máximo de canales	_	6 + 6		6 + 6			
Velocidad binaria/codificación de línea de señales afluentes ópticas	_	NRZ 1,25G		NRZ	2,5G		
Tasa de errores en los bits máxima	_	10^{-12}		10^{-12}		10) ⁻¹²
Tipo de fibra	_	G.	652	G.	652		

Cuadro 8-6 – Parámetros de capa física y valores para interfaces multicanal de aplicaciones bidireccionales de caja negra de largo alcance de 12 canales

Parámetro	Unidades	B-C12L1-0D2		B-C12L1-1D2	
$\begin{array}{c} \textbf{Interfaz en el punto} \\ \textbf{MPI-S}_{\textbf{M}} \end{array}$					
Potencia de salida de canal media máxima	dBm	+3,5	+1,5	+3,5	+1,5
Potencia de salida de canal media mínima	dBm	-4	-6	-4	-6
Potencia de salida total media máxima	dBm	+10,7		+10,7	
Longitud de onda central	nm	1291 + 20 m, m = 0 a 3	$ \begin{array}{c} 1471 + 20 \text{ m}, \\ m = 0 \text{ a } 7 \end{array} $	1291 + 20 m, m = 0 a 3	1471 + 20 m, m = 0 a 7
Separación de canal	nm	20		20	
Desviación de longitud de onda central máxima (nota)	nm	±6,5		±6,5	
Tasa de extinción de canal mínima	dB	8,2		8,2	
Plantilla de ojo	_	STM-4 según G.957		STM-16 según G.957	
Trayecto óptico (sección única) del punto MPI-S _M al punto MPI-R _M					
Atenuación máxima	dB	20	14,7	18	12,8
Atenuación mínima	dB	11	7	11	7
Gama de dispersión cromática					
- canal de 1291 nm	ps/nm	-208 a 0		-188 a 0	
- canal de 1311 nm	ps/nm	-100 a +86		−91 a +78	
- canal de 1331 nm	ps/nm	0 a +181		0 a +163	
- canal de 1351 nm	ps/nm	0 a +271		0 a +245	
- canal de 1471 nm	ps/nm		0 a +685		0 a +619
- canal de 1491 nm	ps/nm		0 a +749		0 a +677
- canal de 1511 nm	ps/nm		0 a +814		0 a +736
- canal de 1531 nm	ps/nm		0 a +878		0 a +794
- canal de 1551 nm	ps/nm		0 a +944		0 a +853
- canal de 1571 nm	ps/nm		0 a +1009		0 a +911
- canal de 1591 nm	ps/nm		0 a +1074		0 a +970
- canal de 1611 nm	ps/nm		0 a +1140		0 a +1030

Cuadro 8-6 – Parámetros de capa física y valores para interfaces multicanal de aplicaciones bidireccionales de caja negra de largo alcance de 12 canales

Parámetro	Unidades	B-C12L1-0D2		B-C12L1-1D2	
Pérdida de retorno óptica mínima en MPI-S _M	dB	24		24	
Reflectancia discreta máxima entre MPI-S _M y MPI-R _M	dB	-27		-27	
Retardo diferencial de grupo máximo	ps	120		120	
Interfaz en el punto MPI-R _M					
Potencia de entrada de canal media máxima	dBm	-7,5	-5,5	-7,5	-5,5
Potencia de entrada de canal media mínima	dBm	-24	-20,7	-22	-18,8
Potencia de entrada total media máxima	dBm	+2,3		+2,3	
Penalización en el trayecto óptico máxima	dB	1	1	1	2
Sensibilidad equivalente mínima	dBm	-25	-21,7	-23	-20,8
Reflectancia máxima de elemento de red óptico	dB	- 27		-27	

NOTA – Un sistema con desviación de longitud de onda central máxima de ± 7 nm que cumpla todos los demás valores de parámetros G.695 del código de aplicación pertinente es compatible transversalmente cualquiera que sea la aplicación abarcada por ese código, con la salvedad de que no proporciona compatibilidad transversal con un sistema de $\pm 6,5$ nm sin ingeniería conjunta.

Cuadro 8-7 – Parámetros de capa física y valores para interfaces multicanal de aplicaciones de caja negra de 16 canales C16S1-1D2

Parámetro	Unidades	C16S1-1D2
Bloque de longitud de onda	nm	En estudio
Información general		
Número máximo de canales	_	16
Velocidad binaria/codificación de línea de señales afluentes ópticas	_	NRZ 2,5G
Tasa de errores en los bits máxima	_	10^{-12}
Tipo de fibra	_	G.652.C o G.652.D
Interfaz en el punto MPI-S _M		
Potencia de salida de canal media máxima	dBm	En estudio
Potencia de salida de canal media mínima	dBm	En estudio
Potencia de salida total media máxima	dBm	En estudio
Longitud de onda central	nm	En estudio
Separación de canal	nm	20
Desviación de longitud de onda central máxima (Nota)	nm	±6,5
Tasa de extinción de canal mínima	dB	8,2
Plantilla de ojo	_	STM-16 según G.957
Trayecto óptico (sección única) del punto MPI- $S_{\rm M}$ al punto MPI- $R_{\rm M}$		
Atenuación máxima	dB	En estudio
Atenuación mínima	dB	En estudio
Gama de dispersión cromática	ps/nm	En estudio
Pérdida de retorno óptica mínima en MPI-S _M	dB	En estudio
Reflectancia discreta máxima entre MPI- S_M y MPI- R_M	dB	En estudio
Retardo diferencial de grupo máximo	ps	120
Interfaz en el punto MPI-R _M		
Potencia de entrada de canal media máxima	dBm	En estudio
Potencia de entrada de canal media mínima	dBm	En estudio
Potencia de entrada total media máxima	dBm	En estudio
Penalización en el trayecto óptico máxima	dB	En estudio
Sensibilidad equivalente mínima	dBm	En estudio
Reflectancia máxima de elemento de red óptico	dB	En estudio

Cuadro 8-8 – Parámetros de capa física y valores para interfaces multicanal de la aplicación de caja negra de 16 canales C16L1-1D2

