Confidentiality and Security for e-Health

C. Peter Waegemann
CEO, Medical Records Institute (MRI)
Chairman and Acting Director, Centre for the Advancement of Electronic Health Records (CAEHR) UK
Chair, Standards Committee ASTM E31 on Healthcare Informatics
Chair, US TAG to ISO TC 215 on Health Informatics
Chair, ISO TC 215 Task Force on Consumer Interests
Vice Chair, Mobile Healthcare Alliance (MoHCA)
What is e-Health?

• Internet-enabled Healthcare Applications
 – Consumer Health Information
 – Personal Health Records
 – Internet-based Services (e-Pharmacy, e-Care (incl. email and e-communication, etc.))

• Electronic Health Record (EHR) Systems

• Administrative and Financial Health Systems
Importance of Healthcare Security

• Confidentiality/Data Security
• What if something goes wrong?
 – System’s Failure (Crash or virus causes loss of data)
 – Outside force damages (hacker, other)
 – Disaster
• Design Issues (Signature, authentication, others)
• Compliance Issues
How is Healthcare Security Different From Other Industries?

- Not bilateral conditions
- Regulated (US: HIPAA and other regulations)
- Community interest
- Legal issues
e-Health Security Issues

• Security for (Patient) Confidentiality
• Security that Enables Electronic Health Records
 – Authentication
 – Data Integrity
• Systems Security
 – Secure Transmission
 – Secure Processing
 – Secure Storage
 – Etc.
General Security Standards

200+ Standards for Internet and General Information Systems

Healthcare-specific Security Standards

- **Authentication**
 - Identification
 - Signature
 - Non-repudiation

- **Data Integrity**
 - Encryption
 - Data Integrity Process
 - Permanence

- **System Security**
 - Communication
 - Processing
 - Storage
 - Permanence

- **Internet Security**
 - Personal Health Records
 - Secure Internet Services
Security on the Internet

- Reliability of Health Information on the Net
- Trust to e-care
- Trust to e-pharmacy
Personal Health Records

• Secure Documentation
• Secure Storage
• Relationship Between the Consumer/Patient and the Website Organization
ASTM E2211

- **Data Mining**: For IIHI, PCHR suppliers shall allow consumers to choose if and how any personally identifiable information collected from them may be used. These choices shall be presented in a manner requiring that the consumer give specific permission for use of such data.
- **Policies**: The PCHR supplier shall allow a consumer or other authorized individual easy access at any point in the PCHR application to the policies and standards to which the PCHR supplier site adheres, as well as their associated charges, if any.
- **Access**: A PCHR supplier shall provide the consumer with the ability to access data within the PCHR in order to verify its correctness or to contest its accuracy and completeness, or both. Access policies shall describe the turnaround time related to such requests (time from request to access), shall specify associated charges, and shall include instructions for contesting and correcting inaccurate or incomplete data.
- **Integrity**—A PCHR supplier must be able to assure data integrity through audit trails and other security methods and shall disclose its quality assurance policies regarding maintenance of data integrity.
- **Retention**—The PCHR supplier’s disclosure statement shall state the length of time that the information will be stored and maintained.
Confidentiality

- Confidentiality is Governed by Local/National Legislation and Provider Policies
Scope: To develop standards that address access, privacy, confidentiality and data security of health information in its many forms and locations.

- **E 1869** Guide for Confidentiality, Privacy, Access and Data Security Principles for Health Information Including Computer Based Patient Records
- **E 1986** Standard Guide for Information Access Privileges to Health Information
- **E 1987** Standard Guide for Individual Rights Regarding Health Information
- **E 1988** Standard Guide for the Training Persons Who Have Access to Health Information

PS 115 Provisional Standard Specification for Security Audit and Disclosure Logs for Use in Health Information Systems

Standards Under Development
- **Draft PS 105** Provisional Standard Guide for Amendments to Health Information
- **Draft Standard for Utilization and Retention of Encrypted Signature Certificates**
Security for EHR Systems

- Documentation Method
- Authentication
- Data Integrity
- Systems Security
Mobile Healthcare
Communication and Computing Device

Any (small) portable and unobtrusive computing and/or telecommunications device that assists in the collection, retrieval or communication of data relevant to medical care
Mobile communications devices and healthcare

• Situation:
 – Mobile wireless devices are entering hospitals and other health care environments
 – Device support applications providing increased productivity and decreased medical errors
 – Past issues with wireless equipment give cause for concern and caution regarding potential issues in their usage
 – Some institutions have issued bans
• What is the appropriate security?
• What security standards are needed?
RF Wireless already seen in hospital

- Paging
- Cellular (incl: Blackberry, RIM)
- Wireless LAN (WiFi)
- Wireless Medical Telemetry System (WMTS)
- Bluetooth
- Radio/TV stations
Wireless technology/application

Personal Area Network
- 802.15.1: Bluetooth
- 11-54Mb/s
- 30m

Local Area Network
- 802.11
- 100Mb/s
- 100m

Metropolitan Area Network
- 802.16
- 100Mb/s
- >1000m

Wide Area/Mobile Network
- Cellular voice, data
- 30-100kb/s
- >5000m

Networking

Connectivity

VoIP
What Are General Mobile Health Computing (MHCD) Applications?

