

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T F.735.2
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

(06/2021)

SERIES F: NON-TELEPHONE TELECOMMUNICATION
SERVICES

Multimedia services

Architecture and protocols for software-defined
cameras

Recommendation ITU-T F.735.2

ITU-T F-SERIES RECOMMENDATIONS

NON-TELEPHONE TELECOMMUNICATION SERVICES

TELEGRAPH SERVICE

Operating methods for the international public telegram service F.1–F.19

The gentex network F.20–F.29

Message switching F.30–F.39

The international telemessage service F.40–F.58

The international telex service F.59–F.89

Statistics and publications on international telegraph services F.90–F.99

Scheduled and leased communication services F.100–F.104

Phototelegraph service F.105–F.109

MOBILE SERVICE

Mobile services and multidestination satellite services F.110–F.159

TELEMATIC SERVICES

Public facsimile service F.160–F.199

Teletex service F.200–F.299

Videotex service F.300–F.349

General provisions for telematic services F.350–F.399

MESSAGE HANDLING SERVICES F.400–F.499

DIRECTORY SERVICES F.500–F.549

DOCUMENT COMMUNICATION

Document communication F.550–F.579

Programming communication interfaces F.580–F.599

DATA TRANSMISSION SERVICES F.600–F.699

MULTIMEDIA SERVICES F.700–F.799

ISDN SERVICES F.800–F.849

UNIVERSAL PERSONAL TELECOMMUNICATION F.850–F.899

ACCESSIBILITY AND HUMAN FACTORS F.900–F.999

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T F.735.2 (06/2021) i

Recommendation ITU-T F.735.2

Architecture and protocols for software-defined cameras

Summary

As defined in Recommendation ITU-T F.735.1, software-defined cameras can provide the basic

hardware service application programming interfaces (APIs) and the common software service APIs

for application developers; these APIs are called "service-oriented interfaces". Through these APIs the

upper layer applications can obtain raw video, pan/tilt/zoom (PTZ), common software and hardware

resource to realize video intelligent analysis and non-intelligent businesses. Recommendation ITU-T

F.735.2 specifies the architecture and service-oriented interface protocols for software-defined

cameras, including functional architecture of software-defined camera system, service-oriented

interface message protocol structure, and service-oriented interface protocols.

History

Edition Recommendation Approval Study Group Unique ID*

1.0 ITU-T F.735.2 2021-06-13 16 11.1002/1000/14678

Keywords

Service-oriented interface, software-defined camera.

* To access the Recommendation, type the URL http://handle.itu.int/ in the address field of your web

browser, followed by the Recommendation's unique ID. For example, http://handle.itu.int/11.1002/1000/11

830-en.

http://handle.itu.int/11.1002/1000/14678
http://handle.itu.int/11.1002/1000/11830-en
http://handle.itu.int/11.1002/1000/11830-en

ii Rec. ITU-T F.735.2 (06/2021)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years, establishes

the topics for study by the ITU-T study groups which, in turn, produce Recommendations on these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some other

obligatory language such as "must" and the negative equivalents are used to express requirements. The use of

such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may involve

the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence, validity or

applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others outside of

the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents/software copyrights, which may be required to implement this Recommendation.

However, implementers are cautioned that this may not represent the latest information and are therefore

strongly urged to consult the appropriate ITU-T databases available via the ITU-T website at

http://www.itu.int/ITU-T/ipr/.

© ITU 2021

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T F.735.2 (06/2021) iii

Table of Contents

 Page

1 Scope .. 1

2 References... 1

3 Definitions .. 1

3.1 Terms defined elsewhere .. 1

3.2 Terms defined in this Recommendation ... 1

4 Abbreviations and acronyms .. 2

5 Conventions .. 2

6 Architecture of an SDC system .. 2

6.1 Functional architecture of an SDC system ... 3

6.2 Service-oriented interface architecture and classification 4

7 SDC SOI message protocol structure ... 6

7.1 SDC SOI access mechanism definition .. 6

7.2 Message specification (HBTP) ... 7

7.3 SOI message description format ... 9

8 Protocols of service-oriented interface ... 9

8.1 Video service API ... 9

8.2 Algorithm inference API .. 20

Appendix I – Data Type Definition and API Example .. 25

I.1 SOI data type definition example ... 25

I.2 Video service API example .. 26

I.3 Algorithm inference example ... 34

Bibliography... 39

 Rec. ITU-T F.735.2 (06/2021) 1

Recommendation ITU-T F.735.2

Architecture and protocols for software-defined cameras

1 Scope

Service-oriented interfaces are those APIs that are provided by the software-defined camera (SDC)

operating system (OS) for the upper application developer to invoke the hardware and common

software resources including raw video, algorithms inference, event, pan/tilt/zoom (PTZ), etc. to

complete the intelligent analysis application development. The upper application layer can also obtain

raw video, PTZ, common software and hardware resources through these APIs to complement

intelligent analysis and non-intelligent business of monitoring. This Recommendation specifies the

architecture and protocols for software-defined cameras, including the functional architecture of an

SDC system, the service-oriented interface message protocol structure, and service-oriented interface

protocols.

The scope of this recommendation includes:

1) Architecture of SDC systems;

2) SDC service-oriented interface (SOI) message protocol structure;

3) Protocols of service-oriented interface.

2 References

The following ITU-T Recommendations and other references contain provisions which, through

reference in this text, constitute provisions of this Recommendation. At the time of publication, the

editions indicated were valid. All Recommendations and other references are subject to revision;

users of this Recommendation are therefore encouraged to investigate the possibility of applying the

most recent edition of the Recommendations and other references listed below. A list of the currently

valid ITU-T Recommendations is regularly published. The reference to a document within this

Recommendation does not give it, as a stand-alone document, the status of a Recommendation.

[ITU-T F.735.1] Recommendation ITU-T F.735.1 (2020), Requirements for software-defined

cameras.

[ITU-T F.743.1] Recommendation ITU-T F.743.1 (2015), Requirements for intelligent visual

surveillance.

3 Definitions

3.1 Terms defined elsewhere

This Recommendation uses the following term defined elsewhere:

3.1.1 software-defined camera [ITU-T F.735.1]: Software-defined camera is a kind of IPU (see

[ITU-T F.743.1]), which provides a technical approach to decouple hardware and software and to

support algorithms' on-demand deployment, online upgrade without services interrupting, continuous

self-adaptive learning to adapt to various scenarios.

3.2 Terms defined in this Recommendation

This Recommendation defines the following terms:

3.2.1 SDC studio: A software-defined camera (SDC) algorithm warehouse that is deployed in a

cloud server and which supports service including centralized artificial intelligence model training,

2 Rec. ITU-T F.735.2 (06/2021)

intelligent algorithms online development, algorithm integration verification, application packing and

release.

3.2.2 SDC controller: A client located in the front-edge of a video surveillance system, and which

acts as an operation centre for massive software-defined cameras (SDCs). The main functions include

SDC control (such as restart, stop, configuration, etc.) and algorithm management (such as

deployment, upgrade, deletion, etc.).

4 Abbreviations and acronyms

This Recommendation uses the following abbreviations and acronyms:

API Application Programming Interface

FSAAS File System as a Service

HBTP Hyper Binary Transfer Protocol

HTTPS Hyper Text Transfer Protocol over Secure Socket Layer

NNIE Neural Network Inference Engine

NoSQL Nor only Structured Query Language

OS Operating System

PTZ Pan/Tilt/Zoom

SDC Software-Defined Camera

SDK Software Development Kit

SOI Service-Oriented Interface

SQL Structured Query Language

SSH Secure Shell

VENC Video Encoder

VI Video Input

YUV luminance/luma (Y) – blue luminance (U) – red luminance (V)

5 Conventions

In this Recommendation:

– The keywords "is required to" indicate a requirement which must be strictly followed and

from which no deviation is permitted if conformance to this document is to be claimed.

– The keywords "is recommended" indicate a requirement which is recommended but which

is not absolutely required. Thus this requirement needs not be present to claim conformance.

6 Architecture of an SDC system

The overall functional architecture of SDC is defined in [ITU-T F.735.1]. This clause describes the

whole functional architecture for an SDC system and the detailed service-oriented interface

architecture.

 Rec. ITU-T F.735.2 (06/2021) 3

6.1 Functional architecture of an SDC system

6.1.1 Overview of entities

The SDC system functional architecture could be decomposed into three units as follows. The

architecture is illustrated in Figure 6-1.

– SDC studio (SDCS)

– SDC controller (SDCC)

– SDC

Figure 6-1 – Functional architecture of an SDC system

6.1.2 SDCS: SDC studio

SDC studio can provide the algorithm developer a self-contained and efficient development platform,

and can also provide the SDC user an algorithm warehouse from where the needed algorithm can be

downloaded and deployed in specific SDC devices. The functions of such platform include AI model

training, verification, online development, testing, etc. The detailed functions are as follows:

– AI model training and transfer: training AI model using the specific train data and providing

AI model conversion tool to complete model conversion.

– Online algorithm development: supporting online algorithm development that is based on the

SDC OS service APIs.

– Algorithm integration and verification: supporting specific algorithm tested and deployed in

the test environment of SDC to verify the function of this algorithm.

– Algorithm packaging and release: providing tools to complete algorithm packaging.

– Algorithm warehouse: supporting app licence management, app reviewing and app billing,

etc.

6.1.3 SDCC: SDC controller

The SDC controller is a client deployed in the front-end of the surveillance system. It creates

connections with SDCs and SDC studio, which acts as an operation centre for SDC management,

4 Rec. ITU-T F.735.2 (06/2021)

including camera configuration, user management, device control, and algorithm life cycle

management. It is recommended that the whole management operation support batch operation. The

detailed functions are as follows:

– Algorithm download: accessing the SDC studio and downloading a specific algorithm.

– Device control: video live streaming, PTZ control, image capture, recording, etc.

– User management: identification and authentication, access control, authorization, etc.

– Device configuration: protocol access parameter configuration, alarm configuration, PTZ

configuration, basic video streaming configuration, etc.

