

International Telecommunication Union

Advanced Technologies for Multimedia Broadband Satellites Systems

Dr Satchandi Verma

TRW Space & Electronics

Communication Satellite Business Development
One Space Park, Redondo Beach, CA 90278
310-812-1742

satchandi.verma@trw.com

Advanced Technologies for Multimedia Broadband Satellites Systems

TRW

- Broadband Satellite Market
 - Satellite Industry Trend
 - TRW's Systems Engineering Process
- o Multimedia Satellite Systems Capabilities
- Satellite System Enabling Technologies
 - Advanced Antenna Systems
 - High gain Multi Beam Antenna (MBA)
 - Mesh Reflector Satellite System
 - Shaped and Spot Beam Coverage
 - Efficient satellite link frequency utilization
 - Higher operating link frequencies
 - Multi color frequency reuse
 - Digital Transponders
 - Applications and Advantages
- Satellite Performance/Capacity
- o Multimedia Satellite Key Drivers

Broadband Satellite Industry Market

Today's Market

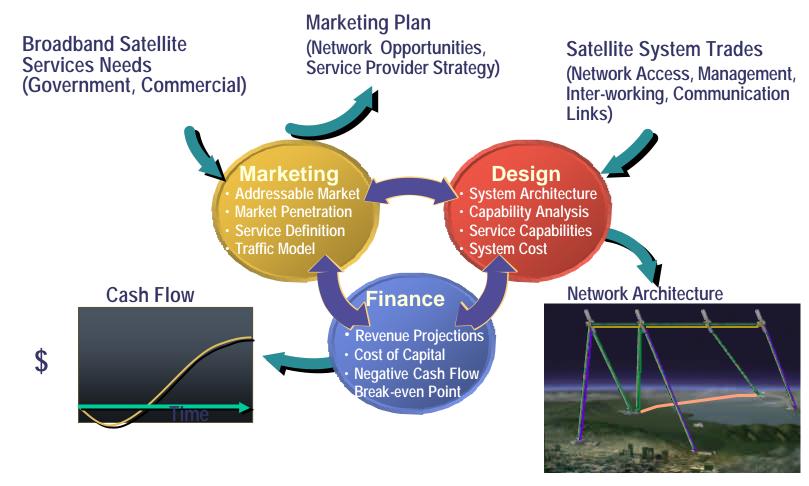
- Current system architectures successfully serving Broadcasting Market
- o Inability to capture network based broadband service market
- o Inability to attract financial capital
- Commodity Services
- o Evolutionary Vs Value added satellite technology
- o Excess capacity in some markets

Near Future

- Satellite Industry consolidation
- o Expansion of Global Coverage
- Data Transport systems with Broadband Interconnectivity
- Government need for broadband packet switched networks
 Within a Decade
- New networked satellites with value added services
- o New Service Offerings
- o Expandable Content-Based Networks
- Ubiquitous Information on Demand

Broadband Satellite Industry in Transformation stage

Broadband Satellite Industry Trend



- In US Government sponsored efforts may lead to the Multimedia satellite architecture
 - National Rural Telecommunication Cooperative (NRTC)
 - Transformational Communication Study (TCS)
 - Office of the Secretary of Defense (OSD)
- Service provider Strategies
 - Initiate network based satellite fleets which increase the value of service offerings to information intensive markets
 - Team with suppliers for developing business based satellite solution
 - Develop long range transformational architectures satisfying Global trends and emerging customer markets
 - Develop regulatory strategies for satellite network operation
- Pull satellite technology from proven manufacturers
 - For application to information intensive satellite designs
 - Providing economical cost effective solution for broadband multimedia satellite systems

TRW's Systems Engineering Process

Bringing Marketing, Engineering, & Financial disciplines together to achieve a successful business plan

Enabling Satellites Technologies

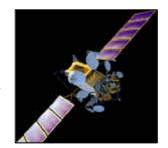
- o Expert Systems Engineering Support
 - System definition, analyses and trades for optimum Network
 - End-to-end communication system simulation capability
 - Rigorous requirements definition to include all system needs
 - Expert advice on international standards implementation
- o Satellite Antenna
 - Deployable Large Mesh Reflector Antenna (Shaped/Spot beams)
 - High Gain Solid Reflector Antenna (Multi Beam Spot Coverage)
- Satellite link frequencies
 - Higher up and down link frequencies
 - Frequency Reuse with Multi color schemes
- On Board Processors (Analog/Digital)
 - Full Digital Processor
 - Partial Processor Digital Transponders
- Larger satellite antenna gain reduces payload power requirement and size (RF power, solar cells, thermal dissipation)

