ITU-T SUPPLEMENT TO REC. E.164
(CLEAN VERSION)

OPERATIONAL AND ADMINISTRATIVE ISSUES ASSOCIATED WITH NATIONAL IMPLEMENTATIONS OF THE ENUM FUNCTIONS

DRAFT # 11.2

STATUS: REVISED DRAFT #11.2 UPDATED DURING THE 7-16 MAY 2002 STUDY GROUP 2 MEETING

IMPORTANT NOTE on the STATUS of ITU-T SUPPLEMENTS:
Supplements are only informative and are, therefore, not considered to be an integral part of any Recommendation(s). They do not imply any agreement on the part of the ITU-T (Recommendation A.13, 10/2000, Section 2.4)
OPERATIONAL AND ADMINISTRATIVE ISSUES ASSOCIATED WITH NATIONAL IMPLEMENTATIONS OF THE ENUM FUNCTIONS

Table of Contents

1 Introduction ... 2

2 Scope .. 2

3 References .. 2
 3.1 IETF .. 2
 3.2 ITU .. 2

4 Definitions .. 2
 4.1 General terms .. 2
 4.2 E.164-specific terms .. 2
 4.3 ITU-T non-numbering terms ... 2
 4.4 DNS-specific terms .. 2
 4.5 ENUM-related terms ... 2
 4.6 Abbreviations .. 2

5 Background ... 2
 5.1 What is ENUM .. 2
 5.2 DNS zones and delegation .. 2
 5.3 Tiered architecture .. 2
 5.4 Overview of ENUM functions and entities .. 2

6 General administrative issues and options ... 2
 6.1 Identification of ENUM Tier 1 Registry or Registries .. 2
 6.2 Delegation of names from the ENUM Tier 1 Registry .. 2
 6.3 Determination of ENUM Tier 2 Name Server Provider and ENUM Registrars 2
 6.4 Validation of ENUM requests and records ... 2
 6.5 Relationships of administrative structures with ENUM zone structures 2
 6.6 Additional considerations ... 2

7 Implications of ENUM for country codes assigned to geographic areas 2
 7.1 Administration aspects, options and interfaces .. 2
 7.2 Review of consequences ... 2
 7.2.1 Ease of validation of relation between E.164 number and telephony subscriber 2
 7.2.2 Analysis of complexity and effort associated with provisioning 2

8 Summary and conclusion ... 2
9 Supplement history

Note: As of the date of publication of this Supplement, the insertion of E.164 numbers in a particular Top Level Domain (TLD) (e.g. in .e164.arpa as described in RFC 2916) and the designation of an ENUM Tier 0 Registry (presently RIPE-NCC) remained open issues within the ITU-T. The approach followed in this document is to refer to the domain in which is the ENUM Root Level as “.e164.TLD”, and to refer generically to the entity that is the Registry at this level.

Important Note on the status of ITU-T Supplements:
Supplements are only informative and are, therefore, not considered to be an integral part of any Recommendation(s). They do not imply any agreement on the part of the ITU-T (Recommendation A.13, 10/2000, section 2.4). For further information, please consult the referenced Recommendation: Organization of the work of the ITU-T: ITU-T Recommendation A.13, “Supplements to ITU-T Recommendations,” October 2000.
OPERATIONAL AND ADMINISTRATIVE ISSUES ASSOCIATED WITH NATIONAL IMPLEMENTATIONS OF THE ENUM FUNCTIONS

1 Introduction

The Internet Engineering Task Force (IETF) has developed the Telephone Number Mapping (ENUM) protocol (see RFC 2916) as a mechanism for mapping E.164 numbers onto Uniform Resource Identifiers (URIs; see RFC 2396). The E.164 number might also be used as the “key” within the ENUM protocol to produce a listing of the various applications (e.g. email, fax, telephony) that could be used to communicate with a specific subscriber. This Supplement provides an overview of the ENUM concept and describes various issues that are national matters and that need to be addressed by Administrations as they consider the inclusion of the portion of the E.164 numbering plan under their jurisdiction within the Domain Name System (DNS; see RFC 1591) as part of the one such envisaged implementation described by RFC 2916. This Supplement also describes various issues that are of interest to and that need to be addressed by assignees of E.164 Country Codes for geographic areas (also CCs for trials). Please refer to the Recommendation(s) in which TSB processes and procedures relating to requests for delegations of domain names corresponding to E.164 country codes are specified. Information about the early understandings between the ITU and the IETF concerning ENUM can be found in RFC 3026, “Liaison to IETF/ISOC on ENUM”.

There are potentially multiple competitive implementations of the ENUM protocol not covered in this Supplement. As competition is a national matter, this Supplement is not intended to preclude such implementations.

2 Scope

This ITU Supplement provides background, tutorial and guidance information on a broad range of operational and administrative issues associated with the inclusion of E.164 numbers into the DNS (i.e. the inclusion of ENUM domain names based on E.164 numbers). It contains considerations of and potential consequences arising from such issues. This document does not attempt to provide solutions for these issues; such solutions are left as the prerogative of Administrations for whom a range of oversight responsibilities is proposed in this ITU Supplement. This document describes the various issues and provides some guidance considering various ways to address each issue. Please refer to the Recommendation(s) in which TSB processes and procedures relating to requests for delegations of domain names corresponding to E.164 country codes are specified.