– Algorithm life cycle management: algorithm deployment, activating, deactivating, upgrade

and deletion in SDC.

6.1.4 SDC

The architecture of SDC is already defined in [ITU-T F.735.1], and the security function is added in

Figure 6-1 to provide a full explanation of SDC. The security management contains data security,

application security, system security and management security.

The security management components provide:

– Data security: data integrity verification, encrypted storage of sensitive data, system data

backup, key security, etc. The data type including image, intelligent metadata (such as vehicle

attribute, object detection result, the extraction feature of a human body, etc.) and alarm data

in the SDC.

– Application security: installation package (APP) integrity verification, application

authorization and authentication, application licence management, etc.

– System security: provision of the necessary measures to achieve system security. This

includes performing authority management and control on SDC key data to prevent users

from unauthorized operation, providing a digital signature and verification tool for algorithm

package integrity verification and anti-hacking.

– Management security: supporting remote maintenance security (such as using hypertext

transfer protocol over secure socket layer (HTTPS) and secure shell (SSH) protocol when

logging into in the SDC, during sensitive data transmission, etc.) and ensuring account and

password security.

For the functions of SDC hardware, SDC OS, and application layer, please refer to clause 7 in

[ITU-T F.735.1].

6.2 Service-oriented interface architecture and classification

6.2.1 Service-oriented interface architecture

The software-defined camera (SDC) software architecture consists of the following layers, which are

illustrated in Figure 6-2:

– Customized service software layer: Provides a variety of service functions required by end

users and supports on-demand service loading.

– Common software capability service layer: Provides support for the service software layer to

accelerate the production of various customization scenarios and innovative services. The

common software capabilities can be loaded on demand.

– Basic hardware capability service layer: Provides interfaces for using underlying hardware

resources. All basic hardware capabilities at this layer are based on the SDC hardware

capability.

 Rec. ITU-T F.735.2 (06/2021) 5

– SDC service-oriented interface layer: Defines the specifications of communication interfaces

among capability service layers to achieve robust simplicity, high efficiency and excellent

scalability.

Figure 6-2 – Architecture of SDC software

6.2.2 Service-oriented interface classification

The SDC service-oriented interface can be classified into two types: the basic hardware capability

service APIs and the common software capability service APIs.

Basic hardware capability service APIs

The basic hardware capability service APIs provide interfaces for using SDC hardware resources,

including but not limited to getting the raw video (such as YUV frame), invoking the algorithm model

inference, controlling the SDC PTZ, etc. For the function description of these service, see Table 6-1.

NOTE – YUV is abbreviation for "Luminance (Luma) / blue luminance (U) / red luminance (V)" that is a type

of colour encoding representation historically used in analogue systems, such as colour components in SECAM

and PAL colour spaces.

Table 6-1 – Basic hardware capability service interfaces

Service name Function description

Video service Provides the function of subscribing to intelligent algorithm input data – video

stream data

Codec service Provides the codec function for media chips

Crypto service Provides the encryption and decryption functions supported by the bottom-layer

chip

Algorithm service Provides the function of loading and calculating algorithm model files for AI chips

PTZ control service Provides the pan-tilt-zoom (PTZ) control function

Common software capability service APIs

The common software capability service APIs are used to provide the common software capabilities

of the camera which include API gateway interface, event management, security, log, etc. For the

function description of these services, see Table 6-2.

6 Rec. ITU-T F.735.2 (06/2021)

Table 6-2 – Common software capability service interfaces

Service name Function description

App

management

Provides app lifecycle management capabilities, such as app installation, uninstallation,

enabling, disabling, starting, stopping, and watchdog.

Event

management

Provides flexible event subscription mechanisms, and implements common capabilities

of releasing and subscribing to event data based on the zero-copy mechanism.

Storage

management

Provides the functions of managing disk partitions and storing NoSQL and SQL

statements.

Portal service Provides a unified entry for web pages of all SDC apps and the SDC OS. The entry is a

human-machine interface.

Gateway API Provides a unified entry for northbound software development kits (SDKs) of all SDC

apps and the SDC OS. The northbound SDK provides the service from SDC to client.

7 SDC SOI message protocol structure

7.1 SDC SOI access mechanism definition

This clause specifies the invocation mechanism of service-oriented interfaces (SOIs). This invocation

are instructions for using a file operating interface that is called file system as a service (FSAAS). All

the methods are illustrated in Table 7-1. A user can invoke the open interface to open the file

corresponding to a service and obtain the read/write handle. Then user can invoke the read/write

interface to interact with the service. The operation for invoking the open interface is similar to that

for setting up a TCP socket link. All the service files are located in the "/mnt/srvfs" directory in the

camera system, and the service name is the file name. For example, the raw video service provided

by the basic hardware capability service layer is located in the "/mnt/srvfs/video.iaas.sdc" file, this

file directory address is the service URI of this raw video service interface.

Table 7-1 – The invocation methods of SOI

Methods Description

Open Get service handle

Read Get service response

Write Execute operation of interface

Close Close service handle

The example of invoking the video service API which contains the raw video (YUV frame data)

registration and subscription is shown in Figure 7-1, the variable "serviceHandle" is the video service

handle, while the methods "open, write, read and close" are used to operate the service handle like

file system operation. This flow is the invocation mechanism of SDC service-oriented interface.

 Rec. ITU-T F.735.2 (06/2021) 7

Figure 7-1 – Procedure flow of raw video service invocation

7.2 Message specification (HBTP)

This clause defines the message specification named hyper binary transfer protocol (HBTP) of such

SDC SOI, which is shown in Figure 7-2. A message contains a maximum of three parts: common

header, extension header and message content. The extension header and message content are

optional. For details about the message content and extension header of each service interface, see

the corresponding interface definition subclause in clause 8.

Figure 7-2 – HBTP of SDC SOI

NOTE – The message structures of the following service-oriented interfaces are defined according to the

network order (high bytes stored in lower memory locations).

Common header

The common header is defined according to the network order (big endian) as shown in Figure 7-3.

Figure 7-3 – Common header definition of SDC SOI

The definition of common header fields is shown in Table 7-2. The data structure can be defined

based on the endian macro definition of the GCC; for an example, please refer to clause I.1.1.

8 Rec. ITU-T F.735.2 (06/2021)

Table 7-2 – Common header field definition

Field Length Semantics

version 2 bytes Protocol version. Currently, the field has the fixed value of 0x5331.

url_ver 1 byte Interface version compatibility.

R 1 bit Indicates whether a message is a request or response. The value 1 indicates

response.

method 7 bits Method definition.

1: CREATE

2: GET

3: UPDATE

4: DELETE

url 2 bytes Resource ID

code 2 bytes Response code (valid only when R is set to 1)

head_length 2 bytes Total length of the common header and extension header

trans-id 2 bytes Transaction ID. The trans_id field in the service response header

corresponds to the trans_id field in the request. In the pipeline scenario

similar to HTTP, the server cannot ensure that the sequence of the

response and request is consistent. The client can match the request and

the response based on this field.

content_length 4 bytes Total length of the message content

Extension header

The specific type of the extension header and the definition of the data structure corresponding to this

type of extension header are determined by each service interface defined in clause 8. The total length

is aligned by 8 bytes. The extension header definition is illustrated in Figure 7-4.

Figure 7-4 – Extension header definition of SDC SOI

The definition of extension header fields is shown in Table 7-3. The data structure can be defined

based on the endian macro definition of the GCC, for the example please refer to clause I.1.2.

Table 7-3 – Extension header field definition

Field Length Semantics

type 2 The specific type is defined by each service

length 2 Total length of the extension header and its content,

excluding the padding character.

Extension header content hdr_len - 8 Actual message body content carried

padding ((hdr_len + 7) &

~7) – hdr_len

Ensure that the data of the entire extension header is

8-byte aligned

 Rec. ITU-T F.735.2 (06/2021) 9

7.3 SOI message description format

The SOI message description is illustrated in Table 7-4. The field URI is the "url-ver" field in common

header, the detailed definition of common header and extension can refer to clause 7.2. The methods

CREATE, GET, UPDATE and DELETE are used in common header to complete the corresponding

operation to SOI services. The message content is the specific message as defined in clause 8.

Table 7-4 – SOI message description format

Function The interface function description

URI URI Description URI Value

Request Response

Common header Extension

header

Content Extension header Content

Method

Response code

8 Protocols of service-oriented interface

This clause defines the video service APIs and the algorithm APIs which are essential APIs for

algorithm developer to get raw video frame data and execute algorithm inference. With the algorithm

inference APIs, the developer can invoke the deep learning inference ability of the AI chip and realize

neural network model inference.

8.1 Video service API

8.1.1 Video service function definition

The processing of the raw video which is generated from a sensor is illustrated in Figure 8-1. The raw

video is changed to a YUV frame after the processing in the video process function model, and after

encoding the video data is converted to ENC frame data. The video service is aimed to support the

YUV or video encoder (VENC) video data subscription capability. This clause specifies the YUV

and VENC video data subscription, release function and image capture function.

Figure 8-1 – Raw video processing procedure in SDC

8.1.2 Video logical channel definition

There are two types of channels. One is the YUV video frame data channel that is not compressed.

The other is the VENC frame (H.264/H.265) channel. Users can query the attributes and usage status

of each channel and set the data output format depending on their needs. If there are multiple users,

the users need to collaborate with each other to eliminate potential channel resource and configuration

conflicts.

8.1.2.1 YUV logical channel definition

For the definition and channel number value of YUV logical channel, see Table 8-1.

10 Rec. ITU-T F.735.2 (06/2021)

Table 8-1 – YUV logical channel definition

Resource Type Channel number value range

YUV snapshot frame channel uint32 0

YUV frame data channel uint32 1–99

NOTE – The channel number is obtained through the YUV logical channel attribute query interface. The

number of channels supported by different hardware devices varies.

8.1.2.2 VENC logical channel definition

For the definition and channel number value of VENC logical channel, see Table 8-2.

Table 8-2 – VENC logical channel definition

Resource Type Channel number value range

VENC frame data channel uint32 100–104

NOTE – The channel number is obtained through the YUV logical channel attribute query interface. The

number of channels supported by different hardware devices varies.