Parámetro	Unidades	C16L1-1D2
Bloque de longitud de onda	nm	En estudio
Información general		
Número máximo de canales	_	16
Velocidad binaria/codificación de línea de señales afluentes ópticas	_	NRZ 2,5G
Tasa de errores en los bits máxima	_	10^{-12}
Tipo de fibra	_	G.652.C o G.652.D
Interfaz en el punto MPI- $S_{ m M}$		
Potencia de salida de canal media máxima	dBm	En estudio
Potencia de salida de canal media mínima	dBm	En estudio
Potencia de salida total media máxima	dBm	En estudio
Longitud de onda central	nm	En estudio
Separación de canal	nm	20
Desviación de longitud de onda central máxima (Nota)	nm	±6,5
Tasa de extinción de canal mínima	dB	8,2
Plantilla de ojo	_	STM-16 según G.957
Trayecto óptico (sección única) del punto MPI- $\mathbf{S}_{\mathbf{M}}$ al punto MPI- $\mathbf{R}_{\mathbf{M}}$		
Atenuación máxima	dB	En estudio
Atenuación mínima	dB	En estudio
Gama de dispersión cromática	ps/nm	En estudio
Pérdida de retorno óptica mínima en MPI-S _M	dB	En estudio
Reflectancia discreta máxima entre MPI- S_M y MPI- R_M	dB	En estudio
Retardo diferencial de grupo máximo	ps	120
Interfaz en el punto $MPI-R_M$		
Potencia de entrada de canal media máxima	dBm	En estudio
Potencia de entrada de canal media mínima	dBm	En estudio
Potencia de entrada total media máxima	dBm	En estudio
Penalización de trayecto óptico máxima	dB	En estudio
Sensibilidad equivalente mínima	dBm	En estudio
Reflectancia máxima de elemento de red óptico	dB	En estudio

Cuadro 8-9 – Parámetros de capa física y valores de interfaces multicanal de aplicaciones de caja negra de 16 canales B-C16S1-1D2

Parámetro	Unidades	B-C16S1-1D2
Bloque de longitud de onda	nm	En estudio
Información general		
Número máximo de canales	_	8 + 8
Velocidad binaria/codificación de línea de señales afluentes ópticas	_	NRZ 2,5G
Tasa de errores en los bits máxima	_	10^{-12}
Tipo de fibra	_	G.652.C o G.652.D
Interfaz en el punto MPI-S _M		
Potencia de salida de canal media máxima	dBm	En estudio
Potencia de salida de canal media mínima	dBm	En estudio
Potencia de salida total media máxima	dBm	En estudio
Longitud de onda central	nm	En estudio
Separación de canal	nm	20
Desviación de longitud de onda central máxima (nota)	nm	±6,5
Tasa de extinción de canal mínima	dB	8,2
Plantilla de ojo	_	STM-16 según G.957
Atenuación máxima	dB	En estudio
Atenuación mínima	dB	En estudio
Gama de dispersión cromática	ps/nm	En estudio
Pérdida de retorno óptica mínima en MPI-S _M	dB	En estudio
Reflectancia discreta máxima entre MPI-S _M y MPI-R _M	dB	En estudio
Retardo diferencial de grupo máximo	ps	120
Interfaz en el punto MPI-R _M		
Potencia de entrada de canal media máxima	dBm	En estudio
Potencia de entrada de canal media mínima	dBm	En estudio
Potencia de entrada total media máxima	dBm	En estudio
Penalización en el trayecto óptico máxima	dB	En estudio
Sensibilidad equivalente mínima	dBm	En estudio
Reflectancia máxima de elemento de red óptico	dB	En estudio

Cuadro 8-10 – Parámetros de capa física y valores para interfaces multicanal de aplicaciones de caja negra de 16 canales B-C16L1-1D2

Parámetro	Unidades	B-C16L1-1D2
Bloque de longitud de onda	nm	En estudio
Información general		
Número máximo de canales	_	8 + 8
Velocidad binaria/codificación de línea de señales afluentes ópticas	_	NRZ 2,5G
Tasa de errores en los bits máxima	_	10^{-12}
Tipo de fibra	_	G.652.C o G.652.D
Interfaz en el punto MPI-S _M		
Potencia de salida de canal media máxima	dBm	En estudio
Potencia de salida de canal media mínima	dBm	En estudio
Potencia de salida total media máxima	dBm	En estudio
Longitud de onda central	nm	En estudio
Separación de canal	nm	20
Desviación de longitud de onda central máxima (nota)	nm	±6,5
Tasa de extinción de canal mínima	dB	8,2
Plantilla de ojo	_	STM-16 según G.957
Atenuación máxima	dB	En estudio
Atenuación mínima	dB	En estudio
Gama de dispersión cromática	ps/nm	En estudio
Pérdida de retorno óptica mínima en MPI-S _M	dB	En estudio
Reflectancia discreta máxima entre MPI-S _M y MPI-R _M	dB	En estudio
Retardo diferencial de grupo máximo	ps	120
Interfaz en el punto MPI-R _M		
Potencia de entrada de canal media máxima	dBm	En estudio
Potencia de entrada de canal media mínima	dBm	En estudio
Potencia de entrada total media máxima	dBm	En estudio
Penalización en el trayecto óptico máxima	dB	En estudio
Sensibilidad equivalente mínima	dBm	En estudio
Reflectancia máxima de elemento de red óptico	dB	En estudio

Cuadro 8-11 – Parámetros de capa física y valores para sistemas multicanal con interfaces monocanal de aplicaciones de enlace negro de corto alcance de 4 canales

Parámetro	Unidades	S-C4S1-1D2	S-C4S1-1D3	S-C4S1-1D5	
Información general			1		
Número máximo de canales	_	4			
Velocidad binaria/codificación de línea de señales afluentes ópticas	_		NRZ 2,5G		
Tasa de errores en los bits máxima	_		10^{-12}		
Tipo de fibra	_	G.652	G.653	G.655	
Interfaz en el punto S _S					
Potencia de salida de canal media máxima	dBm		+5		
Potencia de salida de canal media mínima	dBm		0		
Longitud de onda central	nm		1511 + 20 m m = 0 a 3		
Separación de canal	nm		20		
Desviación de longitud de onda central máxima (nota)	nm		±6,5		
Tasa de extensión de canal mínima	dB		8,2		
Plantilla de ojo	_	ST	M-16 según G.9:	57	
Trayecto óptico del punto $S_{\rm S}aR_{\rm S}$					
Pérdidas de inserción de canal máximas	dB		16,5		
Pérdidas de inserción de canal mínimas	dB		5		
Gama de dispersión cromática					
- canal de 1511 nm	ps/nm	0 a +807	−350 a +55	0 a +446	
- canal de 1531 nm	ps/nm	0 a +872	-236 a +117	0 a +513	
- canal de 1551 nm	ps/nm	0 a +936	-173 a +179	0 a +581	
- canal de 1571 nm	ps/nm	0 a +1000	-111 a +248	0 a +650	
Pérdida de retorno óptica mínima en $S_{\rm S}$	dB		24		
Reflectancia discreta máxima entre S_S y R_S	dB		-27		
Retardo diferencial de grupo máximo	ps		120		
Diafonía intercanal máxima	dB		-20		
Diafonía interferométrica máxima	dB		-45		
Interfaz en el punto R _S					
Potencia de entrada de canal máxima	dBm	0			
Sensibilidad del sector mínima	dBm	-18			
Penalización en el trayecto óptico máxima	dB		1,5		
		,			

Cuadro 8-12 – Parámetros de capa física y valores para sistemas multicanal con interfaces monocanal de aplicaciones de enlace negro de largo alcance de 4 canales

