**ITUPublications** 

International Telecommunication Union

**Development Sector** 

# The Last-mile Internet Connectivity Solutions Guide

Sustainable connectivity options for unconnected sites 2020





# The Last-mile Internet Connectivity Solutions Guide:

Sustainable Connectivity
Options for Unconnected
Sites

# Introduction: Background, Motivation and Objectives

The global focus on universal connectivity is driven in part by the fact that, despite the meteoric growth of Internet use and broadband connectivity, 49 per cent of the world's population, or 3.7 billion people, were still offline and excluded from the benefits of the global digital economy at the end 2019. Offline populations are particularly concentrated in least developed countries, where only 19 per cent of individuals were online in 2019. Regionally, less than half the populations of Africa and Asia-Pacific are online (29 and 45 per cent, respectively)

Figure 3: Individuals using the Internet, 2005-2019\*

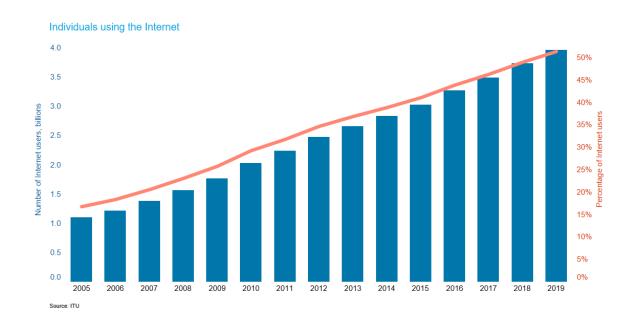
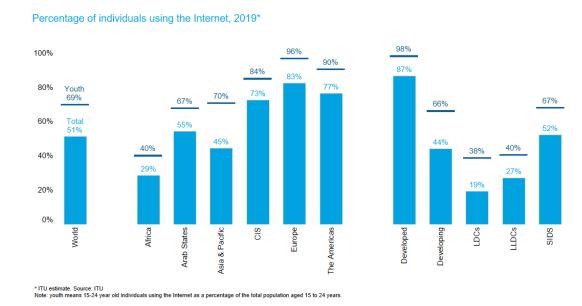




Figure 4: Percentage of individuals using the Internet, by region and development status, 2019



Source: https://itu.foleon.com/itu/measuring-digital-development/internet-use/

# Introduction: Steps in the Solutions Guide

## Step 1:

**Identify digitally** unconnected (and underserved) geographies

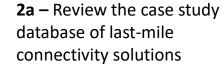


## Step 2:

**Review options** from existing solutions

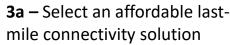


## Step 3:


**Select sustainable** solutions by matching viability subject to constraints



## Step 4:


**Implement** interventions to extend sustainable connectivity service

- 1a Understand background challenges in mapping access and adoption
- **1b** Select a top-down and/or bottom-up mapping approach **1c** – Map key elements:
- network infrastructure assets, potential demand and financial viability, and constraints on technology options

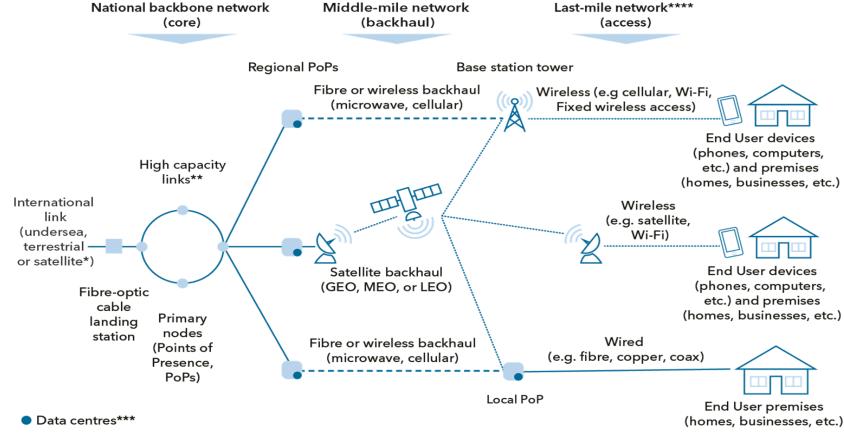


2b - Utilize the categorization/typology of interventions

2c - Understand the main characteristics of, and tradeoffs between, different interventions



**3b** – Identify the components of an appropriate last-mile connectivity solution

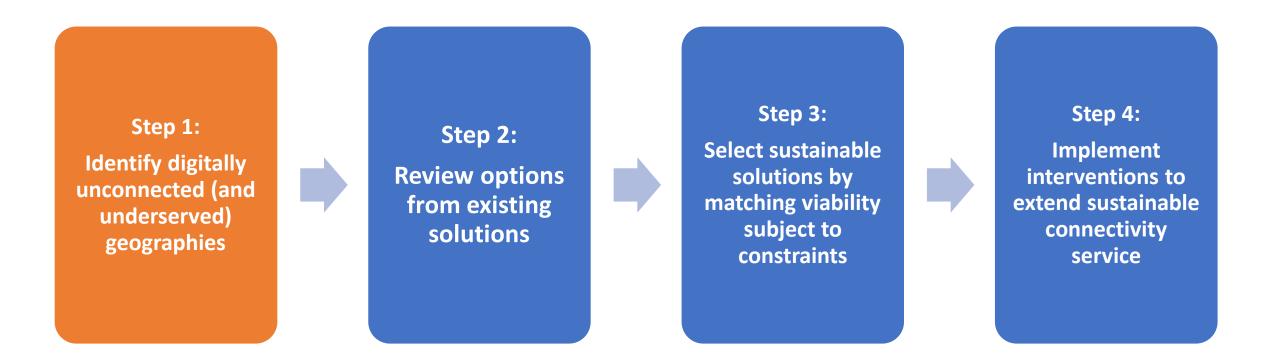

3c - Draw up the decision matrix for feasible solutions

3d - Adopt additional tools to assess solutions

- **4a** Options for intervention Introduction
- 4b Options for intervention -Market efficiency actions
- 4c Options for intervention -One-time financing (smart subsidy)
- 4d Options for intervention -Recurring financing / subsidy
- 4e Examples of options (from case study submissions)

# Introduction: Definitions – Describing a Telecommunications Network

Figure 2: Telecommunications network components supporting last-mile interventions in developing countries




Source: Authors, adapted from various sources

Notes: Not exhaustive, for illustrative purposes and some segments are interchangeable further, particularly in the last-mile; \*In few country cases, satellite continues to be the main, or only, source of international connectivity; \*\* These are predominantly fiber optic links (terrestrial and undersea) but in few country cases, national backbone networks utilize wireless microwave and satellite; \*\*\*

Data centers can be placed in various parts of the network, depending on the need to aggregate data (such as in core networks, or place data as close to end users as possible (such as in middle mile and last-mile networks); \*\*\*\* The technologies listed for the last mile are not exhaustive.