8.1.3 YUV logical channel attribute setting

8.1.3.1 YUV logical channel attribute setting

Table 8-3 – YUV logical channel attribute setting interface definition

Function YUV logical channel attribute setting

URI URI Description URI Value

SDC/URL/YUV/CHANNEL 0

Request Response

Common header Extension

header

Content Extension

header

Content

Method UPDATE None sdc_yuv_channel_p

aram

None None

Response code If the function is normal, response code 200 is returned. If an input error occurs,

response code 400 is returned. If a server error occurs, response code 500 is

returned.

The YUV logical channel attribute setting interface definition is illustrated in Table 8-3.

8.1.3.2 Content definition

8.1.3.2.1 sdc_yuv_channel_param

The sdc_yuv_channel_param data structure definition is illustrated in Table 8-4.

Table 8-4 – sdc_yuv_channel_param definition

Element name Type Description

channel_number uint32 logical channel number

Width uint32 resolution

height uint32 resolution

Fps uint32 Frame per second

 Rec. ITU-T F.735.2 (06/2021) 11

Table 8-4 – sdc_yuv_channel_param definition

Element name Type Description

on_off uint32 The value 0 indicates that the channel is disabled.

Other values indicate that the channel is enabled.

format uint32 NV12

8.1.3.3 Extension header definition

None.

8.1.3.4 Implementation example

Refer to clause I.2.1.

8.1.4 YUV logical channel attribute query

8.1.4.1 YUV logical channel attribute query

Table 8-5 – YUV logical channel attribute query interface definition

Function YUV logical channel attribute query

URI URI Description URI Value

SDC/URL/YUV/CHANNEL 0

Request Response

Common header Extension

header

Content Extension

header

Content

Method GET None channel_number None sdc_yuv_channel_info

Response

code

If the function is normal, response code 200 is returned. If an input error occurs, response

code 400 is returned. If a server error occurs, response code 500 is returned.

The YUV logical channel attribute query interface definition is illustrated in Table 8-5.

8.1.4.2 Content definition

The data structure definition of "channel_number" is shown in Table 8-6. For the "sdc_resolution"

definition, please see Table 8-7, for "sdc_yuv_channel_info" definition, see Table 8-8.

8.1.4.2.1 channel_number

Table 8-6 – channel_number definition

Element name Type Description

channel_number uint32 logical channel number

8.1.4.2.2 sdc_resolution

Table 8-7 – sdc_resolution definition

Element name Type Description

width uint32 Width of resolution

height uint32 Height of resolution

12 Rec. ITU-T F.735.2 (06/2021)

8.1.4.2.3 sdc_yuv_channel_info

Table 8-8 – sdc_yuv_channel_info definition

Element name Type Description

max_resolution sdc_resolution Maximum resolution supported by the channel.

param sdc_yuv_channel_param YUV channel attribute

is_snap_channel uint32 Indicates whether the channel is a snapshot

channel. The options are as follows: 0: common

channel; 1: snapshot channel.

src_id uint32 Data source. The data source uses the IP address to

identify the data source (local camera or other

cameras) of the channel. For the local multi-lens

camera, the data source is identified by 127.0.0.x,

where x starts from 1 and is incremented by 1.

subscriber_cnt uint32 Number of users who subscribe to data of this

channel. The value greater than 1 indicates that

multiple users subscribe to data of the same

channel. Video data is transferred to users in zero-

copy mode. If a user modifies the data obtained

from this channel, other users will read the data

after modification.

resolution_moditfy uint32 Indicates whether the resolution parameter of the

channel can be modified. The options are as

follows: 0: no; 1: yes.

8.1.4.3 Extension header definition

None.

8.1.4.4 Implementation example

Refer to clause I.2.2.

8.1.5 YUV frame data subscription

8.1.5.1 YUV frame data subscription interface

Table 8-9 – YUV frame data subscription interface definition

Function YUV frame data subscription

URI URI Description URI Value

SDC_URL_YUV_DATA 1

Request Response

Common header Extension

header

Content Extension header Content

Method GET Refer to

clause

8.1.5.3.1

channel_number

(refer to clause

8.1.4.2)

Refer to clause

8.1.5.3.2

sdc_yuv_data

Response

code

If the function is normal, response code 200 is returned. If flow control is enabled, response

code 509 (Bandwidth Limit Exceeded) and empty response content are returned. If an input

error occurs, response code 400 is returned. If a server error occurs, response code 500 and

empty response content are returned.

 Rec. ITU-T F.735.2 (06/2021) 13

The YUV frame data subscription interface definition is illustrated in Table 8-9.

8.1.5.2 Content definition

For the "sdc_yuv_frame" definition, please see Table 8-10, for "sdc_yuv_data" definition, see

Table 8-11.

8.1.5.2.1 sdc_yuv_frame

Table 8-10 – sdc_yuv_frame data

Element name Type Description

addr_phy uint32 Physical address

addr_virt uint32 Virtual address

size uint32 Size of frame

width uint32 Width pixel of resolution

height uint32 Height pixel of resolution

stride uint32 Image width rounded up, for 16 byte aligned

format uint32 Frame format

reserve uint32 Reserve field

8.1.5.2.2 sdc_yuv_data

Table 8-11 – sdc_yuv_data

Element name Type Description

Channel uint32 Channel number

Reserve uint32 Reserve field

Pts uint32 Timestamp carried by the bottom-layer chip, in microseconds.

Pts_sys uint32 Timestamp of the data obtained by the server, in microseconds.

Frame sdc_yuv_frame sdc_yuv_frame

8.1.5.3 Extension header

8.1.5.3.1 Extension header for request

The request extension header can be SDC_HEAD_YUV_SYNC,

SDC_HEAD_YUV_CACHED_COUNT_MAX or SDC_HEAD_YUV_PARAM_MASK, the

definition are as follows:

a) SDC_HEAD_YUV_SYNC: Extension header for identifying multi-channel synchronization

is illustrated in Figure 8-2.

Figure 8-2 – Extension header: SDC_HEAD_YUV_SYNC

The value is saved in the Reserve field in the extension header. To subscribe to data of multiple

channels, if this extension header does not exist, the synchronization policy is used by default.

14 Rec. ITU-T F.735.2 (06/2021)

b) SDC_HEAD_YUV_CACHED_COUNT_MAX: Extension header for setting the flow

control threshold is illustrated in Figure 8-3.

Figure 8-3 – Extension header: SDC_HEAD_YUV_CACHED_COUNT_MAX

The value is saved in the Reserve field in the extension header. If this extension header does not exist,

the default number of cached video frames on the server is calculated as follows: Sum of frame rates

of each channel x 2 (that is, YUV frame resources are occupied for up to 2 s).

If the total number of cached (not released) video frames exceeds the threshold, the server starts the

flow control function and does not forward the subscribed video frame data. Therefore, users need to

invoke the interface for releasing YUV frames as needed.

c) SDC_HEAD_YUV_PARAM_MASK: Extension header for subscribing to frame

parameters is illustrated in Figure 8-4.

Figure 8-4 – Extension header: SDC_HEAD_YUV_PARAM_MASK

The value is saved in the Reserve field in the extension header. If this extension header does not exist,

the default number of cached video frames on the server is calculated as follows: Sum of frame rates

of each channel x 2 (that is, YUV frame resources are occupied for up to 2 s).

If the total number of cached (not released) video frames exceeds the threshold, the server starts the

flow control function and does not forward the subscribed video frame data. Therefore, users need to

invoke the interface for releasing YUV frames as needed.

8.1.5.3.2 Extension header for response

The request extension header can be SDC_HEAD_YUV_CACHED_COUNT, or

SDC_HEAD_YUV_PARAM_SNAP, the definition are as follows:

a) SDC_HEAD_YUV_CACHED_COUNT: Extension header for counting cached video

frames, the format definition is illustrated in Figure 8-5.

Figure 8-5 – Extension header: SDC_HEAD_YUV_CACHED_COUNT

 Rec. ITU-T F.735.2 (06/2021) 15

b) SDC_HEAD_YUV_PARAM_SNAP: Extension header for snapshot frame parameters, the

format definition is illustrated in Figure 8-6.

Figure 8-6 – Extension header: SDC_HEAD_YUV_PARAM_SNAP

For details about the specified snapshot ID, see the input parameters of the snapshot frame interface

in clause 8.1.11.

8.1.5.4 Implementation example

Refer to YUV frame subscription example in clause I.2.3.

8.1.6 YUV frame data release

8.1.6.1 YUV frame data release interface

Table 8-12 – YUV frame data release interface definition

Function YUV frame data release

URI URI Description URI Value

SDC_URL_YUV_DATA 0x01

Request Response

Common header Extension

header

Content Extension header Content

Method DELETE None sdc_yuv_data None None

The YUV frame data release interface definition is illustrated in Table 8-12.

8.1.6.2 Content definition

The definition of sdc_yuv_data refer to 8.1.5.2.2.

8.1.6.3 Extension header

None.

8.1.6.4 Implementation example

Refer to the YUV frame data subscription example in clause I.2.3.

8.1.7 VENC logical channel attribute setting

8.1.7.1 VENC logical channel attribute setting interface

The VENC logical channel attribute setting interface definition is illustrated in Table 8-13.

16 Rec. ITU-T F.735.2 (06/2021)

Table 8-13 – VENC logical channel attribute setting interface definition

Function VENC logical channel attribute setting

URI URI Description URI Value

SDC_URL_VENC_CHANNEL 2

Request Response

Common header Extension

header

Content Extension

header

Content

Method UPDATE None sdc_venc_channel_param None None

Response

code

If the function is normal, response code 200 is returned. If an input error occurs, response

code 400 is returned. If a server error occurs, response code 500 is returned.

8.1.7.2 Content definition

For the "sdc_venc_channel_param" definition, please see Table 8-14.