Parámetro	Unidades	S-C4S1-1D2	S-C4S1-1D3	S-C4S1-1D5		
Información general						
Número máximo de canales	_	4				
Velocidad binaria/codificación de línea de señales afluentes ópticas	_		NRZ 2,5G			
Tasa de errores en los bits máxima	_		10^{-12}			
Tipo de fibra	_	G.652	G.653	G.655		
Interfaz en el punto S _S						
Potencia de salida de canal media máxima	dBm		+5			
Potencia de salida de canal media mínima	dBm		0			
Longitud de onda central	nm	151	1 + 20 m m = 0	a 3		
Separación de canal	nm		20			
Desviación de longitud de onda central máxima (nota)	nm		±6,5			
Tasa de extensión de canal mínima	dB		8,2			
Plantilla de ojo	_	ST	M-16 según G.9:	57		
Trayecto óptico del punto S _S a R _S						
Pérdidas de inserción de canal máximas	dB	25,5	26,5	26		
Pérdidas de inserción de canal mínimas	dB	14	14	14		
Gama de dispersión cromática						
- canal de 1511 nm	ps/nm	0 a +1322	-600 a +94	0 a+756		
- canal de 1531 nm	ps/nm	0 a +1437	–405 a +200	0 a +869		
- canal de 1551 nm	ps/nm	0 a +1544	–297 a +307	0 a +983		
- canal de 1571 nm	ps/nm	0 a +1650	-190 a +425	0 a +1100		
Pérdida de retorno óptica mínima en S _S	dB		24			
Reflectancia discreta máxima entre S_S y R_S	dB		-27			
Retardo diferencial de grupo máximo	ps		120			
Diafonía intercanal máxima	dB		-20			
Diafonía interferométrica máxima	dB	-45				
Interfaz en el punto R _S						
Potencia de entrada de canal máxima	dBm	_9				
Sensibilidad del sector mínima	dBm		-28			
Penalización en el trayecto óptico máxima	dB	2,5	1,5	2		
Reflectancia máxima del receptor	dB		-27			

Cuadro 8-13 – Parámetros de capa física y valores para sistemas multicanal con interfaces monocanal de aplicaciones de enlace negro de corto alcance de 8 canales

Parámetros	Unidades	S-C8S1-1D2	S-C8S1-1D3	S-C8S1-1D5	
Información general					
Número máximo de canales	_	8	8	8 ^{b)}	
Velocidad binaria/codificación de línea de señales afluentes ópticas	_		NRZ 2,5G	•	
Tasa de errores en los bits máxima	_		10^{-12}		
Tipo de fibra	_	G.652	G.653	G.655	
Interfaz en el punto S _S					
Potencia de salida de canal media máxima	dBm		+5		
Potencia de salida de canal media mínima	dBm		0		
Longitud de onda central	nm		1471 + 20 m m = 0 a 7		
Separación de canal	nm		20		
Desviación de longitud de onda central máxima ^{a)}	nm		±6,5		
Tasa de extinción de canal mínima	dB	8,2			
Plantilla de ojo	_	ST	M-16 según G.9:	57	
Trayecto óptico del punto S _S a R _S					
Pérdidas de inserción de canal máximas	dB		16,5		
Pérdidas de inserción de canal mínimas	dB		5		
Gama de dispersión cromática					
- canal de 1471 nm	ps/nm	0 a +601	-500 a 0	-174 a +279	
- canal de 1491 nm	ps/nm	0 a +657	–402 a 0	−85 a +337	
- canal de 1511 nm	ps/nm	0 a +714	−303 a +47	0 a +396	
- canal de 1531 nm	ps/nm	0 a +771	-205 a +101	0 a +456	
- canal de 1551 nm	ps/nm	0 a +828	-150 a +155	0 a +516	
- canal de 1571 nm	ps/nm	0 a +885	–96 a +215	0 a +577	
- canal de 1591 nm	ps/nm	0 a +942	-42 a +313	0 a +639	
- canal de 1611 nm	ps/nm	0 a +1000	0 a +411	0 a +700	
Pérdida de retorno óptica mínima en S _S	dB	24			
Reflectancia discreta máxima entre S_S y R_S	dB	-27			
Retardo diferencial de grupo máximo	ps	120			
Diafonía intercanal máxima	dB		-20		
Diafonía interferométrica máxima	dB		-45		

Cuadro 8-13 – Parámetros de capa física y valores para sistemas multicanal con interfaces monocanal de aplicaciones de enlace negro de corto alcance de 8 canales

Parámetros	Unidades	S-C8S1-1D2	S-C8S1-1D3	S-C8S1-1D5	
Interfaz en el punto R _S					
Potencia de entrada de canal máxima	dBm	0			
Sensibilidad del sector mínima	dBm	-18			
Penalización en el trayecto óptico máxima	dB		1,5		
Reflectancia máxima del receptor	dB		-27		

a) Un sistema con desviación de longitud de onda central máxima de ±7 nm que cumpla todos los demás valores de parámetros G.695 del código de aplicación pertinente es compatible transversalmente cualquiera que sea la aplicación abarcada por ese código, con la salvedad de que no proporciona compatibilidad transversal con un sistema de ±6,5 nm sin ingeniería conjunta.

Cuadro 8-14 – Parámetros de capa física y valores para sistemas multicanal con interfaces monocanal de aplicaciones de enlace negro de largo alcance de 8 canales

Parámetros	Unidades	S-C8S1-1D2	S-C8S1-1D3	S-C8S1-1D5	
Información general					
Número máximo de canales	_	8	8	8 ^{b)}	
Velocidad binaria/codificación de línea de señales afluentes ópticas	-	NRZ 2,5G			
Tasa de errores en los bits máxima	_		10^{-12}		
Tipo de fibra	-	G.652	G.653	G.655	
Interfaz en el punto S _S					
Potencia de salida de canal media máxima	dBm		+5		
Potencia de salida de canal media mínima	dBm		0		
Longitud de onda central	nm	1471 + 20 m m = 0 a 7			
Separación de canal	nm	20			
Desviación de longitud de onda central máxima ^{a)}	nm	±6,5			
Tasa de extinción de canal mínima	dB	8,2			
Plantilla de ojo	_	ST	M-16 según G.9:	57	

Es posible que el canal de 1471 nm no pueda utilizarse con una fibra G.655 más antigua, que tenga una longitud de onda de corte de cable especificada de 1480 nm.

