Red de Empalme

Estudios de Caso

Sr. T. Fried, UIT

Estudio de Caso 1: Optimización de Ruta

Para valores dados de

A = tráfico ofrecido a la ruta directa

 C_D = costo por circuito en la ruta directa

 $C_{\scriptscriptstyle T}$ = costo por erlang en el trayecto de desbordamiento

B = grado de servicio requerido para el caso de tráfico

encontrar el número óptimo de circuitos, N, a ser instalados en la ruta directa, al igual que los resultantes

 B_R = congestión en la ruta directa

m = media del tráfico de desbordamiento

v = varianza del tráfico de desbordamiento.

Nota: Encontrando el número óptimo de circuitos, N, en la ruta directa corresponde encontrar el valor N para el cual la función de costo,

$$C(N) = N * C_D + m * C_T$$

tiene un mínimo.

El valor de m para A y N dados, puede encontrarse de la tabla de Erlang o del diagrama adjunto.

 $A \quad C_{_{\rm D}} \quad C_{_{\rm T}} \quad B \quad {\color{red} \bigstar} \quad N \quad B_{_{\rm R}} \quad m \quad v \quad Costo$

A	C_{D}	$\mathbf{C}_{\scriptscriptstyle{\mathbf{T}}}$	В		N	\mathbf{B}_{R}	m	V	Costo
20.	1.	2.	0.10	→					
20.	1.	2.	0.05	→					
20.	1.	2.	0.01	→					
20.	1.	1.2	0.01	→					

Estudio de Caso 2 : Optimización y Dimensionamiento de la Red de Empalme

Considerar una red con 6 centrales. Las tablas de abajo dan el interés de tráfico entre todas las centrales y el costo por circuito para cada par de centrales. Encontrar el <u>número de circuitos</u> entre todos los pares de centrales, calcular el costo total de la red para los tres casos descritos a continuación, y <u>decidir</u> cuál es la manera más económica de efectuar la red.

<u>Caso 1</u>: todo el tráfico entre cualquier par de centrales (i,j) se cursa en una ruta <u>directa, de baja pérdida</u>.

Caso 2: todo el tráfico entre cualquier par de centrales (i,j,) es encaminado a través de una central de tránsito, T.

Caso 3: optimizar el número de circuitos en cada ruta i a j. El número óptimo de circuitos, N(i,j) depende de:

- el costo de un circuito en la ruta directa;
- el tráfico ofrecido;
- el costo por erlang en las rutas de desbordamiento, que a su vez depende del costo por circuito y de la
 eficiencia de la ruta. Como esta eficiencia, F, puede expresarse aproximadamente como la relación entre
 circuitos y tráfico ofrecido, ésta a su vez es dependiente del tráfico ofrecido, el cual no se conoce antes
 que las rutas de nivel más bajo hayan sido optimizadas; por tanto debe establecerse un procedimiento
 iterativo:
- **Paso 1 :** Usar la aproximación de Rapp y el diagrama adjunto para encontrar el número óptimo de circuitos en todas las rutas de alto uso.
- Paso 2 : Encontrar los parámetros correspondientes del tráfico de desbordamiento, m(i,j) y v(i,j).
- **Paso 3 :** Encontrar los tráficos ofrecidos hacia/desde la central tándem, sumando los tráficos relevantes de desbordamiento individuales.
- Paso 4: Encontrar los circuitos requeridos en las rutas tándem y calcular el costo total de la red.

Nota : Para los casos 2 y 3 debe observarse lo siguiente:

- usted tendrá que decidir cuál de las centrales será la central tándem, T;
- el grado de servicio usado para las rutas hacia/desde T deben ajustarse para dar el mismo grado de servicio total del Caso 1;
- calcule los tráficos de desbordamiento y rutas hacia/desde T, usando los diagramas adjuntos y el método de Wilkinson.