# Step 1: Identify Digitally Unconnected Communities



## Step 1 activities to identify digitally unconnected (and underserved) geographies:

- 1a Understand background challenges in mapping access and adoption
- 1b Select a top-down and/or bottom-up mapping approach
- 1c Map key elements: network infrastructure assets, potential demand and financial viability, and constraints on technology options

# Step 1b: Select a Top-Down and/or Bottoms-Up mapping approach

There are two main approaches to begin geographically mapping network infrastructure and access, depending on the geographic scope of the exercise.

The first is **top-down** and involves mapping a large geographic area by accessing secondary data sources and identifying gaps in infrastructure service. This differs from the more granular and localized **bottom-up** approach, which starts with an ex-ante selection of a specific locality and builds an understanding of current conditions through a direct census of residences and physical survey of network assets. Both approaches overlay infrastructure assets and coverage against population density. The figure below differentiates between the two, but a given mapping exercise may take elements from both approaches, accessing secondary mapping of network assets, population density and other relevant infrastructure, and combining it with an on-the-ground survey and census.

Figure 13: Differentiating between two different approaches to mapping unconnected and underserved populations

## **Top-down approach:**

Large geographic areas (national or sub-national) are mapped by accessing secondary mapping data in order to identify infrastructure coverage gaps.

#### Additional characteristics:

- Data gathered from secondary sources such as national government agencies or third-party aggregators (e.g. satellite data, operator infrastructure, etc.)
- Tends to cover large geographic areas
- May develop a multipronged approach to connectivity interventions beyond a single site/location

## **Bottom-up approach:**

Starts with the specific, targeted locality, mapping local data and testing for different aspects of network infrastructure availability.

#### Additional characteristics:

- Local mapping (testing network infrastructure available in the vicinity)
- Adding socio-demographic attributes at the local level collected via census
- Includes relevant geographic and environmental conditions



# Step 1b: Top-Down Infrastructure Mapping Examples

## **Table 5: Top-down infrastructure mapping: examples**

| Map name                                                           | Geographic coverage       | Network type                                    | Publicly available or commercial service | Data<br>downloadable to<br>the public | URL                                                                                                |
|--------------------------------------------------------------------|---------------------------|-------------------------------------------------|------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------|
| ITU Broadband Maps                                                 | Global                    | Terrestrial fibre, microwave and undersea fibre | Public                                   | Limited access                        | https://itu.int/go/Maps                                                                            |
| Telegeography Submarine Cable Map                                  | Global                    | Undersea fibre                                  | Public                                   | Yes                                   | https://www.submarinecablemap.com/ and https://github.com/telegeography/www.submarinecablemap.com/ |
| African Terrestrial Fibre Optic Cable Mapping Project (AfTerFibre) | Africa                    | Terrestrial fibre and undersea fibre            | Public                                   | Yes                                   | https://afterfibre.nsrc.org/                                                                       |
| The Connected Pacific                                              | East Asia and the Pacific | Undersea fibre                                  | Public                                   | Yes                                   | https://connectedpacific.org                                                                       |
| Satbeams                                                           | Global                    | Satellite                                       | Public                                   | Some                                  | https://www.satbeams.com/                                                                          |
| GSMA Mobile Coverage Maps                                          | Africa (8 countries)      | Terrestrial cellular                            | Public                                   | No                                    | http://www.mobilecoveragemaps.com/                                                                 |
| Masae Analytics                                                    | Global                    | Terrestrial networks and undersea               | Commercial                               | No                                    | https://www.masae-analytics.com/                                                                   |
| InfraNav                                                           | Global                    | Terrestrial networks and undersea               | Commercial                               | No                                    | https://www.infranav.com/                                                                          |
| Fraym                                                              | Africa                    | Terrestrial networks and undersea               | Commercial                               | No                                    | https://fraym.io/                                                                                  |
| Towersource (infrastructure)                                       | Global                    | Terrestrial networks                            | Commercial                               | No                                    | https://www.towersource.com/                                                                       |
| mapELEMENTS (coverage)                                             | Global                    | Terrestrial mobile coverage                     | Commercial                               | No                                    | https://www.mapelements.com/                                                                       |
| OpenSignal                                                         | Global                    | Terrestrial cellular coverage                   | Commercial                               | No                                    | https://www.opensignal.com/                                                                        |



# Step 2: Review options from the classification of existing solutions



## **Step 2 activities to review the range and classification of existing solutions:**

- 2a Review the case study database of last-mile connectivity solutions
- 2b Utilize the categorization/typology of interventions
- 2c Understand the main characteristics of, and trade-offs between, different interventions

# Review Step 2a: The Last-Mile Connectivity Case Studies Database

In order to inform the process of identifying appropriate affordable solutions, this analysis started by developing the Last-Mile Connectivity Case Studies Database, a wide-ranging database of different case studies of last-mile connectivity solutions. The solutions were sourced from primary (direct engagement with solution managers and implementers) and secondary sources (reports, etc.). The cases were classified in 17 dimensions across five main categories (reference material, entity, technologies, locality characteristics, additional information).

