

I n t e r n a t i o n a l T e l e c o m m u n i c a t i o n U n i o n

ITU-T X.692
TELECOMMUNICATION
STANDARDIZATION SECTOR
OF ITU

Corrigendum 1
(10/2011)

SERIES X: DATA NETWORKS, OPEN SYSTEM
COMMUNICATIONS AND SECURITY

OSI networking and system aspects – Abstract Syntax
Notation One (ASN.1)

 Information technology – ASN.1 encoding rules:
Specification of Encoding Control Notation (ECN)

Technical Corrigendum 1

 Recommendation ITU-T X.692 (2008) – Technical
Corrigendum 1

ITU-T X-SERIES RECOMMENDATIONS

DATA NETWORKS, OPEN SYSTEM COMMUNICATIONS AND SECURITY

PUBLIC DATA NETWORKS

Services and facilities X.1–X.19

Interfaces X.20–X.49

Transmission, signalling and switching X.50–X.89

Network aspects X.90–X.149

Maintenance X.150–X.179

Administrative arrangements X.180–X.199

OPEN SYSTEMS INTERCONNECTION

Model and notation X.200–X.209

Service definitions X.210–X.219

Connection-mode protocol specifications X.220–X.229

Connectionless-mode protocol specifications X.230–X.239

PICS proformas X.240–X.259

Protocol Identification X.260–X.269

Security Protocols X.270–X.279

Layer Managed Objects X.280–X.289

Conformance testing X.290–X.299

INTERWORKING BETWEEN NETWORKS

General X.300–X.349

Satellite data transmission systems X.350–X.369

IP-based networks X.370–X.379

MESSAGE HANDLING SYSTEMS X.400–X.499

DIRECTORY X.500–X.599

OSI NETWORKING AND SYSTEM ASPECTS

Networking X.600–X.629

Efficiency X.630–X.639

Quality of service X.640–X.649

Naming, Addressing and Registration X.650–X.679

Abstract Syntax Notation One (ASN.1) X.680–X.699

OSI MANAGEMENT

Systems management framework and architecture X.700–X.709

Management communication service and protocol X.710–X.719

Structure of management information X.720–X.729

Management functions and ODMA functions X.730–X.799

SECURITY X.800–X.849

OSI APPLICATIONS

Commitment, concurrency and recovery X.850–X.859

Transaction processing X.860–X.879

Remote operations X.880–X.889

Generic applications of ASN.1 X.890–X.899

OPEN DISTRIBUTED PROCESSING X.900–X.999

INFORMATION AND NETWORK SECURITY X.1000–X.1099

SECURE APPLICATIONS AND SERVICES X.1100–X.1199

CYBERSPACE SECURITY X.1200–X.1299

SECURE APPLICATIONS AND SERVICES X.1300–X.1399

CYBERSECURITY INFORMATION EXCHANGE X.1500–X.1598

For further details, please refer to the list of ITU-T Recommendations.

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) i

INTERNATIONAL STANDARD ISO/IEC 8825-3

RECOMMENDATION ITU-T X.692

Information technology – ASN.1 encoding rules:

Specification of Encoding Control Notation (ECN)

Technical Corrigendum 1

History

Edition Recommendation Approval Study Group

1.0 ITU-T X.692 2002-03-08 17

1.1 ITU-T X.692 (2002) Annex E 2002-03-08 17

1.2 ITU-T X.692 (2002) Amd. 1 2004-08-29 17

1.3 ITU-T X.692 (2002) Technical Cor. 1 2005-05-14 17

1.4 ITU-T X.692 (2002) Amd. 2 2006-06-13 17

2.0 ITU-T X.692 2008-11-13 17

2.1 ITU-T X.692 (2008) Cor. 1 2011-10-14 17

ii Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

FOREWORD

The International Telecommunication Union (ITU) is the United Nations specialized agency in the field of

telecommunications, information and communication technologies (ICTs). The ITU Telecommunication

Standardization Sector (ITU-T) is a permanent organ of ITU. ITU-T is responsible for studying technical,

operating and tariff questions and issuing Recommendations on them with a view to standardizing

telecommunications on a worldwide basis.

The World Telecommunication Standardization Assembly (WTSA), which meets every four years,

establishes the topics for study by the ITU-T study groups which, in turn, produce Recommendations on

these topics.

The approval of ITU-T Recommendations is covered by the procedure laid down in WTSA Resolution 1.

In some areas of information technology which fall within ITU-T's purview, the necessary standards are

prepared on a collaborative basis with ISO and IEC.

NOTE

In this Recommendation, the expression "Administration" is used for conciseness to indicate both a

telecommunication administration and a recognized operating agency.

Compliance with this Recommendation is voluntary. However, the Recommendation may contain certain

mandatory provisions (to ensure, e.g., interoperability or applicability) and compliance with the

Recommendation is achieved when all of these mandatory provisions are met. The words "shall" or some

other obligatory language such as "must" and the negative equivalents are used to express requirements. The

use of such words does not suggest that compliance with the Recommendation is required of any party.

INTELLECTUAL PROPERTY RIGHTS

ITU draws attention to the possibility that the practice or implementation of this Recommendation may

involve the use of a claimed Intellectual Property Right. ITU takes no position concerning the evidence,

validity or applicability of claimed Intellectual Property Rights, whether asserted by ITU members or others

outside of the Recommendation development process.

As of the date of approval of this Recommendation, ITU had not received notice of intellectual property,

protected by patents, which may be required to implement this Recommendation. However, implementers

are cautioned that this may not represent the latest information and are therefore strongly urged to consult the

TSB patent database at http://www.itu.int/ITU-T/ipr/.

 ITU 2011

All rights reserved. No part of this publication may be reproduced, by any means whatsoever, without the

prior written permission of ITU.

http://www.itu.int/ITU-T/ipr/

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) iii

CONTENTS

 Page

1 Clause 2 .. 1

2 Clause 18.2.3 .. 1

3 Annex D ... 1

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 1

INTERNATIONAL STANDARD

RECOMMENDATION ITU-T

Information technology – ASN.1 encoding rules:

Specification of Encoding Control Notation (ECN)

Conventions used in this corrigendum: Original, unchanged, text is in normal font. Deleted text is struck-through, thus:

deleted text. Inserted text is underlined, thus: inserted text.

1 Clause 2

Add a new NOTE to the first paragraph as follows:

NOTE – This Recommendation | International Standard is based on ISO/IEC 10646:2003. It cannot be applied using later
versions of this standard.

2 Clause 18.2.3

Change the existing NOTE after 18.2.3 to NOTE 2 modified as follows:

NOTE 2 – An enconding object for a user-defined or implicitly-generated encoding class can be added to such a set, and will take
precedence over any encoding which could be obtained by de-referencing.

Add the following new NOTE 1:

NOTE 1 – The encoding objects of the encoding object sets BER, CER, DER do not carry an implied alignment to the next
multiple of 8 bits. The encoding objects of the encoding objects of the encoding object sets PER-BASIC-ALIGNED and PER-
CANONICAL-ALIGNED do carry an implied alignment to the next multiple of 8 bits only when required by ITU-T Rec. X.691 |
ISO/IEC-8825-2

3 Annex D

A number of changes of the ASN.1 and ECN specifications are required .There are also a large number of indentation

changes needed. These are not listed separately, instead a complete replacement for Annex D is provided. Replace the

whole of Annex D with:

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

2 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

Annex D

Examples

(This annex does not form an integral part of this Recommendation | International Standard)

This annex contains examples of the use of ECN. The examples are divided into five groups:

– General examples, which show the look-and-feel of ECN definitions (D.1).

– Specialization examples, which show how to modify some parts of a standardized encoding. Each

example has a description of the requirements for the encoding and a description of the selected solution

and possible alternative solutions (D.2).

– Explicitly generated structure examples, which show the use of explicitly generated structures when the

same specialized encoding is used several times (D.3).

– A legacy protocol example which shows three ways of handling the problem of a traditional "more-bit"

approach to sequence-of termination (D.4).

– A second legacy protocol example, which shows how to construct ECN definitions for a protocol whose

message encodings have been specified using a tabular notation (D.5).

D.1 General examples

The examples described in D.1.1 to D.1.14 are part of a complete ECN specification whose ASN.1, EDM, and ELM

modules are given in outline in D.1.15, D.1.16 and D.1.17, and are given completely in a copy of this annex which is

available from the website cited in Annex F.

D.1.1 An encoding object for a boolean type

D.1.1.1 The ASN.1 assignment is:

Married ::= BOOLEAN

D.1.1.2 The encoding object assignment (see 23.3.1) is:

booleanEncoding #BOOLEAN ::= {

ENCODING-SPACE

 SIZE 1

 MULTIPLE OF bit

TRUE-PATTERN bits:'1'B

FALSE-PATTERN bits:'0'B}
marriedEncoding-1 #Married ::= booleanEncoding

D.1.1.3 There is no pre-alignment, and the encoding space is one bit, so "Married" is encoded as a bit-field of

length 1. Patterns for TRUE and FALSE values (in this case a single bit) are '1'B and '0'B respectively.

D.1.1.4 The values specified above are the values that would be set by default (see 23.3.1) if the corresponding

encoding properties were omitted, so the same encoding can be achieved with less verbosity by:

marriedEncoding-2 #Married ::= {

ENCODING-SPACE

SIZE 1}

D.1.1.5 This encoding for a boolean is, of course, just what PER provides, and another alternative is to specify the

encoding using the PER encoding object for boolean by way of the syntax provided by 17.3.1.

marriedEncoding-3 #Married ::= {

ENCODE WITH PER-BASIC-UNALIGNED}

D.1.1.6 As these examples show, there are often cases where ECN provides multiple ways to define an encoding. It is

up to the user to decide which alternative to use, balancing verbosity (stating explicitly values that can be defaulted)

against readability and clarity.

