
- 1 -

Z.imp100-Rev-Pre-and-Pub

 I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T Implementer's
guide

TELECOMMUNICATION STANDARDIZATION
SECTOR OF ITU

(2021)

SERIES Z: LANGUAGES AND GENERAL SOFTWARE
ASPECTS FOR TELECOMMUNICATION SYSTEMS

Formal description techniques (FDT) – Specification and
Description Language (SDL)

 Specification and Description Language
implementer's guide – Version 4.0.1

- 2 -

Z.imp100-Rev-Pre-and-Pub

This page is intentionally blank.

- 3 -

Z.imp100-Rev-Pre-and-Pub

Draft Specification and Description Language

implementer’s guide – Version 4.0.1

Summary

The purpose of this implementer's guide is to compile reported defects with resolutions and other

agreed changes for the ITU-T Specification and Description Language related ITU-T

Recommendations (Z.100, Z.101, Z.102, Z.103, Z.104, Z.105, Z.106, Z.107, Z.109, Z.111 and Z.119)

prior to these changes being published in approved Recommendations.

This implementer's guide includes all changes agreed by Q12/17 to the texts of the relevant

Recommendations consented or in-force at the date the guide is approved by SG17 and applies until

either the implementer's guide is updated to following version or all the changes are incorporated into

the relevant Recommendations and the implementer's guide is updated to a later version. It is assumed

that consented Recommendations will subsequently be approved.

Source

SDL implementer's guide version 4.0.0 was approved on 05 September 2019 by ITU-T Study

Group 17 (2017-2020)

© ITU 2021

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the prior

written permission of ITU.

- 4 -

Z.imp100-Rev-Pre-and-Pub

CONTENTS

Page

1 Introduction .. 11

1.1 Scope of the Guide ... 11

1.2 Approval of the Guide .. 12

1.3 Distribution of the Guide .. 12

1.4 Contact .. 12

2 Error reporting procedure ... 12

2.1 Submission of error reports and change requests ... 12

2.2 Resolution of errors .. 12

2.3 Documenting the Resolution of Defects and maintenance changes 12

Annex A Change Request Form .. 13

Annex B Master List of Changes .. 14

B.1 Objectives and scope .. 14

B.2 Terminology ... 14

B.3 Maintenance of Z.100 to Z.109 .. 15

B.4 Z.100 changes ... 15

B.5 Z.101 changes ... 16

B.6 Z.102 changes ... 17

B.7 Z.103 changes ... 18

B.8 Z.104 changes ... 18

B.9 Z.105 changes ... 19

B.10 Z.106 changes ... 20

B.11 Z.107 changes ... 20

B.12 Z.109 changes ... 20

B.13 Z.111 changes ... 20

B.14 Z.119 changes ... 20

B.15 List of Open Items .. 20

B.16 List of Closed items (see B.1 for meaning of a “closed” item) 20

B.16.1 allow algorithmic operators with external data .. 20

B.16.2 more flexible USE syntax ... 21

B.16.3 operators returning sets of values (multivalued operators) 21

B.16.4 signal priority .. 21

B.16.5 virtual as default ... 21

B.16.6 remote process creation .. 21

B.16.7 exit connection points for tasks .. 21

- 5 -

Z.imp100-Rev-Pre-and-Pub

B.16.8 Issues that are closed because no proposals were received over several

years .. 22

Annex C Master List of Changes to SDL-2010 (2016-04) ... 23

C.1 Z.100 changes ... 23

C.1.1 Textual correction – Heading 7.2, Language ... 23

C.1.2 Modification – Annex A, Abstract syntax index .. 23

C.1.3 Modification – Annex B, BNF syntax index .. 23

C.1.4 Textual correction –D.2.3 String .. 23

C.1.5 Modification –D.2.7 Real ... 23

C.1.6 Clarification – Appendix III.4, Differences between SDL 2000 and SDL

2010 .. 23

C.2 Z.101 changes ... 25

C.2.1 Textual correction – Language ... 25

C.2.2 Textual correction – Non-breaking hyphens in abstract syntax names 25

C.2.3 Clarification – 6.6 Names and identifiers, name resolution and visibility,

Abstract grammar ... 25

C.2.4 Clarification – 6.6 Names and identifiers, name resolution and visibility,

Concrete grammar, NOTE 2 .. 25

C.2.5 Clarification – 6.10 Frame symbol and page numbers, Concrete grammar .. 25

C.2.6 Clarification – 7.1 Framework ... 25

C.2.7 Clarification – 7.2 Package, Model .. 25

C.2.8 Clarification – 7.3 Referenced definition, Concrete grammar 25

C.2.9 Clarification – 8.1.1.1 Agent types, Concrete grammar 26

C.2.10 Modification – 8.1.1.1 Agent types, Model .. 26

C.2.11 Correction – 8.1.1.2 System type, Concrete grammar 26

C.2.12 Correction – 8.1.1.3 Block type, Concrete grammar 26

C.2.13 Correction – 8.1.1.4 Process type, Concrete grammar 26

C.2.14 Correction – 8.1.1.5 Composite state type, Abstract grammar 27

C.2.15 Textual correction – 8.1.4 Gate, Concrete grammar, <gate symbol 2> 27

C.2.16 Modification – 9.4 Procedure, Model ... 27

C.2.17 Correction – 10.1 Channel, Abstract grammar .. 27

C.2.18 Clarification – 10.1 Channel, Concrete grammar .. 27

C.2.19 Textual correction – 10.1 Channel, Semantics, fifth paragraph 28

C.2.20 Clarification – 10.3 Signal, Concrete grammar ... 28

C.2.21 Modification – 11.3 Input, Concrete grammar .. 28

C.2.22 Clarification – 11.12.2.1 Nextstate, Concrete grammar 28

C.2.23 Modification – 11.13.3 Procedure call, Semantics ... 29

C.2.24 Clarification – 11.13.3 Procedure call, Semantics ... 29

C.2.25 Modification – 11.13.3 Procedure call, Model ... 29

C.2.26 Clarification – 11.13.4 Output, Abstract grammar .. 29

- 6 -

Z.imp100-Rev-Pre-and-Pub

C.2.27 Textual correction – 11.13.5 Decision, Abstract grammar 29

C.2.28 Textual correction – 12.1.2 Interface definition, Concrete grammar 29

C.2.29 Textual correction – 12.1.2 Interface definition, Semantics 30

C.2.30 Textual correction – 12.1.3 Operation signature, Abstract grammar 30

C.2.31 Clarification – 12.1.3 Operation signature, Concrete grammar 30

C.2.32 Textual correction – 12.1.6.1 Literals constructor, Concrete grammar 30

C.2.33 Textual correction – 12.1.6.1 Literals constructor, Semantics, sixth

paragraph .. 30

C.2.34 Textual correction – 12.1.6.2 Structure data types, Concrete grammar 30

C.2.35 Textual correction – 12.1.6.3 Choice data types, Concrete grammar 31

C.2.36 Modification – 12.1.6.3 Choice data types, Concrete grammar 33

C.2.37 Textual correction – 12.1.6.3 Choice data types, Semantics, ninth

paragraph (ignoring NOTE paragraphs) ... 33

C.2.38 Textual correction – 12.1.7 Behaviour of operations, Concrete grammar 33

C.2.39 Textual correction – 12.1.8.2 Constraint, Concrete grammar 33

C.2.40 Clarification – 12.1.8.2 Constraint, Concrete grammar 33

C.2.41 Clarification – 12.2.2 Literal, Concrete grammar ... 33

C.2.42 Clarification – 12.2.7 Range check expression, Abstract grammar 34

C.2.43 Clarification – 12.2.7 Range check expression, Concrete grammar 34

C.2.44 Textual correction – 12.3.1 Variable definition, Abstract grammar, NOTE

1 .. 34

C.2.45 Textual correction – 12.3.2 Variable access, Abstract grammar 34

C.2.46 Textual correction – 12.3.3.1 Extended variable, Model 34

C.2.47 Clarification – 12.3.3.2 Default initialization, Concrete grammar 34

C.2.48 Textual correction – 12.3.4.2 Pid expression, Concrete grammar, <pid

expression> ... 34

C.2.49 Textual correction – 12.3.4.3 Timer active expression and timer remaining

duration, Semantics ... 34

C.3 Z.102 changes ... 35

C.3.1 Textual correction – Language ... 35

C.3.2 Clarification – 6.6 Visibility rules, names and identifiers – additional scope

units, Note 1 .. 35

C.3.3 Extension – 6.6 Visibility rules, names and identifiers – additional scope

units .. 35

C.3.4 Clarification – 8.1.2 Type expression, Concrete grammar 36

C.3.5 Clarification – 8.1.2 Type expression, Model .. 36

C.3.6 Clarification – 8.3 Context parameters, Concrete grammar 36

C.3.7 Correction – 8.3.2 Agent context parameter, Concrete grammar, <agent

signature> ... 36

C.3.8 Correction – 8.3.12 Gate context parameter, Concrete grammar 36

C.3.9 Clarification – 8.4.1 Adding properties, Semantics 37

- 7 -

Z.imp100-Rev-Pre-and-Pub

C.3.10 Textual correction – 8.4.3 Virtual transition/save, Concrete grammar 37

C.3.11 Textual correction – 8.8.3 Procedure context parameter, Concrete

grammar ... 37

C.3.12 Clarification – 9.2 Block, Model .. 37

C.3.13 Textual correction – 9.4 Procedure, Concrete grammar 37

C.3.14 Clarification – 10.4 Signal list area, Concrete grammar 37

C.3.15 Textual correction – 10.5 Remote procedure, Concrete grammar 37

C.3.16 Modification – 10.5 Remote procedure, Concrete grammar 38

C.3.17 Correction – 10.5 Remote procedure, Model ... 38

C.3.18 Correction – 10.6 Remote variable, Concrete grammar 39

C.3.19 Correction – 10.6 Remote variable, Model .. 39

C.3.20 Correction – 10.6 Remote variable, Model a) Importer 39

C.3.21 Correction – 10.6 Remote variable, Model b) Importer 40

C.3.22 Textual correction – 11.2 State, Abstract grammar 41

C.3.23 Clarification – 11.2 State, Concrete grammar ... 41

C.3.24 Modification – 11.2 State, Concrete grammar ... 41

C.3.25 Textual correction – 11.2 State, Semantics .. 41

C.3.26 Modification – 11.2 State, Model ... 41

C.3.27 Textual correction – 11.8 Empty clause ... 41

C.3.28 Textual correction – 11.9 Spontaneous transition .. 41

C.3.29 Textual correction – 11.10 Label ... 41

C.3.30 Clarification – 11.11.2 State aggregation, Semantics 42

C.3.31 Textual correction – 11.11.4 Connect, Abstract grammar 42

C.3.32 Textual correction – 11.12.2.4 Return, Concrete grammar 42

C.3.33 Textual correction – 11.14 Statement lists, Concrete grammar 42

C.3.34 Clarification – 11.14.1 Compound and loop statements, Abstract grammar 42

C.3.35 Textual corrections – 11.14.1 Compound and loop statements, Concrete

grammar ... 42

C.4 Z.103 changes ... 43

C.4.1 Textual correction – Language ... 43

C.4.2 Textual correction – 8.1.1.1 Agent types, Model ... 43

C.4.3 Textual correction – 8.1.4 Gates defined by interface gates, Model 43

C.4.4 Textual correction – 9 Agents, Concrete grammar .. 43

C.4.5 Clarification – 10.1 Channel, Concrete grammar .. 43

C.4.6 Modification – 10.1 Channel, Concrete grammar .. 43

C.4.7 Clarification – 10.1 Channel, Model .. 43

C.4.8 Textual correction – 11.2 State, Concrete grammar 43

C.4.9 Textual correction – 11.2 State, Model .. 44

C.4.10 Clarification – 11.3 Input, Concrete grammar .. 44

- 8 -

Z.imp100-Rev-Pre-and-Pub

C.4.11 Clarification – 11.3 Input, Model ... 44

C.4.12 Textual correction – 11.11.1 Composite state graph, Model 44

C.4.13 Textual correction – 11.11.2 State aggregation, Model 44

C.4.14 Textual correction – 11.13.1 Task, Model ... 44

C.4.15 Clarification – 11.15 Timer, Model ... 45

C.5 Z.104 changes ... 45

C.5.1 Textual correction – Language ... 45

C.5.2 Textual correction – Non-breaking hyphens in abstract syntax names 45

C.5.3 Clarification – 8.1.4 Gates with encoding rules ... 45

C.5.4 Clarification – 8.1.4 Gates with encoding rules and anonymous choice data

type for a gate, Abstract grammar .. 45

C.5.5 Clarification – 8.1.4 Gates with encoding rules and anonymous choice data

type for a gate, Concrete grammar ... 46

C.5.6 Textual correction – 8.1.4 Gates with encoding rules and anonymous

choice data type for a gate, Model .. 46

C.5.7 Modification – 10.7 Communication path encoding rules, encode and

decode, Abstract grammar ... 46

C.5.8 Modification – 10.7 Communication path encoding rules, encode and

decode, Concrete grammar and Model .. 46

C.5.9 Modification – 11.3 Input, Concrete grammar .. 47

C.5.10 Textual correction – 11.3 Input, Concrete grammar 47

C.5.11 Textual correction – 11.3 Input, Model .. 47

C.5.12 Modification – 11.4 Priority input .. 48

C.5.13 Clarification – 11.7 Save .. 48

C.5.14 Clarification – 11.8 Implicit transition ... 48

C.5.15 Clarification – 11.9 Spontaneous transition ... 48

C.5.16 Clarification – 11.10 Label .. 48

C.5.17 Clarification – 11.11 State machine and composite state 48

C.5.18 Clarification – 11.12 Transition ... 48

C.5.19 Clarification – 11.13.1 Task ... 48

C.5.20 Clarification – 11.13.2 Create .. 49

C.5.21 Clarification – 11.13.3 Procedure call ... 49

C.5.22 Textual correction – 11.13.4 Output, Abstract grammar 49

C.5.23 Clarification – 11.13.5 Decision .. 49

C.5.24 Clarification – 11.14 Statement list .. 49

C.5.25 Clarification – 11.15 Timer .. 49

C.5.26 Extension – 12.1 Data definitions, Abstract grammar 49

C.5.27 Clarification – 12.1 Data definitions, Model .. 49

C.5.28 Textual correction – 12.1 Data definitions, Model ... 50

C.5.29 Textual correction – 12.1.2 Interface definition, Concrete grammar 50

- 9 -

Z.imp100-Rev-Pre-and-Pub

C.5.30 Clarification – 12.1.2 Interface definition, Concrete grammar 50

C.5.31 Clarification – 12.1.2 Interface definition, Model ... 50

C.5.32 Textual correction – 12.1.6.2 Structure data types, Concrete grammar 50

C.5.33 Textual correction – 12.1.6.2 Structure data types, Semantics 50

C.5.34 Textual correction – 12.1.6.2 Structure data types, Model 51

C.5.35 Clarification – 12.1.8.3 Synonym definition, Concrete grammar 51

C.5.36 Clarification – 12.1.8.3 Synonym definition, Model 51

C.5.37 Textual correction – 12.2.1 Expression and expressions as actual

parameters, Abstract grammar ... 51

C.5.38 Textual correction – 12.2.1 Expression and expressions as actual

parameters, Concrete grammar .. 52

C.5.39 Clarification – 12.3.4.5 Import expression, Model .. 52

C.5.40 Clarification – 12.3.4.5 Generic system definition .. 52

C.5.41 Clarification – 12.3.4.6 Any expression, Abstract grammar 52

C.5.42 Textual correction – 12.3.4.9 Signallist expression, Semantics 52

C.5.43 Modification – 12.3.5 Value returning procedure call, Concrete grammar ... 53

C.5.44 Modification – 14.1 Boolean sort, 14.1.1 Definition 53

C.5.45 Textual correction – 14.7.1 Definition (for Real Sort) 53

C.5.46 Correction – 14.7.1 Definition (for Real Sort) ... 53

C.5.47 Correction – 14.7.1 Definition (for Real Sort) ... 53

C.5.48 Correction – 14.11.1 Definition (for Duration Sort) 53

C.5.49 Correction – 14.12.1 Definition (for Time Sort) .. 53

C.5.50 Correction – 14.18 Support for ASN.1 character, symbol string and NULL

types .. 53

C.5.51 Textual correction – A.2.7 Unordered literals, Semantics 54

C.5.52 Textual correction – A.2.7 Unordered literals, Semantics 54

C.5.53 Textual correction – Annex C – MSWord comment on title 54

C.6 Z.105 changes ... 54

C.6.1 Textual correction – Language ... 54

C.6.2 Textual correction – 9.2 Parameterized type assignment, Example 54

C.6.3 Textual correction – 9.3 Referencing ASN.1 parameterized type

definitions, Model ... 54

C.6.4 Textual correction – 10 Definitions in package Predefined for SDL-2010,

first line ... 54

C.7 Z.106 changes ... 54

C.7.1 Textual correction – Language ... 54

C.7.2 Textual correction – Introduction, page v .. 54

C.7.3 Clarification – Syntax rule name <composite state> 54

C.7.4 Clarification – 5.5 Agents .. 55

C.7.5 Textual correction – 5.6.1 Channel .. 55

- 10 -

Z.imp100-Rev-Pre-and-Pub

C.7.6 Clarification – 5.6.1 Channel ... 55

C.7.7 Clarification – 5.7.11.1 Transition body .. 55

C.7.8 Correction – 5.7.11.2.2 Join ... 55

C.7.9 Textual correction – 5.7.11.2.4 Return ... 56

C.8 Z.107 changes ... 56

C.8.1 Textual correction – Language ... 56

C.8.2 Textual correction – 12.1 Data definitions, Abstract grammar 56

C.8.3 Clarification – 12.1 Data definitions .. 56

C.8.4 Textual correction – 12.1.3 Operation signature, Abstract grammar 56

C.8.5 Clarification – 12.1.4 Generic data type operations, Concrete grammar 56

C.8.6 Textual correction – 12.2.1 Expressions, Abstract grammar 56

C.8.7 Textual correction – 12.2.3 to 12.2.8 ... 56

C.8.8 Textual correction – 12.2.7 (was 12.2.8) Range check expression, Abstract

grammar ... 57

- 11 -

Z.imp100-Rev-Pre-and-Pub

Specification and Description Language

implementer’s guide – Version 4.0.1

1 Introduction

This Guide is a compilation of reported defects and maintenance issues with their resolutions for the

Specification and Description Language ITU-T Recommendations:

• Z.100, Z.101, Z.102, Z.103, Z.104, Z.105, Z.106, Z.107, Z.109, Z.111 and Z.119.