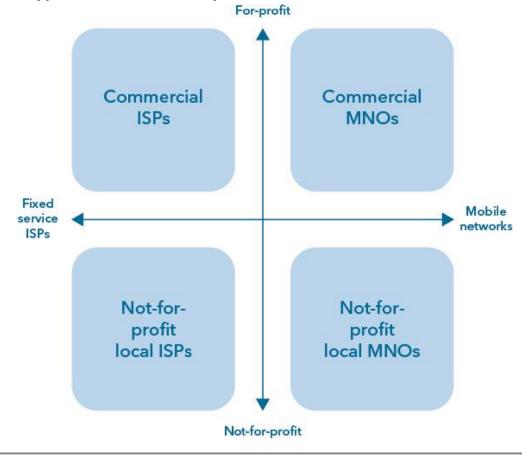
As of August 2020, the database contained 123 cases, of which 51 are from primary sources and 72 from secondary sources, particularly 1 World Connected and APC / IDRC GIS Watch 2018. The database is a live document and will be continually updated as more case studies are submitted.

Table 10: Category of characteristics of the interventions in the LMC Case Studies Database

| Reference<br>Material                 | Entity                                                              | Technologies                                                                           | Locality characteristics                                                                                                                                                                  | Additional information                                   |
|---------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| Organization or project name; country | Access network operational entity; revenue model; degree of subsidy | Backhaul technologies;<br>access network<br>technologies; primary<br>device for access | Population density/ urbanization level; population size; geographic area; topography; per capita income/ARPU of users; literacy levels; other socio-demographic and environmental factors | Still in operation; regulatory and policy considerations |

# Review Step 2b: Categorization / typology of interventions

The review of 123 different interventions presented in the Last-Mile Connectivity Case Studies Database showed that interventions differed along two axes:


The first is the **type of network service**, as defined by the primary access network technology utilized. Interventions focused either on:

- Mobile network deployments providing various mobile wireless services, including voice service, and where the enduser device is mobile and non-stationary; or,
- General internet service providers (ISPs) that utilized a range of different technologies, both fixed and wireless, to provide datafocused services.

The second axis relates to **profit**. While most entities incorporated formal business operations in partnership with commercial services, some interventions were either:

- a. not-for-profit, delivering connectivity service without an emphasis on commercial returns; or
- b. **commercial**, basing investment decisions on economic return calculations.

Figure 19: Categorizing last-mile interventions based type of network and profit considerations



# Review Step 2b: Categorization / typology of interventions

Analysis and review of the range of last-mile connectivity interventions collected in the database suggests that the solutions can be effectively organized by type of profit motive (commercial versus not-for-profit) and access network technology (mobile cellular network operators versus generalized Internet (data) service providers). The categorization is shown below.

**Table 11: Categorizing last-mile Internet connectivity interventions** 

|                  |                | Access network technology                                                                                                                                                       |                                                                                                                                                        |  |  |
|------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                  |                | Mobile networks                                                                                                                                                                 | Fixed-service ISP                                                                                                                                      |  |  |
|                  | Commercial     | Commercial MNOs: Traditional MNO service provision, and similar interventions where the user and device are mobile                                                              | Commercial ISPs: ISPs, wireless ISPs, focusing on rural and urban communities with both fixed-line and wireless technologies                           |  |  |
| Revenue<br>model | Not-for-profit | Not-for-profit local mobile networks:<br>Communities owning and/or operating<br>their own cellular network<br>infrastructure, sometimes in partnership<br>with traditional MNOs | Not-for-profit local ISP networks:  Networks established by non- profits, governments or communities, focused on providing access to underserved areas |  |  |

## Review Step 2c: Characteristics & Trade-offs – Common Access Network Technologies (Wireless)

**Table 17: Comparison of common wireless access network technologies** 

| Access<br>network<br>technology        | Potential<br>throughput /<br>QoS  | Range           | Capital<br>expenditure<br>to deploy<br>new network               | Operating expenses | Infrastructure<br>required                                   | Suitability for rural deployments                          | Spectrum licensing requirement                                                                                                       | Access device type                                                                   |
|----------------------------------------|-----------------------------------|-----------------|------------------------------------------------------------------|--------------------|--------------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Wi-Fi: 802.11                          | 2 Mbit/s (a) to 10<br>Gbit/s (ax) | 100s of<br>m    | Low                                                              | Low                | Wi-Fi routers                                                | Yes, but backhaul required (satellite, microwave or fibre) | No specific licence but compliance with technical specifications via "blanket licence" under non-interference/non- protection regime | Wi-Fi enabled smartphones, tablets, computers                                        |
| Mobile<br>cellular (2G,<br>3G, 4G, 5G) | 0.1 – 1000 Mbit/s                 | 5 to 15<br>km   | Medium to high                                                   | Medium to high     | Towers and radio equipment                                   | Yes, but backhaul required (satellite, microwave or fibre) | Yes                                                                                                                                  | Cellular mobile phones,<br>laptops, personal<br>computers (via<br>dongles)           |
| Fixed wireless access (4G/5G)          | 20 – 1 000 Mbit/s                 | Up to<br>10 km  | Low to medium                                                    | Low                | Towers and radio equipment                                   | Maybe, depending on financial viability and demand         | Depends on country regulations                                                                                                       | Consumer premises<br>modems to Ethernet or<br>Wi-Fi                                  |
| Satellite (HTS<br>GEO and MEO)         | 5 – 150 Mbit/s                    | 1 000s<br>of km | High (for new satellite deployment); low (for enduser terminals) | Low                | Earth station, satellite,<br>very-small-aperture<br>terminal | Yes                                                        | Yes                                                                                                                                  | Very-small-aperture<br>terminal, consumer<br>premises modems to<br>Ethernet or Wi-Fi |

Note with the evolution of 4G and 5G, throughput can reach up to 1 Gbps

Sources: adapted from various sources, including the European Union, Cisco, Huawei, ITU, the Inter-American Development Bank, the World Bank and the EMEA Satellite Operators Association