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 3

D.1.2 An encoding object for an integer type

D.1.2.1 The ASN.1 assignments are:

EvenPositiveInteger ::= INTEGER (1..MAX) (CONSTRAINED BY {-- Must be even --})

EvenNegativeInteger ::= INTEGER (MIN..-1) (CONSTRAINED BY {-- Must be even --})

D.1.2.2 The encoding object assignments are:

evenPositiveIntegerEncoding #EvenPositiveInteger ::= {

USE #NonNegativeInt

MAPPING TRANSFORMS {{INT-TO-INT divide:2}}

WITH PER-BASIC-UNALIGNED}
#NonNegativeInt ::= #INT(0..MAX)

evenNegativeIntegerEncoding #EvenNegativeInteger ::= {

USE #NonPositiveInt

MAPPING TRANSFORMS {{INT-TO-INT divide:2 --

Note: -1 / 2 = 0 - see clause 24.3.7 -- }}

WITH PER-BASIC-UNALIGNED}
#NonPositiveInt ::= #INT(MIN..0)

D.1.2.3 An even value is divided by two, and is then encoded using standardized PER encoding rules for positive and

negative integer types.

D.1.3 Another encoding object for an integer type

D.1.3.1 Here we assume the requirement to define an encoding object which encodes an integer in a two-octet field

starting at an octet boundary.

D.1.3.2 The ASN.1 assignment is:

Altitude ::= INTEGER (0..65535)

D.1.3.3 The Encoding object assignment (see 23.6.1 and 23.7.1) is:

integerRightAlignedEncoding #Altitude ::= {

ENCODING {

 ALIGNED TO NEXT octet

 ENCODING-SPACE

 SIZE 16}}

D.1.4 An encoding object for an integer type with holes

D.1.4.1 The ASN.1 assignment is:

IntegerWithHole ::= INTEGER (-256..-1 | 32..1056)

D.1.4.2 The encoding object assignment (see 19.5.2) is:

integerWithHoleEncoding #IntegerWithHole ::= {

USE #IntFrom0To1280

MAPPING ORDERED VALUES

WITH PER-BASIC-UNALIGNED}
#IntFrom0To1280 ::= #INT (0..1280)

D.1.4.3 "IntegerWithHole" is encoded as a positive integer. Values in the range -256..-1 are mapped to values in

the range 0..255 and values in the range 32..1056 are mapped to 256..1280.

D.1.5 A more complex encoding object for an integer type

D.1.5.1 The ASN.1 assignments are:

PositiveInteger ::= INTEGER (1..MAX)

NegativeInteger ::= INTEGER (MIN..-1)

D.1.5.2 The encoding object assignments are:

positiveIntegerEncoding #PositiveInteger ::=

integerEncoding
negativeIntegerEncoding #NegativeInteger ::=

integerEncoding

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

4 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

D.1.5.3 Values of "PositiveInteger" and "NegativeInteger" types are encoded by the encoding object

"integerEncoding" as a positive integer or as a twos-complement integer respectively. This is defined below, and

provides different encodings depending on the bounds of the type to which it is applied.

D.1.5.4 The "integerEncoding" encoding object defined here is very powerful, but quite complex. It contains five

encoding objects of the class #CONDITIONAL-INT; they all define an octet-aligned encoding. When the integer values

being encoded are bounded, the number of bits is fixed; when the values are not bounded, the type is required to be the

last in a PDU, and the value is right justified in the remaining octets of the PDU.

D.1.5.5 The definition of the encoding object (see 23.6.1 and 23.7.1) is:

integerEncoding #INT ::= {ENCODINGS {

{ IF unbounded-or-no-lower-bound

 ENCODING-SPACE

 SIZE variable-with-determinant

 DETERMINED BY container

 USING OUTER

 ENCODING twos-complement} ,

{ IF bounded-with-negatives

 ENCODING-SPACE

 SIZE fixed-to-max

 ENCODING twos-complement} ,

{ IF semi-bounded-with-negatives

 ENCODING-SPACE

 SIZE variable-with-determinant

 DETERMINED BY container

 USING OUTER

 ENCODING twos-complement} ,

{ IF semi-bounded-without-negatives

 ENCODING-SPACE

 SIZE variable-with-determinant

 DETERMINED BY container

 USING OUTER

 ENCODING positive-int} ,

{ IF bounded-without-negatives

 ENCODING-SPACE

 SIZE fixed-to-max

 ENCODING positive-int}}}

D.1.6 Positive integers encoded in BCD

D.1.6.1 This example shows how to encode a positive integer in BCD (Binary Coded Decimal) by successive

transforms: from integer to character string then from character string to bitstring.

D.1.6.2 The ASN.1 assignment is:

PositiveIntegerBCD ::= INTEGER(0..MAX)

D.1.6.3 The encoding object assignment (see 19.4, 24.1 and 23.4.1) is:

positiveIntegerBCDEncoding #PositiveIntegerBCD ::= {

USE #CHARS

MAPPING TRANSFORMS{{

 INT-TO-CHARS

 -- We convert to characters (e.g., integer 42

 -- becomes character string "42") and encode the characters

 -- with the encoding object "numeric-chars-to-bcdEncoding"

 SIZE variable

 PLUS-SIGN FALSE}}

 WITH numeric-chars-to-bcdEncoding }
numeric-chars-to-bcdEncoding #CHARS ::= {

ALIGNED TO NEXT nibble

 TRANSFORMS {{

 CHAR-TO-BITS

 -- We convert each character to a bitstring

 --(e.g., character "4" becomes '0100'B and "2" becomes

 -- '0010'B)

 AS mapped

 CHAR-LIST { "0","1","2","3",

 "4","5","6","7",

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 5

 "8","9"}

 BITS-LIST { '0000'B, '0001'B, '0010'B, '0011'B,

 '0100'B, '0101'B, '0110'B, '0111'B,

 '1000'B, '1001'B }}}

REPETITION-ENCODING {

 REPETITION-SPACE

 -- We determine the concatenation of the bitstrings for the

 -- characters and add a terminator (e.g.,

 -- '0100'B + '0010'B becomes '0100 0010 1111'B)

 SIZE variable-with-determinant

 DETERMINED BY pattern

 PATTERN bits:'1111'B}}

D.1.6.4 The positive number is first transformed into a character string by the int-to-chars transform using the options

variable length and no plus sign, and in addition the default option of no padding, giving a string containing characters

"0" to "9". Then the character string is encoded such that each character is transformed into a bit pattern, '0000'B for

"0", '0001'B for "1"…, '1001'B for "9". The bitstring is aligned on a nibble boundary and terminates with a specific

pattern '1111'B.

D.1.6.5 A more complex alternative, not shown here, but commonly used, would be to embed the BCD encoding in

an octet string, with an external boolean identifying whether there is an unused nibble at the end or not.

D.1.7 An encoding object of class #BITS

D.1.7.1 This example defines an encoding object of class #BITS (see 23.2.1) for a bitstring that is octet-aligned,

padded with 0, and terminated by an 8-bit field containing '00000000'B (it is assumed that an abstract value never

contains eight successive zeros):

D.1.7.2 The ASN.1 assignment is:

Fax ::= BIT STRING (CONSTRAINED BY

{-- must not contain eight successive zero bits --})

D.1.7.3 The encoding object assignment (see 23.2.1, 23.13.1 and 23.14.1) is:

faxEncoding #Fax ::= {

ALIGNED TO NEXT octet

REPETITION-ENCODING {

 REPETITION-SPACE

 SIZE variable-with-determinant

 DETERMINED BY pattern

 PATTERN bits:'00000000'B}}

D.1.7.4 This encoding object (of class #BITS) contains an embedded encoding object of class

#CONDITIONAL-REPETITION which specifies the mechanism and the termination pattern.

D.1.7.5 As with many of the examples in this annex, there is heavy reliance here on the defaults provided in clause 23

and advantage is taken of the ability to define encoding objects in-line rather than separately assigning them to

reference names which are then used in other assignments.

D.1.8 An encoding object for an octetstring type

D.1.8.1 The ASN.1 assignment is:

BinaryFile ::= OCTET STRING

D.1.8.2 The encoding object assignment (see 23.9.1) is:

binaryFileEncoding #BinaryFile ::= {

ALIGNED TO NEXT octet

PADDING one

REPETITION-ENCODING {

 REPETITION-SPACE

 SIZE variable-with-determinant

 DETERMINED BY container

 USING OUTER}}

D.1.8.3 The value is octet-aligned using padding with ones and terminates with the end of the PDU.

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

6 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

D.1.9 An encoding object for a character string type

D.1.9.1 The ASN.1 assignment is:

Password ::= PrintableString

D.1.9.2 The encoding object assignment (see 23.4.1 and 23.14.1) is:

passwordEncoding #Password ::= {

ALIGNED TO NEXT octet

TRANSFORMS {{CHAR-TO-BITS AS compact

 SIZE fixed-to-max

 MULTIPLE OF bit }}

REPETITION-ENCODING {

 REPETITION-SPACE

 SIZE variable-with-determinant

 DETERMINED BY container

 USING OUTER}}

D.1.9.3 The string is octet-aligned using padding with "0" and terminates with the end of the PDU; the character-

encoding is specified as "compact", so each character is encoded in 7 bits using '0000000'B for the first ASCII

character of type PrintableString, '0000001'B for the next, and so on.

D.1.10 Mapping character values to bit values

D.1.10.1 The ASN.1 assignment is:

CharacterStringToBit ::= IA5String ("FIRST" | "SECOND" | "THIRD")

D.1.10.2 The encoding object assignment (see 19.2) is:

characterStringToBitEncoding #CharacterStringToBit ::= {

USE #IntFrom0To2

MAPPING VALUES {

 "FIRST" TO 0,

 "SECOND" TO 1,

 "THIRD" TO 2}

WITH integerEncoding}
#IntFrom0To2 ::= #INT (0..2)

where "integerEncoding" is defined in D.1.5.5.

D.1.10.3 The three possible abstract values are mapped to three integer numbers and then those numbers are encoded in

a two-bit field.