Cuadro 8-14 – Parámetros de capa física y valores para sistemas multicanal con interfaces monocanal de aplicaciones de enlace negro de largo alcance de 8 canales

Parámetros	Unidades	S-C8S1-1D2	S-C8S1-1D3	S-C8S1-1D5
Trayecto óptico del punto S _S a R _S				
Pérdidas de inserción de canal máximas	dB	25,5	26	26
Pérdidas de inserción de canal mínimas	dB		14	
Gama de dispersión cromática				
- canal de 1471 nm	ps/nm	0 a +1022	-850 a 0	–286 a +458
- canal de 1491 nm	ps/nm	0 a +1118	-683 a 0	-139 a +554
- canal de 1511 nm	ps/nm	0 a +1214	-516 a +81	0 a +651
- canal de 1531 nm	ps/nm	0 a +1310	-348 a +172	0 a +749
- canal de 1551 nm	ps/nm	0 a +1407	-255 a +264	0 a +847
- canal de 1571 nm	ps/nm	0 a +1504	-163 a +365	0 a +948
- canal de 1591 nm	ps/nm	0 a +1602	−71 a +532	0 a +1049
- canal de 1611 nm	ps/nm	0 a +1700	0 a +699	0 a +1150
Pérdida de retorno óptica mínima en S _S	dB		24	
$ \begin{array}{c} \text{Reflectancia discreta máxima entre } S_S \\ y \ R_S \end{array} $	dB		-27	
Retardo diferencial de grupo máximo	ps		120	
Diafonía intercanal máxima	dB		-20	
Diafonía interferométrica máxima	dB		-45	
Interfaz en el punto \mathbf{R}_{S}				
Potencia de entrada de canal máxima	dBm		-9	
Sensibilidad del sector mínima	dBm		-28	
Penalización en el trayecto óptico máxima	dB	2,5	2	2
Reflectancia máxima del receptor	dB		-27	

a) Un sistema con desviación de longitud de onda central máxima de ±7 nm que cumpla todos los demás valores de parámetros G.695 del código de aplicación pertinente es compatible transversalmente cualquiera que sea la aplicación abarcada por ese código, con la salvedad de que no proporciona compatibilidad transversal con un sistema de ±6,5 nm sin ingeniería conjunta.

9 Consideraciones relativas a la seguridad óptica

Para las consideraciones relativas a la seguridad óptica, véanse [UIT-T G.664] así como [CEI 60825-1] y [CEI 60825-2].

NOTA – Los límites de emisión accesibles para longitudes de onda por encima y por debajo de 1400 nm son diferentes. Por ello, debe analizarse convenientemente la manera en que las longitudes de onda de cada una de esas regiones contribuyen a la clasificación del nivel de riesgo para aplicaciones CWDM.

Es posible que el canal de 1471 nm no pueda utilizarse con una fibra G.655 más antigua, que tenga una longitud de onda de corte de cable especificada de 1480 nm.

Apéndice I

Dependencia con respecto a la longitud de ondade la atenuación y la dispersión cromática

(Este apéndice no es parte integrante de esta Recomendación)

I.1 Atenuación

El coeficiente de atenuación de un cable de fibra óptica instalado depende de la longitud de onda, siendo el valor en una longitud de onda determinada función de las características de la fibra no cableada junto con las pérdidas adicionales causadas por los conectores, los empalmes y las flexiones.

El cuadro I.1 contiene los valores supuestos del coeficiente de atenuación mínima y máxima para cada longitud de onda CWDM. Estos valores se muestran también gráficamente en las figuras I.1 y I.2. Los valores se obtuvieron combinando mediciones del coeficiente de atenuación de cables de fibra óptica subterráneos y enterrados en 1550 nm y 1625 nm con mediciones del espectro total de fibras no cableadas y con los límites especificados en [UIT-T G.652].

Cuadro I.1 – Valores supuestos del coeficiente de atenuación

Longitud	Cable G.652	.A y G.652.B	Cable G.652	.C y G.652.D
de onda central nominal (nm)	Coeficiente de atenuación mínima (dB/km)	Coeficiente de atenuación máxima (dB/km)	Coeficiente de atenuación mínima (dB/km)	Coeficiente de atenuación máxima (dB/km)
1271	0,392	0,473	0,385	0,470
1291	0,370	0,447	0,365	0,441
1311	0,348	0,423	0,352	0,423
1331	0,331	0,425	0,340	0,411
1351	0,320	0,476	0,329	0,399
1371			0,316	0,386
1391			0,301	0,372
1411			0,285	0,357
1431	0,263	0,438	0,269	0,341
1451	0,250	0,368	0,254	0,326
1471	0,238	0,327	0,240	0,312
1491	0,229	0,303	0,229	0,300
1511	0,221	0,290	0,220	0,290
1531	0,215	0,283	0,213	0,283
1551	0,211	0,278	0,209	0,277
1571	0,208	0,276	0,208	0,273
1591	0,208	0,278	0,208	0,275
1611	0,208	0,289	0,212	0,283

NOTA – Estos valores del coeficiente incluyen un margen para la desviación de la longitud de onda central máxima.

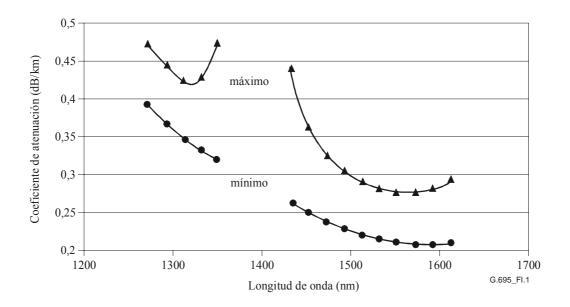


Figura I.1 – Valores supuestos del coeficiente de atenuación para cable G.652.A y G.652.B

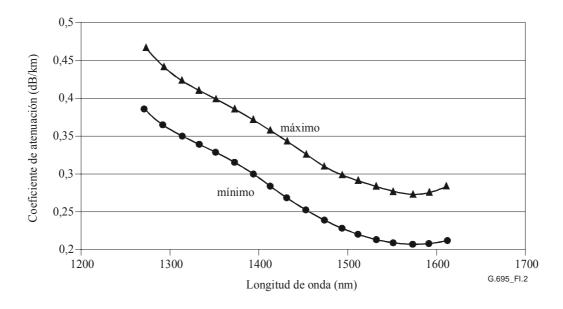


Figura I.2 – Valores supuestos del coeficiente de atenuación para cable G.652.C y G.652.D

Estos valores del coeficiente de atenuación se basan en los resultados espectrales de un número limitado de fibras, junto con la hipótesis de 0,275 dB/km en 1550 nm para los coeficientes de atenuación máxima y 0,210 dB/km en 1550 nm para los coeficientes de atenuación mínima. La atenuación real del cable instalado es de naturaleza estadística y estos valores no deberán tomarse como límites de especificación impuestos a fibras individuales, secciones de cable o empalmes. En los cables de fibra óptica instalados realmente, los valores del coeficiente de atenuación diferirán de los mostrados en el cuadro I.1 y la figura I.1, dependiendo de factores tales como la pérdida de los conectores, la de los empalmes, la provocada por las flexiones de la fibra o la debida a las comprobaciones ópticas.

