ITU-T

TELECOMMUNICATION STANDARDIZATION SECTOR OF ITU G.113 Amendment 2 (01/2007)

## SERIES G: TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

International telephone connections and circuits – General Recommendations on the transmission quality for an entire international telephone connection

Transmission impairments due to speech processing

Amendment 2: Revised Appendix I – Provisional planning values for the equipment impairment factor *le* and packet-loss robustness factor *Bpl* 

ITU-T Recommendation G.113 (2001) - Amendment 2



### ITU-T G-SERIES RECOMMENDATIONS TRANSMISSION SYSTEMS AND MEDIA, DIGITAL SYSTEMS AND NETWORKS

| INTERNATIONAL TELEPHONE CONNECTIONS AND CIRCUITS                                                                                                   | G.100–G.199   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| General definitions                                                                                                                                | G.100-G.109   |
| General Recommendations on the transmission quality for an entire international telephone connection                                               | G.110–G.119   |
| General characteristics of national systems forming part of international connections                                                              | G.120-G.129   |
| General characteristics of the 4-wire chain formed by the international circuits and national extension circuits                                   | G.130–G.139   |
| General characteristics of the 4-wire chain of international circuits; international transit                                                       | G.140-G.149   |
| General characteristics of international telephone circuits and national extension circuits                                                        | G.150–G.159   |
| Apparatus associated with long-distance telephone circuits                                                                                         | G.160-G.169   |
| Transmission plan aspects of special circuits and connections using the international telephone connection network                                 | G.170–G.179   |
| Protection and restoration of transmission systems                                                                                                 | G.180-G.189   |
| Software tools for transmission systems                                                                                                            | G.190-G.199   |
| GENERAL CHARACTERISTICS COMMON TO ALL ANALOGUE CARRIER-<br>TRANSMISSION SYSTEMS                                                                    | G.200–G.299   |
| INDIVIDUAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE<br>SYSTEMS ON METALLIC LINES                                                         | G.300–G.399   |
| GENERAL CHARACTERISTICS OF INTERNATIONAL CARRIER TELEPHONE SYSTEMS<br>ON RADIO-RELAY OR SATELLITE LINKS AND INTERCONNECTION WITH METALLIC<br>LINES | G.400–G.449   |
| COORDINATION OF RADIOTELEPHONY AND LINE TELEPHONY                                                                                                  | G.450-G.499   |
| TRANSMISSION MEDIA CHARACTERISTICS                                                                                                                 | G.600-G.699   |
| DIGITAL TERMINAL EQUIPMENTS                                                                                                                        | G.700-G.799   |
| DIGITAL NETWORKS                                                                                                                                   | G.800-G.899   |
| DIGITAL SECTIONS AND DIGITAL LINE SYSTEM                                                                                                           | G.900-G.999   |
| QUALITY OF SERVICE AND PERFORMANCE – GENERIC AND USER-RELATED ASPECTS                                                                              | G.1000–G.1999 |
| TRANSMISSION MEDIA CHARACTERISTICS                                                                                                                 | G.6000-G.6999 |
| DATA OVER TRANSPORT – GENERIC ASPECTS                                                                                                              | G.7000-G.7999 |
| PACKET OVER TRANSPORT ASPECTS                                                                                                                      | G.8000-G.8999 |
| ACCESS NETWORKS                                                                                                                                    | G.9000-G.9999 |
|                                                                                                                                                    |               |

For further details, please refer to the list of ITU-T Recommendations.

## **ITU-T Recommendation G.113**

## Transmission impairments due to speech processing

## Amendment 2

# Revised Appendix I – Provisional planning values for the equipment impairment factor *Ie* and packet-loss robustness factor *Bpl*

#### Summary

This appendix provides up-to-date information on available values of the Equipment Impairment Factor, *Ie* and Packet-loss Robustness Factor, *Bpl* for codecs or codec families. It is intended to be updated regularly.

#### Source

Amendment 2 to ITU-T Recommendation G.113 (2001) was agreed on 25 January 2007 by ITU-T Study Group 12 (2005-2008).

i

#### FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of telecommunications. The ITU Telecommunication Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical, operating and tariff questions and issuing Recommendations on them with a view to standardizing telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are prepared on a collaborative basis with ISO and IEC.

#### NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain mandatory provisions (to ensure e.g. interoperability or applicability) and compliance with the Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other obligatory language such as "must" and the negative equivalents are used to express requirements. The use of such words does not suggest that compliance with the Recommendation is required of any party.

#### INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected by patents, which may be required to implement this Recommendation. However, implementers are cautioned that this may not represent the latest information and are therefore strongly urged to consult the TSB patent database at <u>http://www.itu.int/ITU-T/ipr/</u>.

#### © ITU 2007

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior written permission of ITU.

## **ITU-T Recommendation G.113**

## Transmission impairments due to speech processing

## **Amendment 2**

## **Revised Appendix I – Provisional planning values for the equipment impairment** factor Ie and packet-loss robustness factor Bpl

(This appendix does not form an integral part of this Recommendation)

This appendix provides up-to-date information on available values of the Equipment Impairment Factor, Ie and Packet-loss Robustness Factor, Bpl for codecs or codec families. It is intended to be updated regularly.

Table I.1 provides provisional planning values for the equipment impairment factor Ie. These Ie values refer to non-error conditions without propagation errors, frame-erasures or packet loss. Subsequent tables deal with error and various loss conditions.

| Codec type     | Reference                     | Operating rate<br>kbit/s | <i>Ie</i><br>value |  |
|----------------|-------------------------------|--------------------------|--------------------|--|
| PCM (see Note) | G.711                         | 64                       |                    |  |
|                | G.726, G.727                  | 40                       | 2                  |  |
| ADPCM          | G.721 (1988), G.726, G.727    | 32                       | 7                  |  |
| ADPCM          | G.726, G.727                  | 24                       | 25                 |  |
|                | G.726, G.727                  | 16                       | 50                 |  |
|                | C 729                         | 16                       | 7                  |  |
| LD-CELP        | G.728                         | 12.8                     | 20                 |  |
| CS ACELD       | G.729                         | 8                        | 10                 |  |
| CS-ACELP       | G.729-A + VAD                 | 8                        | 11                 |  |
| VSELP          | IS-54                         | 8                        | 20                 |  |
| ACELP          | IS-641                        | 7.4                      | 10                 |  |
| QCELP          | IS-96a                        | 8                        | 21                 |  |
| RCELP          | IS-127                        | 8                        | 6                  |  |
| VSELP          | Japanese PDC                  | 6.7                      | 24                 |  |
| RPE-LTP        | GSM 06.10, Full-rate          | 13                       | 20                 |  |
| VSELP          | GSM 06.20, Half-rate          | 5.6                      | 23                 |  |
| ACELP          | GSM 06.60, Enhanced Full Rate | 12.2                     | 5                  |  |
| ACELP          | G.723.1                       | 5.3                      | 19                 |  |
| MP-MLQ         | G.723.1                       | 6.3                      | 15                 |  |

#### Table I.1 – Provisional planning values for the equipment impairment factor Ie

determined according to Table 1) needs to be considered as a separate input parameter to the E-model.

Table I.2 provides provisional planning values for the equipment impairment factor *Ie* under propagation error conditions for GSM codecs.

| Codec type                                                                                                              | Error pattern | <i>Ie</i> Range |  |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|--|--|
| GSM-HR                                                                                                                  | EP1           | 2532            |  |  |
| USM-IIK                                                                                                                 | EP2           | 3142            |  |  |
| GSM-FR                                                                                                                  | EP1           | 3239            |  |  |
|                                                                                                                         | EP2           | 4045            |  |  |
| GSM-EFR                                                                                                                 | EP1           | 1522            |  |  |
| USMI-LITK                                                                                                               | EP2           | 2635            |  |  |
| NOTE 1 – The range given results from the difficulties in deriving exact impairment factor values for these conditions. |               |                 |  |  |
| NOTE 2 – EP1 is equivalent to 10 dB C/I, EP2 is equivalent to 7 dB C/I. C/I is the carrier-to-interference ratio.       |               |                 |  |  |

 Table I.2 – Provisional planning values for the equipment impairment factor *Ie* under propagation error conditions, GSM codecs

Table I.3 provides provisional planning values for the equipment impairment factor *Ie* and for Packet-loss Robustness Factor *Bpl* as specified in 3.5 of [ITU-T G.107].

