Towards a Trust Infrastructure with the Bright Internet

WSIS Forum
May 28, 2015

Jae Kyu Lee
President (2015-6),
Association for Information Systems
Chair Professor at KAIST, Seoul
Side Effects of ICT

• ICT has changed our life in good ways
• But seriously venerable to Cybercrimes, Terrors, and Privacy Infringement

Cybercrimes
- 378m Users (41%) per year
- 38% of mobile users
- US$ 400 billion - Verizon 2015
- 56 Billion Spam Mails per day (68%)
- 90% from Zombie (Kohavi, 2014)
- 71% of Web sites exist less than 24 hours

Terrors
- DDoS Attack: 60% of US Companies (Neustar, 2014)
- Potential Attack to Energy, Telco, Financial, Transportation Infrastructure and IoT critical

Privacy Infringement
- 552Mil Data Leakages - Symantec, 2013
- Cyber Bulling,
- Harsh Reply
AIS Grand Vision of the ICT-enabled Bright Society

Task Force of Bright ICT Initiative

- Jae Kyu Lee (AIS President-Elect): Chair
- Helmut Krcmar (AIS President, Technische Universität München)
- Nils Bjorn-Anderson (AIS Past President)
- Jane Fedorowicz (AIS Immediate Past President, Bentley University)
- Ramayya Krishnan (Dean, Heinz, Carnegie Mellon university)
- Joey George (Past President)
- Allen Lee (AMCIS EC, Chair)
Research Framework for AIS Grand Vision of the Bright ICT Initiative

By: Jae Kyu Lee
President, Association for Information Systems (2015–2016)
Korea Advanced Institute of Science and Technology
Seoul, Korea
jkle@business.kaist.ac.kr

The Internet has become a minefield of crime, fakes, and terror perpetrated by anonymous users on a global scale. The security burden of protecting organizations is becoming increasingly difficult and costly, and this burden cannot be lessened under the current Internet protocol. In order to fundamentally solve these side effects, the Council of the Association for Information Systems (AIS) has adopted a grand vision of an ICT-Enabled Bright Society (in short, the Bright ICT Initiative). With the goal of preventing undesirable activities on the Internet, diverse issues can be investigated using a bottom-up perspective. Scholars are beginning to examine the concept and various approaches with the support of the AIS conferences and the information system journals. However, a unique approach and fundamental solution must be identified in order to drastically eliminate the negative side effects of these adverse online activities. In order to achieve this, four principles are proposed that will provide the foundation of the framework for a new and safer Internet platform, the Bright Internet, while protecting users' privacy at an appropriate level. The proposed principles are origin responsibility, deliverer responsibility, rule-based digital search warrants, and traceable anonymity. This endeavor requires the investigation of technologies, policies, and international agreements on which new business models can be created.

Introduction: Negative Side Effects Caused by the Internet

The proliferation of the Internet worldwide has resulted in over 929 million websites and 3.1 billion users as of April 15, 2015 (Internet Live Stats 2015). Smart phones have pushed the expansion of the mobile Internet to 1.64 billion users with a 25 percent increase in 2014 (eMarketer 2014). Internet-based commerce has become part of daily life and more personalized services have become possible due to ubiquitous data collection and big data analysis (Craig and Ludloff 2011). The future of the “Internet of Things” (IoT) will further expand the penetration of the Internet in unimaginable ways. As such, Internet-based information and communication technologies (ICTs) have become an inevitable tool in daily life around the world.
Bright Internet as a core of Bright ICT

Fundamental and Disruptive Platform

Bright Internet

Bright ICT

Security Privacy *** Addiction Others
Current Internet: Who should prevent the attacks?

Principle of Destination Responsibility

- **Current Status:**
The responsibility of security risk is born by the users and destination server.
Corporate Security Systems: High Cost and Vulnerable

IPS: Intrusion Prevention System
APT: Advanced Persistent Threat
DLP: Data Loss Prevention
DRM: Digital Rights Management
TMS: Threat Management System
Principle Driven Bright Internet as the Next Generation Internet

Framework of Bright Internet

Principles
- Origin Responsibility
- Deliverer Responsibility
- Rule-based Digital Search Warrant
- Traceable Anonymity

Solution
- Technology and Architecture
- Business Models
- Policy
- International Agreement

Index & Governance
- Bright ICT Index
 - Security Index
 - Privacy Index
- Bright Internet Global Governance

Global Governance Index & Framework of Bright Internet
Principle 1: Origin Responsibility

- **Current Status**: The responsibility of security risk is born by the users at destination server.
- **Approach**: Refer to the principle of individual producer’s responsibility that is adopted for the management of electronic and electric equipment waste.
- **Benchmark**: Extended producer responsibility.