Matriz de interés de tráfico (in Erlang):

1	2	3	4	5	6
ı	10	15	5	2	20
9	i	25	6	8	10
20	23	I	18	20	30
6	6	20	ı	10	12
3	7	22	10	-	11
15	12	40	10	13	_

Matriz de costo por circuito

	1	2	3	4	5	6
1	ı	100	150	120	130	200
2	110	ı	100	100	110	150
3	130	110	ı	120	110	130
4	100	90	110	ı	100	130
5	120	100	110	120	ı	150
6	180	150	130	130	150	-

Grado de servicio requerido: 0.01

Use la siguiente página para tabular sus resultados.

Caso 1 : Todo el tráfico en rutas de baja pérdida

Matriz de circuito :

-	1	2	3	4	5	6	_	
1							_	
2								
3							Costo total =	
4								
5								
6								

Caso :	2:	Todo	el trá	fico	través	de une	a central	! de	tránsito,	T
--------	----	------	--------	------	--------	--------	-----------	------	-----------	---

Tándem seleccionado :		

Tráficos y circuitos :

	Hacia Tái	ndem T	Desde	Tándem T
_	Tráfico	Circuitos	Tráfico	Circuitos
1 2 3 4 5 6			1 2 3 4 5 6	
Costo t	otal =			

Caso 3 : Optimización de una Red de Encaminamiento Alternativo

Tándem seleccionado:	
----------------------	--

Calcular relaciones de costo :

Calcular factores de mejora:

$$\varepsilon = C_D / C_T$$

$$F_N(A) = \varepsilon \times (0.7 + 0.3 \times \varepsilon^2)$$

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6			·			

Optimizar circuitos en rutas de alto uso :

Usar los diagramas adjuntos para determinar circuitos y tráficos de desbordamiento!

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

Media de Tráfico de Desbordamiento:

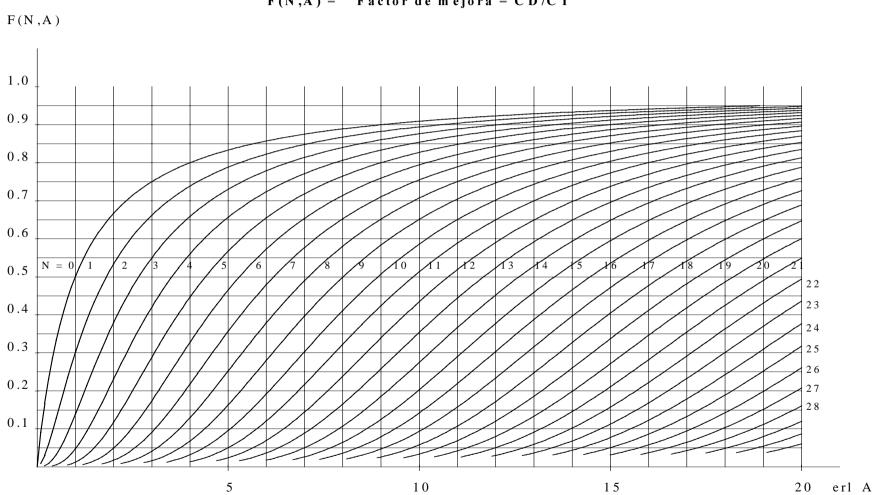
Varianza de Tráfico de Desbordamiento:

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

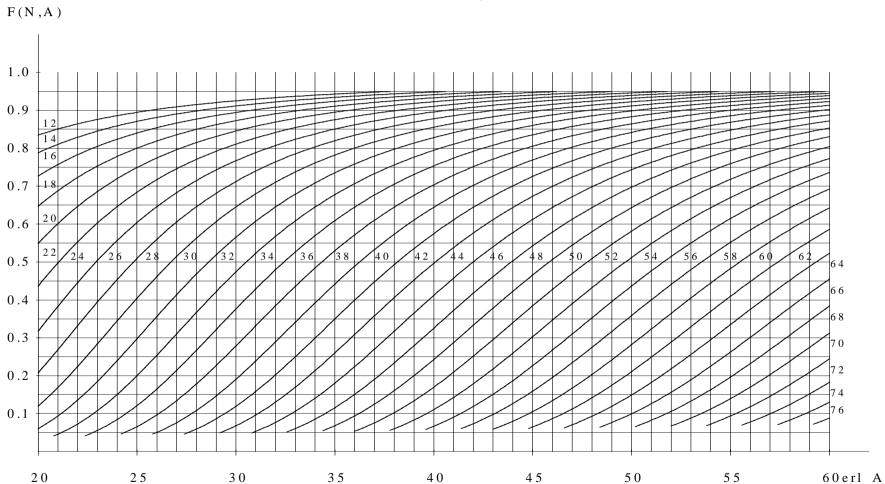
Calcular los tráficos (media y varianza) ofrecidos a las rutas tándem y encontrar el número requerido de circuitos :

Tráficos y circuitos:


Costo total =

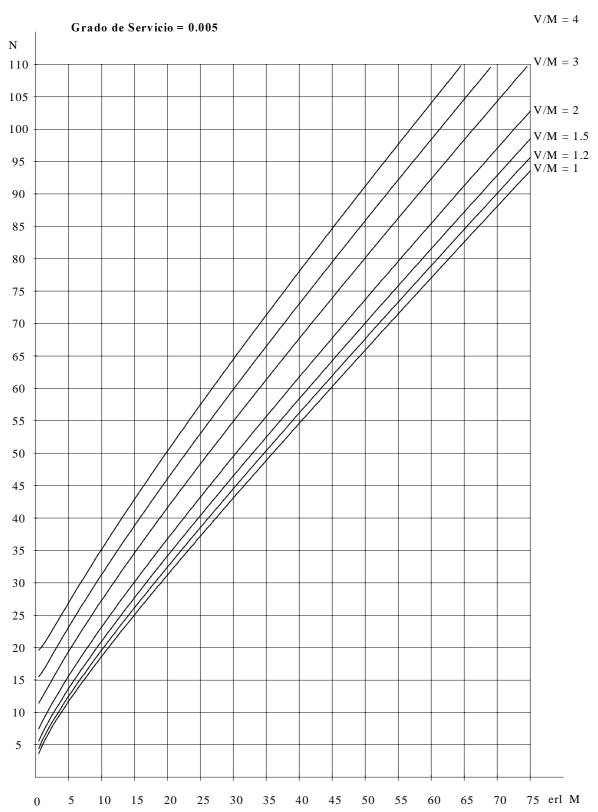
	Hacia Tándem					Desde Tándem			
	Media	Varianza	V/M	Circuitos		Media	Varianza	V/M	Circuito
1					1				
2					2				
3					3				
4					4				
5					5				
6					6				
_				•	•				
		_							