3 References

3.1 IETF

3.2 ITU
Recommendation E.164 – The International Public Telecommunications Numbering Plan
Recommendation E.164.1 – Criteria of procedures for the reservation, assignment and reclamation of E.164 country codes and associated identification codes
Recommendation E.164.3 – Principles, criteria and procedures for the assignment and reclamation of E.164 country codes and associated identification codes for groups of countries
Recommendation E.190 – Principles and criteria for the management and assignment of E-series international numbering resources
Recommendation E.195 – ITU-T International numbering resource administration
Recommendation H.323 (11/00) – Packet-Based Multimedia Communications Systems

4 Definitions

4.1 General terms

Address An address is a string or combination of digits and symbols which identifies the specific network termination points of a connection and is used for routing.

Name A combination of characters (e.g. numbers, letters and symbols) which is used to identify end users.

Telephony A form of telecommunication primarily intended for the exchange of information in the form of speech.

4.2 E.164-specific terms

Administrator The organization entrusted with the administration of a resource derived from an international numbering plan.

Assignee The applicant to whom E-Series international numbering resources have been assigned.

Assignment The process for providing an international numbering resource to an eligible applicant.

Country A specific country, a group of countries in an integrated numbering plan or a specific geographical area.
E.164 Number
A string of decimal digits that satisfies the three characteristics of structure, number length and uniqueness specified in Annex A of Recommendation E.164. The number contains the information necessary to route the call to a specific termination point associated with this number.

Subscriber
A person or entity (i.e. a Registrant) that is assigned an E.164 number.

Telephone Service Provider
The provider of the telephone services associated with an E.164 number in the PSTN, ISDN or PLMN. The service provider often assigns E.164 numbers to subscribers.

4.3 ITU-T non-numbering terms

Administration
Any governmental department or service responsible for discharging the obligations undertaken in the Constitution of the International Telecommunication Union, in the Convention of the International Telecommunication Union and in the Administrative Regulations.

Member State
A State that is considered to be a Member of the International Telecommunication Union in application of article 2 of the Constitution.

4.4 DNS-specific terms

.arpa
The Address and Routing Parameters Area top level domain (TLD), used for network infrastructure.

Delegation of a Domain
The process of separating a sub-domain, which was contained in a zone, into its own zone.

DNS Root Level
The base of the inverted tree that forms the Internet domain name space. Sometimes represented as “.”.

Domain
A set of host names consisting of a single domain name and all the domain names below it.

Domain Name
A set of labels delimited by “.”s.

Name Server
A DNS component that stores information about one zone (or more) of the DNS name space.

Name Space
The structure of the domain names in the DNS.

Naming Authority Pointer
A standard record used within the DNS (see RFC 2915). Within RFC 2916, a naming authority pointer identifies possible URIs and numbers that can be returned from an ENUM query.

Registrant
A subscriber who wants to register a domain name in the DNS. This is normally done via a Registrar and after the registration is done the Registrant becomes the domain name holder.
4.5 ENUM-related terms

Application Service Provider
An entity that provides specific application(s) (e.g. e-mail or voice messaging) direct to the ENUM subscriber.

e164.TLD
The second level domain used as the ENUM root level for ENUM domain names corresponding to E.164 numbers.

End User
A person who initiates some form of electronic communication (i.e. calling end user).

ENUM Function
The capability to map E.164 numbers into Uniform Resource Identifiers (URIs) as described in RFC 2916.

ENUM CC Level
A level in the tiered architecture (Tier 1) for ENUM that corresponds to the E.164 Country code (CC).

ENUM Domain Name
The domain name for an E.164 number, the primary point of reference in ENUM.

ENUM E.164 Number Level
A level in the tiered architecture (Tier 2) for ENUM that corresponds to an E.164 number (i.e. of the international public telecommunication numbering plan).

ENUM Registrant
The subscriber to an E.164 number who has chosen to subscribe to ENUM functions.

ENUM Registrar
An organization that interacts with subscribers or their agents to establish ENUM registration for the subscriber’s assigned E.164 numbers.

ENUM Root Level
A level in the tiered architecture (Tier 0) for ENUM that corresponds to the base of the inverted tree that forms the Internet domain name space designated for ENUM, i.e. e164.TLD.

ENUM Tier 0 Manager
The entity responsible for the management of the domain for the ENUM Root Level.
<table>
<thead>
<tr>
<th>ENUM Tier 0 Registry</th>
<th>The entity, under the administrative direction of the ITU-TSB, which acts as the Registry for the ENUM Root Level, in accordance with Recommendation E.A-ENUM.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENUM Tier 0 Registrar</td>
<td>The entity (TSB) acting as the Registrar for the ENUM Root Level.</td>
</tr>
<tr>
<td>ENUM Tier 1 Manager</td>
<td>The entity (ITU Member State(s) or Administration(s)) responsible for the management of the domain for the ENUM CC Level.</td>
</tr>
<tr>
<td>ENUM Tier 1 Registry</td>
<td>The entity acting as the Registry for the ENUM CC Level.</td>
</tr>
<tr>
<td>ENUM Tier 2 Manager</td>
<td>The entity (i.e. ENUM Subscriber) responsible for the management of the domain for the ENUM E.164 Number Level.</td>
</tr>
<tr>
<td>ENUM Tier 2 Name Server Provider</td>
<td>The entity that holds NAPTR resource records at the ENUM E.164 Number Level.</td>
</tr>
<tr>
<td>RIPE-NCC</td>
<td>The organisation that presently acts as the ENUM Tier 0 Registry for the ENUM Root Level.</td>
</tr>
<tr>
<td>Tier 0</td>
<td>ENUM level in the tiered architecture corresponding to the root, i.e. .e164.TLD. Records at this level contain pointers to Tier 1 for an E.164 Country Code or portion thereof.</td>
</tr>
<tr>
<td>Tier 1</td>
<td>ENUM level in the tiered architecture corresponding to the E.164 Country Code (CC), i.e. .<CC>.e164.TLD. Records at this level contain pointers to Tier 2 for an E.164 number.</td>
</tr>
<tr>
<td>Tier 2</td>
<td>ENUM level in the tiered architecture corresponding to the E.164 number, i.e. .<N(S)N>.<CC>.e164.TLD. Records at this level contain NAPTR pointers for an E.164 Country Code number.</td>
</tr>
</tbody>
</table>