8.1.7.2.1 sdc_venc_channel_param

Table 8-14 – sdc_venc_channel_param

Element name Type Description

channel uint32 The number of the logical channel

width uint32 Resolution

height uint32 Resolution

fps uint32 Frame per second

on_off uint32 The value 0 indicates that the channel is disabled. Other values

indicate that the channel is enabled.

format uint32 Compression format: H264 / H265 / MJPEG

8.1.7.3 Extension header definition

None.

8.1.7.4 Implementation example

Refer to clause I.2.4.

8.1.8 VENC logical channel attribute query

8.1.8.1 VENC logical channel attribute query interface

The VENC logical channel attribute query interface definition is illustrated in Table 8-15.

 Rec. ITU-T F.735.2 (06/2021) 17

Table 8-15 – VENC logical channel attribute query interface definition

Function VENC logical channel attribute query

URI URI Description URI Value

SDC_URL_VENC_CHANNEL 2

Request Response

Common header Extension

header

Content Extension header Content

Method GET None channel_number None None

Response

code

If the function is normal, response code 200 is returned. If an input error occurs, response

code 400 is returned. If a server error occurs, response code 500 is returned.

8.1.8.2 Content definition

The definition of "channel_number" refer to clause 8.1.4.2.

8.1.8.3 Extension header definition

None.

8.1.8.4 Implementation example

Refer to clause I.2.5.

8.1.9 VENC frame data subscription

8.1.9.1 VENC frame data subscription API

The VENC frame data subscription interface definition is illustrated in Table 8-16.

Table 8-16 – VENC frame data subscription interface definition

Function VENC frame data subscription

URI URI Description URI Value

SDC_URL_VENC_DATA 0x03

Request Response

Common header Extension

header

Content Extension header Content

Method GET Refer to

clause

8.1.9.3.1

channel_number

(refer to clause

8.1.4.2)

Refer to clause

8.1.9.3.2

sdc_venc_data

Response

Code

If the function is normal, response code 200 is returned. If flow control is enabled, response

code 509 (Bandwidth Limit Exceeded) and empty response content are returned. If an input

error occurs, response code 400 is returned. If a server error occurs, response code 500 and

empty response content are returned.

8.1.9.2 Content definition

For the definition of "sdc_venc_frame", please see Table 8-17. For the definition of "sdc_venc_data",

please see Table 8-18.

18 Rec. ITU-T F.735.2 (06/2021)

8.1.9.2.1 sdc_venc_frame

Table 8-17 – sdc_venc_frame

Element name Type Description

addr_phy uint32 Physical address

addr_virt uint32 Virtual address

size uint32 The size of frame

width uint32 Resolution width

height uint32 Resolution height

format uint32 SDC_H264 OR SDC_H265

frame_type uint32 SDC_VENC_FRAME_I/P/B

8.1.9.2.2 sdc_venc_data

Table 8-18 – sdc_venc_data

Element name Type Description

channel uint32 The number of the logical channel

reserve uint32 Reserve

frame_pts uint64 Frame timestamp

pts_sys uint64 System timestamp

frame sdc_venc_frame sdc_venc_frame

8.1.9.3 Extension header

8.1.9.3.1 Extension header for request

SDC_HEAD_VENC_CACHED_COUNT_MAX: Extension header for setting the flow control

threshold; the format definition is illustrated in Figure 8-7.

Figure 8-7 – Extension header: SDC_HEAD_VENC_CACHED_COUNT_MAX

The value is saved in the Reserve field in the extension header. If this extension header does not exist,

the default number of cached video frames on the server is calculated as follows: Sum of frame rates

of each channel x 2. (That is, VENC frame resources are occupied for up to 2s. This number is not

related to the size of each frame. The client caches consecutive video frames.)

If the total number of cached (not released) video frames exceeds the threshold, the server starts the

flow control function and does not forward the subscribed video frame data. Therefore, users need to

invoke the interface for releasing VENC frames as needed.

8.1.9.3.2 Extension header for response

SDC_HEAD_VENC_CACHED_COUNT: Extension header for counting cached video frames, the

format definition is illustrated in Figure 8-8.

 Rec. ITU-T F.735.2 (06/2021) 19

Figure 8-8 – Extension header: SDC_HEAD_VENC_CACHED_COUNT

8.1.9.4 Implementation example

Refer to clause I.2.6.

8.1.10 VENC frame data release

8.1.10.1 VENC frame data release interface

The VENC frame data release interface definition is illustrated in Table 8-19.

Table 8-19 – VENC frame data release interface definition

Function VENC frame data release

URI URI Description URI Value

SDC_URL_VENC_DATA 0x03

Request Response

Common header Extension

header

Content Extension header Content

Method DELETE None sdc_venc_data

(refer to clause

8.1.9.2.2)

None None

8.1.10.2 Content definition

None.

8.1.10.3 Extension header definition

None.

8.1.10.4 Implementation example

For an implementation example of the interface please refer to the VENC frame data subscription

interface in clause I.2.6.

8.1.11 Snapshot interface

8.1.11.1 Snapshot interface

The snapshot interface definition is illustrated in Table 8-20.

20 Rec. ITU-T F.735.2 (06/2021)

Table 8-20 – Snapshot interface definition

Function Snapshot interface

URI URI Description URI Value

SDC_URL_YUV_SNAP 0x04

Request Response

Common header Extension

header

Content Extension header Content

Method CREATE None sdc_yuv_snap_param None None

Response

code

If the function is normal, response code 200 is returned. Other values are error codes.

Snapshot frames are classified into two types: snapshot proactively triggered by external devices and

snapshot proactively triggered by the service layer. To obtain the two types of snapshot frame data,

the service layer needs to subscribe to data of the snapshot channel. During subscription, you need to

set the extension header to obtain the snapshot frame parameters.

NOTE – The snapshot request must be sent on the handle of the subscribed snapshot channel. Otherwise, the

snapshot frame data cannot be received.

8.1.11.2 Content definition

For the definition of "sdc_yuv_snap_param", please see Table 8-21.

8.1.11.2.1 sdc_yuv_snap_param

Table 8-21 – sdc_yuv_snap_param

Element name Type Description

id uint32 User id. When a user subscribes to snapshot frame data, the user

can obtain the corresponding ID for matching.

num uint32 Number of snapshots

frame_pts uint64 Frame timestamp

interval_msec uint64 Snapshot interval, in milliseconds. A maximum of four snapshot

intervals can be set. The number of snapshot intervals equals the

number of snapshots minus 1. Currently, a maximum of three

snapshots are supported. That is, a maximum of two snapshot

intervals can be set currently.

portaddr_name char[16] Port name

8.1.11.3 Extension header

None.

8.1.11.4 Implementation example

Refer to the YUV frame data subscription example in clause I.2.3.

8.2 Algorithm inference API

This clause defines the algorithm inference API based on the neural network inference engine (NNIE)

model, NNIE is a widely used acceleration engine in surveillance system Soc.

 Rec. ITU-T F.735.2 (06/2021) 21

8.2.1 Model creation

8.2.1.1 Model creation interface

This interface is used to create executable models based on the input WK file. The NNIE model

creation interface definition is illustrated in Table 8-22.

Table 8-22 – Model creation interface definition

Function NNIE model creation

URL URI Description URI Value

SDC_URL_NNIE_MODEL 0

Request Response

Common header Extension

header

Content Extension header Content

Method CREATE Refer to

clause

8.2.1.3

Refer to clause

8.2.1.2

None Model

Response

code

If the function is normal, response code 200 is returned. Other values are error codes.

8.2.1.2 Content definition

If the extension header SDC_HEAD_NNIE_MODEL_CONTENT_TYPE is set to 0 or not defined,

the request content is SDCMmz.

If the extension header SDC_HEAD_NNIE_MODEL_CONTENT_TYPE is set to 1, the content

specifies the file name in the following format: char filename[].hbtp.content_length indicates the

length of the file name. Therefore, whether the file name ends with NULL does not affect the

function.

8.2.1.2.1 SDCMmz

For the definition of "SDCMmz", please see Table 8-23.

Table 8-23 – SDCMmz

Element name Type Description

addr_phy uint64 Physical address

addr_virt uint64 Virtual address

size uint32 size

cookie uint32 [4] Cookie text for the creation session

8.2.1.3 Extension header

8.2.1.3.1 Request extension header (SDC_HEAD_DECODED_YUV_ACCEPT_TYPE)

The extension header definition for request is shown Figure 8-9. If no extension header is defined,

the MMZ mode is used.

22 Rec. ITU-T F.735.2 (06/2021)

Figure 8-9 – Extension header: SDC_HEAD_DECODED_YUV_ACCEPT_TYPE

8.2.1.4 Implementation example

The reference implementation example of interface please refer to clause I.3.1.

8.2.2 Model deletion

8.2.2.1 Model deletion interface

This interface is used to release the executable model created based on the WK file. The NNIE model

deletion interface definition is illustrated in Table 8-24.

Table 8-24 – NNIE model deletion interface definition

Function NNIE model deletion

URL URI Description URI Value

SDC_URL_NNIE_MODEL 0

Request Response

Common header Extension

header

Content Extension

header

Content

Method DELETE None SVP_NNIE_MODEL_S None None

Response

code

No response is returned in resource release interfaces

8.2.2.2 Content definition

The "SVP_NNIE_MODEL_S" is a defined structure type base on NNIE mode engine which is widely

used in video surveillance system. The definition of "SVP_NNIE_MODEL_S" is out scope of this

Recommendation.

8.2.2.3 Extension header

None.

8.2.2.4 Implementation example

The implementation example of interface please refer to clause I.3.2.

8.2.3 Model forward

8.2.3.1 Model forward interface

This interface is used for multi-node input and output CNN network prediction. The NNIE model

forward interface definition is illustrated in Table 8-25.

NOTE – This interface is equivalent to combining "HI_MPI_SVP_NNIE_GetTskBufSize",

"HI_MPI_SVP_NNIE_Forward" and "HI_MPI_SVP_NNIE_Query" interfaces, and the latter is the response,

the definition of HI_MPI_SVP_NNIE_GetTskBufSize, HI_MPI_SVP_NNIE_Forward and

HI_MPI_SVP_NNIE_Query can refer to the NNIE engine, and is out scope of this Recommendation.