I.2 Dispersión cromática

Puesto que el coeficiente de dispersión cromática depende de la longitud de onda. El cuadro I.2 contiene los valores supuestos del coeficiente de dispersión cromática máxima en la longitud de onda central más larga (más la desviación de la longitud de onda central máxima permitida) para cada uno de los canales utilizado en la presente Recomendación. Los valores de dispersión cromática para las fibras G.652 en el canal de 1391 nm y superiores se han calculando utilizando [b-UIT-T G.Sup.39], ecuaciones 10-7a y 10-7b, con 1 sigma. Para el canal de 1371 nm e inferiores los valores de dispersión se obtienen a partir de las ecuaciones que figuran en [UIT-T G.652]. Los valores para las fibras G.655 se calcularon utilizando las ecuaciones del cuadro I.5 de [UIT-T G.655] para el máximo coeficiente de dispersión con 1 sigma para la fibra G.655.E. Los valores para las fibras G.653 se han calculado utilizando las ecuaciones para las curvas de límites de dispersión cromática que figuran en el cuadro 2 de [UIT-T G.653] para los atributos G.653.B.

Cuadro I.2 – Valores supuestos del coeficiente de dispersión cromática para las fibras G.652, G.653 y G.655

Longitud de onda de canal (nm)		Со		lispersión máximo m/km)		
	Fibras	Fibras G.652 Fibras G.653 Fibras G.6		G.655		
	Negativo	Positivo	Negativo	Positivo	Negativo	Positivo
1291	-3,85	_	_	_	_	_
1311	-1,85	1,60	_	_	_	_
1331	_	3,34	_	_	_	_
1351	_	5,02	_	_	_	_
1371	_	6,62	_	_	_	_
1391	_	7,97	_	_	_	_
1411	_	9,14	_	_	_	_
1431	_	10,31	_	_	_	_
1451	_	11,49	_	_	_	_
1471	_	12,68	-8,64	_	-2,99	4,78
1491	_	13,86	-6,94	_	-1,45	5,79
1511	_	15,06	-5,24	0,82	_	6,80
1531	_	16,25	-3,54	1,75	_	7,82
1551	_	17,46	-2,59	2,68	_	8,85
1571	_	18,66	-1,66	3,71	_	9,90
1591	_	19,87	-0,72	5,41	_	10,96
1611	_	21,09	_	7,11	_	12,01

Apéndice II

Trayecto óptico del punto RPs al punto RPR

(Este apéndice no es parte integrante de esta Recomendación)

Los cuadros 8-11 a 8-14 recomiendan los valores de parámetros de capa física del trayecto óptico del punto S_S al punto R_S para aplicaciones de enlace negro. El trayecto óptico del punto S_S al punto R_S incluye el trayecto desde RP_S hasta RP_R , así como otros elementos de red (NE). En el caso de las aplicaciones de enlace negro lineal, los NE incluyen un OM, un OD y (opcionalmente) una o varias OADM. En el caso de aplicaciones de enlace negro en anillo, los NE incluyen todas las OADM que son atravesadas por el trayecto considerado de S_S a R_S . La pérdida de inserción total y la dispersión cromática total de los NE de CWDM y el trayecto óptico de RP_S a RP_R no deben exceder de los valores especificados para el trayecto óptico del punto S_S al punto R_S .

El reparto de la pérdida de inserción (dependiente de la longitud de onda) entre los NE de CWDM y el trayecto óptico de RP_S a RP_R dependerá de las características de los NE de CWDM y del trayecto óptico de RP_S a RP_R. Los valores supuestos del coeficiente de atenuación máxima del apéndice I se pueden utilizar para evaluar la pérdida supuesta de inserción de canal máxima de cada canal del trayecto óptico de RP_S a RP_R y, por consiguiente, las distancias previstas para fibra de pérdida alta. Del mismo modo, en el caso de fibras de pérdida baja, se pueden utilizar los valores del coeficiente de atenuación mínima del apéndice I. En algunos casos, las distancias previstas estarán limitadas por la dispersión.

Los cuadros II.1 y II.2 contienen valores de parámetros informativos del trayecto óptico de RP_S a RP_R para diversos valores de pérdida de los NE de CWDM.

Cuadro II.1 – Parámetros y valores del trayecto óptico de RP_S a RP_R para los códigos de aplicación S-C8S1-1D2, -1D3 y -1D5

Parámetro	Unidades	Pérdida de inserción total de los elementos de red de CWDM				
		7,5 dB	6,5 dB	5,5 dB	4,5 dB	3,5 dB
Atenuación máxima	dB	9	10	11	12	13
Atenuación mínima	dB	0	0	0	0,5	1,5
Dispersión cromática máxima	ps/nm	1000	1000	1000	1000	1000
Retardo diferencial de grupo máximo	ps	120	120	120	120	120
Distancia prevista para fibra de pérdida alta ^{a)}	km	27	30	33	36	39
Distancia prevista para fibra de pérdida baja ^{a)}	km	38	42	46	50 ^{b)}	55 ^{b)}

^{a)} En los cables de fibra óptica instalados realmente, la distancia prevista puede diferir de los valores mostrados dependiendo de variaciones de factores tales como la pérdida de los conectores, la de los empalmes y la provocada por las flexiones de la fibra.

En el caso del código de aplicación S-C8S1-1D2 que utiliza fibra G.652, la distancia prevista está limitada por la dispersión a 47 km aproximadamente.

Cuadro II.2 – Parámetros y valores del trayecto óptico de RP_S a RP_R para los códigos de aplicación S-C8L1-1D2, -1D3 y -1D5

Parámetro	Unidades	Pérdida de inserción total de los elementos de red de CWDM				
		7,5 dB	6,5 dB	5,5 dB	4,5 dB	3,5 dB
Atenuación máxima	dB	18	19	20	21	22
Atenuación mínima	dB	6,5	7,5	8,5	9,5	10,5
Dispersión cromática máxima	ps/nm	1600	1600	1600	1600	1600
Retardo diferencial de grupo máximo	ps	120	120	120	120	120
Distancia prevista para fibra de pérdida alta ^{a)}	km	55	58	61	64	67
Distancia prevista para fibra de pérdida baja ^{a)}	km	75	79 ^{b)}	84 ^{b)}	88 ^{b)}	92 ^{b)}

^{a)} En los cables de fibra óptica instalados realmente, la distancia prevista puede diferir de los valores mostrados dependiendo de variaciones de factores tales como la pérdida de los conectores, la de los empalmes y la provocada por las flexiones de la fibra.

En el caso del código de aplicación S-C8L1-1D2 que utiliza fibra G.652, la distancia prevista está limitada por la dispersión a 75 km aproximadamente.