D.1.11 An encoding object for a sequence type

D.1.11.1 Here we encode a sequence type that has a field "a" which carries application semantics (i.e., is visible to the

application), but we also want to use it as a presence determinant for a second (optional) integer field "b". There is then

an octet string that is octet-aligned, and delimited by the end of the PDU. We need to give specialized encodings for the

optionality of "b", and we use the specialized encoding defined in D.1.8 (by reference to the encoding object

"binaryFileEncoding") for the octet string "c". We want to encode everything else with PER basic unaligned.

D.1.11.2 The ASN.1 assignment is:

Sequence1 ::= SEQUENCE {

a BOOLEAN,

b INTEGER OPTIONAL,

c BinaryFile

-- "BinaryFile" is defined in D.1.8.1 --}

D.1.11.3 The ECN assignments (see 17.5 and 23.11.1) are:

sequence1Encoding #Sequence1 ::= {

ENCODE STRUCTURE {

 b USE-SET OPTIONAL-ENCODING parameterizedPresenceEncoding {< a >},

 c binaryFileEncoding

 -- "binaryFileEncoding" is defined in D.1.8.2 -- }

 WITH PER-BASIC-UNALIGNED}
parameterizedPresenceEncoding {< REFERENCE:reference >} #OPTIONAL ::= {

PRESENCE

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 7

 DETERMINED BY field-to-be-used

 USING reference}

D.1.11.4 Notice that we did not need to provide the "DECODERS-TRANSFORMS" encoding property in the

"parameterizedPresenceEncoding" encoding object, because the component "a" was a boolean, and it is assumed

that TRUE meant that "b" was present. If, however, "a" had been an integer field, or if the application value of TRUE for

"a" actually meant that "b" was absent, then we would have included a "DECODER-TRANSFORMS" encoding property as

in D.2.6.

D.1.12 An encoding object for a choice type

D.1.12.1 A choice type with three alternatives is encoded using the tag number of class context, encoded in a three bit

field, as a selector. The encoding object of class #ALTERNATIVES specify that the identification handle "Tag" is used as

determinant; the encoding object of class #TAG defines the position of the identification handle (three bits). For each

alternative, the value is encoded with PER basic unaligned.

D.1.12.2 The ASN.1 assignment is:

Choice ::= CHOICE {

boolean [1] BOOLEAN,

integer [3] INTEGER,

string [5] IA5String}

D.1.12.3 The ECN assignments (see 23.1.1 and 23.15.1) are:

choiceEncoding-1 #Choice ::= {

ENCODE STRUCTURE {

 boolean [tagEncoding] USE-SET,

 integer [tagEncoding] USE-SET,

 string [tagEncoding] USE-SET

 STRUCTURED WITH {

 ALTERNATIVE

 DETERMINED BY handle

 HANDLE "Tag"}}

 WITH PER-BASIC-UNALIGNED}
tagEncoding #TAG ::= {

ENCODING-SPACE

 SIZE 3

 MULTIPLE OF bit

EXHIBITS HANDLE "Tag" AT {0 | 1 | 2}}

D.1.12.4 Perhaps a neater way of providing the first assignment in D.1.12.3 would be to define a new encoding object

set and apply it as follows:

MyEncodings #ENCODINGS ::= { tagEncoding } COMPLETED BY PER-BASIC-UNALIGNED

choiceEncoding-2 #Choice ::= {

ENCODE STRUCTURE {

 STRUCTURED WITH {

 ALTERNATIVE

 DETERMINED BY handle

 HANDLE "Tag"}}

 WITH MyEncodings}

D.1.13 Encoding a bitstring containing another encoding

D.1.13.1 A bitstring value encoded with PER basic unaligned, contains the PER basic unaligned encoding of a

sequence as an integral number of octets (padded with zeros) but not necessarily aligned on an octet boundary.

D.1.13.2 The ASN.1 assignment are:

Sequence2 ::= SEQUENCE {

a BOOLEAN,

b BIT STRING (CONTAINING Sequence3) }
Sequence3 ::= SEQUENCE {

a INTEGER(0..10),

b BOOLEAN }

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

8 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

D.1.13.3 The ECN assignments (see 25.1) are:

sequence2Encoding #Sequence2 ::= {

ENCODE STRUCTURE {

 b { REPETITION-ENCODING {

 REPETITION-SPACE

 SIZE 8

 MULTIPLE OF bit}

 CONTENTS-ENCODING {sequence3Encoding}

COMPLETED BY PER-BASIC-UNALIGNED}}

WITH PER-BASIC-UNALIGNED}
sequence3Encoding #Sequence3 ::= {

ENCODE STRUCTURE {

 STRUCTURED WITH sequence3StructureEncoding

 }

WITH PER-BASIC-UNALIGNED }
sequence3StructureEncoding #CONCATENATION ::= {

ENCODING-SPACE

 MULTIPLE OF octet

 VALUE-PADDING

 JUSTIFIED left:0

 POST-PADDING zero

 UNUSED BITS

 DETERMINED BY not-needed }

D.1.14 An encoding object set

These encoding object sets contain encoding definitions for some types specified in the ASN.1 module of D.1.15.

Example1Encodings #ENCODINGS ::= {

marriedEncoding-1 |

integerRightAlignedEncoding |

evenPositiveIntegerEncoding |

evenNegativeIntegerEncoding |

integerRightAlignedEncoding |

integerWithHoleEncoding |

positiveIntegerEncoding |

negativeIntegerEncoding |

positiveIntegerBCDEncoding |

faxEncoding |

binaryFileEncoding |

passwordEncoding |

characterStringToBitEncoding |

sequence1Encoding |

choiceEncoding-1 |

sequence2Encoding |

 sequence3Encoding }

D.1.15 ASN.1 definitions

D.1.15.1 This ASN.1 module groups all the ASN.1 definitions from D.1.1 to D.1.13 together. They will be encoded

according to the encoding objects defined in the EDM of D.1.16, together with the PER basic unaligned encoding rules.

Example1-ASN1-Module {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module1(2)}

DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

MyPDU ::= CHOICE {

marriedMessage Married,

altitudeMessage Altitude

-- etc.

}
Married ::= BOOLEAN

Altitude ::= INTEGER (0..65535)

-- etc.

END

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 9

D.1.16 EDM definitions

D.1.16.1 This EDM module groups all the ECN definitions from D.1.1 to D.1.13 together.

Example1-EDM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module1(3)}

ENCODING-DEFINITIONS ::=

BEGIN

EXPORTS Example1Encodings;

IMPORTS #Married, #Altitude, #EvenPositiveInteger, #EvenNegativeInteger,

#IntegerWithHole, #PositiveInteger, #NegativeInteger, #PositiveIntegerBCD,

#Fax, #BinaryFile, #Password, #CharacterStringToBit, #Sequence1, #Choice

FROM Example1-ASN1-Module { joint-iso-itu-t(2) asn1(1) ecn(4) examples(5)

 asn1-module1(2) };

Example1Encodings #ENCODINGS ::= {

marriedEncoding-1 |

 -- etc

sequence3Encoding}

-- etc

END

D.1.17 ELM definitions

The following ELM encodes the ASN.1 module defined in D.1.15, using objects specified in the EDM defined in

D.1.16.

Example1-ELM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) elm-module1(1)}

LINK-DEFINITIONS ::=

BEGIN

IMPORTS

Example1Encodings FROM Example-EDM

{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module1(3)}

#MyPDU, #Sequence2 FROM Example1-ASN1-Module

{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module1(2)};

ENCODE #MyPDU WITH Example1Encodings

COMPLETED BY PER-BASIC-UNALIGNED

END

D.2 Specialization examples

The examples in this clause show how to modify selected parts of an encoding for given types in order to minimize the

size of encoded messages. PER basic unaligned encodings normally produce as compact encodings as possible.

However, there are some cases when specialized encodings might be desired:

– There are some special semantics associated with message components that make it possible to remove

some of the PER-generated auxiliary fields.

– The user wants different encodings for PER auxiliary fields that are generated by default, such as

variable-width determinant fields.

D.2.1 Encoding by distributing values to an alternative encoding structure

D.2.1.1 The ASN.1 assignment is:

NormallySmallValues ::= INTEGER (0..1000)

 -- Usually values are in the range 0..63, but sometimes the whole

value range

 -- is used.

D.2.1.2 PER would encode the type using 10 bits. We wish to minimize the size of the encoding such that the normal

case is encoded using as few bits as possible.

NOTE – In this example we take a simple direct approach. A more sophisticated approach using Huffman encodings is given
in E.1.

D.2.1.3 The encoding object assignment (see 19.6) is:

normallySmallValuesEncoding-1 #NormallySmallValues ::= {

USE #NormallySmallValuesStruct-1

MAPPING DISTRIBUTION {

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

10 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

 0..63 TO small,

 REMAINDER TO large }

WITH PER-BASIC-UNALIGNED}

D.2.1.4 The encoding structure assignment is:

#NormallySmallValuesStruct-1 ::= #CHOICE {

small #INT (0..63),

large #INT (64..1000)}

D.2.1.5 Values which are normally used are encoded using the "small" field and the ones used only occasionally are

encoded using the "large" field. The selection between the two is done by a one-bit PER-generated selector field. The

length of the "small" field is 6 bits and the length of the "large" field is 10 bits, so the normal case is encoded using 7

bits and the rare case using 11 bits.

D.2.2 Encoding by mapping ordered abstract values to an alternative encoding structure

D.2.2.1 Example D.2.1 used explicit definition of how value ranges are mapped to fields of the encoding structure.

The same effect can be achieved more simply by using "mapping by ordered abstract values". However, as illustration,

we here also modify the requirement: Arbitrarily large values may occasionally occur, and the ASN.1 assignment is

assumed to have its constraint removed.