N = No. de lineas en la ruta directa


A = Tráfico ofrecido a la ruta

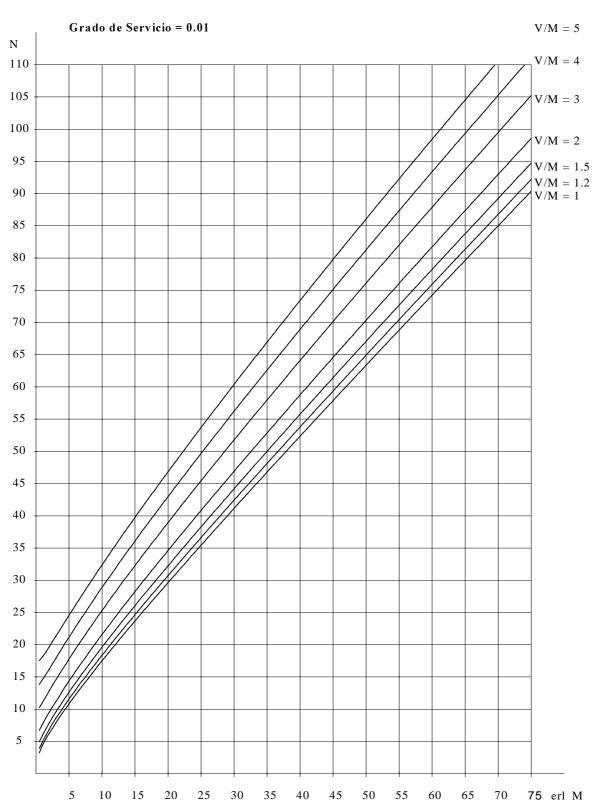
F(N,A) = Factor de mejora = CD/CT

A = Tráfico ofrecido a ruta directa

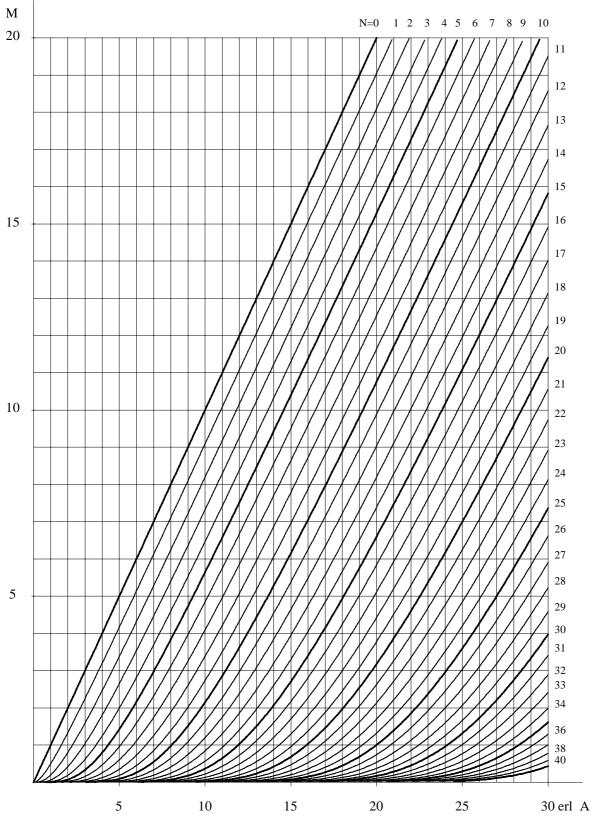

F(N,A) = Factor de Mejora = CD/CT

N = Número de líneas en ruta final

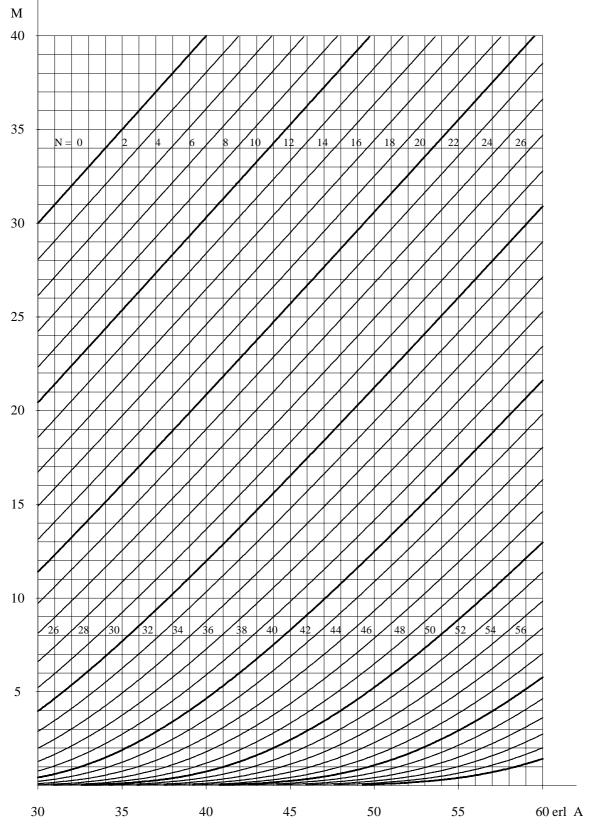
M = Media del tráfico ofrecido

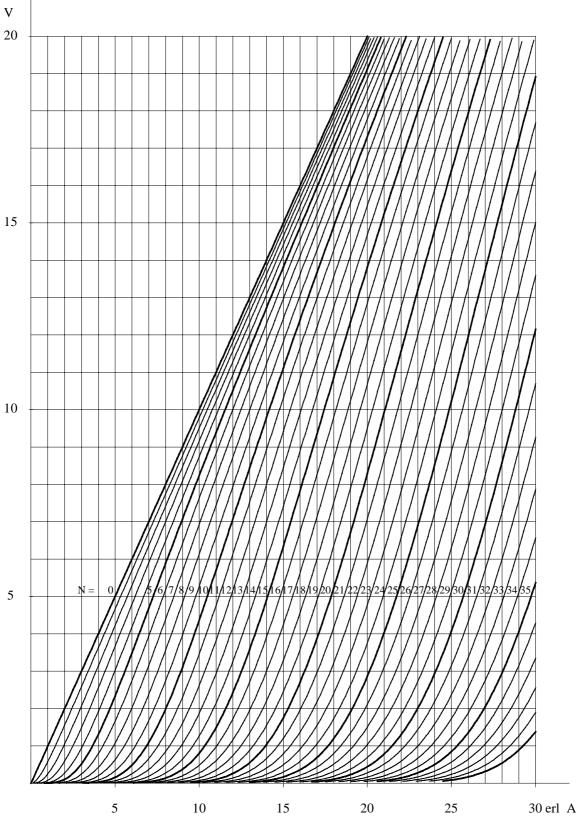