Apéndice III

Enlaces negros que contienen OADM

(Este apéndice no es parte integrante de esta Recomendación)

III.1 Cantidad de OADM en un enlace negro

La cantidad de OADM que se puede emplear en un enlace negro lineal o en un enlace negro en anillo depende de las pérdidas en los OM, los OADM, los OD, la fibra y los conectores. La pérdida total desde S_S hasta R_S debe ser mayor que la pérdida de inserción mínima del canal y no debe exceder de la pérdida de inserción máxima del canal para el código de aplicación empleado en el trayecto de S_S a R_S . Se tiene por lo tanto:

$$IL_{min} \leq IL_{total} \leq IL_{max}$$

donde:

 IL_{min} es la pérdida de inserción mínima del canal para el código de aplicación

 $IL_{máx}$ es la pérdida de inserción máxima de canal para el código de aplicación

y:

$$IL_{total} = IL_{OM} + N_{OADM}IL_{OADM} + IL_{OD} + N_{con}IL_{con} + \alpha \cdot L$$

donde:

 IL_{OM} pérdida de inserción del OM o pérdida de inserción agregada del OADM en el punto S_S para la longitud de onda empleada entre S_S y R_S

N_{OADM} número de OADM explícitos

 IL_{OADM} pérdida de inserción de los OADM explícitos para la longitud de onda empleada entre S_S y R_S

 IL_{OD} pérdida de inserción del OD o pérdida de extracción en el OADM en el punto R_S para la longitud de onda empleada entre S_S y R_S

 N_{con} número de conectores entre S_S y R_S

*IL*_{con} pérdida de inserción del conector

 α coeficiente de atenuación de la fibra, en dB/km, para la longitud de onda empleada entre $S_S\,y\,R_S$

L longitud total de la fibra entre S_S y R_S

Un OADM explícito es aquel que es atravesado por la longitud de onda de interés sin que ésta sea agregada o extraída. Por lo tanto el número máximo de OADM explícitos en un trayecto entre S_S y R_S viene dado por:

$$N_{OADM} \left[\frac{IL_{m\acute{a}x} - IL_{OM} - IL_{OD} - N_{con}IL_{con} - \alpha \cdot L}{IL_{OADM}} \right]$$

Se debe llevar a cabo la evaluación del número máximo de OADM para cada trayecto S_S a R_S en la red, de manera que el número máximo de OADM no sea rebasado en ninguno de los trayectos S_S a R_S . Esto es muy sencillo para las redes en las que todos los trayectos comparten un concentrador común (véase la figura III.1), pero es más complicado a medida que la topología de los trayectos es más compleja (véase la figura III.2).

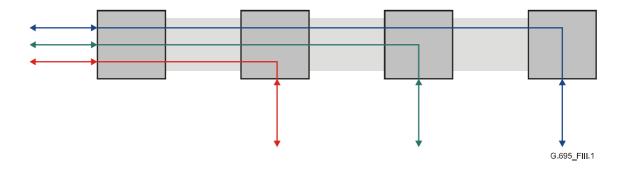


Figura III.1 – Ejemplo sencillo de una topología de enlace negro lineal

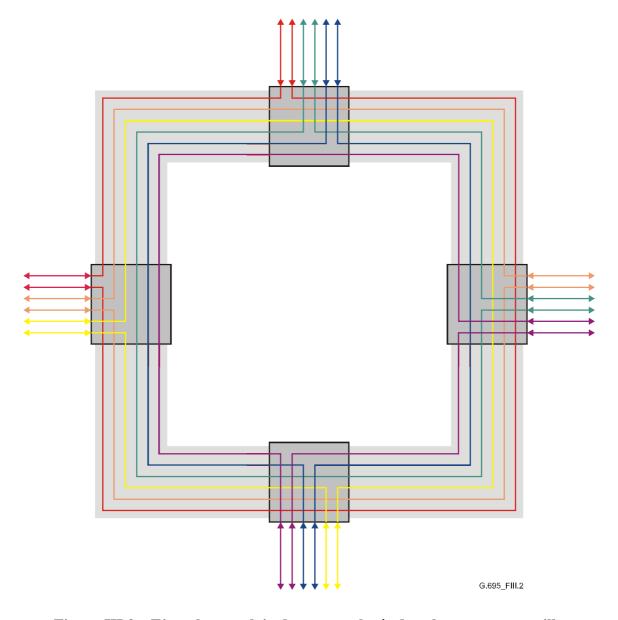


Figura III.2 – Ejemplo complejo de una topología de enlace negro en anillo

En algunos trayectos puede ser necesario agregar alguna atenuación óptica en el lado del enlace negro de la interfaz S_S o R_S , de manera que se cumpla el requisito de pérdida de inserción mínima de canal en el enlace negro entre S_S y R_S , sin que se afecte la pérdida en otros trayectos.

III.2 Códigos de aplicación mixtos

Es posible emplear una mezcla de códigos de aplicación diferentes, pero compatibles, en un mismo enlace negro. Por ejemplo, los trayectos con pérdida baja pueden emplear S-C8S1-1D2 mientras que los trayectos con pérdida alta pueden emplear S-C8L1-1D2.

III.3 Protección

Los anillos de enlace negro de CWDM ofrecen la posibilidad de trayectos ópticos protegidos. La protección se puede realizar de diversas maneras, a saber:

- a) Protección a nivel de cliente, en la que el anillo de enlace negro de CWDM proporciona dos trayectos ópticos diferentes entre un par de clientes. Estos dos trayectos ópticos pueden emplear o no la misma longitud de onda de CWDM.
- b) Protección integrada, en la que los OADM proporcionan una interfaz de cliente única con conmutación de protección dentro del OADM.

Las características de los sistemas que ofrecen conmutación de protección están fuera del alcance de esta Recomendación; sin embargo, se pueden emplear los códigos de aplicación de esta Recomendación en estos sistemas siempre y cuando los trayectos ópticos entre S_S y R_S cumplan los requisitos del código de aplicación pertinente.

Apéndice IV

Valores de parámetros de aplicaciones de 16 canales

(Este apéndice no es parte integrante de esta Recomendación)

Este apéndice contiene valores de parámetros iniciales de aplicaciones de 16 canales. Previsiblemente, a medida que evolucione la tecnología, será preciso revisar esos valores. Véanse los cuadros IV.1 a IV.4.