D.2.2.2 The encoding object assignments (see 19.5) are:

normallySmallValuesEncoding-2 #NormallySmallValues ::= {

USE #NormallySmallValuesStruct-2

MAPPING ORDERED VALUES

WITH NormallySmallValuesTag-encoding-plus-PER}
normallySmallValuesTag-encoding #TAG ::= {

ENCODING-SPACE

 SIZE 1}
NormallySmallValuesTag-encoding-plus-PER #ENCODINGS ::=

{normallySmallValuesTag-encoding}

COMPLETED BY PER-BASIC-UNALIGNED

D.2.2.3 The encoding structure assignment is:

#NormallySmallValuesStruct-2 ::= #CHOICE {

small [#TAG(0)] #INT (0..63),

large [#TAG(1)] #INT (0..MAX) }

D.2.2.4 The result is very similar to D.2.1, but now the values above 64 that are mapped to the field "large" are

encoded from zero upwards. The two alternatives are distinguished by an index of one bit. Another difference is that the

field "large" is left unbounded, so the encoding object can encode arbitrarily large integers, but with the cost of a length

field in the "large" case. This example can also be used if there is no upper-bound on the values that might

occasionally occur ("large" is not bounded in the replacement structure). This again illustrates the flexibility available

to ECN specifiers to design encodings to suite their particular requirements.

D.2.3 Compression of non-continuous value ranges

D.2.3.1 This example also uses a mapping of ordered abstract values. In this case the mapping is used to compress

sparse values in a base ASN.1 specification. The compression could also have been achieved by defining the ASN.1

abstract value "x" to have the application semantics of "2x", then using a simpler constraint on the ASN.1 integer type.

The assumption in this example, however, is that the ASN.1 designer chose not to do that, and we are required to apply

the compression during the mapping from abstract values to encodings.

D.2.3.2 The ASN.1 assignment is:

SparseEvenlyDistributedValueSet ::= INTEGER (2 | 4 | 6 | 8 | 10 | 12 | 14 | 16)

D.2.3.3 PER basic unaligned takes only lower bounds and upper bounds into account when determining the number of

bits needed to encode an integer. This results in unused bit patterns in the encoding. The encoding can be compressed

such that unused bit patterns are omitted, and each value is encoded using the minimum number of bits.

D.2.3.4 The encoding object assignment (see 19.5) is:

sparseEvenlyDistributedValueSetEncoding-1 #SparseEvenlyDistributedValueSet ::= {

USE #IntFrom0To7

MAPPING ORDERED VALUES

WITH PER-BASIC-UNALIGNED}

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 11

#IntFrom0To7 ::= #INT (0..7)

D.2.3.5 The eight possible abstract values have been mapped to the range 0..7 and will be encoded in a three-bit field.

D.2.4 Compression of non-continuous value ranges using a transform

D.2.4.1 Example D.2.3 used mapping of ordered abstract values. The same effect can be achieved by using the

#TRANSFORM class.

D.2.4.2 The encoding object assignment (see 19.4) is:

sparseEvenlyDistributedValueSetEncoding-2 #SparseEvenlyDistributedValueSet ::= {

USE #IntFrom0To7

MAPPING TRANSFORMS {{INT-TO-INT divide: 2}, {INT-TO-INT decrement:1}}

WITH PER-BASIC-UNALIGNED}

D.2.4.3 Again, the eight possible abstract values are mapped to the range 0..7 and encoded in a three-bit field.

D.2.5 Compression of an unevenly distributed value set by mapping ordered abstract values

D.2.5.1 The ASN.1 assignment is:

SparseUnevenlyDistributedValueSet ::= INTEGER (0|3|5|6|11|8)

-- Out of order to illustrate that order does not matter in the constraint

D.2.5.2 The encoding should be such that there are no holes in the encoding patterns used.

D.2.5.3 The encoding object assignment is:

sparseUnevenlyDistributedValueSetEncoding #SparseUnevenlyDistributedValueSet ::= {

USE #IntFrom0To5

MAPPING ORDERED VALUES

WITH PER-BASIC-UNALIGNED}

#IntFrom0To5 ::= #INT (0..5)

D.2.5.4 The six possible abstract values are mapped to the range 0..5 and encoded in a three-bit field. The mapping

is as follows: 00 , 31, 52, 63, 84, and 115.

D.2.6 Presence of an optional component depending on the value of another component

D.2.6.1 The ASN.1 assignment is:

ConditionalPresenceOnValue ::= SEQUENCE {

a INTEGER (0..4),

b INTEGER (1..10),

c BOOLEAN OPTIONAL

-- Condition: "c" is present if "a" is 0, otherwise "c" is absent --,

d BOOLEAN OPTIONAL

-- Condition: "d" is absent if "a" is 1, otherwise "d" is present -- }

-- Note the implied presence constraints in comments.

-- Note also that the integer field "a" carries application semantics and

-- has values other than zero and one.

-- If "a" has value 0, both "c" and "d" are present.

-- If "a" has value 1, both "c" and "d" are missing.

-- If "a" has values 3 or 4, "c" is absent and "d" is present.

-- These conditions are very hard to express formally using ASN.1 alone.

D.2.6.2 The component "a" acts as the presence determinant for both components "c" and "d", but a PER encoding

would produce two auxiliary bits for the optional components. We require an encoding in which these auxiliary bits are

absent.

D.2.6.3 The encoding object assignment is:

conditionalPresenceOnValueEncoding #ConditionalPresenceOnValue ::= {

ENCODE STRUCTURE {

 c USE-SET OPTIONAL-ENCODING is-c-present{< a >},

 d USE-SET OPTIONAL-ENCODING is-d-present{< a >}}

WITH PER-BASIC-UNALIGNED}
is-c-present {< REFERENCE : a >} #OPTIONAL ::= {

PRESENCE

 DETERMINED BY field-to-be-used

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

12 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

 USING a

 DECODER-TRANSFORMS {{INT-TO-BOOL TRUE-IS {0}}}}
is-d-present {< REFERENCE : a >} #OPTIONAL ::= {

PRESENCE

 DETERMINED BY field-to-be-used

 USING a

 DECODER-TRANSFORMS {{INT-TO-BOOL TRUE-IS {0 | 2 | 3 | 4}}}}

D.2.6.4 Here we have a simple, formal, and clear specification of the presence conditions on "c" and "d" which can be

understood by encoder-decoder tools. The ASN.1 comments cannot be handled by tools. The provision of optionality

encoding for "c" and "d" means that the PER encoding for OPTIONAL is not used in this case, and there are no auxiliary

bits.

D.2.6.5 The parameterized encoding objects "is-c-present" and "is-d-present" specify how presence of the

components is determined during decoding. Note that no transformation is needed (nor permitted) for encoding because

the determinant has application semantics (i.e., it is visible in the ASN.1 type definition). However, a good encoding

tool will police the setting of "a" by the application, to ensure that its value is consistent with the presence or absence of

"c" and "d" that the application code has determined.

D.2.7 The presence of an optional component depends on some external condition

D.2.7.1 The ASN.1 assignment is:

ConditionalPresenceOnExternalCondition ::= SEQUENCE {

a BOOLEAN OPTIONAL

 -- Condition: "a" is present if the external condition "C" holds,

 -- otherwise "a" absent -- }

-- Note that the presence constraint can only be supplied in comment.

D.2.7.2 The application code for both a sender and a receiver can evaluate the condition "C" from some information

outside the message. The ECN specifier wishes tools to invoke such code to determine the presence of "a", rather than

using a bit in the encoding.

D.2.7.3 The encoding object assignment is:

conditionalPresenceOnExternalConditionEncoding

#ConditionalPresenceOnExternalCondition ::= {

ENCODE STRUCTURE {

 a USE-SET OPTIONAL-ENCODING is-a-present}

WITH PER-BASIC-UNALIGNED}
is-a-present #OPTIONAL ::=

NON-ECN-BEGIN {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) user-notation(7)}

extern C;

extern channel;

/* a is present only if channel is equal to some value "C" */

int is_a_present() {

 if(channel == C) return 1;

 else return 0; }

NON-ECN-END

D.2.7.4 Because the condition is external to the message, the encoding object for determining presence of the

component "a" can only be specified by a non-ECN definition of an encoding object. However, while this saves bits on

the line, many designers would consider it better to include the bit in the message to reduce the possibility of error, and

to make testing and monitoring easier. Such choices are for the ECN specifier.

D.2.8 A variable length list

D.2.8.1 The ASN.1 assignment is:

EnclosingStructureForList ::= SEQUENCE {

list VariableLengthList}
VariableLengthList ::= SEQUENCE (SIZE (0..1023)) OF INTEGER (1..2)

-- Normally the list contains only a few elements (0..31),

-- but it might contain many.

D.2.8.2 PER basic unaligned encodes the length of the list using 10 bits even if normally the length is in the range

0..31. We wish to minimize the size of the encoding of the length determinant in the normal case while still allowing

values which rarely occur.

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 13

D.2.8.3 The encoding object assignment is:

enclosingStructureForListEncoding #EnclosingStructureForList ::= {

USE #EnclosingStructureForListStruct

MAPPING FIELDS WITH {

 ENCODE STRUCTURE {

 aux-length list-lengthEncoding,

 list {

 ENCODE STRUCTURE {

 STRUCTURED WITH {

 REPETITION-ENCODING {

 REPETITION-SPACE

 SIZE variable-with-determinant

 MULTIPLE OF repetitions

 DETERMINED BY field-to-be-set

 USING aux-length}}}

 WITH PER-BASIC-UNALIGNED }}

 WITH PER-BASIC-UNALIGNED}}
-- First mapping: use of an encoding structure with an explicit length

-- determinant.

list-lengthEncoding #AuxVariableListLength ::= {

USE #AuxVariableListLengthStruct -- See D.2.8.4.

MAPPING ORDERED VALUES

WITH PER-BASIC-UNALIGNED}
 -- Second mapping: list length is encoded as a choice between

 -- a short form "normally" and a long form "sometimes".

D.2.8.4 The encoding structure assignments are:

#EnclosingStructureForListStruct ::= #CONCATENATION {

aux-length #AuxVariableListLength,

list #VariableLengthList}
#AuxVariableListLength ::= #INT (0..1023)

#AuxVariableListLengthStruct ::= #ALTERNATIVES {

normally #INT (0..31),

sometimes #INT (32..1023)}

D.2.8.5 The length determinant for the component "list" is variable. The length determinant for short list values is

encoded using 1 bit for the selection determinant and 5 bits for the length determinant. The length determinant for long

list values is encoded using 1 bit for the selection determinant and 10 bits for the length determinant.

