
ITUPublications International Telecommunication Union

Recommendations Standardization Sector

Recommendation

ITU-T F.751.12 (09/2023)

SERIES F: Non-telephone telecommunication services

Multimedia services

Formal verification framework for smart
contract on distributed ledger technology

ITU-T F-SERIES RECOMMENDATIONS

Non-telephone telecommunication services

TELEGRAPH SERVICE F.1-F.109
 Operating methods for the international public telegram service F.1-F.19
 The gentex network F.20-F.29
 Message switching F.30-F.39
 The international telemessage service F.40-F.58
 The international telex service F.59-F.89
 Statistics and publications on international telegraph services F.90-F.99
 Scheduled and leased communication services F.100-F.104
 Phototelegraph service F.105-F.109
MOBILE SERVICE F.110-F.159
 Mobile services and multidestination satellite services F.110-F.159
TELEMATIC SERVICES F.160-F.399
 Public facsimile service F.160-F.199
 Teletex service F.200-F.299
 Videotex service F.300-F.349
 General provisions for telematic services F.350-F.399
MESSAGE HANDLING SERVICES F.400-F.499
DIRECTORY SERVICES F.500-F.549
DOCUMENT COMMUNICATION F.550-F.599
 Document communication F.550-F.579
 Programming communication interfaces F.580-F.599
DATA TRANSMISSION SERVICES F.600-F.699
MULTIMEDIA SERVICES F.700-F.799
ISDN SERVICES F.800-F.849
UNIVERSAL PERSONAL TELECOMMUNICATION F.850-F.899
ACCESSIBILITY AND HUMAN FACTORS F.900-F.999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T F.751.12 (09/2023) i

Recommendation ITU-T F.751.12

Formal verification framework for smart contract

on distributed ledger technology

Summary

Smart contracts can be used to reduce complex business contracts by directly enforcing the contract's

payment methods and paybacks, and by automating the process of contract execution and verification

into the network, without the intervention and cost of the person checking the contract's performance.

However, smart contracts are a series of program codes generated on distributed ledger technology

(DLT) and problems may occur in the process of executing the smart contract. As a method to solve

problems that occur in the program execution environment, there is a formal verification.

Recommendation ITU-T F.751.12 specifies the formal verification framework for smart contract on

DLT, its overview, requirement and architecture in its framework, as well as the main technical

direction of its formal method component. This Recommendation can be used as a guideline for a

smart contract developer to build systems.

History *
Edition Recommendation Approval Study Group Unique ID

1.0 ITU-T F.751.12 2023-09-13 16 11.1002/1000/15626

Keywords

Distributed ledger technologies, security, smart contract, verification.

* To access the Recommendation, type the URL https://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID.

https://handle.itu.int/

ii Rec. ITU-T F.751.12 (09/2023)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had received notice of intellectual property, protected

by patents/software copyrights, which may be required to implement this Recommendation. However,

implementers are cautioned that this may not represent the latest information and are therefore strongly urged

to consult the appropriate ITU-T databases available via the ITU-T website at http://www.itu.int/ITU-T/ipr/.

© ITU 2023

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T F.751.12 (09/2023) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 1

4 Abbreviations and acronyms .. 1

5 Conventions .. 2

6 Overview of formal verification for smart contracts .. 2

6.1 Smart contract ... 2

6.2 Formal method .. 3

7 Requirements of formal verification for smart contracts .. 4

7.1 DApp requirements .. 4

7.2 Smart contract mechanism requirements .. 5

7.3 Formal method requirements .. 5

8 Architecture of formal verification for smart contracts .. 5

8.1 Overview .. 5

8.2 Formal verification ... 7

Appendix I – Use case of verification for smart contract .. 9

I.1 Overall procedure for formal verification .. 9

I.2 IoT environment ... 9

Appendix II – Related projects on verification for smart contract .. 11

Bibliography... 12

 Rec. ITU-T F.751.12 (09/2023) 1

Recommendation ITU-T F.751.12

Formal verification framework for smart contract

on distributed ledger technology

1 Scope

This Recommendation provides a formal verification framework of smart contract on distributed

ledger technology (DLT). It also includes:

– Overview of formal verification for smart contract;

– Requirements of formal verification for smart contract;

– Architecture of formal verification for smart contract.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T F.751.2] Recommendation ITU-T F.751.2 (2020), Reference framework for distributed

ledger technologies.