4.6 Abbreviations

ASP	Application Service Provider
CC	E.164 Country Code (as specified in ITU-T Recommendation E.164)
DNS	Domain Name System
ENUM	TELEPHONE NUMBER MAPPING – both a protocol and an IETF Working Group
IAB	Internet Architecture Board
IANA	Internet Assigned Numbers Authority
IETF	Internet Engineering Task Force
IP	Internet Protocol
ISDN	Integrated Services Digital Network
Background

5.1 What is ENUM

ENUM is a function for mapping E.164 numbers into Uniform Resource Identifiers (URIs) corresponding to communication applications associated with those numbers. ENUM utilises the protocol developed by the Internet Engineering Task Force (IETF), specified in RFC 2916 that first transforms E.164 numbers into ENUM domain names and then uses the DNS-based architecture to access records from which the URIs are derived. ITU-T Recommendation E.164, titled “The International Public Telecommunications Numbering Plan,” describes the format and types of use of public E.164 numbers.

Through the ENUM function, E.164 numbers can be used to provide calling users with a variety of addresses, including those used for phone, fax and email, by which the called user can be contacted. This enables the called user to tailor the manner in which they are contacted through a single
number. Contact information can also be easily amended, added to, or updated without changing the number used for access.

Figure 1/Supplement shows some of the applications that can be associated with an E.164 number.

Figure 1 – Possible applications associated with E.164 numbers

When using ENUM in the specific implementation proposed in this Supplement, E.164 numbers are inserted within a single, carefully defined and structured domain of the DNS system. In a purely IP environment, ENUM will allow end users to use their E.164 number as a commonly used ENUM domain name for a variety of applications. It does not change the E.164 numbering plan in anyway.

This initiative can also facilitate both-way interworking between the SCN and IP based networks. Sample call flows from an SCN to an IP based network, and from an IP based network to an SCN, are shown in the following figures.

Figure 2 – Sample call flow from switched circuit network to IP based network
Although use of ENUM is not required for IP to SCN interworking, ENUM records can be established for E.164 numbers without IP connectivity. In Figure 2/Supplement the call set up is shown from an IP based terminal to the SCN. The IP-based terminal related to the E.164 number (44 113 496 0000) formats the called user’s E.164 number (1 908 555 1234) into an ENUM domain name (4.3.2.1.5.5.5.8.0.9.1.e164.TLD) and forwards this to the DNS. This returns the URI (tel:+19085551234), which initiates the call set-up to the gatekeeper using the ‘tel’ URI. The gatekeeper then routes the call to the responsible gateway. The call is then routed through that gateway and delivered via the SCN.

An example of this call type in the SIP environment is contained in Annex A.

Figure 3 – Sample call flow from IP based network to switched circuit network

It can be seen from Figure 3/Supplement that an SCN-based user (E.164 number: 1 908 555 1234) can contact a customer on an IP-based network through the use of the called user’s E.164 number (44 113 496 0000). When the SCN initiated call reaches an ENUM enabled gatekeeper, it formats the number into the ENUM domain name 0.0.0.0.6.9.4.3.1.1.4.4.e164.TLD and the DNS returns the URI related to the required H.323 user (h323:user@gk.foo). Another look-up in the Back-End service is then required to look up the IP address for the subscriber’s terminal. The call can then be completed to the H.323 client (terminal) related to the E.164 number (44 113 496 0000). In the H.323 environment, a gatekeeper is the controlling element within a specific H.323 environment and it controls a number of gateways in this H.323 domain.

An example of this call type in the SIP environment is contained in Annex A.

5.2 DNS zones and delegation

The basic administrative unit of DNS authority is the zone. Essentially, the important aspects are the following:

- a zone has a domain name,
- a domain name belongs to exactly one zone, nothing more, nothing less, and
- a zone’s contents are theoretically the same on any authoritative name server for the zone.

For example, consider the fictitious domain “comp-sci.old-ivy.edu”, where the Computer Science Department runs its own zone. The *domain* “old-ivy.edu” contains all the domain names that end
with “old-ivy.edu”. However, the zone “old-ivy.edu” contains all domain names that end with “old-ivy.edu” except for all the domain names ending with “comp-sci.old-ivy.edu”, because the “comp-sci” names are in the delegated “comp-sci” zone.

Therefore, in this example, “finance.comp-sci.old-ivy.edu” and “finance.old-ivy.edu” are different host names in different zones: the former belongs to “comp-sci” but not the latter. A domain name ending in “old-ivy.edu” belongs to either the zone of the Computer Science Department or else to the zone of the whole university. It can belong to only one zone.

Another way to describe this difference between the domain and the zone that have the same domain name, which is “old-ivy.edu” in this example, is to look at what is delegated:

- the domain is the set of all domain names under the delegated domain name, but
- the zone is that domain minus all the delegated domain names below that zone’s name.