D.2.9 Equal length lists

D.2.9.1 The ASN.1 assignment is:

EqualLengthLists ::= SEQUENCE {

list1 List1,

list2 List2}

(CONSTRAINED BY {

 -- "list1" and "list2" always have the same number of elements. --

})
List1 ::= SEQUENCE (SIZE (0..1023)) OF BOOLEAN

List2 ::= SEQUENCE (SIZE (0..1023)) OF INTEGER (1..2)

D.2.9.2 Both "list1" and "list2" have the same number of elements, and the ECN specifier wishes to use a single

length determinant for both lists. (PER would encode length fields for both components.)

D.2.9.3 The encoding object assignments are:

equalLengthListsEncoding #EqualLengthLists ::= {

USE #EqualLengthListsStruct

MAPPING FIELDS

WITH {

 ENCODE STRUCTURE {

 list1 list1Encoding{< aux-length >},

 list2 list2Encoding{< aux-length >}}

WITH PER-BASIC-UNALIGNED}}

The first encoding object is defined with two parameterized encoding objects of classes #List1 and #List2

respectively using the length field as an actual parameter. Those two encoding objects use a common parameterized

encoding object of class #REPETITION.

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

14 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

list1Encoding {< REFERENCE : length >} #List1 ::= {

ENCODE STRUCTURE { USE-SET

 STRUCTURED WITH list-with-determinantEncoding {< length >}}

WITH PER-BASIC-UNALIGNED}
list2Encoding {< REFERENCE : length >} #List2 ::= {

ENCODE STRUCTURE { USE-SET

 STRUCTURED WITH list-with-determinantEncoding {< length >}}

WITH PER-BASIC-UNALIGNED}
list-with-determinantEncoding {< REFERENCE : length-determinant >} #REPETITION ::= {

REPETITION-ENCODING {

 REPETITION-SPACE

 SIZE variable-with-determinant

 MULTIPLE OF repetitions

 DETERMINED BY field-to-be-set

 USING length-determinant}}

D.2.9.4 The encoding structure assignments are:

#EqualLengthListsStruct ::= #CONCATENATION {

aux-length #AuxListLength,

list1 #List1,

list2 #List2}
#AuxListLength ::= #INT (0..1023)

D.2.10 Uneven choice alternative probabilities

D.2.10.1 The ASN.1 assignment is:

EnclosingStructureForChoice ::= SEQUENCE {

choice UnevenChoiceProbability }
UnevenChoiceProbability ::= CHOICE {

frequent1 INTEGER (1..2),

frequent2 BOOLEAN,

common1 INTEGER (1..2),

common2 BOOLEAN,

common3 BOOLEAN,

rare1 BOOLEAN,

rare2 INTEGER (1..2),

rare3 INTEGER (1..2)}

D.2.10.2 The alternatives of the choice type have different selection probabilities. There are alternatives which appear

very frequently ("frequent1" and "frequent2"), or are fairly common ("common1", "common2" and "common3"), or

appear only rarely ("rare1", "rare2" and "rare3"). The encoding for the alternative determinant should be such that

those alternatives that appear frequently have shorter determinant fields than those appearing rarely.

D.2.10.3 The encoding structure assignments are:

#EnclosingStructureForChoiceStruct ::= #CONCATENATION {

aux-selector #AuxSelector,

choice #UnevenChoiceProbability }

-- Explicit auxiliary alternative determinant for "choice".
#AuxSelector ::= #INT (0..7)

D.2.10.4 The encoding object assignments are:

enclosingStructureForChoiceEncoding #EnclosingStructureForChoice ::= {

USE #EnclosingStructureForChoiceStruct

MAPPING FIELDS

WITH {

 ENCODE STRUCTURE {

 aux-selector auxSelectorEncoding,

 choice {

 ENCODE STRUCTURE {

 STRUCTURED WITH {

 ALTERNATIVE

 DETERMINED BY field-to-be-set

 USING aux-selector}}

 WITH PER-BASIC-UNALIGNED }}

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 15

WITH PER-BASIC-UNALIGNED} }

-- First mapping: inserts an explicit auxiliary alternative

-- determinant.

-- This encoding object specifies that an auxiliary determinant is used

-- as an alternative determinant.
auxSelectorEncoding #AuxSelector ::= {

USE #BITS

-- ECN Huffman

-- RANGE (0..7)

-- (0..1) IS 60%

-- (2..4) IS 30%

-- (5..7) IS 10%

-- End Definition

-- Mappings produced by "ECN Public Domain Software for Huffman encodings,

-- version 1"

-- (see E.8)

MAPPING TO BITS {

0 .. 1 TO '10'B .. '11'B,

2 .. 4 TO '001'B .. '011'B,

5 TO '0001'B,

6 .. 7 TO '00000'B .. '00001'B}

WITH bitStringEncoding }

-- Second mapping: Map determinant indexes to bitstrings

bitStringEncoding #BITS ::= {

REPETITION-ENCODING {

 REPETITION-SPACE }}

D.2.10.5 In the above, we quantified "frequent", "common", and "rare" as 60%, 30%, and 10%, respectively, and used

the public domain ECN Huffman generator (see E.8) to determine the optimal bit-patterns to be used for each range of

integer.

D.2.10.6 The above is in a mathematical sense optimal, but how much difference it makes as a percentage of total

traffic depends on what the other parts of the protocol consist of. Whilst it costs nothing in implementation effort to

produce and use optimal encodings (because tools can be used), the ultimate gains may not be significant.

D.2.11 A version 1 message

D.2.11.1 ASN.1 assignment:

Version1Message ::= SEQUENCE {

ie-1 BOOLEAN,

ie-2 INTEGER (0..20)}

We want to use PER basic unaligned, but intend to add further fields in version 2, and wish to specify that version 1

systems should accept and ignore any additional material in the PDU.

D.2.11.2 We use two encoding structures to encode the message: one is the implicitly generated encoding structure

containing only the version 1 fields, and the second is a structure that we define containing the version 1 fields plus a

variable-length padding field that extends to the end of the PDU. The version 1 system uses the first structure for

encoding, and the second for decoding. Apart from this approach to extensibility, all encodings are PER basic

unaligned. The version 1 decoding structure is:

#Version1DecodingStructure ::= #CONCATENATION {

ie-1 #BOOL,

ie-2 #INT (0..20),

future-additions #PAD}

D.2.11.3 The encoding object assignments are:

version1MessageEncoding #Version1Message ::= {

ENCODE-DECODE

 {ENCODE WITH PER-BASIC-UNALIGNED }

DECODE AS IF decodingSpecification}
decodingSpecification #Version1Message ::= {

USE #Version1DecodingStructure

MAPPING FIELDS

WITH {

 ENCODE STRUCTURE {

 future-additions additionsEncoding{< OUTER >} }

 WITH PER-BASIC-UNALIGNED}}

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

16 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

additionsEncoding {< REFERENCE:determinant >} #PAD ::= {

ENCODING-SPACE

 SIZE encoder-option-with-determinant

 DETERMINED BY container

 USING determinant}

D.2.12 The encoding object set

This encoding object set contains encoding definitions for some of the types specified in the ASN.1 module named

"Example2-ASN1-Module" (the rest is encoded using PER basic unaligned).

Example2Encodings #ENCODINGS ::= {

normallySmallValuesEncoding-1 |

sparseEvenlyDistributedValueSetEncoding |

sparseUnevenlyDistributedValueSetEncoding |

conditionalPresenceOnValueEncoding |

conditionalPresenceOnExternalConditionEncoding |

enclosingStructureForListEncoding |

equalLengthListsEncoding |

enclosingStructureForChoiceEncoding |

version1MessageEncoding }

D.2.13 ASN.1 definitions

This module groups together all the ASN.1 definitions from D.2.1 to D.2.11 that will be encoded according to the

encoding objects defined in the EDM, and also lists the other ASN.1 definitions that will be encoded with the PER basic

unaligned encoding rules.

Example2-ASN1-Module {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module2(5)}

DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

ExampleMessages ::= CHOICE {

normallySmallValues NormallySmallValues,

sparseEvenlyDistributedValueSet SparseEvenlyDistributedValueSet

-- etc.

}
NormallySmallValues ::= INTEGER (0..1000)

SparseEvenlyDistributedValueSet ::= INTEGER (2 | 4 | 6 | 8 | 10 | 12 | 14 | 16)

-- etc.

END

D.2.14 EDM definitions

Example2-EDM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module2(6)}

ENCODING-DEFINITIONS ::=

BEGIN

EXPORTS Example2Encodings;

IMPORTS #NormallySmallValues, #SparseEvenlyDistributedValueSet,

#SparseUnevenlyDistributedValueSet, #ConditionalPresenceOnValue,

#ConditionalPresenceOnExternalCondition,

#EnclosingStructureForList, #EqualLengthLists, #EnclosingStructureForChoice,

#Version1Message, #List1, #List2, #VariableLength,#UnevenChoiceProbability

FROM Example2-ASN1-Module

{joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module2(5)};
Example2Encodings #ENCODINGS ::= {

normallySmallValuesEncoding-1 |

-- etc.

version1MessageEncoding}
-- etc.

END

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 17

D.2.15 ELM definitions

The following ELM is associated with the ASN.1 module defined in D.2.13, and the EDM defined in D.2.14.

Example2-ELM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) elm-module2(4)}

LINK-DEFINITIONS ::=

BEGIN

IMPORTS

Example2Encodings FROM Example2-EDM

 {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module2(6)}

#ExampleMessages FROM Example2-ASN1-Module

 {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module2(5)};
ENCODE #ExampleMessages WITH Example2Encodings

COMPLETED BY PER-BASIC-UNALIGNED

END

D.3 Explicitly generated structure examples

The examples described in D.3.1 to D.3.4 show the use of explicitly generated structures to replace an encoding class in

an implicitly generated encoding structure with a synonymous class. We then produce specialized encodings by

including in the encoding object set an object of the synonymous class.

The examples are presented using the following format:

– The "ASN.1 type assignment". This gives the original ASN.1 type definition.

