- 118 -

ITU-T Recommendation Z.130

Extended Object Definition Language (eODL): Techniques for Distributed Software Component Development Conceptual Foundation, Notations and Technology Mappings

	Summary

This Recommendation is intended for designers, implementers and managers of distributed systems, and tool developers that provide tools to support distributed systems.

This Recommendation specifies the ITU Extended Object Definition Language (ITU-eODL). ITU-eODL is used for a component-oriented development of distributed systems from the perspectives of four different but related views: the computational, implementation, deployment, and target environment view. Each view is connected with a specific modelling goal expressed by dedicated abstraction concepts. Computational object types with (operational, stream, signal) interfaces and ports are the main computational view concepts which describe distributed software components abstractly in terms of their potential interfaces. Artefacts as abstractions of concrete programming language contexts and their relations to interfaces form the implementation view. The deployment view describes software entities (software components) in binary representation and the computational entities realized by them. The target environment view provides modelling concepts of a physical network onto which the deployment of the software components shall be made. All concepts of the views are related to each other. These relations form an essential base for techniques and tools that support the software development process from design via implementation and integration to deployment. The test phase is not yet captured by this Recommendation.

ITU-eODL is an extension of the ITU Object Definition Language ITU-ODL [1] and supersedes it. Originally ITU-ODL was designed as an extension of ODP-IDL [12] and defined computational concepts based on ODP [2] [3] terminology. eODL follows this principle. However, definitions are based on a metamodel rather than the traditional abstract syntax approach. One advantage of the metamodel approach is to allow use of MOF [4] related tools to support the automation of model transitions between the different software development phases. Another benefit is the ability to instantiate concrete models from the metamodel, which can be represented by existing languages, so an integration of different design approaches can be achieved.

The readers of this Recommendation are expected to be familiar with IDL[5], UML [6], MOF.

The definition of eODL is supported by the following Annexes and Appendixes:

· Annex A introduces a textual syntax for eODL, intended to be used for the representation of eODL specifications. The syntax is defined using the EBNF style.

· Annex B defines the mapping between the eODL metamodel an the textual syntax defined in Annex A.

· Annex C provides a mapping from eODL to ITU SDL-2000 that allows an eODL model to be automatically transformed to a SDL-2000 model.

· Annex D contains a software reference to the XML representation [8] of the eODL metamodel according to the XML meta interchange format (XMI) [7]. It is provided in a separate file in order to allow import and processing of the eODL meta-model by UML tools.

· Clause 1 of the Recommendation provides an overview of how eODL is used by designers, implementers and managers of a distributed system. A concrete example of the use is given in Appendix I.

· Appendix II describes the overall development process when using eODL and possible tool support.

118

ITU-T A.1500 (03/2001)