 Rec. ITU-T F.735.2 (06/2021) 23

Table 8-25 – NNIE forward interface definition

Function NNIE forward

URL URI Description URI Value

SDC_URL_NNIE_FORWARD 1

Request Response

Common header Extension

header

Content Extension header Content

Method GET Refer to

clause

8.2.3.3

Refer to clause

8.2.3.2

Refer to clause

8.2.3.3

None

Response

code

If the operation succeeds, response code 200 is returned. Other values are error codes. If flow

control is enabled, response code 509 (Bandwidth Limit Exceeded) and empty response

content are returned.

8.2.3.2 Content definition

For the definition of "sdc_nnie_forward_ctrl", please see Table 8-26. For the definition of

"sdc_nnie_forward_para", please see Table 8-27.

8.2.3.2.1 sdc_nnie_forward_ctrl

Table 8-26 – sdc_nnie_forward_ctrl

Element name Type Description

netseg_id uint64 Physical address

max_batch_num uint64 Virtual address

max_bbox_num uint32 size

8.2.3.2.2 sdc_nnie_forward_para

Table 8-27 – sdc_nnie_forward_para

Element name Type Description

model SVP_NNIE_MODEL_S /

foward_ctl sdc_nnie_forward_ctrl /

astSrc SVP_SRC_BLOB_S[16] /

astDst SVP_DST_BLOB_S[16] /

NOTE – The definition of SVP_NNIE_MODEL_S and SVP_SRC_BLOB_S are out scope of this

Recommendation.

8.2.3.3 Extension header

8.2.3.3.1 Extension header for request

a) Task Priority (SDC_HEAD_PRI), the header definition is shown in Figure 8-10.

Figure 8-10 – Extension header: SDC_HEAD_PRI

24 Rec. ITU-T F.735.2 (06/2021)

A smaller value indicates a higher priority. The maximum waiting delay (controlled by the server,

300 ms by default) is configured for a low-priority task. If the maximum waiting delay is exceeded,

a high-priority task cannot pre-empt resources of the low-priority task.

8.2.3.4 Implementation example

The implementation example, please refer to clause I.3.3.

 Rec. ITU-T F.735.2 (06/2021) 25

Appendix I

Data Type Definition and API Example

(This appendix does not form an integral part of this Recommendation.)

I.1 SOI data type definition example

I.1.1 Common header definition

The common header data structure can be defined as follows based on the endian macro definition of

GCC:

struct sdc_common_head

{

uint16_t hbtp_ver;

uint8_t uri_ver;

#if defined(__BYTE_ORDER__) && defined(__ORDER_LITTLE_ENDIAN__) &&

defined(__ORDER_BIG_ENDIAN__)

#if (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)

uint8_t method: 7;

uint8_t response: 1;

#elif (__BYTE_ORDER__ == __ORDER_BIG_ENDIAN__)

uint8_t response: 1;

uint8_t method: 7;

#else

#error "unknown __BYTE_ORDER__"

#endif

#else

#error "don't define __BYTE_ORDER__ or __ORDER_LITTLE_ENDIAN__ or

__ORDER_BIG_ENDIAN__"

#endif

uint16_t uri;

uint16_t code;

uint16_t head_length;

uint16_t trans_id;

uint32_t content_length;

};

The response code is valid only when R is set to 1. The following describes

the response codes:

HBTP_CODE_200 = 200, // OK

HBTP_CODE_400 = 400, // Bad Request

HBTP_CODE_401 = 401, // Unauthorized

HBTP_CODE_403 = 403, // Forbidden

HBTP_CODE_404 = 404, // Not Found

HBTP_CODE_500 = 500, // Internal Server Error

HBTP_CODE_509 = 509 and // Flow control

I.1.2 Extension header definition

struct sdc_extend_head

{

uint16_t hdr_type;

uint16_t hdr_len;

uint32_t reserve;

};

26 Rec. ITU-T F.735.2 (06/2021)

I.2 Video service API example

I.2.1 YUV logical channel attribute settings example

Content definition

#define SDC_YVU_420SP0 // YUV frame. Currently, only YVU_420SP is supported.

struct sdc_yuv_channel_param

{

uint32_t channel;// The value 0 indicates the snapshot channel (supported only

for the ITS model).

uint32_t width;

uint32_t height;

uint32_t fps; // The value 0 indicates the default frame rate at the

bottom layer.

uint32_t on_off; // The value 0 indicates that the channel is disabled. Other

values indicate that the channel is enabled.

uint32_t format; //SDC_YVU_420SP

};

Batch configuration is supported. The number of channels is calculated as

follows: hbtp.content_length/sizeof(sdc_yuv_channel_param).

If the input parameter settings are correct, the settings take effect. Channel

conflicts between services are resolved at the service layer.

Reference example

#include "sdc.h"

#include <unistd.h>

#include <fcntl.h>

#include <stdlib.h>

#include <sys/uio.h>

int main(int argc,char* argv[])

{

struct sdc_yuv_channel_param param = {

.channel = 1,

.width = 1280,

.height = 720,

.fps = 25,

.on_off = 1,

.format = SDC_YVU_420SP,

};

struct sdc_common_head head = {

.version = SDC_VERSION, //0x5331

.url = SDC_URL_YUV_CHANNEL, //0x00

.method = SDC_METHOD_UPDATE, //0x02

.content_length = sizeof(param),

.head_length = sizeof(head),

};

struct iovec iov[2] = { {.iov_base = &head, .iov_len = sizeof(head)},

{.iov_base = ¶m, .iov_len = sizeof(param) }};

int nret;

int fd = open("/mnt/srvfs/video.iaas.sdc", O_RDWR);

if(fd < 0) goto fail;

nret = writev(fd, iov, 2);

if(nret < 0) goto fail;

nret = read(fd,&head, sizeof(head));

if(head.code == SDC_CODE_200 /** 200 */) {

//...

}else{

//...

}

close(fd);

return 0;

fail:

exit(1); //fd will be closed after exit

}

 Rec. ITU-T F.735.2 (06/2021) 27

I.2.2 YUV logical channel attribute querying example

Content definition

uint32_t channel;

/**Attributes of logical channels can be queried in batches. The number of

channels is calculated as follows: hbtp.content_length/sizeof(uint32_t).

If there is no content, that is, the value of hbtp.content_length is 0, the

attributes of all channels are returned.**/

struct sdc_resolution {

uint32_t width;

uint32_t height;

};

struct sdc_yuv_channel_info

{

struct sdc_yuv_channel_param param;

struct sdc_resolution max_resolution; // Maximum resolution supported by the

channel.

uint32_t is_snap_channel; // Indicates whether the channel is a snapshot

channel. The options are as follows: 0: common channel; 1: snapshot channel.

uint32_t src_id; // Data source. The data source uses the IP address

to identify the data source (local camera or other cameras) of the channel.

For the local multi-lens camera, the data source is identified by 127.0.0.x,

where x starts from 1 and is incremented by 1.

uint32_t subscriber_cnt; // Number of users who subscribe to data of this

channel. The value greater than 1 indicates that multiple users subscribe to

data of the same channel. Video data is transferred to users in zero-copy

mode. If a user modifies the data obtained from this channel, other users will

read the data after modification.

uint32_t resolution_moditfy; // Indicates whether the resolution parameter

of the channel can be modified. The options are as follows: 0: no; 1: yes.

};

/**When attributes of logical channels are queried in batches, the response

content is also returned in batches. The number of channels returned in

batches is calculated as follows: hbtp.content_length/sizeof(struct

sdc_yuv_channel_info).

**/

Reference example

#include "sdc.h"

#include <unistd.h>

#include <fcntl.h>

#include <stdlib.h>

static void display_yuv_channel_info(struct sdc_yuv_channel_info* info);

int main(int argc,char* argv[])

{

int nret,i;

char buf[1024] = { 0 };

struct sdc_yuv_channel_info* info;

struct sdc_common_head* head = (struct sdc_common_head*)buf;

/** query all channels' info */

head->version = SDC_VERSION; //0x5331

head->url = SDC_URL_YUV_CHANNEL; //0x00

head->method = SDC_METHOD_GET; //0x02

head->head_length = sizeof(*head);

int fd = open("/mnt/srvfs/video.iaas.sdc", O_RDWR);

if(fd < 0) goto fail;

nret = write(fd, head, head->head_length + head->content_length);

if(nret < 0) goto fail;

nret = read(fd,buf,sizeof(buf));

if(nret < 0 || head->code != SDC_CODE_200) goto fail;

info = (struct sdc_yuv_channel_info*)&buf[head->head_length];

for(i = 0; i < head->content_length / sizeof(*info); ++i, ++info) {

28 Rec. ITU-T F.735.2 (06/2021)

display_yuv_channel_info(info);

}

close(fd);

return 0;

fail:

exit(1); //fd will be closed after exit

}

static void display_yuv_channel_info(struct sdc_yuv_channel_info* info)

{

}

I.2.3 YUV frame data subscription example

Content definition

uint32_t channel;

Multiple channels can be obtained. The number of channels is calculated as

follows: hbtp.content_length/sizeof(uint32_t).

/**After the subscription is successful, multiple packets are received

consecutively. The first response packet has no content. **/

/**The subsequent packets include YUV frame data. The structure is defined as

follows: **/

struct sdc_yuv_frame

{

uint64_t addr_phy;

uint64_t addr_virt; // Cache mapping is implemented by default.

uint32_t size;

uint32_t width;

uint32_t height;

uint32_t stride;

uint32_t format;

uint32_t reserve;

uint32_tcookie[4]; // Required by service functions or during commissioning.

}

struct sdc_yuv_data

{

uint32_t channel;

uint32_t reserve;

uint64_t pts; // Timestamp carried by the bottom-layer chip, in microseconds.

uint64_t pts_sys; // Timestamp of the data obtained by the server, in

microseconds.

struct sdc_yuv_frame frame;

};

/**When channel data is subscribed in batches, the number of channels is

calculated as follows: hbtp.content_length/sizeof(struct sdc_yuv_data).

The bottom-layer chip time of multi-lens SDCs may be inconsistent. The

synchronization of multiple channels depends on the system time, that is, the

pts_sys field rather than the pts field.