TRW Has a Long History of Satellite Communications Systems

TRW

Defense Systems
Communications
Satellite II

Milstar Payloads


Advanced EHF

Fleet Satellite Communications

Tracking and Data Relay Satellites

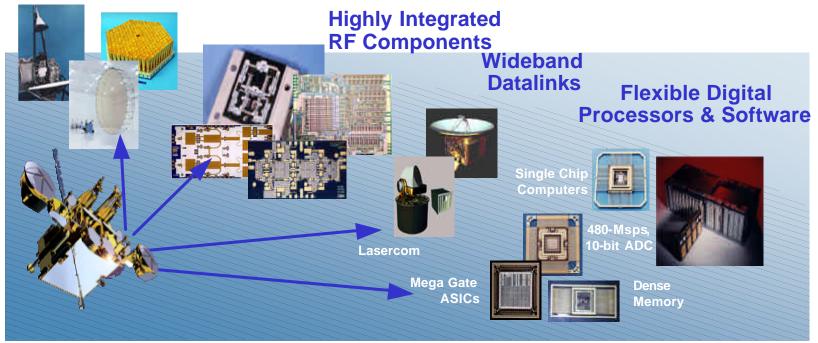
Astrolink (type)
Ka Broadband

INTELSAT III

Landsat 4 Downlink

1970 1980 1990 2002

Over three decades of providing increasing SATCOM capabilities

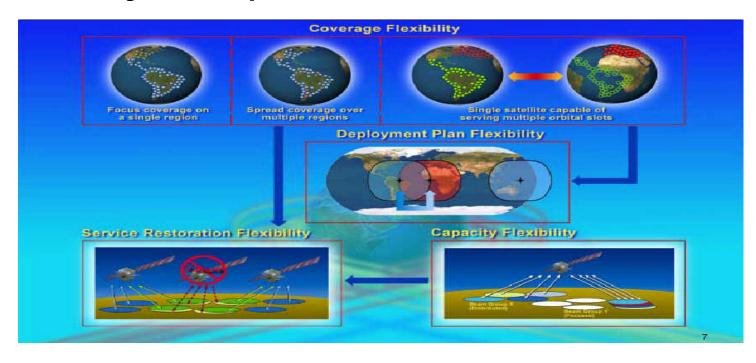


TRW Technology Enables Cost Effective Architectures

- Flexible coverage
- Frequency re-use
- Comm-on-the-move
- More capacity in same size and mass envelope
- More capacity per kg or W
- Flexible Services
- On-orbit programmability

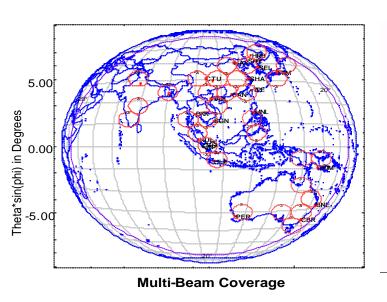
Advanced Antennas

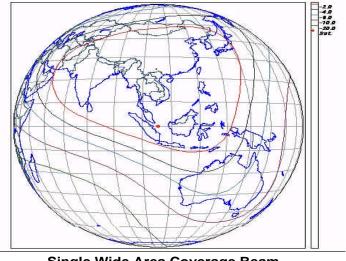
Multimedia Satellites System Requirements



- o Larger System Capacity
- o Higher Network Connectivity
- o Better Service Performance and QoS
- On orbit satellite coverage area flexibility
 - Meet dynamic traffic demands of customer
 - Meet specific regional and local service needs
- o Backward compatibility with Legacy systems
 - Applications and Advantages
- Overcoming legacy satellite limitations

Satellites Multi Beam Antenna Coverage Flexibility (Example)




- o Satellite Spot Beam with Frequency reuse
 - Available bandwidth is divided into 4 sub-bands
 - Larger capacity by using same sub-band in multiple spot beams
- Satellite coverage flexibility
 - On-orbit coverage changes for Tailored landmass coverage
 - Larger downlink EIRP for smaller user terminals