The Recommendations ITU-T Z.111 and Z.119 are included in the above list because they are

essential normative references. Agreed changes to these documents that have not yet been issued in

approved Recommendations are therefore listed here.

At the time version 4.0.0 of this Guide was approved, there were no plans for further work on the

ITU-T Specification and Description Language, and the SDL-2010 version of the language as

approved in October 2019 was (subject to further error detection/correction) expected to be a final

version. For that reason, it was decided to increase the version number to 4.0.0 from 3.0.2 in the

previous version of this Guide, Z.Imp100 (09/18). This version 4.0.1 includes typographical

corrections to the Recommendations approved in October 2019.

This Guide is intended to be an additional authoritative source of information for implementers to be

read in conjunction with the Recommendations themselves.

This Guide itself is not an ITU-T Recommendation. However, it records agreed corrections to

reported defects.

This Guide is for the SDL-2010 version of the language as consented for approval in 2021. The earlier

Guide version 1.0.2 was for the SDL-2000 version of the language and therefore did not include Recs.

ITU-T Z.101, Z.102 and Z.103, and included the previous Z.107 (withdrawn in 2008). The changes

to SDL-2000 versions of the relevant superseded Recommendations can be found in Annex C of

Z.Imp100 (04/15) Version 2.0.2 and is not repeated in version 4.0.0, Z.Imp (09/19).

1.1 Scope of the Guide

The Guide records the resolution of defects and maintenance in the following categories as described

in Rec. ITU-T Z.100 Appendix II Guidelines for maintenance of the Specification and Description

Language:

• errors

• open items

• deficiencies

• clarifications

• modifications

• decommitted features

• extensions

NOTE: This Guide addresses proposed changes (extensions, deletions, or modifications) to the

Recommendations that are strictly related to maintenance of the Specification and Description Language as

described in the Z.100 series. Proposals for new features should be made in the normal way through

contributions to ITU-T Study Group 17, but if agreed may result in maintenance changes (extensions,

deletions, or modifications).

- 12 -

Z.imp100-Rev-Pre-and-Pub

1.2 Approval of the Guide

This Guide is approved by ITU-T Study Group responsible for the Recommendations listed in 1.

1.3 Distribution of the Guide

This Guide is available on-line at no charge from the ITU-T at

(http://www.itu.int/rec/T-REC-Z.Imp100/en).

1.4 Contact

Any comments should be addressed to the ITU/TSB Secretariat for Study Group responsible for the

Recommendations listed in 1, which prior to WTSA in 2021 was Study Group 17:

Mrs. Xiaoya Yang

ITU/TSB

Place des Nations

CH-1211 Geneva 20

Switzerland

Tel: +41 22 730 6206

Fax: +41 22 730 4882

E-mail: tsbsg17@itu.int

2 Error reporting procedure

2.1 Submission of error reports and change requests

Any implementer of the Specification and Description Language defined in the ITU-T Z.100, Z.101,

Z.102, Z.103, Z.104, Z.105, Z.106, Z.107 and Z.109 Recommendations is invited to submit a report

using the form found in Appendix II of Z.100 and copied below in Annex A. The report should be

submitted to the ITU-T Study Group 17 Secretariat (see clause 1.4). Each form should cover a single

error ("error correction") or proposed change. Where the form reports an error, it is important that the

form is completed accurately, especially the sections that relate to the base material against which the

error report is being raised.

2.2 Resolution of errors

ITU-T Study Group 17 will address the submitted error. Following agreement on a resolution to the

error, the proposed resolution will be approved using the appropriate procedures in ITU-T.

Please note that individual responses are not given specifically to those submitting reports, and that

the procedure is not intended as a consulting service.

2.3 Documenting the Resolution of Defects and maintenance changes

The ITU-T Recommendations that have errors or agreed changes, are recorded in Annex B with

defects and their resolutions including the changes, or with the reasons for maintenance and the

changes.

http://www.itu.int/rec/T-REC-Z.Imp100/en
mailto:tsbsg17@itu.int

- 13 -

Z.imp100-Rev-Pre-and-Pub

Annex A

Change Request Form

Change Request Form

Please supply the following details.

Type of change: ❑ error correction ❑ clarification (or

question)

 ❑ simplification ❑ extension

 ❑ modification ❑ decommission

Short summary of change request

Short justification of the change request

Is this view shared in your organization? ❑ yes ❑ no

Have you consulted other users? ❑ yes ❑ no

How many users do you represent? ❑ 1-5 ❑ 6-10

❑ 11-100 ❑ over 100

Your name and address

Please attach further sheets with details if necessary.

SDL (ITU-T Z.100) Rapporteur, c/o ITU-T, Place des Nations, CH-1211 Geneva 20, Switzerland.

Fax: +41 22 730 5853, e-mail: SDL.rapporteur@itu.int.

mailto:SDL.rapporteur@itu.int

- 14 -

Z.imp100-Rev-Pre-and-Pub

Annex B

Master List of Changes

This is the master list of changes for the ITU-T Z.100 (SDL) series Recommendations approved in

2021 by the Working Party of the Study Group responsible for the Recommendations according the

rules for maintenance in Rec. ITU-T Z.100 itself.

History: The previous version of this list was published in version 4.0.0 of this document, which

replaced versions 3.0.2, 3.0.1, 3.0.0, 2.0.2, 2.0.0, 1.0.2 and 1.0.1 of this document and the earlier

document COM 17-TD 3250 [2001-2004] one of the documents of July 2004 WP C/17 meeting.

COM 17-TD 3250 [2001-2004] records the history up to that point, and there seems to be no benefit

repeating that historical information in this document.

In accordance with Appendix II to Recommendation ITU-T Z.100, the information in this document

is distributed to users by various means including sdlnews@sdl-forum.org.

B.1 Objectives and scope

The purpose of this document is to record agreed changes to SDL Recommendations (ITU-T Z.100

to Z.109) and issues that require study and are therefore "open", or have been studied and a decision

has been made that the issue is "closed": that is no further study should be undertaken.

The agreed changes come in two categories:

a) Correction of errors and clarifications (see definitions below and in Rec. ITU-T Z.100,

Appendix II);

b) Extensions and modifications (see definitions below and in Rec. ITU-T Z.100, Appendix II).

The rules for maintenance in an Appendix to Rec. ITU-T Z.100, state that errors and clarifications

published in the Master list of changes "come into effect immediately". Such changes should be

published in a Corrigendum, Addendum or revision of the Recommendation as soon as is practical.

Modification and extensions imply some change to SDL. The rule in this case is "Unless there are

special circumstances requiring such changes to be implemented as soon as possible, such changes

will not be recommended until Rec. ITU-T Z.100 is revised."

B.2 Terminology

An error is an inconsistency in one or more Recommendations ITU-T Z.100 to Z.109.

A textual correction is a change in the text or diagrams of Recommendations that corrects clerical or

typographical errors.

An open item is an issue identified but not resolved.

A deficiency is an issue identified where the semantics of SDL are not clearly defined in the

Recommendations.

A clarification is a change to the text (or diagrams) in a Recommendation that does not (intentionally)

change the meaning of SDL, but is intended to make the Recommendations less ambiguous or easier

to understand.

A modification changes the semantics of SDL.

An extension is a new feature that does not change the semantics of SDL defined in the approved

Recommendations for SDL.

mailto:sdlnews@sdl-forum.org

- 15 -

Z.imp100-Rev-Pre-and-Pub

B.3 Maintenance of Z.100 to Z.109

A Rec. ITU-T Z.100 Appendix documents the procedure to be followed for the maintenance of

Recommendations ITU-T Z.100, Z.101, Z.102, Z.103, Z.104, Z.105, Z.106, Z.107 and Z.109. This

procedure requires error corrections, proposed modifications and extensions to be widely publicized

and a Master list of changes to be maintained. Clarifications or corrections for errors and deficiencies

in the list of changes come into effect "immediately" (that is as soon as the Working Party or Study

Group approves the list). Other changes take effect only when the relevant Recommendation is

updated.

The changes listed below if applied to the SDL-2010 Recommendations published in 2019-10, should

produce the text of the subsequent SDL-2010 Recommendations consented for approval, including

extensions to support the broadcast of signals.

B.4 Z.100 changes

The following lists the changes to the Z.100 except the separately published Annex F (for more details

see "Textual correction and extension – Annex F Formal Definition" below).

B.4.1 Textual correction – Introduction – Status/Stability

In the 2nd paragraph 1st sentence change "but these had" to "but this had”, and change “for these was

lacking” to “was lacking”.

B.4.2 Clarification – 2 References

Change the references dates for Z.101, Z.102, Z.103, Z.104, Z.105, Z.106 and Z.107 from “2019" to

“2021”.

B.4.3 Textual correction – 3.19 type

Change “give instance" to “give instances”.

B.4.4 Textual correction – 5.1 Specification and Description Language grammars

Annex F applies to SDL-2010, not SDL-2000, therefore in the second paragraph delete “for SDL-

2000, so is not fully applicable to SDL-2010. Further study leading to an update of Annex F is needed

to produce”.

B.4.5 Textual correction – 5.3.2 Titled enumeration items Model

Change the text of the 2nd paragraph to:

“Precise details of the order of transformation for SDL-2010 are found in Annex F.”

B.4.6 Extension – Annex A Abstract syntax index

In the table, for the row Output-node and the column ITU-T Z.102 add “redefinition”.

B.4.7 Extension – Annex B BNF syntax index

In the table, for the row <destination> and the column ITU-T Z.102 add “redefined”.

B.4.8 Textual correction – Annex C Compatibility

In the 3rd paragraph change “use of legacy syntax” to “avoiding legacy syntax”.

- 16 -

Z.imp100-Rev-Pre-and-Pub

B.4.9 Textual correction and extension – Annex F Formal Definition

Annex F is published separately in three parts:

• Annex F1 SDL-2010 formal definition: General overview;

• Annex F2 SDL-2010 formal definition: Static semantics;

• Annex F3 SDL-2010 formal definition: Dynamic semantics.

Annex F1 is unchanged from 10/2019.

Annex F2 and Annex F3 have a number of textual corrections and clarifications, including updating

the formal definition for multiple levels of priority input (instead of just one level). Annex F2 and

Annex F3 are also extended for the signal broadcast introduced in the revised Z.102. There are several

hundred individual changes in Annex F2 and Annex F3, though many of these are items such as

layout, correcting spelling or grammar errors in natural language text, correcting the ASM grammar

to match the grammar given in Annex F1. With such a large number of small changes, it was decided

not to include the details here.

B.4.10 Extension – Appendix III.4 Differences between SDL-2000 and SDL-2010

After the paragraph ending " consumption in the destination input port." add the paragraph:

Normally output of a signal results in one signal instance being conveyed to one of the reachable

agent instances that has the signal in its valid input signal set. In SDL-2010, if all is specified in an

output then multiple signal instances are conveyed: one to each reachable agent instances that has the

signal in its valid input signal set.

B.4.11 Clarification – Bibliography

Change the date for Z.109 from "2012" to "2016".

B.5 Z.101 changes

B.5.1 Clarification – 2 References

Change the references dates for Z.100, Z.102, Z.103, Z.104, Z.105, Z.106 and Z.107 from “2019" to

“2021”.

B.5.2 Textual correction – 6.1 Lexical rules, NOTE 8

Change “possible” to “possibly”.

B.5.3 Clarification – 11.13.4 Output, Abstract grammar

The abstract syntax for Output-node is changed to compatible with the abstract syntax in Z.104. The

items Signal-identifier and Actual-parameters are grouped together on the first line of the syntax:

Output-node :: { Signal-identifier Actual-parameters }

 Activation-delay

 Signal-priority

 [Signal-destination]

 Direct-via

B.5.4 Clarification – 11.13.4 Output, Semantics

In the third paragraph after NOTE 2, the text is revised to clarify how the signal instance is delivered.

In the second sentence the text “the signal is sent to” is deleted and the “.” at the end of the sentence

replaced by “,”. The text “This agent instance set” at the start of the old third sentence is deleted. In

- 17 -

Z.imp100-Rev-Pre-and-Pub

the old fourth sentence “when the signal instance arrives at the end of the communication path, it is

delivered to” is deleted, “.” at the end of the sentence is deleted and “The instance” at the start of the

next sentence is deleted.

B.5.5 Textual correction – 12.1.8.1 Syntypes, Semantics

The list numbering is incorrect. The list should be numbered a), b), c) .…h).

In item h) (was item k) correct “allowd” to “allowed”.

B.6 Z.102 changes

B.6.1 Clarification – 2 References

Change the references dates for Z.100, Z.101, Z.103, Z.104, Z.105, Z.106 and Z.107 from “2019" to

“2021”.

B.6.2 Extension – 11.13.4 Output, Abstract grammar

The abstract grammar for Output-node is extended to allow a signal to be broadcast. The following

is added:

Abstract grammar

Output-node :: { [BROADCAST] Signal-identifier Actual-parameters }

 Activation-delay

 Signal-priority

 [Signal-destination]

 Direct-via

Basic SDL2010 is extended to include the optional BROADCAST to indicate that several signal

instances are created and delivered, so that each reachable agent instance with the signal in its

complete valid input signal set receives one signal instance.

If an Output-node includes BROADCAST, for the given Signal-identifier, Signal-destination, and

Direct-via there shall be no more than one communication path to a reachable agent instance set. If a

gate is on the same communication path as another gate, either the first gate can be reached from the

second gate, or the second gate can be reached from the first gate. If an agent is reachable from a gate

of one path, that agent shall not be reachable from a gate of another path.

B.6.3 Extension – 11.13.4 Output, Concrete grammar

The concrete grammar is extended to allow a signal to be broadcast. The following is added before

the heading “Semantics”.

<destination> ::=

 <pid expression0>

 | {[system | block | process] <agent identifier> | this } [<destination number>]

 | all [[system | block | process] <agent identifier> | this]

Basic SDL2010 is extended to include all that represents the optional BROADCAST in an Output-

node. If all is absent, BROADCAST is absent.

A <destination> of a <communication constraints> in <remote procedure call body> shall not contain

all (see clause 10.5). A <destination> of a <communication constraints> in <import expression> shall

not contain all (see clause 10.6).

- 18 -

Z.imp100-Rev-Pre-and-Pub

B.6.4 Extension – 11.13.4 Output, Semantics

The semantics for output is extended to allow a signal to be broadcast. The following is added after

the paragraph added in B.6.2 above:

Semantics

If BROADCAST is absent one instance of the signal is delivered (or the signal is discarded) as

defined in [ITU‑T Z.101].

If BROADCAST is present, multiple signal instances are delivered: one to each reachable agent

instance. If no Signal-destination is specified, agent instances are identified that can be reached from

the local gates of the agent sending the signal taking into account the constraints of Direct-via items

(see description of in Direct-via [ITU‑T Z.101]). If a Signal-destination is given, this further restricts

the reachable agent instances as defined in [ITU‑T Z.101].

B.7 Z.103 changes

B.7.1 Clarification – 2 References

Change the references dates for Z.100, Z.101, Z.102, Z.104, Z.105, Z.106 and Z.107 from “2019" to

“2021”.

B.8 Z.104 changes

B.8.1 Clarification – 2 References

Change the references dates for Z.100, Z.101, Z.102, Z.103, Z.105, Z.106 and Z.107 from “2019" to

“2021”.

B.8.2 Textual correction – 10.7 Communication path encoding rules, encode and decode

In the Semantics, change “anononymous” to “anonymous” in the line:
value type UniqueAnon /* representing the unique anononymous name */

B.8.3 Extension – 11.13.4 Output, Abstract grammar

The optional BROADCAST is added to the abstract syntax of Output-node:

Output-node :: { [BROADCAST] Signal-identifier Actual-parameters

 | Expression

 | Encoded-expression }

 Activation-delay

 Signal-priority

 [Signal-destination]

 Direct-via

and in the text following this abstract syntax “Basic” is changed to “Comprehensive”.

B.8.4 Textual correction – 12.1.9 Specialization of data type, Semantics

In the list after NOTE 1, in list item b) change “Zis” to “Z is”.

B.8.5 Textual correction – 12.2.1 Expression and expressions as actual parameter, Abstract

grammar

To be consistent with Z.101, change the definition of Active-expression to use “::”. That is, change to

line:

- 19 -

Z.imp100-Rev-Pre-and-Pub

Active-expression = Variable-access

to

Active-expression :: Variable-access

B.8.6 Textual correction – 12.2.1 Expression and expressions as actual parameter, Concrete

grammar

In the paragraph before the syntax for <primary>, change “correponding” to “corresponding”.

B.8.7 Textual correction – B.8 Array

In the 2nd Example change “dcl hashtable”. to “dcl htable”.