Note: The trans_id field in the response headers of multiple packets is the

same as the trans_id field in the subscription request.**/

Reference example

#include "sdc.h"

#include <unistd.h>

#include <fcntl.h>

#include <stdlib.h>

static void display_extend_head(struct sdc_extend_head* extend_head) {}

static void display_yuv_data(struct sdc_yuv_data* yuv_data) {}

int main(int argc,char* argv[])

{

int nret,i,fd;

char buf[1024] = { 0 };

struct sdc_common_head* head = (struct sdc_common_head*) buf;

struct sdc_extend_head* extend_head;

 Rec. ITU-T F.735.2 (06/2021) 29

struct sdc_yuv_data* yuv_data;

struct sdc_yuv_snap_param* snap_param;

uint32_t* channel;

fd = open("/mnt/srvfs/video.iaas.sdc", O_RDWR);

if(fd < 0) goto fail;

head->version = SDC_VERSION;

head->url = SDC_URL_YUV_DATA;

head->method = SDC_METHOD_GET;

head->head_length = sizeof(*head);

/** The maximum number of cached YUV frames is 10. */

extend_head = (struct sdc_extend_head*)&buf[head->head_length];

extend_head->type = SDC_HEAD_YUV_CACHED_COUNT_MAX;

extend_head->length = sizeof(*extend_head);

extend_head->reserve = 10;

/**

* #define sdc_extend_head_length(extend_head) (((extend_head)->length + 7) &

~7)

* The length of the extension header defined in the existing SDC service-

oriented interface is aligned by 8 bytes. Developers also need to write "head-

>head_length += extend_head->length" to ensure that the length of the

extension header is 8-byte aligned.

*/

head->head_length += sdc_extend_head_length(extend_head);

/** Subscribe to data of two channels. No synchronization is required because

one channel is the snapshot channel. */

extend_head = (struct sdc_extend_head*)&buf[head->head_length];

extend_head->type = SDC_HEAD_YUV_SYNC;

extend_head->length = sizeof(*extend_head);

extend_head->reserve = 0;

head->head_length += sdc_extend_head_length(extend_head);

/** Subscribe to data of two channels. */

channel = (uint32_t*)&buf[head->head_length];

 channel[0] = 0; // The value 0 indicates the snapshot channel by default. The

snapshot channel ID can be obtained through the query interface.

channel[1] = 1;

head->content_length = 2 * sizeof(channel[0]);

nret = write(fd, head, head->head_length + head->content_length);

if(nret < 0) goto fail;

for(;;) {

nret = read(fd, buf,sizeof(buf));

if(nret < 0) goto fail;

switch(head->url){

case SDC_URL_YUV_SNAP:

/** Response to snapshot processing. */

if(head->code != SDC_CODE_200) {

// log error info

}

continue;

case SDC_URL_YUV_DATA:

break;

default:

continue;

}

/**

*#define sdc_extend_head_next(extend_head) ((struct

sdc_extend_head*)((char*)extend_head + sdc_extend_head_length(extend_head)))

* #define sdc_extend_head_first(common_head) ((struct

sdc_extend_head*)(common_head + 1))

* #define sdc_for_each_extend_head(common_head, extend_head) \

* for(extend_head = sdc_extend_head_first(common_head); (char*)extend_head -

(char*)common_head < common_head->head_length; extend_head =

sdc_extend_head_next(extend_head))

*/

sdc_for_each_extend_head(head, extend_head) {

30 Rec. ITU-T F.735.2 (06/2021)

display_extend_head(extend_head);

}

for(i = 0, yuv_data = (struct sdc_yuv_data*)&buf[head->head_length]; i < head-

>content_length / sizeof(*yuv_data); ++i, ++yuv_data) {

display_yuv_data(yuv_data);

}

/** free yuv_data */

head->response = head->code = 0;

head->method = SDC_METHOD_DELETE;

(void)write(fd,head,head->head_length + head->content_length); // server

ignore extended headers

/** Trigger the snapshot taking action. */

if(1) {

head->url = SDC_URL_YUV_SNAP;

head->method = SDC_METHOD_CREATE;

head->head_length = sizeof(*head);

head->content_length = sizeof(*snap_param);

snap_param = (struct sdc_yuv_snap_param*)&buf[head->head_length];

snap_param->id = 100;

snap_param->num = 1;

snap_param->interval_msec = 0;

nret = write(fd, head, head->head_length + head->content_length);

if(nret < 0) goto fail;

/** Data read immediately may not be the snapshot response data. */

}

}

return 0;

fail:

exit(1);

}

I.2.4 VENC logical channel attribute setting example

Content definition

#define SDC_H264 0

#define SDC_H265 1

#define SDC_MJPEG 2

struct sdc_venc_channel_param

{

uint32_t channel;

uint32_t width;

uint32_t height;

uint32_t fps; // The value ranges from 1 to the value of MaxFps.

uint32_t on_off; // The value 0 indicates that the channel is disabled. Other

values indicate that the channel is enabled.

uint32_t format; // SDC_H264 \ SDC_H265\ SDC_MJPEG

};

/**Batch configuration is supported. The number of channels is calculated as

follows: hbtp.content_length/sizeof(sdc_venc_channel_param).

If the input parameter settings are correct, the settings take effect. Channel

conflicts between services are resolved at the service layer.**/

Reference example

#include "sdc.h"

#include <unistd.h>

#include <fcntl.h>

#include <stdlib.h>

#include <sys/uio.h>

int main(int argc,char* argv[])

{

struct sdc_yuv_channel_param param = {

.channel = 100,

 Rec. ITU-T F.735.2 (06/2021) 31

.width = 1280,

.height = 720,

.fps = 25,

.on_off = 1,

.format = SDC_H264,

};

struct sdc_common_head head = {

.version = SDC_VERSION, //0x5331

.url = SDC_URL_VENC_CHANNEL, //0x02

.method = SDC_METHOD_UPDATE, //0x02

.content_length = sizeof(param),

.head_length = sizeof(head),

};

struct iovec iov[2] = { {.iov_base = &head, .iov_len = sizeof(head)},

{.iov_base = ¶m, .iov_len = sizeof(param) }};

int nret;

int fd = open("/mnt/srvfs/video.iaas.sdc", O_RDWR);

if(fd < 0) goto fail;

nret = writev(fd, iov, 2);

if(nret < 0) goto fail;

nret = read(fd,&head, sizeof(head));

if(head.code == SDC_CODE_200 /** 200 */) {

//...

}else{

//...

}

close(fd);

return 0;

fail:

exit(1); //fd will be closed after exit

}

I.2.5 VENC logical channel attribute querying example

Content definition

uint32_t channel;

/**Attributes of logical channels can be queried in batches. The number of

channels is calculated as follows: hbtp.content_length/sizeof(uint32_t).

If there is no content, that is, the value of hbtp.content_length is 0, the

attributes of all channels are returned.**/

struct sdc_resolution {

uint32_t width;

uint32_t height;

};

#define SDC_PT_H264 96

#define SDC_PT_H265 265

#define SDC_PT_MJPEG 1002

struct sdc_venc_channel_ability {

uint32_t max_fps; // Maximum frame rate supported by the channel.

uint32_t format[3]; // Encoding format supported by the channel. The value can

be 96 (H.264), 265 (H.265), or 1002 (MJPEG).

uint32_t resolution_num; // Number of resolution types supported by the

channel.

struct sdc_resolution chn_resolution[0]; // All resolution types supported by

the channel.

};

struct sdc_venc_channel_info

{

struct sdc_venc_channel_param param;

uint32_t src_id; // Data source. The data source uses the IP address

to identify the data source (local camera or other cameras) of the channel.

For the local multi-lens camera, the data source is identified by 127.0.0.x,

where x starts from 1 and is incremented by 1.

32 Rec. ITU-T F.735.2 (06/2021)

uint32_t subscriber_cnt; // Number of users who subscribe to data of this

channel. The value greater than 1 indicates that multiple users subscribe to

data of the same channel. Video data is transferred to users in zero-copy

mode. If a user modifies the data obtained from this channel, other users will

read the data after modification.

struct sdc_venc_channel_ability stchnability; // Information about the

encoding capability supported by the channel.

};

/**When attributes of logical channels are queried in batches, the response

content is also returned in batches. The number of channels returned in

batches is calculated as follows: hbtp.content_length/sizeof(struct

sdc_venc_channel_info).**/

Reference example

#include "sdc.h"

#include <unistd.h>

#include <fcntl.h>

#include <stdlib.h>

int main(int argc,char* argv[])

{

int nret,i;

char buf[1024] = { 0 };

struct sdc_venc_channel_info* info;

struct sdc_common_head* head = (struct sdc_common_head*)buf;

/** query all channels' info */

head->version = SDC_VERSION; //0x5331

head->url = SDC_URL_VENC_CHANNEL; //0x02

head->method = SDC_METHOD_GET; //0x02

head->head_length = sizeof(*head);

int fd = open("/mnt/srvfs/video.iaas.sdc", O_RDWR);

if(fd < 0) goto fail;

nret = write(fd, head, head->head_length + head->content_length);

if(nret < 0) goto fail;

nret = read(fd,buf,sizeof(buf));

if(nret < 0 || head->code != SDC_CODE_200) goto fail;

/** deal with all channels' info */

close(fd);

return 0;

fail:

exit(1); //fd will be closed after exit

}

I.2.6 VENC frame data subscription example

Content definition

uint32_t channel;

/**Multiple channels can be obtained. The number of channels is calculated as

follows: hbtp.content_length/sizeof(uint32_t).

After the subscription is successful, multiple packets are received

consecutively. The first response packet has no content.

The subsequent packets include VENC frame data. The structure is defined as

follows:**/

#define SDC_VENC_FRAME_I 0

#define SDC_VENC_FRAME_P 1

#define SDC_VENC_FRAME_B 2

struct sdc_venc_frame

{

uint64_t addr_phy;

uint64_t addr_virt; // Read-only.

uint64_t size;

uint32_t height;

uint32_t width;

 Rec. ITU-T F.735.2 (06/2021) 33

uint32_t format; //SDC_H264 OR SDC_H265

uint32_t frame_type; //SDC_VENC__FRAME_I/P/B

uint64_tcookie[8]; // Used for commissioning on the server.