[ITU-T Y.3320] Recommendation ITU-T Y.3320 (2014), Requirements for applying formal

methods to software-defined networking.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following terms defined elsewhere:

3.1.1 consensus protocol [b-ITU-T X.1401]: Process for determining what blocks get added to the

chain and what the current state is.

3.1.2 distributed ledger [b-ISO 22739]: Ledger that is shared across a set of DLT nodes and

synchronized between the DLT nodes using a consensus mechanism.

3.1.3 smart contract [b-ITU-T F.751.0]: Program written on the distributed ledger system that

encodes the rules for specific types of distributed ledger system transactions in a way that can be

validated, and triggered by specific conditions.

3.2 Terms defined in this Recommendation

None.

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

DApp Decentralized Application

DLT Distributed Ledger Technology

2 Rec. ITU-T F.751.12 (09/2023)

EV Electric Vehicle

5 Conventions

In this Recommendation:

– The keywords "is required to" indicate a requirement which must be strictly followed and

from which no deviation is permitted if conformance to this Recommendation is to be

claimed.

– The keywords "is recommended" indicate a requirement which is recommended but which

is not absolutely required. Thus, this requirement need not be present to claim conformance.

– The keywords "can optionally" indicate an optional requirement which is permissible,

without implying any sense of being recommended. This term is not intended to imply that

the vendor's implementation must provide the option and the feature can be optionally

enabled by the network operator or service provider. Rather, it means the vendor may

optionally provide the feature and still claim conformance with this Recommendation.

6 Overview of formal verification for smart contracts

6.1 Smart contract

Smart contracts are a series of program codes generated on the distributed ledger platform. It ensures

that the contents of the contract are automatically executed on the assets contained in the distributed

ledger when predetermined conditions are achieved. Smart contracts can be used to reduce complex

business contracts by directly enforcing the contract's payment methods and paybacks, and by

automating the process of contract execution and verification into the network, without the

intervention and cost of the person checking the contract's performance. It is characterized by the

ability to safely execute contracts based on low cost and agreement trust. Thus, it is possible to

perform record storage, cash flow, and contract fulfilment on one platform, thereby increasing work

efficiency.

Smart contracts reduce contract execution costs and the potential for disputes by automatically

fulfilling contracts upon fulfilment of conditions. However, the cost of the contract writing phase for

programming languages does not decrease. Since the contract is automatically executed, it gives the

other party the confidence that the contract will be fulfilled. When combined with the disclosed

transaction information, it reduces the risk of the transaction and reduces the uncertainty of the

contract. It reduces the ambiguity of contract interpretation because it is written in program code.

However, there is a possibility of inconsistencies in interpretation and writing errors in the writing

phase when programming contracts in program languages.

 Rec. ITU-T F.751.12 (09/2023) 3

Figure 1 – High-level conceptual architecture of DLT (ITU-T F.751.2)

Figure 1 illustrates the high-level architecture constrains the highly abstract hierarchy of distributed

ledger technologies. The smart contract mechanism is an optional in protocol component, but useful,

component for DLT and most decentralized applications (DApps) are written by smart contracts.

Smart contracts are programs written in a programming language that automatically execute contracts

at specific times or events as defined by the parties. Therefore, smart contracts have the following

problems.

– Since smart contracts are software code written in a programming language, they have the

same vulnerabilities as overflow problems and exception handling problems. If, in the

process of implementing the contract as a program, logic is omitted or wrong, there may be

a vulnerability, or the scope of the variable may be specified incorrectly.

– Smart contracts have a property called contract, which causes dependency problems. In order

for the contract to be confirmed as a block, a proof of work process is performed. In this

proof of work, the contract order is changed, which causes a problem.

– Since smart contracts are recorded on the distributed ledger, it is difficult to apply patches

when the smart contract is recorded on the distributed ledger. Since most smart contract

developers create based on existing smart contract code, once the vulnerable code is raised,

not only is it impossible to fix, but it also causes a problem that the error is expanded and

reproduced.

– Vulnerabilities exist when writing smart contracts using data outside the distributed ledger.