In other words, “comp-sci.old-ivy.edu” is in the domain “old-ivy.edu” but not in the zone “old-ivy.edu”, because it is in the zone “comp.sci.old-ivy.edu” that was delegated from above.

5.3 Tiered architecture

The ENUM implementation will employ a DNS-based tiered architecture that is shown in Figure 4/Supplement.

Tier 0 corresponds to the ENUM Root level. At this level, the ENUM architecture contains only one domain (the ENUM root). The ITU TSB is the ENUM Tier 0 Registrar for that domain. The ENUM Tier 0 Registry should be designated by the ENUM Tier 0 Manager. The Tier 0 name servers contain records that point to ENUM Tier 1 name servers.

Tier 1 corresponds to the E.164 Country Code, or a portion of an integrated numbering plan that is assigned to an individual country. Delegations of the sub-domains are made by the ITU TSB to the entities designated by each country as administratively responsible for the domain corresponding to their country code.

The ENUM Tier 1 Manager for a domain corresponding to a country code is the entity responsible for the management of the numbering plan in this country. The Registry of the domain may be chosen by this entity. The name servers of the domain contain records that indicate the authoritative name servers for individual E.164 numbers or blocks of numbers in the country code or portion thereof.

Tier 2 corresponds to the E.164 number. Which entity will act as the ENUM Tier 2 Manager for domains at the Tier 2 level is a national matter and is for further study. The name servers will contain domain names corresponding to E.164 numbers and NAPTR resource records with information for specific communication services.

Some entity must interact with E.164 number subscribers (i.e. the ENUM Registrant) to have records for their numbers provisioned into the ENUM DNS-based architecture. This entity, the ENUM Registrar, might in some implementations be the same as the ENUM Tier 2 Name Server Provider of the corresponding E.164 number, which maintains the subscriber’s NAPTR resource records. The ENUM Registrar (and potentially other entities) may also have to interact with other parties, not depicted in Figure 4/Supplement, having knowledge of number assignments including Telephone Service Providers and, in some cases, number portability administrators of central reference databases.

It should be noted that not all of the potential interactions between entities are shown in the Figure 4/Supplement, nor, as will be discussed, all of the potential variants of the general tiered architecture.
5.4 Overview of ENUM functions and entities

The following tables describe the roles of functional entities involved in ENUM, and contain additional information on relationships between these entities. These tables are illustrative, and the remainder of this Supplement should be consulted for more definitive discussion of the concepts that appear in them.

Table 1/Supplement looks at the four types, or levels, of ENUM tiers in the context of the DNS hierarchy. Users and Service Providers are described in Tables 2/Supplement and 3/Supplement respectively. These groupings help to clarify how the different roles need to interact in order to provide ENUM services.
<table>
<thead>
<tr>
<th>Domain</th>
<th>Responsible organization for management of the domain (Designated manager)</th>
<th>Responsible organization for technical operation of the domain (Registry)</th>
<th>Registrar(s)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>“.”</td>
<td>DNS Root Manager</td>
<td>DNS Root Registry</td>
<td>DNS Root Registrar</td>
<td>N/A</td>
</tr>
<tr>
<td>(DNS Root Level)</td>
<td>ICANN through agreement(^1) with United States Department of Commerce</td>
<td>IANA, which is part of ICANN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.TLD</td>
<td>TLD Manager</td>
<td>TLD Registry</td>
<td>TLD Registrar</td>
<td></td>
</tr>
<tr>
<td>(TLD Level)</td>
<td>Entity responsible for managing the TLD level</td>
<td>Entity designated by the TLD Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>.e164.TLD</td>
<td>ENUM Tier 0 Manager</td>
<td>ENUM Tier 0 Registry</td>
<td>ENUM Tier 0 Registrar</td>
<td>The Registrant will be the ITU Member states or the Administration</td>
</tr>
<tr>
<td>(ENUM Root level)</td>
<td>Entity(^2) responsible for managing the ENUM Root level. (^2) NOTE: At present, the IAB, which will instruct the Registry to obtain approval from the TSB for any delegations.</td>
<td>Entity designated by the ENUM Tier 0 Manager.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^1\) According to section III B (i-v) in the Memorandum of Understanding between the United States Department of Commerce and ICANN (http://www.icann.org/general/icann-mou-25nov98.htm) and according to section 1 in the agreement between the University of Southern California and ICANN (http://www.icann.org/general/usc-icann-transition-agreement.htm).
<table>
<thead>
<tr>
<th>Domain</th>
<th>Responsible organization for management of the domain (Designated manager)</th>
<th>Responsible organization for technical operation of the domain (Registry)</th>
<th>Registrar(s)</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>.<CC>.e164.TLD (ENUM CC Level)</td>
<td>ENUM Tier 1 Manager</td>
<td>ENUM Tier 1 Registry</td>
<td>ENUM Registrar</td>
<td>ENUM Registrars provide direct registration services to ENUM Subscribers involving: - verifying subscriber identity and authorization to use E.164 number - interacting with ENUM Tier 2 Name Server Provider and ASP to establish records for the applications desired by the ENUM Subscriber Could be public telecommunications operators (PTO) or other ENUM service providers – i.e. national matter</td>
</tr>
<tr>
<td>.<N(S)N>.<CC>.e164.TLD (ENUM E.164 Number Level)</td>
<td>ENUM Tier 2 Manager</td>
<td>ENUM Tier 2 Name Server Provider</td>
<td>The Registrant will be the ENUM Subscriber</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – ENUM entities: functions and responsibilities