## Review Step 2c: Characteristics & Trade-offs – Common Access Network Technologies (Wireline)

**Table 19: Comparison of common wired access network technologies** 

| Access<br>network<br>technology | Potential throughput /<br>QoS                                                                                      | Range           | Capital expenditure<br>to deploy new<br>network     | Operating expenses | Infrastructure<br>required                                 | Suitability for rural deployments                                        | Additional regulatory issues | Access device<br>type                                         |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------|--------------------|------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------|
| Fibre                           | 100 – 1 000 Mbit/s                                                                                                 | 100s of         | Overhead cabling:<br>low to medium                  | Medium             | Tower, poles, cabinets, active network equipment           | In some cases, with sufficient purchasing power and population densities | Pole attachment              | Fibre modem to Ethernet-enabled                               |
|                                 | ,                                                                                                                  | km              | Below ground:<br>medium to high<br>(new excavation) | Low to medium      | Subterranean duct work, cabinets, active network equipment | No                                                                       | Right of way                 | devices or to Wi-<br>Fi                                       |
| Coax (cable)                    | Up to 200 Mbit/s                                                                                                   | Up to<br>100 km | Low to medium                                       | Low to<br>medium   | Tower, poles, cabinets, active network equipment           | In some cases, with sufficient purchasing power and population densities | Pole attachment              | Cable modem to<br>Ethernet-<br>enabled devices<br>or to Wi-Fi |
| Copper                          | 0 to 24 Mbit/s (for<br>ADSL, ADSL 2, ADSL 2+);<br>100 Mbit/s (for VDSL,<br>VDSL2, Vectoring); 1<br>Gbit/s (G.Fast) | 0.1 to 5<br>km  | Low to medium                                       | Low to<br>medium   | Tower, poles, cabinets, active network equipment           | In some cases, with sufficient purchasing power and population densities | Pole attachment              | Modem to<br>Ethernet-<br>enabled devices<br>or to Wi-Fi       |

Sources: adapted from various sources, including the European Union, Cisco, Huawei, ITU, the Inter-American Development Bank, the World Bank and the European School of Antennas

# Review Step 2c: Characteristics & Trade-offs – Backhaul (cont.)

**Table 24: Comparison of backhaul technologies** 

| Backhaul<br>technology              | Potential<br>throughput/QoS | Range        | Capital<br>expenditure to<br>deploy new<br>network | Operating cost | Infrastructure<br>required                                     | Suitability for rural deployments | Advantages                                                                           | Disadvantages                                            |
|-------------------------------------|-----------------------------|--------------|----------------------------------------------------|----------------|----------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|
| Microwave                           | 5 – 200+ Mbit/s             | 100s of km   | Lower                                              | Lower          | Radio<br>equipment,<br>towers/poles                            | Yes                               | High capacity;<br>low-cost<br>equipment; low-<br>cost deployment                     | Requires line of sight; licensing constraints            |
| Satellite<br>backhaul<br>(GEO, MEO) | 1 – 1 600 Mbit/s            | 1 000s of km | Medium to high                                     | Medium to high | Satellites, hub<br>earth stations,<br>remote earth<br>stations | Yes                               | Wide coverage;<br>ease of<br>deployment;<br>overcomes<br>topographical<br>challenges | Latency; cost                                            |
| Fiber                               | 100 – 1000<br>Mbit/s        | 100s of km   | High                                               | Medium         | Fibre-optic cable installed inground or overhead via poles     | Maybe                             | Highest speeds;<br>reliability;<br>flexibility<br>(upgrades)                         | Cost;<br>deployment<br>time; limited<br>geographic reach |

Source: adapted from various sources, including the European Union, Cisco, Huawei, ITU, the Inter-American Development Bank, the World Bank and the EMEA Satellite Operators Association (technical references listed in Annex 2)

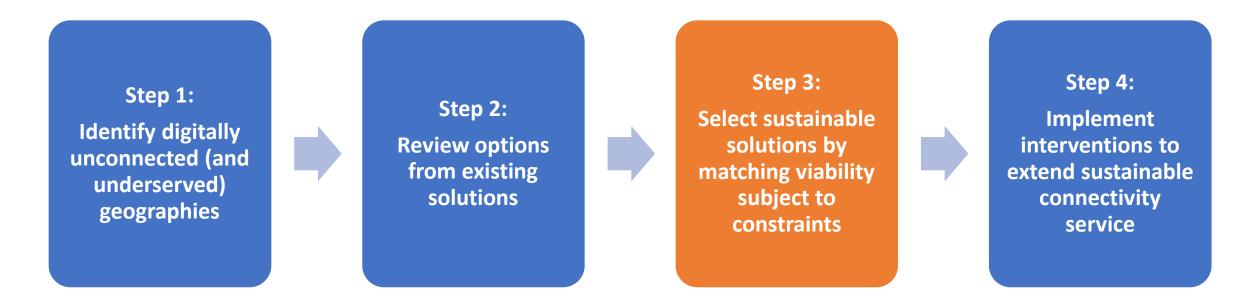

## Review Step 2c: Characteristics & Trade-offs – Emerging Technologies

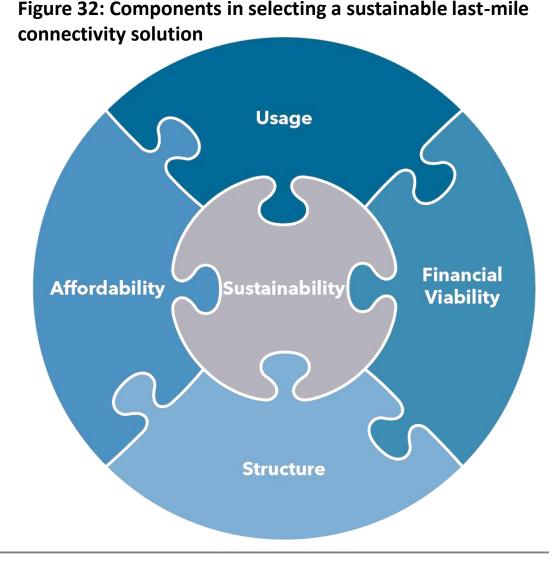
Table 25: Comparison of emerging technologies in connectivity