B.8.8 Textual correction – C.1.6.2.1 Integern for a generic integer type with n bits

Change the line
 For exmaple when definining Signed_long_long the values are:

to
 For example when defining Signed_long_long the values are:

The comment line
/* Negation and Comparisons with Boolean results */

appears twice. Change the second line to
/* Negation and Comparisons with Integer results */

In the definition of the operators from
 operator "!" (nv1 Integern) -> Integer

to
 operator ">=" (nv1 Integern,nv2 Int_long_long)->Integer

insert the missing “{“ before “return” in each operator definition.

For example, the last operator body for the last operators becomes
 {return if num(nv1)>=num(nv2)then 1 else 0 fi}

Change the “arithemetic” to “arithmetic” in the comment line
/* Real/Float arithemetic */

B.8.9 Textual correction – C.1.6.9 C floating numbers types

Delete a space after “to_Real(f)” in the line
 operator "=="(f Float, r Real)-> Integer{return if to_Real(f)= r then 1 else 0 fi}

Delete/Add spaces to change the layout of the following lines (revised versions)
 operator "!="(f Float, r Real)-> Integer{return if to_Real(f)/=r then 1 else 0 fi}

 operator "!="(r Real, f Float)-> Integer{return if r/= to_Real(f)then 1 else 0 fi}

B.9 Z.105 changes

B.9.1 Clarification – 2 References

Change the references dates for Z.100, Z.101, Z.102, Z.103, Z.104, Z.106 and Z.107 from “2019" to

“2021”.

- 20 -

Z.imp100-Rev-Pre-and-Pub

B.10 Z.106 changes

B.10.1 Clarification – 2 References

Change the references dates for Z.100, Z.101, Z.102, Z.103, Z.104, Z.105 and Z.107 from “2019" to

“2021”.

B.10.2 Textual correction – 7.1 General principles

In the last sentence of the fifth paragraph change “developing an the Specification” to “developing a

Specification”.

B.11 Z.107 changes

B.11.1 Clarification – 2 References

Change the references dates for Z.100, Z.101, Z.102, Z.103, Z.104, Z.105 and Z.106 from “2019" to

“2021”.

B.11.1 Textual correction – 12.2.1 Expression, Abstract grammar

To be consistent with Z.101, change the definition of Active-expression to use “::”. That is, change to

line:

Active-expression = Variable-access

to

Active-expression :: Variable-access

B.12 Z.109 changes

None.

B.13 Z.111 changes

None.

B.14 Z.119 changes

None.

B.15 List of Open Items

The following is a list of issues classified as open items according to the rules for maintenance for

SDL. It was agreed in September 2015 that each item on the list at that time should be progressed and

removed from this list once the item has been included in the revised SDL-2010.

B.16 List of Closed items (see B.1 for meaning of a “closed” item)

To facilitate the tracking of items each item uses the identifier of the form (month/year).<number>

given when the item was first put onto the open item list. For example “(04/97).3”. If the items were

never on the open item list, the numbers are consecutive to the open items for the meeting at which

the closed item is identified.

B.16.1 allow algorithmic operators with external data

This was listed as an item in COM-10-1 in 1997 but the requirement is not clear.

- 21 -

Z.imp100-Rev-Pre-and-Pub

B.16.2 more flexible USE syntax

Originally listed as item (04/97).25 of Q.6/10 (SDL) Meeting, 29 April – 05 May 1997.

The proposal was to use p1, p2, p3; instead of use p1; use p2; use p3; to use packages p1,

p2 and p3. A <package use clause> has an optional <definition selection list> after the package name

and <definition selection list> is a comma separated list of names, so that allowing list of comma

separated package names would lead to syntactic ambiguity. Therefore the proposed change has no

benefit.

B.16.3 operators returning sets of values (multivalued operators)

This issue was originally listed as item (10/96).13 of COM-10-1 1997.

This is adequately be handled by struct.

B.16.4 signal priority

Originally listed as item (04/97).18 in the Q.6/10 (SDL) Meeting, 29 April – 05 May 1997 report.

The concept is to give signals a (possibly dynamic) priority. The selection signals for consumption is

already relatively complex and a fundamental part of SDL-2010.

In SDL-2010 it is possible to state the availability time for signals determined by the sending agent.

Signals are not available to be consumed from the input port of the recipient until the specified time

has been reached. Two or more signals that become available at the same time are ordered according

to a priority specified by the senders.

In SDL-2010 which available signal instance is selected for consumption depends on the current state,

the priority of the input for the signal in that state and the order of the signals in the input port.

B.16.5 virtual as default

Originally listed as item (04/97).31 in the Q.6/10 (SDL) Meeting, 29 April – 05 May 1997 report.

In SDL-2010 (and SDL-2000 and SDL-92) a type in which <virtuality> is omitted is treated as

finalized. This had been extensively discussed (and virtual as default rejected) when SDL-92

was formulated, and has implications on the use of constraints.

B.16.6 remote process creation

Originally listed as item (04/97).31 in the Q.6/10 meeting 21-25 September 1998 report.

The need is satisfied by remote procedure in the state machine of an agent, and it was decided an

additional construct made the language too complex.

B.16.7 exit connection points for tasks

Listed as an issue (06/00).1 in the Report of Q.6/10 meeting Oslo 8-9 June 2000, 6.6.

The issue is whether to allow a statement in a textual algorithm in a task symbol to transfer control

to an additional exit point from the task symbol. The following diagram gives an outline example

where g is an exit connection point.

- 22 -

Z.imp100-Rev-Pre-and-Pub

This issue is considered closed. There should only be one exit point from a task symbol.

B.16.8 Issues that are closed because no proposals were received over several years

These items had been listed as additional open items in Z.Imp100 for a considerable time, but no

proposals were received. It was decided in September 2015 to close these items.

• Data type library extensions (predefined object types, Standard Template Library analogue);

• Memory management issues;

• Instance sets vs. container types and navigation into composite agents;

• Interrupts.

The list above previously included "Broadcast mechanisms", but a proposal was received in 2020 that

has been incorporated into the changes listed for SDL-2010 (2019-10).

if (b) {
 continue g;

}

g

- 23 -

Z.imp100-Rev-Pre-and-Pub

Annex C

Master List of Changes to SDL-2010 (2016-04)

The changes listed below if applied the SDL-2010 Recommendations published in 2016-04, should

produce the text of the corresponding SDL-2010 Recommendations consented for approval in 2019.

C.1 Z.100 changes

C.1.1 Textual correction – Heading 7.2, Language

The language of Heading 7.2 is corrected to "English UK" instead of "French".

C.1.2 Modification – Annex A, Abstract syntax index

The rule State-identifier is added to the table with "defined" in the Z.101 column.

The rule Channel-endpoint is added to the table with "defined" in the Z.101 column.

C.1.3 Modification – Annex B, BNF syntax index

The rule <actual context parameters> is deleted from the table.

The rule <field of kind> is added to the table with "defined" in the Z.101 column.

The rule <nextstate body name> is added to the table with "defined" in the Z.101 column.

C.1.4 Textual correction –D.2.3 String

In paragraph 1, correct the round brackets after "String" to "< … >" for actual context parameters,

Change

"String(Integer) is a string of integers. In particular, the Charstring is defined as

String(Character). "

to

 "String < Integer > is a string of integers. In particular, the Charstring sort is defined as

String < Character >."

C.1.5 Modification –D.2.7 Real

The text is revised, so that Real literals are always distinct from Integer literals. Replace the

paragraph:

The notation for a Real value is a sequence of one or more of the numbers 0 to 9 (the same as an

Integer) or a sequence of one or more of the numbers 0 to 9 followed by a decimal point (represented

by a full stop) followed by one or more of the numbers 0 to 9. Examples are: 42; 999; 10.3; 0.79

and .001.

by the paragraph:

The notation for a Real value is a sequence of one or more of the numbers 0 to 9 followed by a

decimal point (represented by a full stop) followed by one or more of the numbers 0 to 9. Examples

are: 42.0; 10.3; 0.79 and .001..

C.1.6 Clarification – Appendix III.4, Differences between SDL 2000 and SDL 2010

In the sixth paragraph, change "further study is in progress to provide these benefits in another way"

to "further study was progressed to provide these benefits as defined in [ITU-T Z.107]", and delete

the text in in the paragraph after this sentence.

- 24 -

Z.imp100-Rev-Pre-and-Pub

After the paragraph ending "timer or is specifically named." insert a new paragraph

The SDL-2010 construct <agent instance pid value> enables initialization of values to denote

the Pid values of the agent instances that exist when the system is initialized. Without such

language defined initialization either the system has to be designed so that the Pid values of

the agent instances are dynamically communicated between agents before normal handling of

external signals commences, or some tool initialization of the values has to be used.

and a new paragraph

In SDL-2010, all timers of an agent are reset by the construct reset *, and all timers of an

agent with the given timer name timername are reset by the construct reset timername *.

At the start the paragraph starting "In SDL-2010, when a signal is placed insert the sentence:

The signals that are available for input are placed in the input port of the agent instance to

receive the signal.

After the modified paragraph above insert a new paragraph

In SDL-2010 the values of unconsumed signals available in the input port can be examined

through the signallist variable. The signallist variable has a string sort that is denoted

as signallist, so that signallist[n] (where n is an integer) provides a choice value for

an available signal. The string is ordered so that signallist[1] is the first available signal

and the remaining string elements are in the availability order of the corresponding signals.

The name of signal n is given by signallist[n]!Present, and is used to access the values

conveyed by the signal in the choice value signallist[n].

In the paragraph starting "In SDL-2010 a signallist definition", correct the text "meaning defining"

to "meaning as defining".

After the paragraph

In SDL-2010, it is possible to specify the delay between output of signal and the signal being

available for consumption in the destination input port.

insert the new paragraph

In SDL-2010, there are alternatives to specifying the name of signal to use in an output: an

expression can be given where the sort of the expression is a choice sort that corresponds to a

choice of signals that can be output; or if encoding rules are specified for a communication

path and the output is directed via that path, an expression can be given that corresponds to

the data type (Charstring, Octetstring or Bitstring) for that encoding. When a signal is

input as an alternative to assigning each of the signal parameters to variables, the signal can

be assigned to a variable with choice data type that corresponds to a choice of signals that can

be input. The signal keyword denotes a variable that can hold any of the signals that can be

received. The signal variable can be used in an input, the choice value of the signal variable

can be accessed in expressions, and the signal variable can be used in an output to send a

signal instance.

and after this the new paragraph

SDL-2010 allows an optional natural expression after the <agent identifier> of a <destination>

to select a specific agent instance when there is more than one instance of the identified agent

set, otherwise any existing instance of the set of agent instances is selected.

- 25 -

Z.imp100-Rev-Pre-and-Pub

C.2 Z.101 changes

C.2.1 Textual correction – Language

Change all parts of the main body (from page 1) text marked as "French" or "Swiss French" or

"English (US)" or "Spanish" or "German (Switzerland)" to "English (UK)".

C.2.2 Textual correction – Non-breaking hyphens in abstract syntax names

Abstract syntax rule names are always in italic, start with an uppercase letter followed by lowercase

letters and hyphens and ending in a lowercase letter. To make it easy to find the abstract syntax rule

names in the MSWord macros used to maintain SDL-2010, these should not be non-breaking

hyphens. Change any non-breaking hyphen in abstract syntax names to normal (line breaking)

hyphens. If this causes the line to break on a hyphen in an abstract syntax name, a line break (^l) is

inserted immediately before the abstract syntax name.

C.2.3 Clarification – 6.6 Names and identifiers, name resolution and visibility, Abstract

grammar

The Identifier for system or for any package not contained in another package should have an empty

Path-item list, therefore in the rule Qualifier change "Path-item +" to "Path-item*" so that the list can

be empty. At the end of the paragraph after the rule Name insert the sentence "For the system and any

package not contained in another package the full path is an empty Path-item list."

C.2.4 Clarification – 6.6 Names and identifiers, name resolution and visibility, Concrete

grammar, NOTE 2

Delete the sentence: "Therefore, it is not possible to refer to the identifiers introduced in a definition

attached to these scope units by qualifiers."

C.2.5 Clarification – 6.10 Frame symbol and page numbers, Concrete grammar

In the first text paragraph correct <block type diagram> to <block type page> and correct <process

type diagram> to <process type page>.

C.2.6 Clarification – 7.1 Framework

The paragraph starting "The Package-definition-set …" is moved from Concrete grammar to become

a new Model sub-clause.

C.2.7 Clarification – 7.2 Package, Model

Add a Model containing the paragraph:

If a package is mentioned in several <package use clause> items of a definition (in the same

text area or different text areas of the definition), these are replaced by one <package use

clause> in one text area that selects the union of the definitions selected in the <package use

clause> items.

C.2.8 Clarification – 7.3 Referenced definition, Concrete grammar

In the first text paragraph after the syntax for <diagram> after "For each <referenced definition>"

insert "except any outermost <package diagram>" and in the next paragraph delete "except any

outermost <package diagram>".

In the second paragraph after the syntax for <diagram>, delete

"except any outermost <package diagram>"

- 26 -

Z.imp100-Rev-Pre-and-Pub

change

"If two <referenced definition>s" to "If two <referenced definition> items",

change

"The <qualifier> shall" to "The <qualifier> in a <referenced definition> shall",

and change

"context, otherwise the <package diagram>" to "context, except if the <package diagram>".

Add a new paragraph at the end of the clause:

It is not allowed to specify a <qualifier> after the initial keyword(s) for definitions which are not

<referenced definition> items.

C.2.9 Clarification – 8.1.1.1 Agent types, Concrete grammar

In the syntax rule for <agent type diagram> delete the line
 [is associated with <package use area>]

Delete the paragraph starting "The <package use area>" between the syntax rule for <agent type

diagram> and the syntax rule for <type preamble>. The paragraph is not needed every time <package

use area> occurs in a syntax rule, because it is described in the first text paragraph of Concrete

grammar in 6.10 Frame symbol and page numbers:

- the <package use clause> is associated with the frame symbol for the page of the diagram

(not the diagram – which in any case is not a symbol).

C.2.10 Modification – 8.1.1.1 Agent types, Model

Add a Model clause:

Model

An <agent formal parameters> list item with a <parameters of sort> that defines multiple parameter

names is replaced by a sequence of <agent formal parameters> list items with the same <aggregation

kind> each <parameters of sort> defining one name.

C.2.11 Correction – 8.1.1.2 System type, Concrete grammar

At the end of the syntax for <system type page> add the line
 [is associated with <package use area>]

At the end of the clause add the paragraph:

Each <gate on diagram> of the <block type page> represents a Gate-definition-set item of the Agent-

type-definition.

C.2.12 Correction – 8.1.1.3 Block type, Concrete grammar

At the end of the syntax for <block type page> add the line
 [is associated with <package use area>]

At the end of the clause add the paragraph:

Each <gate on diagram> of the <system type page> represents a Gate-definition-set item of the Agent-

type-definition.

C.2.13 Correction – 8.1.1.4 Process type, Concrete grammar

At the end of the syntax for <process type page> add the line
 [is associated with <package use area>]

- 27 -

Z.imp100-Rev-Pre-and-Pub

At the end of the clause add the paragraph:

Each <gate on diagram> of the <process type page> represents a Gate-definition-set item of the

Agent-type-definition.

C.2.14 Correction – 8.1.1.5 Composite state type, Abstract grammar

NOTE 1 is incorrect. Instead there is a condition that the gate definition set is non-empty when the

composite state type is used for a state machine. Renumber NOTE 2/NOTE 3 as NOTE 1/NOTE 2,

replace the old NOTE 1 by:

The Gate-definition-set of a Composite-state-type-definition shall not be empty if there is a

State-machine based on the Composite-state-type-definition.

C.2.15 Textual correction – 8.1.4 Gate, Concrete grammar, <gate symbol 2>

Change the symbol to the symbol . The horizontal line was missing

between the arrows.

C.2.16 Modification – 9.4 Procedure, Model

Add a Model clause:

Model

A <formal variable parameters> with a <parameters of sort> that defines multiple parameter names

is replaced by a sequence of <formal variable parameters> with the same <parameter kind> and

<aggregation kind>, and each <parameters of sort> defining one name.

C.2.17 Correction – 10.1 Channel, Abstract grammar

Add Channel-endpoint to the syntax for Channel-path as follows:

Channel-path :: Channel-endpoint

 Originating-gate

 Channel-endpoint

 Destination-gate

 Signal-identifier-set

At the end of the syntax rules add Channel-endpoint and State-identifier as follows:

Channel-endpoint = Agent-identifier

 State-identifier

 ENV

State-identifier = Identifier

In the fourth paragraph after the syntax, make a clarification by changing

"the same scope unit in the abstract syntax"

to

"the same scope unit (which includes directly enclosed scopes) in the abstract syntax".

C.2.18 Clarification – 10.1 Channel, Concrete grammar

After the paragraph starting " For a <channel symbol 1>", insert the paragraph:

If the arrowhead of a <channel symbol 1> points away from an attached <agent area>, the first

Channel-endpoint is the Agent-identifier for that agent. If the arrowhead of a <channel symbol 1>

points away from an attached <state machine area>, the first Channel-endpoint is the State-identifier

- 28 -

Z.imp100-Rev-Pre-and-Pub

for the state machine. Otherwise, if the <channel symbol 1> points away from an attached <gate on

diagram> and the first Channel-endpoint is ENV.

At the end of the next paragraph add the sentence:

If the arrowhead of a <channel symbol 1> points away from an attached <gate on diagram>, this gate

represents the Originating-gate.

After the above sentence add a new paragraph:

If the arrowhead of a <channel symbol 1> points to an attached <agent area>, the second Channel-

endpoint is the Agent-identifier for that agent. If the arrowhead of a <channel symbol 1> points to an

attached <state machine area>, the second Channel-endpoint is the State-identifier for the state

machine. Otherwise, if the <channel symbol 1> points to an attached <gate on diagram> and the

second Channel-endpoint is ENV.