2 For integrated numbering plans, other procedures might apply.
Functional Entity: ENUM Subscriber/Called User
- The DNS Registrant of an assigned E.164 number for ENUM
- Is the authority for using ENUM to associate information for that specific service with the E.164 number
- Provides information on an E.164 number assignment and on specific services
- Specifies preferences for the association of specific services with the E.164 number
- Intends that calling users could contact the End User by using ENUM information
- A subscriber has three types of subscription:
 - as assignee of an E.164 number for a telephony service
 - as subscriber to one or more (IP-based) specific services
 - as party responsible for specifying how ENUM associates the number with service-specific URIs

Functional Entity: Calling User/Caller/Originator
- Is a calling user who queries DNS to retrieve service-specific information associated with the E.164 number of an ENUM Subscriber
- May or may not use the service-specific addressing information to “call” the ENUM Subscriber
- Intends to contact an ENUM Subscriber via a specific service but addressed with an E.164 number
- Uses ENUM-enabled client software to discover Subscriber’s chosen services
- May or may not choose a specific service to contact the Subscriber
- A calling user chooses to contact an ENUM Subscriber
- ENUM-enabled software performs the ENUM query
- Service-specific software makes the “call” using service-specific address information resulting from an ENUM query of a number

<table>
<thead>
<tr>
<th>Functional Entity</th>
<th>ENUM/DNS Role</th>
<th>Information</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENUM Subscriber/Called User</td>
<td>• The DNS Registrant of an assigned E.164 number for ENUM</td>
<td>• Provides information on an E.164 number assignment and on specific services</td>
<td>• A subscriber has three types of subscription:</td>
</tr>
<tr>
<td></td>
<td>• Is the authority for using ENUM to associate information for that specific service with the E.164 number</td>
<td>• Specifies preferences for the association of specific services with the E.164 number</td>
<td>• as assignee of an E.164 number for a telephony service</td>
</tr>
<tr>
<td></td>
<td>• Provides information on an E.164 number assignment and on specific services</td>
<td>• Intends that calling users could contact the End User by using ENUM information</td>
<td>• as subscriber to one or more (IP-based) specific services</td>
</tr>
<tr>
<td></td>
<td>• Specifies preferences for the association of specific services with the E.164 number</td>
<td>• Intends that calling users could contact the End User by using ENUM information</td>
<td>• as party responsible for specifying how ENUM associates the number with service-specific URIs</td>
</tr>
<tr>
<td></td>
<td>• Intends that calling users could contact the End User by using ENUM information</td>
<td>• A calling user chooses to contact an ENUM Subscriber</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Uses ENUM-enabled client software to discover Subscriber’s chosen services</td>
<td>• ENUM-enabled software performs the ENUM query</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• May or may not choose a specific service to contact the Subscriber</td>
<td>• Service-specific software makes the “call” using service-specific address information resulting from an ENUM query of a number</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 – Functional entities: subscribers and calling users for ENUM
<table>
<thead>
<tr>
<th>Functional Entity</th>
<th>ENUM/DNS Role</th>
<th>Information</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone Service Provider</td>
<td>• The provider of telephony service to an End User (Subscriber) of that service</td>
<td>• May be authorized by the Subscriber to provide current information about the assigned E.164 number to the ENUM Tier 2 Name Server Provider</td>
<td>• The E.164 number is assigned to an End User for the subscribed telephony service</td>
</tr>
<tr>
<td>Applications Service Provider</td>
<td>• The provider of a specific IP-based service to an End User (Subscriber) of that service</td>
<td>• May be authorized by the Subscriber to provide current information about the service-specific URI to the ENUM Registrar</td>
<td>• The ASP may be authorized by the Subscriber to add, change, or delete the service-specific NAPTR resource records held by the ENUM Tier 2 Name Server Provider</td>
</tr>
</tbody>
</table>

Table 3 – Functional entities: service providers for ENUM
6 General administrative issues and options

Some of the issues that would be appropriate for a Member State that chooses to have all or a part of its numbering resources included in the e164.TLD domain and participate in ENUM are listed below. While the decision on how to resolve them is responsibility of Member States, this section attempts to outline, where possible, some of the potential options.

6.1 Identification of ENUM Tier 1 Registry or Registries

Each Member State (i.e. ENUM Tier 1 Manager) that wants its numbering resources included in the ENUM DNS-based tree may identify the ENUM Tier 1 Registry or Registries associated with these resources.

The Member State may choose a single Registry or may choose to have different number ranges of its country code(s) represented in different Registries, each of them maintaining name servers. For example, if the numbering within the Member State used NDCs, there could be different Registries for the numbers within each NDC. The overall hierarchy of possible Registries would reflect the hierarchical structure of E.164 numbers. The chosen structure of the ENUM Tier 1 Registry or Registries for a Member State is a national matter.

Recall, however, that any given E.164 number can have only a single Registry and that partitions of a country code should not be so small as to burden the ENUM Tier 0 Registry name servers.

A CC may be divided among Registries where the CC represents an integrated numbering plan (e.g. CC 1) and the Member States wish to individually control ENUM arrangements for their respective resources.

6.2 Delegation of names from the ENUM Tier 1 Registry

It would be appropriate for Member States to select a process for population of numbers in the ENUM Tier 1 Registry name servers. Depending on the role of Telephone Service Providers in arranging for population of numbers in the ENUM Tier 1 Registry, population of numbers may be on the basis of either individual numbers or blocks of numbers. Irrespective of the role of Telephone Service Providers, however, implementation of number portability may make it necessary for population of numbers to be on an individual number basis. This is because not all numbers in a block, for example a national destination code, are necessarily associated with a single service provider.