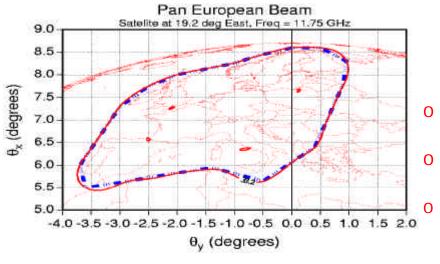
Higher System Capacity Through Frequency Reuse (Example)

Single Wide Area Coverage Beam

- More than ten times capacity
- Higher effective system bandwidth

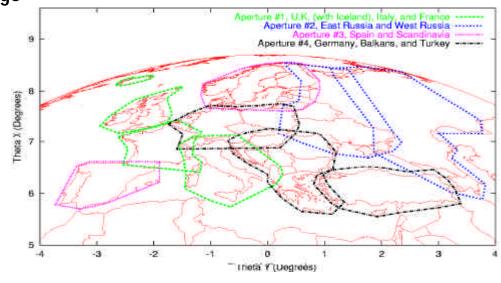
Effective bandwidth =
$$\frac{\text{(number of cells)} \times \text{(allocated bandwidth)}}{\text{Frequency reuse factor}}$$

Example: 50-beam system using dual polarization


Effective bandwidth =
$$\frac{(50 \times 2) (500 \text{ MHz})}{4}$$
 = 12.5 GHz

Equivalent number of 36 MHz transponders \approx 12.5 GHz/40 MHz = 310

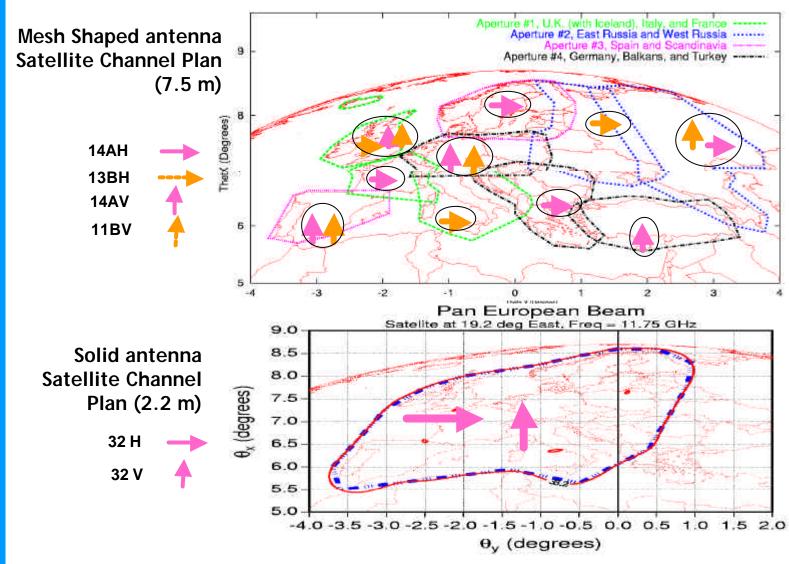
Satellite Mesh Reflector Antenna Coverage Performance (Example)



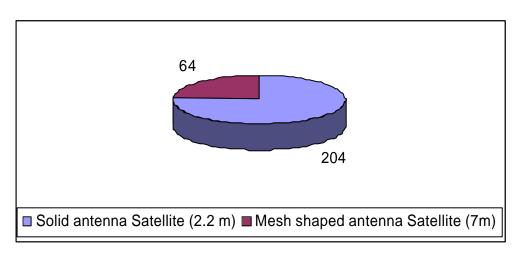
Edge of coverage performance

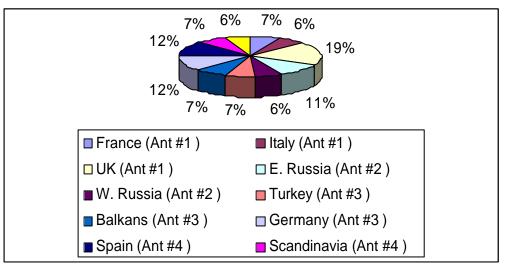
- Solid Reflector Pan European Beam: 33 dBi
- Shaped Reflector European
 Shaped Beams: 34-38 dBi
 1 5 dB improved performance
 over solid reflector