| Technology                                                                      | Wired or<br>wireless | Potential<br>throughput /<br>QoS | Range           | Infrastructure required                                       | Suitability for rural deployments                        | Spectrum licensing requirement                                      | Backhaul<br>suitability                 | Access device type                                        |
|---------------------------------------------------------------------------------|----------------------|----------------------------------|-----------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|-----------------------------------------------------------|
| HAPS                                                                            |                      | Up to 30<br>Mbit/s               | 1 000s<br>of km | High altitude balloons, autonomous drones                     | Yes                                                      | Yes                                                                 | Could work for both backhaul and access | Cellular devices in last-mile cases (such as Google Loon) |
| LEO satellite                                                                   |                      | Up to 100<br>Mbit/s              | 1 000s<br>of km | LEO satellites (for new network deployments)                  | Yes                                                      | Yes                                                                 | Could work for both backhaul and access | To be determined                                          |
| Millimeter wave                                                                 |                      | Up to 20<br>Gbit/s               | 1 to 10<br>km   | Towers and radio equipment, fibre backhaul                    | No                                                       | Yes for certain bands, some unlicensed / licence-exempt             | Local backhaul                          | To be determined                                          |
| Free-space optical communication                                                | Wireless             | 10s to 100s of<br>Gbit/s         | 1 to 10<br>km   | Specialized equipment using light to transmit high-speed data | Yes, but requires line-<br>of-sight data<br>transmission | No                                                                  | Local backhaul                          | Used for backhaul                                         |
| TV White Space                                                                  |                      | 5 – 150<br>Mbit/s                | 10 to 25<br>km  | Towers and radio equipment                                    | Yes, especially for non-line of sight                    | Authorization of use required under the opportunistic use principle | Could work for both backhaul and access | Consumer premises modem to Ethernet or Wi-Fi              |
| LoRa                                                                            |                      | Up to 50<br>Kbit/s               | 10s of<br>km    | Towers and radio equipment                                    | Yes (though very low throughput)                         | No (utilizes licence-free industrial, scientific and medical bands) |                                         | Long-range radios to IoT devices / applications           |
| Power line communications: fibre via overhead medium-voltage distribution lines | Wired                | 100 – 1 000<br>Mbit/s            | 100s of<br>km   | Tower, poles, cabinets, active network equipment              | Yes (eight times<br>longer than high<br>voltage lines)   | No                                                                  | Yes                                     | Fibre modem to Ethernet-<br>enabled devices or to Wi-Fi   |

Source: adapted from various sources, including the European Union, Cisco, Huawei, ITU, the Inter-American Development Bank, the World Bank and the EMEA Satellite Operators Association (technical references listed in Annex 2). \* Other emerging communication technologies are in use or entering the market. However, many of these (radio-frequency identification, Bluetooth Low Energy, near field communication, Light Fidelity, Zigbee, etc.) are not suitable for rural deployments. Wimax deployments appear to have peaked globally and are on the decline. Whereas TV White Space is still at a nascent stage of ecosystem growth and deployment.

## Step 3a: Select Sustainable Solutions by Matching Viability Subject to Constraints




## Step 3 activities to select sustainable solutions by matching viability subject to constraints:

- **3a** Select an affordable last-mile connectivity solution
- **3b** Identify the components of an appropriate last-mile connectivity solution
- **3c** Draw up the decision matrix for feasible solutions
- **3d** Consider additional tools to assess solutions

## Selection Step 3a: Selecting an Affordable Last-Mile Connectivity Solution

To identify suitable last-mile connectivity interventions, after a specific unconnected geography / locality has been selected, it is necessary to first determine the five main aspects of a given situation that serve as binding constraints and can provide direction for any possible solution.

- 1) Affordability Ensuring that connectivity service user pricing falls within a given affordability threshold, such as the 2 per cent of monthly GNI per capita for 1GB of mobile broadband data discussed above.
- 2) Usage Identifying the applications and services that need to be available to the locality, and the level of QoS that those applications and services require.
- **3)** Financial viability This includes measuring the economic viability for private investment of the connectivity service, based on estimates of ARPU, availability of backhaul / middle-mile connectivity, options for different local access technologies and the potential level of the service's QoS.
- 4) Structure This involves articulating the service delivery business model and identifying any regulatory constraints on the model and technologies utilized.
- **Sustainability** This requires an understanding of the service's revenue model and of any potential subsidy (one-time and/or recurring).



## Selection Step 3a: Selecting an Affordable Last-Mile Connectivity Solution

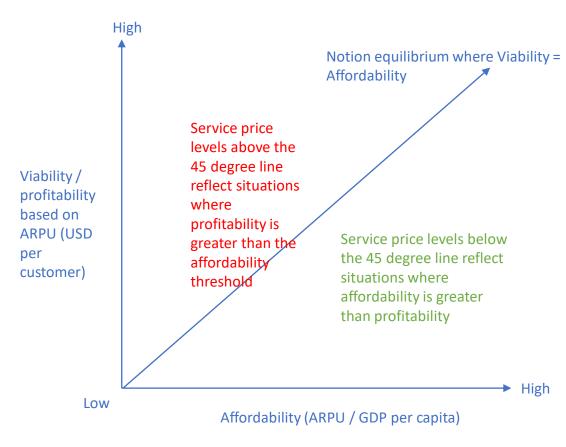
The five factors in selecting an affordable last-mile connectivity solution map to other frameworks of universal access components in the figure below. Regulatory influence is the starting point for economic viability, mirroring the layered intervention approach beginning with market-expanding interventions that increase market efficiency. However, a government may want to provide universal access even when the profitability threshold is not achieved, such as with policy and regulatory interventions such as subsidies, tax alleviations, and free or

low-cost licensing.