In the case of data outside the distributed ledger, it is difficult to check whether the data is

forged or has been tampered with.

6.2 Formal method

Figure 2 is modified from [ITU-T Y.3320] and illustrates the overall flow from the informal

description of the conceptual model, smart contract implementation and domain specific distributed

ledger through to the implementation of a system using formal methods. Formal methods are those

that specify or verify hardware/software systems in a way that is based on mathematics and logic.

Characteristics to specify the system using mathematical symbols are also described using logical

4 Rec. ITU-T F.751.12 (09/2023)

expressions to verify whether the system satisfies the specific conditions required by the user using

mathematical properties to reduce the ambiguity and uncertainty inherent in natural language. In other

words, it is possible to verify whether a complex system satisfies a specific condition and to have a

reliable verified system.

Figure 2 – Overall flow of formal methods

There are two types of formal methods: formal specification and formal verification. Formal

specification is based on the environment in which the system will operate using formal logic or

mathematical logic. It describes the requirements that the system must meet and the system design to

fulfil the requirements. The formal specification can be further divided into requirements

specification and design specification. A requirements specification is a specification that defines

what the system must satisfy, and a design specification shows how the system is constructed. Formal

verification is a technique that verifies the inconsistency and completeness of the system by analysing

the formal specification, using the verification method provided by the formal logic or mathematical

logic, or verifying whether the design satisfies the requirements in a given assumption. This describes

methods that are working for verification of smart contract models.

– Theorem proving is that involves encoding a system and its desired properties into a

particular mathematical logic. Then, it attempts to derive a formal proof of satisfaction of

these properties based on the axioms and inference rules of the formal system.

– Model checking is a technique for automatically verifying a system model against its

specification.

– Static analysis is any offline computation that inspects code and produces opinions about the

code.

7 Requirements of formal verification for smart contracts

7.1 DApp requirements

This clause identifies a set of DApp requirements that must be supported by DLT.

 Rec. ITU-T F.751.12 (09/2023) 5

– It is required that a DApp component provide an open interface in DLT. Through this,

verification request and reply of smart contracts are performed.

– It is required that a DApp component provide the ability to build smart contracts and interact

with the smart contract mechanism component.

7.2 Smart contract mechanism requirements

This clause identifies a set of smart contract mechanism requirements that must be supported by DLT.

– It is required that the smart contract mechanism component provide an open interface in DLT.

Through this, the verification request and reply of smart contracts are performed.

– It is required that the smart contract mechanism component provide the ability to store a

compiled execute file of the smart contract in the distributed ledger.

– It is required that the smart contract mechanism component provide the ability to store a

related file of the smart contract in the distributed ledger.

7.3 Formal method requirements

This clause identifies a set of formal method requirements that must be supported by DLT.

– It is required that formal method component provide open interface in the distributed ledger

environment. Through this, the verification request and reply of smart contracts are

performed.

– It is recommended that formal method component provide verification function for script

language problems of the smart contract, problems occurring in the process of interworking

with internal or external data in distributed ledger and problems caused by a contract order

problem.

– It is recommended that the formal method component allow access by authorized users.

– It is recommended that the formal method component provide formal syntax, interpret the

meaning of scripting language and support distributed ledger external API and protocol

interworking.

– It is recommended that the formal method component provide a function to check whether

there are no logical errors between the existing contract in the distributed ledger and the smart

contracts to be verified.

– It is recommended that the formal method component check whether there is an error in the

order between smart contracts in the block to be created.

– The formal method component can optionally provide for verification of the user who

composes or participates in a smart contract.

– The formal method component can optionally provide for verification of external data in a

smart contract.

8 Architecture of formal verification for smart contracts

8.1 Overview

In the high-level conceptual architecture of DLT, smart contracts and formal method components are

configured as shown in Figure 3, modified from [ITU-T F.751.2]. The high-level conceptual

architecture of DLT requires smart contract and smart contract mechanism modules to build smart

contracts. Formal method component for verification is also needed.

DApps are software that communicates with the DLT. The user interface of the distributed application

is similar to a website or mobile application. The smart contract represents the core logic of a

6 Rec. ITU-T F.751.12 (09/2023)

decentralized application. Therefore, these are executed through the interworking of smart contract

mechanisms.

