Methodological dimensions

By Arve Meisingset

Abstract

This paper classifies methods and their notations along three dimensions:

· Scale of granularity

· Phases of development

· Approaches to application areas.

The second last section comments on use of methods and notations in standardisation work, and notes how this differs from use in development work.

The last section extends the scope outside the computer system to usage and contexts of usage.

Note: Figures to the paper are provided in a PowerPoint presentation.

Definitions

A method is understood as a prescribed systematic undertaking to reach a goal. Different prescriptions yield different methods. The goal of the method is here understood as a successful implementation and operation of a set of or part of information systems. The information system is basically automatic, but must exist in a partly manual environment, and the interfaces to its environment are essential to its success.

The term methodology describes systematic studies of methods. This comprises teaching about methods, analysis of their starting points, goals, internal consistency, approach, focus, user involvement, tools, application areas, development speed, etc. and comparison of these aspects across various methods and contexts of their use.

While the term method may be used to denote an abstract approach, like the hypothetical-deductive method, the term technique is used to denote a particular implementation or tool for implementation. A notation may therefore, be considered to be a technique. Also, a particular organisation and planning of a development project can be considered a technique, which complies to the method. We will not restrict the use of the term method to the abstract interpretation, but allow methods to be both abstract and concrete.

Scale of granularity

Methods may address information system development at different level of granularity. We may identify the following levels arranged from the most to the least detailed level:

1. Module development

2. System development

3. Systems planning of an organisation

4. Interoperation planning between organisations

5. Information society planning

Much development within ITU has been focused at defining certain interfaces and processes, which we may classify to be at the Module level (1). Component development and component architecture may belong to this level, as well.

Some developments of large projects within ITU may be considered to be developments at the System level (2). A system is here understood to be made up of a set of data that is enforced as a consistent whole. System development will comprise development of all the manual and automatic interfaces to the system. Therefore, telecom operators must address system development, which may use component from a software vendor.

Systems planning (3) comprises identification of an optimal set of systems for an organisation and the interfaces between these systems. Successful systems planning is essential for every telecommunication operator. The TMF Telecommunication Operation Map is an attempt to provide a generic process/not systems model to telecommunication operators, however, it cannot define what is an optimal set of systems, as this ii dependent on the organisation of the operating company.

Interoperation planning (4) comprises identification of data to be interchanged between systems and organisations and definition of processes for this interchange, including their implementation. This planning is needed to achieve efficient interoperation within a large company and with its collaborators and customers. The TINA-C business model is an attempt to provide a generic solution to this area. However, the detailed exchange of data is organisation dependent, and different technologies may be appropriate for different exchanges of data.

Information society planning (5) is seldom provided as a prescription for the society as a whole, but contributions to this can be found in governmental edi plans, in web portal designs, web analysis etc.

The methods used at the different levels of scale may differ a lot, due to different granularity of the specifications, but also due to different concerns at the various levels.

A certain notation may be used at several levels of scale of granularity, but it is important to identify its primary level of use.

Phases of development

Different methods take different starting points and provide different results.

For example, a Requirement-Analysis-Design (RAD) method takes for granted that it is possible to start writing requirements without doing Surveying, Analysis and Overall design first. Also, it is not evident that it is possible to write requirement fragments without making conscious overall designs of data, functions and interfaces or of systems, modules and their interoperations.

The scope of the method used can be very different for a telecom operator and for a software vendor. The operator must be concerned with how the purchased system will interoperate with the other systems and the manual organisation treating both new and old forms of data. The software vendor may have a more limited scope, and the RAD approach may be more appropriate for this use. A vendor may consider relations to network elements, which the operator may not see. A telecom operator is not satisfied with receiving a tested program system; his goal is a well functioning and integrated set of programs and data in use in the organisation, including successful training and data conversion.

It is not our intention here to prescribe a certain method or the waterfall method in particular. Rather, the following list identifies a set of methodological areas which a method may partly or fully support:

1. Surveying

2. Analysis

3. Overall design

4. Detailed design

5. Implementation

6. Validation and testing

7. Introduction, training and conversion

8. Operation and use

Surveying (1) comprises description of current situation, problems and ideas for improvements.

Analysis (2) comprises decomposition and decoupling of issues and formulation of goals.

Overall design (3) comprises the main design choices, such as delimitation of system and system architecture, design of objects and relations of the Application schema, design of identifiers, main principles for user interfaces etc.

Detailed design (4) comprises design of all remaining aspects of the outside view of the system, including all data and behaviour definitions, all external functions, all interfaces to surrounding systems etc.

Implementation (5) comprises all technical design choices.

Validation and testing (6) comprise validation of implementation according to specification, and testing according to test specification.

Introduction, training and conversion (7) comprise all activities to put a fully developed system into operation, including training of personnel and preparation and conversion of old and new data.

Operation and use (8) comprises all activities for successful operation of the system, such as database management, control, supervision, support, maintenance etc.