Figure 33: The components of a sustainable last-mile connectivity solution related to other frameworks

availability general income levels (affected by economic growth) costs (affected by accessibility technology, efficiency and rate of expansion) general telecom 3) Financial price levels universal service/access profits (affected by viability competition and marketing factors ownership/control) price presentation affordability packaging payment schemes 1) Affordability & credit management 5) Sustainability service definition regulatory influence awareness user factors 4) Structure value perceptions 2) Usage cost saving behaviour inventiveness

Source: adapted from C. Milne, Improving Affordability of Telecommunications: Cross-Fertilization between the Developed and the Developing World (15 August 2006), TPRC 2006. Available at SSRN: https://ssrn.com/abstract=2104397


## Selection Step 3a: Selecting an Affordable Last-Mile Connectivity Solution

Financial viability versus affordability: It is worth stressing that the financial viability of establishing service (considered from the point of view of the investor, whether the project is a commercial investment or a subsidized deployment) is different from the affordability of the service provided (considered from the point of view of individuals in the prospective underserved locality).

While financial viability is dependent on revenue generation, presumably from paying consumers, it is irrelevant – in terms of financial viability – whether these customers are higher or lower income, or if they are businesses and organizations instead of users. What matters is that the revenues generated can cover the costs of deployment.

**Affordability**, particularly broadband affordability, on the other hand, is shaped by the consumer profile. So, whereas a deployment may be financially viable from the perspective of a service provider, in that it provides connectivity to higher-income consumers (or businesses), that particular deployment would not be serving an affordability goal.

Figure 34: Financial viability versus affordability

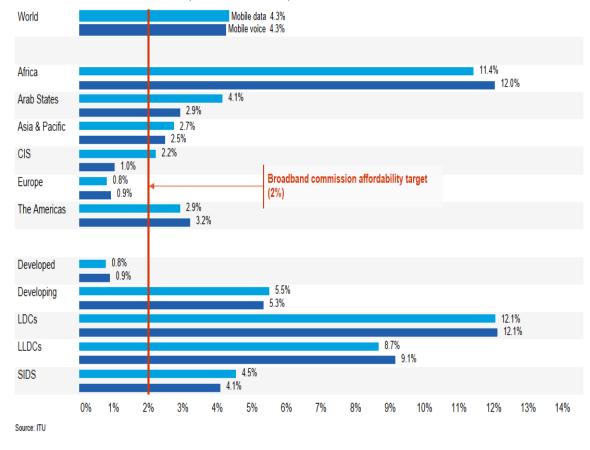




## **Affordability**

As the focus of this Solutions Guide is to encourage last-mile connectivity solutions that deliver affordable Internet to unserved and underserved communities, designing potential solutions begins with identifying what price levels of service would be considered affordable.

One approach would be to identify affordability thresholds of 2 per cent of monthly GDP per capita, as well as 5 per cent for sensitivity analysis, using national averages.


A more granular approach would consider regional or local average income levels, which can be obtained from national statistical agencies.

The focus on affordability (and on the other critical components highlighted in the selection model, particularly sustainability) emphasizes the importance of ensuring that members of the locality or community — the new service's potential customers — play a role in determining how the new service is established.

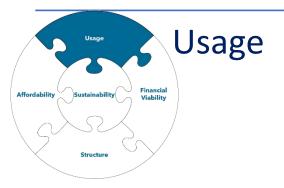


Step 3:

Select Best-Fit Solutions






## Financial Viability

The financial viability of different forms of service provision depends on a number of factors. Affordability thresholds (if applied) and usage requirements (if applied) from the previous sections can serve as inputs for calculating financial viability. They can also be left out, depending on the ultimate goal of the intervention. Financial viability depends on a number of enabling factors and binding constraints, some of which are articulated here.

It is essential to estimate the potential demand for connectivity service in order to determine whether the service will generate sufficient revenue to cover capital investments and ongoing operating expenses. On the supply side, service options will be determined by environmental / geographic limitations, technical considerations, pricing (of backhaul) and regulatory requirements and limitations.

**Table 27: Components of financial viability assessments** 

| Considerations of financial viability | Estimating demand                                                                                                                                        | Access network design and technologies                                                                                                                                                         | Backhaul limitations                                                        |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Data components                       | Per capita income (or ARPU) Community population (or active subscriptions) Census of businesses (enterprise, government, non-profit organizations, etc.) | Geographic area to cover Customer population density Electrical grid availability Regulatory policy considerations (ISP licensing, spectrum use) Financing options (including cost of capital) | Distance to backhaul PoP in some cases Capacity available Cost of bandwidth |



An ex-ante determination of usage for last-mile connectivity service will significantly impact the calculations of the type of service that could be established and what the costs and pricing of that service will be.

It may be that the QoS (and thus general usage) should be determined by whatever the market can support; or, usage could be more prescriptive in that specific activities are required for the last-mile connectivity service, such as providing connectivity for healthcare services (telemedicine), distance learning, government services, etc.

General connectivity service features a wide range of usage levels that are usually constrained by QoS and the price of connectivity. If specific sectoral applications are the focus of the connectivity service, then the QoS that the network needs to support will be determined by the QoS thresholds needed

|          | Telemedicine participant                                   | Services                                                                                                                                                                                                                                                           | Bandwidth          |
|----------|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|          | Patient                                                    | Video consultation; accessing electronic records                                                                                                                                                                                                                   | 1.5 to 3<br>Mbit/s |
| <i>'</i> | Single-<br>physician<br>practice                           | Supports practice management functions, e-mail and web browsing; allows simultaneous use of electronic health records and high-quality video consultations; enables non-real-time image downloads; enables remote monitoring                                       | 4 Mbit/s           |
|          | Rural health clinic (approximatel y 5 physicians)          | Supports clinic management functions, e-mail and web browsing; allows simultaneous use of electronic health records and high-quality video consultations; enables non-real-time image downloads; enables remote monitoring; enables HD video consultations         | 10 Mbit/s          |
|          | Clinic/large<br>physician<br>practice (5-25<br>physicians) | Supports clinic management functions, e-mail and web browsing; allows simultaneous use of electronic health records and high-quality video consultations; enables real-time image transfer; enables remote monitoring; enables HD video consultations              | 25 Mbit/s          |
| )<br>-   | Hospital                                                   | Supports hospital management functions, e-mail and web browsing; allows simultaneous use of electronic health records and high-quality video consultations; enables real-time image transfer; enables continuous remote monitoring; enables HD video consultations | 100 Mbit/s         |
| г<br>Г   | Academic/lar<br>ge medical<br>centre                       | Supports hospital management functions, e-mail and web browsing; allows simultaneous use of electronic health records and high-quality video consultations; enables real-time image transfer; enables continuous remote monitoring; enables HD video consultations | 1,000 Mbit/s       |

for the sea polications and services.