Diagram:

- Origin: Deliverer
- Destination: BIGG Center
- Internet
Principle of Individual Producers Responsibility: Model for e-Waste Take-back:

- The pan-Europe recycling organization created in response to the WEEE Directive to promote e-waste collection and recycling.
- Business model of the company” for ERP
 - Cost effective implementation of WEEE for IPR
 - In 2007 (2009)
 - 1100 (1300) members in 8 countries
 - In 2014
 - Collected 2 Million tons across 17 countries
SPAM Mail Origin and Destination Analysis

U Texas Research (Whinston & Gene Moo Lee, U Texas, Austin)
Outbound spam may be leaving your organization

This advisory indicates the level of spam sent from computers at T-Mobile USA Inc., compared to information may be useful in determining network security improvements.

December 2013 Rankings for T-Mobile USA Inc.:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Top %</th>
<th>Among</th>
<th>Type</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>57</td>
<td>2.0%</td>
<td>2,888</td>
<td>NAICS</td>
<td>517210</td>
<td>Wireless Communications Carriers (except Satellite)</td>
</tr>
</tbody>
</table>

For graphics and more information about spam volume originating from your organization, please visit information provided on this web page is publicly searchable on cloud.spamrankings.net.

About this project

The cloud.Sp@mRankings.net project operates out of the Center for Research on Electronic Commerce project compares relative spam amounts by correlating outbound spam blocklist data to Autonomous data from several blocklists into a Composite Borda count. Our goal for publishing the rankings is to for dealing with outbound spam. For more information about the project, please visit our About the pro

For a list of terms we use in this email and in our organizational analysis page, please visit our Glossa

Data source details

Borda Count rank 70 score 38,363 composed from:

<table>
<thead>
<tr>
<th>Source</th>
<th>IP Addresses</th>
<th>Spam Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rank</td>
<td>Hosts</td>
</tr>
<tr>
<td>CBL</td>
<td>39</td>
<td>8,162</td>
</tr>
<tr>
<td>PSBL</td>
<td>62</td>
<td>95</td>
</tr>
</tbody>
</table>
2) Principle 2: Deliverer Responsibility

- **Current Status**: 90% of mail from Compromised Servers; Router and Carriers Responsibility
- **Approach**: Delivers have the responsibility of willful negligence of delivering wicked contents
- **Benchmark**: Drug runner who delivered strangers’ bags
3) Principle 3: Real-time Rule-based Digital Search Warrant

- **Current Status**: The execution of current search warrant collects more bundled information system than the authorized relevant information
- **Approach**: Rule-based software agents issued by judge identifies whether a packet is suitable to execute the warrant or not

Issue a search warrant only if illegal statement detected
4) Principle 4: Traceable Anonymity

- **Current Status**: Anonymous criminals are abusing the internet Protocol
- **Approach**: Protect anonymity when the privacy should be protected. If the anonymous user turned out to be a criminal or has a potential to commit crime, the traceability of real name should be guaranteed
Current Status: There is no agreement and dedicated mechanism for the countries to reduce the cross border side effects and conflicts

Approach: The Global Bright ICT Summit in cooperation with ITU will be an appropriate mechanism
Current Status: At the moment, there is no measurement about the ICT brightness

Approach: National measurement of ICT Brightness and its comparison with other countries will motivate the country to recognize its status of ICT Brightness and to seek solutions to reduce side effects

Define the Bright ICT Index
Measure the Origin & Deliverer Responsibilities, Protection of Privacy and Security Potential
Compensate the Responsibility
Establish the Governance Structure for Global Agreement and Clearance
ITU Trust Infrastructure and AIS Bright Internet

Trust Infrastructure
- Technical Standards
- International Agreement
- Industry Relations

Bright Internet
- Technology and Architecture
- Business and Economic Models
- Policy and Global Governance
Bright Internet Road Map

- Bright Internet Protocol
- Bright Internet Technologies
- Bright ICT Index
- Bright Internet Global Governance

- Bright Internet Standards and Test Bed
- Bright Internet Global Summit
- Establish BIGG Center

Bright Internet Research

Implementation
The Bright Internet will drastically reengineer the security and privacy issues on the Internet

The Bright Internet will open the next generation of Internet

Collaboration of the Bright Internet Initiative with ITU Trust Infrastructure Project are complementary with the same goal

Collaboration of ITU and AIS will create the trustful society with bright future.