}

struct sdc_venc_data

{

uint32_t channel;

uint32_t reserve;

uint64_t frame_pts; // Frame timestamp.

uint64_t pts_sys; // System timestamp.

struct sdc_venc_frame frame;

};

/**When channel data is subscribed in batches, the number of channels is

calculated as follows: hbtp.content_length/sizeof(struct sdc_venc_data).

Note: The trans_id field in the response headers of multiple packets is the

same as the trans_id field in the subscription request.**/

Reference Example

#include "sdc.h"

#include <unistd.h>

#include <fcntl.h>

#include <stdlib.h>

static void display_extend_head(struct sdc_extend_head* extend_head) {}

static void display_venc_data(struct sdc_venc_data* venc_data) {}

int main(int argc,char* argv[])

{

int nret,i,fd;

char buf[1024] = { 0 };

struct sdc_common_head* head = (struct sdc_common_head*) buf;

struct sdc_extend_head* extend_head;

struct sdc_venc_data* venc_data;

uint32_t* channel;

fd = open("/mnt/srvfs/video.iaas.sdc", O_RDWR);

if(fd < 0) goto fail;

head->version = SDC_VERSION;

head->url = SDC_URL_VENC_DATA;

head->method = SDC_METHOD_GET;

head->head_length = sizeof(*head);

/** The maximum number of cached VENC frames is 10. */

extend_head = (struct sdc_extend_head*)&buf[head->head_length];

extend_head->type = SDC_HEAD_VENC_CACHED_COUNT_MAX;

extend_head->length = sizeof(*extend_head);

extend_head->reserve = 10;

head->head_length += sdc_extend_head_length(extend_head);

/** Subscribe to data of channel 0. */

channel = (uint32_t*)&buf[head->head_length];

*channel = 0;

head->content_length = sizeof(*channel);

nret = write(fd, head, head->head_length + head->content_length);

if(nret < 0) goto fail;

for(;;) {

nret = read(fd, buf,sizeof(buf));

if(nret < 0) goto fail;

sdc_for_each_extend_head(head, extend_head) {

display_extend_head(extend_head);

}

for(i = 0, venc_data = (struct sdc_venc_data*)&buf[head->head_length]; i <

head->content_length / sizeof(*venc_data); ++i, ++venc_data) {

display_venc_data(venc_data);

}

/** free venc_data */

head->response = head->code = 0;

34 Rec. ITU-T F.735.2 (06/2021)

head->method = SDC_METHOD_DELETE;

(void)write(fd,head,head->head_length + head->content_length); // server

ignore extended headers

}

return 0;

fail:

exit(1);

}

I.3 Algorithm inference example

I.3.1 Model creation example

Content definition Example

If no extension header is defined, the MMZ mode is used.

#define NNIE_MODEL_CONTENT_MMZ 0

#define NNIE_MODEL_CONTENT_FILE 1

If the extension header SDC_HEAD_NNIE_MODEL_CONTENT_TYPE is set to 0 or not

defined, the content specifies the MMZ in the following format: struct

sdc_mmz.

If the extension header SDC_HEAD_NNIE_MODEL_CONTENT_TYPE is set to 1, the

content specifies the file name in the following format: char filename[].

hbtp.content_length indicates the length of the file name. Therefore, whether

the file name ends with NULL does not affect the function.

Reference Example

int SDC_LoadModel(unsigned int uiLoadMode, char *pucModelFileName,

SVP_NNIE_MODEL_S *pstModel)

{

int s32Ret = 0;

int ret = 0;

int u32TotalSize = 0;

struct sdc_extend_head* extend_head;

char buf[1024] = {0};

struct sdc_common_head *phead = (struct sdc_common_head *)buf;

unsigned int uFileSize;

struct sdc_mmz stMmzAddr;

if ((NULL == pstModel) || (NULL == pucModelFileName))

{

fprintf(stdout,"Err in SDC_LoadModel, pstModel or pucModelFileName is

null\n");

return -1;

}

fprintf(stdout,"Load model, pucModelFileName:%s!\n", pucModelFileName);

struct sdc_common_head head;

struct rsp_strcut {

struct sdc_common_head head;

SVP_NNIE_MODEL_S model;

}rsp_strcut_tmp;

struct iovec iov[2] = {

[0] = { .iov_base = buf, .iov_len = sizeof(struct sdc_common_head) +

sizeof(struct sdc_extend_head)},

[1] = { .iov_len = MAX_MODULE_PATH}

};

//memset(&head, 0, sizeof(head));

phead->version = SDC_VERSION;

phead->url = SDC_URL_NNIE_MODEL;

phead->method = SDC_METHOD_CREATE;

phead->head_length = sizeof(struct sdc_common_head);

phead->content_length = MAX_MODULE_PATH;

 Rec. ITU-T F.735.2 (06/2021) 35

/* If the mode is 0 and no extension header is carried, load the model from

the MMZ by default. */

if (uiLoadMode == 0)

{

FILE *fp = fopen(pucModelFileName, "rb");

if(fp == NULL)

{

fprintf(stdout,"modelfile fopen %s fail!\n", pucModelFileName);

return -1;

}

ret = fseek(fp,0L,SEEK_END);

if(ret != 0)

{

fprintf(stdout,"check nnie file SEEK_END, fseek fail.");

fclose(fp);

return -1;

}

uFileSize = ftell(fp);

ret = fseek(fp,0L,SEEK_SET);

if(0 != ret)

{

fprintf(stdout,"check nnie file SEEK_SET, fseek fail.");

fclose(fp);

return -1;

}

stMmzAddr.size = uFileSize;

ret = SDC_MmzAlloc(uFileSize, 0, &stMmzAddr); // param 2: 0 no cache, 1 cache

if(ret != stMmzAddr.size)

{

fprintf(stdout,"SDC_MmzAlloc ret %d, readsize %d", ret, stMmzAddr.size);

return -1;

}

ret = fread((HI_VOID*)(uintptr_t)stMmzAddr.addr_virt, 1, stMmzAddr.size, fp);

if(ret != stMmzAddr.size)

{

fprintf(stdout,"filesize %d, readsize %d", ret, stMmzAddr.size);

return -1;

}

/* Invoke the algorithm program to decode the input file. */

if(SDC_ModelDecript(&stMmzAddr))

{

fprintf(stdout,"SDC_ModelDecript Fail!",);

return -1;

}

iov[1].iov_base = &stMmzAddr;

iov[0].iov_len = sizeof(struct sdc_common_head);

}

else if (uiLoadMode == 1)/* If the mode is 1 and an extension header is

carried, specify the extension header parameter to load the model from the

MMZ. */

{

FILE *fp = fopen(pucModelFileName, "rb");

if(fp == NULL)

{

fprintf(stdout,"modelfile fopen %s fail!\n", pucModelFileName);

return -1;

}

ret = fseek(fp,0L,SEEK_END);

if(ret != 0)

{

fprintf(stdout,"check nnie file SEEK_END, fseek fail.");

fclose(fp);

return -1;

}

36 Rec. ITU-T F.735.2 (06/2021)

uFileSize = ftell(fp);

ret = fseek(fp,0L,SEEK_SET);

if(0 != ret)

{

fprintf(stdout,"check nnie file SEEK_SET, fseek fail.");

fclose(fp);

return -1;

}

stMmzAddr.size = uFileSize;

ret = SDC_MmzAlloc(uFileSize, 0, &stMmzAddr); // param 2: 0 no cache, 1 cache

if(ret != stMmzAddr.size)

{

fprintf(stdout,"SDC_MmzAlloc ret %d, readsize %d", ret, stMmzAddr.size);

return -1;

}

ret = fread((HI_VOID*)(uintptr_t)stMmzAddr.addr_virt, 1, stMmzAddr.size, fp);

if(ret != stMmzAddr.size)

{

fprintf(stdout,"filesize %d, readsize %d", ret, stMmzAddr.size);

return -1;

}

/* Invoke the algorithm program to decode the input file. */

if(SDC_ModelDecript(&stMmzAddr))

{

fprintf(stdout,"SDC_ModelDecript Fail!",);

return -1;

}

extend_head = (struct sdc_extend_head*)&buf[phead->head_length];

extend_head->type = 1;//NNIE_NNIE_MODEL_OP

extend_head->length = sizeof(*extend_head);

extend_head->reserve = 0;/* If this field is set to 0 or not carried, the

model is loaded from the memory. If this field is set to 1, the model is

loaded from a specified file. */

phead->head_length += sizeof(struct sdc_extend_head);

iov[1].iov_base = &stMmzAddr;

}

else /* If the mode is 2 and an extension header is carried, specify the

extension header parameter to load the model from a specified file. */

{

extend_head = (struct sdc_extend_head*)&buf[phead->head_length];

extend_head->type = 1;//NNIE_NNIE_MODEL_OP

extend_head->length = sizeof(*extend_head);

extend_head->reserve = 1;/* If this field is set to 0 or not carried, the

model is loaded from the memory. If this field is set to 1, the model is

loaded from a specified file. */

phead->head_length += sizeof(struct sdc_extend_head);

iov[1].iov_base = pucModelFileName;//pcModelName;

}

s32Ret = writev(fd_algorithm, iov, 2);

if (s32Ret < 0)

{

fprintf(stdout,"creat nnie,write to algorithm.iaas.sdc fail: %m\n");

}

/* After loading the model, release it immediately. */

if (uiLoadMode < 2)mmz_free(fd_config, &stMmzAddr);

s32Ret = read(fd_algorithm, &rsp_strcut_tmp, sizeof(rsp_strcut_tmp));

if(s32Ret == -1)

{

fprintf(stdout,"get_channel_data fail: %m\n");

return -1;

}

if(s32Ret > sizeof(rsp_strcut_tmp))

