A data flow approach to interoperability

By Arve Meisingset

Preface

This paper is a retyped version of the same paper published in Telektronikk 2/3.93 and is extended by this Preface and the last section on Future work. The pictures of the paper are provided in PowerPoint presentations. See figure numbers in the lower right hand side of the slides.

The purpose of this paper is twofold:

· The first purpose (1) is to show that to choose the right language constructs to depict a software architecture is difficult, and that the traditional function block approach is not very feasible.

· The second purpose (2) is to propose a comprehensive software architecture to one system; this architecture spans mappings from human-computer interfaces to internal telecommunication interfaces and database views; also, the architecture allows for nesting, treating software specifications and implementations in the same way. The architecture provides a grid, where requirements can be developed for each element of the grid, and candidate notations can be placed in a set of (or a portion of) the elements.

A system is in this paper defined to be made up of a set of data that is enforced as a consistent whole. The paper focuses on architecture of one system. The last section on TMN and IN discusses issues that spans more than one system.

A more complete treatment of communication between systems is found in my compendium Specification Languages and Environments version 3.0, University Studies at Kjeller Norway, chapter 7 Software architecture. Requirements for the (external) Terminology schema (see Abstract) are found in chapter 9. Also, interfaces between systems are identified by The URD SystemsPlanning Method Telektronikk 1.98.

The reader is asked to note that the interoperability reference model is an advanced compiler architecture, which allows end user usage, online help, software development, interpretation and distribution.

Abstract

This paper provides basic language notions and motivation for understanding the ‘Draft Interoperability Reference Model’ (1, 2, 3). This reference model identifies candidate interfaces for interoperability extensively between databases, workstations, dictionaries, etc. This Abstract provides a technical summary, which may be found difficult to read and therefore can be skipped in a first reading.

The paper provides language notions for data definitions, logical operations and control. Different groupings of these notions are shown to lead to different computer software architectures. A data flow architecture for the communication between processes is proposed. The processes are controlled by schemata, which contain data definitions and logical operations. The contents of the schemata provide the application specific behaviour of the system.

In order to avoid introducing implementation details, the notion of control flow is discarded altogether. Two-way mappings are used to state the combined precedence-succedence relations between schemata. This allows data flow to be stated as mappings between schemata without bothering about the existence and functioning of processes. The two-way mapping allows data flow in both directions between schemata, meaning that no distinction is made between input and output to a system. Each collection of data can appear as both input and output.

All permissible forms of data in a system are specified in schemata. This introduces a layered architecture. For processes to be able to communicate, they have to share a common language. Each schema constitutes such a candidate set of definitions that processes can share in order to be able to communicate. The different kinds of schemata are:

· Layout schema

· Contents schema

· Terminology schema

· Concept schema

· Internal Terminology schema

· Internal Distribution schema

· Internal Physical schema

This layering results in the basic interoperability reference model; the schemata constitute reference points, which define candidate interfaces for communication. The schema data are themselves data. This implies that there are just as many candidate forms of schema data as for any data. Hence, a nesting of the reference model is introduced. Therefore, we will have to talk about the Layout form of the Layout schema, etc.

The proposed general reference model for information systems is compared with the Telecommunications Management Network (TMN) functional architecture. The TMN functional architecture defines interfaces between the TMN and the outside world. This may be appropriate for stating organisational boundaries. However, when compared with the more general reference model presented in this paper, it becomes evident that the TMN model is not clear on what reference points are intended, and that a better methodological approach is needed.

A comparison with the Intelligent Network (IN) architecture is made, as well. This architecture is better on the distribution and implementation aspects. However, the IN architecture is not capable of sorting the external interface to the manager from the services to the customer in an appropriate way. This is due to the lack of nesting of the architecture.

The reader may like to note that this paper is based on experience obtained during the development of the DATRAN and DIMAN tools and previous contributions to CCITT SG X ‘Languages and Methods’.

Data flow

This section introduces some basic notions needed for analysing interoperation between software systems, or function blocks inside software systems.

A computer software system can receive input data and issue output data according to rules stated in a set of program statements. This program code will comprise data definitions, logic and control statements. See Figure 1a.