At the end of the next paragraph (containing "the <gate> in this area") add the sentence:

If the arrowhead of a <channel symbol 1> points to an attached <gate on diagram>, this gate

represents the Destination-gate.

Change the next paragraph (just before the syntax for <channel symbol 1>) to:

For a <channel symbol 2> there are two Channel-path items: one arrowhead corresponds to one

Channel-path and the other arrowhead to the other Channel-path.

In the second paragraph after the syntax for <delaying channel symbol 2>, after "(compared with any

other <signal list area>)" insert " and represents the Signal-identifier-set for the corresponding

Channel-path", and add the following sentence to the end of the paragraph:

The Channel-endpoint items, Originating-gate and Destination-gate for this Channel-path are

determined in the same way as for the arrowhead on a <channel symbol 1>.

In the next paragraph (the third paragraph after the syntax for <delaying channel symbol 2>), after

the text "channel has no delay" add " and represents NODELAY in the Channel-definition".

C.2.19 Textual correction – 10.1 Channel, Semantics, fifth paragraph

The hyphens in "First-In-First-Out" should be consistent (all normal or all non breaking). Change to

normal (line break) hyphens (a line break should be inserted before if needed).

NOTE "First-In-First-Out" is not an abstract syntax name.

C.2.20 Clarification – 10.3 Signal, Concrete grammar

At the end of the Concrete grammar insert the paragraph:

If several <signal definition> items are specified in one <signal definition list>, this is equivalent to

individual <signal definition list>s for each of them.

C.2.21 Modification – 11.3 Input, Concrete grammar

At the end of the Concrete grammar insert the paragraph:

A <variable> of a <stimulus> shall not be a global variable of a system (type) or block (type) except

if the <stimulus> is within the state machine actions of system (type) or block (type).

C.2.22 Clarification – 11.12.2.1 Nextstate, Concrete grammar

Replace the rule <nextstate body> (to be compatible with Z.100 Annex F2) by

- 29 -

Z.imp100-Rev-Pre-and-Pub

<nextstate body> ::=

 <nextstate body name>

 | <dash nextstate>

 | <history dash nextstate>

<nextstate body name> ::=

 <basic state name>

 | <composite state name> <nextstate parameters>

C.2.23 Modification – 11.13.3 Procedure call, Semantics

Delete the first paragraph of Semantics starting "If the Procedure-definition denoted ", which instead

should be a Model referring to the <procedure definition>.

C.2.24 Clarification – 11.13.3 Procedure call, Semantics

In the third paragraph delete "or Inout-parameter", because the actual parameter has to have the same

Sort-reference-identifier as the Procedure-formal-parameter (see Abstract grammar) and therefore

the value cannot be out of range for the formal parameter.

C.2.25 Modification – 11.13.3 Procedure call, Model

Add a new Model clause containing the following text paragraph and Note:

If the procedure identified by the <procedure type expression> of the <procedure call body> is not

defined within the agent type enclosing the call, within the enclosing agent type there is an implicitly

defined local procedure with the same name as identified by the <procedure type expression> and the

call uses this local procedure. In the local procedure, identifiers of items (such as variables) external

to the procedure definition are bound in the context of the original procedure definition rather than

the context of the procedure call if that is different.

NOTE − An implicitly defined local procedure is an inherited subtype of the procedure identified by the

<procedure type expression> of the <procedure call body> (see clause 8.4 Specialization of [ITU-T Z.102],

and clause 9.4 Procedure of [ITU-T Z.102]).

C.2.26 Clarification – 11.13.4 Output, Abstract grammar

The syntax for Signal-destination is changed to:

Signal-destination :: { Expression | Agent-identifier | THIS } [Destination-number]

A sentence is added to the end of the paragraph starting "The sort of Expression of " about Destination

number:

The Destination-number is always omitted for a Signal-destination that is an Expression.

At the end of the seventh text paragraph, remove italic from the full stop after "is an Expression".

C.2.27 Textual correction – 11.13.5 Decision, Abstract grammar

Change the "::" to "=" in syntax for Decision-node (as in Z.102):

Decision-node = Decision-body

In the text paragraph after the syntax, change "shall be compatible the" to "shall be sort compatible

with the".

C.2.28 Textual correction – 12.1.2 Interface definition, Concrete grammar

In the first paragraph change "Agent-definition" to "Agent-type-definition" twice (because an Agent-

type-definition does not contain a Data-type-definition-set).

- 30 -

Z.imp100-Rev-Pre-and-Pub

In the second paragraph correct "each agent type definitions" to "each agent type definition".

In the list for items in the Signal-identifier-set for <interface use list> use, in item (c) change "a

corresponding Signal-identifier in the Signal-identifier-set for" to "corresponding Signal-identifier

items in the Signal-identifier-set: one for".

After the syntax for <interface use list> insert the following two text paragraphs:

Each <signal list item> of the <signal list> in an <interface use list> of an <interface definition> shall

be a <signal identifier> or an <interface identifier>. An <interface<identifier> that is part of the

<signal list> shall also respect the restriction.

The <interface definition> shall not contain the <interface identifier> defined by the <interface

definition> either directly or indirectly (via another <interface identifier>).

C.2.29 Textual correction – 12.1.2 Interface definition, Semantics

Change the start of the paragraph starting "The Signal-identifier-set of a Interface-definition is the set

of signals" to "The Signal-definition-set of an Interface-definition is the set of signals". In the next

paragraph change " appears in the concrete syntax" to " appears in the syntax".

C.2.30 Textual correction – 12.1.3 Operation signature, Abstract grammar

Change the rule

Static-operation-signature = Operation-signature

to

Static-operation-signature :: Operation-signature

In the first paragraph after the abstract grammar change "Procedure-identifier" to all italics:

"Procedure-identifier".

C.2.31 Clarification – 12.1.3 Operation signature, Concrete grammar

Move the last paragraph (starting "An <operation signature> of") before the Semantics heading to

immediately after the syntax rule <result>.

C.2.32 Textual correction – 12.1.6.1 Literals constructor, Concrete grammar

So that literal values are numbered from zero, the last two lines before Semantics are replaced by:
 literals B, A = 2, C, D;

has B < C , C < A , A < D , num(C) = 1, num(D) = 3

C.2.33 Textual correction – 12.1.6.1 Literals constructor, Semantics, sixth paragraph

The hyphens in "less-or-equal-than" should be consistent (all normal or all non breaking). Change to

normal (line break) hyphens (a line break is inserted before).

C.2.34 Textual correction – 12.1.6.2 Structure data types, Concrete grammar

To match F2, in the syntax for <fields of sort> change <aggregation kind> <field name> to

<field of kind>, and add new rule:

<field of kind> ::=

 <aggregation kind> <field name>

The enumerated list for the implicit operations of a structure, described Operation-signature

parameters with an <aggregation kind>, but aggregation is not part of an operation signature. This

- 31 -

Z.imp100-Rev-Pre-and-Pub

has been corrected to describe the Parameter-aggregation of the parameter of the same name in the

procedure identified by the Operation-signature. The changes are:

In item (c) replace:

 S is an in/out parameter with an empty <aggregation kind>,

and the result has the same <aggregation kind> as the field fn.

by

 and in the procedure identified by the Operation-signature

S is an in/out parameter with PART Parameter-aggregation for S

and the Result-aggregation is derived from the <aggregation kind> of field fn.

In item (d) replace:

 S is an in/out parameter with an empty <aggregation kind>,

fs is an in parameter with the same <aggregation kind> as the field fn,

and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

by

 and in the procedure identified by the Operation-signature

S is an in/out parameter with PART Parameter-aggregation,

fs is an in parameter with Parameter-aggregation derived from the <aggregation kind> of

field fn,

and the Result-aggregation is PART.

In item (e) replace:

 is an in/out parameter with an empty <aggregation kind>,

and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

by

 and in the procedure identified by the Operation-signature

S is an in/out parameter with PART Parameter-aggregation,

and the Result-aggregation is PART.

In item (f) replace:

 S is an in/out parameter with an empty <aggregation kind>,

and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

by

 and in the procedure identified by the Operation-signature

S is an in/out parameter with PART Parameter-aggregation,

and the Result-aggregation is PART.

C.2.35 Textual correction – 12.1.6.3 Choice data types, Concrete grammar

The enumerated list for the implicit operations of a choice, described Operation-signature parameters

with an <aggregation kind>, but aggregation is not part of an operation signature. This has been

corrected to describe the Parameter-aggregation of the parameter of the same name in the procedure

identified by the Operation-signature. The changes are:

In item (b) replace:

- 32 -

Z.imp100-Rev-Pre-and-Pub

 fs is an in parameter with the same <aggregation kind> as the field fn,

and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

by

 and in the procedure identified by the Operation-signature

fs is an in parameter with Parameter-aggregation derived from the <aggregation kind> of

field fn,

and Result-aggregation is PART.

In item (c) replace:

 C is an in/out parameter with an empty <aggregation kind>,

and the result has the same <aggregation kind> as the field fn.

by

 and in the procedure identified by the Operation-signature

C is an in/out parameter with PART Parameter-aggregation,

and Result-aggregation is derived from the <aggregation kind> of field fn.

In item (d) replace:

 C is an in/out parameter with an empty <aggregation kind>,

fs is an in parameter with an empty <aggregation kind>,

and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

by

 and in the procedure identified by the Operation-signature

C is an in/out parameter with PART Parameter-aggregation,

fs is an in parameter with Parameter-aggregation derived from the <aggregation kind> of

field fn ,

and Result-aggregation is PART.

In item (e) replace:

 C is an in/out parameter with an empty <aggregation kind>,

 and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

by

 and in the procedure identified by the Operation-signature

C is an in/out parameter with PART Parameter-aggregation,

 and Result-aggregation is PART.

In item (f) replace:

 C is an in/out parameter with an empty <aggregation kind>,and the procedure identified by

the Operation-signature has a Result-aggregation that is PART.

by

 and in the procedure identified by the Operation-signature

C is an in/out parameter with PART Parameter-aggregation,

and Result-aggregation is PART.

In item (g) replace:

- 33 -

Z.imp100-Rev-Pre-and-Pub

 where C is an in/out parameter with an empty <aggregation kind>,

and the procedure identified by the Operation-signature has a Result-aggregation that is

PART.

by

 and in the procedure identified by the Operation-signature

where C is an in/out parameter with PART Parameter-aggregation,

and Result-aggregation is PART.

C.2.36 Modification – 12.1.6.3 Choice data types, Concrete grammar

In the last text paragraph of the Concrete grammar, change "in the context that the Data-type-

definition for C occurs" to "in the Data-type-definition for C, therefore both AnonPresent and its

contained Literal-signature-set are visible where C is visible" to make this consistent with visibility

rules in 6.6.

C.2.37 Textual correction – 12.1.6.3 Choice data types, Semantics, ninth paragraph (ignoring

NOTE paragraphs)

Change the hyphens in "field-present-name" to normal hyphens and insert a line break before "field-

present-name".

C.2.38 Textual correction – 12.1.7 Behaviour of operations, Concrete grammar

In the fifth text paragraph (ignoring NOTEs and syntax) change "shall not contain" to "shall contain".

C.2.39 Textual correction – 12.1.8.2 Constraint, Concrete grammar

Change " if Length has been defined" to " if length has been defined". The name length is all

lowercase.

C.2.40 Clarification – 12.1.8.2 Constraint, Concrete grammar

In the list item c) sub item 3):

Change " with a formal parameter A P " to " with a formal parameter A of sort P ", and change sub

sub items:

i) length(A) = RC, for each <open range> RC in RC of the form constant;

ii) length(A) RC, for each <open range> RC in RC of the form = constant,

/= constant, < constant, <= constant, > constant, and >= constant;

to

i) length(A) = OP, for each <open range> OP in RC of the form constant;

ii) length(A) OP, for each <open range> OP in RC of the form = constant,

/= constant, < constant, <= constant, > constant, and >= constant;

C.2.41 Clarification – 12.2.2 Literal, Concrete grammar

In the second text paragraph after the syntax rule <literal identifier>, change "defined Literal-

identifier" to "sort": that is, there must be exactly one binding that satisfies resolution by context.

In the third text paragraph change "contains" to "ends with".

- 34 -

Z.imp100-Rev-Pre-and-Pub

C.2.42 Clarification – 12.2.7 Range check expression, Abstract grammar

In the first text paragraph change " Expression shall be sort compatible" to "Expression of a Range-

check-expression shall be sort compatible".

C.2.43 Clarification – 12.2.7 Range check expression, Concrete grammar

In the first text paragraph change " <sort identifier> shall " to "<sort identifier> of a <range check

constrained sort> shall ".

Change " <identifier> <constraint sort> " to "<range check constrained sort>".

Change "<sort identifier> identifies a syntype" to "<sort identifier> in <range check constrained sort>

identifies a syntype".

C.2.44 Textual correction – 12.3.1 Variable definition, Abstract grammar, NOTE 1

Change "Aggregation-kind" to italic: "Aggregation-kind" (twice in NOTE).

The NOTE seems to be followed by a blank paragraph. Delete it.

C.2.45 Textual correction – 12.3.2 Variable access, Abstract grammar

Change the "=" to "::" in syntax for Variable-access.

C.2.46 Textual correction – 12.3.3.1 Extended variable, Model

Change the format of the line
 <variable> (<actual parameter list>) <is assigned sign>

to "z.100 text" (rather than "z.100 syntax").

Change the format of the text
 <variable> <left square bracket> <actual parameter list> <right square bracket> <is assigned sign>

<expression>

to "z.100 text" (rather than "z.100 syntax").

The model for <field variable> assignment should assign the result of the field-modify-name operator

to the <variable> (similar to the model for <indexed variable> assignment). Insert "<variable>

<is assigned sign> " before "field-modify-name (<variable>, <expression>)".

C.2.47 Clarification – 12.3.3.2 Default initialization, Concrete grammar

Delete the paragraph "A <data type definition> or <syntype definition> shall contain at most one

<default initialization>."

C.2.48 Textual correction – 12.3.4.2 Pid expression, Concrete grammar, <pid expression>

Insert a ">" after "<offspring expression" in the syntax rule <pid expression>.

C.2.49 Textual correction – 12.3.4.3 Timer active expression and timer remaining duration,

Semantics

In the 4th paragraph, 2nd sentence after "result value" insert " for an active timer".

In the 4th paragraph, 3rd sentence after "if the time" insert " is active but".

Change the last sentence of the 4th paragraph to " If the timer is inactive, the value is zero (which can

be distinguished from an active time returning zero by a subsequent timer active expression)."

- 35 -

Z.imp100-Rev-Pre-and-Pub

C.3 Z.102 changes

C.3.1 Textual correction – Language

Change all parts of the main body (from page 1) text marked as "French" or "Swiss French" or

"English (US)" or "Spanish" or "German (Switzerland)" to "English (UK)".

C.3.2 Clarification – 6.6 Visibility rules, names and identifiers – additional scope units, Note

1

Delete NOTE 1 and change numbering of "NOTE 2" to "NOTE".

C.3.3 Extension – 6.6 Visibility rules, names and identifiers – additional scope units

After the paragraph "A formal context parameter is an entity of the same entity kind as the

corresponding actual context parameters." insert the following headings, rules and paragraphs for the

Abstract and concrete grammar:

Abstract grammar

Path-item = Package-qualifier

 | Agent-type-qualifier

 | Agent-qualifier

 | State-type-qualifier

 | State-qualifier

 | Data-type-qualifier

 | Procedure-qualifier

 | Interface-qualifier

 | Compound-node-qualifier

Compound-node-qualifier :: Interface-name

Compound-node-name = Name

The abstract syntax is extended from Basic SDL-2010 to include Compound-node-qualifier in Path-

item to identify the scope of a compound statement.

Concrete grammar

<scope unit kind> ::=

 package

 | system type

 | system

 | block

 | block type

 | process

 | process type

 | state

 | state type

 | procedure

 | signal

 | type

 | operator

 | method

 | interface

 | composition

The syntax of <scope unit kind> is extended from Basic SDL-2010 to include composition in Path-

item to identify the scope of a compound statement. If the <scope unit kind> of a <qualifier> is

composition, the <qualifier> a represents a Compound-node-qualifier and <name> of the <qualifier>

is the <connector name> of a <compound statement>. If no <connector name> is given for the

- 36 -

Z.imp100-Rev-Pre-and-Pub

<compound statement>, a newly created anonymous name represents the Connector-name; therefore

no explicit <qualifier> can be given. In this case the specification is only valid if all uses of a variable

name defined in the compound statement are uniquely bound without a qualifier.

C.3.4 Clarification – 8.1.2 Type expression, Concrete grammar

In the rule <type expression> change "<actual context parameters>" to "<actual context parameter

list>". In the next paragraph (after the syntax rule) change "<actual context parameters>" to "<actual

context parameter list>" (twice).

C.3.5 Clarification – 8.1.2 Type expression, Model

The list of how the "anonymous type definition is formed" is modified (to match the formal definition)

as follows:

In item (2) change "<actual context parameter> in" to "<actual context parameter> (if there is one)

in";

In item (3) change "<formal context parameter list> and" to "<formal context parameter list> if there

is a corresponding <actual context parameter>, and ";

In item (4) change "by the anonymous unique name." to "by a <type expression> with a <base type>

that identifies the type with the anonymous unique name and no <actual context parameter list>.".

In NOTE 1 following item(4) change "<actual context parameters>" to "<actual context parameter

list>".

C.3.6 Clarification – 8.3 Context parameters, Concrete grammar

Delete the syntax rule <actual context parameters>; change the rule <actual context parameter list>

to:

<actual context parameter list> ::=

 <context parameters start>

 [<actual context parameter>] {, [<actual context parameter>] }*

 <context parameters end>

In the last line before Model change "in <actual context parameters>" to "in the

<actual context parameter list>".