– The requirement. This lists the required changes from the encodings provided by PER basic unaligned.

– Modification of the implicitly generated encoding structure to produce a new encoding structure.

– The encoding class and encoding object assignments.

D.3.1 Sequence with optional components defined by a pointer

D.3.1.1 The ASN.1 assignment is:

Sequence1 ::= SEQUENCE {

component1 INTEGER OPTIONAL,

component2 INTEGER OPTIONAL,

component3 VisibleString }

D.3.1.2 Instead of using the PER bit-map for the two components of type integer marked OPTIONAL, the presence and

the position of those components are determined by pointers at the beginning of the encoding of the sequence. Each

pointer contains 0 (component absent) or a relative offset to the encoding of the component which begins on an octet

boundary.

D.3.1.3 The encoding class #INTEGER is replaced with "#Integer-with-pointer-concat" in the encoding object

of "sequence1-encoding". The class "#Integer-with-pointer-concat" is defined as a concatenation structure

containing one element which is the replaced element combined with a class in the optionality category

"#Integer-optionality".

D.3.1.4 Then two encoding objects are defined. The first, "integer-with-pointer-concat-encoding" of class

#Integer-with-pointer-concat receives three parameters: the replaced element, the pointer and the current

combined encoding object set (see 22.1.3.7). The second, "integer-optionality-encoding" of class "#Integer-

optionality" receives one parameter, the pointer, which is used to determine the presence of the component. Since

PER-BASIC-UNALIGNED does not contain an encoding object of class #CONCATENATION with optional components, a

third encoding object of class #CONCATENATION needs to be defined. This object "concat" uses default settings.

D.3.1.5 The encoding class and encoding object assignments are:

sequence1-encoding #SEQUENCE ::= {

REPLACE OPTIONALS

WITH #Integer-with-pointer-concat

 ENCODED BY integer-with-pointer-concat-encoding

 INSERT AT HEAD #Pointer

ENCODING-SPACE

SIZE variable-with-determinant

DETERMINED BY container

USING OUTER }
#Pointer ::= #INTEGER

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

18 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

#Integer-with-pointer-concat {< #Element >} ::= #CONCATENATION {

element #Element OPTIONAL-ENCODING #Integer-optionality }
#Integer-optionality ::= #OPTIONAL

integer-optionality-encoding{< REFERENCE: start-pointer >}

#Integer-optionality ::= {

ALIGNED TO ANY octet

START-POINTER start-pointer

PRESENCE DETERMINED BY pointer}
integer-with-pointer-concat-encoding

{< #Element, REFERENCE:pointer, #ENCODINGS:EncodingObjectSet >}

#Integer-with-pointer-concat{< #Element >} ::= {

ENCODE STRUCTURE {

 element USE-SET OPTIONAL-ENCODING

 integer-optionality-encoding{< pointer >}

 STRUCTURED WITH concat}

WITH EncodingObjectSet}
concat #CONCATENATION ::= {

ENCODING-SPACE }

D.3.2 Addition of a boolean type as a presence determinant

D.3.2.1 The ASN.1 assignment is:

Sequence2 ::= SEQUENCE {

component1 BOOLEAN OPTIONAL,

component2 INTEGER,

component3 VisibleString OPTIONAL }

D.3.2.2 Instead of using the PER bit-map for components marked "OPTIONAL", the presence of an optional

component is related to the value of a unique presence bit which is equal to 1 (component absent), or 0 (component

present). In that case, the presence bit is inverted.

D.3.2.3 The encoding structures and encoding objects are defined as follows:

The encoding class #OPTIONAL is renamed as #Sequence2-optional in the "RENAMES" clause (see D.3.7). Therefore

the "#Sequence2" class is implicitly replaced with:

#Sequence2 ::= #SEQUENCE {

component1 #BOOL OPTIONAL-ENCODING #Sequence2-optional,

component2 #INTEGER,

component3 #VisibleString OPTIONAL-ENCODING #Sequence2-optional}

where:

#Sequence2-optional ::= #OPTIONAL

Then an encoding object of class "#Sequence2-optional" is defined; that object, using the replacement group,

replaces the component encoding definition (see 23.11.3.2) with the class "Optional-with-determinant".

sequence2-optional-encoding #Sequence2-optional ::= {

REPLACE STRUCTURE

WITH #Optional-with-determinant

ENCODED BY optional-with-determinant-encoding}

That class, which is parameterized by the original component, belongs to the concatenation category and has two

components: the determinant (boolean) and the original component.

#Optional-with-determinant{< #Element >} ::= #CONCATENATION {

determinant #BOOLEAN,

component #Element OPTIONAL-ENCODING #Presence-determinant}

where:

#Presence-determinant ::= #OPTIONAL

Then an encoding object of class "#Optional-with-determinant" is defined; that object has two dummy

parameters: the class of the component and an encoding object set used to encode everything except determinant and

component optionality:

optional-with-determinant-encoding

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 19

{< #Element, #ENCODINGS: Sequence2-combined-encoding-object-set >}

 #Optional-with-determinant {< #Element >} ::= {

 ENCODE STRUCTURE {

 determinant determinant-encoding,

 component USE-SET

OPTIONAL-ENCODING if-component-present-encoding{< determinant >} }

WITH Sequence2-combined-encoding-object-set }

The encoding is completely specified by the definition of encoding objects "if-component-present-encoding" and

"determinant-encoding":

if-component-present-encoding {<REFERENCE:presence-bit>} #Presence-determinant ::= {

PRESENCE

 DETERMINED BY field-to-be-set

 USING presence-bit}
determinant-encoding #BOOLEAN ::= {

ENCODING-SPACE

 SIZE 1

 MULTIPLE OF bit

TRUE-PATTERN bits:'0'B

FALSE-PATTERN bits:'1'B}

D.3.3 Sequence with optional components identified by a unique tag and delimited by a length field

D.3.3.1 The ASN.1 assignments are:

Octet3 ::= OCTET STRING (CONTAINING Sequence3)

Sequence3 ::=SEQUENCE {

component1 [0] BIT STRING (SIZE(0..2047)) OPTIONAL,

component2 [1] OCTET STRING (SIZE(0..2047)) OPTIONAL,

component3 [2] VisibleString (SIZE(0..2047)) OPTIONAL }

D.3.3.2 Each component is identified by a tag on four bits and the total length of the sequence is specified with a field

of eleven bits which precedes the encoding of the first component.

D.3.3.3 The encoding classes #OCTETS, #OPTIONAL and #TAG are renamed respectively as #Octets3,

#Sequence3-optional and #TAG-4-bits in the "RENAMES" clause (see D.3.7). Then encoding objects of the new

encoding classes are defined.

D.3.3.4 The encoding class and encoding object assignments for the octet string are:

#Octets3 ::= #OCTET-STRING

octets3-encoding #Octets3 ::= {

REPETITION-ENCODING {

 REPLACE STRUCTURE

 WITH #Octets-with-length

 ENCODED BY octets-with-length-encoding}}
#Octets-with-length{< #Element >} ::= #CONCATENATION {

length #INT(0..2047),

octets #Element}
octets-with-length-encoding{< #Element >} #Octets-with-length{< #Element >} ::= {

ENCODE STRUCTURE {

 octets octets-encoding{< length >}}

WITH PER-BASIC-UNALIGNED}
octets-encoding{< REFERENCE:length >} #OCTETS ::= {

REPETITION-ENCODING {

 REPETITION-SPACE

 SIZE variable-with-determinant

 MULTIPLE OF octet

 DETERMINED BY field-to-be-set

 USING length} }

D.3.3.5 The encoding class and encoding object assignments for the sequence are:
sequence3-encoding #Sequence3 ::= {

ENCODE STRUCTURE {

 STRUCTURED WITH sequence3Structure-encoding }

WITH Sequence3-encodings

 COMPLETED BY PER-BASIC-UNALIGNED }
Sequence3-encodings #ENCODINGS ::= {

sequence3-optional-encoding |

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

20 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

tag-4-bits-encoding }
#Sequence3-optional ::= #OPTIONAL

sequence3-optional-encoding #Sequence3-optional ::= {

PRESENCE

 DETERMINED BY container

 USING OUTER}
#TAG-4-bits ::= #TAG

tag-4-bits-encoding #TAG-4-bits ::= {

ENCODING-SPACE

 SIZE 4}

The following encoding object of class #OUTER specifies that the decoder shall ignore the bits following the encoding

of the sequence which were added by the encoder to produce a multiple of octets.

outer-encoding #OUTER ::= {

ADDED BITS DECODING silently-ignore }

D.3.4 Sequence-of type with a count

D.3.4.1 The ASN.1 assignment is:

SequenceOfIntegers ::= SEQUENCE(SIZE(0..63)) OF INTEGER(0..1023)

D.3.4.2 The number of elements is encoded in a six-bit field preceding the encoding of the first element.

D.3.4.3 The encoding class #SEQUENCE-OF is renamed as #SequenceOf in the "RENAMES" clause (see D.3.7). An

encoding object of the new encoding class is defined. The encoding class and encoding object assignments are:

#SequenceOf ::= #REPETITION

sequenceOf-encoding #SequenceOf ::= {

REPETITION-ENCODING {

 REPLACE STRUCTURE

 WITH #SequenceOf-with-count

 ENCODED BY sequenceOf-with-count-encoding}}
#SequenceOf-with-count{< #Element >} ::= #CONCATENATION {

count #INT(0..63),

elements #Element }
sequenceOf-with-count-encoding{< #Element >}

#SequenceOf-with-count{< #Element >} ::= {

ENCODE STRUCTURE {

 elements {

 ENCODE STRUCTURE {

 STRUCTURED WITH elements-encoding{< count >}}

 WITH PER-BASIC-UNALIGNED}}

WITH PER-BASIC-UNALIGNED}
elements-encoding{< REFERENCE:count >} #REPETITION ::= {

REPETITION-ENCODING {

 REPETITION-SPACE

 SIZE variable-with-determinant

MULTIPLE OF repetitions

 DETERMINED BY field-to-be-set

 USING count}}

D.3.4.4 The count field is encoded using the PER encoding rules for an integer type with the value range constraint

(0..63), which gives a six-bit field.