2.2 m Solid antenna Satellite Coverage


7.5 m Mesh Shaped antenna Satellite Coverage

Satellite Channel Frequency Reuse Plan (Example)

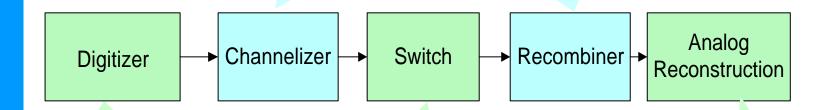




Satellite System Capacity Comparison (Example)

Satellite Capacity Solid Pan European Vs Mesh Shaped Regional

Regional Satellite Beam Capacity (204 Channels)



Digital Transponder Concept Block Diagram

- Divides complex baseband input signal (which contains user channels) into 250 overlapping 0.5 MHz sub-channels
- ALC function levels the power between user channels

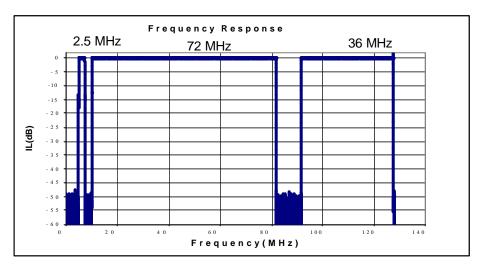
- Sub-channels are reconstructed into their respective user channels with minimal signal distortion (perfect Filter reconstruction design constraint
- Recombines user channels into a one signal with a 125 MHz bandwidth

- Analog to digital conversion of 125 MHz signal centered at 640 MHz
- o Sampling rate 512 Msps
- o 40 dB SNR (6.5 bits)

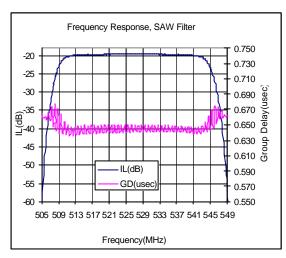
- Routes sub-channel data to the appropriate port
- o Sub-channel remapping
- o Broadcast/multicast

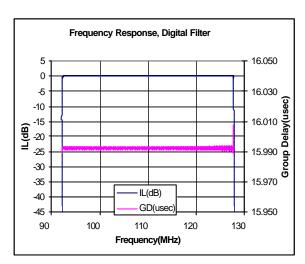
o Converts digital samples to 125 MHz bandwidth analog signal

Digital Transponder Discriminating Advantages



- On-board aggregation from multiple sources
 - Can combine multiple uplink channels from widespread locations into a single downlink
 - Frequency translation and time slot (TDM) switching
- Improved amplitude and phase linearity
 - Digital pre-distortion of HPA
- Increased capacity
 - More efficient modulation, Reduced channel guard band
- Ability to respond to changing markets and traffic patterns
 - Reconfigure connectivity at sub-transponder level
 - Allows selling fractional bandwidth (2.5, 7, 36, 72 MHz)
 - Provides circuit switching between different spot beams
- Backward compatibility with analog transponders
- Lower SI&T costs for complex switching architectures




Frequency Response Comparison Digital Vs SAW Filters

2.5 MHz, 7 MHz, MHz channels in 125 MHz band

36 MHz Bandpass filter

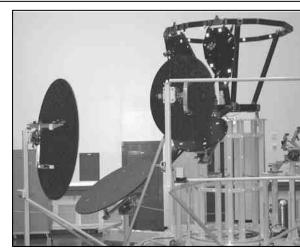
Multimedia Satellite Drivers

- Broadband Multimedia Satellite Industry is going through Transformation and consolidation
- o Service providers
 - Initiate network based satellite fleets for value added service offerings for information intensive markets
 - Team with suppliers for developing business based satellite solution
 - Develop long range transformational architectures to meet Global trends and emerging customer needs
 - Develop regulatory strategies for satellite network operation
- Pull satellite technology from proven manufacturers
 - For application to information intensive multimedia satellites
 - Providing cost effective broadband multimedia satellite system solutions with high performance
 - Expert Systems Engineering Support
 - System definition, analyses and trades for optimum Network
 - Expert advice on standards in network implementation