C.3.7 Correction – 8.3.2 Agent context parameter, Concrete grammar, <agent signature>

<aggregation kind> was missing in <agent signature>.

Change the syntax for <agent signature> to include <aggregation kind> before <sort> (twice), so that

the revised syntax is:

<agent signature> ::=

 <sort list>

 | [<end>] fpar <aggregation kind> <sort> {, <aggregation kind> <sort> }

C.3.8 Correction – 8.3.12 Gate context parameter, Concrete grammar

In the paragraph after the syntax for delete the last sentence: "A type with a <gate context parameter>

from which instances are defined shall have a <signal list> in any <gate constraint> of the <gate

context parameter>."

In the next paragraph add a comma (",") after <gate constraint>.

- 37 -

Z.imp100-Rev-Pre-and-Pub

C.3.9 Clarification – 8.4.1 Adding properties, Semantics

In item (c) of the list change "contains <actual context parameters>" to "contains an

<actual context parameter list>"

C.3.10 Textual correction – 8.4.3 Virtual transition/save, Concrete grammar

In the first text paragraph, correct "clause 11.8 (virtual spontaneous transition)" to "clause 11.9

(virtual spontaneous transition)".

C.3.11 Textual correction – 8.8.3 Procedure context parameter, Concrete grammar

There was an error that matching the result of the procedure definition and signature did not apply

for case (b). Insert "both have a result of the same <sort> or if neither returns a result, and " before

the colon at the end of the 3rd text paragraph after the syntax, and delete ", and if both have a result

of the same <sort> or if neither returns a result"..

C.3.12 Clarification – 9.2 Block, Model

Replace the last paragraph by the following paragraph and NOTE:

This transformation takes place after replacing agent definitions with typebased agent definitions and

transforming context parameters, and before the transforming of remote procedures.

NOTE – The set_v and get_v procedures have a parameter that holds the complete value associated with

the variable, so that using these procedures for a global block variable with a significant size (such as an array,

vector, string, or large structure) to write or read an element of the variable is probably inefficient compared

with providing explicit remote procedures that write or read just that element.

C.3.13 Textual correction – 9.4 Procedure, Concrete grammar

In the first text paragraph change "<formal context parameters> and <virtuality constraint> for

procedures with context parameters, and" to "<formal context parameters>, <virtuality constraint>,

and".

In the second text paragraph after the syntax for <exported> change "calling procedure" to "calling

the procedure".

In the sixth text paragraph after the syntax for <exported> change the text

 "in the nearest surrounding scope with the same name and signature as the exported procedure and

this <remote procedure definition> is used"

to the text

"in a surrounding scope with the same name and signature as the exported procedure and the nearest

such <remote procedure definition> is used".

C.3.14 Clarification – 10.4 Signal list area, Concrete grammar

After the first text paragraph, insert the following paragraph:

The condition in clause 12.1.2 of Basic SDL-2010 is extended to include remote procedures and

remote variables: Each <signal list item> of the <signal list> in an <interface use list> of an <interface

definition> shall be a <signal identifier> or an <interface identifier> or a <remote procedure

identifier> or <remote variable identifier>.

C.3.15 Textual correction – 10.5 Remote procedure, Concrete grammar

Replace the paragraph starting "If <destination> in the <communication constraints> " by the

paragraph and Note:

- 38 -

Z.imp100-Rev-Pre-and-Pub

If a remote procedure is a value returning procedure, each action shall contain no more than one

<remote procedure call body> used as an <expression0> for the same remote.

NOTE 1 − The constraint above on repeating calls of the same value returning remote more than once in a

action is a consequence of the model, where the returned value is assigned to an implicit variable in the <remote

procedure call body> transform inserted before the action (see below).

C.3.16 Modification – 10.5 Remote procedure, Concrete grammar

At the end of the Concrete grammar, insert the paragraph:

A <variable> of a <timer communication constraint> shall not be a global variable of a system (type)

or block (type) except if the <timer communication constraint> is within the state machine actions of

system (type) or block (type).

C.3.17 Correction – 10.5 Remote procedure, Model

In the third paragraph starting "There are two anonymously", replace

"implicit <signal definition>s for each <remote procedure definition> in an agent type or in the

system for definition in a package used by the system. The <signal name>s in these

<signal definition>s are"

by

"implicit <signal definition list> items for each <remote procedure definition> in a system definition.

The <signal name> items in these <signal definition> items are".

In the next paragraph change the list item (a) before the figure to:

a) For each imported procedure, two implicit anonymous Integer variables (in this description

called n and newn) are defined in the enclosing scope unit of the <remote procedure call

body>, and n is initialized to 0. The same two variables (n and newn) are used for every

<remote procedure call body> in the scope unit for the same remote procedure.

 NOTE 1 – The parameter n is introduced to recognize and discard reply signals of remote procedure

calls that were left through associated timer expiry.

 If remote procedure is a value returning procedure, there is an implicit anonymous variable

(in this description called res) defined in the enclosing scope unit of the <remote procedure

call body> with the sort returned by the procedure.

 The <remote procedure call body> is transformed as below, so that the following is inserted

before the action that contained the <remote procedure call body>, where in the output the to

clause is omitted if the destination is not present, and the via clause is omitted if it is not

present in the original expression:

After the figure, change "including an additional parameter" to "including the implicit variable res

as an additional parameter", and after this insert two unnumbered enumeration items:

 The transform is labelled with the label on the action containing the remote procedure call or

a new label if this action is not labelled, and the preceding path is changed to join this label.

 If a value returning remote procedure call is transformed, the true path above is terminated

with a join to the action that contained the remote procedure call with a new label, and the

remote procedure call is replaced by an access of the implicit variable res used to receive

the returned value. Otherwise the remote procedure call action is removed, and the true path

above is joined to the action following the remote procedure call action.

Before the list item (b) replace the text starting "In all states" and the associated figure and the text

"is inserted" by the two unnumbered enumeration items:

- 39 -

Z.imp100-Rev-Pre-and-Pub

 In all other states, pREPLY is discarded. This is not explicitly modelled: instead the handling

of pREPLY is left unspecified in the transformed concrete syntax except for the pWAIT states

with the consequence that there is an implicit transition (see clause 11.8 of [ITU-T Z.103])

for other states that discards the signal.

 If the <remote procedure call body> was directly enclosed by a <remote procedure call>, it

is an <action> that is the <remote procedure call> and the transform replaces the <remote

procedure call body>. Otherwise the <remote procedure call body> is a <value returning

procedure call> as an <expression0>, and transform is inserted before the action that

contained the <value returning procedure call>, and the <value returning procedure call> is

replaced in this action by an access of the implicit variable used to receive the returned value.

Renumber NOTE 1 and NOTE 2 in the clause as NOTE 2 and NOTE 3 (because NOTE 1 introduced

in the Concrete grammar).

C.3.18 Correction – 10.6 Remote variable, Concrete grammar

Replace the text between the syntax for <import expression> and the syntax for <export body>, by

the paragraph:

If <destination> in the <communication constraints> of an <import expression> is an <agent

identifier> or this, the <remote variable identifier> shall represent a remote variable contained in the

interface of the agent type.

Before the heading Model, add the paragraph:

Each <action> shall contain no more then one <import expression> for the same remote variable.

C.3.19 Correction – 10.6 Remote variable, Model

After the paragraph starting "The import access is modelled", move the paragraph starting "If a default

initialization" to be the second unnumbered enumeration item of the list item b) Exporter.

Change the next paragraph starting "There are two implicit" to:

There are two implicit signal definitions for each variable of a <remote variable definition> in a

system definition. A <remote variable definition> that defines multiple variables is expanded to a

<remote variable definition> list with one variable per <remote variable definition>. The

<signal name>s in the implicit signal definitions are denoted in this model by xQUERY and xREPLY

respectively, where x denotes an implicit <name> associated with the <remote variable definition>.

The signals are defined in the same scope unit as the <remote variable definition>. The signal xQUERY

has an argument of the predefined sort Integer and xREPLY has arguments of the sort of the variable

and Integer.

C.3.20 Correction – 10.6 Remote variable, Model a) Importer

Change the first unnumbered enumeration item to:

 For each imported variable, two implicit anonymous Integer variables (in this description

called n and newn) are defined in the enclosing scope unit of the <import expression>, and n

is initialized to 0. The same two variables (n and newn) are used for every <import

expression> in the scope unit for the same remote variable. In addition, an implicit

anonymous variable (in this description called xn) of the sort of the remote variable is defined

for each <import expression>.

In the second unnumbered enumeration item, after "import (x to destination via viapath)"

before the unnumbered enumeration item starting "Additionally, the following" change to:

- 40 -

Z.imp100-Rev-Pre-and-Pub

 is transformed so that the following is inserted before the action that contained the <import

expression>, where in the output the to clause is omitted if the destination is not present, and

the via clause is omitted if it is not present in the original expression:

– The insertion is labelled with the label on the action containing the import expression or a

new label if this action is not labelled, and the preceding path is changed to join this label.

– The true path above is terminated with a join to the action that contained the import

expression with a new label.

– The import expression is changed to an access of the variable xn.

 In all other states, xREPLY is discarded. This is not explicitly modelled: instead the handling

of xREPLY is left unspecified in the transformed concrete syntax except for the xWAIT states

with the consequence that there is an implicit transition (see clause 11.8 of [ITU-T Z.103])

for other states that discards the signal.

NOTE 1 − Until 2017 xREPLY was saved in other states: the change to discarded is consistent with

remote procedures.

C.3.21 Correction – 10.6 Remote variable, Model b) Importer

Insert a new first unnumbered enumeration item:

 For each exported variable, an implicit anonymous variable (in this description denoted by

imcx) is defined to hold the exported value of the exported variable, and an implicit

anonymous variable of type Integer (in this description denoted by n) is defined.

The second unnumbered enumeration item is the text starting "The import access is modelled" moved

from the general Model description. In this text, change "implicit copy is" to "implicit copy imcx is".

In the text before the figure, delete " excluding implicit states derived from import," and replace the

figure by:

After the figure, delete

(xn,newn)

- 41 -

Z.imp100-Rev-Pre-and-Pub

 For each such state, an implicit anonymous variable of sort Pid (in this description called

ivar) and an implicit anonymous variable of type Integer (in this description called n) are

defined."

Number the NOTE as NOTE 2 (a new NOTE 1 is added in Model a) Importer).

C.3.22 Textual correction – 11.2 State, Abstract grammar

Delete the paragraph starting "Each Connect-node in".

C.3.23 Clarification – 11.2 State, Concrete grammar

Before the syntax rule for <spontaneous association area> add the following Note:

NOTE 1 – Although the concrete grammar allows <continuous signal association area> and <spontaneous

association area> for a <state area> with a <state list item> that is a <typebased composite state> or <composite

state list item>, for a composite state in the abstract grammar Spontaneous-transition and Continuous-signal

are not allowed, therefore they are only valid for basic state items.

C.3.24 Modification – 11.2 State, Concrete grammar

After the syntax rule for <state timer> add the following text paragraph and Note:

When two <state> items contain the same <state name>, a <state timer> shall not be specified for

both <state> items or both <state> items shall specify the same <state timer>.

NOTE 2 − A <state timer> with state timer is a Model (see below).

and at the start of the next paragraph delete the sentence:

"A <state timer> with state timer <Time expression> represents a unique implicit Timer-definition

with an anonymous name identified by the Timer-identifier of the State-timer."

C.3.25 Textual correction – 11.2 State, Semantics

In the last paragraph correct the reference to "11.8" to "11.9" (twice).

C.3.26 Modification – 11.2 State, Model

Add a Model clause with the following paragraph:

A <state timer> with state timer <Time expression> is equivalent to <state timer> with a <set clause>

with a parameterless timer definition with an anonymous name set to the <Time expression>.

C.3.27 Textual correction – 11.8 Empty clause

Insert the level 2 heading "11.8 Empty clause" and the paragraph:

This clause is intentionally left blank.

C.3.28 Textual correction – 11.9 Spontaneous transition

This is renumbered. It was clause 11.8.

C.3.29 Textual correction – 11.10 Label

This is renumbered. It was clause 11.9. This replaces clause 11.10 Empty clause which had the

paragraph:

This clause is intentionally left blank.

- 42 -

Z.imp100-Rev-Pre-and-Pub

C.3.30 Clarification – 11.11.2 State aggregation, Semantics

Change the first sentence of the fifth paragraph that starts "If there are signals " to:

If there are signals in the complete valid input set of the Composite-state-type-definition where a

State-aggregation-node occurs that are not consumed by any State-partition of a State-aggregation-

node, there is an implied additional State-partition.

C.3.31 Textual correction – 11.11.4 Connect, Abstract grammar

At the end of the Abstract grammar, insert the paragraph (previously in 11.2 State, Concrete

grammar):

Each Connect-node in the Connect-node-set of a composite state application shall either be the only

Connect-node without a State-exit-point-name or have a State-exit-point-name that is different from

every other Connect-node in the Connect-node-set.

C.3.32 Textual correction – 11.12.2.4 Return, Concrete grammar

Remove the MSWord comment on the last line of the syntax for <return area>.

C.3.33 Textual correction – 11.14 Statement lists, Concrete grammar

Remove the MSWord comment on <return body> in the syntax for <return statement>.

C.3.34 Clarification – 11.14.1 Compound and loop statements, Abstract grammar

The representation of <loop step> items as Step-graph-node items implies that every Step-graph-

node is a Graph-node that is a Task-node. This is clarified by adding after the syntax for Step-graph-

node the following sentence:

A Graph-node of a Step-graph-node shall be a Task-node.

C.3.35 Textual corrections – 11.14.1 Compound and loop statements, Concrete grammar

The syntax of <loop step> allowed an alternative for a procedure call provided the procedure is not a

value returning procedure. However, the <procedure call body> is stated to represent an Expression

for an Assignment, which would require a value returning procedure, and a <value returning

procedure call> is an <expression>. The correction is to remove the option for <procedure call body>

from the <loop step> syntax and references to the <procedure call body> in the text. That is:

Revised syntax for <loop step>

<loop step> ::=

 [, [<expression>]]

In the paragraph following the rule <loop step>, change "therefore if a <loop step> " to "therefore if

a <loop step> of a <loop clause>" and change "<loop variable indication> shall" to "<loop variable

indication> of the <loop clause> shall". In the same paragraph, replace "<expression> or <procedure

call body>" by "<expression>" (twice).

Delete the paragraph starting "The keyword call" and the subsequent paragraph starting "The

<procedure identifier>"

- 43 -

Z.imp100-Rev-Pre-and-Pub

C.4 Z.103 changes

C.4.1 Textual correction – Language

Change all parts of the main body (from page 1) text marked as "French" or "Swiss French" or

"English (US)" or "German (Switzerland)" to "English (UK)".

C.4.2 Textual correction – 8.1.1.1 Agent types, Model

In the second paragraph, third enumerated item replace "<actual context parameters>" by "<actual

context parameter list>".

C.4.3 Textual correction – 8.1.4 Gates defined by interface gates, Model

In the second paragraph delete "<gate constraint> or ".

C.4.4 Textual correction – 9 Agents, Concrete grammar

In the syntax rule for <agent diagram> delete the line
 [is associated with <package use area>]

C.4.5 Clarification – 10.1 Channel, Concrete grammar

It is clarified that the derivation of signals for an omitted <signal list area> is only possible from an

agent/state-machine that is typebased. After the sentence ending "in the direction for the <signal list

area>", insert the two sentences: "The signal set is defined by channel connection to an <agent area>

only for a <typebased agent definition>. The signal set is defined by the channel connection to a

<state machine area> only for a <state symbol> containing a <typebased composite state>."

C.4.6 Modification – 10.1 Channel, Concrete grammar

The derivation of signals for an omitted <signal list area> is no longer considered possible for the

case that an internal channel does not have a defined signal list, but is connected to an agent with a

defined signal list. Therefore change "all internal channels or agents" to "all internal channels".

C.4.7 Clarification – 10.1 Channel, Model

It is clarified that the model for a omitted <signal list area> is to insert a derived <signal list area> by

replacing the paragraph:

If an associated <signal list area> is omitted from a <channel definition area>, the corresponding

In-signal-identifier-set or Out-signal-identifier-set for the Destination-gate or Originating-gate of the

channel is derived from the channel connection, if necessary.

with the paragraph:

If an associated <signal list area> is omitted from a <channel definition area>, the <signal list area>

is replaced by a <signal list area> derived from the channel connection (see Concrete grammar

above), that corresponds to the In-signal-identifier-set or Out-signal-identifier-set for the

Destination-gate or Originating-gate.

C.4.8 Textual correction – 11.2 State, Concrete grammar

In the second paragraph after the syntax for <composite state list item>, move the Model heading to

be after the sentence:

The <composite state name> of a <composite state list item> references a <composite state diagram>.

- 44 -

Z.imp100-Rev-Pre-and-Pub

As a consequence the Model clause starts with a paragraph containing the sentence starting "A

<composite state list item> is a shorthand".

Delete the subsequent paragraph starting "A <composite state list item>" (because it duplicates the

first paragraph after the syntax for <composite state list item>).

Delete the next paragraph starting "A <state area> that is a <terminator area>" (because it had the

same meaning as what was old first paragraph of the Model clause).

C.4.9 Textual correction – 11.2 State, Model

In the fourth paragraph (after moving Model heading and making changes above, previously third

paragraph), replace the first sentence by:

When two <state area> items that each contain one <state name>, each contain the same <state

name>, these <state area>s are combined into one <state area> having that <state name> with the

<state timer> specified for one (or both if it is the same) <state> items.

In the fifth Model paragraph, change "under clause 11.11" to "under clause 11.11.1".