 Table I.3 – Provisional planning values for the equipment impairment factor *Ie* and for packet-loss robustness factor *Bpl*

| Codec       | Packet size          | PLC type                       | Ie | Bpl  |
|-------------|----------------------|--------------------------------|----|------|
| G.723.1+VAD | 30 ms                | Native                         | 15 | 16.1 |
| G.729A+VAD  | 20 ms (2 frames)     | Native                         | 11 | 19.0 |
| GSM-EFR     | 20 ms (?) Native (?) |                                | 5  | 10.0 |
| G.711       | 10 ms None           |                                | 0  | 4.3  |
| G.711       | 10 ms                | Appendix I of<br>[ITU-T G.711] | 0  | 25.1 |

The method to take account of packet loss is derived from conditions with random packet loss. This is the case where the probability of loss of a packet is independent of the probability of loss of any other packet. In systems with a jitter buffer (such as most VoIP applications), the applicable packet loss is measured at the output of the jitter buffer. [ITU-T G.1020] proposes a de-jitter buffer emulation that may be used to estimate the packet discard to be expected at the output of a de-jitter buffer in case of network jitter. In general, users should be aware that:

- the assumption of packet loss independence is unsatisfactory for many real networks, for example VoIP and mobile networks;
- jitter buffer implementations vary considerably, both between manufacturers and even between software revisions for a given device;
- proprietary codec implementations may have different robustness to packet loss from the values tabulated in [ITU-T G.113].

However, for some coders, the subjective impairment due to burst packet loss can be reflected using the so-called Burst ratio, *BurstR*, which partly captures the "burstiness" of a specific loss distribution (see Formula 3-29 of [ITU-T G.107]).

 $BurstR = \frac{\text{Average length of observed bursts in an arrival sequence}}{\text{Average length of bursts expected for the network under random loss}}$ 

when packet loss is random BurstR = 1 and

when packet loss is bursty Burst R > 1.

Until further validation is provided, it is recommended that for bursty packet loss the BurstR-approach of the E-model (Formula 3-29 of [ITU-T G.107]) should be employed only for codecs with an efficient codec-state based PLC (i.e., with a packet loss robustness factor  $Bpl \ge 16$ ).

Two additional burst-loss cases with Bpl < 16 can currently be handled by using the provisional planning values of Table I.4, when loss ratios are low, i.e., for packet loss percentages  $Ppl \le 2\%$ . The provided *Bpl* values are to be used with the packet loss model as specified in [ITU-T G.107], artificially setting *BurstR* = 1 in Formula 3-29 of [ITU-T G.107] as in case of random packet loss.

Table I.4 – Provisional planning values for codecs under burst packet loss (to be applied for Ppl  $\leq 2\%$  with the random packet loss model, see [ITU-T G.107])

| Codec                                                     | Packet size       | PLC type | <b>BurstR</b> | Ie | Bpl |
|-----------------------------------------------------------|-------------------|----------|---------------|----|-----|
| G.729E                                                    | 20 ms Native      |          | 4 (Note)      | 4  | 8.1 |
| G.711                                                     | 20 ms Repeat 1/Si |          | 4 (Note)      | 0  | 4.8 |
| NOTE – Set $BurstR = 1$ in Formula 3-29 of [ITU-T G.107]. |                   |          |               |    |     |

It has to be noted that the above *Ie* and *Bpl* values have been derived for a very specific sample of burst packet loss, and may not reflect the impairment due to burst packet loss in general.

Table I.5 provides examples for bursty packet loss conditions where all packets are lost in one burst. In this special loss-case, the values for the effective equipment impairment factor *Ie-eff* listed in Table I.5 should directly be used with Formula 3-1 of [ITU-T G.107].

| Codec                                                       | n (lost packets) | Packet size | PLC type         | Ppl | BurstR | Ie-eff (Note) |
|-------------------------------------------------------------|------------------|-------------|------------------|-----|--------|---------------|
| G.729E                                                      | 6                | 20 ms       | Native           | 1.5 | 5.91   | 9             |
| G.729E                                                      | 8                | 20 ms       | Native           | 2   | 7.84   | 11            |
| G.711                                                       | 6                | 20 ms       | Repeat 1/Silence | 1.5 | 5.91   | 7             |
| G.711                                                       | 8                | 20 ms       | Repeat 1/Silence | 2   | 7.84   | 10            |
| NOTE – To be used directly in Formula 3-1 of [ITU-T G.107]. |                  |             |                  |     |        |               |

Table I.5 – Examples for burst packet loss (all packets lost in one burst)

3

Table I.6 provides additional descriptive information on various low bit-rate codecs.