Smart contract mechanisms are integral building blocks of the distributed ledger that process

information from external sensors or events and help the distributed ledger manage. By using smart

contract mechanisms for event processing and expressing logic, many complex applications can be

built on DLT. Smart contract mechanisms are used in the process of configuring and executing

decentralized applications. However, some DLT can only be composed of a DLT without

decentralized application. In this environment, smart contract writing and execution is done on the

DLT.

A formal method component is configured to prevent errors in the process of writing and executing

a smart contract. The formal method component has an interface to connect with the DLT and

distributed applications. The formal method component is composed of a parser, a model builder and

a model checker for smart contract and transaction data.

Figure 3 – High-level DLT architecture for formal verification

In order to provide formal verifications to the smart contract, additional functions comprised in the

formal methods component are needed to process the parser, model builder and model checker for

the smart contract. The parser for the smart contract function provides an open application interface

for DApps or a smart contract mechanism to express syntactic analysis. The model checker for a

smart contract function provides an open application interface for the DApp or smart contract

mechanism to check whether new semantics can cause errors or operational conflicts within the DLT.

 Rec. ITU-T F.751.12 (09/2023) 7

8.2 Formal verification

Smart contracts are expressed in various types of logic. They are composed of metadata and events

constituting the contract. Problems can arise due to smart contracts built or participated in by

malicious users. Therefore, previously written transactions and smart contracts are analysed to

identify malicious users. Malicious user verification can be classified using reinforcement learning

and deep learning methods. Based on this, it is possible to verify a user who composes or participates

in a smart contract.

For smart contracts built or participated in by normal users, the verification application is used for

verification. Verifying a smart contract consists of a formal verification in the form of graphical and

textual representation. A process of transmitting and parsing related information through an external

interface is required. It has an architecture in which a verification model is created and verified based

on parsed information. The relationship between the verification module and the smart contract for

this is shown in Figure 4.

Figure 4 – Relationship between the formal methods component and the DLT

Formal verification is performed in the following procedure:

– The smart contract or smart contract mechanism module requests verification to the formal

method component.

– The formal method component requests and receives smart contract code, transaction data,

and external data.

– The parser module parses smart contract and transaction data.

– The parser module verifies whether any of the smart contract author and participants is a

malicious user.

– The parser module verifies the validity of external data.

– The model builder module creates a formal verification model based on the parsed data.

– The model checker performs verification based on the created model and replies with the

result.

8 Rec. ITU-T F.751.12 (09/2023)

Data used to build smart contracts in DLT can be divided into external data and internal data. Internal

data refers to data managed by DLT. External data is data provided from outside DLT. In the case of

internal data in DLT, the data can be verified during the smart contract verification process.

In order to use external data in a smart contract, a smart contract for external data verification or a

provision site is required. Through this, external data is authenticated and accessed. A flow chart for

this is shown in Figure 5. When a smart contract execution request is received from a user, the smart

contract checks whether external data is used. If external data is used, it checks whether there is a

related data verification smart contract and executes it. External data verification is performed in the

procedure shown in Figure 5.

Figure 5 – Flow chart for smart contract based external data verification

The procedure is as follows:

– The user requests smart contract execution in DLT.

– The system checks whether external data is used.

– The system checks that a smart contract has been created to verify the use of external data.

– The system executes smart contracts for external data usage and smart contracts requested by

users.

 Rec. ITU-T F.751.12 (09/2023) 9

Appendix I

Use case of verification for smart contract

(This appendix does not form an integral part of this Recommendation.)

I.1 Overall procedure for formal verification

A smart contract is written using the program language supported in the distributed ledger and stored

in the ledger in the form of an executable file. A smart contract is executed according to the event

conditions. There are two ways to write these smart contracts, through a smart contract module or

through a DApp. The procedure for writing and verifying smart contracts through a DApp is as

follows.

– Building a smart contract through DApp.

– The smart contract written by DApp is delivered to the formal method component.

– The parser classifies smart contracts written in a programming language.

– A model builder generates a verification model from the parsed smart contract.

– The model checker is used to verify, and the results are delivered to the DApp.

– The DApp decides whether to execute a smart contract based on the verification results.

– The smart contract module is applied to the DApp according to whether the contract is

executed or not.