C.4.10 Clarification – 11.3 Input, Concrete grammar

Change the last paragraph before Model, starting " Basic SDL-2010 <via path> is extended to allow

<channel identifier> as a shorthand for the gate." to:

Basic SDL-2010 <via path> is extended to allow <channel identifier> as a shorthand for the gate. The

<channel identifier> for a <via path> of a <stimulus> or <save area> in a composite state type (that

is, after application of the models for agent definition, agent structure with an interaction and channel

to channel connection) shall identify a channel such that the enclosing state machine of the via path

is reachable from the channel with the signal given in the stimulus or save through exactly one gate

of the state machine. A <channel identifier> for a <via path> of <communication constraints> output

in a composite state type (that is, after application of the models for agent definition, agent structure

with an interaction, channel to channel connection, remote procedure and import expressions) shall

identify a channel such that the enclosing state machine of the via path is reachable from the channel

with the signal given in the stimulus or save through exactly one gate of the state machine. If a <via

path> has a <channel identifier>, this shall not be a bidirectional channel with both ends connected

to the same state machine.

C.4.11 Clarification – 11.3 Input, Model

In the last paragraph of Model, change "the identified channel nearest to the agent containing the

<communication constraints>" to "the channel that connects (directly or indirectly) to the enclosing

state machine".

C.4.12 Textual correction – 11.11.1 Composite state graph, Model

In the third Model paragraph, change "In the <composite state body area>, any part of a <qualifier>"

to "In the <composite state structure area>, any part of a <qualifier>".

C.4.13 Textual correction – 11.11.2 State aggregation, Model

Remove the comment "Unlabelled entry/exit -> Z.102".

C.4.14 Textual correction – 11.13.1 Task, Model

The first Model paragraph starting "If a <task body>" should be deleted because a <task body> cannot

be empty (according to the specified syntax).

- 45 -

Z.imp100-Rev-Pre-and-Pub

C.4.15 Clarification – 11.15 Timer, Model

If the <reset body> is an <asterisk>, this is replaced by a bracketed <reset clause> list, with one <reset

clause> for each timer definition of the agent (including those for state timers). Each replacement

<reset clause> is of the form <timer identifier> <asterisk>.

A <set> is allowed to contain several <set clause> items. This is derived syntax for specifying a

sequence of <set> items, one for each <set clause> such that the original order in which they were

specified in the <set> is retained.

A <set statement> is allowed to contain several <set clause> items. This is derived syntax for

specifying a sequence of <set statement> items, one for each <set clause> such that the original order

in which they were specified in the <set> is retained.

A <reset> is allowed to contain several <reset clause> items. This is derived syntax for specifying a

sequence of <reset> items, one for each <reset clause> such that the original order in which they were

specified in the <reset> is retained.

A <reset statement> is allowed to contain several <reset clause> items. This is derived syntax for

specifying a sequence of <reset statement> items, one for each <reset clause> such that the original

order in which they were specified in the <reset> is retained.

The shorthand items for <set>, <set statement>, <reset> and <reset statement> are expanded before

shorthand items in the contained expressions are expanded.

C.5 Z.104 changes

C.5.1 Textual correction – Language

Change all parts of the main body (from page 1) text marked as "French" or "French (Swiss)" or

"English (US)" or "Spanish" or "German (Switzerland)" to "English (UK)".

C.5.2 Textual correction – Non-breaking hyphens in abstract syntax names

Abstract syntax rule names are always in italic, start with an uppercase letter followed by lowercase

letters and hyphens and ending in a lowercase letter. To make it easy to find the abstract syntax rule

names in the MSWord macros used to maintain SDL-2010, these should not be non-breaking

hyphens. Change any non-breaking hyphen in abstract syntax names to normal (line breaking)

hyphens. If this causes the line to break on a hyphen in an abstract syntax name, a line break (^l) is

inserted immediately before the abstract syntax name.

C.5.3 Clarification – 8.1.4 Gates with encoding rules

Add "and anonymous choice data type for a gate" to the heading.

C.5.4 Clarification – 8.1.4 Gates with encoding rules and anonymous choice data type for a

gate, Abstract grammar

At the end of the Abstract grammar insert the paragraph:

The Encoding-rules associated with a Gate-definition of a type based on a supertype shall specify the

same set of Encoding-rules as the Encoding-rules of the corresponding gate definition in the

supertype if that gate has Encoding-rules.

- 46 -

Z.imp100-Rev-Pre-and-Pub

C.5.5 Clarification – 8.1.4 Gates with encoding rules and anonymous choice data type for a

gate, Concrete grammar

In the second text paragraph after the syntax for <gate definition>, delete the first sentence: "A

specification of … has Encoding-rules." In the second text paragraph after the syntax for <gate

definition>, (in what was the second sentence) change "<inherited gate symbol 2>, and" to "<inherited

gate symbol 2> of a type based on a supertype, and".

C.5.6 Textual correction – 8.1.4 Gates with encoding rules and anonymous choice data type

for a gate, Model

Correct the spelling of "orthe" to "or the".

C.5.7 Modification – 10.7 Communication path encoding rules, encode and decode, Abstract

grammar

Changes are made so that encode and decode procedures can be resolved in the abstract grammar.

Encoding-rules has Encode-procedure-identifier and Decode-procedure-identifier added to make the

rule:

Encoding-rules :: Rules-identifier

 Encode-procedure-identifier

 Decode-procedure-identifier

 In Encoding-path, Rules-identifier is replaced by Encoding-rules and the presentation is improved

(by removing {} and changing the layout), to make the rule:

Encoding-path :: Gate-identifier

 | Data-type-identifier Encoding-rules

In Rules-identifier "::" is replaced by "=".

New rules Encode-procedure-identifier and Decode-procedure-identifier as follows:

Encode-procedure-identifier = Procedure-identifier

Decode-procedure-identifier = Procedure-identifier

At the end of the third paragraph after the abstract syntax, the sentence "These built-in encode and

decode procedures are implicit parts of package Predefined." is added.

In the fifth and sixth paragraphs after the abstract syntax "an additional Encoding literal" is replaced

by "an Encoding literal".

In the paragraph starting "For a Gate-identifier of" delete " or reachable via a channel with the Signal-

identifier of the Encoding-expression from the agent".

In the last paragraph before Concrete grammar delete " in a context where the context of the

Decoding-expression is reachable via the Encoding-path".

C.5.8 Modification – 10.7 Communication path encoding rules, encode and decode, Concrete

grammar and Model

Reasons for changes except the paragraphs added before Semantics:

• An <expression> as an <encoding expression> is not transformed here;

• the compatibility check between an <expression> of an <encoding expression> and the choice

for the encoding path is done on the abstract grammar;

• omitting a <encoding path> is allowed in an <encoding expression> with an <expression>

only if there is only one path with encoding;

- 47 -

Z.imp100-Rev-Pre-and-Pub

• "using" the unique path is moved to the Model for both <encoding expression> and <decoding

expression>.

Concrete grammar:

Delete the text paragraph starting "If an <encoding expression> …".

In the next (was third) paragraph "output of the signal " with "output (of the signal if a <signal

identifier> is given)", and in the same paragraph delete "and, in this case, the encoding for that path

is used".

In the next (now third) text paragraph delete "and, in this case, the encoding for that path is used".

Replace the last paragraph before Semantics with the following two paragraphs:

The <interface identifier> of an <encoding path> represents the Data-type-identifier of an

Encoding-path. The <rules identifier> of an <encoding path> represents the Rules-identifier

of the implicit Encoding-rules for the Encoding-path.

The encode and decode procedures associated with a <rules identifier> shall be visible where

the <rules identifier> is used.

Model:

Delete the first text paragraph starting "If an <encoding expression>".

Add two new paragraphs:

If <encoding path> is omitted from <encoding expression>, the unique path required by the

condition in the Concrete grammar is inserted.

If <encoding path> is omitted from <decoding expression>, the unique path required by the

condition in the Concrete grammar is inserted.

C.5.9 Modification – 11.3 Input, Concrete grammar

Before the syntax rule <encoded input>, insert the paragraph:

A <variable> of an <in choice> shall not be a global variable of a system (type) or block (type) except

if the <in choice> is within the state machine actions of system (type) or block (type).

and, at the end of the Concrete grammar, insert the paragraph:

A <variable> of an <encoded input> shall not be a global variable of a system (type) or block (type)

except if the <encoded input> is within the state machine actions of system (type) or block (type).

C.5.10 Textual correction – 11.3 Input, Concrete grammar

Delete NOTE 1 (it is duplicated as NOTE 2 in 11.3 Model).

C.5.11 Textual correction – 11.3 Input, Model

The model is refined and changed to use the signal variable rather than implicit local variables. The

last text paragraph in the Model is deleted and incorporated into the revised third text paragraph

(before the NOTE) which is:

An <input part> for an <encoded input> is transformed to list of <input part> items, one for

each signal this is receivable with the <encoded input>. For each of the signals that are

receivable from the gate or channel specified in an <encoded input>, there is an <input part>

with an <input list> item for the signal, an <in choice> item for the implicit signal variable

and a <via path> for the gate or channel. For each of the signals of an interface identified by

- 48 -

Z.imp100-Rev-Pre-and-Pub

an <interface identifier> of an <encoding path> of an <encoded input>, there is an <input

part> with an <input list> item for the signal, an <in choice> item for a <signal expression>

and an undefined <via path>. Each revised <input part> contains the same <enabling

condition> as the original <input part> for the <encoded input>. The <transition> of each

revised <input part> contains a task, where the <variable> given in the <encoded input> is

assigned the value of an <encoding expression> for the value in the implicit signal variable

and the <encoding path> of the <encoding expression>. This task is followed by the original

transition for the <encoded input>.

Rename NOTE 2 as NOTE (it duplicated NOTE 1 in 11.3 Concrete syntax that has been deleted).

The last text paragraph after the NOTE is deleted (see above).

C.5.12 Modification – 11.4 Priority input

Replace the clause body by:

Priority input is extended to allow a choice value to be stored for the signal that was input.

Concrete grammar

<priority input list> ::=

 <priority stimulus> {, <priority stimulus>}*

 | <asterisk input list> [<in choice>] [<priority clause>]

The <priority input list> syntax of [ITU-T Z.102] is extended to allow the storing the signal value for

an <asterisk input list> according to an <in choice>.

<priority stimulus> ::=

 <stimulus> [<in choice>] [<priority clause>]

The <priority stimulus> syntax of [ITU-T Z.102] is extended to allow the storing the signal value

according to an <in choice>.

C.5.13 Clarification – 11.7 Save

After "[ITU-T Z.101]" insert ", [ITU-T Z.102] and [ITU-T Z.103]".

C.5.14 Clarification – 11.8 Implicit transition

Change "[ITU-T Z.101]" to "[ITU-T Z.103]".

C.5.15 Clarification – 11.9 Spontaneous transition

Change "[ITU-T Z.101]" to "[ITU-T Z.102]".

C.5.16 Clarification – 11.10 Label

After "[ITU-T Z.101]" insert ", [ITU-T Z.102] and [ITU-T Z.103]".

C.5.17 Clarification – 11.11 State machine and composite state

After "[ITU-T Z.101]" insert ", [ITU-T Z.102] and [ITU-T Z.103]".

C.5.18 Clarification – 11.12 Transition

After "[ITU-T Z.101]" insert ", [ITU-T Z.102] and [ITU-T Z.103]".

C.5.19 Clarification – 11.13.1 Task

After "[ITU-T Z.101]" insert ", [ITU-T Z.102] and [ITU-T Z.103]".

- 49 -

Z.imp100-Rev-Pre-and-Pub

C.5.20 Clarification – 11.13.2 Create

After "[ITU-T Z.101]" insert " and [ITU-T Z.103]".

C.5.21 Clarification – 11.13.3 Procedure call

After "[ITU-T Z.101]" insert " and [ITU-T Z.102]".

C.5.22 Textual correction – 11.13.4 Output, Abstract grammar

The items Expression and Encoded-expression need to be distinguishable in the abstract grammar.

Therefore change:

Encoded-expression = Expression

to

Encoded-expression :: Expression

C.5.23 Clarification – 11.13.5 Decision

After "[ITU-T Z.101]" insert ", [ITU-T Z.102] and [ITU-T Z.103]".

C.5.24 Clarification – 11.14 Statement list

After "[ITU-T Z.101]" insert ", [ITU-T Z.102] and [ITU-T Z.103]".

C.5.25 Clarification – 11.15 Timer

After "[ITU-T Z.101]" insert ", [ITU-T Z.102] and [ITU-T Z.103]".

C.5.26 Extension – 12.1 Data definitions, Abstract grammar

Add an Abstract grammar clause as follows:

Abstract grammar

Value-data-type-definition :: Sort

 [Data-type-identifier]

 Literal-signature-set

 Static-operation-signature-set

 Procedure-definition-set

 Data-type-definition-set

 Syntype-definition-set

 Variable-definition-set

 [Default-initialization]

 [Abstract]

Value-data-type-definition is extended include a Variable-definition set for synonym definition

<entity in data type> items of the <data type definition> represented by the Value-data-type-

definition. See clause 12.1.8.3 Synonym definition.

C.5.27 Clarification – 12.1 Data definitions, Model

Change

"or syntype definition in the context of which" in the 1st paragraph

to

"(or syntype definition) in the context where".

- 50 -

Z.imp100-Rev-Pre-and-Pub

C.5.28 Textual correction – 12.1 Data definitions, Model

In the first paragraph, change "in which" to "where".

Change "is is" in the 2nd paragraph to "is".

C.5.29 Textual correction – 12.1.2 Interface definition, Concrete grammar

In the paragraph after the syntax for <as interface>, after "<interface definition>" insert "(or implicit

interface definition)", and on the third line after "identifies the Interface-definition" insert a comma.

C.5.30 Clarification – 12.1.2 Interface definition, Concrete grammar

Before the rule <interface heading>, insert the paragraph (which is a sentence deleted from the

paragraph after the rule <as interface>):

An <interface definition> (or implicit interface definition) defines a Data-type-definition of a choice

data type with a unique anonymous Sort name in the context that the Interface-definition is visible.

C.5.31 Clarification – 12.1.2 Interface definition, Model

Delete the penultimate paragraph of the Model starting "The implicit interface for".

C.5.32 Textual correction – 12.1.6.2 Structure data types, Concrete grammar

In the syntax for <fields of sort>, <aggregation kind> <field name> is replaced (twice) by <field of

kind>. This is to match the syntax in F2.

The representation of <structure definition> in the abstract grammar is clarified and extended for the

case if S has a <data type specialization>.

The text of enumerated item (a) is clarified:

"data type specialization, if no operator named Make is given with"

is replaced by

"<data type specialization>, if no constructor (an operator named Make with"

and "the S structure sort," is replaced by "the S structure sort) is given,".

After the text of enumerated item (a), a new NOTE 1 is added:

NOTE 1 – In the absence of <data type specialization> there is only one constructor Make operator to inherit,

except in the case that more than one constructor Make operator is explicitly given.

The text of enumerated item (b) is clarified:

"no operator named Make is given" is replaced by "no constructor (an operator named Make",

"the S structure sort, represents (in the Operation-signature set of the Data-type-definition for S)" is

replaced by "the S structure sort) is given,"

and "each inherited Operation-signature" is replaced by "each (normally one) inherited Operation-

signature".

In the paragraph after the alphabetic enumeration list, "generic operations" is replaced by "generic

constructor operations".

C.5.33 Textual correction – 12.1.6.2 Structure data types, Semantics

The text paragraph is replaced by new text and a NOTE:

- 51 -

Z.imp100-Rev-Pre-and-Pub

When no constructor is given for a Make of a structure data type T that inherits from a structure data

type S, in a Make of T the result for each field inherited from S is the same as the result for that field

from a Make of S with the same actual values for the inherited parameters. The remaining fields of

the result a Make of T, each field is associated with the result of the corresponding parameter, or if no

value is given for the field, the default initialization for that field, or "undefined" if there is no default

initialization for the field.

NOTE 2 – When no constructor is given for a Make of a structure data type T that inherits from a structure

data type S, and the Make of S is the generic operator named Make as in [ITU-T Z.101] clause 12.1.6.2

Concrete grammar, the Make of T is same as the generic operator named Make in [ITU-T Z.101] clause

12.1.6.2 Concrete grammar.

C.5.34 Textual correction – 12.1.6.2 Structure data types, Model

The text "<aggregation kind> <field name> pair" is replaced (three times) by "<field of kind>" to

match the revised syntax for <fields of sort>.

The transformation of methods is deleted, because in Z.101 fnExtract, fnModify and fnPresent

are specified as operators.

C.5.35 Clarification – 12.1.8.3 Synonym definition, Concrete grammar

In the paragraph following NOTE 1, change "with special property" to "with the special property".

Delete the paragraph (starting "The <constant expression>") following NOTE 2. This paragraph is

re-inserted below.

In the next paragraph replace " and the Sort-reference-identifier " by ". If the <sort> in the

<synonym definition> is omitted the Sort-reference-identifier of the Variable-definition ".

In the next paragraph replace ", and the sort of the <constant expression> " by ". If a <sort> is

specified, the sort of the <constant expression>".

After this paragraph, insert the following two paragraphs:

The Variable-definition has a PART Aggregation-kind.

The <constant expression> in the concrete syntax denotes a Constant-expression in the abstract

syntax as defined in [ITU-T Z.101].

C.5.36 Clarification – 12.1.8.3 Synonym definition, Model

Add a Model clause as follows:

Model

A <synonym definition> that defines multiple synonyms is a shorthand for a sequence of <synonym

definition> items, each defining one synonym.

C.5.37 Textual correction – 12.2.1 Expression and expressions as actual parameters, Abstract

grammar

In the rule Agent-instance-pid-value replace "=" by "::".

In the rule Agent-instance replace "=" by "::".