A method may only support a subset of the above phases, but its use may be strongly dependent on how easily it can be integrated with results from previous phases and provide usable results to subsequent phases. Also, methods for various scales of granularity, see previous section, may be very different, and methods for different application areas may be different – to develop real-time software for a mobile terminal may be very different from developing a database centred application for an Operation Support System. Also, note that a software component package vendor, a software integrator consultancy company and a telecommunication operator systems planner may have very different methodological needs.

A notation may be used in several phases, but it is important to identify its primary intended use.

Approaches to application areas

Methods for different application areas may be different. There may exist no universal classification of application areas. Rather we will classify them according to what notation and methodological issues are in focus. We identify the following areas:

1. Data oriented approach

2. Process oriented approach

These approaches may be divided into sub-approaches, and the focus may become somewhat different from what the names indicate.

A data oriented approach (1) is typically used for data intensive applications, such as database applications, but may also be used for handling human-computer interactions and comprehensive interfaces to other systems. Object oriented data design may structure the data according to objects and relationships, with attributes and behaviour as subordinate details. Inheritance and information hiding may not be appropriate for data design. Other data oriented approaches may be relational or equational.

A process oriented approach (2) typically starts with function block and process design, and adds channels, interfaces, behaviour and data types. Some process oriented approaches may be abstract, like process algebra, while others are close to implementation, i.e. much like program design. Program design oriented methods may provide good control over use of (hardware) resources, real time operations and quality of each process.

The data oriented approaches may, due to the centralised design of data, provide better harmonisation of the design of the entire system and its interfaces than the process oriented approaches, which focus on correct functioning of each process.

Note that both the data oriented and a process oriented approaches may be applied to one and the same application area. It may not be appropriate to use both, but to choose between alternative perspectives.

Notations for data oriented versus process oriented approaches tend to be very different.

Standardisation

Many methods may act as rituals to socialise the project workers and may not provide an efficient prescription to achieve a goal. Some methods may produce intermediate views, results and transformations, which may not contribute to efficient discussions of the issues at hand.

That a certain method is followed may provide no guaranty of a successful result. However, each method may have different foci and a certain choice of method may signal agreements or disagreements on what are the main problems and goals. If, for example, the method and its notations focus on function block and process design, this is a clear indication of priority of the process perspective over e.g. the database perspective or a human-computer perspective.

There may be no right generic method for every problem. The management problem is often to choose and combine techniques to efficiently address the issues at hand, and often the choices have to be adjusted to the people and tools available, as well.

Standardisation is a particular kind of development. Often it does not start with surveying and analysis, as would be the appropriate activities within a telecommunication operator organisation. Also, it typically ends up with a standard, as a partial specification, and not with a full system in everyday operation, as would be the case for a telecommunication operator. Therefore, methods for standardisation work and for development within a telecommunication operator or vendor organisation should not be confused, but be clearly distinguished.

Often requirement specifications may not be a very useful part of a standard, but may be needed for the contributors to agree on the goal. Therefore, requirements may be discarded from the standard, if not, a very complex maintenance work may be needed between different ‘viewpoints’ of the standard. This kind of redundancy between viewpoints should be avoided.

However, standards frequently do not place themselves into a framework of a comprehensive reference model. Therefore, they may be difficult to understand and difficult to transform, if the situation and use change. Hence, more emphasis should be put on providing this context within each standard.

Finally, the notations used for standardisation may differ from notations used for system development, but compliance may ease the implementation and use of the standard. To implement from a standard is a very different task from development of a system based on surveying and analysis of business needs.

Future work

In addition to the previous three dimensions, we should investigate if classification of notations is needed on usage aspects, like

· stakeholders

· tasks

· contexts

· goals

· user organisation

· manual routines

· dialogues

· scenarios

· functional requirements

· non-functional requirements

· etc.

and notational and specification usage aspects, like

· graphic notation

· alphanumeric notation

· selection and projection of specifications

· online help and access via specifications

· etc.

The last set of bullets relates to the interoperability reference model; see separate paper. The first set seems to ask for a separate reference model or classification of usage aspects, and we may need to identify the relationships between and commonalities of these reference models.

Assuming the previous dimensions, candidate notations will have to be classified according to these (three dimensions) and the two dimensions of the interoperability reference model.

Bibliography

1. Bygdås, S, Jørgensen, M. Software development methods and life cycle models. Telektronikk 2/3.93.

2. Meisingset, A. Systemutvikling – flerløps systemutviklingsmodell og arbeidsmetodikk. Telenor FoU TF-rapport 29/87.
3. Meisingset, A. A data flow approach to interoperability. Telektronikk 2/3.93.
4. Meisingset, A. The URD systems planning method. Telektronikk 1.98.

5. ITU. Recommendation M.3020.

6. TMF. Telecommunication Operation Map. xxxxx

7. TINA-C. Business Model. xxxxx

PAGE
1