Cuadro IV.1 – Parámetros de capa física y valores para interfaces multicanal de la aplicación de 16 canales de caja negra C16S1-1D2

Parámetro	Unidades		C16S1-1D2	
Bloque de longitud de onda	nm	1311-1371	1391-1451	1471-1611
Información general				
Número máximo de canales	_	16		
Velocidad binaria/codificación de línea de señales afluentes ópticas	_		NRZ 2,5G	
Tasa de errores en los bits máxima	_		10^{-12}	
Tipo de fibra	_	G	6.652.C o G.652.	D
Interfaz en el punto $MPI-S_M$				
Potencia de salida de canal media máxima	dBm	+3,5	+2,5	+1
Potencia de salida de canal media mínima	dBm	-4	-5	-6,5
Potencia de salida total media máxima	dBm		+14,2	
Longitud de onda central	nm	1311 + 20 m, m = 0 a 3	1391 + 20 m, m = 0 a 3	1471 + 20 m, m = 0 a 7
Separación de canal	nm		20	
Desviación de longitud de onda central máxima (nota)	nm		±6,5	
Tasa de extinción de canal mínima	dB		8,2	
Plantilla de ojo	_	ST	M-16 según G.9	9 57
Atenuación máxima	dB	8,5	7,5	6,5
Atenuación mínima	dB	3,5	2,5	1
Gama de dispersión cromática				
- canal de 1311 nm	ps/nm	–45 a +39		
- canal de 1331 nm	ps/nm	0 a +81		
- canal de 1351 nm	ps/nm	0 a +121		
- canal de 1371 nm	ps/nm	0 a +160		

Cuadro IV.1 – Parámetros de capa física y valores para interfaces multicanal de la aplicación de 16 canales de caja negra C16S1-1D2

Parámetro	Unidades		C16S1-1D2	
- canal de 1391 nm	ps/nm		0 a +193	
- canal de 1411 nm	ps/nm		0 a +221	
- canal de 1431 nm	ps/nm		0 a +249	
- canal de 1451 nm	ps/nm		0 a +278	
- canal de 1471 nm	ps/nm			0 a +307
- canal de 1491 nm	ps/nm			0 a +335
- canal de 1511 nm	ps/nm			0 a +364
- canal de 1531 nm	ps/nm			0 a +393
- canal de 1551 nm	ps/nm			0 a + 422
- canal de 1571 nm	ps/nm			0 a +451
- canal de 1591 nm	ps/nm			0 a +480
- canal de 1611 nm	ps/nm			0 a +510
Pérdida de retorno óptica mínima en MPI-S _M	dB	'	24	
Reflectancia discreta máxima entre MPI-S _M y MPI-R _M	dB		-27	
Retardo diferencial de grupo máximo	ps		120	
Interfaz en el punto MPI-R _M				
Potencia de entrada de canal media máxima	dBm	0	0	+0,5
Potencia de entrada de canal media mínima	dBm	-12,5	-12,5	-13
Potencia de entrada total media máxima	dBm	'	+12,3	
Penalización en el trayecto óptico máxima	dB	1	1	1,5
Sensibilidad equivalente mínima	dBm	-13,5	-13,5	-14
Reflectancia máxima de elemento de red óptico	dB		-27	

Cuadro IV.2 — Parámetros de capa física y valores para interfaces multicanal de la aplicación de 16 canales de caja negra C16L1-1D2

Parámetro	Unidades		C16L1-1D2	
Bloque de longitud de onda	nm	1311-1371	1391-1451	1471-1611
Información general				
Número máximo de canales	_		16	
Velocidad binaria/codificación de línea de señales afluentes ópticas	_		NRZ 2,5G	
Tasa de errores en los bits máxima	_		10^{-12}	
Tipo de fibra	_	(G.652.C o G.652.I)
Interfaz en el punto MPI-S _M				
Potencia de salida de canal media máxima	dBm	+3,5	+1,5	-0,5
Potencia de salida de canal media mínima	dBm	-4	-6	-8
Potencia de salida total media máxima	dBm		+13,4	
Longitud de onda central	nm	1311 + 20 m, m = 0 a 3	1391 + 20 m, m = 0 a 3	1471 + 20 m, m = 0 a 7
Separación de canal	nm		20	
Desviación de longitud de onda central máxima (nota)	nm		±6,5	
Tasa de extinción de canal mínima	dB		8,2	
Plantilla de ojo	_	S	ΓM-16 según G.95	57
Atenuación máxima	dB	18	15,8	13,3
Atenuación mínima	dB	11	9	7
Gama de dispersión cromática	ps/nm			
- canal de 1311 nm	ps/nm	–95 a +82		
- canal de 1331 nm	ps/nm	0 a +171		
- canal de 1351 nm	ps/nm	0 a +257		
- canal de 1371 nm	ps/nm	0 a +339		
- canal de 1391 nm	ps/nm		0 a +408	
- canal de 1411 nm	ps/nm		0 a +468	
- canal de 1431 nm	ps/nm		0 a +528	
- canal de 1451 nm	ps/nm		0 a +588	
- canal de 1471 nm	ps/nm			0 a+649
- canal de 1491 nm	ps/nm			0 a +710

Cuadro IV.2 – Parámetros de capa física y valores para interfaces multicanal de la aplicación de 16 canales de caja negra C16L1-1D2

Parámetro	Unidades		C16L1-1D2	
- canal de 1511 nm	ps/nm			0 a +771
- canal de 1531 nm	ps/nm			0 a +832
- canal de 1551 nm	ps/nm			0 a +894
- canal de 1571 nm	ps/nm			0 a +956
- canal de 1591 nm	ps/nm			0 a+1018
- canal de 1611 nm	ps/nm			0 a +1080
Pérdida de retorno óptica mínima en MPI-S _M	dB		24	
Reflectancia discreta máxima entre MPI-S _M y MPI-R _M	dB		-27	
Retardo diferencial de grupo máximo	ps		120	
Interfaz en el punto MPI-R _M				
Potencia de entrada de canal media máxima	dBm		-7,5	
Potencia de entrada de canal media mínima	dBm	-22	-21,8	-21,3
Potencia de entrada total media máxima	dBm		+4,5	
Penalización en el trayecto óptico máxima	dB	1	1,5	2
Sensibilidad equivalente mínima	dBm	-23	-23,3	-23,3
Reflectancia máxima de elemento de red óptico	dB		-27	•

Cuadro IV.3 – Parámetros de capa física y valores para interfaces multicanal de la aplicación de 16 canales de caja negra B-C16S1-1D2

Parámetro	Unidades		B-C16S1-1D2	
Bloque de longitud de onda	nm	1311-1371	1391-1451	1471-1611
Información general				
Número máximo de canales	_		8 + 8	
Velocidad binaria/codificación de línea de señales afluentes ópticas	_		NRZ 2,5G	
Tasa de errores en los bits máxima	_		10^{-12}	
Tipo de fibra	_	(G.652.C o G.652.I)
Interfaz en el punto MPI-S _M				
Potencia de salida de canal media máxima	dBm	+3,5	+2	+1,5
Potencia de salida de canal media mínima	dBm	-4	-5	-6
Potencia de salida total media máxima	dBm		+11,8	
Longitud de onda central	nm	1311 + 20 m, m = 0 a 3	1391 + 20 m, m = 0 a 3	1471 + 20 m, m = 0 a 7
Separación de canal	nm	·	20	
Desviación de longitud de onda central máxima (nota)	nm		±6,5	
Tasa de extinción de canal mínima	dB	8,2		
Plantilla de ojo	_	STM-16 según G.957		
Atenuación máxima	dB	8,5	7,5	6,3
Atenuación mínima	dB	3,5	2,5	1
Gama de dispersión cromática	ps/nm			
- canal de 1311 nm	ps/nm	–45 a +39		
- canal de 1331 nm	ps/nm	0 a +81		
- canal de 1351 nm	ps/nm	0 a +121		
- canal de 1371 nm	ps/nm	0 a +160		
- canal de 1391 nm	ps/nm		0 a +193	
- canal de 1411 nm	ps/nm		0 a +221	
- canal de 1431 nm	ps/nm		0 a +249	
- canal de 1451 nm	ps/nm		0 a +278	
- canal de 1471 nm	ps/nm			0 a +307
- canal de 1491 nm	ps/nm			0 a +335
- canal de 1511 nm	ps/nm			0 a +364