The control statements put constraints on the sequence in which the logic is to be performed. Most current computers (the so-called ‘von Neumann architecture’) require that the statements are performed in a strict sequence (allowing branching and feedback) and allow no parallelism. This control flow together with the logical (including arithmetical) operations is depicted in Figure 1b.

The data flow, in Figure 1c, depicts data to the logical operations and their outcome. We observe that the data flow states what operations are to be performed on which data. The data flow permits parallelism and is not as restrictive as the control flow.

Data definitions are data, which declare the permissible structure of data instances. Logical operations are data, which state constraints and derivations on these data. Control flow is a flow of data, which is added to restrict the sequencing of the logical operations on the data.

However, more ways exist to achieve the desired computational result than is stated in a chosen data flow, e.g. observe the parenthesis in the shown formula in Figure 1c can be changed without altering the result: (X-3)*2+(Y+1)=2*X+Y-5, etc.

A specification of what data are needed for producing which data, is called a precedence graph (4). This is shown in Figure 2a. To avoid arbitrary introduction of unnecessary sequences, the precedence graphs are only detailed to a certain level. Decomposition is illustrated in Figure 2b (missing). The functions needed are associated with the leaf nodes of the graphs. However, when carrying out the decomposition, no association to functions is needed.

Precedence relations between data are identified by asking what data are needed for producing which data, starting from the output border, ending up on the input border of the analysed system. The converse succedence relations are found by starting from the inputs asking what outputs can be produced. When the graph this way is made stable, the combined precedence and succedence analysis is followed by decomposition, called component analysis, of the data and nodes, and the analysis is repeated on a more detailed level.

We observe that precedence graphs are less concerned with implementation than data and control flow graphs. However, in practice, analysts are regularly confusing these issues. In complex systems they are unconsciously introducing both data flow and control flow in their analysis, which ideally should be concerned with precedence relations only.

In order to separate data and control, we will introduce direct precedence relations between data. This is shown in Figure 2c.

Rather than associating the logical operations with control, we will associate them with data. The result is shown in Figure 2c. Here the logical operations are depicted as being subordinate to the data, which initiate the processing. Other approaches are conceivable. However, the details of language design are outside the scope of this paper.

The processes associated with control are considered to be generic and to perform the following function:

· For each data item appearing on the input

· Check if its class exists

· Validate its stated references

· Enforce the stated logical constraints and derive the prescribed data

· Issue the derived output

In order to access input to the validation function, precedence relations are needed. In order to assign the result to output, succedence relations are needed. Therefore, two-way mappings are introduced. The resulting architecture is called a data flow architecture, because processing is initiated based on appearance of input data.

Precedence relations are similar to functional dependencies used when normalising data according to the Relational model. However, functional dependencies are stated between individual data items, while precedence relations are stated between data sets.

Software in the Data flow architecture is partitioned into:

· Schema, consisting of Data declarations and Logical statements to be enforced on these data

· Processor, the mechanism that implements the control functions that enforce the rules stated in the Schema.

This generic separation is depicted in Figure 3.

The collection of data instances, which are enforced according to the Schema of the software system, are collectively called the Population relative to the Schema. The Population data comprises input, output and intermediate data, e.g. u, v, w in Figure 1.

We recognise that, so far, all graphs illustrate data classes and not data instances, except in Figure2c. Here the direct data flow arrows between the processes depict flow of data instances that are enforced according to the rules stated among the classes found in the Schema. There may be no absolute distinction between Schema and Population data. To be schema data and population data are just roles played by the data relative to the processor and each other. However, this issue is outside the scope of this paper.

We will end this section with a last remark about notation. The mapping between schemata states that there exist (two-way) references between data within the schemata. It is the references between the data items that state the exact data flow. The details of this is also outside the scope of this paper.

The notions introduced in this section allow the separation of data definitions, including the logical operations, from control flow. This again allows the system analysts to concentrate on defining the schema part without bothering about implementation. We will use these notions to identify candidate interfaces for interoperation between software function blocks.