6.3 Determination of ENUM Tier 2 Name Server Provider and ENUM Registrars

It would be appropriate for Member States to determine the rules for who may serve as ENUM Tier 2 Name Server Providers and ENUM Registrars for E.164 numbers.

Any entity may serve as an ENUM Tier 2 Name Server Provider and/or ENUM Registrar subject to whatever general qualifications the Member State may choose to impose. The level of qualification will need to balance the desire to promote user choice of entities on the ENUM E.164 Number Level versus any needs for consumer protection.

It will be necessary for ENUM Registrars to validate a subscriber’s right to have ENUM records for a particular E.164 number, and it would be desirable for alternative means for the verification of number assignments to be evaluated. In certain implementations, it may be considered appropriate for ENUM Registrars to validate an E.164 number assignment with the relevant Telephone Service Provider. Also, the Telephone Service Provider will need to notify the ENUM Registrar, the
ENUM Tier 2 Name Server Provider and ASPs when service is terminated or service changed (e.g. number portability). Exactly how the chain of notifications is performed is a national matter.

6.4 Validation of ENUM requests and records

As noted above, a major issue in devising an administrative model for ENUM is ensuring that only assignees of numbers can have records for the corresponding numbers populated. It would be appropriate for Member States to consider what arrangements are necessary to facilitate validation of number assignments and the identity of those requesting ENUM records.

Since it is expected that subscribers may choose from among various ASPs to deliver the services that are built using ENUM records, procedures may also be needed that allow such ASPs to work with the ENUM Registrar to populate the appropriate NAPTR resource records for (and only for) services that the number assignee has authorized. This is important because NAPTR resource records may be too complicated for most users to provision directly. These procedures need to support verification of both the identity of an ASP and that it is authorized by the assignee of an E.164 number.

6.5 Relationships of administrative structures with ENUM zone structures

The structure of the entities in the administrative process that provisions ENUM function is not necessarily mirrored by the operational ENUM zone structure. For example, Figure 5/Supplement shows two different versions of the ENUM zone structure that might be used by the same set of administrative entities and processes.

In this figure, entities a, b, and d are responsible administrative organizations for one or more domains; i.e. acting as Managers for the different ENUM Tier levels, as described in Table 1/Supplement. Entities a, b and d therefore interact with entities that operate name servers (NS). Entity c is an arbitrary entity that is involved in the overall administrative process needed for ENUM, but is not responsible for a domain. Entity c does not, therefore, interact with name servers.

Figure 5 – Examples of possible relationships of administrative structure with ENUM zone structures
6.6 Additional considerations

Due consideration of the following issues is also essential when the introduction of ENUM function is planned:

- DNS and information security – Readers of the public DNS data stored in the ENUM function should be assured that they will receive valid information. Therefore, there is a core requirement to consider security aspects related to DNS functions used for provisioning this service.

It is also considered essential that clients that have the authority to add, change, and delete entries in the ENUM function should be assured they:

- Are updating data in the correct records
- Have uninterrupted access to the data
- Are only allowed to update data following presentation of valid credentials

Entities involved in the ENUM functions have the responsibility to protect their physical and network resource as well as ensuring the validity of the DNS data entered into the system.

- Impersonation – Spoofing or misrepresentation of the identity of the originator of the information could allow unauthorised updates to the database. Invalid or missing data could, in turn, cause malicious redirection and denial of service. Therefore, clients attempting to add and update entries in an ENUM function should be able to unequivocally prove their identity to the DNS.

- Data Tampering – During the transmission of ENUM records, invalid URIs could replace valid URIs, thereby causing malicious redirection. This should be prevented by adequately provided network security features.

7 Implications of ENUM for country codes assigned to geographic areas

Under terms defined in Recommendations E.164 and E.164.1, the ITU has allocated a combination of one, two or three digit country codes to identify a specific country, countries in an integrated numbering plan, or a specific geographic area.

It can be expected that the optimal implementation for the operational and administrative processes needed for ENUM depend strongly on the national telecommunications environment. The optimal implementation will therefore vary from country to country and possibly even from geographic area to geographic area.

7.1 Administration aspects, options and interfaces

There are a variety of issues that the ITU TSB and the Member States/Administrations (including the national numbering plan administrators) need to address in implementing an ENUM DNS for their part of the E.164 numbering plan. This section lays out those issues.

There are issues about inserting E.164 numbers into a DNS-based architecture for numbers that are within a Country Code for a country (or integrated numbering plan). These issues include how to determine the most appropriate arrangement for adding, updating, and deleting the ENUM records related to an E.164 number, who runs the ENUM Tier 1 servers (from an operational perspective), and an agreed process between participating Member States within an integrated numbering plan, as appropriate.

Member States may also decide who qualifies to be an ENUM Registrar and an ENUM Tier 2 Name Server Provider. In some cases, Member States may want to solely rely on Telephone
Service Providers to serve as a ENUM Registrar and/or ENUM Tier 2 Name Server Provider for maintaining ENUM records on behalf of end users. In other cases, the level of competition may call for allowing a variety of entities to be ENUM Registrars for end users. In other cases, subscribers, themselves, may be allowed to function as the ENUM Tier 2 Name Server Provider for their own ENUM records.