I.2 Internet of Things (IoT) environment

Various distributed ledger platforms have emerged for the Internet of Things (IoT) environment. In

addition, various distributed ledger applications that support the IoT environment have been

developed and applied to services. In this distributed ledger platform and application for the IoT

environment, smart contracts that support events between IoT devices are very important.

Table I.1 – Distributed ledger platforms or applications for IoT

Platforms Distributed ledger for IoT, which overcomes the inefficiencies of current distributed ledger

designs and introduces a new way of reaching consensus in a decentralized peer-to-peer

system

A consortium exploring the role distributed ledger may have in providing security for the

IoT.

A decentralized network for IoT powered by a privacy-centric distributed ledger

Applications E-charging mobility: Share & Charge was a "distributed-ledger-based mobility product for

EV users, allowing users to share charging stations across a decentralized platform without

middlemen."

Energy: Combining IoT devices (smart meters) with DLT simplified the process of

tracking and supplying renewable energy to end users

Wireless network: A decentralized machine network simplifies connecting anything to the

Internet through a distributed ledger, wireless network and open-source software

Location data sharing: Provides infrastructure for the transparent and compliant exchange

of location data; foot traffic sensor readings, store visit information and commute routes

10 Rec. ITU-T F.751.12 (09/2023)

I.2.1 Smart contract verification for resource sharing service

Resource sharing services support IoT device resource sharing, such as for bicycles. Consumer,

providers and service providers are required to provide resource sharing services. Figure I.1 shows a

distributed-ledger-technology-based resource sharing platform.

Figure I.1 – DLT based resource sharing service

The consumer builds a smart contract and requests a service to utilize the resource sharing service. It

is necessary to check if there is an error in the smart contract written by the consumer, so verification

is performed before a smart contract is executed. The overall process for this is shown in Figure I.2.

Figure I.2 – Overall process of smart contract verification for resource sharing service

 Rec. ITU-T F.751.12 (09/2023) 11

Appendix II

Related projects on verification for smart contract

(This appendix does not form an integral part of this Recommendation.)

VeriDis: Verification of Distributed Systems

– This project aims to exploit and further develop the advances and integration of interactive

and automated theorem proving applied to the area of concurrent and distributed systems.

The goal of this project is to assist algorithm and system designers to carry out formally

proved developments, where proofs of relevant properties as well as bugs can be found

completely automatically.

– Reference site: https://team.inria.fr/veridis/publications/

Certik: Building Fully Trustworthy SmartContracts and distributed ledger Ecosystems

– This platform is envisaged to be a formal verification framework for building fully

trustworthy smart contacts and distributed ledger ecosystems. Different from the traditional

testing approaches to detect bugs, this platform attempts to mathematically prove that

distributed ledger ecosystems are bug-free.

– Reference site: https://certik.org/

https://team.inria.fr/veridis/publications/
https://certik.org/

12 Rec. ITU-T F.751.12 (09/2023)

Bibliography

[b-ITU-T F.751.0] Recommendation ITU-T F.751.0 (2020), Requirements for distributed ledger

systems.

[b-ITU-T X.1401] Recommendation ITU-T X.1401 (2019), Security threats to distributed ledger

technology.

[b-ISO 22739] ISO 22739:2020, Blockchain and distributed ledger technologies —

Vocabulary.

Printed in Switzerland
Geneva, 2023

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L
Environment and ICTs, climate change, e-waste, energy efficiency; construction, installation and

protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y
Global information infrastructure, Internet protocol aspects, next-generation networks, Internet of

Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T F.751.12 (09/2023) Formal verification framework for smart contract on distributed ledger technology
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Overview of formal verification for smart contracts
	6.1 Smart contract
	6.2 Formal method

	7 Requirements of formal verification for smart contracts
	7.1 DApp requirements
	7.2 Smart contract mechanism requirements
	7.3 Formal method requirements

	8 Architecture of formal verification for smart contracts
	8.1 Overview
	8.2 Formal verification

	Appendix I Use case of verification for smart contract
	I.1 Overall procedure for formal verification
	I.2 Internet of Things (IoT) environment
	I.2.1 Smart contract verification for resource sharing service

	Appendix II Related projects on verification for smart contract
	Bibliography