TRW

Backup Slides

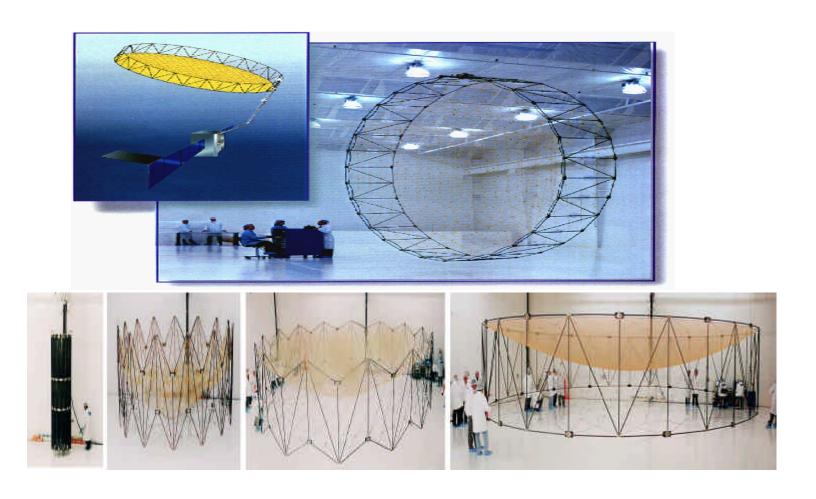
References



- Various paper on this subject are available at TRW WEB site URL: http://www.trw.com/innovations/main
- Broadband payloads for the emerging Ka band markets, 7thKa band conference, M Bever, S Willoughby, E Wiswell, K Ho, and S Linsky, 52nd International Astronautical Federation Congress, Toulouse, France, October 1 5, 2001
- Next generation broadband satellite communication systems" S
 Verma, E Wiswell, AlAA 20th Conference on Satellite Systems,
 Montreal, Canada, May 12 15, 2002
- Venture Development Planning for Broadband Satellite Networks, J Freitag, P Stenzel, J Myers, P Varend, E Wiswell, 5th Ka-Band Utilization Conference, Taromina, Italy, October 18- 20, 1999,

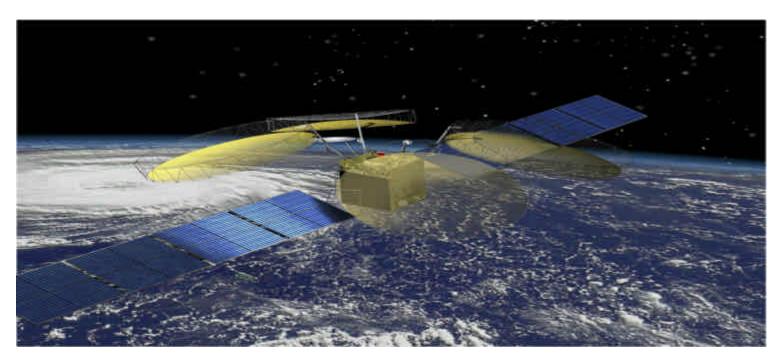
Multi Beam High Gain Antenna (Example)

Antenna Integration Simulator (AIS)


Design Verification Model (DVM) Antenna Upgrade

Antenna Integration Simulator and Design Verification Model

Mesh Reflector Shaped Antenna



Multi Shaped Beam Satellite Concept (Example)

- One Satellite @ 19.2 E with five Satellite Communication Antenna
- o Four antennas to generate ten beams for ten European coverage regions
- o One solid antenna to provide Pan European region beam coverage
- o Higher satellite system channel capacity (204 Vs 64)
- System coverage meeting customer linguistic needs

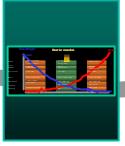
TRW Broadband Satellite Payload Heritage

TRW

Early 1980s to Present

19 years Processed Payload

Experience


1995 to 1996

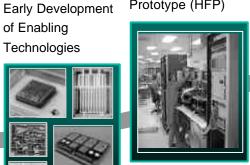
Early Ka-Band Architecture Studies

1996

Identified Enabling Technologies

1998 to 1999

Functional Validation in Hardware


Functional

1996 to 1998

of Enabling

Technologies

Prototype (HFP)

1999 to 2002

Payload Design Verification Model Development and First Flight Payload Delivery