| <b>TG =</b> 4 |                                                                                                                                                                                                                                                                               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IS-54         | First generation digital TDMA cellular system in North America utilizing Vector Sum Excited Linear Prediction ( <b>VSELP</b> ) coding at a net bit rate of 7.95 kbit/s (plus 5.05 kbit/s FEC).                                                                                |
| IS-96a        | First generation digital CDMA cellular system in North America utilizing Qualcomm Code-Excited Linear Prediction ( <b>QCELP</b> ) coding at a variable net bit rate of 8, 4, and 2 kbit/s.                                                                                    |
| IS-127        | Second generation digital CDMA cellular system in North America utilizing Residual Code-Excited Linear Prediction ( <b>RCELP</b> ) coding at a variable net bit rate of 8, 4, and 2 kbit/s.                                                                                   |
| IS-641        | Second generation digital TDMA cellular system in North America utilizing Algebraic Code-Excited Linear Prediction ( <b>ACELP</b> ) coding at a net bit rate of 7.4 kbit/s (plus 5.6 kbit/s FEC).                                                                             |
| GSM-FR        | First generation digital European Global System for Mobile communications ( <b>GSM</b> ) cellular system utilizing Regular Pulse Excitation Long Term Prediction ( <b>RPE-LTP</b> ) coding at a net bit rate of 13 kbit/s (plus 9.8 kbit/s FEC). Defined in [ETSI GSM 06.10]. |
| GSM-HR        | Half-rate version of the voice codec for the GSM system utilizing Vector Sum Excited Linear Prediction ( <b>VSELP</b> ) coding at a net bit rate of 5.6 kbit/s. Defined in [ETSI GSM 06.20].                                                                                  |
| GSM-EFR       | Second generation speech codec of the digital European Global System for Mobile communications (GSM) cellular system utilizing Algebraic Code-Excited Linear Prediction (ACELP) coding at a net bit rate of 12.2 kbit/s (plus 10.6 kbit/s FEC). Defined in [ETSI GSM 06.60].  |
| PDC           | First generation digital Japanese Personal Digital Communication (PDC) system utilizing a Japanese version of Vector Sum Excited Linear Prediction ( <b>JVSELP</b> ) coding at a net bit rate of 6.7 kbit/s (plus 4.5 kbit/s FEC).                                            |
| G.723.1       | ITU-T Recommendation for speech coding in PSTN videophones utilizing Algebraic Code-Excited Linear Prediction (ACELP) coding at 5.3 kbit/s and Multipulse Maximum Likelihood Quantization (MP-MLQ) at 6.3 kbit/s.                                                             |
| G.726         | ITU-T Recommendation for speech coding at 40, 32, 24, and 16 kbit/s utilizing Adaptive Differential Pulse Code Modulation ( <b>ADPCM</b> ).                                                                                                                                   |
| G.728         | ITU-T Recommendation for speech coding at 16 kbit/s utilizing Low-Delay Code-Excited Linear Prediction ( <b>LD-CELP</b> ) Coding. This algorithm also has 12.8 and 9.6 kbit/s bit-rate extensions.                                                                            |
| G.729         | ITU-T Recommendation for speech coding at 8 kbit/s utilizing Conjugate Structure Algebraic Code-Excited Linear Prediction ( <b>CS-ACELP</b> ) Coding.                                                                                                                         |

Table I.6 – Brief description of the low bit-rate codecs

## SERIES OF ITU-T RECOMMENDATIONS

- Series A Organization of the work of ITU-T
- Series D General tariff principles
- Series E Overall network operation, telephone service, service operation and human factors
- Series F Non-telephone telecommunication services
- Series G Transmission systems and media, digital systems and networks
- Series H Audiovisual and multimedia systems
- Series I Integrated services digital network
- Series J Cable networks and transmission of television, sound programme and other multimedia signals
- Series K Protection against interference
- Series L Construction, installation and protection of cables and other elements of outside plant
- Series M Telecommunication management, including TMN and network maintenance
- Series N Maintenance: international sound programme and television transmission circuits
- Series O Specifications of measuring equipment
- Series P Telephone transmission quality, telephone installations, local line networks
- Series Q Switching and signalling
- Series R Telegraph transmission
- Series S Telegraph services terminal equipment
- Series T Terminals for telematic services
- Series U Telegraph switching
- Series V Data communication over the telephone network
- Series X Data networks, open system communications and security
- Series Y Global information infrastructure, Internet protocol aspects and next-generation networks
- Series Z Languages and general software aspects for telecommunication systems