V = Varianza del tráfico ofrecido

N = Número de líneas en ruta final

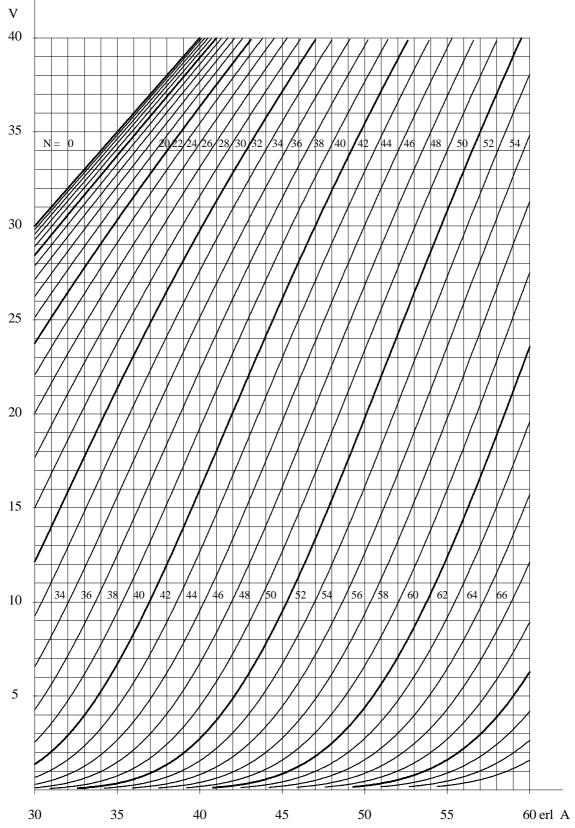

M = Media del tráfico ofrecido

V = Varianza del tráfico ofrecido


A = Tráfico ofrecido a ruta directa


A = Tráfico ofrecido a ruta directa

M = Media del tráfico de desbordamiento


A = Tráfico ofrecido a ruta directa

V = Varianza del tráfico de desbordamiento

A = Tráfico ofrecido a la ruta directa