D.3.5 Encoding object sets

The encoding object sets contain encoding objects of classes defined in the EDM module. (Only the first one contains

the encoding object of class #SEQUENCE.)
Example3Encodings-1 #ENCODINGS ::= {

 sequence1-encoding }

Example3Encodings-2 #ENCODINGS ::= {

 concat |

 sequence2-optional-encoding |

 octets3-encoding |

 sequenceOf-encoding |

 sequence3-encoding |

 outer-encoding }

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 21

D.3.6 ASN.1 definitions

This module groups together the ASN.1 definitions from D.3.1 to D.3.4 that will be encoded according to the encoding

objects defined in the EDM of D.3.7.

Example3-ASN1-Module {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module3(9)}

DEFINITIONS

AUTOMATIC TAGS ::=

BEGIN
Sequence1 ::= SEQUENCE {

component1 BOOLEAN OPTIONAL,

component2 INTEGER OPTIONAL,

component3 VisibleString OPTIONAL }

 -- etc.

END

D.3.7 EDM definitions

Example3-EDM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module3(10)}

ENCODING-DEFINITIONS ::=

BEGIN

EXPORTS Example3Encodings-1, Example3Encodings-2;

RENAMES

 #OPTIONAL AS #Sequence2-optional

 IN #Sequence2

 #OCTET-STRING AS #Octets3

 IN ALL

 #OPTIONAL AS #Sequence3-optional

 IN #Sequence3

 #TAG AS #TAG-4-bits

 IN #Sequence3

 FROM Example3-ASN1-Module

 { joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module3(9)};

Example3Encodings-1 #ENCODINGS ::= {

sequence1-encoding }
Example3Encodings-2 #ENCODINGS ::= {

concat |

-- etc.

sequenceOf-encoding }

 -- etc.
END

D.3.8 ELM definitions

The following ELM is associated with the ASN.1 module defined in D.3.6 and the EDM defined in D.3.7.

Example3-ELM {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) elm-module3(8)}

LINK-DEFINITIONS ::=

BEGIN

IMPORTS Example3Encodings-1, Example3Encodings-2, #Sequence1, #Sequence2,

#Octet3, #Sequence3, #SequenceOfIntegers

FROM Example3-EDM

 { joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module3(10) };

ENCODE #Sequence1

WITH Example3Encodings-1

COMPLETED BY PER-BASIC-UNALIGNED

ENCODE #Sequence2, #Octet3, #Sequence3, #SequenceOfIntegers

WITH Example3Encodings-2

COMPLETED BY PER-BASIC-UNALIGNED
END

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

22 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

D.4 A more-bit encoding example

D.4.1 Description of the problem

D.4.1.1 This example is taken from ITU-T Rec. Q.763 (Signalling System No. 7 – ISDN User Part formats and

codes).

D.4.1.2 There is a requirement to produce the following encoding as a series of octets:

8 7 6 5 4 3 2 1
extension

indicator

spare protocol profile

D.4.1.3 Bit 8 is an "extension indicator". If it is 0, there is a following octet in the same format. If it is 1, this is the last

octet of the series.

NOTE – The PER encoding of boolean is 1 for TRUE and 0 for FALSE, and ECN requires that the last element returns FALSE,
earlier elements TRUE. Thus if we use a PER-encoded boolean for the more-bit, we need to apply the "not" transform.

D.4.1.4 This is the traditional use of a "more bit", although with the perhaps unusual zero for "more" and one for

"last".

D.4.1.5 The example would be simplified if the use of the "extension indicator" had zero and one interchanged, and if

there were no "spare" bits, but use of the real example was preferred here.

D.4.1.6 There are four approaches to solving this problem.

D.4.1.7 The first approach is to include a component in the ASN.1 specification to provide the more-bit determinant

(see D.4.2). This approach is deprecated for two reasons. The first is that the ASN.1 type definition contains a

component which does not carry application semantics. The second is that it requires the application to (redundantly)

set this field correctly in each element of the more-bit repetition.

D.4.1.8 The second approach is to use value mappings from an implicitly generated structure to a user-defined

encoding structure which includes the more-bit determinant (see D.4.3).

D.4.1.9 The third approach is to use the replacement mechanism to include the more-bit determinant (see D.4.4).

D.4.1.10 The fourth approach is to use head-end insertion of the more-bit determinant. (This is not illustrated here.)

D.4.1.11 All of the last three approaches have their own advantages, and choosing between them is largely a matter of

style.

D.4.2 Use of ASN.1 to provide the more-bit determinant

D.4.2.1 In this approach, the ASN.1 reflects all fields in the encoding. This is generally considered "dirty", as fields

which should be visible only in the encoding are visible to the application, reducing the "information hiding" that is the

strength of ASN.1. In this case the ASN.1 is:

ProfileIndication ::= SEQUENCE OF

SEQUENCE {

more-bit BOOLEAN,

reserved BIT STRING (SIZE (2)),

protocol-Profile-ID INTEGER (0..31) }

D.4.2.2 The implicitly generated encoding structure is:

#ProfileIndication ::= #SEQUENCE-OF {

#SEQUENCE {

 more-bit #BOOLEAN,

 reserved #BIT-STRING (SIZE (2)),

 protocol-Profile-ID #INTEGER (0..31) } }

D.4.2.3 First, we produce a generic encoding object for #SEQUENCE-OF that uses a more-bit in a field identified as a

parameter of the encoding object, and with BOOLEAN TRUE (encoded as a single "1" bit by PER) for the last element:

more-bit-encoding {< REFERENCE:more-bit >} #SEQUENCE-OF ::= {

REPETITION-ENCODING {

 REPETITION-SPACE

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 23

 SIZE variable-with-determinant

 DETERMINED BY flag-to-be-set

 USING more-bit

 ENCODER-TRANSFORMS { { BOOL-TO-BOOL AS logical:not } } } }

D.4.2.4 This encoding object is also used in D.4.3 and D.4.4, as it provides the fundamental description of the

encoding needed for the repetition.

D.4.2.5 With the first (simple but dirty!) approach, we can now define our encoding object for

#ProfileIndication by using ENCODE STRUCTURE, and apply that encoding object in the ELM, completing the

example. The encoding object is defined as:

profileIndicationEncoding #ProfileIndication ::= {

ENCODE STRUCTURE {

 STRUCTURED WITH more-bit-encoding {< more-bit >} }

WITH PER-BASIC-UNALIGNED }

D.4.3 Use of value mappings to provide the more-bit determinant

D.4.3.1 In this approach, we hide the encoding structure in an ECN definition of a user-defined encoding structure,

and use value mapping by matching fields to enable an encoding of the user-defined encoding structure to encode a

simplified ASN.1 type definition.

D.4.3.2 The ASN.1 type definition is now:

ProfileIndication2 ::= SEQUENCE OF

protocol-Profile-ID INTEGER (0..31)

D.4.3.3 This has an implicitly-generated encoding structure (to which we apply our encodings in the ELM) of:

#ProfileIndication2 ::= #SEQUENCE-OF {

protocol-Profile-ID #INTEGER (0..31) }

D.4.3.4 We define an encoding structure for the encoding we require, similar to the ASN.1 we wrote in the first

approach (see D.4.2.1), except that we use #PAD for the reserved bits:

#ProfileIndicationStruct ::= #SEQUENCE-OF {

#SEQUENCE {

more-bit-field #BOOLEAN,

reserved #PAD,

protocol-Profile-ID #INTEGER (0..31) } }

D.4.3.5 We now need an encoding object for the two-bit #PAD, before we can complete the encoding:

pad-encoding #PAD ::= {

ENCODING-SPACE SIZE 2

PAD-PATTERN bits:'00'B }

NOTE – Subclause 23.12.4.2 specifies that decoders should accept any value for #PAD bits, which is what we require here, so we
do not need a differential encode/decode.

D.4.3.6 We define an encoding object for our structure, much as in the first approach (see D.4.2.5):

profileIndicationStructEncoding #ProfileIndicationStruct ::= {

ENCODE STRUCTURE {

 STRUCTURED WITH more-bit-encoding {< more-bit-field >} }

WITH {pad-encoding} COMPLETED BY PER-BASIC-UNALIGNED }

D.4.3.7 Finally, we use value mapping from the implicitly generated structure to our explicitly generated structure to

define our final encoding:

profileIndication2Encoding #ProfileIndication2 ::= {

USE #ProfileIndicationStruct

MAPPING FIELDS WITH profileIndicationStructEncoding }

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

24 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

D.4.4 Use of the replacement mechanism to provide the more-bit determinant

D.4.4.1 In our final approach, we define a generic sequence-of encoding that can apply to any sequence of. For this

we need a parameterised encoding structure:
#SequenceOfStruct {< #Component >} ::=

#SEQUENCE {

 more-bit-field #BOOLEAN,

 reserved #PAD,

 sequence-of-component #Component }

D.4.4.2 We define our sequence-of encoding to perform a replacement of the component with this structure,

specifying more-bit-encoding and using the defined pad-encoding:

sequence-of-encoding #SEQUENCE-OF ::= {

REPETITION-ENCODING {

 REPLACE COMPONENT WITH #SequenceOfStruct

 REPETITION-SPACE

 SIZE variable-with-determinant

 DETERMINED BY flag-to-be-set

 USING more-bit-field

 ENCODER-TRANSFORMS { { BOOL-TO-BOOL AS logical:not } } } }

D.4.4.3 When this is applied in the ELM, "COMPLETED BY PER-BASIC-UNALIGNED" is used as the combined

encoding object set to complete the encoding, giving the desired effect.