Cuadro IV.3 – Parámetros de capa física y valores para interfaces multicanal de la aplicación de 16 canales de caja negra B-C16S1-1D2

Parámetro	Unidades		B-C16S1-1D2	
- canal de 1531 nm	ps/nm			0 a +393
- canal de 1551 nm	ps/nm			0 a + 422
- canal de 1571 nm	ps/nm			0 a +451
- canal de 1591 nm	ps/nm			0 a +480
- canal de 1611 nm	ps/nm			0 a +510
Pérdida de retorno óptica mínima en MPI-S _M	dB		24	•
	dB		-27	
Retardo diferencial de grupo máximo	ps		120	
Interfaz en el punto MPI-R _M				
Potencia de entrada de canal media máxima	dBm	0	-0,5	+0,5
Potencia de entrada de canal media mínima	dBm	-12,5	-12,5	-12,8
Potencia de entrada total media máxima	dBm		+9,5	'
Penalización en el trayecto óptico máxima	dB	1	1	1,5
Sensibilidad equivalente mínima	dBm	-13,5	-13,5	-13,8
Reflectancia máxima de elemento de red óptico	dB		-27	•

Cuadro IV.4 — Parámetros de capa física y valores para interfaces multicanal de la aplicación de 16 canales de caja negra B-C16L1-1D2

Parámetro	Unidades		B-C16L1-1D2	
Bloque de longitud de onda	nm	1311-1371	1391-1451	1471-1611
Información general				
Número máximo de canales	_		8 + 8	
Velocidad binaria/codificación de línea de señales afluentes ópticas	_		NRZ 2,5G	
Tasa de errores en los bits máxima	_		10^{-12}	
Tipo de fibra	_	(G.652.C o G.652.I)
Interfaz en el punto MPI-S _M				
Potencia de salida de canal media máxima	dBm	+3,5	+1,5	-0,5
Potencia de salida de canal media mínima	dBm	-4	-6	-8
Potencia de salida total media máxima	dBm		+11,6	
Longitud de onda central	nm	1311 + 20 m, m = 0 a 3	1391 + 20 m, m = 0 a 3	1471 + 20 m, m = 0 a 7
Separación de canal	nm		20	
Desviación de longitud de onda central máxima (nota)	nm		±6,5	
Tasa de extinción de canal mínima	dB		8,2	
Plantilla de ojo	_	S	ГМ-16 según G.95	57
Trayecto óptico (sección única) del punto MPI-S _M al punto MPI-R _M				
Atenuación máxima	dB	18	15,8	13,3
Atenuación mínima	dB	11	9	7
Gama de dispersión cromática				
- canal de 1311 nm	ps/nm	−95 a +82		
- canal de 1331 nm	ps/nm	0 a +171		
- canal de 1351 nm	ps/nm	0 a +257		
- canal de 1371 nm	ps/nm	0 a +339		
- canal de 1391 nm	ps/nm		0 a +408	
- canal de 1411 nm	ps/nm		0 a +468	
- canal de 1431 nm	ps/nm		0 a +528	
- canal de 1451 nm	ps/nm		0 a +588	
- canal de 1471 nm	ps/nm			0 a +649
- canal de 1491 nm	ps/nm			0 a +710
- canal de 1511 nm	ps/nm			0 a +771

Cuadro IV.4 – Parámetros de capa física y valores para interfaces multicanal de la aplicación de 16 canales de caja negra B-C16L1-1D2

Parámetro	Unidades		B-C16L1-1D2	
- canal de 1531 nm	ps/nm			0 a +832
- canal de 1551 nm	ps/nm			0 a +894
- canal de 1571 nm	ps/nm			0 a +956
- canal de 1591 nm	ps/nm			0 a +1018
- canal de 1611 nm	ps/nm			0 a +1080
Pérdida de retorno óptica mínima en MPI-S _M	dB		24	
Reflectancia discreta máxima entre MPI-S _M y MPI-R _M	dB		-27	
Retardo diferencial de grupo máximo	ps		120	
Interfaz en el punto MPI-R _M				
Potencia de entrada de canal media máxima	dBm		-7,5	
Potencia de entrada de canal media mínima	dBm	-22	-21,8	-21,3
Potencia de entrada total media máxima	dBm		+1,5	
Penalización en el trayecto óptico máxima	dB	1	1,5	2
Sensibilidad equivalente mínima	dBm	-23	-23,3	-23,3
Reflectancia máxima de elemento de red óptico	dB		-27	

Bibliografía

[b-UIT-T G.Sup.39] Recomendaciones UIT-T de la serie G – Suplemento 39 (2006), Consideraciones sobre diseño e ingeniería de sistemas ópticos.

SERIES DE RECOMENDACIONES DEL UIT-T

Serie A	Organización del trabajo del UIT-T
Serie D	Principios generales de tarificación
Serie E	Explotación general de la red, servicio telefónico, explotación del servicio y factores humanos
Serie F	Servicios de telecomunicación no telefónicos
Serie G	Sistemas y medios de transmisión, sistemas y redes digitales
Serie H	Sistemas audiovisuales y multimedia
Serie I	Red digital de servicios integrados
Serie J	Redes de cable y transmisión de programas radiofónicos y televisivos, y de otras señales multimedia
Serie K	Protección contra las interferencias
Serie L	Construcción, instalación y protección de los cables y otros elementos de planta exterior
Serie M	Gestión de las telecomunicaciones, incluida la RGT y el mantenimiento de redes
Serie N	Mantenimiento: circuitos internacionales para transmisiones radiofónicas y de televisión
Serie O	Especificaciones de los aparatos de medida
Serie P	Calidad de transmisión telefónica, instalaciones telefónicas y redes locales
Serie Q	Conmutación y señalización
Serie R	Transmisión telegráfica
Serie S	Equipos terminales para servicios de telegrafía
Serie T	Terminales para servicios de telemática
Serie U	Conmutación telegráfica
Serie V	Comunicación de datos por la red telefónica
Serie X	Redes de datos, comunicaciones de sistemas abiertos y seguridad
Serie Y	Infraestructura mundial de la información, aspectos del protocolo Internet y Redes de la próxima generación
Serie Z	Lenguajes y aspectos generales de soporte lógico para sistemas de telecomunicación