In all aspects, it would be appropriate for the procedures established by Member States to ensure the integrity of their portion of the E.164 numbering plan. It would be appropriate for the validity of subscriber identity, data and service specific ENUM records in the NAPTR resource records to be addressed. Important issues include the incorporation of number plan changes within the DNS, the natural churn of numbers, and procedures for addressing ceased numbers and recovering those records within the DNS. Number and name hijacking and fraud needs to be addressed within the defined procedures. It would be appropriate for Member States to study whether and how such procedures can be enforced with carriers and third parties. It is important to note that a breakdown in the management of, and therefore the integrity of, this information will cause call-processing failures in the future.

It would be appropriate for Member States to ensure compliance with, and take into account, the impact of the national deployment of number portability (service provider, geographic, and/or service) prior to the implementation of ENUM. In some cases, the ENUM Tier 1 Registry name servers should point to ENUM Tier 2 name servers on an individual E.164 number basis and not on a number block basis.

It would be appropriate for Member States to consider the types of national numbers (e.g. geographic, mobile, service types, etc.) allowed within the DNS. The inclusion of prepaid mobile or pager numbers may provide unique challenges. Changes to ownership, loss/theft of terminals and ceased service need to be addressed in this decision.

7.2 Review of consequences

The development of implementations for the operational and administrative processes for ENUM and the assessment of implementation options is a matter for the Member States and the national parties they wish to involve. However, there are a number of generic points that are expected to be useful in the development and discussion of implementation options, irrespective of the specific implementations considered and the country or geographic area involved.

7.2.1 Ease of validation of relation between E.164 number and telephony subscriber

The validation of the relation between the E.164 number and the telephony subscriber as well as the status of an E.164 number (in service or not) is crucial in ENUM. An ENUM Registrar will need to perform this validation when requested to provide the ENUM function for a given E.164 number. Several means of validating the E.164 number – telephony subscriber relationship will be available. One option may be for the ENUM Registrar to interact with an entity that has information on the E.164 number - telephony subscriber relation. This entity may be the Telephone Service Provider that provides the telephony service for the number involved. A second option may be for the ENUM Registrar to require documentary evidence from an ENUM Registrant demonstrating that a telephony subscriber has been assigned the E.164 number.

Both of these and other options deserve careful consideration of how effective they will be given the particular operational and legal environment in each country. For example, the first option may be complicated in environments with number portability. If a central reference database is used for number portability, the administrator of this may need to be consulted to carry out the E.164 number – telephony subscriber validation. If no central database is used (i.e. onward routing of calls via a donor network), it may be necessary to consult the donor Telephone Service Provider to
obtain the identity of the recipient Telephone Service Provider, who in turn can finally carry out the validation. The second option mentioned above may suffer from the perishable nature of most forms of documentary evidence, and would require the support of effective fraud laws.

Among the goals in the development of an implementation for the administrative processes in ENUM may be to have a validation process that is simple while, at the same time, discourages fraud and unauthorized creation or transfer of services. Depending on the national telecommunications environment, the simplicity or complexity of the validation process may be an important criterion in the assessment of different implementation options.

7.2.2 Analysis of complexity and effort associated with provisioning

In selecting the administrative structures and processes for provisioning ENUM function, Member States/Administrations may want to take into account the types and amounts of interactions between the several entities. For example, it may be useful to distinguish one-time from continuous interactions. One-time interactions are carried out only once or, at most, only a few times, and involve many E.164 numbers at the same time. An example of a one-time interaction is the DNS delegation from ENUM Tier 0 Registry to ENUM Tier 1 Registry for the ENUM CC Level (see Table Error! Reference source not found./Supplement). Continuous interactions, on the other hand, relate to individual E.164 numbers and are expected to occur many orders of magnitude more frequently.

8 Summary and conclusion

ENUM is an opt-in capability developed to take advantage of the hierarchical nature of E.164 numbers and to use that structure to discover IP-based applications that can be used to communicate with end users. This opt-in characteristic is exhibited at two levels:

- The Member State; and
- The end user.

Once a Member State decides to opt-in to ENUM, a set of implementation and provisioning processes should be developed. Many of the issues that may be considered in this development have been addressed in the preceding sections. Member States may also want to learn from the development activities taking place in other countries and the sharing of such information is encouraged. The national architecture and requirement documents produced by a Member State may provide valuable insight into how the various issues are addressed and other Member States may want to consider these documents in their own development process.

Second, end users can decide whether to opt-in to ENUM and provision their contact information within the DNS. These users will want to feel that their contact information is both safe and secure before they will want to participate in ENUM. The security and privacy issues, discussed in previous sections, are probably the most important aspects of ENUM to end users.

In addition, ENUM relies on applications and services. Application software must become ENUM-enabled for users to be able to access the capability. In some cases, software (e.g., e-mail programs) must be changed to use the ENUM capability when an end user supplies an E.164 number to be translated into the appropriate URI (e.g., mailto:user@host) for the application. In other cases, service providers will need to update software or add new equipment (e.g., IP gateways) to access the DNS for ENUM. Market forces may influence the speed and penetration of such changes within the industry.