Layering

For two processes to be able to communicate, they have to share the same ‘language’, i.e. they must have the same data definitions for the communicated data. Therefore, in order to identify interfaces inside a software system, we have to identify the data that can be communicated between two software blocks and constraints and derivation rules for these data. These rules make up the schemata. Hence, we will first identify the candidate schemata.

Data on different media can be defined by separate schemata for each medium:

· External schemata define the external presentation and behaviour of data

· Internal schemata define the internal organisation and behaviour of data.

See Figure 4. If we want to allow communication from all to all media, we have to define mappings between every two schemata. Rather than mapping each schema to every other schema, we introduce a common central schema, labelled the Application schema.

The Application schema

· defines the constraints and derivations which have to be enforced for all data, independently of which medium they are presented on.

See Figure 5. Additional notions are defined as follows:

· System schema contains, except for the External, Application and Internal schemata:

· System security data, including data for access control

· System directory data, including data for configuration control

· System processor, includes the External, Application and Internal processors, administrates their interoperation and undertakes directory and security functions

· System population contains, except fro the External, Application and Internal populations, data instances of the System directory and System security

The notion of a Layer comprises a grouping of processors, which enforce a set of schemata on corresponding populations, including these schemata and populations; no population can have schemata outside the layer; the processors, schemata and populations of one layer have similar functionalities relative to the environment.

See Figure 6. Each layer can be decomposed into sublayers, containing corresponding component schemata:

· External schema (ES), is composed of

· Layout schema (LS), which defines the way data are presented to the user

· Contents schema defines the contents and structure of the selected data and permissible operations on these data in a specific context

· Application schema (AS), is composed of

· Terminology schema (TS), which defines the common terminology and grammar for a set of external schemata

· Concepts schema (OS), which defines the common structure, constraints and derivation of data, common for all terminologies that are used in the system

· Internal schema (IS), is composed of

· Distribution schema (DS), which defines the subsetting of the Application schema for one medium and the permissible operations on this medium

· Physical schema (PS), which defines the internal storage, accessing, implementation and communication of data and their behaviour

See Figure 7.

It is possible to have several alternative presentations, defined in the Layout schemata, from one Contents schema. It is possible to have several alternative selections of data, defined in the Contents schemata, from one Terminology schema. It is possible to have several alternative terminologies, defined in the Terminology schemata, of the same notions, defined in the single Concept schema of one software system. See Figure 8. This figure illustrates that mappings asserting permissible data flow can be stated between schemata without any mentioning of processes.

Figure 9 illustrates how interfaces can be identified and processes can be added when the schemata are given. Two processes have to share a common language to be able to communicate. The schemata of the reference model make up the candidate languages for communication. Therefore, they are called reference points for communication. The schemata serve as communication protocols between communicating processes. Data are enforced according to the (schema) protocol on both sides of the communication link. Note that all transformations and derivations of data take place inside the processes.

Nesting

In some cases the initial common language of two processes can be very limited. This language can be extended by data definitions using basic constructs of the limited language only. The data definitions must then be communicated using the limited language, before communicating the data instances according to these definitions. The limited language is a schema of the data definitions. The data definitions make up a schema to the data instances. The limited language is a meta-schema relative to the data instances. This way, by recursive usage of the reference model, we can get general and powerful means of communication and computation. The details of this approach will not be dealt with in this paper.

Let us study a second way of nesting the reference model. The current layered data flow architecture, as depicted in Figures 7 and 8, is appropriate for communicating data instances between two media. The data instances are basically the same on these media. However, the physical appearances and organisation can differ. Also, their classes, defined in the schemata, can be different. This allows for substituting e.g. French headings with Norwegian ones. If, however, we want to replace one set of data instances in one terminology with another set in another terminology, the existence of both and the ‘synonymity’ references between them have to be persistently stored in a database. For example, John may correspond to 12345, Bill to 54321, etc. This way, the references between data in different Terminology schemata may not only state flow of transient data, but state references between persistent data. Since all persistent data are stored in a database, the reference model itself is needed to manage these references of the reference model. This way, we get a nesting of the reference model.