D.5 Legacy protocol specified with tabular notation

D.5.1 Introduction

D.5.1.1 The purpose of the example in this clause is to show how to construct ECN definitions for a protocol whose

message encodings have been specified using "bits and bytes" pictures and tabular notation. The following tables

contain the contents of the messages (only "Message1" has been shown completely):

Message 1:

 8 7 6 5 4 3 2 1

Octet 1 Message id

Octet 2 A b-flag c-len reserved

Octet 3 b1 b2 reserved b3 reserved

…

Octet Y c1 c2

Octet Y+1 c3 reserved

…

Octet Z d1 d2 d3 reserved

Message 2:

 8 7 6 5 4 3 2 1

Octet 1 Message id

Octet 2… Something – 1

Message 3:

 8 7 6 5 4 3 2 1

Octet 1 Message id

Octet 2… Something – 2

D.5.1.2 All the messages have a common heading part (shown in gray in the tables). In this example it is used only for

message identification.

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 25

D.5.1.3 Message 1 has three kinds of fields:

– mandatory fields ("a");

– mandatory fields that are determinants for other fields ("b-flag", "c-len");

– optional fields ("b", "c", and "d").

D.5.1.4 The fields "b", "c" and "d" are all required to start on an octet boundary.

D.5.1.5 The fields "b", "c" and "d" are composed of sub-fields ("b1", "b2", "b3", "c1", etc.) of fixed length. In addition

fields "c" and "d" may appear multiple times (but only one occurrence is shown above). The field "b2" is required to

start on a nibble boundary.

D.5.1.6 Presence of an optional component is indicated using different methods:

– The field "b" is present if the value of the "b-flag" field is 1.

– The field "d" is present if there are octets left in the message.

D.5.1.7 The length of a field that can appear multiple times is determined using different methods:

– The number of repetitions of the field "c" is governed by the determinant field "c-len".

– The number of repetitions of the field "d" is determined by the end of message.

D.5.1.8 The following ASN.1 module contains definitions for the message structures presented above. The following

design decisions have been made:

– There is one encapsulating type which contains the common definitions for all the messages.

– Auxiliary determinant fields in messages are visible at the ASN.1 level. Note, this is done for simplicity

of exposition in this example, but it should be normal practice to keep such fields out of the ASN.1

definition unless they carry real application semantics.

– Extensibility is expressed in the form of comments.

– Padding is not visible.

D.5.1.9 The ASN.1 module is:

LegacyProtocol-ASN1-Module {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-

module4(11)}

DEFINITIONS AUTOMATIC TAGS ::=

BEGIN

LegacyProtocolMessages ::= SEQUENCE {

message-id ENUMERATED {message1, message2, message3},

messages CHOICE {

 message1 Message1,

 message2 Message2,

 message3 Message3}}
-- The CHOICE is constrained by the value of message-id.

Message1 ::= SEQUENCE {

a A,

b-flag BOOLEAN,

c-len INTEGER (0..max-c-len),

b B OPTIONAL, -- determined by "b-flag"

c C, -- determined by "c-len"

d D OPTIONAL} -- determined by end of PDU
A ::= INTEGER (0..7)

-- Values 5..7 are reserved for future use.

-- Version 1 systems should treat 5 to 7 as 4.
B ::= SEQUENCE {

b1 ENUMERATED { e0, e1, e2, e3 },

b2 BOOLEAN,

b3 INTEGER (0..3) }
C ::= SEQUENCE (SIZE (0..max-c-len)) OF C-elem

C-elem ::= SEQUENCE {

c1 BIT STRING (SIZE (4)),

c2 INTEGER (0..1024) }
D ::= SEQUENCE (SIZE (0..max-d-len)) OF D-elem

D-elem ::= SEQUENCE {

d1 BOOLEAN,

d2 ENUMERATED { f0, f1, f2, f3, f4, f5, f6, f7 },

d3 INTEGER (0..7) }
max-c-len INTEGER ::= 7

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

26 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

max-d-len INTEGER ::= 20

Message2 ::= SEQUENCE {

-- something 1 -- }
Message3 ::= SEQUENCE {

-- something 2 -- }
END

D.5.1.10 The EDM module in D.5.7 contains encoding definitions for the messages specified in the

"LegacyProtocol-ASN1-Module" ASN.1 module. The following design decisions have been made:

– Padding within octets is explicitly specified as padding fields.

– Alignment padding is not specified as explicit padding fields.

D.5.2 Encoding definition for the top-level message structure

D.5.2.1 The encoding object "legacyProtocolMessagesEncoding" specifies how the common parts of the legacy

protocol messages are encoded. The message identifier is specified in ASN.1 as an enumerated type. PER basic

unaligned encodes "message-id" using the minimum number of bits (i.e., 2) but here we would like to have it encoded

using 8 bits. In addition, we have to specify that "message-id" is to be used as a determinant for "messages".

D.5.2.2 The encoding object "legacyProtocolMessagesEncoding" is:

legacyProtocolMessagesEncoding #LegacyProtocolMessages ::= {

ENCODE STRUCTURE {

 message-id {

 ENCODING {

 ENCODING-SPACE

 SIZE 8}},

 messages {

 ENCODE STRUCTURE {

 STRUCTURED WITH {

 ALTERNATIVE

 DETERMINED BY field-to-be-used

 USING message-id}}

 WITH PER-BASIC-UNALIGNED}}

WITH PER-BASIC-UNALIGNED}

D.5.3 Encoding definition for a message structure

D.5.3.1 The encoding object "message1Encoding" specifies how values of "Message1" are to be encoded:

– The field "b" is present if the field "b-flag" contains value TRUE.

– The field "c" is present if the field "c-len" does not contain value 0. "c-len" also governs the number

of elements in "c".

– The field "d" is present if there are still octets in an encoding for the message.

D.5.3.2 The encoding object for "Message1" is:

message1Encoding #Message1 ::= {

ENCODE STRUCTURE {

 b b-encoding

 OPTIONAL-ENCODING {

 PRESENCE

 DETERMINED BY field-to-be-used

 USING b-flag},

 c octet-aligned-seq-of-with-ext-determinant{< c-len >},

 d octet-aligned-seq-of-until-end-of-container

 OPTIONAL-ENCODING USE-SET}

WITH PER-BASIC-UNALIGNED}

D.5.4 Encoding for the sequence type "B"

D.5.4.1 Padding of one bit is inserted between the fields "b2" and "b3" ("aux-reserved"). The encoding of "B" is

octet-aligned.

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011) 27

D.5.4.2 The encoding for "B" is:

b-encoding #B ::= {

ENCODE STRUCTURE {

 -- Components

 b3 {

 ENCODING {

 ALIGNED TO NEXT nibble

 ENCODING-SPACE

 SIZE 2

 MULTIPLE OF bit }}

 -- Structure

 STRUCTURED WITH {

 ALIGNED TO NEXT octet

 ENCODING-SPACE

 SIZE self-delimiting-values

 MULTIPLE OF bit }}

-- The rest

WITH PER-BASIC-UNALIGNED}

D.5.5 Encoding for an octet-aligned sequence-of type with a length determinant

D.5.5.1 One of the sequence-of types used in the legacy protocol has an explicit length determinant.

D.5.5.2 The encoding is octet-aligned. The number of elements count is determined by the field "len".

octet-aligned-seq-of-with-ext-determinant{< REFERENCE : len >} #REPETITION ::= {
REPETITION-ENCODING {

 ALIGNED TO NEXT octet

 REPETITION-SPACE

 SIZE variable-with-determinant

 MULTIPLE OF repetitions

 DETERMINED BY field-to-be-used

 USING len}}

D.5.6 Encoding for an octet-aligned sequence-of type which continues to the end of the PDU

D.5.6.1 The encoding is octet-aligned. The number of elements is determined by the end of the PDU.

D.5.6.2 The encoding object is:

octet-aligned-seq-of-until-end-of-container #REPETITION ::= {

REPETITION-ENCODING {

 ALIGNED TO NEXT octet

 REPETITION-SPACE

 SIZE variable-with-determinant

 DETERMINED BY container

 USING OUTER}}

D.5.7 EDM definitions

The EDM definitions are:

LegacyProtocol-EDM-Module {joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module4(13)}

ENCODING-DEFINITIONS ::=

BEGIN

EXPORTS LegacyProtocolEncodings;

IMPORTS #B, #LegacyProtocolMessages, #Message1

FROM LegacyProtocol-ASN1-Module

{ joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module4(11) };
LegacyProtocolEncodings #ENCODINGS ::= {

legacyProtocolMessagesEncoding |

message1Encoding }

-- etc.
END

ISO/IEC 8825-3:2008/Cor.1:2012 (E)

28 Rec. ITU-T X.692 (2008)/Cor.1 (10/2011)

D.5.8 ELM definitions

The ELM for the legacy protocol is:

LegacyProtocol-ELM-Module { joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) elm-module4(12)

}

LINK-DEFINITIONS ::=

BEGIN

IMPORTS

LegacyProtocolEncodings FROM LegacyProtocol-EDM-Module

 { joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) edm-module4(13) }

#LegacyProtocolMessages FROM LegacyProtocol-ASN1-Module

 { joint-iso-itu-t(2) asn1(1) ecn(4) examples(5) asn1-module4(11) };
ENCODE #LegacyProtocolMessages WITH LegacyProtocolEncodings

COMPLETED BY PER-BASIC-UNALIGNED
END

Printed in Switzerland
Geneva, 2011

SERIES OF ITU-T RECOMMENDATIONS

Series A Organization of the work of ITU-T

Series D General tariff principles

Series E Overall network operation, telephone service, service operation and human factors

Series F Non-telephone telecommunication services

Series G Transmission systems and media, digital systems and networks

Series H Audiovisual and multimedia systems

Series I Integrated services digital network

Series J Cable networks and transmission of television, sound programme and other multimedia signals

Series K Protection against interference

Series L Construction, installation and protection of cables and other elements of outside plant

Series M Telecommunication management, including TMN and network maintenance

Series N Maintenance: international sound programme and television transmission circuits

Series O Specifications of measuring equipment

Series P Terminals and subjective and objective assessment methods

Series Q Switching and signalling

Series R Telegraph transmission

Series S Telegraph services terminal equipment

Series T Terminals for telematic services

Series U Telegraph switching

Series V Data communication over the telephone network

Series X Data networks, open system communications and security

Series Y Global information infrastructure, Internet protocol aspects and next-generation networks

Series Z Languages and general software aspects for telecommunication systems