It is only after all three pieces of the ENUM puzzle fall into place that the capabilities of ENUM can be realized.
9 Supplement history

- First Draft - Study Group 2 - January 2001
- Second Draft - ENUM Ad Hoc (March 30, 2001)
- Third Draft – ENUM Ad Hoc (May 4, 2001)
- Fourth Draft – ENUM Ad Hoc (June 8, 2001)
- Fifth Draft – Q.1/2 Rapporteur Meeting – June 2001
- Sixth Draft – ENUM Ad Hoc (August 21, 2001)
- Seventh Draft – Study Group 2 – September 2001
- Eighth Draft – ENUM Ad Hoc (November 27, 2001)
- Tenth Draft – Q.1/2 Rapporteur Meeting – February 2002
Appendix A – Typical PSTN-IP call flows using SIP

It can be seen from Figure 3/Supplement that a PSTN-based user (number +1 908 555 1234) can contact a customer on an IP-based network through the use of the called user’s E.164 number (+44 113 496 0000). When the PSTN initiated call reaches an ENUM enabled gateway, it formats the number into the ENUM domain name 0.0.0.0.6.9.4.3.1.1.4.4.e164.TLD and the DNS returns the URI related to the required SIP user (sip:user@sipsrvc.foo). Another DNS look-up is then required to look up the host for user@sipsrvc.foo and the SIP server IP address is returned. The call can then be completed to the SIP client (terminal) related to the E.164 number +44 113 496 0000.

Although use of ENUM is not required for IP to PSTN interworking, ENUM records can be established for E.164 numbers without IP connectivity. In this figure call set up is shown from an IP based terminal to the PSTN. The IP based terminal related to the E.164 number formats the called user’s E.164 number into an ENUM domain name and forwards this to the DNS. This returns the URI (tel:+19085551234) which initiates the command INVITE to the server using the ‘tel’ URI. The SIP server will then look up the gateway address from a Location server which
returns the address of the Gateway. The call is then routed through that gateway and delivered via the PSTN.
Appendix B – Integrated numbering plans

This appendix describes how different geopolitical regions can be differentiated within an integrated numbering plan based on sets, or unions, of zones.

An Integrated Numbering Plan refers to E.164 numbering resources under a single E.164 resource that are used by the countries participating in that plan. For example, the E.164 Country Code “1” is assigned to the integrated numbering plan know as the North American Numbering Plan (NANP – see, for example, http://www.nanpa.com).

A major constraint comes from the requirement that a DNS zone has a single domain name. A DNS zone is the set of all domains that fall within the domain name corresponding to the zone except for those that have been delegated. For example, hypothetically, ENUM Domain Names for all E.164 numbers in Numbering Plan Area (NPA) = 301 would form a zone. The name of the zone would be “1.0.3.1.e164.TLD”. In this case, the DNS and numbering administrative structures would match.

However, NPA = 301 is not the only NPA in the State of Maryland in the United States. For example, NPA = 410 is also in Maryland. The ENUM Domain Name for this NPA is “0.1.4.1.e164.TLD”. This gives a hypothetical example of a numbering administrative structure (i.e. Maryland) that cannot be matched by a single DNS zone.

Suppose that all E.164 Numbers in Maryland would come under a particular numbering administrative structure. There is no single ENUM Domain Name that can exactly match this. The smallest domain containing names for both NPA = 301 and NPA = 410 is the ENUM Domain Name “1.e164.TLD”. Unfortunately, this ENUM Domain Name is not available for Maryland, since it would actually apply to all numbering resources inside the E.164 Country Code = 1.

One way to reconcile the problems caused by zones having single names is to look at ENUM administration based on sets, or unions, of zones. Hypothetically, the example for Maryland NPAs could consider an appropriate ENUM administrative unit as the union of the zone for 301, the zone for 410, and the zones for the other numbering resources in Maryland.

An example of ENUM administration for numbering resources within an E.164 Country Code can be described using this concept of the union of zones. Hypothetically speaking, consider some possible ENUM administrative units within E.164 Country Code = 1.

A country (e.g. Canada or the United States), or a state (e.g. New Jersey or Texas) typically has numbers from more than one NPA. The following figure shows how some ENUM Domain Names in E.164 CC = 1 would fit into the DNS Name Space.

It also illustrates how sets of numbers under numbering administrative entities would not match any single DNS zone. For example, no single DNS zone could match the set of NPAs in New Jersey. However, the set of NPAs in New Jersey is hypothetically also an example of a numbering administrative entity that could be matched by a union of DNS zones.
The concept of unions of zones is therefore one useful way to describe ENUM administration in terms of both DNS and numbering administration. It could, for example, help make the discussion of options for Registries and Registrars within “Tiers” simpler and more consistent.

Theoretically speaking, there are several different options for delegations of domains for Tier 1.

Note also that similar options would apply in any Tier, or zone, where different partitions might be considered. The following discussion is intended to be illustrative only.

Tier 0 may contain a single delegation to an E.164 Country Code, or it may contain multiple delegations within an E.164 Country Code. In either case, there are two options to consider.

Options for a single delegation from tier 0 to an E.164 country code:
- Option 1: Tier 1 is a single zone and delegates to Tier 2 zones.
- Option 2: Tier 1 has an upper layer with a single zone and delegates to one or more zones in a lower layer of Tier 1; these lower layer zones then delegate to Tier 2 zones. It is possible to construct options with more than two layers in Tier 1.

Options for multiple delegations from tier 0 within an E.164 country code:
- Option 3: Tier 1 has one layer with multiple zones; each zone then delegates to Tier 2 zones. It is possible to construct options with more than two layers in Tier 1.
- Option 4: Tier 0 delegates to Tier 2 zones; Tier 1 is null. It is possible to construct options with more than two layers in Tier 1 with the top sub-layer being null.

The following figure shows some theoretical examples of Tier 1 options for ENUM.
Figure B.2 – Some examples of options for zone delegations involving ENUM Tier 1

- A marks the NS/SOA boundary between Tier 0 and Tier 1.
- B marks the NS/SOA boundary between the Tier 1 layers.
- C marks the NS/SOA boundary between Tier 1 and Tier 2.