Slide 22

oduction

Ste Review

Step 2: riew Options Step 3: Select Best-Fit Solutions mplement

Next Steps



## Structure

The structure of the entity delivering service will be determined by the availability of options in the policy and regulatory market environment (see section in Step 2 discussing different categorical classifications). The overall policy and regulatory environment for Internet connectivity in any given country will contribute significantly to either enabling and encouraging new service deployment for unconnected communities, or act as a gating impediment. Depending on the type of last-mile connectivity intervention selected, and on the overall policy environment, different last-mile connectivity intervention types will face different regulatory issues.

Table 31: Regulatory issues by organizational structure

|                   | Commercial MNO                                                                    | Commercial ISP                  | Not-for-profit local mobile network                                                                     | Not-for-profit local ISP network |
|-------------------|-----------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------|
| Regulatory issues | Commercial telecom operation licences required; licensed spectrum rights required | Commercial ISP licence required | Licensed spectrum rights required (except in partnerships with an MNO); telecom licence may be required | ISP licence may be required      |

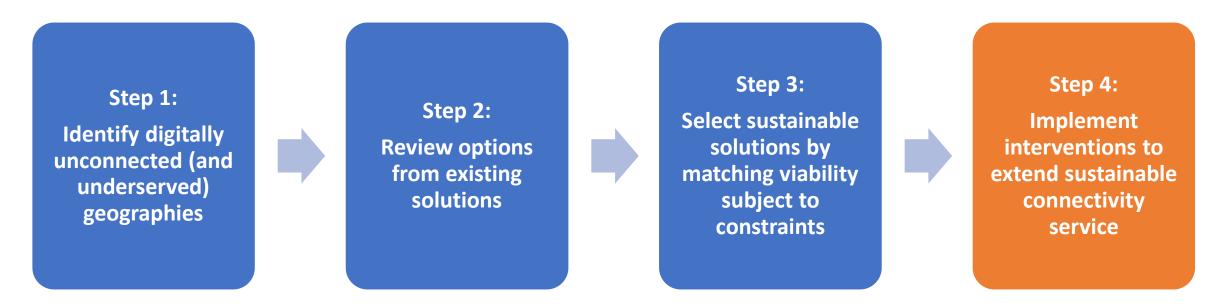


## Sustainability

Sustainability in this context goes beyond revenue modelling to consider the intervention's longer-term viability, ensuring that operating expenditures, future growth and upgrades are taken into account.

Table 32: Sustainability considerations by organizational structure

|                               | Commercial MNO                                                                                                                                    | Commercial ISP                                                                                                                                                      | Not-for-profit local mobile network                                                                                                                 | Not-for-profit local ISP network                                                                                                                    |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Sustainability considerations | Commercial operation that must break even (or provide coverage as a corporate social responsibility endeavour or coverage obligation requirement) | Commercial operation<br>that must break even<br>(or provide coverage as<br>a corporate social<br>responsibility<br>endeavour or coverage<br>obligation requirement) | Usage fees may have to be supplemented with in-kind contributions (network installation and operation) or ongoing community or government subsidies | Usage fees may have to be supplemented with in-kind contributions (network installation and operation) or ongoing community or government subsidies |


# Selection Step 3c: A Decision Matrix for Sustainable Solutions

The range of options facing any single intervention are extensive and the process of filtering the characteristics of the constraints can be linear (e.g. a decision tree) or iterative (determines a good fit on the basis of all of the inputs and constraints unique to each situation).

Table 33: A decision matrix for appropriate sustainable solutions

|                                |                                                    | Commercial MNO                                                                                                                                    | Commercial ISP                                                                                                                                                                                                                                                           | Not-for-profit local mobile network                                                                                                                 | Not-for-profit local ISP network                                                                                                                    |  |  |  |  |  |
|--------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Affordability                  |                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                             | Ex-ante measure of affordability threshold (such as 2 per cent of monthly GDP per capita for 1 GB of mobile broadband data) applied at national or local level; determination whether this will govern selection process or used just as an external measure of progress |                                                                                                                                                     |                                                                                                                                                     |  |  |  |  |  |
| Usage                          |                                                    | Ex-ante determination of usage requirement: wil government, health or education) that require m                                                   | I usage be determined by what the market (and fir eeting specific QoS thresholds?                                                                                                                                                                                        | nancial viability) support, or are there specific se                                                                                                | ervices and applications (such as e-                                                                                                                |  |  |  |  |  |
|                                | Estimating<br>demand and<br>financial<br>viability | Small population/low income Small population/higher income Larger population/low income Larger population/higher income                           | Small population/low income Small population/higher income Larger population/low income Larger population/higher income                                                                                                                                                  | Small population/low income                                                                                                                         | Small population/low income<br>Small population/higher income<br>Larger population/low income                                                       |  |  |  |  |  |
| Fina<br>ncial<br>viabi<br>lity | QoS options<br>(backhaul)                          | High capacity and competitive pricing Low capacity and high pricing                                                                               | High capacity and competitive pricing                                                                                                                                                                                                                                    | Low capacity and high pricing                                                                                                                       | Low capacity and high pricing                                                                                                                       |  |  |  |  |  |
|                                | Access<br>network<br>characteristic<br>s           | Small area/flat terrain Large geographic area/flat terrain                                                                                        | Small area/flat terrain Small area/mountainous terrain Large area/flat terrain Large area/mountainous terrain                                                                                                                                                            | Small area/flat terrain;<br>Small area/mountainous terrain;<br>Large area/flat terrain                                                              | Small area/flat terrain Small area/mountainous terrain Large area/flat terrain Large area/mountainous terrain                                       |  |  |  |  |  |
| Structu                        | ıre                                                | Commercial telecom operation licences required; licensed spectrum rights required                                                                 | Commercial ISP licence required                                                                                                                                                                                                                                          | Licensed spectrum rights required (except partnerships with an MNO); telecom licence may be required                                                | ISP licence may be required                                                                                                                         |  |  |  |  |  |
| Sustair                        | nability                                           | Commercial operation that must break even (or provide coverage as a corporate social responsibility endeavour or coverage obligation requirement) | Commercial operation that must break even (or provide coverage as a corporate social responsibility endeavour or coverage obligation requirement)                                                                                                                        | Usage fees may have to be supplemented with in-kind contributions (network installation and operation) or ongoing community or government subsidies | Usage fees may have to be supplemented with in-kind contributions (network installation and operation) or ongoing community or government subsidies |  |  |  |  |  |