- 52 -

Z.imp100-Rev-Pre-and-Pub

C.5.38 Textual correction – 12.2.1 Expression and expressions as actual parameters, Concrete

grammar

The concrete syntax rules for <agent instance pid value> and <agent instance> are modified, so that

the <agent instance> list is in <agent instance pid value> rather than <agent instance>. The revised

rules are:

<agent instance pid value> ::=

 system [<name>]

 { value < agent instance> endvalue

 | <left curly bracket> <agent instance> <right curly bracket> }*

<agent instance> ::=

 [block | process] <agent name>

 [<left square bracket> <Natural expression> <right square bracket>]

At the end of the first paragraph after the rule <agent instance>, add the following description for first

item of the list in Agent-instance-pid-value:

The keyword system in <agent instance pid value> represents the first item of the Agent-

instance list of the Agent-instance-pid-value with the Name for the system and an Instance-

number for the Natural number "1".

C.5.39 Clarification – 12.3.4.5 Import expression, Model

The last sentence of the Model is replaced by:

It is not valid for an <import expression> to occur several times in an expression or one action.

C.5.40 Clarification – 12.3.4.5 Generic system definition

The first paragraph and NOTE in this clause are deleted, leaving only the text:

See [ITU-T Z.102] and [ITU-T Z.103].

C.5.41 Clarification – 12.3.4.6 Any expression, Abstract grammar

In the Concrete grammar:

• The paragraph "An <expression> in <actual parameters> corresponding to a formal in/out or

out parameter shall not be omitted and shall be a <variable identifier>." is deleted, because

this is defined as a condition on the Abstract grammar in 11.13.3 in Z.101.

• The paragraph "After the Model for this has been applied, the <procedure identifier> shall

denote a procedure that contains a start transition." is deleted, because 9.4 Abstract grammar

of Z.101 states " all potentially instantiated procedures shall have a Procedure-start-node."

• The paragraph "If this is used, <procedure identifier> shall denote an enclosing procedure."

is deleted, because the condition does not apply.

• In the paragraph starting "The <remote procedure call body> represents " change "below" to

"in clause 10.5 Remote Procedure of [ITU-T Z.102].

In the Model:

Remove the two text paragraphs that constrain the sort to have at least one element, because a sort

always has at least one element.

C.5.42 Textual correction – 12.3.4.9 Signallist expression, Semantics

Replace "Batural" by "Natural".

- 53 -

Z.imp100-Rev-Pre-and-Pub

C.5.43 Modification – 12.3.5 Value returning procedure call, Concrete grammar

Replace the text paragraph starting "If the <procedure identifier> is" by the Note:

NOTE – When the <procedure identifier> is not defined within the enclosing agent, the procedure call is

transformed into a call of a local, implicitly created, subtype of the procedure as described in clause 11.13.3

Model of [ITU-T Z.101].

C.5.44 Modification – 14.1 Boolean sort, 14.1.1 Definition

The Boolean sort should be "unordered", because "<", ">","<=",">=", first, last, pred, succ, and num

are not implicitly defined. Replace
 literals true, false;

by
 literals unordered true, false;

C.5.45 Textual correction – 14.7.1 Definition (for Real Sort)

Change the font from red to Auto for: ('' or ('e' or 'E') ('' or '+' or '-') ('0':'9')* ('0':'9')).

C.5.46 Correction – 14.7.1 Definition (for Real Sort)

To be consistent with <real name> in Z.101 the definition of literals is changed to:
 ('0':'9')* ('0':'9')'.'('0':'9')('0':'9')*

 ('' or (('e' or 'E') ('' or '+' or '-') ('0':'9') ('0':'9')*));

/*that is, decimal notation with an optional exponent */

C.5.47 Correction – 14.7.1 Definition (for Real Sort)

To be consistent with <real name> in Z.101 the definition of literals is changed to:
 ('0':'9')* ('0':'9')'.'('0':'9')('0':'9')*

 ('' or (('e' or 'E') ('' or '+' or '-') ('0':'9') ('0':'9')*));

/*that is, decimal notation with an optional exponent */

C.5.48 Correction – 14.11.1 Definition (for Duration Sort)

The Duration sort should have the same literals as the Real sort, therefore replace:
 literals unordered nameclass ('0':'9')+ or (('0':'9')* '.' ('0':'9')+);

with
 literals unordered nameclass

 ('0':'9')* ('0':'9') '.' ('0':'9') ('0':'9')*

 ('' or (('e' or 'E') ('' or '+' or '-') ('0':'9') ('0':'9')*));

C.5.49 Correction – 14.12.1 Definition (for Time Sort)

The Time sort should have the same literals as the Real sort, therefore replace:
 literals unordered nameclass ('0':'9')+ or (('0':'9')* '.' ('0':'9')+);

with
 literals unordered nameclass

 ('0':'9')* ('0':'9') '.' ('0':'9') ('0':'9')*

 ('' or (('e' or 'E') ('' or '+' or '-') ('0':'9') ('0':'9')*));

C.5.50 Correction – 14.18 Support for ASN.1 character, symbol string and NULL types

The definition of the character string literals of PrintableString is incorrect and includes characters

that are not allowed. After the line of PrintableString containing "operators ocs in nameclass",

replace:
 '''' ((' ':'&') or '''''' or ('(': '?'))+ '''' -> this PrintableString;

/* character strings of any length of any characters from a space ' ' to a '?' */

by

- 54 -

Z.imp100-Rev-Pre-and-Pub

 '''' (

 ' ' or ''''''

 or ('0': '9') or ('A': 'Z') or ('a': 'z')

 or '(' or ')' or '+' or ',' or '-' or '.' or '/' or ':' or '=' or '(?'

)+ '''' -> this PrintableString;

/* printable character strings of any length */

C.5.51 Textual correction – A.2.7 Unordered literals, Semantics

Replace "(see clause 12.1.6.17) " by "(see clause 12.1.6.1 ITU-T Z.101)", replace "Model" by

"Semantics", delete "the Model in clause 12.1.6.17 is not applied. Consequentially, " and after "this

data type" insert " (see clause 12.1.6.1 ITU-T Z.101)".

C.5.52 Textual correction – A.2.7 Unordered literals, Semantics

Replace "(see clause 12.1.6.17) " by "(see clause 12.1.6.1 ITU-T Z.101)", replace "Model" by

"Semantics", delete "the Model in clause 12.1.6.17 is not applied. Consequentially, " and after "this

data type" insert " (see clause 12.1.6.1 ITU-T Z.101)".

C.5.53 Textual correction – Annex C – MSWord comment on title

Delete the comment on the title "Replaced by Annex C of Z.104 (2011) Amendment 1 (10/12) - NOT

change marked.".

C.6 Z.105 changes

C.6.1 Textual correction – Language

Change all parts of text marked as "English (US)" to "English (UK)".

C.6.2 Textual correction – 9.2 Parameterized type assignment, Example

Change "synonym maxSize <<package " to "synonym maxSize <<package ".

C.6.3 Textual correction – 9.3 Referencing ASN.1 parameterized type definitions, Model

In the second paragraph, change "<actual context parameters>" to "<actual context parameter list>".

C.6.4 Textual correction – 10 Definitions in package Predefined for SDL-2010, first line

Change the "and" after "Predefined" from the character style "z100code" to the default paragraph

font (that is: apply the Normal style).

C.7 Z.106 changes

C.7.1 Textual correction – Language

Change all parts of the main body (from page 1) text marked as "French" or "Swiss French" or

"English (US)" or "Spanish" or "German (Switzerland)" to "English (UK)".

C.7.2 Textual correction – Introduction, page v

Insert a full stop and a paragraph mark at the end of the text in the second paragraph after

"information".

C.7.3 Clarification – Syntax rule name <composite state>

The rule <composite state> has been renamed <composite state definition> throughout the document.

- 55 -

Z.imp100-Rev-Pre-and-Pub

C.7.4 Clarification – 5.5 Agents

The syntax rule <entity in agent> has its alternatives sorted alphabetically.

C.7.5 Textual correction – 5.6.1 Channel

At the end of enumeration item (c) delete ", respectively".

C.7.6 Clarification – 5.6.1 Channel

Before 5.6.2 Connection add the following NOTE and paragraph:

NOTE − Clause 10.1 Concrete grammar of [ITU-T Z.103] contains a description of whether it is possible in

the graphical grammar to derive the set of signals for a <signal list area> that has been omitted in a <channel

definition area>. The equivalent set of rules for deriving an omitted <signal list> from a <channel path> of a

<channel definition> is given below. Equivalent rules for the textual grammar are not normally given as they

can usually be simply implied from the rules on the graphical grammar, but to make the rules for the textual

grammar clear in this case an explicit description is given.

Derivation of an omitted channel <signal list> is possible if at least one <channel endpoint> identifies

a <textual typebased agent definition> or <typebased composite state> (or this and the state machine

is a <typebased composite state>) or env, and the gate for the <channel endpoint> has a defined set

of signals in the direction for the <signal list>. The set of signals is defined for the gate if it identifies

a <textual gate definition> that has a <gate constraint> with a defined <signal list>, or if a signal set

is defined for all internal channels connected to this gate. The set is defined for a gate connected to

<external channel identifiers> if for each external channel either no <signal list area> is omitted or

the set for that external channel is derivable.

C.7.7 Clarification – 5.7.11.1 Transition body

After the syntax for <terminator node> and the paragraph starting "If the <terminator> of a

<transition>" add the extensive explanatory NOTE:

NOTE − In the graphical grammar, <terminator area> has alternatives for <state area>, <merge area>,

<decision area> and <transition option area>. A<state area> is transformed in the graphical grammar as

described in clause 11.2 Model of [ITU-T Z.103] to a <nextstate area> as the <terminator area> of the

<transition area> and a <state area> that is not a <terminator area> of a <transition area> (see Model in clause

11.12.1 of [ITU-T Z.103]). The equivalent textual grammar has a corresponding <terminator> that is a

<nextstate> terminator and a <state>. A <merge area> is transformed in the graphical grammar as described

in 11.12.2.2 Model [ITU-T Z.103] to an <out connector area> to a unique <connector name> and attaching an

<in connector area>, with the same <connector name> to the <flow line symbol> in the <merge area>. The

equivalent textual grammar has <join> items for the <out connector area> items and a <label> for the

<connector name>. The <decision area> and <transition option area> are topologically different to <decision>

and <transition option> as a textual grammar <action item>, because in the textual grammar if a <terminator>

is not specified the next item in the <transition string> follows, whereas in the graphical grammar each

<transition area> of a <decision area> or <transition option area> has a <terminator>. Any <decision area> or

<transition option area> as a <terminator area> in the graphical grammar, in the textual grammar becomes a

<decision> or <transition option> (respectively) as the last <action item> of a <transition string> for the

<transition string area> and the <terminator area>. In this case, the <transition string> is not followed by a

<terminator>.

C.7.8 Correction – 5.7.11.2.2 Join

The sentence referring to clause 8.3.1 of Z.101 is removed – there is no such clause and in any case

<agent body> only occurs in Z.106. Delete "The rule for <agent body> in a type definition is stated

in clause 8.3.1 of [ITU-T Z.101].".

- 56 -

Z.imp100-Rev-Pre-and-Pub

C.7.9 Textual correction – 5.7.11.2.4 Return

Remove the comment on <return body>:

"Z.101 changed so that <expression> in <return body> is optional (see <return area> in Z.101)."

C.8 Z.107 changes

C.8.1 Textual correction – Language

Change all parts of the main body (from page 1) text marked as "French" or "Swiss French" to

"English (UK)".

C.8.2 Textual correction – 12.1 Data definitions, Abstract grammar

In the rule Value-data-type-definition replace "Null-literal-signature" by "[Null-literal-signature]"

because "Every value sort contains a unique named element, the Null-literal-signature …".

C.8.3 Clarification – 12.1 Data definitions

Introduce a heading "Concrete grammar" after the abstract syntax rule Value-data-type-definition.

Before the heading "Semantics" insert the following paragraph and the subsequent three NOTEs:

The Result-aggregation of the Result of the Literal-signature of the Null-literal-signature of a value

sort is REF.

NOTE 1 − The Literal-natural of the Literal-signature for a Null-literal-signature is arbitrary and is not taken

into account when determining other Literal-natural values of Literal-signature items of a Value-data-type-

definition.

NOTE 2 − If the name null occurs in a context that could be a PART or REF the specification would be

ambiguous and consequently invalid, therefore the name null should not be used for literals.

NOTE 3 − The Result-aggregation of the Result of any Literal-signature of a value sort except the Null-literal-

signature is PART.

C.8.4 Textual correction – 12.1.3 Operation signature, Abstract grammar

Change "=" to "::" in the rule Dynamic-operation-signature making it:

Dynamic-operation-signature :: Operation-signature

C.8.5 Clarification – 12.1.4 Generic data type operations, Concrete grammar

Insert a NOTE before the Semantics:

NOTE − If the name Null occurs in a context that could be a PART or REF the specification would be

ambiguous and consequently invalid, therefore the name Null should not be used for literals.

The reference to 12.2.8 is changed to 12.2.7, because clauses 12.2.3 to 12.2.8 are re-ordered in the

same order as Z.101, Z.102, Z.103 and Z.104 and therefore renumbered.

C.8.6 Textual correction – 12.2.1 Expressions, Abstract grammar

The reference to 12.2.8 is changed to 12.2.7, because clauses 12.2.3 to 12.2.8 are re-ordered in the

same order as Z.101, Z.102, Z.103 and Z.104 and therefore renumbered.

C.8.7 Clarification – 12.2.1 Expressions, Semantics

The reference to 12.2.8 is changed to 12.2.7, because clauses 12.2.3 to 12.2.8 are re-ordered in the

same order as Z.101, Z.102, Z.103 and Z.104 and therefore renumbered.

- 57 -

Z.imp100-Rev-Pre-and-Pub

At the end of the Semantics, text, add the following:

An expression aggregation kind is PART or REF.

A Constant-expression has a PART aggregation kind except if it is a Literal that identifies a Null-

literal-signature.

NOTE − The aggregation kind of Literal is the Result-aggregation of the Result Literal-signature of the

identified Result-aggregation, which is only REF for the Null-literal-signature of the value sort.

An Active-expression that is a Conditional-expression or Equality-expression or Imperative-

expression or Range-check-expression or Encoding-expression or Decoding-expression or Agent-

instance-pid-value or Type-check-expression or Type-coercion has a PART aggregation kind.

For the aggregation kind of an Operation-application see clause 12.2.6, Variable-access see

clause 12.3.2 and Value-returning-call-node see clause 12.3.5.

C.8.8 Textual correction – 12.2.3 to 12.2.8

The clause 12.2.3 Synonym is moved to 12.2.8 (to be in the same order as Z.101, Z.102, Z.103 and

Z.104) and the intervening clauses renumbered.

C.8.9 Clarification – 12.2.5 (was 12.2.6) Conditional expression, Semantics

At the end of the Semantics, add the following paragraph:

If the selected Consequence-expression or Alternative-expression has an aggregation kind REF, the

value returned by the result of the selected expression is used, and the Conditional-expression has a

PART aggregation kind.

C.8.10 Clarification – 12.2.6 (was 12.2.7) Operation application, Semantics

At the end of the Semantics, add the following paragraph:

An Operation-application has an aggregation kind that is the Result-aggregation (PART or REF) of

the procedure that implements the operation identified by the Operation-signature for the operation.

C.8.11 Textual correction – 12.2.7 (was 12.2.8) Range check expression, Abstract grammar

Remove the following sentence (for an incorrect condition):

The sort of the Expression shall be sort compatible with the Parent-sort-identifier.

C.8.12 Clarification – 12.3.1 Variable definition, Abstract grammar

After the rule for Aggregation-kind add the following paragraph followed by the heading Semantics:

The Aggregation-kind of a Variable-definition with a Sort-reference-identifier for a pid sort shall be

PART.

C.8.13 Clarification – 12.3.2 Variable Access, Semantics

At the end of the Semantics, add the following paragraph:

A Variable-access has an aggregation kind that is the Aggregation-kind of the Variable-definition:

PART or REF.

C.8.14 Clarification – 12.3.3 Assignment, Semantics

In enumerated item (a) enumerated item (1), after the first sentence ending "with the identified

variable." and before the sentence starting "otherwise" insert:

- 58 -

Z.imp100-Rev-Pre-and-Pub

If the Expression is a Variable-identifier with aggregation kind PART, the variable is associated with

the Variable-identifier of the Expression. If the Expression is a Variable-identifier with aggregation

kind REF, the variable is associated with the (reference) value associated with the Variable-identifier

of the Expression. If the Expression is a field access Operation-application, the variable is associated

with a reference to the data item enclosing the field (for example a Variable-identifier) and the name

of the field. If the Expression is a Literal that identifies the Null-literal-signature of a Value-data-

type-definition, the variable is associated with the Null-literal-signature.

C.8.15 Clarification – 12.3.4 Imperative expression

So that clause 12.3.5 can be added to clarify aggregation for a value returning procedure call, add the

clause "12.3.4 Imperative expression" with a body "See [ITU-T Z.104].".

C.8.16 Clarification – 12.3.5 Value returning procedure call

To clarify aggregation for a value returning procedure call, add the clause "12.3.5 Value returning

procedure call" with the body:

The description is extended from [ITU-T Z.104] to clarify its aggregation kind.

Semantics

A Value-returning-call-node has a aggregation kind that is the Result-aggregation of the called

procedure: PART or REF.

