IPCableCom / MediaCom 2004 / Interactive Multimedia Workshop ITU, Geneva, 12 - 15 March 2002

Interoperability in Multimedia and Data Broadcasting

A MediaCom 2004 Presentation by

Shuji Hirakawa Media & Contents Business Division, Toshiba Corporation e-Solution Company

Vice Chairman, ITU-R Working Party 6M

WP 6M Activities for Multimedia-and-Data Broadcasting

- ITU-R Working Party 6M and ITU-T Study Group 9 established Joint Rapporteur Group 1 (JRG-1) as the first joint studying body between ITU-R and ITU-T in March 2001
 - There are four major SDOs for multimedia and data broadcasting systems;
 - ARIB (STD-B.24)
 - ATSC (A/65, A/90, DASE) for terrestrial television
 - DVB (MHP)
 - SCTE (OpenCable/OCAP) for cable television
 - WP 6M is seeking interoperable mechanisms between these multimedia and data broadcasting systems

Digital Broadcasting Systems for Fixed Reception and Mobile Reception

		ARIB	North America	DVB/ DAB
Fixed Reception	Terrestrial	System C in BT.1306	System A in BT.1306	System B in BT.1306
	Satellite	System D in BO.1516	System B, C in BO.1516	System A in BO.1516
Mobile Reception	Terrestrial	System F in BS.1114	System C in BS.1114	System A in BS.1114
	Satellite	System E in BO.1130	System D _H in BO.1130	System A in BO.1130

Physical layers of all broadcasting systems are designed to satisfy the different requirements of respective regions

Table 1 Physical Layer Specification

Multimedia-and-Data Broadcasting System for Several Physical Broadcasting Systems

		ARIB	North America	DVB/ DAB
Fixed Reception	Terrestrial	STD-B.24	ATSC-DASE	DVB-MHP
	Satellite	STD-B.24	Proprietary	DVB-MHP
	Cable	(STD-B.24)	OCAP	DVB-MHP
Mobile	Terrestrial	STD-B.24	Proprietary	DAB-MOT ETSI EN 301 234
Reception	Satellite	STD-B.24	Proprietary	DAB-MOT ETSI EN 301 234

Table 2 Multimedia and Data Broadcasting Specification

Interoperability between Fixed Terrestrial and Satellite Television

There is no interoperability between System B and C in BT.1306 or System A and D in BO.1516 regarding physical layer architecture

MPEG-2

Systems

QPSK / 8 PSK in Ku Band

Front End for System A / D in BO.1516

> OFDM in VHF/UHF

Front End for System B / C in BT.1306 MHP / ARIB B-24 Multimedia / Interactive System

Back End MPEG-2 Video SDTV / HDVT

Interoperability between Fixed/Mobile and Sound/Television Systems (1/3)

- All broadcasting systems for various distribution media such as Satellite Television, Terrestrial Television, Satellite Sound and Terrestrial Sound adopt the same transport mechanism, i.e., MPEG-2 Systems
 - Terrestrial television signal has 13 segments of its frequency domain format
 - Each of these segments could have a different physical parameters
 - Up to three kinds of parameter sets could be selected in order to satisfy different requirements
 - The centre part of 13 segments could be received by terrestrial sound broadcasting receiver
 - This segment usually uses QPSK or 16 QAM with high forward error correction capability for mobile reception

Interoperability between Fixed/Mobile and Sound/Television Systems (2/3)

Table 2 shows the interoperability between the different systems for multimedia and data broadcasting systems All ARIB broadcasting systems use MPEG-2 Systems for service multiplexing and Standard B.24 for multimedia and data broadcasting

Terrestrial sound broadcasting receiver could handle the centre segment of 13-segmented terrestrial television signal Both centre segment of terrestrial television broadcasting signal and the whole part of a terrestrial sound broadcasting signal could be received by portable receivers By adding a front end of BSS (s) signal, a portable receiver could also decode BSS (s) data streams because all broadcasting systems adopt the same multimedia and data broadcasting standard

Interoperability between Fixed/Mobile and Sound/Television Systems (3/3)

Interoperability in Multimedia and Data Broadcasting Systems

	ARIB	DVB MHP/	ATSC
	STD B.24	OCAP	DASE
Data	Data	Object	Data
Transmission	Carousel	Carousel	Carousel
Presentation	BML	X-HTML	X-HTML
Execution	ECMA Script (+ JAVA)	JAVA	JAVA

Currently, JRG-1 is extracting the common parts of these systems

Interoperability using Transcoding

The first solution is a transcoding method converting original contents to a local format

It is better to prepare the well-formed original contents considering the limitation of transcoding capabilities if required a smart outputs

Interoperability using XML

The second solution is the adoption of XML for authoring multimedia and data broadcasting contents

These XML contents may be converted suitable for more than one distribution media by using different CSSs

Interoperability using Multi-Standard Set-Top-Box

The third solution for interoperable multimedia and data broadcasting is the adoption of multi-standard STB Even in this case, the common core should be maximised for minimising the complexity of STB

UNI for nation wide contribution and primary distribution network

- Broadcasters are preparing primarily distribution and contribution networks for digital terrestrial television broadcasting services in three major populated arias from the end of 2003 in Japan
- Two types of User Network Interface (UNI) are now considered, noncompressed baseband interface and MPEG-2 Transport Stream (TS) packets interface
- Major commercial broadcasters are considering to adopt non-compressed transmission services for 1.45 Gbit/sec HDTV contribution networks between three most populated areas (Tokyo, Nagoya and Osaka)
- In this case, UNI is HDTV-SDI for HDTV digital video interface and AES/EBU for digital audio interface
- Special signalling mechanism is provided for accommodating cueing information in order to switch from remote to local contents, and vice versa
- Another major broadcaster is considering to use packetised video, audio and data transmission systems for primary distribution services In this case, UNI is DVB-ASI for accommodating MPEG-2 TS packets

Nation-wide Contribution and Primary Distribution Networks

HDTV baseband transmission

Note: All systems are under consideration

Contents Distribution over Internet

- ITU-R develops a new Question 7/6 for 'Interface to webcasting and its supporting data services'
- Broadcasters should take care of rights of contents when they offer their contents to webcasting
 - Internet service could reach to all over the world while a broadcasting service is licensed only in limited areas
 - Some contents are produced supposing being broadcast only within limited areas
 - These contents may be replaced by 'safe' materials when broadcasters offer their contents to Internet
- Requirements from broadcasters to 'interface to webcasting' may include not only technical aspect but a mechanism for rights management

Conclusion

- In this presentation, interoperability of multimedia and data broadcasting systems are considered
- There are several multimedia and data broadcasting systems in order to respond deferent requirements
- ITU-R WP 6M and ITU-T SG 9 are jointly working to develop effective methods to exchange multimedia and data broadcasting contents between deferent systems
- Other related observations such as UNI between broadcasters and common carriers are discussed
- ITU-R WP 6M is now studying the Question for 'Interface to webcasting and its supporting data services'

Contact

Shuji Hirakawa Vice Chair of Working Party 6M Shuji.Hirakawa@Toshiba.co.jp

Thank you for your attention

Electronic Copy

This presentation is available on: http://www.itu.int/ITU-T/ worksem/ipcablecom/program.html

S1PM1-P3.PDF