## Step 4: Implement interventions to extend affordable connectivity service



## **Step 4 activities to implement interventions to extend sustainable connectivity service:**

- **4a** Options for intervention Introduction
- **4b** Options for intervention Market efficiency actions
- **4c** Options for intervention One-time financing (smart subsidy)
- 4d Options for intervention Recurring financing/subsidy
- **4e** Examples of options (from case study submissions)

# 4d: Options for interventions – Examples of Recurring financing

Limited concessional financing support can serve to de-risk private sector investment (as described as a smart subsidy).

Table 37: Recurring subsidy interventions and their applicability to different last-mile connectivity models

| Recurring subsidy interventions                                                                    | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commercial<br>MNO | Commercial<br>ISP | Not-for-<br>profit local<br>mobile<br>network | Not-for-<br>profit<br>local ISP<br>network |
|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|-----------------------------------------------|--------------------------------------------|
| Collect and distribute universal service funds for recurring subsidies to de-risk deployments      | Malaysia's Universal Service & Access Fund provided support for the deployment of the six main initiatives in the National Broadband Initiative; Gabon's experience using its universal service fund to finance network expansion and operations for 2 700 remote villages in areas deemed too unprofitable for private telephony operators (see LMC case study); South Africa's experience utilizing recurring subsidies from the South African Universal Services Fund to provide free Wi-Fi to rural schools and clinics (see LMC case study) | <b>√</b>          | <b>√</b>          | <b>√</b>                                      | <b>√</b>                                   |
| Consider more flexible and beneficial tax arrangements for non-profit local complementary networks |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                   | <b>√</b>                                      | ✓                                          |

| LMC Solutions Guide Con |
|-------------------------|
| Slide 27                |

# Annex 2: Additional Resources for Mapping

## **Network Infrastructure Mapping**

#### Fiber (Undersea & Terrestrial):

<u>ITU – Broadband Maps: https://itu.int/go/Maps</u>

<u>Telegeography – Submarine Cable Map:</u>

https://github.com/telegeography/www.submarinecable

map.com

<u>African Terrestrial Fiber Optic Cable Mapping Project</u>

The Connected Pacific

#### **Satellite coverage:**

SatBeams coverage maps and charts

**LyngSat Maps** 

IntelSat Coverage Map

Iridium Coverage Map

**Inmarsat Coverage Map** 

#### Base stateion locations and coverage:

GSMA - Mobile Coverage Maps

Open Telecom Data – Tower location (Various countries)

OpenCellID

**OpenSignal** 

#### Wi-Fi Coverage:

Mozilla Location Service (MLS)

#### Spectrum:

Open Telecom Data - Spectrum allocations (Africa)

# Socio-Demographic, Environmental, Geographic Data:

#### **Population density:**

JRC's Global Human Settlement Layer population
WorldPop – University of Southampton
Landscan – Oak Ridge
CIESIN's Gridded Population of the World (GPW)
CIESIN / Facebook High Resolution Settlement

#### **Electrification:**

Layer (HRSL) Map

<u>Gridfinder</u>

World Bank / Facebook Model

#### **Other Resources:**

#### References / How-to:

World Bank – <u>Broadband Mapping</u>
Jon Brewer – <u>Using GIS to Deliver Universal</u>
Broadband

#### **Modeling Radio Frequency Propagation**

SPLAT CloudRF



## Annex 2: Additional Resources (Technical References, Policy, & Case Studies)

#### **Technical References**

#### **Networks**

<u>Telecom Network Planning for evolving Network</u>

Architectures - Reference Manual

Wireless Networking in the Developing World

Building a Wireless Community Network in the

Netherlands

**Planning of Wireless Community Networks** 

**ITU Infrastructure Portal** 

How to work with MNOs (UNHCR)

**Community Networks through comics** 

**Ericsson FWA Handbook** 

EU Comparison of wired and wireless broadband

technologies

#### **Financing**

ICT Infrastructure business planning Solutions

**Guide 2019** 

**EU Broadband Investment Guide** 

#### **Demand Side Issues**

NTIA Considerations for Digital Inclusion Efforts

## **Policy and Regulatory Recommendations**

**ICT Regulation Toolkit** 

**A4AI Good Practices Database** 

**Community Networks in Latin America** 

**OECD Telecom Topics Reports** 

**Dynamic Spectrum Alliance Regulations** 

#### **Other Resources:**

World Bank Broadband Strategies Solutions Guide

Digital Interoperable Building Blocks (Content,

Applications and Services)

BCG Economics of Bringing Broadband to Rural US

**US NTIA Resources** 

**US NTIA Webinars** 

World Bank Cross-Sector Infrastructure Sharing

**Solutions Guide** 

World Bank Cloud Readiness Assessment

**Solutions Guide** 

The Solar Energy Handbook (Moving Energy

Initiative)

NGO Guide to Energy Solutions (NetHope)

**UNHCR Connectivity for Refugees** 

### **Case Studies:**

**LMC Case Studies Database** 

School Connectivity Projects Database

1WorldConnected

**APC Report** 

**Microsoft Airband Initiative** 

**UNHCR Collaboration for Connectivity** 

**EU Broadband Handbook** 

Satellite Impact Around the World (Global

Satellite Coalition)



Thank you for your participation!