	1 Introduction
	1.1 Scope of the Guide
	1.2 Approval of the Guide
	1.3 Distribution of the Guide
	1.4 Contact

	2 Error reporting procedure
	2.1 Submission of error reports and change requests
	2.2 Resolution of errors
	2.3 Documenting the Resolution of Defects and maintenance changes

	Annex A Change Request Form
	Annex B Master List of Changes
	B.1 Objectives and scope
	B.2 Terminology
	B.3 Maintenance of Z.100 to Z.109
	B.4 Z.100 changes
	B.4.1 Textual correction – Introduction – Status/Stability
	B.4.2 Clarification – 2 References
	B.4.3 Textual correction – 3.19 type
	B.4.4 Textual correction – 5.1 Specification and Description Language grammars
	B.4.5 Textual correction – 5.3.2 Titled enumeration items Model
	B.4.6 Extension – Annex A Abstract syntax index
	B.4.7 Extension – Annex B BNF syntax index
	B.4.8 Textual correction – Annex C Compatibility
	B.4.9 Textual correction and extension – Annex F Formal Definition
	B.4.10 Extension – Appendix III.4 Differences between SDL-2000 and SDL-2010
	B.4.11 Clarification – Bibliography

	B.5 Z.101 changes
	B.5.1 Clarification – 2 References
	B.5.2 Textual correction – 6.1 Lexical rules, NOTE 8
	B.5.3 Clarification – 11.13.4 Output, Abstract grammar
	Output-node :: { Signal-identifier Actual-parameters }

	B.5.4 Clarification – 11.13.4 Output, Semantics
	B.5.5 Textual correction – 12.1.8.1 Syntypes, Semantics
	B.6 Z.102 changes
	B.6.1 Clarification – 2 References
	B.6.2 Extension – 11.13.4 Output, Abstract grammar
	Output-node :: { [BROADCAST] Signal-identifier Actual-parameters }
	B.6.3 Extension – 11.13.4 Output, Concrete grammar
	<destination> ::=

	B.6.4 Extension – 11.13.4 Output, Semantics

	B.7 Z.103 changes
	B.7.1 Clarification – 2 References

	B.8 Z.104 changes
	B.8.1 Clarification – 2 References
	B.8.2 Textual correction – 10.7 Communication path encoding rules, encode and decode
	B.8.3 Extension – 11.13.4 Output, Abstract grammar
	B.8.4 Textual correction – 12.1.9 Specialization of data type, Semantics
	B.8.5 Textual correction – 12.2.1 Expression and expressions as actual parameter, Abstract grammar
	B.8.6 Textual correction – 12.2.1 Expression and expressions as actual parameter, Concrete grammar
	B.8.7 Textual correction – B.8 Array
	B.8.8 Textual correction – C.1.6.2.1 Integern for a generic integer type with n bits
	B.8.9 Textual correction – C.1.6.9 C floating numbers types

	B.9 Z.105 changes
	B.9.1 Clarification – 2 References

	B.10 Z.106 changes
	B.10.1 Clarification – 2 References
	B.10.2 Textual correction – 7.1 General principles

	B.11 Z.107 changes
	B.11.1 Clarification – 2 References
	B.11.1 Textual correction – 12.2.1 Expression, Abstract grammar

	B.12 Z.109 changes
	B.13 Z.111 changes
	B.14 Z.119 changes
	B.15 List of Open Items
	B.16 List of Closed items (see B.1 for meaning of a “closed” item)
	B.16.1 allow algorithmic operators with external data
	B.16.2 more flexible USE syntax
	B.16.3 operators returning sets of values (multivalued operators)
	B.16.4 signal priority
	B.16.5 virtual as default
	B.16.6 remote process creation
	B.16.7 exit connection points for tasks
	B.16.8 Issues that are closed because no proposals were received over several years

	Annex C Master List of Changes to SDL-2010 (2016-04)
	C.1 Z.100 changes
	C.1.1 Textual correction – Heading 7.2, Language
	C.1.2 Modification – Annex A, Abstract syntax index
	C.1.3 Modification – Annex B, BNF syntax index
	C.1.4 Textual correction –D.2.3 String
	C.1.5 Modification –D.2.7 Real
	C.1.6 Clarification – Appendix III.4, Differences between SDL 2000 and SDL 2010

	C.2 Z.101 changes
	C.2.1 Textual correction – Language
	C.2.2 Textual correction – Non-breaking hyphens in abstract syntax names
	C.2.3 Clarification – 6.6 Names and identifiers, name resolution and visibility, Abstract grammar
	C.2.4 Clarification – 6.6 Names and identifiers, name resolution and visibility, Concrete grammar, NOTE 2
	C.2.5 Clarification – 6.10 Frame symbol and page numbers, Concrete grammar
	C.2.6 Clarification – 7.1 Framework
	C.2.7 Clarification – 7.2 Package, Model
	C.2.8 Clarification – 7.3 Referenced definition, Concrete grammar
	C.2.9 Clarification – 8.1.1.1 Agent types, Concrete grammar
	C.2.10 Modification – 8.1.1.1 Agent types, Model
	C.2.11 Correction – 8.1.1.2 System type, Concrete grammar
	C.2.12 Correction – 8.1.1.3 Block type, Concrete grammar
	C.2.13 Correction – 8.1.1.4 Process type, Concrete grammar
	C.2.14 Correction – 8.1.1.5 Composite state type, Abstract grammar
	C.2.15 Textual correction – 8.1.4 Gate, Concrete grammar, <gate symbol 2>
	C.2.16 Modification – 9.4 Procedure, Model
	C.2.17 Correction – 10.1 Channel, Abstract grammar
	C.2.18 Clarification – 10.1 Channel, Concrete grammar
	C.2.19 Textual correction – 10.1 Channel, Semantics, fifth paragraph
	C.2.20 Clarification – 10.3 Signal, Concrete grammar
	C.2.21 Modification – 11.3 Input, Concrete grammar
	C.2.22 Clarification – 11.12.2.1 Nextstate, Concrete grammar
	C.2.23 Modification – 11.13.3 Procedure call, Semantics
	C.2.24 Clarification – 11.13.3 Procedure call, Semantics
	C.2.25 Modification – 11.13.3 Procedure call, Model
	C.2.26 Clarification – 11.13.4 Output, Abstract grammar
	C.2.27 Textual correction – 11.13.5 Decision, Abstract grammar
	C.2.28 Textual correction – 12.1.2 Interface definition, Concrete grammar
	C.2.29 Textual correction – 12.1.2 Interface definition, Semantics
	C.2.30 Textual correction – 12.1.3 Operation signature, Abstract grammar
	C.2.31 Clarification – 12.1.3 Operation signature, Concrete grammar
	C.2.32 Textual correction – 12.1.6.1 Literals constructor, Concrete grammar
	C.2.33 Textual correction – 12.1.6.1 Literals constructor, Semantics, sixth paragraph
	C.2.34 Textual correction – 12.1.6.2 Structure data types, Concrete grammar
	C.2.35 Textual correction – 12.1.6.3 Choice data types, Concrete grammar
	C.2.36 Modification – 12.1.6.3 Choice data types, Concrete grammar
	C.2.37 Textual correction – 12.1.6.3 Choice data types, Semantics, ninth paragraph (ignoring NOTE paragraphs)
	C.2.38 Textual correction – 12.1.7 Behaviour of operations, Concrete grammar
	C.2.39 Textual correction – 12.1.8.2 Constraint, Concrete grammar
	C.2.40 Clarification – 12.1.8.2 Constraint, Concrete grammar
	C.2.41 Clarification – 12.2.2 Literal, Concrete grammar
	C.2.42 Clarification – 12.2.7 Range check expression, Abstract grammar
	C.2.43 Clarification – 12.2.7 Range check expression, Concrete grammar
	C.2.44 Textual correction – 12.3.1 Variable definition, Abstract grammar, NOTE 1
	C.2.45 Textual correction – 12.3.2 Variable access, Abstract grammar
	C.2.46 Textual correction – 12.3.3.1 Extended variable, Model
	C.2.47 Clarification – 12.3.3.2 Default initialization, Concrete grammar
	C.2.48 Textual correction – 12.3.4.2 Pid expression, Concrete grammar, <pid expression>
	C.2.49 Textual correction – 12.3.4.3 Timer active expression and timer remaining duration, Semantics

	C.3 Z.102 changes
	C.3.1 Textual correction – Language
	C.3.2 Clarification – 6.6 Visibility rules, names and identifiers – additional scope units, Note 1
	C.3.3 Extension – 6.6 Visibility rules, names and identifiers – additional scope units
	C.3.4 Clarification – 8.1.2 Type expression, Concrete grammar
	C.3.5 Clarification – 8.1.2 Type expression, Model
	C.3.6 Clarification – 8.3 Context parameters, Concrete grammar
	C.3.7 Correction – 8.3.2 Agent context parameter, Concrete grammar, <agent signature>
	C.3.8 Correction – 8.3.12 Gate context parameter, Concrete grammar
	C.3.9 Clarification – 8.4.1 Adding properties, Semantics
	C.3.10 Textual correction – 8.4.3 Virtual transition/save, Concrete grammar
	C.3.11 Textual correction – 8.8.3 Procedure context parameter, Concrete grammar
	C.3.12 Clarification – 9.2 Block, Model
	C.3.13 Textual correction – 9.4 Procedure, Concrete grammar
	C.3.14 Clarification – 10.4 Signal list area, Concrete grammar
	C.3.15 Textual correction – 10.5 Remote procedure, Concrete grammar
	C.3.16 Modification – 10.5 Remote procedure, Concrete grammar
	C.3.17 Correction – 10.5 Remote procedure, Model
	C.3.18 Correction – 10.6 Remote variable, Concrete grammar
	C.3.19 Correction – 10.6 Remote variable, Model
	C.3.20 Correction – 10.6 Remote variable, Model a) Importer
	C.3.21 Correction – 10.6 Remote variable, Model b) Importer
	C.3.22 Textual correction – 11.2 State, Abstract grammar
	C.3.23 Clarification – 11.2 State, Concrete grammar
	C.3.24 Modification – 11.2 State, Concrete grammar
	C.3.25 Textual correction – 11.2 State, Semantics
	C.3.26 Modification – 11.2 State, Model
	C.3.27 Textual correction – 11.8 Empty clause
	C.3.28 Textual correction – 11.9 Spontaneous transition
	C.3.29 Textual correction – 11.10 Label
	C.3.30 Clarification – 11.11.2 State aggregation, Semantics
	C.3.31 Textual correction – 11.11.4 Connect, Abstract grammar
	C.3.32 Textual correction – 11.12.2.4 Return, Concrete grammar
	C.3.33 Textual correction – 11.14 Statement lists, Concrete grammar
	C.3.34 Clarification – 11.14.1 Compound and loop statements, Abstract grammar
	C.3.35 Textual corrections – 11.14.1 Compound and loop statements, Concrete grammar

	C.4 Z.103 changes
	C.4.1 Textual correction – Language
	C.4.2 Textual correction – 8.1.1.1 Agent types, Model
	C.4.3 Textual correction – 8.1.4 Gates defined by interface gates, Model
	C.4.4 Textual correction – 9 Agents, Concrete grammar
	C.4.5 Clarification – 10.1 Channel, Concrete grammar
	C.4.6 Modification – 10.1 Channel, Concrete grammar
	C.4.7 Clarification – 10.1 Channel, Model
	C.4.8 Textual correction – 11.2 State, Concrete grammar
	C.4.9 Textual correction – 11.2 State, Model
	C.4.10 Clarification – 11.3 Input, Concrete grammar
	C.4.11 Clarification – 11.3 Input, Model
	C.4.12 Textual correction – 11.11.1 Composite state graph, Model
	C.4.13 Textual correction – 11.11.2 State aggregation, Model
	C.4.14 Textual correction – 11.13.1 Task, Model
	C.4.15 Clarification – 11.15 Timer, Model

	C.5 Z.104 changes
	C.5.1 Textual correction – Language
	C.5.2 Textual correction – Non-breaking hyphens in abstract syntax names
	C.5.3 Clarification – 8.1.4 Gates with encoding rules
	C.5.4 Clarification – 8.1.4 Gates with encoding rules and anonymous choice data type for a gate, Abstract grammar
	C.5.5 Clarification – 8.1.4 Gates with encoding rules and anonymous choice data type for a gate, Concrete grammar
	C.5.6 Textual correction – 8.1.4 Gates with encoding rules and anonymous choice data type for a gate, Model
	C.5.7 Modification – 10.7 Communication path encoding rules, encode and decode, Abstract grammar
	Encoding-rules :: Rules-identifier
	Encoding-path :: Gate-identifier
	Encode-procedure-identifier = Procedure-identifier
	Decode-procedure-identifier = Procedure-identifier

	C.5.8 Modification – 10.7 Communication path encoding rules, encode and decode, Concrete grammar and Model
	C.5.9 Modification – 11.3 Input, Concrete grammar
	C.5.10 Textual correction – 11.3 Input, Concrete grammar
	C.5.11 Textual correction – 11.3 Input, Model
	C.5.12 Modification – 11.4 Priority input
	C.5.13 Clarification – 11.7 Save
	C.5.14 Clarification – 11.8 Implicit transition
	C.5.15 Clarification – 11.9 Spontaneous transition
	C.5.16 Clarification – 11.10 Label
	C.5.17 Clarification – 11.11 State machine and composite state
	C.5.18 Clarification – 11.12 Transition
	C.5.19 Clarification – 11.13.1 Task
	C.5.20 Clarification – 11.13.2 Create
	C.5.21 Clarification – 11.13.3 Procedure call
	C.5.22 Textual correction – 11.13.4 Output, Abstract grammar
	C.5.23 Clarification – 11.13.5 Decision
	C.5.24 Clarification – 11.14 Statement list
	C.5.25 Clarification – 11.15 Timer
	C.5.26 Extension – 12.1 Data definitions, Abstract grammar
	C.5.27 Clarification – 12.1 Data definitions, Model
	C.5.28 Textual correction – 12.1 Data definitions, Model
	C.5.29 Textual correction – 12.1.2 Interface definition, Concrete grammar
	C.5.30 Clarification – 12.1.2 Interface definition, Concrete grammar
	C.5.31 Clarification – 12.1.2 Interface definition, Model
	C.5.32 Textual correction – 12.1.6.2 Structure data types, Concrete grammar
	C.5.33 Textual correction – 12.1.6.2 Structure data types, Semantics
	C.5.34 Textual correction – 12.1.6.2 Structure data types, Model
	C.5.35 Clarification – 12.1.8.3 Synonym definition, Concrete grammar
	C.5.36 Clarification – 12.1.8.3 Synonym definition, Model
	C.5.37 Textual correction – 12.2.1 Expression and expressions as actual parameters, Abstract grammar
	C.5.38 Textual correction – 12.2.1 Expression and expressions as actual parameters, Concrete grammar
	C.5.39 Clarification – 12.3.4.5 Import expression, Model
	C.5.40 Clarification – 12.3.4.5 Generic system definition
	C.5.41 Clarification – 12.3.4.6 Any expression, Abstract grammar
	C.5.42 Textual correction – 12.3.4.9 Signallist expression, Semantics
	C.5.43 Modification – 12.3.5 Value returning procedure call, Concrete grammar
	C.5.44 Modification – 14.1 Boolean sort, 14.1.1 Definition
	C.5.45 Textual correction – 14.7.1 Definition (for Real Sort)
	C.5.46 Correction – 14.7.1 Definition (for Real Sort)
	C.5.47 Correction – 14.7.1 Definition (for Real Sort)
	C.5.48 Correction – 14.11.1 Definition (for Duration Sort)
	C.5.49 Correction – 14.12.1 Definition (for Time Sort)
	C.5.50 Correction – 14.18 Support for ASN.1 character, symbol string and NULL types
	C.5.51 Textual correction – A.2.7 Unordered literals, Semantics
	C.5.52 Textual correction – A.2.7 Unordered literals, Semantics
	C.5.53 Textual correction – Annex C – MSWord comment on title

	C.6 Z.105 changes
	C.6.1 Textual correction – Language
	C.6.2 Textual correction – 9.2 Parameterized type assignment, Example
	C.6.3 Textual correction – 9.3 Referencing ASN.1 parameterized type definitions, Model
	C.6.4 Textual correction – 10 Definitions in package Predefined for SDL-2010, first line

	C.7 Z.106 changes
	C.7.1 Textual correction – Language
	C.7.2 Textual correction – Introduction, page v
	C.7.3 Clarification – Syntax rule name <composite state>
	C.7.4 Clarification – 5.5 Agents
	C.7.5 Textual correction – 5.6.1 Channel
	C.7.6 Clarification – 5.6.1 Channel
	C.7.7 Clarification – 5.7.11.1 Transition body
	C.7.8 Correction – 5.7.11.2.2 Join
	C.7.9 Textual correction – 5.7.11.2.4 Return

	C.8 Z.107 changes
	C.8.1 Textual correction – Language
	C.8.2 Textual correction – 12.1 Data definitions, Abstract grammar
	C.8.3 Clarification – 12.1 Data definitions
	C.8.4 Textual correction – 12.1.3 Operation signature, Abstract grammar
	C.8.5 Clarification – 12.1.4 Generic data type operations, Concrete grammar
	C.8.6 Textual correction – 12.2.1 Expressions, Abstract grammar
	C.8.7 Clarification – 12.2.1 Expressions, Semantics
	C.8.8 Textual correction – 12.2.3 to 12.2.8
	C.8.9 Clarification – 12.2.5 (was 12.2.6) Conditional expression, Semantics
	C.8.10 Clarification – 12.2.6 (was 12.2.7) Operation application, Semantics
	C.8.11 Textual correction – 12.2.7 (was 12.2.8) Range check expression, Abstract grammar
	C.8.12 Clarification – 12.3.1 Variable definition, Abstract grammar
	C.8.13 Clarification – 12.3.2 Variable Access, Semantics
	C.8.14 Clarification – 12.3.3 Assignment, Semantics
	C.8.15 Clarification – 12.3.4 Imperative expression
	C.8.16 Clarification – 12.3.5 Value returning procedure call