A third way of nesting the reference model is shown in Figure 10 through 13. Since all schema data are ordinary data, these data can be managed using the reference model itself. This is illustrated both for the management of schemata and meta-schemata. The result is a very complex topic, labelled ‘The schema cube’. The main message in these figures is that it is not sufficient to settle what schema (or interface) to specify. You also have to choose what form (and what interface) to apply to this specification. For example, you may choose a Layout form for the specification of the Layout schema, or you may choose the internal Terminology form, for programming the Layout schema.

Comparisons

Figure 14 (missing) depicts the overall Telecommunications Management Network model (5). Note that in later versions Q3 has been replaced by the more general Q interfaces. Also, in this presentation we see no need for distinguishing between the TMN functional architecture and its physical architecture. This reference model delimits the TMN from its outside world, and work is undertaken to define the interfaces to this outside world. However, this way, the TMN model is an organisational model, which defines what is inside and outside TMN, and is not a reference model in the technical sense we have been discussing reference models in this paper. Exceptions can be made for the f and g interfaces, which are technical. However, no progress is made on specifying these. Figure 9 depicts the available reference points from a technical point of view. It is not clear which of these reference points are intended for any of the TMN interfaces. Also, even if TMN languages are defined for some of the TMN interfaces, it is not clear what schema they correspond to, and the relevant requirements on these languages are not clearly identified. Note; this paper does not discuss the UTRAD method and the various interface technologies being used.

The Intelligent Network architecture is shown in Figure 15 (missing) (6, 7). This architecture has got a much more technical character than that of the TMN model. The bottom ‘planes’ correspond quite well with the internal layer of Figure 7. But a minor warning must be made. In Figure 9, the users, terminals, subsystems, logical files, and physical resources are defined in the Directory part of the System schema and not inside the Distribution schema. The Physical schema states just what contents is mapped to a physical resource. This allows communication and ‘distribution’ to take place on any of the interfaces. In the IN architecture this seems to take place in the Distribution plane only.

When we come to the top planes of the IN architecture, it diverges even more from the Interoperability reference model presented in this paper. The Function plane may correspond to the Application schema. But the Service plane does not fit in. The reason is that what is specified inside the Service plane corresponds to the External schemata, i.e. of the TMN operator. This requires a nesting of the reference model, as shown in Figures 10 through 13, which is not provided in the IN architecture.

This comparison of reference models is a first exposition of what kind of difficulties will be encountered when attempting to analyse and integrate different systems developed according to different reference models. (8) provides a comparison of the TMN and IN reference models. The result is summarised in Figure 16 (missing). However, the paper lacks a technical and methodological analysis, as suggested in this article. The methodological problem with the two reference models and the comparison is that they start with identifying function blocks, which necessarily must be implementation oriented. As explained in this paper, the analysis and design of reference models should start with identifying the data and their relationships.

Future work

In addition to the proposed reference model for one system,

1. other candidate reference models have to be identified,

2. criteria and perspectives will have to be developed for such comparisons,

3. this reference model will have to be compared with other reference models, such as the Open Distributed Processing framework,

4. requirements will have to be developed for each element of the reference model,

5. each notation has to be evaluated for use in each element of the reference model,

6. a map has to be developed on the combined use of notations.

References

1. Meisingset, A. Draft interoperability reference model. Norwegian Telecom Research, Systemutvikling 2000, D-3 (2). Also contributed as Working document to ETIS, Berlin 1993.

2. Meisingset, A. Identification of the f interface. Norwegian Telecom Research, Systemutvikling 2000, D-5 (2). Also contributed as Working document to ITU-T SG4, Bath 1993.

3. ITU. Draft Recommendations Z.35x and Appendixes to draft Recommendations, 1992. (COM X-R 12-E).

4. Langefors, B. Theoretical Analysis of Information Systems. Studentlitteratur Lund, 1966. Philadelphia, Auerbach Publishers Inc., fourth edition, 1972.

5. ITU. Draft Recommendation M.3010, 1991. (COM IV-R 28-E).

6. ITU. Draft Recommendation Q.1201, 1992. (COM XI-R 108-E).

7. Skolt, E. Standardisation activities in the intelligent network area. Telektronikk 88(2), 1992.

8. ETSI. Baseline document on the integration of IN and TMN. European Telecommunications Standardisation Institute, 1990.

PAGE
1