{

 Rec. ITU-T F.735.2 (06/2021) 37

fprintf(stdout,"get_channel_data truncated, data len: %d > %zu\n", s32Ret,

sizeof(rsp_strcut_tmp));

return -1;

}

if (s32Ret < 0 || rsp_strcut_tmp.head.code != SDC_CODE_200 ||

rsp_strcut_tmp.head.content_length <= 0)

{

fprintf(stdout,"get nnie create response, read from algorithm.iaas.sdc

fail,s32Ret:%ld, code=%d,length=%d\n",

s32Ret, rsp_strcut_tmp.head.code, rsp_strcut_tmp.head.content_length);

}

else

{

s_stSsdModel.stModel = rsp_strcut_tmp.model;

memcpy(pstModel, &rsp_strcut_tmp.model,sizeof(SVP_NNIE_MODEL_S));

}

return s32Ret;

}

I.3.2 Model deletion example

int SDC_UnLoadModel(SVP_NNIE_MODEL_S *pstModel)

{

int nRet = -1;

if (NULL != pstModel)

{

struct sdc_common_head head;

struct iovec iov[2] = {

[0] = {.iov_base = &head , .iov_len = sizeof(head)},

[1] = {.iov_base = pstModel, .iov_len = sizeof(SVP_NNIE_MODEL_S)}

};

// fill head struct

memset(&head, 0, sizeof(head));

head.version = SDC_VERSION;

head.url = SDC_URL_NNIE_MODEL;

head.method = SDC_METHOD_DELETE;

head.head_length = sizeof(head);

head.content_length = sizeof(SVP_NNIE_MODEL_S);

nRet = writev(fd_algorithm, iov, sizeof(iov)/sizeof(iov[0]));

if (nRet < 0)

{

fprintf(stdout,"Errin SDC_UnLoadModel:failed to unload nnie module!\n");

}

}

else

{

fprintf(stdout,"Err in SDC_UnLoadModel:module pointer is NULL!\n");

}

return 0;

}

I.3.3 Model forward example

/**

* Compared with SVN_NNIE_FORWARD_CTRL_S, this interface has the following

advantages:

* 1. Users do not need to manage auxiliary memory segments, which simplifies

interface use.

* 2. Users do not need to specify NNIE_ID, which is scheduled by the server,

avoiding resource conflicts when multiple models are executed.

* 3. Multiple models share auxiliary memory segments to minimize memory

resource requirements.

*/

struct sdc_nnie_forward_ctrl

{

38 Rec. ITU-T F.735.2 (06/2021)

uint32_t netseg_id;

uint32_t max_batch_num;

uint32_t max_bbox_num;

uint32_t reserve;

};

struct {

SVP_NNIE_MODEL_S model;

struct sdc_nnie_forward_ctrl foward_ctl;

SVP_SRC_BLOB_S astSrc[16];

SVP_DST_BLOB_S astDst[16];

};

void SDC_Nnie_Forward(struct sdc_nnie_forward *p_sdc_nnie_forward)

{

int nRet;

struct sdc_common_head rsp_head;

struct sdc_common_head head;

struct iovec iov[2] = {

[0] = {.iov_base = &head, .iov_len = sizeof(head)},

[1] = {.iov_base = p_sdc_nnie_forward, .iov_len = sizeof(*p_sdc_nnie_forward)}

};

// fill head struct

memset(&head, 0, sizeof(head));

head.version = SDC_VERSION;

head.url = SDC_URL_NNIE_FORWARD;

head.method = SDC_METHOD_GET;

head.head_length = sizeof(head);

head.content_length = sizeof(*p_sdc_nnie_forward);

// write request

nRet = writev(fd_algorithm, iov, sizeof(iov)/sizeof(iov[0]));

if (nRet < 0)

{

fprintf(stdout,"Error:failed to write info to NNIE Forward!\n");

}

// read response

iov[0].iov_base = &rsp_head;

iov[0].iov_len = sizeof(rsp_head);

nRet = readv(fd_algorithm, iov, 1);

if (rsp_head.code != SDC_CODE_200 || nRet < 0)

{

fprintf(stdout,"Error:failed to read info from NNIE Forward!\n");

}

}

 Rec. ITU-T F.735.2 (06/2021) 39

Bibliography

[b-ITU-T H.264] Recommendation ITU-T H.264 (2019), Advanced video coding for generic

audiovisual services.

[b-ITU-T H.626] Recommendation ITU-T H.626 (2019), Architectural requirements for video

surveillance system.

[b-ITU-T H.627] Recommendation ITU-T H.627 (2020), Signalling and protocols for a video

surveillance system.

Printed in Switzerland
Geneva, 2021

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D Tariff and accounting principles and international telecommunication/ICT economic and

policy issues

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia

signals

Series K Protection against interference

Series L Environment and ICTs, climate change, e-waste, energy efficiency; construction,

installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Telephone transmission quality, telephone installations, local line networks

Series Q Switching and signalling, and associated measurements and tests

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects, next-generation networks,

Internet of Things and smart cities

Series Z Languages and general software aspects for telecommunication systems

	Recommendation ITU-T F.735.2 (06/2021) Architecture and protocols for software-defined cameras
	Summary
	History
	FOREWORD
	Table of Contents
	1 Scope
	2 References
	3 Definitions
	3.1 Terms defined elsewhere
	3.2 Terms defined in this Recommendation

	4 Abbreviations and acronyms
	5 Conventions
	6 Architecture of an SDC system
	6.1 Functional architecture of an SDC system
	6.1.1 Overview of entities
	6.1.2 SDCS: SDC studio
	6.1.3 SDCC: SDC controller
	6.1.4 SDC

	6.2 Service-oriented interface architecture and classification
	6.2.1 Service-oriented interface architecture
	6.2.2 Service-oriented interface classification

	7 SDC SOI message protocol structure
	7.1 SDC SOI access mechanism definition
	7.2 Message specification (HBTP)
	7.3 SOI message description format

	8 Protocols of service-oriented interface
	8.1 Video service API
	8.1.1 Video service function definition
	8.1.2 Video logical channel definition
	8.1.2.1 YUV logical channel definition
	8.1.2.2 VENC logical channel definition

	8.1.3 YUV logical channel attribute setting
	8.1.3.1 YUV logical channel attribute setting
	8.1.3.2 Content definition
	8.1.3.2.1 sdc_yuv_channel_param

	8.1.3.3 Extension header definition
	8.1.3.4 Implementation example

	8.1.4 YUV logical channel attribute query
	8.1.4.1 YUV logical channel attribute query
	8.1.4.2 Content definition
	8.1.4.2.1 channel_number
	8.1.4.2.2 sdc_resolution
	8.1.4.2.3 sdc_yuv_channel_info

	8.1.4.3 Extension header definition
	8.1.4.4 Implementation example

	8.1.5 YUV frame data subscription
	8.1.5.1 YUV frame data subscription interface
	8.1.5.2 Content definition
	8.1.5.2.1 sdc_yuv_frame
	8.1.5.2.2 sdc_yuv_data

	8.1.5.3 Extension header
	8.1.5.3.1 Extension header for request
	8.1.5.3.2 Extension header for response

	8.1.5.4 Implementation example

	8.1.6 YUV frame data release
	8.1.6.1 YUV frame data release interface
	8.1.6.2 Content definition
	8.1.6.3 Extension header
	8.1.6.4 Implementation example

	8.1.7 VENC logical channel attribute setting
	8.1.7.1 VENC logical channel attribute setting interface
	8.1.7.2 Content definition
	8.1.7.2.1 sdc_venc_channel_param

	8.1.7.3 Extension header definition
	8.1.7.4 Implementation example

	8.1.8 VENC logical channel attribute query
	8.1.8.1 VENC logical channel attribute query interface
	8.1.8.2 Content definition
	8.1.8.3 Extension header definition
	8.1.8.4 Implementation example

	8.1.9 VENC frame data subscription
	8.1.9.1 VENC frame data subscription API
	8.1.9.2 Content definition
	8.1.9.2.1 sdc_venc_frame
	8.1.9.2.2 sdc_venc_data

	8.1.9.3 Extension header
	8.1.9.3.1 Extension header for request
	8.1.9.3.2 Extension header for response

	8.1.9.4 Implementation example

	8.1.10 VENC frame data release
	8.1.10.1 VENC frame data release interface
	8.1.10.2 Content definition
	8.1.10.3 Extension header definition
	8.1.10.4 Implementation example

	8.1.11 Snapshot interface
	8.1.11.1 Snapshot interface
	8.1.11.2 Content definition
	8.1.11.2.1 sdc_yuv_snap_param

	8.1.11.3 Extension header
	8.1.11.4 Implementation example

	8.2 Algorithm inference API
	8.2.1 Model creation
	8.2.1.1 Model creation interface
	8.2.1.2 Content definition
	8.2.1.2.1 SDCMmz

	8.2.1.3 Extension header
	8.2.1.3.1 Request extension header (SDC_HEAD_DECODED_YUV_ACCEPT_TYPE)

	8.2.1.4 Implementation example

	8.2.2 Model deletion
	8.2.2.1 Model deletion interface
	8.2.2.2 Content definition
	8.2.2.3 Extension header
	8.2.2.4 Implementation example

	8.2.3 Model forward
	8.2.3.1 Model forward interface
	8.2.3.2 Content definition
	8.2.3.2.1 sdc_nnie_forward_ctrl
	8.2.3.2.2 sdc_nnie_forward_para

	8.2.3.3 Extension header
	8.2.3.3.1 Extension header for request

	8.2.3.4 Implementation example

	Appendix I Data Type Definition and API Example
	I.1 SOI data type definition example
	I.1.1 Common header definition
	I.1.2 Extension header definition

	I.2 Video service API example
	I.2.1 YUV logical channel attribute settings example
	I.2.2 YUV logical channel attribute querying example
	I.2.3 YUV frame data subscription example
	I.2.4 VENC logical channel attribute setting example
	I.2.5 VENC logical channel attribute querying example
	I.2.6 VENC frame data subscription example

	I.3 Algorithm inference example
	I.3.1 Model creation example
	I.3.2 Model deletion example
	I.3.3 Model forward example

	Bibliography