A. Handheld (Point-of-Care) Information Accessing Devices
B. Intermittently Connected Computing Devices
C. Locally (Always) Connected Computing Devices
D. Long-Range Connected Computing Devices
EMI/EMC

• Three Approaches
• Lack of Data on Risk
• Varies by Technology: WiFi not as dangerous
• Ad-hoc Testing
Has the Content Changed Since a Signature Has Been Affixed?

- Need for Determination of Lower Threshold
- Signature is to be Changed When Document is Changed or Deteriorated
<table>
<thead>
<tr>
<th>Signature Type</th>
<th>Identification</th>
<th>Encryption</th>
<th>Data Integrity</th>
<th>Signature Action</th>
<th>Document Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Signature</td>
<td>Universally with PKI – Registration Authority – Capture through Token or biometrically</td>
<td>Asymmetric with private and public keys – Certificates from CAs</td>
<td>Hash Function Full guaranteed integrity – full non-repudiation</td>
<td>Consciencious signing</td>
<td>Binding, compliant with healthcare attributes; amendments managed</td>
</tr>
<tr>
<td>Electronic Signature (1)</td>
<td>Bilateral identification with tokens or biometrically</td>
<td>Symmetric encryption</td>
<td>MAC</td>
<td>Consciencious signing</td>
<td>Binding, compliant with healthcare attributes; amendments managed</td>
</tr>
<tr>
<td>Electronic Signature (2)</td>
<td>Bilateral identification with passwords</td>
<td>Symmetric encryption</td>
<td>MAC or less</td>
<td>Consciencious signing</td>
<td></td>
</tr>
<tr>
<td>Electronic Signature (3)</td>
<td>System/enterprise-wide ID only with passwords or similar</td>
<td>Symmetric encryption</td>
<td>Through audit trail and log-on systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Signature (4)</td>
<td>Passwords</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Signature (5)</td>
<td>Self-proclaimed</td>
<td></td>
<td></td>
<td>yes</td>
<td></td>
</tr>
<tr>
<td>Electronic Signature (6)</td>
<td>Self-proclaimed</td>
<td></td>
<td></td>
<td></td>
<td>By default</td>
</tr>
</tbody>
</table>

Best

Least Secure
Biometric Identification

• Identification of Body Parts
 – Fingerprint
 – Retina Scan
 – Face Scan
 – Hand Scan

• Identification of Person-specific Processes
 – Keystroke Recognition
 – Speech Pattern
 – Writing/Signature
Beginning with e-Prescribing. Leveraging better ways of identifying ourselves to other services.
System Security

- Information Flow (Chain of Trust)
- End-to-End (Point of Origination to Point of Access Security)
- Stewardship Issues
- Accountability
- Audit
- Access Control
- Encryption
- Trusted Data Stores
- Trusted Communications
- Data/Function Classification
- User/Role Clearances
- Non-repudiation
- Signature Architecture
- Back-up/Recovery
Performance

• Response Time
 – Systems failure if practitioner can do it faster and there are no other benefits
 – Dependent on database and technical approaches
 • Database server is bottleneck
• Underlying Technology and Presentation/Navigation Issues
• Scaling
Reliability: Unscheduled Downtime

99.9% Availability → 8.76 unscheduled hours of non-availability

99.999% Availability → 5.25 Minutes per Year
US National Standards

- HIPAA
- E31.20 Data and System Security for Health Information
- E1714-00 Standard Guide for Properties of a Universal Healthcare Identifier (UHID)
- E1762-95 Standard Guide for Electronic Authentication of Health Care Information
- E2084-00 Standard Specification for Authentication of Healthcare Information Using Digital Signatures
- E2085-00a Standard Guide on Security Framework for Healthcare Information
- E2086-00 Standard Guide for Internet and Intranet Healthcare Security
- E2212-02a Standard Practice Healthcare Certificate Policy
- E31.22 Health Information Transcription and Documentation
Regional and International Standards

- CEN TC 251
- ISO TC 215
- Others
There is a notable contrast between sectors regarding inappropriate access to patient records by authorized users within the organization:
- IHDSOs are very concerned
- Solo/Small practices are much less concerned

The greatest concern of the Solo/Small practices is ‘Access to patient record information by unauthorized users’

The Ambulatory sectors are less concerned about ‘Violations of data security policies and practices’
In general, the use of data security protections is fairly high for:
- Access control methods
- Protection of data over networks
- Protection of data within the enterprise

The area where data security protection is least implemented is authentication of users.
Data Security Guidelines, Standards, or Features Implemented or Planned

- IHDSOs have significantly higher levels of implementation; Hospitals are slightly above average; Medium/Large practices are about average; and Solo/Small practices fall significantly below average.

- IHDSOs are especially strong in implementing data security protection within the enterprise (i.e., policies and practices, backup/recovery procedures, and Audit logs).

- In contrast, Solo/Small practices are weakest in implementing data security protection within the enterprise.
Summary

• How long will it take to implement a fully operable electronic health record?
 – A long road ahead
• The same applies to security standards
• Practical security standards needed to cover the current status of EHR developments
Attend:
Mobile Healthcare Conference
September 8-10 2003 Minneapolis Hilton

Survey on Electronic Health Record Usage and Trends

www.medrecinst.com

Copies of these slides may be obtained by emailing peterw@medrecinst.com